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Abstract

The vector coherent state and K-matrix combined theory is applied to construct matrix realizations
of the positive discrete series irreps of the orthosymplectic superalgebras osp(P/2N,R) (P = 2M
or 2M+1) in osp(P/2N,R) D s0(P) & sp(2N,R) D so(P) & u(N) bases. As an example, the case of
osp(4/2,R) is treated in detail.

1 Introduction

Vector coherent states (VCS), also called partially coherent states, were independently intro-
duced by Rowe [1], and by Deenen and Quesne [2] as a natural extension of generalized coherent
states [3,4]. At the same time, it was noted that coherent states provide a very powerful method
for constructing matrix realizations of Lie algebra ladder irreps in bases symmetry-adapted to
some maximal rank subalgebra [5,6]. Such a construction is carried out by the so-called K-matrix
technique {7,8].

Since then, the VCS and K-matrix combined theory has been applied to a lot of algebra-
subalgebra chains (Refs. [7,8] and references quoted therein). Recent extensions have allowed the
method to be used for non-semisimple Lie algebras [9] and for Lie superalgebras [10].

In the present communication, we report on a new application to the positive discrete series

irreps of the non-compact orthosymplectic superalgebras osp(P/2N,R), where P = 2M or 2M+1. In
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Refs. [11) and [12], a general method is provided for determining the conditions for the existence
of star irreps (and of grade star irreps in the osp(2/2N,R) case), the branching rule for their
decomposition into a direct sum of so(P) & sp(2N,R) irreps, and the matrix elements of the odd
generators in osp(P/2N,R) D so(P) @ sp(2N,R) D so(P) & u(N) bases. The cases explicitely
worked out include the most general irreps of osp(1/2N,R), osp(2/2,R), osp(3/2,R), osp(4/2,R),
osp(2/4,R), and the most degenerate irreps of osp(2/2N,R). We shall review here the osp(4/2,R)

example,

2 The positive discrete series irreps of osp(4/2,R)

The osp(4/2,R) superalgebra is spanned by the so(4) generators AL, A2 Cla, b =1, 2,
the sp(2,R) generators DT, D, E, and the odd generators G%, H%, I, J,, a = 1, 2. We choose to
enumerate the weight generators in the order E, C}, Cf. Then the lowering generators are A%,
C}, D, G, and J,, and the raising ones AL, c?, DY, He and I,.

The adjoint operation in so{4) @ sp(2,R) can be extended to an adjoint operation in osp(4/2,R)
in two ways differing in a sign choice : (G“)T = %1, (JO)T = +H*". On the contrary, it cannot be
extended to a grade adjoint operation. Hence, osp{4/2,R) may have star, but no grade star irreps
[13].

The positive discrete series irreps of osp(4/2,R) can be induced from a lowest-weight so(4) ®
sp(2,R) irrep [5,5,] @ (N1) or, equivalently, from a lowest-weight so(4) @ u(1) irrep [E,E.] ® {1}.
They will be denoted by [E,E;(1). Here, By, Ey, and (1 are some integers subject to the conditions
By > |By|,and 2> 1.

To construct a basis of the [E;8,(1) carrier space, symmetry-adapted to the chain osp(4/2,R)
D so(4) @ sp(2,R) D so(4) @ u(1), one may start from a basis {|[E,5;]{2}e)} of the lowest-weight
so(4) @ u(l) irrep. Since the raising generators H® and I, (D1) are the components of an so(4)
® u(1) irreducible tensor ¥ (DT), transforming under the irrep [10] @ {1} ([00] & {2}), one can
construct polynomials in (DT), transforming under an so(4) @ u(1) irrep [A1As) ® {r} ([00] ®
{v}). Here, v runs over all even integers, p over the set {0,1,...,4}, and [A;);] over those so(4)
irreps contained in the u(4) irrep {1#0}. By acting with these two sets of polynomials on the states

|[E182]{t}a) and by performing so(4) couplings, one can form the set of states

[Arde][€xéa]{w}{h}x)
= [Pt} (D) x [QPale) (g) x |[EIEg]{n}>]le.czuw}]fle,uh) W

characterized by a given so(4) @ u(1) irrep [£,&;] ® {h}, and where y =w ~ 0, and v = h — w.
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In general, however, the states (1) corresponding to {v} = {0}, thence to {h} = {w}, do not
belong to a definite sp(2,R) irrep. To obtain the lowest-weight state |[A1Az][&1&){(w){w}x) of an
sp(2,R) irrep (w), one has then to combine |[A;);][£62]{w}{w}x) with some states (1) for which
{h} # {w}. Once this has been done, it still remains to calculate and diagonalize the overlap

matrix

([MA5][&&)lw{wx|[MAs][ &1 & ) (wi{wlx) = (KKt([flfz]{w}))(x'la\;].hv\al ) (2

since neither the states (1), nor the states |[A; ;][ &]{w){w}x) form orthonormal sets.

This painful calculation was actually performed by Schmitt et al. [14], who determined in
this way the branching rule osp(4/2,R) | so(4) @ sp(2,R). The construction of the corresponding
osp(4/2,R) matrix realization would necessitate the computation of some additional complicated
scalar products and was not carried out in Ref. [14].

In the next section, we shall see how the VCS and K-matrix combined theory allows the same

problems to be solved in a much more elegant and efficient way.

3 VCS and K-matrix combined theory of osp(4/2,R)
The VCS corresponding to the osp(4/2,R) irrep [E;1E202) are defined by
1
|z,0,7; ) = exp(Z1)|[E15:]{0} ), Z = 52D +0,G*+1%J, . (3)

Here, there is a summation over repeated covariant and contravariant indices, z is a complex
variable, and a,,7%,a = 1, 2 are Grassmann variables. The set of variables {z,0,,7%} parametrize
the complex extension of the super coset space OSp(4/2,R)/[SO(4) ® U(1)]. The VCS (3) differ
from standard generalized coherent states [3,4] by the replacememt of a single reference state by a
set of such states, spanning the lowest-weight so(4) @ u(1) irrep carrier space, which will henceforth
be referred to as the intrinsic subspace.

The VCS representation of an arbitrary state | ¥}, belonging to the irrep [E,5,0) carrier space,
is given by a function ¥(z,0,7) taking vector values in the intrinsic subspace. Its components
¥,(2,0,7) are holomorphic functions in the variable 2z, and polynomials in the Grassmann variables
04,7%. The carrier space of the osp(4/2,R) VCS representation is defined as the graded Hilbert
space of all such vector-valued functions which are square integrable with respect to the VCS
scalar product (¥'|{¥)ycs. K-matrix theory replaces the difficult calculation of the integral form
of (¥'|¥)vcs by an implicit determination through the construction of an orthonormal basis with

respect to this scalar product.
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The VCS representation I'(X) of an osp(4/2,R) generator X is a differential operator on
¥(z,0,7) depending in addition on the intrinsic representation Al, , A2 , € ,a,b =1, 2,
and [E of so(4) @ u(1). Its explicit form can be easily found by using Baker-Campbell-Hausdorff
formula.

To apply the K-matrix technique to the osp{4/2,R) irrep [E,E:(2), we start by considering a
vector Bargmann-Berezin (VBB) space. The latter is defined as the space of vector-valued functions
¥(z,0,7) which are square integrable with respect to a Bargmann-Berezin (BB) scalar product
(¥'|®) [15, 16]. With respect to such a scalar product, the differential operators 28/8z, 8/3a,,
and 3/87* are adjoint to the corresponding variables z,0,, and 7°.

Starting from the intrinsic subspace, the I' representation of the raising generators generates an
irreducible invariant subspace of the VBB space, which is by definition the VCS space. Although
the domain of the operators I'(X) is restricted to the latter, one can extend it in a natural way to
the whole VBB space. As a result, one obtains the so-called extended T representation [10], which
may be reducible, and even nqt fully reducible, although the VCS representation is irreducible.

Since the variables 2, 0., ar'ld 7% transform under so(4) @ u(1) in the same way as the generators
DY, I,, and H?®, the set of states {||X,A3][£& &]{w}{h}x)}, obtained by substituting z and 3 =
(o4,7%) for Dt and & = (I, H%) in (1), form a VBB basis reducing the subalgebra so(4) & u(1).
Contrary to the set (1), the VBB basis is orthonormal (with respect to the BB scalar product).

Let us now introduce a transformation K mapping the VBB basis {|[A\Az][&1&2]{w}{h}x)}
onto a VCS one {K|[MAz](&1€2]{w}{h}x)}, orthonormal with respect to the unknown VCS scalar
product. Instead of using this VCS basis and the VCS representation I', which would have to be
a star representation with respect to the VCS scalar product, it is much more convenient to keep
on working with the VBB basis and transform the VCS representation I' into an equivalent one
7, defined by ¥(X)} = K~'I'(X)K, and satisfying star conditions with respect to the known BB
scalar product, i.e. y(X1) = ~1(X).

We may restrict ourselves to the submatrices K (|[£162]{w}) of the full K matrix, defined by

(K((&&Hw D)y pon = (PN EHoH@IX K Dbl Gl Hw)x) )

By imposing star conditions to v(x), it can be shown that the matrix KK!([¢,6){w}) =

K([&1&){w}) KT ([61€5]{w}) satisfies a recursion relation, whose explicit form can be easily obtained
from the T representation by using tensor calculus with respect to so(4) @ u(1). In addition, it
can be proved that K K'([¢,&]{w}) is nothing else but the overlap matrix defined in (2). Hence,
K-matrix theory provides a simple and systematic method for evaluating the scalar products (2)

without having to construct the sp(2,R) lowest-weight states |[A;A2][&1&;]{(w){w}x).
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There are at most 15 different irreps [£,£;] ® {w} in the VBB basis. The conditions for their
existence, to be referred to as the VBB conditions, can be easily determined from the coupling rules
of s0(4) irreps. All submatrices K([¢;£;]{w}) are one-dimensional, except for K([8,8;]{f} + 2})
which is two-dimensional whenever 8, # |E;|. There are at most 16 matrix elements (2) to
be determined from K K!([E,82]{01}) = 1, corresponding to the intrinsic subspace. The recursion
relation provides 40 equations to be satisfied by these 16 unknowns, hence allowing the calculations
to be cross-checked.

By definition, the matrices KK1([£,£,]{w}) are positive semi-definite. The solutions of the
system of 40 equations have such a property if and only if : (i) the plus sign is chosen in the
adjoint relations for the odd generators, i.e. (G°)f = I,, (J.)! = H®, and (i1) the irrep labels
satisfy the condition 2 > E,.

If Q > B, then all the matrices K K'([£6;]{w}) are positive definite, and all the VBB ba-
sis states are mapped onto VCS ones. On the contrary, if 1 = E;, then not all the matrices
K K([é162]{w}) are positive definite, showing that the VCS space is a proper subspace of the
VBB one. The linear combinations of VBB basis states, corresponding to vanishing eigenvalues of
K K¥([€1€2){w}), have to be eliminated. The conditions for the existence of the remaining linear
combinations are referred to as the VCS conditions. The branching rule osp(4/2,R) | so(4) ®
sp(2,R), obtained by combining the VBB and VCS conditions, is given in Ref. [12].

The s0(4) & u(1) reduced matrix elements of the odd generators between two lowest-weight
so(4) ® u(1) irrep basis states can be easily determined from those of 3 in the VBB basis, and
from the matrix elements of K([£1£;]{w}) corresponding to non-vanishing eigenvalues. Finally,
by applying the Wigner-Eckart theorem with respect to sp(2,R) D u(1) [17), the so(4) & sp(2,R)
(triple) reduced matrix elements of the odd generators can be calculated and are tabulated in Ref.

[12].

4 Conclusion

The VCS and K-matrix combined theory provides a simple and systematic procedure for
determining matrix realizations of osp(P/2N,R) by exploiting the full power of tensor calculus with
respect to so(P) @ u(N). Its only practical limitation lies in the necessity for an explicit knowledge
of some so(P) and u(N) Racah coefficients. Note however that in addition to the cases treated
in Refs. [11] and [12], many other examples might be worked out. Among them, let us mention

the most general irreps of osp(3/4,R) and osp(4/4,R), for which only u(2) Racah coefficients are

needed.
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