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A b s t r a c t  

The vector coherent state and K-matrix combined theory is applied to construct matrix realizations 

of the positive discrete series irreps of the orthosymplectic superalgebras osp(P/2N,R) (P = 2M 

or 2M+l )  in osp(P/2S,R)  D so(P) @ sp(2N,R) D so(P) ~ u(N) bases. As an example, the case of 

osp(4/2,R) is t reated in detail. 

1 Introduction 

Vector cohe.rent states (VCS), also called partially coherent states, were independently intro- 

duced by Rowe [1], and by Deenen and quesne [2] as a natural  extension of generalized coherent 

states [3,41. At the same time, it was noted that  coherent states provide a very powerful method 

for constructing matr ix realizations of Lie algebra ladder irreps in bases symmetry-adapted to 

some maximal rank subalgebra [5,6]. Such a construction is carried out by the so-called K-matrix 

technique [7,8]. 

Since then, the VCS and K-matrix combined theory has been applied to a lot of algebra- 

subalgebra chains (Refs. [7,8] and references quoted therein}. Recent extensions have allowed the 

method to be used for non-semisimple Lie algebras [9] and for Lie superalgebras [10]. 

In the present communication, we report  on a new application to the positive discrete series 

irreps of the non-compact orthosymplectic superalgebras osp(P/2N,R),  where P - 2M or 2M+l .  In 
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Refs. [11] and [12], a general method is provided for determining the conditions for the existence 

of star irreps (and of grade star irreps in the osp(2/2N,R) case), the branching rule for their 

decomposition into a direct sum of so(P) ~ sp(2N,R) irreps, and the matrix elements of the odd 

generators in osp(P/2N,R) D so(P) @ sp(2N,R) D so(P) ~ u(N) bases. The cases explicitely 

worked out include the most general irreps of osp(1/2N,R), osp(2/2,R), osp(3/2,R), osp(4/2,R), 

osp(2/4,R), and the most degenerate irreps of osp(2/2N,R). We shall review here the osp(4/2,R) 

example. 

2 The posit ive discrete series irreps of o sp(4 /2 ,R)  

The osp(4/2,R) superalgebra is spanned by the so(4) generators A~2 , A 12, C b, a, b = 1, 2, 

the sp(2,R) generators Dr,  D, E, and the odd generators G =, //=~ I~, Jo, a - I, 2. We choose to 

enumerate the weight generators in the order E,  C1, C~. Then the lowering generators are A 12, 

C~, D, G =, and Ja, and the raising ones A~, C~, D t, H ° and I=. 

The adjoint operation in so(4) (B sp(2,R) can be extended to an adjoint operation in osp(4/2,R) 

in two ways differing in a sign choice : (Ga)t = ±I~, (Ja) t -- ± H  a. On the contrary, it cannot be 

extended to a grade adjoint operation. Hence, osp(4/2,R) may have star, but no grade star irreps 

[13]. 
The positive discrete series irreps of osp(4/2,R) can be induced from a lowest-weight so(4) 

sp(2,R) irrep [~1::~] (B (l~) or, equivalently, from a lowest-weight so(4) (~ u(1) irrep [~IE=] (~ {~'1}. 

They will be denoted by [~xE~n/. Here, ~1,~2, and fl are some integers subject to the conditions 

~1 > IE~I~ and n > 1. 

To construct a basis of the [~lE~n) carrier space, symmetry-adapted to the chain osp(4/2,R) 

D so(4) ~ sp(2,R) D so(4) E~ u(1), one may start from a basis (I[~l~2]{n}c~)} of the lowest-weight 

so(4) (B u(1) irrep. Since the raising generators H a and Ia (Dr) are the components of an so(4) 

(B u(1) irreducible tensor ~ (Dr), transforming under the irrep [10] ~ {1} ([00] E~ {2}), one can 

construct polynomials in ~ (Dr), transforming under an so(4) @ u(1) irrep [A1A2] (B {p} ([00] 

{v}). Here, v runs over all even integers~/~ over the set ~0,1 .... ,4}, and [~,1A2] over those so(4) 

irreps contained in the u(4) irrep {1"6}. By acting with these two sets of polynomials on the states 

I[~r~.=]{N}cx) and by performing so(4) couplings, one can form the set of states 

= [PI°°J~(Dt) × [Q[~,~,J<.~(~) × [[.~,~,]{a})]I~'~'l~=)]~ '~:]~ , (x) 

characterized by a given so(4) E~ u(1) irrep [ ~ 5 ]  E~ (h}, and where # = co - fl, and ~, = h - ~. 
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In general, however, the states (1) corresponding to (z/} -- {0}, thence to {h} = {w}, do not 

belong to a definite sp(2,R) irrep. To obtain the lowest-weight state 1[~l)~2][~,~2](w){w}X) of an 

sp(2,R) irrep {w), one has then to combine 1[~lA2][~,~2]{w}{w}xI with some states (i) for which 

{h} ¢ {w}. Once this has been done, it still remains to calculate and diagonalize the overlap 

matrix 

([,~.&~][~2](w){w}Xl[,~l,~=][~t~2](w){w}X) = (KK't([¢~2]{w})){~:x&],[~,~,], (2) 

since neither the states (1), nor the states l[,~lA,][~l~2](w){w}x) form orthonormal sets. 

This painful calculation was actually performed by Schmitt et al. [14], who determined in 

this way the branching rule osp(4/2,R) J. so(4) (9 sp(2,R). The construction of the corresponding 

osp(4/2,R) matrix realization would necessitate the computation of some additional complicated 

scalar products and was not carried out in Ref. [14]. 

In the next section, we shall see how the VCS and K-matrix combined theory allows the same 

problems to be solved in a much more elegant and efficient way. 

3 VCS and  K - m a t r i x  combined  t h e o r y  of osp(4/2,R) 

The VCS corresponding to the osp(4/2,R) irrep [~1~2t2) are defined by 

1 
Iz, a , r ; a )  = expCZt)l[-Ul~%]{n}a), Z -- ~zD + a~G a + raJ~. (3) 

Here, there is a summation over repeated covariant and contravariant indices, z is a complex 

variable, and an, r a, a -- 1, 2 are Grassmann variables. The set of variables {z, an, ~a} parametrize 

the complex extension of the super coset space OSp(4/2,R)/[SO(4) ® U(1)]. The VCS (3) differ 

from standard generalized coherent states [3,4] by the replacememt of a single reference state by a 

set of such states, spanning the lowest-weight so(4) (9 u(1) irrep carrier space, which will henceforth 

be referred to as the intrinsic subspace. 

The VCS representation of an arbitrary state I~/, belonging to the irrep [-~1:~21~ carrier space, 

is given by a function ¢J(z,a,r) taking vector values in the intrinsic subspace. Its components 

kD~(z, a, r) are holomorphic functions in the variable z, and polynomials in the Grassmann variables 

aa,~ a. The carrier space of the osp(4/2,R) VCS representation is defined as the graded Hilbert 

space of all such vector-valued functions which are square integrable with respect to the VCS 

scalar product (¢Y'lqJ)vvs. K-matrix theory replaces the difficult calculation of the integral form 

of ( ~ l ~ ) v o s  by an implicit determination through the construction of an orthonormal basis with 

respect to this scalar product. 
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The VCS representation F(X) of an osp(4/2,R) generator X is a differential operator on 

• (z,o,r)  depending in addition on the intrinsic representation ~r~2 , ~.12 , Cba , a , b = 1, 2, 

and IE of so(4) ~ u(1). Its explicit form can be easily found by using Baker-Campbell-Hausdorff 

formula. 

To apply the K-matrix technique to the osp(4/2,R) irrep [==IE~F~), we start by considering a 

vector Bargmann-Berezin (VBB) space. The latter is defined as the space of vector-valued functions 

• (z,a,r) which are square integrable with respect to a Bargmann-Berezin (BB) scalar product 

(~ ' l~)  [15, 16]. With respect to such a scalar product, the differential operators 20/az, O/Ooo, 

and 0 / 0 r  = are adjoint to the corresponding variables z,a=, and r =. 

Starting from the intrinsic subspace, the F representation of the raising generators generates an 

irreducible invariant subspace of the VBB space, which is by definition the VCS space. Although 

the domain of the operators r ( x )  is restricted to the latter, one can extend it in a natural way to 

the whole VBB space. As a result, one obtains the so-called extended r representation [10], which 

may be reducible, and even not fully reducible, although the VCS representation is irreducible. 

Since the variables z, ao, and r = transform under so(4) q~ u(1) in the same way as the generators 

D*, Zo, and H =, the set of states { f [~ ,~ l [661{~Hh)×)} ,  obtained by substituting z and ~ = 

(aa, r =) for D t and ~ = (I,,, H =) in (1), form a VBB basis reducing the subalgebra so(4) @ u(1). 

Contrary to the set (1), the VBB basis is orthonormal (with respect to the BB scalar product). 

Let us now introduce a transformation K mapping the VBB basis (1[~,~=][6¢,1{~}{h}×)} 

onto a VCS one { K l [ ~ , l [ 6 6 ] { ~ } { h ) × ) } ,  orthonormal with respect to the unknown VCS scalar 

product. Instead of using this VCS basis and the VCS representation F, which would have to be 

a star representation with respect to the VCS scalar product, it is much more convenient to keep 

on working with the VBB basis and transform the VCS representation F into an equivalent one 

% defined by ~,(X) = K-~F(X)K,  and satisfying star conditions with respect to the known BB 

scalar product, i.e. "7( Z t) =. ~I ( X). 

We may restrict ourselves to the submatrices K (][~,~2]{w}) of the full K matrix, defined by 

(K( [66 ] { , . , } ) ) [ .~ l , t~ ,~=~ = ([A" A ' ~ I [ 6 ~ = ] { . , ~ { , ~ ) x l K I I A , A = ] I 6 ~ = I ( ~ } { , ~ } X )  . (4) 

By imposing star conditions to "Y(X), it can be shown that the matrix KKt([~1~2]{w}) -- 

K([~2]{co})Kt([~1~=]{w}) satisfies a recursion relation, whose explicit form can be easily obtained 

from the r representation by using tensor calculus with respect to so(4) ~ u(1). In addition, it 

can be proved that KJ£t([~2](w}) is nothing else but the overlap matrix defined in (2). Hence, 

K-matrix theory provides a simple and systematic method for evaluating the scalar products (2) 

without having to construct the sp(2,R) lowest-weight states I[A1)t.~][~z~=](w){w}X). 
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There are at most 15 different irreps IriS2] $ {w} in the VBB basis. The conditions for their 

existence, to be referred to as the VBB conditions, can be easily determined from the coupling rules 

of so(4) irreps. All submatrices K([~l~2]{w}) are one-dimensional, except for K([E1E2]{fl + 2}) 

which is two-dimensional whenever E1 ~ 1-21. There are at most 16 matrix elements (2) to 

be determined from KKt([~l-~2]{l~}) = 1, corresponding to the intrinsic subspaee. The recursion 

relation provides 40 equations to be satisfied by these 16 unknowns, hence allowing the calculations 

to be cross-checked. 

By definition, the matrices K K t ( [ ~ 2 ] { w } )  are positive semi-definite. The solutions of the 

system of 40 equations have such a property if and only if : (i) the plus sign is chosen in the 

adjoint relations for the odd generators, i.e. (Ga) t = Ia, (J=)t = H a, and (ii) the irrep labels 

satisfy the condition n _> El. 

If 12 > S~, then all the matrices KKt([~l~2]{w}) are positive definite, and all the VBB ba- 

sis states are mapped onto VCS ones. On the contrary, if 12 -- El, then not all the matrices 

KKt([~I~2]{w}) are positive definite, showing that  the VCS space is a proper subspace of the 

VBB one. The linear combinations of VBB basis states, corresponding to vanishing eigenvalues of 

KKt([~z~2]{w}), have to be eliminated. The conditions for the existence of the remaining linear 

combinations are referred to as the VCS conditions. The branching rule osp(4/2,R) J. so(4) $ 

sp(2,R), obtained by combining the VBB and VCS conditions, is given in Ref. [12]. 

The so(4) ~ u(1) reduced matrix elements of the odd generators between two lowest-weight 

so(4) (B u(1) irrep basis states can be easily determined from those of ~ in the VBB basis, and 

from the matr ix elements of K'([~1~2]{w}) corresponding to non-vanishing eigenvalues. Finally, 

by applying the Wigner-Eckart theorem with respect to sp(2,R) D u(1) [17], the so(4) • sp(2,R) 

(triple) reduced matrix elements of the odd generators can be calculated and are tabulated in Ref. 

[12]. 

4 C o n c l u s i o n  

The VCS and K-matrix combined theory provides a simple and systematic procedure for 

determining matr ix realizations of osp(P/2N,R) by exploiting the full power of tensor calculus with 

respect to so(P) ~ u(N). Its only practical limitation lies in the necessity for an explicit knowledge 

of some so(P) and u(N) Racah coefficients. Note however that  in addition to the cases treated 

in Refs. [11] and [12], many other examples might be worked out. Among them, let us mention 

the most general irreps of osp(3/4,1~) and osp(4/4,R), for which only u(2) Racah coefficients are 

needed. 
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