

Vector coherent state theory of the non-compact orthosymplectic superalgebras

C. Quesne*

Physique Nucléaire Théorique et Physique mathématique

Université Libre de Bruxelles

Campus Plaine, C.P. 229 - B1050 Bruxelles - Belgium

Abstract

The vector coherent state and K-matrix combined theory is applied to construct matrix realizations of the positive discrete series irreps of the orthosymplectic superalgebras $osp(P/2N, R)$ ($P = 2M$ or $2M+1$) in $osp(P/2N, R) \supset so(P) \oplus sp(2N, R) \supset so(P) \oplus u(N)$ bases. As an example, the case of $osp(4/2, R)$ is treated in detail.

1 Introduction

Vector coherent states (VCS), also called partially coherent states, were independently introduced by Rowe [1], and by Deenen and Quesne [2] as a natural extension of generalized coherent states [3,4]. At the same time, it was noted that coherent states provide a very powerful method for constructing matrix realizations of Lie algebra ladder irreps in bases symmetry-adapted to some maximal rank subalgebra [5,6]. Such a construction is carried out by the so-called K-matrix technique [7,8].

Since then, the VCS and K-matrix combined theory has been applied to a lot of algebra-subalgebra chains (Refs. [7,8] and references quoted therein). Recent extensions have allowed the method to be used for non-semisimple Lie algebras [9] and for Lie superalgebras [10].

In the present communication, we report on a new application to the positive discrete series irreps of the non-compact orthosymplectic superalgebras $osp(P/2N, R)$, where $P = 2M$ or $2M+1$. In

*Directeur de recherches FNRS

Refs. [11] and [12], a general method is provided for determining the conditions for the existence of star irreps (and of grade star irreps in the $osp(2/2N,R)$ case), the branching rule for their decomposition into a direct sum of $so(P) \oplus sp(2N,R)$ irreps, and the matrix elements of the odd generators in $osp(P/2N,R) \supset so(P) \oplus sp(2N,R) \supset so(P) \oplus u(N)$ bases. The cases explicitly worked out include the most general irreps of $osp(1/2N,R)$, $osp(2/2,R)$, $osp(3/2,R)$, $osp(4/2,R)$, $osp(2/4,R)$, and the most degenerate irreps of $osp(2/2N,R)$. We shall review here the $osp(4/2,R)$ example.

2 The positive discrete series irreps of $osp(4/2,R)$

The $osp(4/2,R)$ superalgebra is spanned by the $so(4)$ generators A_{12}^\dagger , A^{12} , C_a^b , $a, b = 1, 2$, the $sp(2,R)$ generators D^\dagger , D , E , and the odd generators G^a , H^a , I_a , J_a , $a = 1, 2$. We choose to enumerate the weight generators in the order E , C_1^1 , C_2^2 . Then the lowering generators are A^{12} , C_2^1 , D , G^a , and J_a , and the raising ones A_{12}^\dagger , C_1^2 , D^\dagger , H^a and I_a .

The adjoint operation in $so(4) \oplus sp(2,R)$ can be extended to an adjoint operation in $osp(4/2,R)$ in two ways differing in a sign choice : $(G^a)^\dagger = \pm I_a$, $(J_a)^\dagger = \pm H^a$. On the contrary, it cannot be extended to a grade adjoint operation. Hence, $osp(4/2,R)$ may have star, but no grade star irreps [13].

The positive discrete series irreps of $osp(4/2,R)$ can be induced from a lowest-weight $so(4) \oplus sp(2,R)$ irrep $[\Xi_1 \Xi_2] \oplus \langle \Omega \rangle$ or, equivalently, from a lowest-weight $so(4) \oplus u(1)$ irrep $[\Xi_1 \Xi_2] \oplus \{ \Omega \}$. They will be denoted by $[\Xi_1 \Xi_2 \Omega]$. Here, Ξ_1 , Ξ_2 , and Ω are some integers subject to the conditions $\Xi_1 \geq |\Xi_2|$, and $\Omega > 1$.

To construct a basis of the $[\Xi_1 \Xi_2 \Omega]$ carrier space, symmetry-adapted to the chain $osp(4/2,R) \supset so(4) \oplus sp(2,R) \supset so(4) \oplus u(1)$, one may start from a basis $\{ |[\Xi_1 \Xi_2] \{ \Omega \} \alpha \rangle \}$ of the lowest-weight $so(4) \oplus u(1)$ irrep. Since the raising generators H^a and I_a (D^\dagger) are the components of an $so(4) \oplus u(1)$ irreducible tensor \mathfrak{H} (D^\dagger), transforming under the irrep $[10] \oplus \{1\}$ ($[00] \oplus \{2\}$), one can construct polynomials in \mathfrak{H} (D^\dagger), transforming under an $so(4) \oplus u(1)$ irrep $[\lambda_1 \lambda_2] \oplus \{ \mu \}$ ($[00] \oplus \{ \nu \}$). Here, ν runs over all even integers, μ over the set $\{0, 1, \dots, 4\}$, and $[\lambda_1 \lambda_2]$ over those $so(4)$ irreps contained in the $u(4)$ irrep $\{1^6 0\}$. By acting with these two sets of polynomials on the states $|[\Xi_1 \Xi_2] \{ \Omega \} \alpha \rangle$ and by performing $so(4)$ couplings, one can form the set of states

$$\begin{aligned} & |[\lambda_1 \lambda_2] [\xi_1 \xi_2] \{ \omega \} \{ h \} \chi \rangle \\ &= [P^{[00]\{\nu\}}(D^\dagger) \times [Q^{[\lambda_1 \lambda_2]\{\mu\}}(\mathfrak{H}) \times |[\Xi_1 \Xi_2] \{ \Omega \} \rangle]^{[\xi_1 \xi_2]\{\omega\}}]^{[\xi_1 \xi_2]\{h\}}_x, \quad (1) \end{aligned}$$

characterized by a given $so(4) \oplus u(1)$ irrep $[\xi_1 \xi_2] \oplus \{h\}$, and where $\mu = \omega - \Omega$, and $\nu = h - \omega$.

In general, however, the states (1) corresponding to $\{\nu\} = \{0\}$, thence to $\{h\} = \{\omega\}$, do not belong to a definite $sp(2,R)$ irrep. To obtain the lowest-weight state $[[\lambda_1\lambda_2][\xi_1\xi_2]\langle\omega\rangle\{\omega\}\chi]$ of an $sp(2,R)$ irrep $\langle\omega\rangle$, one has then to combine $[[\lambda_1\lambda_2][\xi_1\xi_2]\{\omega\}\{\omega\}\chi]$ with some states (1) for which $\{h\} \neq \{\omega\}$. Once this has been done, it still remains to calculate and diagonalize the overlap matrix

$$\langle[\lambda'_1\lambda'_2][\xi_1\xi_2]\langle\omega\rangle\{\omega\}\chi|[[\lambda_1\lambda_2][\xi_1\xi_2]\langle\omega\rangle\{\omega\}\chi\rangle = (KK^\dagger([\xi_1\xi_2]\{\omega\}))_{[\lambda'_1\lambda'_2],[\lambda_1\lambda_2]}, \quad (2)$$

since neither the states (1), nor the states $[[\lambda_1\lambda_2][\xi_1\xi_2]\langle\omega\rangle\{\omega\}\chi]$ form orthonormal sets.

This painful calculation was actually performed by Schmitt et al. [14], who determined in this way the branching rule $osp(4/2,R) \downarrow so(4) \oplus sp(2,R)$. The construction of the corresponding $osp(4/2,R)$ matrix realization would necessitate the computation of some additional complicated scalar products and was not carried out in Ref. [14].

In the next section, we shall see how the VCS and K-matrix combined theory allows the same problems to be solved in a much more elegant and efficient way.

3 VCS and K-matrix combined theory of $osp(4/2,R)$

The VCS corresponding to the $osp(4/2,R)$ irrep $[\Xi_1\Xi_2\Omega]$ are defined by

$$|z, \sigma, \tau; \alpha\rangle = \exp(Z^\dagger)|[\Xi_1\Xi_2]\{\Omega\}\alpha\rangle, \quad Z = \frac{1}{2}zD + \sigma_a G^a + \tau^a J_a. \quad (3)$$

Here, there is a summation over repeated covariant and contravariant indices, z is a complex variable, and $\sigma_a, \tau^a, a = 1, 2$ are Grassmann variables. The set of variables $\{z, \sigma_a, \tau^a\}$ parametrize the complex extension of the super coset space $OSp(4/2,R)/[SO(4) \otimes U(1)]$. The VCS (3) differ from standard generalized coherent states [3,4] by the replacement of a single reference state by a set of such states, spanning the lowest-weight $so(4) \oplus u(1)$ irrep carrier space, which will henceforth be referred to as the intrinsic subspace.

The VCS representation of an arbitrary state $|\Psi\rangle$, belonging to the irrep $[\Xi_1\Xi_2\Omega]$ carrier space, is given by a function $\Psi(z, \sigma, \tau)$ taking vector values in the intrinsic subspace. Its components $\Psi_\alpha(z, \sigma, \tau)$ are holomorphic functions in the variable z , and polynomials in the Grassmann variables σ_a, τ^a . The carrier space of the $osp(4/2,R)$ VCS representation is defined as the graded Hilbert space of all such vector-valued functions which are square integrable with respect to the VCS scalar product $(\Psi'|\Psi)_{VCS}$. K-matrix theory replaces the difficult calculation of the integral form of $(\Psi'|\Psi)_{VCS}$ by an implicit determination through the construction of an orthonormal basis with respect to this scalar product.

The VCS representation $\Gamma(X)$ of an $\text{osp}(4/2, \mathbb{R})$ generator X is a differential operator on $\Psi(z, \sigma, \tau)$ depending in addition on the intrinsic representation $A_{12}^\dagger, A^{12}, C_a^b, a, b = 1, 2$, and Ξ of $\text{so}(4) \oplus \text{u}(1)$. Its explicit form can be easily found by using Baker-Campbell-Hausdorff formula.

To apply the K-matrix technique to the $\text{osp}(4/2, \mathbb{R})$ irrep $[\Xi_1 \Xi_2 \Omega]$, we start by considering a vector Bargmann-Berezin (VBB) space. The latter is defined as the space of vector-valued functions $\Psi(z, \sigma, \tau)$ which are square integrable with respect to a Bargmann-Berezin (BB) scalar product $(\Psi' | \Psi)$ [15, 16]. With respect to such a scalar product, the differential operators $2\partial/\partial z, \partial/\partial\sigma_a$, and $\partial/\partial\tau^a$ are adjoint to the corresponding variables z, σ_a , and τ^a .

Starting from the intrinsic subspace, the Γ representation of the raising generators generates an irreducible invariant subspace of the VBB space, which is by definition the VCS space. Although the domain of the operators $\Gamma(X)$ is restricted to the latter, one can extend it in a natural way to the whole VBB space. As a result, one obtains the so-called extended Γ representation [10], which may be reducible, and even not fully reducible, although the VCS representation is irreducible.

Since the variables z, σ_a , and τ^a transform under $\text{so}(4) \oplus \text{u}(1)$ in the same way as the generators D^\dagger, I_a , and H^a , the set of states $\{|\lambda_1 \lambda_2|[\xi_1 \xi_2]\{\omega\}\{h\}\chi\}$, obtained by substituting z and $\Xi = (\sigma_a, \tau^a)$ for D^\dagger and $\Xi = (I_a, H^a)$ in (1), form a VBB basis reducing the subalgebra $\text{so}(4) \oplus \text{u}(1)$. Contrary to the set (1), the VBB basis is orthonormal (with respect to the BB scalar product).

Let us now introduce a transformation K mapping the VBB basis $\{|\lambda_1 \lambda_2|[\xi_1 \xi_2]\{\omega\}\{h\}\chi\}$ onto a VCS one $\{K|\lambda_1 \lambda_2|[\xi_1 \xi_2]\{\omega\}\{h\}\chi\}$, orthonormal with respect to the unknown VCS scalar product. Instead of using this VCS basis and the VCS representation Γ , which would have to be a star representation with respect to the VCS scalar product, it is much more convenient to keep on working with the VBB basis and transform the VCS representation Γ into an equivalent one γ , defined by $\gamma(X) = K^{-1}\Gamma(X)K$, and satisfying star conditions with respect to the known BB scalar product, i.e. $\gamma(X^\dagger) = \gamma^\dagger(X)$.

We may restrict ourselves to the submatrices $K(|[\xi_1 \xi_2]\{\omega\})$ of the full K matrix, defined by

$$(K(|[\xi_1 \xi_2]\{\omega\}))_{[\lambda'_1 \lambda'_2], [\lambda_1 \lambda_2]} = (|\lambda'_1 \lambda'_2|[\xi_1 \xi_2]\{\omega\}\{\omega\}\chi | K | [\lambda_1 \lambda_2]|\xi_1 \xi_2|\{\omega\}\{\omega\}\chi) . \quad (4)$$

By imposing star conditions to $\gamma(\chi)$, it can be shown that the matrix $KK^\dagger(|[\xi_1 \xi_2]\{\omega\}) \equiv K(|[\xi_1 \xi_2]\{\omega\})K^\dagger(|[\xi_1 \xi_2]\{\omega\})$ satisfies a recursion relation, whose explicit form can be easily obtained from the Γ representation by using tensor calculus with respect to $\text{so}(4) \oplus \text{u}(1)$. In addition, it can be proved that $KK^\dagger(|[\xi_1 \xi_2]\{\omega\})$ is nothing else but the overlap matrix defined in (2). Hence, K-matrix theory provides a simple and systematic method for evaluating the scalar products (2) without having to construct the $\text{sp}(2, \mathbb{R})$ lowest-weight states $|\lambda_1 \lambda_2|[\xi_1 \xi_2]\{\omega\}\{\omega\}\chi\rangle$.

There are at most 15 different irreps $[\xi_1 \xi_2] \oplus \{\omega\}$ in the VBB basis. The conditions for their existence, to be referred to as the VBB conditions, can be easily determined from the coupling rules of $so(4)$ irreps. All submatrices $K([\xi_1 \xi_2]\{\omega\})$ are one-dimensional, except for $K([\Xi_1 \Xi_2]\{\Omega + 2\})$ which is two-dimensional whenever $\Xi_1 \neq |\Xi_2|$. There are at most 16 matrix elements (2) to be determined from $KK^\dagger([\Xi_1 \Xi_2]\{\Omega\}) = 1$, corresponding to the intrinsic subspace. The recursion relation provides 40 equations to be satisfied by these 16 unknowns, hence allowing the calculations to be cross-checked.

By definition, the matrices $KK^\dagger([\xi_1 \xi_2]\{\omega\})$ are positive semi-definite. The solutions of the system of 40 equations have such a property if and only if : (i) the plus sign is chosen in the adjoint relations for the odd generators, *i.e.* $(G^a)^\dagger = I_a$, $(J_a)^\dagger = H^a$, and (ii) the irrep labels satisfy the condition $\Omega \geq \Xi_1$.

If $\Omega > \Xi_1$, then all the matrices $KK^\dagger([\xi_1 \xi_2]\{\omega\})$ are positive definite, and all the VBB basis states are mapped onto VCS ones. On the contrary, if $\Omega = \Xi_1$, then not all the matrices $KK^\dagger([\xi_1 \xi_2]\{\omega\})$ are positive definite, showing that the VCS space is a proper subspace of the VBB one. The linear combinations of VBB basis states, corresponding to vanishing eigenvalues of $KK^\dagger([\xi_1 \xi_2]\{\omega\})$, have to be eliminated. The conditions for the existence of the remaining linear combinations are referred to as the VCS conditions. The branching rule $osp(4/2,R) \downarrow so(4) \oplus sp(2,R)$, obtained by combining the VBB and VCS conditions, is given in Ref. [12].

The $so(4) \oplus u(1)$ reduced matrix elements of the odd generators between two lowest-weight $so(4) \oplus u(1)$ irrep basis states can be easily determined from those of \mathfrak{z} in the VBB basis, and from the matrix elements of $K([\xi_1 \xi_2]\{\omega\})$ corresponding to non-vanishing eigenvalues. Finally, by applying the Wigner-Eckart theorem with respect to $sp(2,R) \supset u(1)$ [17], the $so(4) \oplus sp(2,R)$ (triple) reduced matrix elements of the odd generators can be calculated and are tabulated in Ref. [12].

4 Conclusion

The VCS and K-matrix combined theory provides a simple and systematic procedure for determining matrix realizations of $osp(P/2N,R)$ by exploiting the full power of tensor calculus with respect to $so(P) \oplus u(N)$. Its only practical limitation lies in the necessity for an explicit knowledge of some $so(P)$ and $u(N)$ Racah coefficients. Note however that in addition to the cases treated in Refs. [11] and [12], many other examples might be worked out. Among them, let us mention the most general irreps of $osp(3/4,R)$ and $osp(4/4,R)$, for which only $u(2)$ Racah coefficients are needed.

References

1. D.J. Rowe : *J. Math. Phys.* 25 2662 (1984)
2. J. Deenen, C. Quesne : *J. Math. Phys.* 25 2354 (1984)
3. A.M. Perelomov : *Commun. Math. Phys.* 26 222 (1972)
4. R. Gilmore : *Ann. Phys. (N.Y.)* 74 391 (1972)
5. D.J. Rowe, G. Rosensteel, R. Carr : *J. Phys. A* 17 L399 (1984)
6. J. Deenen, C. Quesne : *J. Phys. A* 17 L405 (1984)
7. K.T. Hecht : The vector coherent state method and its application to problems of higher symmetries, *Lecture Notes in Physics* 290, Berlin : Springer 1987
8. D.J. Rowe, R. Le Blanc, K.T. Hecht : *J. Math. Phys.* 29 287 (1988)
9. C. Quesne : *J. Phys. A* 23 847 (1990)
10. R. Le Blanc, D.J. Rowe : *J. Math. Phys.* 30 1415 (1989) ; 31 14 (1990)
11. C. Quesne : *J. Phys. A* 23 L43 (1990)
12. C. Quesne : Vector coherent state theory of the non-compact orthosymplectic superalgebras: I. General theory, submitted for publication ; Vector coherent state theory of the non-compact orthosymplectic superalgebras: II. Some selected examples, submitted for publication
13. M. Scheunert, W. Nahm, V. Rittenberg : *J. Math. Phys.* 18 146 (1977)
14. H.A. Schmitt, P. Halse, B.R. Barrett, A.B. Balantekin : *J. Math. Phys.* 30 2714 (1989)
15. V. Bargmann : *Commun. Pure Appl. Math.* 14 187 (1961)
16. F.A. Berezin : The method of second quantization, New York : Academic 1966
17. H. Ui : *Ann. Phys. (N.Y.)* 49 69 (1968)