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Abstract

In this work we introduce a new theoretical framework for Einstein-Gauss-Bonnet theories of gravity, 
which results to particularly elegant, functionally simple and transparent gravitational equations of motion, 
slow-roll indices and the corresponding observational indices. The main requirement is that the Einstein-
Gauss-Bonnet theory has to be compatible with the GW170817 event, so the gravitational wave speed c2

T

is required to be c2
T

� 1 in natural units. This assumption was also made in a previous work of ours, but 
in this work we express all the related quantities as functions of the scalar field. The constraint c2

T
� 1

restricts the functional form of the scalar Gauss-Bonnet coupling function ξ(φ) and of the scalar potential 
V (φ), which must satisfy a differential equation. However, by also assuming that the slow-roll conditions 
hold true, the resulting equations of motion and the slow-roll indices acquire particularly simple forms, and 
also the relation that yields the e-foldings number is N = ∫ φf

φi
ξ ′′/ξ ′dφ, a fact that enables us to perform 

particularly simple calculations in order to study the inflationary phenomenological implications of several 
models. As it proves, the models we presented are compatible with the observational data, and also satisfy 
all the assumptions made during the process of extracting the gravitational equations of motion. More 
interestingly, we also investigated the phenomenological implications of an additional condition ξ ′/ξ ′′ � 1, 
which is motivated by the slow-roll conditions that are imposed on the scalar field evolution and on the 
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Hubble rate. As we shall show, the resulting constraint differential equation that constrains the functional 
form of the scalar Gauss-Bonnet coupling function ξ(φ) and of the scalar potential V (φ), is simpler in 
this case, and in effect the whole study becomes somewhat easier. As we also show, compatibility with the 
observational data can also be achieved in this case too, in a much simpler and less constrained way. Our 
approach opens a new window in viable Einstein-Gauss-Bonnet theories of gravity.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The last twenty years had a lot of surprises for theoretical cosmologists, coming from both 
cosmological scale data and also from astrophysical scales events. Particularly, the observation 
of the currently accelerating Universe coming from the standard candles SNe Ia [1], has utterly 
changed our perception of how the Universe evolves. In addition, the direct detection of gravi-
tational waves coming from the merging of two neutron stars in 2017 [2], the GW170817 event 
as it is widely known, also affected theoretically cosmology drastically. This is due to the fact 
that the gravitational waves arrived almost simultaneously with the gamma rays emitted from 
the merging neutron stars event, and this indicated that the gravitational wave speed is c2

T � 1, 
in natural units. This fact, strongly imposed stringent conditions on modified gravity theories 
that may successfully describe nature on such scales, and actually excluded a large number of 
theories, see Ref. [3] for a complete list of the theories that are excluded from being viable, after 
the GW170817.

In a previous work [4] we demonstrated that it is possible to make the Einstein-Gauss-Bonnet 
theories [5–35] compatible with the GW170817 event, and making the gravitational wave speed 
to be c2

T � 1. Actually, technically this can be achieved, since in the Einstein-Gauss-Bonnet 

theories case, the gravitational wave speed is equal to c2
T = 1 − Qf

2Qt
, where Qf = 8(ξ̈ − Hξ̇). 

Thus if the scalar coupling function ξ(φ) is chosen so that it satisfies the differential equation 
ξ̈ − Hξ̇ = 0, the parameter Qf becomes identically equal to zero. The approach we adopted 
in [4], was cosmic time oriented, and the results were obtained by using in most cases expres-
sions involving the cosmic time. However, we realized that the GW170817-compatible Einstein-
Gauss-Bonnet inflationary theory might be developed in a much more simple and transparent 
way if we express all the involved physical quantities in terms of functions of the scalar field and 
their higher derivatives with respect to the scalar field, by making simple assumptions, mainly 
the slow-roll assumption for the scalar field and the slow-roll assumption Ḣ � H 2 which actu-
ally makes inflation possible to occur. Indeed, if doing so, the gravitational equations of motion, 
the slow-roll indices and the resulting observational indices have quite simple and elegant final 
expressions, and the phenomenological implications can be investigated in a much more trans-
parent and simple way, in comparison to our previous approach [4]. Thus with the present paper, 
we would like to present an elegant theory, with simple expressions in closed form for the phys-
ical quantities involved, that may be added in the already successful theories of modified gravity 
[36–42], which are also compatible with the GW170817.

Our strategy to approach the GW170817-compatible Einstein-Gauss-Bonnet inflationary the-
ory is mainly based on the imposed condition c2

T � 1, which results to the differential equation 
ξ̈ − Hξ̇ = 0. We shall express the latter in terms of the scalar field and functions of the scalar 
field and their derivatives. By assuming that the slow-roll conditions hold true for the scalar field 
and also for the Hubble rate, we express the gravitational equations of motion in terms of the 
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scalar field, and also we calculate the slow-roll indices and the observational indices as functions 
of the scalar field. One important outcome of our theoretical framework is that the Gauss-Bonnet 
scalar coupling function ξ(φ) and the scalar potential V (φ), are strongly related to each other, 
a condition that constrains the allowed functional forms of both ξ(φ) and V (φ). With regard 
to the observational indices, we are interested mainly in the spectral indices of the scalar and 
tensor perturbations nS and nT respectively, and the tensor-to-scalar ratio r . Thus we provide 
a transparent theoretical framework with mathematically elegant and simple expressions, that 
may be directly put to the test with regard to its inflationary phenomenology implications. By 
choosing several models of interest, we can express all the involved quantities as functions of 
the e-foldings number, and the free parameters for each model, and each model can be directly 
confronted with the latest Planck (2018) constraints on inflation [43]. As we demonstrate, there 
exist several models that can achieve viability with the observational data, while at the same time 
they succeed to satisfy all the assumptions made for deriving the equations of motion, such as the 
slow-roll assumptions and so on. Finally, we examine the implications of one further assumption 
well motivated by the slow-roll conditions, namely ξ ′/ξ ′′ � 1. As we show, this constraint can 
also lead to viable GW170817-compatible Einstein-Gauss-Bonnet inflationary theories, which 
in fact are functionally more simple in comparison to the previous case, where the constraint 
ξ ′/ξ ′′ � 1 was not imposed. We also examine several models of interest for this case, and we 
discuss several theoretical implications of this theoretical framework.

2. Einstein-Gauss-Bonnet theories and GW170817 compatibility modifications

We shall consider an Einstein-Gauss-Bonnet theory, which is described by the following grav-
itational action,

S =
∫

d4x
√−g

(
R

2κ2 − ω

2
∂μφ∂μφ − V (φ) − 1

2
ξ(φ)G

)
, (1)

where R denotes the Ricci scalar, κ = 1
Mp

with Mp being the reduced Planck mass, V(φ) is 
the scalar potential, ξ(φ) is the Gauss-Bonnet coupling which is a dimensionless function of the 
scalar field. Lastly, G is the Gauss-Bonnet invariant in four dimensions, which is a scalar quantity 
with dimensions [m]4, with G = R2 − RαβRαβ + Rαβγ δR

αβγ δ where Rαβ and Rαβγ δ being the 
Ricci and Riemann tensor respectively.

It is worth mentioning that even though the gravitational action involves ω, which we assume 
to be just a constant, with allowed values ω = ±1, our study will focus only on the canonical 
case ω = 1, but we shall leave it as ω in the equations that follow, in order to have the phantom 
scalar case available. Nevertheless, as we mentioned, we shall focus on the canonical scalar case. 
Furthermore, the cosmological background will be assumed to be that of a flat spacetime with 
Friedman-Robertson-Walker (FRW) metric, with the line element being,

ds2 = −dt2 + a(t)2
3∑

i=1

(dxi)2 , (2)

where a(t) denotes the scale factor. In addition, the scalar field shall be assumed to be time-
dependent only. Furthermore, the Gauss-Bonnet scalar for the FRW metric is equal to G =
24H 2(Ḣ + H 2).

By varying the gravitational action with respect to the metric tensor and with respect to the 
scalar field, the gravitational equations of motion are derived, which read,
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3H 2

κ2 = 1

2
ωφ̇2 + V + 12ξ̇H 3 , (3)

2Ḣ

κ2 = −ωφ̇2 + 4ξ̈H 2 + 8ξ̇HḢ − 4ξ̇H 3 , (4)

ω(φ̈ + 3Hφ̇) + V ′ + 12ξ ′H 2(Ḣ + H 2) = 0 . (5)

In order to study the dynamics of inflation, one needs an explicit expression of Hubble’s parame-
ter and of the scalar field, by solving the differential equations presented above. However, such a 
system of differential equations is very difficult to solve analytically and certain approximations 
must be made in order to make it solvable. One usual and important assumption we shall made 
is the slow-roll assumption,

Ḣ � H 2 , (6)

which is an essential assumption for the inflationary era to be realized in the first place, and 
another assumption is that the scalar field evolves in a slow-roll way, so the following usual 
relations hold true,

φ̇2

2
� V, φ̈ � 3Hφ̇ . (7)

Now let us get to the core of this article, the compatibility with the observational data coming 
from the gravitational wave emission of the event GW170817. As we already mentioned in the 
introduction, the gravitational wave speed in natural units for Einstein-Gauss-Bonnet theories 
has the form,

c2
T = 1 − Qf

2Qt

, (8)

where Qf = 8(ξ̈ − Hξ̇), Qt = F + Qb

2 , F = 1
κ2 and Qb = −8ξ̇H . Hence, compatibility may be 

achieved by equating the velocity of gravitational waves with unity, or making it infinitesimally 
close to unity. In other words, we demand Qf = 0 or Qf � 0. This constraint leads to an ordinary 
differential equation ξ̈ = Hξ̇ . However, instead of solving this particular differential equation, 
as was performed in a previous work of ours [4], we shall express it in terms of the derivatives 
of the scalar field, so every function shall be expressed in terms of the scalar field. Since ξ̇ = ξ ′φ̇
and d

dt
= φ̇ d

dφ
, the differential equation can be written as,

ξ ′′φ̇2 + ξ ′φ̈ = Hξ ′φ̇ . (9)

This equation is exactly equivalent to the differential equation derived from the constrain Qf =
0. Assuming that,

ξ ′φ̈ � ξ ′′φ̇2 , (10)

which is motivated from the slow-roll assumption of the scalar field, Eq. (9) is greatly simplified 
and can be solved with respect to the derivative of the scalar field,

φ̇ � Hξ ′

ξ ′′ . (11)

As it is obvious by looking Eqs. (5) and (11), the scalar field must obey both Eqs. (5) and (11). 
Thus, we can rewrite the third gravitational equation of motion Eq. (5) with respect to the Gauss-
Bonnet scalar coupling function, as follows,
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ξ ′

ξ ′′ � − 1

3ωH 2

(
V ′ + 12ξ ′H 4

)
, (12)

where we used the slow-roll assumption of Eq. (6). Furthermore we shall assume that the addi-
tional following condition holds true,

12ξ̇H 3 = 12
ξ ′2H 4

ξ ′′ � V , (13)

so in view of Eqs. (6), (7), (11) and (13), the gravitational equations of motion can be written in 
a very simplified form, as shown below,

H 2 � κ2V

3
, (14)

Ḣ � −1

2
κ2ωφ̇2 , (15)

φ̇ � Hξ ′

ξ ′′ . (16)

Also the combination of Eqs. (12) and (14) results in the following differential equation,

ξ ′

ξ ′′ = − 1

ωκ2V

(
V ′ + 4

3
ξ ′V 2κ4

)
, (17)

which must be obeyed by both the scalar coupling function ξ(φ) and the scalar potential, and 
essentially it is very important for the analysis that follows.

The equations (14), (15), (16), and (17) show that in our approach, all the quantities involved 
in the inflationary phenomenology of the GW170817 compatible Einstein-Gauss-Bonnet model, 
can be expressed as functions of the scalar field. This is very important, however, the most ap-
pealing feature of our approach is the simplicity of the slow-roll indices as functions of the scalar 
field. Let us demonstrate this by directly calculating the slow-roll indices, in view of Eqs. (14), 
(15), (16), and (17). The slow-roll indices for the theory at hand are defined to be [5],

ε1 = − Ḣ

H 2 , ε2 = φ̈

H φ̇
, ε3 = Ḟ

2HF
,

ε4 = Ė

2HE
, ε5 = Ḟ + Qa

2HQt

, ε6 = Q̇t

2HQt

, (18)

where F = 1
κ2 in the case at hand, and the function E is defined to be,

E = F

φ̇2

(
ωφ2 + 3

(
(Ḟ + Qa)

2

2Qt

)
+ Qc

)
, (19)

while the functions Qa , Qt , Qb and Qc, and additionally the function Qe are equal to [5],

Qa = −4ξ̇H 2, Qb = −8ξ̇H, Qt = F + Qb

2
, Qc = 0, Qe = −16ξ̇ Ḣ , (20)

and are characteristic contribution of the Gauss-Bonnet related term to the dynamics of inflation. 
By using Eqs. (14)-(16), the functions Qi of Eq. (20) can be expressed as functions of the scalar 
field, so we quote here the resulting expressions, to be used in the following,

Qa � −4
ξ ′2

ξ ′′ H 3 � −
(
4κ3

)
V (φ)3/2ξ ′(φ)2(

3
√

3
)

ξ ′′(φ)
, (21)
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Qb � −8
ξ ′2

ξ ′′ H 2 � −
(
8κ2

)
V (φ)ξ ′(φ)2

3ξ ′′(φ)
, (22)

Qe � 8k2ω
ξ ′4

ξ ′′3 H 3 � V (φ)3/2
(
8κ5ω

)
ξ ′(φ)4(

3
√

3
)

ξ ′′(φ)3
. (23)

Moreover, we can also express the slow-roll indices of Eq. (18) as functions of the scalar field, 
and these are,

ε1 � κ2ω

2

(
ξ ′

ξ ′′

)2

, (24)

ε2 � −ε1 + 1 − ξ ′ξ ′′′

ξ ′′2 , (25)

ε3 = 0 , (26)

ε4 � ξ ′

2ξ ′′
E′

E
, (27)

ε5 � − 2κ4ξ ′2V

3ξ ′′ − 4κ4ξ ′2V
, (28)

ε6 � −
2κ4ξ ′2V

(
1 − 1

2κ2ω
(

ξ ′
ξ ′′

)2
)

3ξ ′′ − 4κ4V ξ ′2 , (29)

and the explicit form of the function E(φ) is,

E(φ) = ω

κ2 + 82κ4ξ ′2V 2ξ ′′

3ξ ′′
(

1 − 4κ4ξ ′2V
3ξ ′′

) . (30)

Now let us proceed to the observable quantities, which can be expressed in terms of the slow-roll 
indices. We start off with the spectral index of the scalar curvature perturbations and the spectral 
index of the tensor perturbations, which in terms of the slow-roll indices are [5],

nS = 1 − 2
2ε1 + ε2 + ε4

1 − ε1
, (31)

nT = −2
ε1 + ε6

1 − ε1
, (32)

while the tensor-to-scalar ratio is defined to be [5],

r = 16

∣∣∣∣∣
(

κ2Qe

4H
− ε1

)
2c3

A

2 + κ2Qb

∣∣∣∣∣ , (33)

with cA being the sound speed, which is equal to,

c2
A = 1 + QaQe

3Q2
a + ωφ̇2( 2

κ2 + Qb)
, (34)

for the Einstein-Gauss-Bonnet theory at hand. Finally, we can also express the e-foldings number 
in terms of the scalar field as well. By using definition, N = ∫ tf

ti
Hdt , where ti and tf signify the 

time instance at first horizon crossing and at the end of inflation respectively, and according to 
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Eq. (16), the e-foldings number can be written as an integral with respect to the scalar field, as 
follows,

N =
tf∫

ti

Hdt =
φf∫

φi

H

φ̇
dφ =

φf∫
φi

ξ ′′

ξ ′ dφ , (35)

where φi and φf are the values of the scalar field at the first horizon crossing and at the end of 
the inflationary era respectively. This is the final piece needed in order to extract the phenomeno-
logical implications of the GW170817 compatible Einstein-Gauss-Bonnet theory.

The strategy to explicitly check the phenomenological viability of the GW170817 compati-
ble Einstein-Gauss-Bonnet theory is the following: Firstly we choose an appropriate functional 
form for the scalar Gauss-Bonnet coupling ξ(φ), then by inserting it in the differential equation 
(17), the scalar potential can be obtained. Accordingly, for these functions, the slow-roll indices 
(24)-(29) can be obtained as functions of the scalar field. Then, we can evaluate the final value of 
the scalar field at the end of the inflationary era by equating ε1 � 1, and also by using the result-
ing φf , and after performing the integral (35), we can solve the resulting equation with respect 
to φi , which recall is the value of the scalar field at the first horizon crossing, now evaluated as 
a function of the e-foldings number and of the free parameters of each model. Finally by sub-
stituting the value φi in the slow-roll indices (24)-(29), since these must be evaluated at the first 
horizon crossing, we can obtain the slow-roll indices (24)-(29) and the observational indices (31), 
(32) and (33) as functions of the e-foldings number and of the free parameters of each model. 
Finally, the resulting expressions can be directly compared with the latest Planck data (2018) 
[43], which constrain the spectral index of the scalar perturbations nS and the tensor-to-scalar 
ratio r as follows,

nS = 0.9649 ± 0.0042, r < 0.064 (36)

With regards to the spectral index of the tensor perturbations, there is no reason for the consis-
tency relation of the canonical scalar theory to hold true, so we just quote the value, and we do 
not pursuit this issue further for the various models we shall examine in the following sections.

In the next section we shall examine several models that can yield a viable phenomenology in 
the context of the GW170817-compatible Einstein-Gauss-Bonnet theory.

The choice for the Gauss-Bonnet coupling ξ(φ) which will be done in the next sections, 
might seem bizarre in each case, however there is a strategy we used in each case, and it is 
based on the simplicity of the fractions ξ ′/ξ ′′ and ξ ′′/ξ ′. Note that the fraction ξ ′′/ξ ′ appears 
in the expression of the e-foldings number integral (35), so if an appropriate choice for ξ is 
made, the integral of the e-foldings number (35), can be performed easily. Accordingly, the 
fraction ξ ′/ξ ′′ appears in the differential equation (17), a suitable choice for ξ ′/ξ ′′ may result 
to a simple form of the differential equation (17), and thus the scalar potential can easily be 
obtained by solving it analytically. A not suitable choice of the coupling function ξ(φ) would 
make the differential equation (17) unsolvable, at least analytically, but the analyticity of the 
equations is our main target behind the various choices of the coupling function. Another reason 
the functional simplicity of the first slow-roll index ε1 (24), and in the Appendix we further 
discuss this issue by using illustrative examples.
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3. Confronting the GW170817-compatible Einstein-Gauss-Bonnet theory with 
observations

In this section we shall study explicit examples of GW170817 compatible Einstein-Gauss-
Bonnet models that can yield a phenomenologically viable inflationary era. Recall that the most 
severe constraint is that the scalar coupling function ξ(φ) and the scalar potential V (φ) must sat-
isfy the differential equation (17). The most easy way is to assume a specific form for the function 
ξ(φ) and then solve the differential equation (17) and find the scalar potential V (φ), and accord-
ingly the resulting model can be tested directly. However, most usual choices for the function 
ξ(φ), like simple power-law models or combinations of exponentials or even simple sinusoidal 
functions, to do not lead to viable phenomenologies. We found some examples from which a 
viable phenomenology can be obtained, but in principle combinations of simple functions can 
also be tested.

3.1. Model I: the error function choice for ξ(φ)

A particularly interesting model with optimal viability properties is obtained if we choose the 
coupling scalar function ξ(φ) to be equal to,

ξ(φ) = y0Erf(γ κφ) = 2y0√
π

γκφ∫
0

e−x2
dx , (37)

where x is an auxiliary integration variable and γ , y0 are dimensionless constants to be specified 
later on in this subsection, and Erf(z) is the error function. At first glance, this designation of the 
coupling function might seem odd. Despite its appearance, this function has certain characteris-
tics which make it interesting. Firstly, the derivatives of such function are connected via a simple 
but elegant equation,

ξ ′′ = −2γ 2κ2φξ ′ . (38)

Subsequently, the slow-roll indices ε1, ε2, the e-foldings number and the necessary scalar field 
values φi , φf have quite simple functional forms in their final forms. Solving the differential 
equation for the scalar potential in Eq. (17), one finds that the resulting solution for the scalar 
potential has the following form,

V (φ) = 3
√

πφ
ω

2γ 2
(
γ 2κ2φ2

) ω

4γ 2 + 1
2

3
√

πc
(
γ 2κ2φ2

) ω

4γ 2 + 1
2 − 4γy0κ5φ

ω

2γ 2 +1



(
1
4

(
ω
γ 2 + 2

)
, γ 2κ2φ2

) , (39)

where c is an arbitrary integration constant with mass dimensions [m]
ω

2γ 2 −4
. Instead of naively 

equating it to zero, we shall keep it and examine whether in can be of any use. Similar to the scalar 
potential, the slow-roll indices can be evaluated using the coupling scalar function in Eq. (37), as 
shown below,

ε1 � ω

8(γ 2κφ)2 , (40)

ε2 � ω − 4γ 2

2 2 , (41)

8(γ κφ)
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ε3 = 0 , (42)

ε5 � 2κ3y0φ
ω

2γ 2

4κ3φ
ω

2γ 2

(
y0 − γ 2y0κ2φ2eγ 2κ2φ2

E 1
2 − ω

4γ 2

(
γ 2κ2φ2

)) + 3
√

πγ cφeγ 2κ2φ2

, (43)

ε6 � κ
(
ω − 8γ 4(κφ)2

)
4γ 4φ2

(
4γ 2κ5φ2eγ 2κ2φ2

E 1
2 − ω

4γ 2

(
γ 2κ2φ2

) − 4κ3 − 3
√

πγ ceγ 2κ2φ2
φ

1− ω

2γ 2

) , (44)

where Ex denotes the exponential integral with lower limit x, and we omitted the slow-roll index 
ε4 because it has a quite lengthy final expression. In addition, the first two indices are described 
by simple and elegant equations compared to the rest, which is expected since they are connected 
to the derivatives of the coupling scalar function ξ(φ). This is exactly why the error function was 
chosen in the first place. In consequence, we can evaluate the final value of the scalar field by 
letting slow-roll index ε1 in Eq. (40) become equal to unity. Doing so, we end up with two values 
for the scalar field,

φf = ±
√

ω

2
√

2κγ 2
. (45)

Hence, recalling the e-foldings number formula in Eq. (35) and using the previous result, the 
initial value of the scalar field at the first horizon crossing reads,

φi = ±
√

8Nγ 2 + ω

2
√

2κγ 2
. (46)

Each value of the scalar field is given by two signs, either a plus or a minus, but we keep the 
physically consistent value, which is the positive of course. For simplicity, we shall use the 
reduced Planck physical units system, for which κ2 = 1. Assuming that the free parameters 
have the following values (ω, y0, γ, c) = (1, 1, 2, 4.09413 × 10−25) in reduced Planck units, 
meaning κ = 1, the spectral indices and the tensor-to-scalar ratio become equal to nS = 0.966, 
nT = −0.00342555 and r = 0.00832892, which are compatible with the latest Planck data [43]
of Eq. (36), at least when the tensor-to-scalar ratio and the spectral index of scalar curvature 
are considered. The maximum bound for the tensor spectral index coming from Planck 2018 
[43] is nT � 2 so the present model is also compatible with this constraint, however the tensor 
tilt coming from the Planck data is strongly related to the minimally coupled canonical scalar 
field consistency relation assumption, so it is conceivable that the gravity of the tensor tilt nT

result cannot be taken into account as seriously as the spectral index and the tensor-to-scalar 
ratio. Furthermore, the value of the sound speed for the above values of the parameters is c2

A �
0.999994, so the theory is free from instabilities. Additionally, the values of the scalar field 
are φi = 3.87399 and φf = 0.0883883 and due to continuity, in can easily be inferred that the 
value of the scalar field decreases with time. It is worth mentioning that this particular set of 
parameters is not the only one capable of producing viable inflation. It turns out that there exist 
four different values for the integration constant c which yield the same values for the observed 
quantities by keeping the rest parameters fixed. Apart from the one used previously, inserting 
either one from the values in reduced Planck units c = −4.07962 × 10−25, c = 3.52933 × 10−31

or c = 4.72821 × 10−28 produces the exact same result, implying that there exist more possible 
values, therefore multiple viable parameter values regions which could produce viable inflation. 
The following plots depict such regions of viability for the parameters c and γ . It is obvious from 
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Fig. 1. Contour plots of the tensor-to-scalar ratio r (left plot) and the spectral index nS (right plot) depending on param-
eters c and γ . Their values range from [3 × 10−25, 5 × 10−25] and [1,4] for c and γ respectively.

Fig. 2. Contour plots of the tensor-to-scalar ratio r (left) and the spectral index nS (right) depending on parameters c and 
γ . Their values range from [3 × 10−31, 5 × 10−31] and [1.5,2.5] for c and γ respectively.

Fig. 1 and Fig. 2 that γ affects mainly the spectral index nS while c both the spectral index and 
the tensor-to-scalar ratio. For the sake of consistency, we mention that the choice for such small 
integration constant in Planck-Units is in a way mandatory in order to achieve compatibility 
with the Planck 2018 data and not a aimed choice of ours. In fact, since the rest free parameters 
obtained such values, the integration constant essentially was forced to obtain such a small value.

Lastly, we must check whether our approximations we made in the previous section are valid, 
for the values of the free parameters for which the viability of the model when compared to the 
Planck data is ensured. By choosing (ω, y0, γ, c) = (1, 1, 2, 4.09413 × 10−25) in reduced Planck 

units, we have that Ḣ
H 2 ∼ O(10−3), so the slow-roll condition (6) holds true. Similarly, the kinetic 

term at the same epoch is of order 1
2ωφ̇2 ∼ O(1020) while the scalar potential is V(φ) ∼O(1024), 

therefore, the slow-roll approximation for the scalar field (10) holds also true. In addition, let 
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Fig. 3. Parametric plot of the tensor-to-scalar ratio r (x axis) and the spectral index nS (y axis) depending on parameters 
c and γ . Their values range from [2 × 10−31, 4 × 10−31] and [1,5] for c and γ respectively.

us check the condition (13), namely, 12 ξ ′2H 4

ξ ′′ � V , so for (ω, y0, γ, c) = (1, 1, 2, 4.09413 ×

10−25), the fraction of the two terms, namely 
12 ξ ′2H4

ξ ′′
V

, is approximately 
12 ξ ′2H4

ξ ′′
V

∼ O(2 × 10−3), 
so the approximation is valid in this case too. In conclusion, the error function choice for the 
scalar Gauss-Bonnet coupling ξ(φ), yields a phenomenologically viable inflationary era for the 
GW170817-compatible Einstein-Gauss-Bonnet model, see Fig. 3. Finally, it is easy to check that 
all the slow-roll indices satisfy the relation εi � 1, i = 1, 2, 4, 5, 6. Indeed, for (ω, y0, γ, c) =
(1, 1, 2, 4.09413 ×10−25) we have ε1 � 0.000520562, ε2 � 0.00780843, ε4 � 0.00814159, ε5 �
0.00119194 and ε6 � −2.96645 × 10−25 at the first horizon crossing. Thus, this verifies that the 
slow-roll condition indeed holds true.

Let us note here that the parameter c has an extremely small value compared to the rest free 
parameters of the model, even in Planck units. This choice however was made in order to extract 
a viable phenomenology for the specific model at hand namely model (37). In an essence, our 
analysis showed that the parameter c is forced to take such small and fine-tuned values, in order 
for the rest of the parameters to have less fine-tuned values, and simultaneously in order to obtain 
a viable phenomenology. Perhaps, a complete different designation of the free parameters value 
could lead to a viable phenomenology, without such extreme fine-tuning on the parameter c. This 
case is a possibility however we refrained from further analysis the parameter space, because the 
model itself is just a choice made for demonstrative reasons. It is obvious that a more refined 
model would require less fine-tuning to the free parameters, and as we show in the next sections, 
this is indeed the case.

3.2. Phenomenology of a more involved model

Suppose now that the Gauss-Bonnet coupling scalar function has the following form,

ξ(φ) =
φ∫
y1e

−δ(κτ)ndτ , (47)
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where y1, δ and n are dimensionless constants to be specified later. As it was the case with the 
previous model, the second derivative of the coupling function is connected with the first via a 
generalized equation compared to the first model,

ξ ′′ = −nδκnφn−1ξ ′ . (48)

Thus, both the slow-roll indices ε1 and ε2, the e-foldings number N and the derivative of the 
scalar field φ̇ are given again by simple expressions which are proportional to the exponent n
of the model function (47). Consequently, specifying the exponent should in principle produce 
expressions for the observable quantities depending strongly on the exponent. On the other hand, 
the scalar potential derived from Eq. (17) has a complicated form, as is shown below,

V (φ) = e
ω(κφ)3−n

(3−n)δn∫ φ

1
4
3κ4y1e

k3−nωτ3−n

(3−n)δn
−δκnτn

dτ

, (49)

and τ an auxiliary integration variable. Moreover, the arbitrary constant derived from the inte-
gration is assumed to be equal to zero. However, the scalar potential enters only in the equations 
through the Hubble rate, so it will affect only the rest of the slow-roll indices and the observable 
quantities as well. Since the scalar potential is also depending on the exponent of the Gauss-
Bonnet scalar function, the dominant factor which in the end shall determine the viability of the 
model is this exponent. Let us now proceed with the evaluation of the slow-roll indices. Recalling 
their previous definitions in Eq. (24) through Eq. (26) and the coupling function ξ(φ) in Eq. (47)
as well, we end up with the following formulas.

ε1 � ω

2

(
1

nδ(κφ)n−1

)2

, (50)

ε2 � (n − 1)

nδ(κφ)n
− ε1 , (51)

ε3 = 0 . (52)

Apparently, the first three slow-roll indices have very simple forms, while the rest were omit-
ted due to their lengthy final forms. Note however that the indices ε4 and ε6 participate in the 
evaluation of the spectral indices and the tensor-to-scalar ratio directly. The values of both the 
spectral indices and the tensor-to-scalar ratio, as mentioned before, can be calculated by utilizing 
the slow-roll indices introduced previously. Similarly, from Eq. (50), the value of the scalar field 
at the end of inflation can be derived by equating the index ε1 with unity. Thus, the final value of 
the scalar field in this case is,

φf = 1

κ

(
1

δn

√
ω

2

) 1
n−1

. (53)

Similarly, the initial value of the scalar field at the first horizon crossing can be inferred from the 
final value and the e-foldings number in Eq. (35) by simply solving the integral. Thus, the initial 
value is,

φi = 1

κ

((
1

nδ

√
ω

2

) n
n−1

+ N

δ

) 1
n

, (54)
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Fig. 4. Contour plots of the tensor-to-scalar ratio r (left) and the spectral index nS (right) depending on the dimensionless 
parameters 1/δ and n. Their values range from [0.1, 0.5] and [25,50] for 1/δ and n respectively.

where N � 60. An observant reader might notice that the two previous results are presented in 
an incomplete manner, since the expression of the final value of the scalar field should produce 
at least 2n − 2 solutions while the initial value, only n. Mathematically speaking, that would be 
correct, however, in order to avoid the emergence of complex numbers, it was deemed neces-
sary to choose the positive value in each case. These values in fact will lead to a viable model 
while the rest are physically inconsistent. Hence, the positive value at the initial stage of infla-
tion shall be used as input in the spectral index and tensor-to-scalar ratio in order to calculate 
the observable quantities and ascertain the validity of the model by comparing them with the 
values obtained by the Planck 2018 collaboration [43]. Let us assume that in Planck Units, in 
reduced Planck units with κ2 = 1, the free parameters of the theory have the following fixed 
values, (ω, y1, δ, n) = (1, 0.0001, 3.33, 100). According to the previous results for the scalar 
field in Eq. (54) and Eq. (53), the initial and final value of the scalar field becomes equal to 
φi = 1.02933 and φf = 0.939715 respectively in Planck Units. At first sight, it is clear that the 
scalar field again decreases with time. Consequently, the observable quantities take the values 
nS = 0.967004, and r = 2.35395 × 10−7, which are both compatible with latest Planck obser-
vations (36) and the unobserved for now spectral index of the tensor perturbations is equal to 
nT = −2.94244 × 10−8, which is incompatible with the upper bound of the Planck data nT ∼ 2
[43], but still the Planck result depends strongly on the consistency relation for a minimally cou-
pled canonical scalar theory. Generally speaking, the previous results were obtained for specific 
values of the free parameters and especially, for a fixed value of the exponent n in Eq. (47). 
However, this is not the only set of parameters capable of producing compatible results with the 
observations. It seems that each parameter is insignificant compared to the exponent n, with the 
latter having a dominant effect on the phenomenology produced. However, there is a wide range 
of values of the parameter n, which may range from [15,120] and even further, and as n increases, 
both the spectral index of primordial curvature perturbations nS and the tensor-to-scalar ratio r
decrease, but at different rates. Specifically, the rate of decrease for the spectral index is lesser 
than the rate of decrease for the tensor-to-scalar ratio. Since there exists no lower boundary for 
the latter, there exists a wide range of possible values for the exponent n as is shown in Fig. 4



14 S.D. Odintsov et al. / Nuclear Physics B 958 (2020) 115135
Fig. 5. Contour plots of the tensor-to-scalar ratio r (left) and the spectral index nS (right) depending on the dimensionless 
parameters 1/δ and n. Their values range from [0.1, 0.5] and [90,110] for 1/δ and n respectively.

and Fig. 5. In the plots we present two cases for which the viability of the model is achieved as 
mentioned before. Parameters 1/δ, for convenience, and n were chosen to study the response of 
the model in such changes. In contrast to the previous model, it seems that now, the tensor-to-
scalar ratio depends on δ while the spectral index remains unaffected. In addition, the exponent 
as expected affects strongly both quantities. Lastly, we discuss the validity of the approximations 
made throughout our calculations. Firstly, the slow-roll condition for the scalar field (10), so 
by choosing (ω, y1, δ, n) = (1, 0.0001, 3.33, 100) in our case we have, 1

2ωφ̇2 ∼ O(10−5) while 
V (φ) ∼ O(104) in reduced Planck units, so apparently it holds true. Also, Ḣ ∼ O(10−5) and 
H 2 ∼ O(103), and therefore the condition (6) also holds true. Similarly, in the first gravitational 
equation of motion, the term ∼ ξ̇H 3 was omitted as it was deemed small compared to the value 
of the scalar potential. This assumption is proven to be true since at the horizon crossing, the or-
der of magnitude of this term is much smaller than the corresponding one for the scalar potential, 
since ξ̇H 3 ∼ O(10−31), while V (φ) ∼ O(104) in reduced Planck units at the horizon crossing. 
Finally, we note that the initial ratio of the first two derivatives of the Gauss-Bonnet coupling 
scalar function is of order ξ ′/ξ ′′ ∼ O(10−8), yet again it is something expected since this ratio 
is connected with the ratio Ḣ/H 2. In the next section we shall further discuss this issue. As a 
last comment, it is worth mentioning certain similarities, and differences as well, between the 
two models. Setting n = 2, δ = 4 and y1 = 2, in principle, the models should coincide since the 
ratio ξ ′/ξ ′′ is exactly the same. Following this research line, the initial and the final values of the 
scalar field are also the same, something that is expected since it attributed to the previous ratio 
equivalence. However, since in the second model, the integration constant is zero, in contrast to 
the first, the scalar potential will be different. Therefore, the indices ε4 through ε6, the sound 
wave speed cA and the spectral index nS as well, are different in each model since these param-
eters depend on the scalar potential. For the tensor-to-scalar ratio which also depends from the 
sound wave speed, the result is the same up some accuracy, implying that the dominant factor, 
which in fact experiences greater change, is the index ε4. Despite that, there is no limitation that 
forbids the two models in agreeing with each other but if that is the case, a different set of param-
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eters is needed. Furthermore, the previous analysis has made it abundantly clear that in order to 
yield viable results, one can work in two separate ways. Either freeze the exponent n and find an 
appropriate initial condition for the scalar potential, meaning designating properly the arbitrary 
integration constant, or neglect this particular constant by equating it with zero, and vary the 
exponent n. Having both the exponent and the integration constant taking values simultaneously 
is surely a possibility, that in principle could yield viable results, but this issue is a by far more 
complicated task.

3.3. Phenomenology under the assumption ξ ′/ξ ′′ � 1

Let us consider again the condition φ̇
2

2 � V , which can be rewritten as,

φ̇2

2

V
� 1 , (55)

and by using Eq. (16), we can write Eq. (55) as follows,

κ2

6

ξ ′2

ξ ′′2 � 1 . (56)

It is rather tempting to investigate the phenomenology of the GW170817-compatible Einstein-
Gauss-Bonnet model in the case that the following additional condition holds true,

κ
ξ ′

ξ ′′ � 1 , (57)

which is motivated from the condition ξ
′2κ2

6ξ ′′2 � 1 of Eq. (56). In this case, in view of the constraint 

(57) the term ξ ′
ξ ′′ can be disregarded in Eq. (17), so the latter becomes,

V ′

V
+ 4

3
ξ ′V κ4 � 0 . (58)

This means that the two terms ∼ V ′
V

and ∼ ξ ′V are of the same order in Planck units. Also, it is 
obvious that in the case at hand, the differential equation (58) that yields the scalar potential, for 
a given function ξ(φ), or vice versa, is more easy to solve analytically. Another motivation for 
choosing the condition (57) is the fact that the first slow-roll index ε1 in Eq. (24) is proportional 
to the ratio 

(
ξ ′/ξ ′′)2 and the value of such index at the first horizon crossing is expected to be 

much lesser than unity, if the slow-roll conditions apply in the theory. Thus, it stands to reason 
why this ratio can be neglected.

In this section, we shall investigate the phenomenological implications of the condition (57)
on the GW170817-compatible Einstein-Gauss-Bonnet theory. What will actually change in the 
whole procedure we developed in the previous section, is the relation that gives the scalar po-
tential V (φ) given the scalar coupling function ξ(φ) and vice versa. The relations that yield 
the slow-roll indices as functions of the scalar field and the corresponding observational indices 
remain the same, so effectively we have a simpler theoretical framework. Let us demonstrate 
how the phenomenology of the GW170817-compatible Einstein-Gauss-Bonnet theory is modi-
fied in view of the assumption (58). In the following, we shall examine three simple models and 
explicitly confront the models whether they lead to viable results or inconsistencies.
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Suppose first that the coupling function is given by a simple power-law scalar field depen-
dence,

ξ(φ) = λ(κφ)m , (59)

were λ is a dimensionless constant. This particular model also belongs to the same category 
as the previous ones, since there exists a simple connection between the derivatives of ξ(φ). 
Specifically,

ξ ′′ = (m − 1)

φ
ξ ′ , (60)

so accordingly, the slow-roll indices ε1, ε2, the e-foldings number relation and the initial-final 
value of the scalar field, are given by simple expressions. Following the same procedure as in the 
previous section, the scalar potential can be extracted from Eq. (58), which reads,

V (φ) = 1
4
3κ4ξ(φ) − c1

, (61)

where c1 is an arbitrary integration constant with mass dimensions [m]−4. This is a much simpler 
expression for the scalar potential compared to the models of the previous sections. Now we shall 
examine the viability of the power-law model where the arbitrary integration constant in non-zero 
and accordingly we shall examine the case when this particular constant is in fact equal to zero. 
The latter is a very interesting case since as it can be inferred from Eq. (61), the product of the 
scalar potential and the Gauss-Bonnet coupling scalar function is a well defined constant, and as 
a matter of fact, one with very restricted form, as it can be inferred by Eq. (58). Let us proceed 
with the first case where the integration constant is nonzero. Then, similar to the previous two 
models, the slow-roll indices derived from Eqs. (24)-(29) have the following form,

ε1 � ω(κφ)2

2(m − 1)2 , (62)

ε2 � −ω(κφ)2 − 2m + 2

2(m − 1)2 , (63)

ε3 = 0 , (64)

ε5 � 2κ4λm(κφ)m

3c1(m − 1) + 4κ4λ(κφ)m
, (65)

ε6 � κ4λm(κφ)m
(−ω(κφ)2 + 2(m − 1)2

)
(m − 1)2

(
3c1(m − 1) + 4κ4λ(κφ)m

) . (66)

For this model, the slow-roll indices have a particularly simple form, apart from ε4, which was 
yet again omitted due to its perplexed form. Continuing with our calculations, the initial and the 
final value of the scalar field are extracted from Eq. (35) and Eq. (62) respectively are,

φf = |m − 1|
κ

√
2

ω
, (67)

φi = |m − 1|e− N
m−1

κ

√
2

ω
. (68)

Choosing appropriately the free parameters of the model, it can yield compatible results with 
the observations. Assuming for example that (ω, λ, m, c1) are equal to (1, 1, 12, 4.4512 
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×10−15) in reduced Planck units, viable results are produced, since the values nS = 0.965 for 
the spectral index of primordial curvature perturbations and r = 0.00029265 for the tensor-to-
scalar ratio are both accepted values. In addition, the spectral index of tensor modes is equal to 
nT = −0.00003658 which as expected has a very small value. Similarly, the values of the scalar 
field from Eq. (68) and Eq. (67) are φi = 0.665317 and φf = 15.5563 in Planck Units. In this 
case, the scalar field increases as time flows, in contrast to the models of the previous section.

Lastly, we note that all the approximations made in this power-law model, both the slow-
roll approximations and the ratio ξ ′/ξ ′′ hold true. We note that at the start of inflation the 
slow-roll approximation seems valid, since Ḣ /H 2 ∼ O(10−4) and the kinetic term of the 
scalar field as well is insignificant compared to the scalar potential as 1

2ωφ̇2 ∼ O(109) and 
V (φ) ∼ O(1014). Finally, the condition (57) must also be investigated if it holds true, so by 
choosing (ω, λ, m, c1) = (1, 1, 12, 4.4512 × 10−15) we have, V ′/V ∼ O(103), ξ ′V ∼ O(103)

while ξ ′/ξ ′′ ∼ O(10−3). Thus the term ξ ′/ξ ′′ is indeed insignificant compared to the other terms 
entering the differential equation (17).

Now let us proceed to some examples for which the viability with the observational data 
cannot be achieved. Let us now examine the case where,

ξ(φ)V (φ) = �. (69)

This assumption simplifies again Eq. (58) which now reads

V ′(φ)(1 − �
4

3
κ4) = 0 . (70)

This particular differential equation can be interpreted in two ways. Either the expression in the 
parenthesis is zero, meaning that � = 3

4κ4 , which is equivalent to the previous case with c1 = 0, 
or the derivative of the scalar potential is equal to zero. The latter case requires that the coupling 
function is also independent of φ, so in this case we are lead to physical inconsistencies, since 
the expressions proportional to the ratio ξ ′/ξ ′′ cannot be defined. Thus, the only reasonable 
explanation is to assume the same power-law model and demand that the integration constant is 
exactly zero. Consequently,

ξ(φ) = λ(κφ)m , (71)

V (φ) = �

ξ(φ)
. (72)

As a result, the equations for the slow-roll indices and the expressions for the values of the scalar 
field at the start and the end of inflation remain the same, where now c1 = 0 in slow-roll indices 
ε5 and ε6, and so we can proceed directly with the evaluation of the observed quantities, by 
designating properly the free parameters. However we must keep in mind that now, the number 
of free parameters is reduced by one, since Eq. (70) demands that � 4

3κ4 = 1. Unfortunately, there 
exists no proper set of parameters which can lead to viability. It turns out that compatibility may 
be achieved, only if the arbitrary integration constant c1 derived from Eq. (61) has a non-zero 
value.

Let us briefly discuss another model, in which is related to the string motivated Einstein-
dilaton gravity, in which case the coupling scalar function now is defined as,

ξ(φ) = Yeα(κφ) . (73)

In this case, we shall not derive the formula for the scalar potential but we shall work only with 
the first slow-roll index from Eq. (24). Subsequently, this particular index has the following form,
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ε1 � ω

2α2 . (74)

It turns out that ε1 is φ independent, therefore, it is certain that this model leads to eternal in-
flation, if α � 1, or to no inflation at all if α � 1, like the canonical scalar theory case with 
exponential potential. However, if α � 1, it may be that the first slow-roll index and the second 
one, as it can be shown, are constants, but the slow-roll indices ε4, ε5 and ε6 are φ-dependent. 
Thus, it may be possible that one may assume that the inflationary era might end when one of 
these acquires values of the order ∼ O(1). This is a possibility, but we shall not further pursuit 
this issue here.

Before ending, let us comment on an interesting issue related to the Swampland criteria [44–
74] in the context of Einstein-Gauss-Bonnet theory. This was developed in Ref. [24], and as it 
was shown, the Swampland criteria can hold true, if the scalar Gauss-Bonnet coupling is chosen 
as,

ξ(φ) = C

V (φ)
, (75)

however in our case, where we take the GW170817 constraints into account, the coupling func-
tion ξ(φ) of Eq. (75) does not satisfy the differential equation (17), unless the potential has a 
very specific form, which is the following,

V (φ) = A sec

⎡
⎢⎣κ

√
ω

(
B

(
4κ4C − 3

) + φ
)

√
4
3κ4C − 1

⎤
⎥⎦ , (76)

where A and B are integration constants. As it can be shown, the above potential does not yield 
a viable phenomenology though. In addition, if we assume that the additional condition (57)
holds true, then it can be shown that the coupling function ξ(φ) of Eq. (75) can satisfy the cor-
responding differential equation (58) only if C = 3

4κ4 , however in this scenario too the model 
is not a viable inflationary model, as we showed earlier in this section (see Eq. (69)), since it 
leads to incompatible observational indices with the observational data of Planck. Nevertheless, 
in Ref. [75], we shall demonstrate that the Swampland criteria are naturally satisfied in the con-
text of the GW170817 Einstein-Gauss-Bonnet theory, for general choices of the scalar coupling 
function ξ(φ) and of the potential V (φ).

4. Conclusions

In this work we introduced a new theoretical framework for studying Einstein-Gauss-Bonnet 
theories of gravity, which results to particularly elegant and functionally simple gravitational 
equations of motion, slow-roll indices and observational indices. Particularly, by requiring the 
Einstein-Gauss-Bonnet theory to be compatible with the GW170817 event, we ended up with a 
constraint on the functional forms that the scalar Gauss-Bonnet coupling function ξ(φ) and the 
scalar potential V (φ) must have. By also using the slow-roll assumption for the scalar field and 
the Hubble rate, we demonstrated that the gravitational equations of motion end up to have a very 
simple form, and that the scalar Gauss-Bonnet coupling function ξ(φ) and the scalar potential 
V (φ) must satisfy a differential equation. Accordingly we calculated the slow-roll indices for 
the GW170817-compatible Einstein-Gauss-Bonnet theory, and we calculated the observational 
indices of inflation too. With regard to the latter, we focused on the spectral indices of scalar 
and tensor perturbations and the tensor-to-scalar ratio. We applied the formalism we derived in 
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several models of interest, and we confronted the models directly with the observational data 
coming from the latest Planck 2018 results. Particularly, the most interesting model has a scalar 
Gauss-Bonnet coupling function ξ(φ) related to the error function. As we showed, this model 
and a generalized model based on this, is compatible with the Planck 2018 data, for a wide range 
of the free parameters values. In addition, all the models we presented satisfy all the constraints 
imposed by the slow-roll and additional assumptions, made for the derivation of the gravitational 
equations of motion.

More interestingly, we investigated the phenomenological implications of the additional con-
dition ξ ′/ξ ′′ � 1, which is motivated by the slow-roll conditions that are assumed to hold true. 
As it turns, the resulting differential equation that constrains the functional form of the scalar 
Gauss-Bonnet coupling function ξ(φ) and of the scalar potential V (φ), becomes simpler in this 
case, and this opened a new window for obtaining interesting inflationary phenomenology. We 
presented three models of interest, in all of which we fixed the scalar Gauss-Bonnet coupling 
function ξ(φ) to be a power-law type, exponential and of the form ξ(φ) ∼ 1/V (φ). The power-
law type of model was demonstrated to be compatible with the observational data, while the 
last two were found incompatible with the observational data. We also further discussed in brief 
the case ξ(φ) ∼ 1/V (φ) which is related to the Swampland in the context of Einstein-Gauss-
Bonnet theories. As we showed, the functional form ξ(φ) ∼ 1/V (φ) is not compatible with the 
GW170817 results, unless the potential has a very specific form, which however leads to non-
viable inflationary phenomenological results. However, as we show in another work [75], the 
Swampland criteria are compatible with the GW170817-compatible Einstein-Gauss-Bonnet the-
ories for quite general functional forms of the scalar Gauss-Bonnet coupling function ξ(φ) and 
of the scalar potential V (φ).

In principle, more elaborate potentials can also produce quite interesting phenomenology in 
the context of the GW170817-compatible Einstein-Gauss-Bonnet theories, by simply fixing the 
scalar potential and seeking for the scalar Gauss-Bonnet coupling function ξ(φ), or vice-versa. 
However, this paper was an introductory paper introducing the new formalism, and showing that 
it is possible to provide phenomenologically viable results for the inflationary era. We hope in a 
future work to provide further interesting models that yields also a phenomenologically viable 
inflationary era.

Another interesting question we would like to comment on before closing is whether Einstein-
Gauss-Bonnet theories can in principle be reduced to Einstein’s General Relativity in some limit. 
It is possible to obtain Einstein gravity in the presence of a scalar field during some eras in a 
cosmological context, if the scalar coupling function ξ(φ) takes values in that era quite small or 
nearly constant, and only if the curvature during that era is very small. In the case of small values 
the scalar-Gauss-Bonnet term can be small, and if ξ(φ) is nearly constant, the Gauss-Bonnet 
term can be integrated from the action, thus it has no effect, and we are left with Einstein gravity 
in the presence of a scalar field with potential. Nevertheless, during inflation, where the curvature 
is quite large this is not possible. This smoothing to the general relativity case can occur only 
during the late-time era, as was shown in Ref. [8], see also references therein.

However, caution is needed when considering these higher order string motivated theories. 
In general, Einstein-Gauss-Bonnet gravity is one of the two theories that violate the General 
Relativity requirement that the metric tensor solely mediates gravity [76], the other theory is the 
four dimensional Chern-Simons gravity, that is, a gravitational theory with again the presence 
of a coupling between the scalar field and the four dimensional Chern-Pontryagin term, which 
is a topological invariant in four dimensions, but in the presence of the scalar field coupling to 
it, it yields non-trivial effects, like in the Einstein-Gauss-Bonnet case. Both the aforementioned 
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theories are string theory motivated, and can be the low-energy limit of a more fundamental 
string theory, upon dimensional reduction of the latter.

These theories in general, and particularly the Einstein-Gauss-Bonnet theories, have brought 
along major differences in astrophysical context. Particularly, the major prediction is that black 
holes are scalarized (see for example [76,77]), thus a fifth force emerges in these theories, in 
addition to the violation of the strong equivalence principle. Moreover, higher order effects in bi-
naries are also predicted, like scalar dipole radiation, which in effect makes the rate of an inspiral 
of a binary system somewhat faster, thus making clear the distinction between general relativity 
and Einstein-Gauss-Bonnet theories [77]. Thus answering the question whether a smooth limit 
to Einstein gravity can be obtained, is not easy in general.
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Appendix A. Motivation behind the various choices of the coupling function ξ(φ)

In this Appendix we discuss in brief the motivation for the choices of the coupling function 
ξ(φ). We introduce a simple and elegant way of deriving the expression of the slow-roll index 
ε1 and in consequence, the initial and final value of the scalar field during inflation. Through-
out our calculations, it was shown that the coupling function appears in the form of the ratio 
ξ ′/ξ ′′. Hence, it is only reasonable to try and simplify these expressions in order to facilitate our 
study. This can be done easily by defining the derivative of the coupling function ξ(φ), which 
mathematically speaking is assumed to be at least three times differentiable, as,

ξ ′(φ) = κλe
∫

κX[φ]dφ, (77)

where λ is a dimensionless parameter and X[φ] is dimensionless arbitrary expression depending 
on the scalar field. This form was chosen simply because by differentiation with respect to the 
scalar field, we end up with the following expression

ξ ′′ = κX[φ]ξ ′. (78)

Thus, from equations (24) and (35), we see that the ratio which appears is replaced by the term 
X[φ]. Choosing appropriately this term leads to analytic expressions and to an easily extracted 
phenomenology. One can choose to work with such term in order to find an appealing and func-
tional formula for the initial value of the scalar field φ and then later derive the expression of the 
Gauss-Bonnet coupling scalar function by simply integrating Eq. (77).
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For instance, we mention that choosing X[φ] = m
κφ

, leads to the

ξ ′(φ) = κλ(κφ)m, (79)

which by further integration leads to the power-law form,

ξ(φ) = λ

m + 1
(κφ)m+1, (80)

which was studied in the present paper. In addition, the extra constant m +1 can be absorbed from 
λ without altering the resulting ratio ξ ′/ξ ′′. Thus, in this formalism, one can work differently and 
instead of defining the coupling function, guess the relation between the first two derivatives of 
this function and upon deriving the results, work backwards in order to find the initial form of 
the coupling function responsible for generating those results. This enables us to work with a 
plethora of forms for the expressions X[φ] which would otherwise be very difficult to produce.
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