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Abstract. In the present paper, we study how the effects of deviations from
spherical symmetry of a system, produced by angular momentum, and shear
stress, influence typical parameters of the spherical collapse model, like the lin-
ear density threshold for collapse of the non-relativistic component (δc) and
its virial overdensity (∆V). The study is performed in the framework of the
Einstein-de Sitter and ΛCDM models, and assuming that the vacuum compo-
nent is not clustering within the homogeneous non-spherical overdensities. We
start from the standard spherical top hat model (SCM) which does not take
account the non-spherical effects, and we add to this model the shear term
and angular momentum term, which are finally expressed in terms of the den-
sity contrast, δ. We find that the non-spherical terms change the non-linear
evolution of the system and that the collapse stops “naturally” at the virial
radius, differently from the standard spherical collapse model. Moreover, shear
and rotation gives rise to higher values of the linear overdensity parameter and
different values of ∆V with respect to the standard spherical collapse model.

Key words: cosmology: theory – large-scale structure of Universe – dark
energy – galaxies: formation

1. INTRODUCTION

Current analyses of high quality cosmological data coming from Supernovae
Type Ia (Riess et al. 1998; Perlmutter et al. 1999; Kowalski et al. 2008; Amanullah
et al. 2010), CMB (Spergel et al. 2003; 2007), and clusters (Allen et al. 2002;
Lima et al. 2003; Eisenstein et al. 2005; Allen et al. 2008) are suggesting a
cosmic expansion history involving some sort of dark energy and a flat spatial
geometry in order to explain the recent accelerating expansion of the Universe.
Among a number of possibilities to describe the dark energy (DE) component,
the simplest one based on a cosmological constant Λ (see Padmanabhan 2003;
Peebles & Ratra 2003; Lima & Braz 2004; Frieman et al. 2008; Li et al. 2011
for reviews), usually interpreted as the vacuum energy density (ρv) which acts
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190 A. Del Popolo

on the Friedmann’s equations as a perfect fluid with negative pressure (pv =
−ρv). In the present cosmic concordance ΛCDM model, the overall cosmic fluid
contains non-relativistic matter (baryons + cold dark matter, Ωnr = 0.274) plus a
vacuum energy density (ΩΛ = 0.726) that fits accurately the current observational
data and thus it provides an excellent scenario to describe the present observed
Universe (Komatsu et al. 2011; Allen et al. 2011; Del Popolo 2014). Nowadays,
one of the most challenging problems in the so-called ΛCDM cosmology (see Del
Popolo 2007, 2013, for a review) is to understand the role played by the different
cosmic components during the non-linear regime of gravitational clustering and
how the many possible physical effects contribute to determine the total mass
of virialized halos (Del Popolo & Gambera 1996; Del Popolo 2002) (galaxy and
galaxy clusters)1.

Most of the field of structure formation and galaxy formation concerns under-
standing the non-linear regime and collapsed objects in the density field. This can
be done through N-body simulations or in some cases, using analytical models.

A popular analytical approach to study the non-linear evolution of perturba-
tions of dark matter (in the presence of a non-clustered dark energy (DE)) is the
standard spherical collapse model (SSCM) proposed in the seminal paper of Gunn
& Gott (1972) and extended in subsequent papers (Ryden & Gunn 1987; Gure-
vich & Zybin 1988a,b; White & Zaritsky 1992; Sikivie et al. 1997; Le Delliou &
Henriksen 2003; Williams et al. 2004; Basilakos et al. 2010; Del Popolo & Kroupa
2009; Cardone et al. 2011a,b; Del Popolo 2012a,b.).

In the simplest case, termed “top-hat” model, one considers a uniform, spher-
ical perturbation characterized by an overdensity δ = ρ(t)/ρb − 1, where ρb is the
smooth background density of matter. In the quoted model, a proto-structure is
considered as formed by concentric shells, expanding with the Hubble flow. The
equation of motion for a shell in the perturbation is given by

R̈ = −GM/R2 (1)

For a positively curved matter dominated universe the previous equation has the
parametric form solution

R ∝ (1− cos(θ))

t ∝ (1− sin(θ)) (2)

Starting from an initial comoving radius xi, each shell expands until θ = π
(t = tmax) then turn around and collapse at θ = 2π (t = 2tmax), formally reaching
an infinite density2.

1 Note that the ΛCDM model suffers from other problems, like the small-scale problems
(e.g., the cusp/core problem (Cardone & Del Popolo 2012; Del Popolo et al. 2013a; Del Popolo
& Hiotelis 2014), and the missing satellite problem, the too-big-to-fail problem (Del Popolo &
Gambera 1997; Del Popolo et al. 2014), and other problems like the cosmological constant
problem (Weinberg 1989; Astashenok & Del Popolo 2012), and the cosmic coincidence problem.
Moreover, is still debated the universal nature of dark matter density profiles forming in the
ΛCDM cosmology (Navarro et al. 2010; Del Popolo 2010, 2011).

2 In this simple-minded model matter has no internal pressure, so there is nothing stopping
the spherical blob to collapse to the infinite density. In real life collapse will, of course, stop
before the infinite density is reached, giving rise to a “virialized” structure, when non-linear
processes in the collapse phase convert kinetic energy into random motions. The final result will
be a system which satisfies the virial theorem, and rvir = 1/2rmax.
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At that time the density of the spherical region compared to the Einsten de
Sitter (EdS) background is

ρ/ρb =
9π2

16
= 5.55 (3)

So the spherical perturbation starts to collapse when its density has reached 5.55
times of the background density.

When the spherical region starts to collapse, the linear perturbation theory
predicts that δlin = 3(6π)2/3/20 ≃ 1.06. Assuming virialization to occur at t =
2tmax, the linear density contrast has at this point increased to

δlin ≡ δc = 3/20(6π
2tmax

tmax
)2/3 ≃ 1.686. (4)

The model describes how a spherical symmetric overdensity decouples from
the Hubble flow, slows down, turns around and collapse. In the last decade, the
SSCM has been applied to study density perturbation evolution and structure for-
mation in the presence of DE. However, when solving the density contrast (δ) in
the SSCM, the local shear (σ) and the rotation (ω) parameters are usually not
taken into account. While the first assumption is correct, since for a sphere the
shear tensor vanishes, the rotation term, or angular momentum is not negligible.
A simple approach preserving spherical symmetry is to assume that the particles
are described by a random distribution of angular momenta such that the mean
angular momentum at any point in space is zero (White & Zaritsky 1992). Nev-
ertheless, in any proper extension of the SSCM both effects need to be considered
(Engineer et al. 2000, hereafter E00; Del Popolo et al. 2013b,c,d) since shear in-
duces contraction while vorticity induces expansion as expected from a centrifugal
effect.

In this paper, we study the net physical effect of shear and rotation in the frame-
work of an extended spherical collapse model (ESCM). We restrict our analysis
to the Einstein-de Sitter (EdS) and the flat ΛCDM background cosmologies. For
the ΛCDM model we assume the following cosmological parameters: Ωm = 0.274,
ΩΛ = 0.726 and h = 0.7. In particular, we discuss how the linear density thresh-
old for collapsing non-relativistic component (δc) and its virial overdensity (∆V)
change. We recall that the change of these two parameters has a strong effect on
the mass function and other fundamental cosmological quantities. As a general
result, it is also found that the extra terms appearing in the ESCM are responsible
for higher values of the linear overdensity parameter at galactic scales as compared
to the case without shear and rotation. We also show that the non-spherical terms
give rise to a collapse that “naturally” stops at the virial radius, differently from
the SSCM, in which the collapse has a singular behavior predicting infinite den-
sity contrasts for all collapsed objects. In real systems, the collapse to a point
will never occurr in practice. Dissipative physics and the process of violent re-
laxation will eventually intervene and convert the kinetic energy of collapse into
random motions leading the system to the virial equilibrium. The virial radius
can be easily computed to be half the maximum radius reached by the system
(rvir = 1/2rmax).

Even if the virialization argument is physically well motivated in real systems,
in the SSCM no mechanism exists leading the system to virialization. Usually,
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one introduces by hand the assumption that in the collapse the shells constituting
the system stop at a fixed radius (e.g., 1/2rmax). Taking into account angular
momentum and shear in the SSCM, the system will not collapse to a point but
the shells of the system will smoothly evolve towards rvir = 1/2rmax.

2. δc AND ∆V

To begin with, let us now consider that the only clustering component in the
cosmic medium is the cold dark matter. Following standard lines, the evolution
of the overdensity δ in the SSCM, under the assumption that only DM can form
clumps and that DE is present as a background fluid (Fosalba et al. 1998; Ohta
et al. 2003; Mota & van de Bruck 2004; Abramo et al. 2007), is given by a second
order non-linear differential equation (Padmanabhan 1996; Ohta et al. 2003; Pace
et al. 2010), namely

δ̈ + 2Hδ̇ − 4

3

δ̇2

1 + δ
− 4πGρ̄δ(1 + δ)− (1 + δ)(σ2 − ω2) = 0 , (5)

where the shear term σ2 = σijσ
ij and the rotation term ω2 = ωijω

ij are connected
to the shear tensor, which is a symmetric traceless tensor, while the rotation is
antisymmetric.

Recalling that δ = ρ/ρ − 1 = (a/R)
3 − 1 (a is the scale factor and R is the

radius of the perturbation), and inserting it into Eq. 5, it is easy to check that the
evolution equation for δ reduces to the SSCM (Fosalba et al. 1998; E00; Ohta et
al. 2003)

d2R

dt2
= 4πGρR− 1/3(σ2 − ω2)R = −GM

R2
− 1/3(σ2 − ω2)R , (6)

comparable with the usual expression for the SSCM with angular momentum
(Peebles 1993; Nusser 2001; Zukin & Bertschinger 2010):

d2R

dt2
= −GM

R2
+

L2

M2R3
= −GM

R2
+

4

25
Ω2R, (7)

where in the last expression we have used the momentum of inertia of a sphere,
I = 2/5MR2.

The previous argument shows that vorticity, ω, is strictly connected to angular
velocity, Ω. In the simple case of a uniform rotation with angular velocity Ω =
Ωzez, we have that Ω = ω/2 (see also Chernin 1993, for a more complex and
complete treatment of the interrelation of vorticity and angular momentum in
galaxies).

One assumption generally used when solving the SSCM equations for the den-
sity contrast δ (Eq. 5) is to neglect the shear, σ, and the rotation ω. While the first
assumption is correct, since for a sphere the shear tensor vanishes, the rotation
term, or angular momentum is not negligible. In fact, if we consider the ratio of

the rotational term and the gravitational one in Eq. 7, we get L2

M3RG that for a

spiral galaxy like the Milky Way, with L ≃ 2.5×1074gcm2/s (Ryden & Gunn 1987;
Catelan & Theuns 1996) and the radius 15 kpc, is of the order of 0.4, showing,
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as well known, that the rotation is not negligible in the case of galaxy sized per-
turbations. The quoted ratio is larger for smaller size perturbations (of the dwarf
galaxies size) and smaller for larger size perturbations (for clusters of galaxies the
ratio is of the order of 10−6). The value of angular momentum, L, or similarly
Ω, can be obtained and added to the SCM as described in Del Popolo (2009)

or as described previously, assigning an angular momentum ∝
√

GM(< r∗)r∗ at
turn-around (White & Zaritsky 1992; Sikivie et al. 1997; Nusser 2001)3.

E00 studied the effect of the term σ2 − ω2 on the SSCM model just for the
Einstein-de Sitter (EdS) model.

In the present paper, we will study how the typical parameters of the SSCM
(in Universes dominated by DE), namely δc and ∆V, are changed by a non-zero
σ and ω terms. We also will show how the non-sphericity can “naturally” lead
the system to virialization without the need to introduce it by hand, as usually is
done in the SSCM.

To this aim, we notice that Equation (5) can be written in terms of the scale
factor a(t) as (Pace et al. 2010)

δ′′+

(
3

a
+

E′

E

)
δ′−4

3

δ′2

1 + δ
−3

2

Ωm

a5E2(a)
δ(1+δ)− 1

a2H2(a)
(σ2−ω2)(1+δ) = 0 . (8)

The quantity Ωm is the present-day value of the density parameter of the DM
component while the quantity E(a) is defined by:

E(a) =

√
Ωm

a3
+ΩΛ , (9)

where ΩΛ is the present-day value of the vacuum density parameter (at a = 1).
In order to calculate the shear and vorticity terms in Eq. (8) it is convenient

to define the dimensionless α-number as the ratio between the rotational and the
gravitational term in Eq. (7):

α =
L2

M3RG
. (10)

As already stressed, the above quoted ratio, α, is of the order of 0.4, for a spi-
ral galaxy like the Milky Way (L ≃ 2.5 × 1074g cm2/s; R ≃ 15 kpc (Ryden &
Gunn 1987; Catelan & Theuns 1996a), larger for smaller size perturbations (dwarf
galaxies size perturbations) and smaller for larger size perturbations (for galaxy
clusters the ratio is of the order of 10−6).

Based on the above outlined argument for rotation one may calculate the same
ratio between the gravitational and the extra term appearing in Eq. (8) thereby
obtaining

(σ2 − ω2)H−2
0 = −3

2

αΩm,0

a3
δ. (11)

Note that this result is the same of that assumed by E00 (their Eq. 24) in the
limit δ >> 1. However, while the approximation given by Eq. (11) is good in the

3 As previously stressed, the non-trivial role of angular momentum in the SSCM has been
pointed out in a noteworthy number of papers studying structure formation in DM dominated
universes (see also Del Popolo 2009; Zukin & Bertschinger 2010, Cupani et al. 2011).
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non-linear regime, as noticed by E00, it is insufficient to cover the larger range of
density contrast (especially the quasi-linear regime) which is of interest to us. As
done by E00, we expand (σ2 −ω2)H−2

0 in Taylor series and retaining the first two
terms, we have

(σ2 − ω2)H−2
0 = −3

2

αΩm,0

a3
δ −A/δ +B/δ2 (12)

In particular, the values of A and B are calculated numerically (Spedicato et
al. 2003) as in E00 by constraining the solution of the spherical collapse by means
of the two-point correlation function or, as we did, comparing the threshold of
collapse, δc obtained by Sheth & Tormen (2002) which furnish the base to obtain
the Sheth-Tormen mass function (see also Sheth & Tormen 2001; Del Popolo &
Gambera 2000; Hiotelis & Del Popolo 2006, 2013) with the δc parameter which is
obtained from Eq. (8). Note that the Sheth-Tormen mass function and the δc from
whom it is obtained using the excursion set theory and is in very good agreement
with simulations (Yahagi et al. 2004; Del Popolo 2006).

3. BASIC RESULTS

In this section we discuss some physical consequences of the ESCM discussed
in this paper. In particular, we show how the non-spherical terms introduce phys-
ically virialization without the need to add it by hand (as previously stressed).

Then we obtain the linear overdensity parameter δc and the virial overdensity
∆V. In Fig. 1a we show the result of the integration of Eq. (8), using Eq. (12)
for ω2 − σ2. We used the same units as in E00: y(x) = R/rvir and x = t/β, with

β =
√
(8/35)A/(GM)r3vir.

As expected on physical grounds, the function has a maximum and slowly
decreases to unity for large values of x. rvir/Rmax ≃ 0.6 and for t → ∞, R → rvir.
The value is slightly different from that obtained by E00 since in our model we
have also the Λ term.

In Fig. 1b we compare, similarly to E00, the non-linear density contrast in the
modified SCM (dashed line) with that in the SSCM (solid line). Both quantities are
plotted against the linearly extrapolated density contrast, δL. The plot shows that
at the epoch corresponding to δL ≃ 1.686 the SSCM has, as known, a singular
behavior while our model has a smooth behavior, with δ ≃ 120 (value slightly
different from that obtained by E00). When R = Rmax/2 δESCM ≃ 88.

Since the deviations from spherical symmetry are smaller at early epochs and
grow as the system evolves, the two curves should converge going towards smaller
values of δ, as observed. However, since we used a Taylor expansion in 1/δ, we
cannot compare the two curves at δ << 1.

In the next plots, we show how δc and ∆V are changed by the non-spherical
terms.

In Fig. 2 (4 plots), we show the evolution of the linear overdensity parameter
δc (upper panels) and of the virial overdensity ∆V (lower panels) for the same
EdS and ΛCDM cosmologies. In the left panels, the analyses based on the ESCM
are restricted to a halo of 1011 M⊙/h since for galactic masses the effect will be
enhanced, while on the right panels we consider also the effect of distinct masses.
As before, we concentrate our analyses to three different mass scales: galactic
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Fig. 1. Left panel: plot of the scaled radius of the shell y(x) as a function of scaled
time x (solid line). Right panel: non-linear density contrast in the SSCM (solid line) and
in the extended ESCM (dashed line), plotted against the linearly extrapolated density
contrast δL
.

(≈ 1011 M⊙/h), groups (≈ 1013 M⊙/h) and clusters (≈ 1015 M⊙/h). As expected
from the analysis of Fig. 2, with the growth of the mass the effect of the extra
term in the ESCM becomes negligible, and we recover the same values of the SSCM
case. It is also worth to notice that the results for the ΛCDM model reduce to
the ones of the EdS model for sufficiently high redshifts, since the influence of the
cosmological constant becomes rapidly negligible. We will therefore concentrate
only on the analysis of the left panels. For the different line colors and styles, we
direct to the caption of the figure.

As expected, the δc for the ESCM is ∼ 40% higher than for the SSCM case
and it decreases towards high redshifts, since the effect of the extra term becomes
smaller. For the EdS model, δc decreases from a value of ≈ 2.3 at z = 0 to ≈ 2.1
at z = 10. As expected, the linear overdensity parameter for the ΛCDM model
is smaller than the EdS one. This is understood by taking into account that, if
we want to have the same number of structures now, we need to have a faster
growth of structures to overcome the influence of the cosmological constant. This
translates into a lower δc.

In the lower panels we compare the behavior of ∆V in the SSCM approach
with the one predicted by the ESCM description. The red dashed (blue short
dashed) curve show the standard and the extended results for an EdS model,
while the green dotted curve represents a ΛCDM model. It is clear that the
ESCM description affects also the virial overdensity parameter. In particular, we
see that ∆V is always constant in time for the EdS model. However, with the extra
term its value increases reaching ∆V ≈ 185, about 4% higher than the standard
result. The curve for the ΛCDM model approximates the EdS at high redshifts,
as expected. Once again, higher masses are less affected by the ESCM correction
term (lower right panel).

4. CONCLUSIONS

In this paper we have discussed how shear and rotation affect the standard
spherical collapse model. The net effect of such quantities which is ∝ (σ2 − ω2)
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Fig. 2. Upper (lower) panels: evolution of δc (∆V) with respect to the redshift z
for the EdS and the ΛCDM models. The left panels show the time evolution for both
parameters at galactic scale (1011 M⊙/h). The red curve represents the solution for the
EdS model in the non-rotating case while the blue and the green curves represent the
EdS and the ΛCDM model when rotation is included. On the right panels we compare
the time evolution for three different masses, 1011, 1013 and 1015 M⊙/h. Different colors
and line-styles correspond to different masses and different cosmological models: red
dashed (orange dot-dashed) curve represents a halo of 1011 M⊙/h in a EdS (ΛCDM)
cosmological background, blue short-dashed (dot-short-dashed cyan) curve represents a
halo of 1013 M⊙/h for an EdS (ΛCDM) model, while the green dotted (magenta) curve
stands for an object of 1015 M⊙/h in an EdS (ΛCDM) model.

has been phenomenologically described by a power law on the density contrast
depending on two parameters (A and B), fixed by comparing the threshold of
collapse, δc as discussed in Sheth & Tormen (2002), with the δc value which is
directly obtained from Eq. (8). We have focused our discussion on the influence
of such an extra term on (a) the spherical collapse parameters δc and ∆V, and (b)
the natural introduction of virialization in the SSCM.

The last point (b) was shown in Fig. 1 , showing that the collapse does not go
to a singularity, but reaches a maximum and goes softly down to the virialization
radius (Fig. 1, left panel). Similarly the right panel of Fig. 1 compares the non-
linear contrast in the SSCM and that in the modified one, ESCM, in terms of the
linear density profile. The plot shows the different behavior of the SSCM and the
ESCM. Concerning δc (≈ 40%), and ∆V, as it should be expected, the extra term
slows down the collapse, and, as such, higher values for the initial perturbations
are required in order to have a collapse at the same time of a spherical collapsing
sphere. It is also found that the extra term contribution is more important for
galactic scales so that its contribution becomes negligible at high masses (galaxy
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clusters). In Fig. 2 we have numerically evaluated and compared the evolutionary
behavior of both the ESCM and SSCM approaches. We have seen that both
the linear and the non-linear virial overdensity in the extended spherical collapse
model are enhanced with respect to the standard spherical case. Enhancements
are more pronounced for δc (≈ 40%), while for ∆V are only of the order of few
percent.

These results reinforce the importance of a more complete and rigorous treat-
ment involving the effects of shear and rotation at the late stages of the collapsing
halo history mainly for the galactic scales.
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