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Abstract: Every physical theory involving quantum fields requires a model of quantum vacuum.

The vacuum associated to quantum gravity must incorporate the prescriptions from both the the-

ory of relativity and quantum physics. In this work, starting from the hypothesis of nucleation of

sub-Planckian bubbles from a de Sitter vacuum, we study the necessary conditions to obtain baby

universes, black holes and particles. The de Sitter-Planck background is described by an “infinite”

Quantum Boltzmann statistics that generates fermions and bosons, and manifests itself as a deforma-

tion of the geometry that leads to a generalized uncertainty principle, a unified expression for the

generalized Compton wavelength and event horizon size, drawing a connection between quantum

black holes and elementary particles, seen as a collective organization of the bubbles of the vacuum

described by the generalized Compton wavelength. The quantum thermodynamics of black holes is

then outlined and the physical history of each bubble is found to depend on the cosmological constant

described in terms of thermodynamic pressure. A treatment of the Casimir effect is provided in the

de Sitter-Planck background, and finally wormholes are explored as bubble coalescence processes.

Keywords: de Sitter–Planck background; sub-Planckian bubbles; quantum Boltzmann statistics;

generalized uncertainty relations; quantum black holes; cosmological wormholes

1. Introduction

Bubble theory has an impressive and complex history in theoretical physics that has
evolved at the borders of particle physics and quantum cosmology while retaining some
features of conceptual and stylistic autonomy linked to the centrality of QFT [1–3]. Recently,
proposals for quantum simulation and analogous systems have also arrived alongside
the theoretical analyses [4–6]. If we were to try a general definition, we could say that
bubble theory concerns the conditions of nucleation of the vacuum and therefore concerns
very closely what is the foundation of any theory of everything, at least as regards the
top-down mesoscopic aspects. The urgency of a theory of quantum gravity has led today
to new hybrid forms of bubble theory with microscopic entities and collective vacuum
behaviors [7–9], and the importance of an analysis of bubbles of the vacuum near the
Planck scale.

In a series of recent papers [10–12] Carr proposed a version of the Black Hole Un-
certainty Principle correspondence—originally introduced by Adler in [13–16]—which
imply that there could exist sub-Planckian black holes, namely black holes with mass
beneath the Planck scale but a radius of the order of the Compton scale rather than the
Schwarzschild radius. Carr’s model suggests that a subtle and strict link exists between
the microphysics of elementary particles and the macroscopic regime of black holes; in
other words, all black holes are, in a sense, quantum and elementary particles and can
be seen as sub-Planckian black holes. Moreover, Carr’s original idea was developed by
Spallucci and Smailagic [17], who introduced a general, physically compelling criterion in
order to distinguish between a quantum particle and a quantum black hole in terms of the
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ratio of the Compton wavelength and the gravitational radius, in the sense that when their
ratio is close to one we are in a genuine quantum gravity regime and the geometric, static
Schwarzschild horizon does not provide a satisfactory description of a quantum black hole.
These two authors introduced a Generalized Uncertainty Principle between the mass of
the quantum black hole and its horizon which leads to an “effective” Schwarzschild like-
geometry with quantum gravity correction to the Newtonian potential, that nonetheless
implies that a quantum black hole can exist only above the Planck mass. These clues are
interesting avenues for quantum gravity [18].

In this paper we aim to explore the link between a black hole regime and elementary
particles in the context of a generalized uncertainty relation characterizing a de Sitter–
Planck background with infinite statistics. In this picture, we will use the term multiverse
not in a strictly cosmological sense, as stated in the theory of inflation, but in reference to
the generative characteristics of the vacuum on various scales, and we will adopt de Sitter’s
background for its “virtuous” instability [19–23].

To make the characterization of particles more meaningful by inserting a little more
realism, we will hypothesize that the vacuum has a mechanism such as the Boltzmann
quantum Statistics to generate fermions and bosons. Finally, we will consider sub-Planckian
bubbles as a model for studying a phylogeny of localizations from vacuum, using the
third quantization formalism. The production of a nucleation from an “eternal” de Sitter
background will be described through a hypersurface feature as “entry into time” [24,25].

The paper is organized as follows. In Section 2 we develop our model of the multiverse
in the de Sitter–Planck background with infinite statistics. In Section 3 we analyze how the
de Sitter–Planck background with infinite statistics is characterized by a deformation of the
geometry at the Planck scale expressed by opportune generalized uncertainty relations. In
Section 4 we explore the impact of the generalized uncertainty relations characterizing the
de Sitter–Planck background towards a suggestive unifying treatment of the microphysics
of elementary particles and the macrophysics of black holes. In Section 5 we analyze the
thermodynamics of the black holes in this approach. In Section 6 we explore possible
perspectives as regards Casimir energy and cosmological wormholes. Finally, in the conclu-
sions we discuss the implications for particle physics, cosmology and the interpretation
of QM.

2. The Multiverse in the de Sitter–Planck Background with Quantum
Boltzmann Statistics

In our model of a de Sitter–Planck background, we interpret the appearance of sub-
atomic particles in terms of processes of the creation and annihilation of quanta corre-
sponding, respectively, to the manifestation and de-manifestation of sub quantum bubbles,
semi-quantum objects whose dimensions and mass are in the Planck regime and, thus,
we assume that there is no distinction between particles and correspondent universes.
In this regard, the Wheeler–De Witt equation tells us that objects can be generated by a
super-vacuum through a formalism of third quantization. By using the third quantization
formalism provided in [26], in particular, we consider that each micro-universe can be
described by considering the following version of the Wheeler–De Witt equation:

..
Ψ +

γ

a
√

α
MPl

.
Ψ + ω2(a)Ψ = 0 (1)

In this equation, Ψ is the wave function of the bubble (and is a function of the scale

factor a and of a massless scalar field ϕ),
.

Ψ = ∂Ψ
∂a . Moreover, the wave function Ψ can be

expressed as:

Ψ̂ =
γMPlc

2

√
2παℏlp

2

∫
dM

(
e

i
γMPl c2
√

αℏlp2 Mϕ
ΨM(a)b̂M + e

−i
γMPl c2
√

αℏlp2 Mϕ
Ψ∗

M(a)b̂†
M

)
(2)
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In Equation (2):

Mdim =
γM√

α
MPl (3)

is the mass of the bubble of the background vacuum, γ =
(

M
√

G
e

)2
and each amplitude

ΨM(a) corresponds to a single bubble with a specific value of M. Moreover, b̂M and b̂†
M are

the annihilation and creation operators which annihilate and create, respectively, bubbles,
namely particles of mass M, and satisfy the “quantum Boltzmann statistics” represented
by the q deformation of the commutation relations of the oscillators, expressed by the
following relation:

b̂k b̂†
l − qb̂†

l b̂k = δkl (4)

where the cases q = ±1 correspond to bosons and fermions. As we will see below, the
infinite statistics characterizing the bubbles of the vacuum imply that each micro-universe
can light up as a boson or fermion depending on the value of the deformation parameter q
appearing in the commutation relations of the oscillators (4).

The commutation relations (4) are the essential expression of “Infinite statistics” [27].
A statistic of this type is necessary in order to give a sense of the entropy of a quantum
foam and shows that the bubbles are non-local objects [28–33]. The term “infinite statistics”
is strictly tied to the non-locality and derives from the fact that a statistic of this type can be
thought as a statistic of identical particles with infinite degrees of freedom or a statistic of
non-identical particles which are distinguishable by their inner state.

Here the correspondence between the bubbles of the vacuum obeying infinite statistics
and opportune cells of this fundamental background—each of them can be in one of
two states: “on” if a localization occurs in it, “off” otherwise—can be described as follows.
On the basis of the Bekenstein estimation of an upper bound for the information associated
with a system endowed with a total energy enclosed in a sphere in three-dimensional space,
the production of a bubble can be associated with the creation of an information in a cell
given by the following expression:

I =
A

4l2
(5)

where A is the area of the cell and l ≈ 10−33cm is the Planck length. According to
Equation (5), a purely informational interpretation of the Planck scale emerges directly,
which suggests interesting perspectives of unification between elementary particle physics
(chronon scale) and cosmology (de Sitter background).

In particular, the regime of ordinary Standard Model particles can be obtained by

considering the chronon scale A3

l2
p
≈ 10−13cm. As a consequence, by writing A = cθ0,

where c is light speed and θ0 is the minimum proper time interval between two successive

localizations of the same particle, one obtains (cθ0)
3 ≈ l2

p·10−13cm. This means that
the minimum proper time interval between two successive localizations of the same
particle in the de Sitter–Planck non-local texture characterized by infinite statistics
must satisfy the condition θ0 ≈ 10−25 s. The crucial aspect of the approach based on
Equation (5) provides a typical particle range and this implies that each cell and each
micro-universe can light up as a boson or a fermion depending on the value of the
deformation parameter q.

Moreover, as regards the WDW Equation (1), the wave function ΨM of the micro-
universe can be associated with a mode-depending frequency given by:

ωM =
1

ℏ

√
a4Λ − a2 +

γ2MPl
2c4M2

αlp
4a2

(6)
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Λ being the cosmological constant. In particular, in a FRW regime, the behavior of the
micro-universes is ruled by the effective Friedmann equation:

H2 ≡
( .

a

a

)2

=
ℏ2ω2

M

a4
= Λ − 1

a2
+

γ2MPl
2c4M2

αlp
4a6

(7)

where the last term proportional to a−6 is associated with the interaction between the
micro-universes. In order to determine the evolution of the micro-universes, we express
the mode-depending frequencies (6) as:

ωM =
Λ

ℏa

√(
a2 − a2

+

)(
a2 − a2

−
)(

a2 + a2
0

)
(8)

where a0 ≤ a− ≤ a+,

a+(M) =
1√
3Λ

√
1 + 2cos

(
ϑM

3

)
(9)

a−(M) =
1√
3Λ

√
1 − 2cos

(
ϑM + π

3

)
(10)

a0(M) =
1√
3Λ

√
−1 + 2cos

(
ϑM − π

3

)
(11)

and

ϑM = arccos

(
1 − 2

M2

M2
max

)
= 2arcsin

(
M

Mmax

)
∈ [0, π] (12)

The maximum value of the mass mode M is:

Mmax =
π√

3

M2
Pl

ℏ2cΛ2
(13)

From Equations (7) and (8) the following re-reading of the evolution of each micro-
universe can be provided: one has a re-collapsing baby universe for a < a− and an
asymptotically de Sitter universe for a > a+, while for a− < a < a+ the micro-universe
is in the Euclidean, classically forbidden, region. Although the baby micro-universe and
the corresponding asymptotically de Sitter universe are classically disconnected, they can
be put in connection through a Euclidean wormhole, in which the scale factor grows
from the value a− to the maximum value a+. The existence of this wormhole allows the
transformation of a baby micro-universe into a new expanding universe, leading to inflation
in a new region of the multiverse. By following [34,35], the probability of the tunnelling of
a baby micro-universe can be computed as follows:

℘M(a → a+) ≈





exp

(
− M2

Pl

ℏ2Λ2

)
f or M = 0

exp

(
− M2

Pl

ℏ2Λ2

[
CM M

(
k̃2
)
+ CEE

(
k̃2
)
+ CΠΠ

(
κ2
∣∣k̃2
)])

f or 0 <
M

Mmax
< 1

(14)

where M
(

k̃2
)

, E
(

k̃2
)

, Π
(

κ2
∣∣k̃2
)

are the complete elliptic integrals of the first, second and

third kind and the linear coefficients CM, CE and CΠ are defined as:

CM = 3πΛ3k̃2

[
1

3
+

1

κ2
+ k̃2

(
1

3
− 1

κ4

)]
(15)

CE = −3πΛ3k̃2

[
1

3
+ k̃2

(
1

3
− 1

κ2

)]
(16)
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CΠ = 3πΛ3k̃2

(
1 − k̃2

κ2

)(
1 − 1

κ2

)
(17)

and k̃2 =
(
a2
+ − a2

−
)
/
(
a2
+ + a2

0

)
and κ2 =

(
a2
+ − a2

−
)
/a2

+. In the light of Equation (13), one
can predict that if all the baby micro-universes are nucleated with the same probability,
those with larger K are most likely to tunnel through the wormhole and therefore undergo
an inflationary era similar to our own patch of the universe.

In the light of the frequencies (6) generating the behavior of the micro-universes, the
annihilation and creation operators b̂M and b̂†

M, evaluated in the hypersurface Σ0 where
a = a0 and ϕ = ϕ0, may be expressed as:

b̂†
M =

√
ω0k

2ℏ

(
Ψ − i

ω0k
p̂Ψ

)
; b̂M =

√
ω0k

2ℏ

(
Ψ +

i

ω0k
p̂Ψ

)
(18)

where ω0k is the value derived from (6) on the hypersurface Σ0 and p̂Ψ is the third quantized
momentum conjugated to the wave function operator Ψ̂. Equations (6) and (14) imply that,
for M = 0 one obtains a Lorentzian micro-universe for values a >

1√
Λ

and a Euclid micro-

universe for values of the scale factor satisfying 0 < a <
1√
Λ

. The transition hypersurface

Σ 1√
Λ

corresponds to the appearance of time.

In this approach, the evolution of the multiverse may be described in terms of the
creation and annihilation of bubbles, each of them identified by the mass mode M whose
maximum value is (13). The state of the multiverse is linked to the vacuum in terms of the
creation and annihilation operators satisfying the Boltzmann quantum statistics (4), in the
same way that, in second quantization, a state of the field is connected to the vacuum. One
can express this result through the following formalism:

|Ψ(a)〉 = ∏ MeωM b̂†
M−ω∗

M b̂M |0〉M (19)

On the basis of relation (19), one can describe, for example, the creation of pairs of
universes or their annihilation, the merging of universes or the stemming of universes from
parent universes and other processes quite similar to those known in elementary particle
physics. In this regard, an interesting case, strictly related to the geometry of bubbles in
a de Sitter background, is the creation of couples of black holes, examined by Bum-Hoon
Lee and Wonwoo Lee in [36]. Moreover, it is interesting to make a parallelism with the
approach of gravitational instantons, wormholes and baby universes in the context of the
Euclidean path integral formalism [37] where the amplitude relating two spatial slices of a
given universe, allowing for any number of wormholes to be inserted between initial and
final time, is:

eI =
∫

dα√
2π

exp

(
−1

2
α2

)
exp

(
α
√

∆

∫
d4x

√
gO(x)

)
= 〈0|e(a+a†)

√
∆
∫

d4x
√

gO(x)|0〉 (20)

where |0〉 is the baby universe vacuum (state with no baby universe), α = a + a†, where
a† and a are baby universe creation and annihilation operators satisfying the usual com-
mutation relation

[
a, a†

]
= 1. By comparing Equation (20) of the Euclidean path integral

formalism of [37] with Equation (19) regarding the creation of pairs of universes or their
annihilation, the merging of universes or the stemming of universes from parent universes
of our approach of de Sitter–Planck background with infinite statistics, we can say that
our approach can be seen as a generalization of the Euclidean path integral formalism
in the sense that the usual commutation relations regarding baby universe creation and
annihilation operators of Euclidean path integral formalism are here substituted by the
creation of annihilation operators of bubbles satisfying the more general infinite statistics
inside a de Sitter–Planck background, while the quantity α

√
∆
∫

d4x
√

gO(x) can indeed be
associated with the more fundamental frequencies (6) of the de Sitter–Planck background.
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In summary, one can say that the vacuum can be seen as a matrix, a sea from which
bubbles of various kinds can emerge. Universes would be bubbles with an inflative mecha-
nism, while particles would be “stable” objects. Nonetheless, both micro-universes and
elementary particles can be described by the wave function (2), namely at a fundamental
level of the de Sitter–Planck background can receive a unifying description. In other words,
we can say that, in this picture, the primary physical entity is the wave function (2)—
satisfying the WDW Equation (1)—and both micro-universes, the macroscopic regime and
elementary particles emerge from it as special structures with their specific features.

In the de Sitter–Planck background with quantum Boltzmann statistics, the vacuum is
a generator of a multiverse where each universe is characterized by a cosmological constant
which determines its evolutionary–inflationary aspects. Here, a crucial point is that in both
micro-universes, a macroscopic regime of black holes and elementary particles can receive
a unifying description based on the wave function (2), and this implies that particles and
black holes can be defined by an equivalent of the cosmological constant. The action of the
cosmological constant is such that, for the black hole regime, gravity has a stronger action
than the statistics, while for elementary particles this implies the emergence of the statistics
as well as of the spontaneous symmetry breaking.

In particular, as regards the elementary particles of the Standard Model, the introduc-
tion of a counterpart of the cosmological constant can be justified as follows. By considering,
in the scheme of the electroweak standard model, a scalar potential of the form:

V(H) = −M4
dim

4λ
− M2

dim H2 + λ

(
M2

dim

λ

)1/2

H3 +
λ

4
H4 (21)

where H is the neutral Higgs boson, λ is the coupling to a φ4 interaction and Mdim = γM√
α

MPl

is the mass of the bubble, one finds that the contribution of the vacuum energy density
plays the role of a cosmological constant for elementary particles:

Λ = −2πG

c4

M4
dim

λ
(22)

Taking account of the link with Fermi constant one finds that:

Λ ≈ −1.3 × 10−33M2
dim (23)

which turns out to be 1052 times than the astronomical value, meaning that spontaneous
symmetry breaking requires a large cosmological constant, and thus a large vacuum energy,
for elementary particles in the Standard Higgs Model.

A crucial aspect lies just in the perspectives that our approach introduces as regards
the interpretation of the elementary particles of the Standard Model. The physical meaning

of Equation (2) is that the mass of the bubble Mdim = γM√
α

MPl practically determines the

skeleton, namely the “bare” state of the elementary particle mass of the observable world.
On the basis of Equation (2), the appearance of a particle can be seen as an emerging fact
from the mass of the bubbles of the de Sitter–Planck vacuum, and this occurs when the
corresponding region of the de Sitter–Planck geometry is characterized by excited cells.

The following picture is outlined:

(1) The particle is initially massless (namely, it corresponds to the vacuum state);
(2) Its localization in an interaction event requires an amount of energy equal to the ratio

of ℏ and an opportune duration corresponding to the transition hypersurface Σ 1√
Λ

generating the appearance of time; thus, the fluctuations of the quantum vacuum are
associated with the appearance of a particle take place;

(3) The particle self-interacts for a duration of ℏ/Mdimc2, and therefore on a scale of
lengths equal to ℏ/Mdimc. The total mass of the real particle is therefore the sum of
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the “bare” mass associated with the bubbles of the de Sitter–Planck vacuum and the
ε/c2 mass derived from this self-interaction.

In particular, if the localization of a particle, following a collective organization of
bubbles of the de Sitter–Planck background obeying infinite statistics, is influenced by
gauge fields, the perturbative correction to its mass due to the particle self-interaction can
be written through the following relation:

ε

c2
= − e

c2

∫
φγµ AµφdV (24)

In Equation (23) Aµ is the self-field and φ is the spinor satisfying the ordinary
Dirac equation:

iℏγµ∂µφ = mcφ (25)

By using the language of quantum field theory, the integral appearing in Equation (9) is
extended to a volume of diameter ℏ/mc around the vertex corresponding to the appearance
of the particle and the minimum interaction distance is linked with the opportune duration
corresponding to the transition hypersurface Σ 1√

Λ

generating the appearance of time in the

associated micro-universe.

3. Bubbles Geometry and the Generalized Uncertainty Relations

A crucial result of the de Sitter–Planck geometry with infinite statistics involving a min-
imal spatial length at the Planck scale is represented by the breakdown of the Heisenberg
uncertainty principle at the Planck scale.

Following Petruzziello and Illuminati [38], if one starts from the following deformed
canonical commutation relations:

[
X̂, P̂

]
= iℏ

(
1 + βl2

p
P̂2

ℏ2

)
(26)

where β is the deformation parameter, P̂2 = ∑k P̂2
k , where,

P̂2
k =

(
1 + βl2

p
γ2M̂2

αℏ2
MPl

2c2

)
p̂k (27)

Xj = x̂j + O
(

β2
)

(28)

and x̂j and p̂k satisfy the ordinary Heisenberg uncertainty relations, at the Planck scale one

obtains the following generalized uncertainty relations:

∆x∆p ≥ ℏ

2

(
1 + βl2

p
γ2M2

αℏ2
MPl

2c2

)
(29)

In Equation (29) the parameter β is a fluctuating quantity which expresses the fact that
here space–time fluctuations fix the minimal length scale only on average, in analogy with
what happens in quantum foam scenarios such as loop quantum gravity as well as cellular
automaton interpretation of quantum mechanics [39–46].

The fluctuations in β are a characteristic sign of approaching the Planck scale, in
epistemological affinity with the treatment made in [47,48], and will depend also on the
scale of the appearance of elementary particles (namely the chronon scale invoked, for
example, by Chiatti and Licata in their transactional approach of quantum jumps [49–51]).

The generalized uncertainty relations (29) have the merit of introducing new, interest-
ing and unifying perspectives by suggesting a connection between great theories of the XXI
century which invoke quantum foams, loops and holographic features at the Planck scale.
For example, in loop quantum gravity, one may remark that each loop carries a quantum
geometry of the Planck scale, namely, that a smooth geometry cannot be approximated at a
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physical scale lower than the Planck length, according to the following equation for the
metric approximated by the increased loop density:

g(µ)µν

(→
x
)
=

l2
P

µ2
ηµν (30)

where µ is the density of the loops and ηµν is the metric of the 3D flat space [52]. Now,
this result can be seen as the natural counterpart of the breakdown of the Heisenberg
uncertainty principle at the Planck scale, expressed by Equation (26), in our approach of de
Sitter–Planck geometry with quantum Boltzmann statistics, in the sense that the density of

loops can be associated with the quantity βl2
p

γ2 M2

αℏ2 MPl
2c2 depending on the planckeons as

well as the parameter β. In other words, the density of loops can be seen as the consequence
of fundamental processes involving the bubbles of the de Sitter–Planck background.

Moreover, the holographic features of loop quantum gravity in spherical symmetry
are associated with an uncertainty in the determination of volumes that grow radially,
invoked by Gambini and Pullin in [53], which imply that the number ∆N of elementary
volumes in a shell with width ∆x is:

∆N =
x∆x

2γρl2
P

(31)

where ρ is the coordinate density of the loops, which can be seen themselves as a conse-
quence of a more fundamental breakdown of the uncertainty principle at the Planck scale.
In fact, by substituting (28) into Equation (30), one finds:

∆N =
x∆x

2γρl2
p
≥ xℏ

4γρl2
p∆p

(
1 + βl2

p
γ2M2

αℏ2
MPl

2c2

)
(32)

The physical meaning of Equation (32) is that the uncertainty in the number ∆N of
elementary volumes in a shell with width ∆x depends on a quantity which is linked with
the deformation of the geometry of the bubbles at the Planck scale, besides the density of
the loops and the uncertainty of the momentum.

Finally, if one considers Ng’s model of a fundamental spacetime foam of a holographic
nature where the quantum fluctuations manifest themselves in the form of uncertainties
in the geometry of spacetime leading to a partition of the spacetime volume into “cells”

of size
(
2π2/3

)1/3
l1/3l2/3

P [31–33], in our approach the distance l may be assimilated with
the quantity ∆x appearing in generalized uncertainty relations (2). In other words, we
can say that the average minimum uncertainty, and thus the accuracy with which we can
measure the geometry of space–time in Ng’s model, is determined by the deformation of
the geometry of the bubbles of the de Sitter background at the Planck scale. Moreover,
since the holographic features of Ng’s quantum spacetime foam are associated with infinite
statistics, the suggestive perspective is opened that a simple correlation exists between the
degree of deformation of the geometry of the bubbles at the Planck scale (expressed by the
parameter β) and the infinite statistics.

In our approach based on the generalized uncertainty relation (26), one has the follow-
ing modified de Broglie relation for bubbles of the de Sitter–Planck background:

→
p
′
= ℏ

→
k +

ℏ

2

(
1 + βl2

p
γ2M2

αℏ2
MPl

2c2

)(→
k
′
−

→
k

)
(33)

which follows directly from the relation:

<
→
x
→
x ′
∣∣∣
→
p
→
p ′ >=

1√
πℏ

(
1 + βl2

p
γ2 M2

αℏ2 MPl
2c2
) eiℏ

→
p ·→x e

i

ℏ
2 (1+βl2p

γ2 M2

αℏ2 MPl
2c2)

(
→
p
′−→

p )·(→x ′−→
x )

(34)
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which can be considered as the generalization of the standard expression for the position
space representation of a momentum eigenstates:

<
→
x | →p >=

1√
2πℏ

eiℏ
→
p ·→x (35)

In Equation (35),
→
k is the usual de Broglie wave vector, which is associated with the

momentum eigenstate of a quantum particle on a classical background space while the

term
→
k
′
−

→
k can be understood as the possible “kick”, given to a point on the plane-wave,

due to the transition
→
x → →

x ′ in the de Sitter–Planck background.
Moreover, here one has the following version of the modified energy–frequency de

Broglie relation:

E =

[
ℏ+

ℏ

2

(
1 + βl2

p
γ2M2

αℏ2
MPl

2c2

)]
ω (36)

which yields the following expression for the modified quantum dispersion relation for
free planckeons of the de Sitter–Planck background:

ω =

[
ℏ

→
k + ℏ

2

(
1 + βl2

p
γ2 M2

αℏ2 MPl
2c2
)(→

k
′
−

→
k

)]2

2 γM√
α

MPl

[
ℏ+ ℏ

2

(
1 + βl2

p
γ2 M2

αℏ2 MPl
2c2
)] (37)

4. From the Generalized Uncertainty Relations to Sub-Planckian Black Holes

Now, we want to show how the generalized uncertainty relation (29) can be considered
the starting point in order to shed new light on the interpretation of the black hole as
a “particle”.

In this regard, before all, by starting from the generalized uncertainty relation (29), if
one makes the substitution ∆x → R and ∆p → cM , dropping the factor 2, one obtains:

R ≥ ℏ

cM

(
1 + βl2

p
γ2M2

αℏ2
MPl

2c2

)
(38)

In Equation (38):

R′
C =

ℏ

cM
+ βl2

p
γ2Mc

αℏ
MPl

2 (39)

may be considered as a generalized Compton wavelength, while the second term represents
a small correction as one approaches the Planck regime. Equation (38) can also be applied
for M ≫ MPl and has suggestive implications also for the black hole horizon size, where
one obtains:

R ≥ R′
S = βl2

p
γ2M

αℏ
MPl

2c

(
1 +

αℏ2

βl2
pγ2M2MPl

2c2

)
(40)

which represents a small correction to the Schwarzschild radius for M ≫ MPl if the
parameters β and γ2 satisfy the relation:

βγ2 =
2Gℏα

c3l2
p MPl

2
(41)

Equations (39) and (40), then, directly lead to a unified expression for the generalized
Compton wavelength and event horizon size:

R′
C = R′

S =

√(
ℏ

cM

)2

+

(
βl2

p
γ2M

αℏ
MPl

2c

)2

(42)
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The physical meaning of Equation (42) is that there is a zone of interpenetration
between the Schwarzschild radius and the Compton wavelength and therefore a possi-
ble link between the uncertainty principle on the scale of elementary particles and the
regime of black holes in macrophysics. When the Compton wavelength is bigger than
the Schwarzschild radius a particle is formed, otherwise one deals with a black hole. In
general, there exist quantum black holes, with their characteristic radiation. Moreover, this
correspondence between microphysics and black holes involved with the bubbles of the de
Sitter–Planck background seems to suggest that there could be sub-Planckian black holes
with a size of order of their Compton wavelength and that the origin of these sub-Planckian
objects becoming black holes lies just in the collective behavior of the bubbles. One can here
make a sort of parallelism with the “loop black hole” solutions, behaving as wormholes,
predicted by loop quantum gravity [54–59].

In order to explore in detail the existence of these sub-Planckian black that are si-
multaneously “black holes” and “elementary particles”, we propose a generalization of
Equations (38) and (40) in terms of the deformation parameter q appearing in the relation (4)
defining the infinite statistics, as follows:

R′
C =

qℏ

cM

(
1 + βl2

p
γ2M2

qαℏ2
MPl

2c2

)
(43)

and

R′
S = βl2

p
γ2M

αℏ
MPl

2c

(
1 +

qαℏ2

βl2
pγ2M2MPl

2c2

)
(44)

Equation (43) is valid in the sub-Planckian regime, while Equation (44) holds for the
super-Planckian regime. In this way, one obtains a unified expression of the generalized
Compton wavelength and event horizon size of the form:

R′
C = R′

S =

√(
qℏ

cM

)2

+

(
βl2

p
γ2M

αℏ
MPl

2c

)2

(45)

leading to the approximations

R′
C ≈ qℏ

cM

(
1 + β2l4

p
γ4M4

q2α2ℏ4
MPl

4c4

)
(46)

and

R′
S ≈ βl2

p
γ2M

αℏ
MPl

2c

(
1 +

q2α2ℏ4

β2l4
pγ4M4MPl

4c4

)
(47)

for M ≪ MPl and M ≫ MPl , respectively.
Equation (45) can be considered the turning key in order to explain in what manner

particles (and their corresponding statistics) emerge from the bubbles of the vacuum. By
invoking a fruitful consideration of Elementary Cycles Theory [60,61], which states that
every isolated elementary constituent of nature (every elementary particle) is characterized
by an intrinsic Compton periodicity TC = h

Mc2 , where M is the mass of the particle,
thus leading to a unified formulation of relativistic and quantum physics as well as a
fully geometrodynamical formulation of gauge interactions, here we can assume that the
ordinary subatomic particles of the Standard Model emerge from the collective organization
of the bubbles of the vacuum if the generalized Compton wavelength (42) gives rise to an
intrinsic periodic phenomenon of generalized Compton periodicity:

TC =
1

c

√(
qℏ

cM

)2

+

(
βl2

p
γ2M

αℏ
MPl

2c

)2

(48)
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As a consequence, one can say that an elementary particle of mass m emerges as a ref-
erence elementary clock, or vibrating mode, characterized by the fundamental generalized
Compton periodicity (42), namely:

m =
h

TCc2
(49)

By substituting relation (48) into (49), the mass of an elementary particle of the Stan-
dard Model, intended as an emergent entity from the collective organization of the bubbles
of the vacuum described by the generalized Compton wavelength (45), is therefore:

m =
h

c

√(
qℏ
cM

)2
+
(

βl2
p

γ2 M
αℏ MPl

2c
)2

(50)

Equation (50) illustrates in what sense the mass of a subatomic particle of the Standard
Model emerges from the generalized Compton wavelength giving rise to an intrinsic peri-
odic phenomenon of generalized Compton periodicity. As a consequence of the appearance
of a real subatomic particle of mass (50), in correspondence, the wave function Ψ of the
micro-universe (2) becomes the wave function of the particle by assuming the following
form depending on the mass (50):

Ψ̂ =
γMPlc

2

√
2παℏlp

2

∫
dM

(
e

i
γMPl c2
√

αℏlp2 mϕ
ΨM(a)b̂M + e

−i
γMPl c2
√

αℏlp2 mϕ
Ψ∗

M(a)b̂†
M

)
(51)

namely

Ψ̂ =
γMPlc

2

√
2παℏlp

2

∫
dM


e

i
2πγMPl c√

αlp2
√

(
qℏ
cM )

2
+(βl2p

γ2 M
αℏ

MPl
2c)

2
ϕ

ΨM(a)b̂M + e

−i
2πγMPl c√

αlp2
√

(
qℏ
cM )

2
+(βl2p

γ2 M
αℏ

MPl
2c)

2
ϕ

Ψ∗
M(a)b̂†

M


 (52)

In Equation (52), the operators b̂M and b̂†
M now become the annihilation and creation

operators which annihilate and create, respectively, particles of mass M, and satisfy the
“quantum Boltzmann statistics” represented by the q deformation of the commutation
relations of the oscillators (4), where the case q = 1 corresponds to the generation of the
mass of bosons, whilst q = −1 corresponds to the generation of the mass of fermions. We
have thus demonstrated in what sense the infinite statistics characterizing the bubbles of
the vacuum imply that each cell, each micro-universe ruled by the WDW Equation (19)
can give rise to a subatomic particle of mass (50) and wave function (52) as a result of the
collective organization of the bubbles of the vacuum described by the generalized Compton
wavelength (45) and this micro-universe can thus switch on as a boson or a fermion,
depending on the value of the deformation parameter q that appears in the commutation
relations of the oscillators (4).

The relation of the wave function (52)—describing the micro-universe giving rise to a
particle as a result of the collective organization of the bubbles–with the dynamics in the
de Sitter background space can be so formulated. On the basis of the approach based on
Equations (37)–(41), one can define the following form of the Arnowitt-Deser-Misner mass

MADM = M

(
1 +

qαℏ

βl2
pγ2MMPl

2c

)
(53)

which implies the generalized uncertainty principle because it satisfies relation

MADM

r
=

∆p

c∆x
(54)
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if the momentum term is replaced by the substitution

∆p → ∆p +
αℏc

βl2
pγ2∆p

(55)

The Arnowitt-Deser-Misner mass (53) allows us to build a quantum-modified Schwarzschild
metric of the form

ds2 = F(r)c2dt2 − F(r)−1dr2 − r2dΩ2 (56)

where

F(r) = 1 − 2GM

c2MPl
2r

(
1 +

qαℏ

βl2
pγ2MMPl

2c

)
(57)

Now, in order to analyze the dynamics of the evolution of the bubbles in the de
Sitter background space, we take into account that it has been recently demonstrated that
a scalar field non-minimally coupled to Einstein’s tensor and Ricci scalar in geometries
of asymptotically de Sitter space-times leads to regions of instability in the space-time
determined by the geometry and field parameters [62]. On the basis of the results obtained
in [62], one can propose that the link of the a-dynamical sea of bubbles—which gives rise to
particles as a consequence of jumps in the archaic universe—with a perturbative dynamical
picture, can be characterized by introducing the perspective that the wave function (52) can
be associated to a corresponding probe scalar field Φ (of the type invoked in [62]) which
can be treated as a small perturbation that does not produce strong modifications of the
fixed geometry. In particular, by following [62], one starts from an action of the form

S =
∫

d4x
√
−g
(
Lbackground(R, Λ, Fµν) + Lperturbative(Φ)

)
(58)

where

Lbackground(R, Λ, Fµν) =
R

16πG
− 6

L2
− FµνFµν

4
(59)

R being the Ricci scalar, L stands for de Sitter radius, related to the cosmological
constant by L2 = 3/Λ, Fµν are the components of electromagnetic field strength tensor, and

Lperturbative(Φ) = −1

2
(gµν + ηGµν)∂µΦ∂νΦ − 1

2

(
γM√

α
MPl

)2

Φ2 − V(Φ) (60)

where gµν and Gµν are the components of the metric tensor and the Einstein tensor, η is the
non-minimally derivative coupling parameter. The equation of motion for the scalar field
derived from the action (60) is given by

1√−g
∂µ

(√
−g(gµν + ηGµν)∂νΦ

)
− dV

dΦ
(61)

Now, if one applies the standard ansatz to separate variables, the scalar field can be
expressed in radial-temporal and angular parts as

Φ(t, r, θ, φ) = ∑l,mφ
R(r, t)Yl,m(θ, φ) (62)

By substituting (62) into equation (61) one thus finds the following equation

− ∂2R

∂t2
+ α

∂2R

∂r2
+ α

(
2

r
+

d f

dr

)
∂R

∂r
− ϑ(r)R = 0 (63)

Here, the crucial point lies in considering the equation of motion (63) inside a quan-
tum Schwarzschild-de Sitter geometry expressed by the metric (56), equipped with the
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function (57). In this way, as regards the quantities appearing in (63), one has the follow-
ing results

α = [F(r)]2, f = ln

((
1 +

3η

L2

)
F(r)

)
, ϑ(r) = F(r)




l(l + 1)

r2
+

(
γM√

α
MPl

)2
L2 + 12ξ

L2 − 3η


 (64)

where ξ is a perturbative factor. As a consequence, the effective potential in the quantum
Schwarzschild-de Sitter geometry ruling the evolution of the bubbles can be expressed as

V(r) =

[
1 − 2GM

c2 MPl
2r

(
1 +

qαℏ

βl2
pγ2 MMPl

2c

)]


l(l + 1)

r2
+

(
γM√

α
MPl

)2
L2

L2 − 3η
+

2GM

c2 MPl
2r3

− 2

L2


 (65)

In this equation, it must be remarked that the term

(
γM√

α
MPl

)2
L2

L2−3η
acts as a sort of a

new scalar field mass, which shows how the bubbles of the vacuum are affected by the
fundamental geometry of the de Sitter background, expressed by the de Sitter radius

and the non-minimally derivative coupling parameter. The quantity

(
γM√

α
MPl

)2
L2

L2−3η
can be

positive or negative depending on the parameters of the geometry and this generates
changes of the effective potential between horizons, thus provoking instabilities for the
field evolution. Coherently with the results obtained in [62], in our model of bubbles in a
quantum Schwarzschild-de Sitter geometry, one obtains that, while for highly enough η
and l > 0, the field turns out to be stable, this is not the case however for l = 0.

We remember here that the usual evolution of the scalar field after a initial burst
in a positive potential is characterized by three distinct possibilities after the ringing
phase: (1) if l > 0, it decays exponentially, (2) if l = 0, it moves towards a constant value
that scales the cosmological constant, (3) finally, it oscillates indefinitely as a function
of the scalar field mass. In the model suggested in this paper, however, in the light
of Equations (61)–(65), when the potential is not entirely positive between horizons,
unstable modes can emerge and the geometry overcomes some changes. As regards the
non-minimally derivative coupling η of quantum Schwarzschild-de Sitter geometry here
considered, the potential is partly or entirely negative (depending on the coupling and
geometry parameters) and this implies that an unstable dynamics arises. In particular,
by studying the evolution of the field for different L, η and l, inside the constraint

L2 > 27
(

γM√
α

MPl

)2
corresponding to the causal structure condition for the presence of an

encapsulated singularity (by the event horizon) and a cosmological horizon, one finds
the following results:

A stable evolution occurs from η = 0 until η < L2/3, showing the expected decay in
time, since the corresponding potential is positive;

Instead, for η > L2/3, the dynamics is always unstable and, even for asymptotic η,
where the potential is partly positive, there is no stable evolution.

On the other hand, the quantum-modified Schwarzschild metric (56)—equipped with
the function (57)—leads us to make relevant considerations as regards the behavior of the
black hole systems. In fact, the metric (56) is characterized by the horizon size

rH = R′
S =

2GM

c2MPl
2

(
1 +

qαℏ

βl2
pγ2MMPl

2c

)
(66)
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which, in the different regimes of mass, becomes

rH ≈





2GM
c2 MPl

2 i f M ≫ MPl

2Gβl2
pγ2 MPl

2+qαℏc

βl2
pγ2 MPl

3c2 i f M ≈ MPl

2Gβl2
pγ2+qαℏc

βl2
pγ2 MPl

2c2 i f M ≪ MPl

(67)

The first expression coincides with the standard Schwarzschild radius. The intermedi-
ate expression gives a minimum of order lp, so the Planck scale is never actually reached
for q > 0 and therefore the singularity remains inaccessible. The last expression can be
associated with the Compton wavelength.

On the basis of the metric (56), one can also explore the thermodynamics of the
black hole solutions in the three limits considered above (super-Planckian, trans-Planckian
and sub-Planckian limits). In this regard, by following the treatment of Carr [2,3], if the
temperature is determined by the black hole’s surface gravity [63], one has:

T =
MPl

2

8πM

(
1 + qαℏ

βl2
pγ2 MMPl

2c

) ≈





MPl

8πM[1−q(MPl−M)2]
i f M ≫ MPl

MPl
8π[1+q/2]

i f M ≈ MPl
M

4πq[1−(M/MPl)
2/q]

i f M ≪ MPl

(68)

On the basis of Equation (68), the large M limit corresponds to the usual Hawking
temperature with a small correction. Instead, as the black hole evaporates, the temperature
reaches a maximum at around TPl and then decreases to zero as M → 0 .

A possible explanation for the M ≪ MPl behavior lies in invoking the possibility
that a decaying black hole makes a temporary transition to a (1 + 1)-D dilaton black
hole when the Planck scale is approached, since this naturally encodes a 1/M term in its
gravitational radius.

If the temperature is given by (68), the black hole entropy can be calculated in the
usual fashion as:

S =
∫ M

M0

dM′
T(M′) = 4πk

(
M2

M2
Pl

− M0
2

M2
Pl

+ qln
M

M0

)
(69)

where M0 < MPl is some lower bound of integration. In Equation (69), the presence
of a logarithmic correction is compatible with the entropy of a (1 + 1)-D Schwarzschild
spacetime [64], as well as with the notion that (1 + 1)-D black holes are naturally quan-
tum objects [65], emerging here via the dependence of rH on M. This is in agreement
with a model-independent feature emerging from a variety of approaches to quantum
gravity such as string theory [66], loop quantum gravity [67] and ultraviolet gravity self-
completeness [68].

5. Thermodynamics of a Quantum Black Hole

Now, on the basis of the black hole temperature (60), the luminosity of the black hole
may be expressed as:

L =
M3

Pl

tPl
M−2

(
1 +

qαℏ

βl2
pγ2MMPl

2c

)−2

(70)

Although the black hole loses mass on a timescale:

τ ∼ tPl

M3
Pl

M3

(
1 +

qαℏ

βl2
pγ2MMPl

2c

)2

(71)
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it never entirely evaporates because the mass loss rate decreases when M falls below
MPl . There are however two values of M which are associated with a timescale τ that is
comparable with the age of the universe ( t0 ∼ 1017 s), namely a super-Planckian value:

M∗ ∼
(

t0

tPl

)1/3

MPl ∼ 1015 g (72)

and a sub-Planckian value

M∗∗ ∼ β2

(
tPl

t0

)
MPl ∼ 10−65 g (73)

The mass M∗ is the standard expression for the mass of a primordial black hole that
evaporates at the present epoch. The mass M∗∗ effectively specifies the lower integration
bound in Equation (68), namely M∗∗ = M0. The mass cannot actually reach the value M∗∗
at the present epoch because of the effect of the cosmic microwave background. This occurs
because the black hole temperature is less than the CMB temperature TCMB, suppressing
evaporation altogether, below an epoch-dependent mass:

MCMB = 10−36(TCMB/3K)g (74)

which represents the value at which the primordial black hole freezes, leading to effectively
stable relics which might provide a candidate for the dark matter.

The mass M∗ corresponds to a black hole radius:

rH ∼ 10−13 cm (75)

and temperature
T ∼ 1012 K (76)

while the mass M∗∗ corresponds to a radius

rH ∼
(

t0

tPl

)
lp ∼ 1060lp ∼ 1027 cm (77)

and temperature
T ∼ 10−28 K (78)

Relations (77) and (78) correspond, respectively, to the current cosmological horizon
size and to the Hawking temperature for a black hole with the mass of the universe.

Finally, at the end of this section, let us analyze how, by starting from the horizon size
(66), one can shed new light on the features of the equivalent of the cosmological constant
for black holes. In this regard, by invoking a fruitful consideration made by Kubiznak and
collaborators in [69], we can interpret the counterpart of the cosmological constant for black
holes as a sort of thermodynamic pressure on the basis of the relation:

P = − Λ

8πGd
=

(d − 1)(d − 2)

16πr2
HGd

(79)

where Gd is the d-dimensional gravitational constant. The thermodynamic pressure (79) can
be considered as a fundamental physical entity which determines a dynamical evolution
of the black holes. In particular, it makes the black hole grow due to the accretion of the
scalar field, and implies that, while the growing black hole tends to pull the cosmological
horizon further in, the decaying cosmological constant makes it expand. If one considers
a potential interpolating between initial and final values of the cosmological constant, Λi

and Λ f , the change in both the black hole and cosmological horizon areas turns out to

evolve proportionally to |δΛ| =
∣∣∣Λ f − Λi

∣∣∣ times, a factor that depends on properties of the
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de Sitter–Planck background. By following [70], the change in the area of the black hole
horizon can be expressed by the relation:

|δAH | =
0

2πTh

AH

Atot

(
Λi − Λ f

)
(80)

where Th is the temperature of the black hole horizon, given by Equation (68),
Atot = 4π

(
r2

c + r2
H

)
is the total horizon area, 0 = 4π

(
r3

c + r3
H

)
/3 is the thermodynamic

volume of the de Sitter black hole region, rH is the black hole horizon given by (66), Λi

and Λ f are the initial and final values of the cosmological constant associated with the
black hole system and rc is the cosmological horizon, which is strictly dependent on the
cosmological constant and the black hole horizon through the relations:

Λ =
3(

r2
c + r2

H + rH + rc

) (81)

2GM

c2
=

rcrH(rc + rH)(
r2

c + r2
H + rH + rc

) (82)

M being the mass of the clack hole. In particular, in the limits where the black hole
horizon is small or comparable in size to the cosmological horizon, the modification in the
black hole horizon area is given, respectively, by:

δAH
∼=





2AH
|δΛ|√

3Λi

·
(
rH

√
Λi

)
i f rH

√
Λi ≪ 1

AH
|δΛ|
Λi

i f rH
√

Λi ∼ 1
(83)

In the light of relations (83), the fractional growth in the area of the black hole, δAH/AH

turns out to be negligible for small black holes, while it is of order |δΛ|
Λi

for large ones. Finally,

the effect of the black holes on the size of the cosmological horizon is to determine a change
in the cosmological horizon area given by the relations:

δAc
∼=





12π |δΛ|
Λ2

i

i f rH
√

Λi ≪ 1

4π |δΛ|
Λ2

i

i f rH
√

Λi ∼ 1
(84)

According to relations (84), the cosmological horizon growth is negligible for small
black holes, while for large black holes the effect of a black hole in the cosmological horizon
growth can be reduced by as much as 2/3 [70].

6. Casimir Energy and Cosmological Wormholes

In this section, we want to show how our approach of sub-Planckian black holes in
a de Sitter–Planck background can shed new light on a unifying treatment of Casimir
effect—which lies in the measurable force between macroscopic objects generated by
the vacuum energy in QFT—and cosmological wormholes, which constitute physical
connections between two distant regions of the universe according to Einstein’s equations
of General Relativity. As regards a unifying treatment of the Casimir effect and cosmological
wormholes, a pioneering analysis by Sorge [71] investigated the interference of both non-
inertial effects and spacetime geometry on the vacuum energy density of a non-massive
scalar field present in a small Casimir cavity, which orbits an Ellis–Thorne wormhole [72].
From this perspective, a recent work by Santos, Muniz and Oliveira analyzed the changes
in the quantum vacuum energy density of a massless scalar field inside a Casimir apparatus
that orbits a wormhole, in the context of a cosmological model with an isotropic form of the
Morris–Thorne wormhole, embedded in the FLRW universe. The three authors explored
the effects of the global curvature of the universe and its scale factor on the Casimir energy
density, finding that the Casimir energy density was higher in a hyperbolic Universe, lower
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in a spherical one and intermediary in a flat Universe, with the difference between them
being higher as more distant the plates are from the wormhole throat [73].

On the other hand, in [74], Sorge found that an observer comoving with a Casimir
cavity, freely falling in a Schwarzschild black hole, measures a small reduction in the
(absolute) value of the (negative) Casimir energy as the black hole horizon is approached
because of the changing spacetime geometry. Working in the Lemaitre coordinates where
the Schwarschild metric takes the form:

ds2 = dτ2 − rg

r(τ, ρ)
dρ2 − r2(τ, ρ)dΩ2 (85)

where rg is the Schwarzschild radius and, near the black hole horizon,

r(τ, ρ0) = rg

(
1 − 3τ

2rg

)2/3

(86)

which represents a freely falling particle (in our case the Casimir cavity) whose trajectory
intersects the horizon at τ = 0, Sorge found that the overall energy density (as measured
by the comoving observer) of the Casimir effect inside a small cavity, freely falling into a
Schwarzschild black hole, is made by two contributions, namely a static contribution:

ǫC static = − π2

1440L4
(87)

which is related to the vacuum polarization and a dynamical contribution, due to the time
dependent background experienced by the quantum field, leading to particle creation
inside the Casimir cavity, given by the relation:

ǫC dynamical =
1

384L2

ξ2

(1 − ξτ)2
(88)

where ξ = 3c
2rg

.

However, inside Sorge’s approach, the finiteness of the Casimir plates was not taken
into account, since it was assumed L ≪

√
A ≪ rg. Such an assumption is satisfied in

any realistic scenario where the gravitational radius of a black hole is undoubtedly many
orders of magnitude larger than the cavity’s size. Instead, by considering micro-black holes,
having a gravitational radius rg ∼ L, or even better the sub-Planckian black holes of the
model suggested in this paper, Sorge’s equations need to be extended and generalized
because in these situations the condition L/rg ≪ 1 is violated, as in that limit the local
frame cannot be considered almost Minkowskian (in these situations the tidal effects,
associated with anisotropies in the distribution of the vacuum energy density inside the
cavity, will dominate).

In order to develop a generalization of Sorge’s approach which is able to take into
account the sub-Planckian black holes of the de Sitter–Planck background, let us return,
before all, to the generalized uncertainty relations (28), which we express now in the
following equivalent form:

∆x∆E ≈ ℏc

2

(
1 + β

(
2γMMPl∆E√

αp2

)2
)

(89)

and let us see how this relation leads to corrections in the Casimir energy with respect to the
standard prediction of quantum field theory (in the simple case of the three-dimensional
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geometry of two parallel plates separated by a distance d ≪ L where L is the side of the
plates). By solving Equation (89) with respect to ∆E, one obtains:

∆E =
∆x

ℏcβ

p4

4 γ2 M2

α MPl
2


1 ±

√

1 − β

(
ℏc

∆x

2γMMPl√
αp2

)2

 (90)

where one must consider only the negative solution in order to obtain a coherent result for
vanishing β. After expanding to the first order in β one finds:

∆E =
ℏc

2∆x

[
1 +

β

4

(
ℏc

∆x

2γMMPl√
αp2

)2
]

(91)

If we now neglect those photons coming from distances greater than the value re

representing the effective distance beyond which photons have a negligible probability to
reach the plate, it is natural to assume the uncertainty position ∆x of the single photon to be
of the order of re and, thus, of the distance d between the plates, according to the relation:

re
∼= 2.6d (92)

which follows from Heisenberg uncertainty principle. Then, by replacing ∆x ∼= 2.6d into
Equation (90), the contribution to the Casimir energy at a given point becomes:

|∆E(d)| ∼= 0.2
ℏc

d

[
1 + 0.04β

(
ℏc

d

2γMMPl√
αp2

)2
]

(93)

which agrees with the equation

∆E(d) = − π

12

ℏc

d
(94)

derived from the standard Heisenberg uncertainty relation in the limit β → 0 . Equation (93)
may be thus considered as the generalization of the Casimir energy in the framework of
the de Sitter–Planck background based on the generalized uncertainty relation (29).

Now, we propose a generalization of Sorge’s model which takes into account the
features of the sub-Planckian black holes and their consequent effects on the Casimir energy
density. In this regard, in the usual Casimir cavity, freely falling from spatial infinity and
adjusting the comoving observer clock so that the proper time τ = 0 when the cavity is at
the radial horizon coordinate rH , we consider the quantum-modified Schwarzschild metric
in the Lemaitre coordinates {τ, ρ, θ, φ} in which a freely falling test body has a constant
value ρ0 of the radial ρ coordinate, of the following form

ds2 = dτ2 − rH

r(τ)
dρ2 − r2(τ)dΩ2 (95)

where

r(τ) = rH

(
1 − 3τ

2rH

)2/3

(96)

and rH is the horizon size given by (66). The quantum vacuum fluctuations characterizing
the orbiting cavity of the Casimir apparatus may be associated with a massless scalar field
ϕ(xµ) which obeys Dirichlet boundary conditions at the plates:

ϕ(τ, x,
→
x⊥)|x=0 = ϕ(τ, x,

→
x⊥)|x=L = 0 (97)
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and, by applying the minimal coupling constraint, satisfies the following Klein–Gordon
equation of motion: [

ηbc∂b∂c +
1

4

ζ2

(1 − ζτ)2

]
ϕ = 0 (98)

where

ζ =
3c

2rH
(99)

By using the techniques developed by Sorge in [71,74], we can search for a solution of
(98) of the form:

ϕ(xa) ∼ ei
→
k ⊥ ·

→
x ⊥ sin

(nπ

L
x
)

χ(τ) (100)

By inserting (89) into (87) we obtain the following equation for the function χ(τ) of
the proper (local) time: [

∂2
τ + ω2

k +
1

4

ζ2

(1 − ζτ)2

]
χ = 0 (101)

By solving Equation (93), χ may be expressed in terms of Hankel functions of the
second kind:

χk(τ) =
1

2

√
π

ζ
(1 − ζτ)H

(1)
0

[
ωk

ζ
(1 − ζτ)

]
(102)

which has a Minkowskian behavior at τ → −∞ and, when the cavity is at the spatial
infinity with respect to the black hole, becomes:

χk(τ) ∼ 1√
2ωk

e−iωτ , f or τ → −∞ (103)

By following [74], here the Casimir effect inside a small cavity, freely falling into a
Schwarzschild black hole, may be derived from the real part of the action associated with
Equation (90), namely:

WH(ν) =
(−i)ν Aπ3/2

16L3 ∑k
ζ2k2kak

(
L

π

)2(ν+k)

×
∫ T

−∞

dτ

(1 − ζτ)2k
Γ(ν − 3/2 + k)∑

∞

n=1

1

n(2ν−3+2k)
(104)

where a0 = 1

ak =
1

k!8k

[
(−1)2(−3)2···

(
−(2k − 1)2

)]
, k ≥ 1 (105)

in the limit ν → 0 , namely:

〈ǫCas〉 = −lim
ν→0

1

AL

∂

∂τ
ReW(ν) (106)

After a β-power expansion, one obtains:

〈ǫCas〉 = −π3/2

16L4 ∑
∞

k=0

2kζ2kak

(1 − ζτ)2k

(
L

π

)2(ν+k)

Γ(−3/2 + k)ς(−3 + 2k) (107)

which yields

〈ǫCas〉 = − π2

1440L4
+

1

384L2

ζ2

(1 − ζτ)2
+ O

(
ζ4
)

(108)

At the horizon crossing, namely τ → 0− , one obtains:

〈ǫCas〉hor = − π2

1440L4

[
1 − 135

16π2

(
L

rH

)2
]

(109)
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Equation (108) tells us how the corrections to the Casimir energy density change with
the proper time as the cavity approaches the black hole horizon, both in the adiabatic
regime—where the proper time satisfies ∆τ ≫ L—and if ∆τ < L holds where the dynami-
cal effects of the de Sitter–Planck background generated by the collective behavior of the
bubbles play a dominant role.

The physical meaning of Equation (100) lies in the fact that the small reduction in
the (absolute) value of the (negative) Casimir energy measured by a comoving observer
near the black hole horizon is linked with the collective behavior of the bubbles of the de
Sitter–Planck background, via the dependence of the horizon size expressed by Equation
(66). In particular, on the basis of Equation (67), one obtains the following expressions for
the Casimir energy at the horizon crossing in the different regimes of mass:

〈ǫCas〉hor =





− π2

1440L4

[
1 − 135

16π2

(
Lc2 MPl

2

2GM

)2
]

i f M ≫ MPl

− π2

1440L4

[
1 − 135

16π2

(
Lβl2

pγ2 MPl
3c2

2Gβl2
pγ2 MPl

2+qαℏc

)2
]

i f M ≈ MPl

− π2

1440L4

[
1 − 135

16π2

(
Lβl2

pγ2 MPl
2c2

2Gβl2
pγ2+qαℏc

)2
]

i f M ≪ MPl

(110)

In summary, one can say that the small reduction observed in the static Casimir en-
ergy value is generated by the collective behavior of the bubbles of the de Sitter–Planck
background, which induce a peculiar correction in the different regimes of mass. This
result turns out to be compatible with the treatment of Sorge [74], where the small reduc-
tion in the Casimir energy value was associated with the phenomena of particle creation
inside the Casimir cavity. Moreover, at the same time, our model goes further by sug-
gesting a more general scenario that is able to explain the processes in the sense that it
provides a deeper explanation of the origin of this energetic correction in terms of a more
fundamental background.

To conclude, regarding the interaction of two or more bubbles from the point of view of
the ER-EPR conjecture, bubbles are spacetime fluctuations of a spacetime which is described
in terms of non-local wormhole connections, viz., the building blocks of the physics of the
gravitational field at and below Planck scales. When it is fixed for any given metric g a
finite length L down to the Planck length lp and a characteristic time τ, the generation of
one or more bubbles in the neighborhood of Planck’s scales can be interpreted as metric
fluctuations ∆g characterized by a Riemann tensor that, for any given spacetime, from the
equivalence principle are defined by the energy and time fluctuations given in Planck units,

R(4)(g, L) ∼ EP

ℏ

(τP

τ

)2 g2

L2
(111)

The curvature tensor depends on the Planck scales the time interval τ and the length
L in a spacetime defined by the metric tensor g. These metric fluctuations can in principle
be interpreted in terms of space–time relationships connecting different events within a
distance L with the effect of generating spacetime from spacetime relationships. Below
Planck’s scales the events are undistinguishable, physically identical, in principle unde-
tectable and entangled. At lower energies the spacetime connections between two events
are interpreted in terms of virtual graviton exchanges as in the ER=EPR scenario [75] with
the result of coupling two or more events at larger distances. The connection between two
events via Einstein-Rosen bridge (ER) is equivalent to the quantum entanglement described
by the Einstein, Podolski and Rosen paradox. As an example, thin-shell wormholes can be
used to construct a something that represents a closed and complete universe.

7. Conclusions

In this work we investigated the sub-Planckian aspects of bubble theory, moving a
little away from the traditional cosmological meaning of the theme linked to inflation, and
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returning to some structural characteristics of the WDW equation. As is known [75], the
use of this equation requires to choose of specific boundary conditions as in the case of the
no-boundary condition imposed by Hartle–Hawking [76,77].

In the case of sub-Planckian bubbles, the WDW is constrained by the de Sitter geometry
when close to the Planck scale, as in Formula (1), and thus we find a number of suggestive
applications in microphysics. The addition of a generative statistics such as the quantum
Boltzmann statistic allowed us to take a few steps forward in this toy model in order
to distinguish between particles (fermions or bosons), baby universes and black holes.
In particular, in the de Sitter–Planck background with infinite statistics and opportune
generalized uncertainty relations (29), which express the deformation of the geometry of
the bubbles at the Planck scale, led us to a unified expression for the generalized Compton
wavelength and event horizon size, given by (45), which implies the existence of a possible
link between the uncertainty principle on the scale of elementary particles and the regime
of black holes in macrophysics. We thus demonstrated how in this picture a subatomic
particle can be seen as a collective organization of the bubbles of the vacuum described
by the generalized Compton wavelength (45) and an intrinsic periodic phenomenon of
generalized Compton periodicity (48).

Moreover, by considering the Arnowitt–Deser–Misner mass (53) associated with the
generalized uncertainty relations (29), we arrived at a quantum-modified Schwarzschild
metric which is characterized by the horizon size (66) whose super-Planckian limit coincides
with the standard Schwarzschild radius, the trans-Planckian limit gives a minimum of order
lp and the sub-Planckian limit corresponds to the Compton wavelength. The quantum-
modified Schwarzschild metric allowed us to explore the thermodynamics of the black hole
solutions in these three limits, while, in the light of the horizon size (66), we found that
the change in both the black hole and cosmological horizon areas evolves proportionally

to |δΛ| =
∣∣∣Λ f − Λi

∣∣∣ times, a factor that depends on the properties of the de Sitter–Planck

background, where Λi and Λ f are the initial and final values of the cosmological constant
interpreted as a thermodynamic pressure.

Finally, we showed how our approach of sub-Planckian black holes in a de Sitter–
Planck background can shed new light on a unifying treatment of the Casimir effect and
cosmological wormholes finding that the small reduction observed in the static Casimir
energy value is generated by the collective behavior of the bubbles of the de Sitter–Planck
background, which induces a peculiar correction in the different regimes of mass.

The idea that space–time is generated by a non-local background now has a wide
citizenship in physics, in particular for a de Sitter background [78–82]. In his Aspects
of Symmetry [83] Sydney Coleman notes that when speaking about a non-perturbative
vacuum we cannot say anything because the values of the constants and the parameters
that regulate it could be completely different from those on which the physics we know is
based. In particular, in a non-local background there is no space–time and therefore we
have to ask ourselves some fundamental questions about the localizability of the bubbles.

On the one hand, there is the Planck limit which arises as an extreme limit of observ-
ability, on the other hand, using the Bekenstein limit (see Equation (5)), we characterized
the maximum amount of information that can be associated with a physical event, roughly
speaking on the chronon’s scale. A quick consideration about the range of known particle
masses suggests that each particle admits a discrete mass spectrum that is bounded from
below by a ground state with energy close to Planck’s mass, a recurring idea in theoretical
physics (see e.g., [84]).

The observation in ref. [17] that the higher angular momentum states adapt to the
Regge trajectories seems an indication of the existence in nature of “towers” similar to
that hypothesized by Majorana and found in condensed matter and photonics [85]. All
this naturally offers the suggestion that bubbles are characterized by a locality similar
to those of quasi-particle physics; hence, a semi-locality. In fact, the cells should not be
thought of as rigid and separate as in a Rubik’s cube, because the bubbles are entangled
with the others and therefore described by a type in Equation (1) and a wave function (2)
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and possibly connected with each other also in a non-local way with metric fluctuations as
in Equation (103). Locality in the ordinary sense occurs when the Higgs mechanism and the
statistical nature come into play over time, producing a wave function of the type (52). The
idea of an original semi-locality in a reticular cell structure leads back to the foundational
problems of QFT and to the idea that the locality is a notion derived from the emergence of
a physical event in space–time [86].

The third quantization was developed in the late 1980s to study the fluctuations of
space–time and proved to be a very powerful and clear framework describing the mul-
tiverse and various aspects of its conceptual constellations such as virtual black holes,
wormholes and baby universes. This developed from the Wheeler–De Witt Equation
(WDW), in which the time variable is not fixed a priori; the possible solutions are there-
fore incomputable [42]. The choice of the time variable thus implies the selection of an
evolutionary mechanism. The quantum jump represents the non-unitary aspect of the
interaction of the Standard Model that induces it (e.g., the electromagnetic interaction
between electron and photon in quantum jumps of atomic electrons) and consists of a
selection of the de Broglie phase in the “multiverse” of possibilities that have previously
existed, which is accompanied by the localization of the particle over time. The decoherence
is thus generated by the “common” interaction processes and in this context the possibil-
ity of geometrically describing the breakdown of unitarity through the exchange of an
intermediate micro-universe is considered.

The well-known approach of multiverse and particle-like universes was used here
by replacing gravitation with scalar fields, such as that of Higgs, which size the particle
micro-universe. The particle, in its “corpuscular” aspect, is seen as an event rather than
an object. In this sense, no ontological role of a classical type is assigned to the particle
micro-universe, unlike previous similar theoretical elaborations. The investigation into the
nature of the “collapse”, which remained among epistemological speculations for a long
time, thus blends naturally with particle physics to the point of suggesting a relationship
between the Higgs mechanism and localization.
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