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ABSTRACT

We numerically model evolution of magnetic fields inside a neutron star under the influence of ambipolar diffusion in the
weak-coupling mode in the one-fluid MHD approximation. Our simulations are 3D and performed in spherical coordinates. Our
model covers the neutron star core and includes crust where the magnetic field decay is due to Ohmic decay. We discover an
instability of poloidal magnetic field under the influence of ambipolar diffusion. This instability develops in the neutron star
core and grows on a time-scale of 0.2 dimensionless times, reaching saturation by 2 dimensionless times. The instability leads to
formation of azimuthal magnetic field with azimuthal wavenumber m = 14 (at the moment of saturation) which keeps merging
and reaches m = 4 by 16 dimensionless times. Over the course of our simulations (16 dimensionless times) the surface dipolar
magnetic field decays, reaching 20 per cent of its original value and keeps decaying. The decay time-scale for the total magnetic
energy is six dimensionless times. The ambipolar diffusion induces electric currents in the crust where these currents dissipate
efficiently. Strong electric currents in the crust lead to heating, which could correspond to luminosities of ~10%° erg s~! during
hundreds of Myrs for an initial magnetic field of 10'* G. Ambipolar diffusion leads to formation of small-scale magnetic fields
at the neutron star surface.
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1 INTRODUCTION

Neutron stars (NSs) are observed as vastly different astrophysical sources of transient and periodic nature which emit electromagnetic radiation
ranging from radio to y-rays. Isolated pulsars are best known for their periodic radio pulses (Lorimer & Kramer 2012); Anomalous X-ray
Pulsars and Soft Gamma Repeaters known as magnetars are mostly seen in X-rays and occasionally as transients in y-rays and radio (for
review see Kaspi & Beloborodov 2017). The X-ray Dim Isolated Neutron stars (XDINs; for review see Turolla 2009) and central compact
objects (CCOs; for review see Mayer & Becker 2021) emit thermal X-ray radiation only.

It was suggested by Harding (2013) that this observed diversity of NSs is explained by diversity of their magnetic field configurations
and evolution. In this framework, magnetars have the strongest poloidal fields with comparable strength crust-confined toroidal fields (see
e.g. Igoshev et al. 2021a). Central compact objects might have dipolar magnetic field suppressed by the fall-back (Shabaltas & Lai 2012;
Vigano & Pons 2012; Igoshev, Elfritz & Popov 2016) or alternatively only small-scale magnetic fields generated as a result of a stochastic
dynamo (Gourgouliatos, Hollerbach & Igoshev 2020; Igoshev et al. 2021c). Similarly, an interpretation of observational properties for XDINs
was suggested recently by De Grandis et al. (2021) in the framework of magneto-thermal evolution of NSs (Pons, Miralles & Geppert 2009).
Thus, theoretical and computational studies of magnetic field evolution inside NSs is of great importance to decode and put into context NS
observations. For a recent review of this problem (see Igoshev, Popov & Hollerbach 2021b).

NS magnetic field evolution is driven by Ohmic decay, Hall effect, ambipolar diffusion (Goldreich & Reisenegger 1992), and by effects
related to superconductivity in the NS core (Glampedakis, Andersson & Samuelsson 2011; Graber et al. 2015), see also recent work by
Wood & Graber (2022). The magnetic field evolution is coupled to the thermal evolution (Pons et al. 2009). Some of these effects are studied
reasonably well via analytical and numerical efforts. The magnetic field evolution driven by Ohmic decay and Hall effect in the NS crust
was studied extensively by different groups in two and three dimensions (Hollerbach & Riidiger 2002, 2004; Wareing & Hollerbach 2009,
2010; Gourgouliatos et al. 2013, 2020; Vigano et al. 2013; Gourgouliatos & Cumming 2014, 2015; Gourgouliatos, Wood & Hollerbach 2016;
Gourgouliatos & Hollerbach 2018; Igoshev et al. 2021a,c; Anzuini et al. 2022). Most of these efforts were nicely summarized in the recent
review by Pons & Vigano (2019).
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Ambipolar diffusion and superconductivity are less studied. Ambipolar diffusion could be one of the main drivers for evolution of
magnetars with internal fields as strong as 5 x 10'~10'3 G. Under the influence of ambipolar diffusion their magnetic field will evolve on
Myr time-scales. Alternatively, radio pulsars become recycled in low-mass X-ray binaries due to accretion from the secondary star. These
NSs become millisecond radio pulsars (MSPs). They are known for their significantly smaller magnetic fields, around 103-10° G (for review
see e.g. Bhattacharya & van den Heuvel 1991). These small magnetic fields might be related to the accretion process (Alpar et al. 1982) or
produced as a result of ambipolar diffusion (Cruces, Reisenegger & Tauris 2019).

Ambipolar diffusion is a dynamic process in the NS core which requires the presence of both charged (electrons and protons) and neutral
(neutrons) particles. Charged particle motion is mostly driven by electromagnetic fields while neutral particle motion is defined mostly by the
NS gravitational potential. Simultaneously, two nuclear reactions take place: (1) neutrons decay into protons and electrons, and (2) protons
and electrons merge into neutrons. Rates of these reactions differ for different depths inside the NS core.

In this research, we do not take into account effects of superfluidity and superconductivity. We plan to slowly increase the complexity of
our simulations, distinguishing effects related to each individual process. As opposed to the superfluidity and superconductivity in the NS core,
the ambipolar diffusion is theoretically understood reasonably well. Thus, meaningful 3D numerical simulations are possible. The addition of
superconductivity and superfluidity lead to contradictory conclusions. On the one hand, Elfritz et al. (2016) used the formalism developed by
Glampedakis et al. (2011) and found that dissipation and expulsion in the NS core are weak, and thus strong magnetic fields in the core should
survive for a long time. On the other hand, Dommes & Gusakov (2017) found that core magnetic field should be expelled on much shorter
time-scales due to buoyancy of proton vortices.

Studies of ambipolar diffusion were pioneered by Hoyos, Reisenegger & Valdivia (2008), who established a general multifluid formalism
and estimated relevant time-scales in one dimension. They also performed first numerical simulations in the non-linear regime. Later on,
Castillo, Reisenegger & Valdivia (2017) developed numerical simulations in spherical coordinates with axial symmetry, i.e. 2D simulations.
They adopted an approximation of motionless neutrons and considered the weak coupling mode. Castillo et al. (2017) found that on short
time-scales the density of charged particles is perturbed by the ambipolar diffusion velocity in such a way that they create a pressure gradient
which cancels the irrotational part of the magnetic force. Thus, the velocity field becomes solenoidal. This solenoidal velocity field drives
longer evolution which converges to an equilibrium state. In this equilibrium state, the toroidal magnetic field is confined to regions where the
poloidal magnetic field lines are closed (Castillo et al. 2017).

Later on, Passamonti et al. (2017) performed numerical simulations of ambipolar diffusion in two dimensions in the one-fluid
approximation. They studied short-term evolution when perturbations in number density of non-charged particles are formed as a response
to the Lorentz force affecting the charged particles. They studied formation of these regular perturbations and resulting ambipolar velocity
field as a function of NS core temperature. They found that in the weak coupling regime the chemical gradient partly cancels the Lorentz
force. It means that the velocity field becomes solenoidal-dominated below 4 x 10® K. Passamonti et al. (2017) found that typical speeds
of ambipolar diffusion are km Myr~! in the normal matter case and much faster, 10> km Myr~', in the superconducting case. In the case of
superconductivity/superfluidity, the suppression of the irrotational component occurs at higher temperatures below 9 x 10% K. Passamonti
et al. (2017) did not model the long-term evolution of magnetic fields nor the influence of neutron star crust.

Recently, Castillo, Reisenegger & Valdivia (2020) performed 2D simulations in the two-fluid approximation with inclusion of neutron
motion. In these simulations, they also found that magnetic field evolves toward the ‘Grad—Shafranov’ equilibria. The behaviour of ambipolar
diffusion in three dimensions is expected to differ from two dimensions because multiple instabilities are known for axisymmetric magnetic
fields in three dimensions (see e.g. Tayler 1973; Markey & Tayler 1973).

The aim of our article is to model ambipolar diffusion in the weak coupling mode in three dimensions to study if it leads to formation
of non-axisymmetric structures. Essentially, we want to check if in three dimensions the ambipolar diffusion leads to an equilibrium state as
it was found in axisymmetric simulations (Castillo et al. 2020), or alternatively leads to complete decay of magnetic field. We formulate a
set of equations mostly following works by Goldreich & Reisenegger (1992) and Passamonti et al. (2017). In comparison to that work we
assume a presence of weak magnetic field decay in the core caused by Ohmic losses, and we include the NS crust in our calculations. We solve
the magnetic induction equation and equation for deviation from the S-equilibrium in three dimensions in spherical coordinates using novel
spectral code Dedalus' (Lecoanet et al. 2019; Vasil et al. 2019; Burns et al. 2020).

2 MAGNETIC FIELD EVOLUTION

2.1 Key assumptions

A few different approaches were suggested to simplify the system of equations describing the ambipolar diffusion. The recent notable cases
include Castillo et al. (2020) and Passamonti et al. (2017). We mostly follow the prescription by Passamonti et al. (2017) with a few small
changes. Here, we summarize our key assumptions and show how they differ from the more recent equation set presented by Castillo et al.
(2020).

Similarly to Castillo et al. (2020), we aim at studying the evolution of sequential magnetohydrostatic quasi-equilibrium states. In each
of these states, all forces applied to a fluid element are close to balancing each other. Each of these states is reached within a few Alfvén

'https://dedalus-project.org
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time-scales i.e. within a few seconds of real time. The evolution of magnetic field proceeds on much longer time-scales, 10°-10'" yr. We
therefore do not follow the propagation of sound waves, gravity waves, or Alfvén waves.

Unlike Castillo et al. (2020), we neglect inertial terms in the continuity equation for particle densities. Moreover, we also neglect the
advective term (baryon velocity), i.e. we assume that total n,v, = —n,V,. Overall, we work in the one-fluid MHD limit similarly to Passamonti
etal. (2017). As noted by Castillo et al. (2020), this assumption might lead to underestimation of the time-scale for ambipolar diffusion. In this
work, we are more interested in relaxing the axial symmetry assumption which was made in all previous simulations on this topic. In future
work, we plan to add equations describing the independent motion of the neutral component.

2.2 Detailed derivation of equations
Following the derivations by Goldreich & Reisenegger (1992) and Passamonti et al. (2017), we begin with the Maxwell-Faraday equation:

B S (1
— — ¢ ,
ot

where B and E are the magnetic and electric fields, and c is the speed of light. In this work, we assume that electric field evolves only under
the influence of Ohmic decay and ambipolar diffusion (so keeping the first two terms in equation 6 of Passamonti et al. 2017):

A
E=>~——-v,xB, 2)
o ¢

where o is the electric conductivity, v, is the speed of protons, and j is the electric current density:

- N N c - -

Jj=en(v, —v.)=-—VxB, 3)
4

where e is elementary charge, and n. is the number density of charged particles. It is assumed that the number densities of protons and electrons
are equal n. = n. ~ n, due to the electroneutrality.
Combining equations (1), (2), and (3) we derive:

B G (L B) T By @
— =——Vx|—-Vx X X B).
ot 4 o v
Now, we replace B =V x A where 4 is the vector potential:
. 9A 2 - 1~ - - . O
Vx 2 o 9 (=T x (T xA) —|—VX[UPX(V><A)]. (5)
ot 47 o
Taking the ‘inverse curl’ of this then yields:
IA A - s o - -
— =——V X (VX A+ vgmp X (V x A). (6)
ot 4o

Here, similarly to Passamonti et al. (2017) we expand v, = Uy, + x,(Up — Un). In this expression, x, is the neutron fraction and v is the speed
of baryons. Further, we assume that baryon speed is negligible and thus we replace U, & x,(Up — Un) = Uymb-
The velocity of ambipolar diffusion is written the same way as Passamonti et al. (2017) (see Appendix A for more details):
.- . 1 miv
(V x B)x B—V(Ap) = — 22, )
Xa pn

4n,
where A is the deviation from the f-equilibrium, m is the effective proton mass, and 7y, is the relaxation time for collision between protons
and neutrons. We rewrite this equation using the vector potential:

2
> X5 Tpn
Vamb =

[{% % (V x A)} X (V x A) — drnV(Aw)] . 8)
drncm;

Equation (6) is written as
IA - - - X Ton  [= - - - - - - -
O (T x Ay T [v X (V x A) x (V x A) —4nch(Au)} X (V x A). ©)
ot Ao 4nncm;§
This is the first of two coupled equations. The second equation determines the deviation from the S-equilibrium. We derive this equation by
taking the divergence of equation (7). We provide more details in Appendix A. This equation is written as
s o - - m?
(VXB)XB)-V( L ) (10)

XncTpn

*

N B mpA - 1
VAW = 5 Au+ V-
4

nlcTpn

S B, 1
(V x B) x B) — Tl <—V(AM) +
¢ 4rn,

p
We simplify this equation by expanding brackets in the third term on the right side. We also assume that m is constant over the core and
Xnl1cTpy Only varies in the radial direction. In this case, the equation is written as

*

%2(AM)= mp)x Au+§~ ! (%xé)xé —@({ﬁxé}xé)i ! + X, 7, naA—Mi ! (11)
2n.T dmn 4 dr \ xpn.t TIPS dr \ xanet, ’
nftclpn c nflctpn nflctpn
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Table 1. Value of numerical coefficients involved in the problem. Top part of the table is for fixed coefficients and constants while the

bottom part contains derived coefficients.

Fixed values

Symbol Eq. Meaning Fixed value Units

By Magnetic field strength 1.00 x 10 G=g"cm 25!

To Core temperature 1.00 x 108 K

Rxs NS radius 1.26 x 10° cm

Reore/RNs Fraction of core to total NS radius 0.925 Dimensionless

to Timescale to make equations dimensionless 10.00 Myr

ml’; Effective proton mass 1.25 x 107 g

K Relative conductivity of the core 5.00 x 1073 Dimensionless

terust Timescale of Ohmic decay in the crust 30.00 Myr

po = p(0) Central NS density 7.64 x 10 g cm™3

n‘c) =n¢(0) Number density of charged particles in NS centre 3.30 x 107 cm™?

Pl Typical NS density 2.8 x 101 gcm™3

Intermediate and diagnostic values

rgn 16 Relaxation time for collisions 297 x 10777 S

Ao 19 mUrca reaction rates 9.76 x 10?7 erg” ! em 357!

L0 22 Chemical potential 1.38 x 1078 erg

tamb 20 Timescale of ambipolar diffusion 87.61 Myr

Vamb, 0 21 Speed of ambipolar diffusion 0.14 km Myr~!

oo 27 Electrical conductivity for 7o 1.43 x 1022 s~

€ 60 Volumetric energy release rate 2.52 x 1012 ergem™3 57!

€0 62 Thermal luminosity 5 x 103 erg s~ !
Dimensionless numerical coefficients of partial differential equations

Am 26 0.11 Dimensionless

K 23 573.0 Dimensionless

d; 33 1.97 x 107 Dimensionless

2.3 Neutron star physics

To construct an NS model, we solve numerically the Tolman—Oppenheimer—Volkoff equation (Oppenheimer & Volkoff 1939) using numerical
fits to the equation of state developed by Pearson et al. (2018). We use the BSk24 equation from a FORTRAN module.? In our calculations,
we assume the central pressure of 10*° dyn cm™2, which corresponds to an NS with total mass of 1.46 M, radius Rys = 12.56 km, and crust
depth 2 = 0.95 km. Thus the core—crust transition occurs at radial distance 0.925 Rys.

The number density n. of charged particles is computed as

ne = Yexy, (12)
where Y. is the fraction of electrons and x;, is the baryon number density. The neutron fraction x, is computed as
Xy =1-=2(Yc+ Yy, (13)

where Y, is the fraction of muons. We subtract two times the electron fraction to remove the proton fraction. We compute relaxation times 7p,
and 7., using equations provided by Yakovlev & Shalybkov (1990):

1 o\
L08R (J) s, (14)
Tep P
where p; = 2.8 x 10! g cm™>. A similar equation is used to compute the Tpn:

1/3
L srxom (ﬂ) s (15)
Tpn P

We compute the numerical value in Table 1 as

13
0 =213 x 10797, (%) s. (16)
1

Zhttp://www.ioffe.ru/astro/NSG/BSk/index.html
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Figure 1. Left-hand panel: 7p, as a function of temperature. The temperature axis is reversed to highlight the fact that NS cools down with time and so moves
from left to right. Right-hand panel: profile of number density of charged particles n. and its inverse in the NS core. Dashed black line shows the crust—core
boundary.

The electrical conductivity of the core is computed as

2
e Nn.T,
o= (17)
my

where the effective electron mass is computed as m* = m+/1 + x2, where x, is the ratio between the Fermi momentum and the rest mass
of the electron m.. We obtain x. from the same FORTRAN code bskfit18. f. For the effective proton mass, we assume m; = 0.75m,
throughout the entire NS.

We use the following formalism to describe the change in reaction rate as a function of the deviation from the chemical equilibrium. We
introduce A which is the change of reaction rate depending on deviation from chemical equilibrium A = (dI'/dAu)|.q. We use the equation for
the A factor by Sawyer (1989) similarly to Passamonti et al. (2017):

23 2/3
A=5x 107 T (£> erg” em 7 57! = A (ﬁ) , (18)
L1 L0

where A is computed as

2/3
ro=25x 10 T96 <@> erg”! em 3 sl (19)
L1

2.4 Time-scale and dimensionless version of the equations
The natural time-scale to consider in this problem is given by (Goldreich & Reisenegger 1992)

* P2
Ros drnemy Ry

(20)

Tamb = =
<Uamb) rpn B 2

In order to estimate this time-scale for some typical values we have to fix temperature (tp, is very sensitive to temperature, see Fig. 1) and
magnetic field strength. For typical parameters summarized in Table 1 we obtain #,m, =~ 90 Myr. To simulate magnetars we thus introduce
dimensionless time ¢ = #/t, where fy = 107 yr. It is worth noting that we estimate f,,,;, for the core centre, while for more external regions this
time-scale is significantly shorter due to decreasing n., see Fig. 1. During the first 10 Kyr of magnetar evolution the time-scale of ambipolar
diffusion is large because 7, is very small due to high interior temperature. For normal radio pulsars with magnetic field B ~ 5 x 10'> G, the
time-scale for ambipolar diffusion is #,,, & 32 Gyr.

We write the equations in dimensionless form beginning with equation (8). The ambipolar velocity Uy is one of the key diagnostic
variables which shows how ambipolar diffusion proceeds. In axisymmetric simulations, Castillo et al. (2020) it was found that Uy, decreases
by many orders of magnitude at 7., because the configurations approach an equilibrium. To write equation (8) in dimensionless form, we
introduce three auxiliary variables:

0 p2
tpnBO
= —, 21
Vamb,0 47Tn(c)m;RNS ( )
wo = kpTo, (22)
4 0
K = JTHone (23)

B
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Figure 2. Left-hand panel: radial profile of numerical coefficient determining the speed of ambipolar diffusion. Right-hand panel: radial profile for relative
conductivity x (solid blue line) and additional conductivity s (dashed red line). Dashed black line shows the crust—core boundary.

Thus equation (8) becomes:

- a1 = o= - = -
Bans = vamn0 2 [{ 95 (VA x (¥ x &) = KneV(aw)] 24)
ne
The current dimension of this quantity is cm s~!, but for convenience it could also be computed in km Myr~' as in Table 1. Truly dimensionless
velocity is:

ty

v = Ua\mb,OTm- (25)

At the next stage, we consider equation (9). The dimensionless version of this equation will contain:
0, p2
I’pnlo BO to

= Vamb,0 5> (20)

Am = o o R
4 ndm* Rys Rns

i.e. our new dimensionless coefficient has meaning of dimensionless velocity of ambipolar diffusion. If we assume that our 7y corresponds to
some fictional conductivity o via:

4oy R

to = M 27)
¢
we can also simplify the first term on the right side of equation (9) by introducing a coefficient with profile:
00
x(r)=—. (28)
o(r)
Using these variables, we rewrite equation (9) as
dA - - = X2 Ton [ - = - - - - =
S = =XV X (V x A) + Am T HV X (V x A)} X (V x A) — Kch(AM)] % (V x A). 29)
ne

We also take into account that Ay = RnsBy. In order to solve this equation with a spectral method we further split it into linear (left side) and

non-linear (right side) parts:

sV x (T x D) = )V X (Vx A) + Am T [{v X (V x A)} X (V x A) — KnCV(AM)} X (V x A), (30)
C

where s is a constant dimensionless conductivity chosen at level 5 x 1073, This level is well below the conductivity of the crust but still

above the conductivity of the core for temperature 79 = 0.2. We show the comparison of these conductivities in Fig. 2 (right-hand panel). For

the conductivity of the crust, we limit it at a value which corresponds to an Ohmic decay timescale of f.us = 3 x 107 yr, using lower limit
following the analysis by Igoshev (2019):

2
Clerust

—. 31
47TRNS ( )

Ocrust =

In the same Fig. 2, we show the radial profile of the coefficient x> Tpn/n which determines the variation of the ambipolar diffusion speed over
the NS core.
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Figure 3. Dependence of d; on NS core temperature. The temperature axis is reversed to highlight the fact that NS cools down with time and thus moves from
left to right.

In the second equation, we make the following replacements:
(%x(%xg))x(%xﬁ)

ne

dAl
b

3 (32)

- 1 - 1 - 5 o >
VA(Ap) — di&i (A = ral ( > ~ 2BV X (VX A) X (V x A))- P+ &4(r)

The numerical coefficient d; is necessary to make the equation dimensionless, while &;(r), £3(r), and £4(r) are radial profiles within the NS
core. The coefficient d; is computed as the following:
m* o R?
dy = 2T (33)
ndty,

We show the dependence of d; on core temperature in Fig. 3. The radial profiles are given as

A
f1=—5—. (34)
X2In Tpn
9 1
=XaTo— | ——— | » 35
§3=n or (xnrpnnc) (33)
9 1
&4 = XgTpalle — . (36)
Or \ XnTpalie
In this second equation, we assumed that x, T p,n. varies only along the radial direction.
In comparison to work by Passamonti et al. (2017) our coefficients translate to theirs as
Rns
= , (37)
Vi
R
b=-5 (38)
&4
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Figure 4. Profile of numerical coefficients &; (left-hand panel) and &3, &4 (right-hand panel). In the right-hand panel, we show the physical &3, &4 (solid blue
and orange lines) and the value r¢,; = 2 at which we restrict our numerical profiles (horizontal red dotted line). Vertical dashed black line shows the crust—core
boundary.

We show the radial profile for coefficients &, §3, and &4 in Fig. 4. We set the values of the £ and &4 coefficients in the crust to be zero. It
is not essential if Ap # 0 in the crust because we set the value of n. (see Fig. 1) to zero in the crust, so ambipolar diffusion does not proceed
there. The values of £3 and &4 change over a few orders of magnitude in the core. To avoid numerical difficulties for these realistic values of
&5 and &4, we introduce a parameter 7, which determines the maximum value which &3 and &4 can reach within the core. We provide more
details about this r, parameter in Appendix B.

2.5 Strong and weak couplings

Because the value of d; is very sensitive to the NS core temperature, the behaviour of equation (32) changes when the NS cools down. Two
different asymptotic cases are called strong coupling (79 ~ 1 and d; > 1/K) and weak coupling (79 ~ 0 and d; ~ 1/K).
In the strong coupling regime (T > 5 x 10 K) the equation (32) transforms into:

Ap ~ 0.0, (39)

because all coefficients in the original equation are dwarfed in comparison to d; ~ 10°. Therefore, the material is in -equilibrium. Alternatively,
in a weak coupling regime the coefficient d; becomes comparable or smaller than the remaining terms in this equation.

2.6 Complete system of equations and boundary conditions

Overall, our system of equations includes also the Coulomb gauge V - A=0:

S = sVA VO = (VA + Amn e HV % (V x A)} X (V x A) — Kch(AM)] % (V x A), (40)
ne
V.A=0, 1)
a A 1~ [((Vx(VxA)x(VxA) 1 . L
VA(AR) — &(r) R di§(nAp=—V- < — =&V x (Vx A) x (V x A))-F, (42)
ar K ne K
where @ is the scalar potential.
The vector potential A is subject to the potential boundary condition:
A, 1+1-
A A =, 43)
ar r r=Reore

where [ is the spherical harmonic degree. For the deviation from the S-equilibrium we use the same boundary condition as Passamonti et al.
(2017):

dAl
ar

This boundary condition means that v,,, = 0 at the crust-core boundary, see equation (24).

Kn.

:(%x(%xA))x(%xA).f . (44)

r=Rcore
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Table 2. Summary of the setup for numerical simulations. Lax
and M,y indicate the maximum spherical harmonic degree and
order; Nmax denotes the number of Jacobi polynomials in the radial

direction.

Name Lmux M, max N max At

A 32 64 24 2x 107
B 64 128 64 1076
C 64 128 128 2x 1077
D 256 512 128 2x 1077

2.6.1 Solution procedure

We solved the coupled partial differential equations (40)—(42) using the publicly available spectral code Dedalus v.3 (Lecoanet et al. 2019;
Vasil et al. 2019; Burns et al. 2020) in spherical coordinates. This code expands the solution using a combination of spherical harmonics for
angular directions and Jacobi polynomials for the radial direction. We propagate the simulation in time using the second-order implicit—explicit
Runge—Kutta integrator (Ascher, Ruuth & Spiteri 1997). We rewrite the system of differential equations (40)—(42) to satisfy requirements of
the Dedalus code as the following:

A 2
% _SV2A 4 VD + TP(A) = x(r)V2A + Am T [{% x (V x A’)} X (V x A) — Knﬁ(AM)] X (V x A), (45)
ne
VoAt =0, (46)
o2 A | (%x(%xg))x(%xg) 1 > 5 o 5 s
VA(ApR) —&4(r) o disi(NAp +TP(Ap) + 70 = ral - - ?gg(r)((v x (V x A) x (V x A)) - 7.

(47)

We introduced so-called tau-terms: T P(A) and T P(Aw) in order to apply the generalized tau-method. These terms allow additional degrees of
freedom, so the problem can be solved exactly over polynomials when the boundary conditions are introduced as additional equations in the
system. There are two terms 74 and 7, which are the same at every point in the grid. These are introduced to deal with uncertainty of the
type A = A + C where C is a constant. This uncertainty appears also for Ax when d; is very small i.e. in the weak-coupling case. Because
we introduced these two additional degrees of freedom not covered by the current set of equations and boundary conditions we add two more

equations:
/ ®dV =0, (48)
/ ApdV = 0. (49)

We store the results of simulations after every few thousand time-steps.

We run 3D simulations using spherical harmonics with different resolutions. We summarize the resolutions in Table 2. The lowest
resolution is mostly used for testing purposes. The radial resolution is not uniform and grows toward the surface. In the setup B, the crust
is covered with 15 collocation points in radial direction while the distance between consecutive collocation points near the NS centre is
0.024 Rys. The centre itself is not included as one of the radial grid points, since the coordinate singularity there would require it to be treated
somewhat differently. The equatorial and meridional sections presented below therefore have a small empty circle at the centre. Depending on
the strength of the magnetic field and the numerical resolution, the time-step is adjusted to ensure stability.

2.7 Initial conditions

For the initial magnetic field configuration we transform the analytical configuration by Akgiin et al. (2013) to vector potential form:

Ar = bt,

Ayg = 0, (50)
Ay = LD 5sino,

where

fy = B 2 15 1)
X)= —X — —X —X .
8 4 8

The exact form of b, together with derivations can be found in Appendix C. We add a Gaussian noise with amplitude of 107 to all components
of A. We are then in a position to study the stability of axisymmetric configurations to non-axisymmetric disturbances.
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Figure 5. Left-hand panel: deviation from the chemical equilibrium. Right-hand panel: speed of ambipolar diffusion. These values are computed at the beginning
of the simulation for 79 = 0.1.

3 RESULTS

In order to check if our code works correctly we compute the deviation from the chemical equilibrium and the speed of ambipolar diffusion for
arange of temperatures studied by Passamonti et al. (2017). We show the results of a short simulation with 79 = 0.1 in Fig. 5. The velocity field
is purely solenoidal. Our equation for the deviation from chemical equilibrium guarantees that the system relaxed to the magneto-hydrostatic
quasi-equilibrium state at every time-step.

We make a few more verification runs. The goal of these runs is to check if the code correctly reproduces the previous results found in
2D simulations by Passamonti et al. (2017) and if our resolution is adequate to follow the long-term evolution of magnetic field. More details
can be found in Appendix B. The main conclusions of these technical investigations are as follows: (1) we reproduce the results of Passamonti
et al. (2017) with the exception of precise Au amplitudes, (2) our numerical resolutions presented in Table 2 are enough to resolve physics
with rey = 2, and (3) the exact choice of parameter r, does not seem to affect the development of the azimuthal field. It is worth noting
important differences between our work and Passamonti et al. (2017): (1) our model includes the crust with finite conductivity, thus boundary
conditions for magnetic field are written at the top of crust and not at the crust—core interface as was done by previous authors, (2) in our work
we propagate the evolution of magnetic field in time while Passamonti et al. (2017) only solved for A for different fixed temperatures.

We present our results in the following order. We start with discussing the basic physical variables such as speed of ambipolar diffusion,
magnetic energy, azimuthal magnetic field, and electric currents. At this stage, we identify a development of non-axisymmetric instability.
We characterize properties of this instability in Section 3.2. Further, we summarize the astrophysical implications in Section 3.3. Our basic
run is computed with resolution B for 40 Myr and is numerically expensive. To cover the long-term behaviour, we also run simulations with
resolution A for 160 Myr.

3.1 Basic physical variables

In this section, we describe how basic quantities evolve. We compute the speed of ambipolar diffusion using equation (24). In order to be more
quantitative while characterizing the evolution of ambipolar velocity we introduce the mean ambipolar speed (v,mp)-

3.1.1 Speed of ambipolar diffusion

We plot the ambipolar diffusion velocities for temperature Ty = 0.1 in Fig. 5. The maximum velocities reached within the NS are ~0.5 km Myr~".

These velocities are a few times larger than the value we initially estimated in Table 1. The reason for this is a mismatch between our By =
10" G in Table 1 and the maximum magnetic field reached within the NS core, which is By & 8 X 10" G. Since vamp depends on magnetic
field strength as B2, our velocities could be ~64 times faster. This motion is partially cancelled by deviation from the chemical equilibrium.
That is why maximum velocities are not 26 km Myr~! but much slower. It also means that the time-scale of ambipolar diffusion is ~5 times
shorter, i.e. fymp ~ 17 Myr, or 22 in dimensionless time.

Here, we introduce a mean speed of ambipolar diffusion as

1
(Vams) = 7 / [Vamb|d? V/, (52)

where |vymp| 1s the amplitude of the velocity vector and V is the total NS volume including the crust. There is a small caveat related to this
definition. The speed of ambipolar diffusion in the crust is zero; our mean is thus slightly less in comparison to that we would obtain if we only
integrated over the NS core. The mean speed of ambipolar diffusion initially decays with time, see Fig. 6. This speed starts growing again after
~10 Myr, which corresponds to development of an instability. The initial decrease of ambipolar velocity is related to the decay of magnetic
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Figure 6. Left-hand panel: evolution of mean ambipolar velocity inside the neutron star. Right-hand panel: evolution of maximum azimuthal electric current
in NS crust between radial distance of 0.924 Rys and 0.955 Rys. In both panels, we show simulations with r¢, = 2. Solid lines correspond to simulations with
resolution B while dashed lines correspond to similar calculations with resolution A.

fields generated due to the noise added to the simulations. The mean speed reaches its maximum around 20 Myr, i.e. on the time-scale of
ambipolar diffusion.

We show the extended evolution of ambipolar velocity in Fig. 7. Around dimensionless time 1, north—south symmetry is broken. The
velocity field in the Northern hemisphere behaves differently than the velocity field in the Southern hemisphere. After dimensionless time 2,
the axial symmetry is broken, i.e. the velocity field in the right part of the figure does not look the same as the velocity field in the left part of
the same figure.

3.1.2 Magnetic energy

We compute the total magnetic energy in our simulations as
1 L N2
E,:E/(VXA) $V. (53)

It decays slowly during the simulations, see Fig. 8. In the shorter simulations the energy seems to decay nearly linearly with time. During the
first 35 Myr half of the total magnetic energy is released from the system. This decay rate is surprising since the Ohmic decay time-scale in the
core is chosen to be fixed at 6 Gyr. This decay time-scale is comparable with the time-scale of ambipolar diffusion (220 Myr) and the Ohmic
time-scale in the crust (30 Myr). We can estimate the time-scale for energy decay in high-resolution simulations using the exponential model
as

t
" log E,(t) — log E,(0)

In our first attempt to model the non-axisymmetric evolution of magnetic fields, we add random values to all components of the initial vector

~ 50 Myr. (54)

ldecay =

potential A with amplitude of 107> in dimensionless units. We further check how these perturbations evolve, tracking the non-axisymmetric
part of the total magnetic energy. In order to compute this quantity, we compute first the axisymmetric part of the magnetic energy by averaging
the field over the ¢-coordinate:

>

1 2 N

Bui = 7/ B(r, 0, ¢)d¢. (55)
7 Jo

Then we find the energy as

Eosi :n/éz.dzv. (56)

axi
The non-axisymmetric part of magnetic energy is then:
Enon = E; — Eui. (57)

We plot the evolution of E,, in Fig. 8. We notice that until r = 2 Myr it decays much faster than the total magnetic energy, so initially the
field becomes more axisymmetric. However, once the random initial conditions have adjusted themselves, after 2 Myr the non-axisymmetric
part of the energy grows, reaching values of 0.3, several orders of magnitude greater than the initial perturbations. That is, the large-scale
axisymmetric field is unstable to the presence of the small-scale non-axisymmetric noise that was added. The non-axisymmetric magnetic
energy peaks around time 2.7, and thereafter decays slower than the total magnetic energy. This means that the instability continues to operate,
and a fraction of non-axisymmetric energy is constantly regenerated from the large-scale axisymmetric field.
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Figure 7. The left column shows the electric current jg, and the right column the speed of ambipolar diffusion vamp, computed for resolution B and rey = 2.
From top to bottom the four rows are at times r = 0.02, 0.96, 1.73, and 3.14.
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Figure 8. Left-hand panel: evolution of total magnetic energy E;. Right-hand panel: evolution of non-axisymmetric part E,. On both panels, we show simulations
with r¢y = 2. Solid lines correspond to simulations with resolution B while dashed lines correspond to similar calculations with resolution A.

3.1.3 Azimuthal magnetic field

The evolution of the non-axisymmetric part of the energy is easy to track if we examine the B, component of the field, which roughly
corresponds to toroidal magnetic field because our initial conditions are nearly axisymmetric, see Fig. 9. In our initial conditions, we have very
limited B, caused by the random perturbations of A, and A, because we assume regular magnetic field only for Ay. During the simulations
these perturbations merge, forming complicated semiregular large-scale structures inside the NS core. Initially, these structures are elongated
along the magnetic field lines with width 300-600 m and length comparable to Rys.

Over time these elongated structures decay and merge, forming much larger regions with regular By,. After a few million years the strength
of magnetic fields in these structures starts growing, reaching values of 3 x 10'> G. When we examine the equatorial cut we observe that B
reaches positive and negative values 14 times, that is, the azimuthal wavenumber m = 14. This is well within our numerical resolution (recall
Table 2), so we believe that these structures correspond to true physical instabilities rather than numerical ones. We further test issues related
to resolution and the influence of ., in Appendix B.

The long calculations (above 35 Myr) with resolution B are numerically challenging. Nevertheless, we are still interested in later stages
of this simulations, so we revert back to resolution A for extended calculations. We show some results of these calculations in Fig. 10. In these
simulations the structure of magnetic field stays quite similar to more detailed simulations; compare the last panel of Fig. 9 with the first panel
of Fig. 10. On longer time-scales the fine structures of By continue merging so by 100 Myr the m = 4 mode becomes dominant.

3.1.4 Electric currents

Among other quantities we track the evolution of electric current. In our simulation setup electric currents in the crust are expected to decay
on a 30 Myr time-scale. Soon after we start the simulations, we see the formation of electric current near the core-crust boundary, see Fig. 7.
In our simulations this current is localized between the crust—core boundary (0.924Rys) and radial distance ~0.955Rys in the region where
the resistivity grows rapidly (see Fig. 2). In this region, resistivity still does not reach its maximum. Some electric current also flows through
the outer crust where the resistivity is fixed. We resolve the current above the crust-core boundary relatively well since this region is covered
with 4 collocation points in numerical simulations with resolution B and with 8 collocation points in simulations with resolution D. In both
these simulations the radial extent of the current is the same, confirming that this current sheet is adequately resolved.

Under the influence of ambipolar diffusion the electric currents in the core start evolving, forming arcs reaching from the core—crust
boundary to distances R = 0.3-0.5 Rys inside the NS, see Fig. 7. The electric current in the crust evolves as well, see Fig. 6. In this figure, we
show the time evolution of maximum j, between radial distance 0.924 Rys and 0.955 Rns. Ambipolar diffusion induces strong electric current
in the NS crust after 15 Myr. The current reaches a maximum around 20 Myr and decays nearly exponentially after this. This current decays on
approximately twice the Ohmic time-scale (60-70 Myr) of the crust, leading to global decay of magnetic energy on a time-scale comparable
to the Ohmic time-scale in the crust. At later stages (¢ > 1.5) most of the crust current concentrates between w/4 < 6 < 3m/4, see Fig. 7. At
advanced stages of evolution the arcs of electric current separate regions with fast ambipolar diffusion speed (vamy, > 0.1 km Myr~!) from
regions with slow ambipolar diffusion speed.

3.2 Instability of poloidal magnetic field

As we noted in previous sections the non-axisymmetric part of total magnetic energy begins growth at 2-3 Myr and reaches maximum around
21 Myr, see Fig. 8. Simultaneously, the speed of ambipolar diffusion starts growing and reaches maximum around the same time. We also

MNRAS 518, 821-846 (2023)

2202 1aquieoa(] Z| Uo Jasn AST( uojodyouAg usuoipe|g sayosineq Aq Z0zZ08.29/1.28/1/8 1 G/ejonie/seluw/woo dnooiwspese//:sdny woll papeojumoq


art/stac3126_f8.eps

834  A. P. Igoshev and R. Hollerbach

By x10-3 By x1073

1.00 4
4 4
0.75 1
0.501
2 2
0.251
0 0.00 1 0
-0.251
-2 —0.50 1 -2
-0.751
-4 -4
-1.00{,

x1074 x10~4

1.00
4 0.751 4
050
2 2
0.251
0 0
0.00
-2 -0.251 -2
—4 —0.50 4 —4
~0.751
-6 -6
~1.001

By x1071 By x1071

1.00 |
3 0.75 3
2 0.50 2
1 0.25 1
0 0.00 4 0
. ~0.251 .
= ~0.50 1 .
—0.75 1
-3 -3
-1.00,

By x107! By x10-1

4 1.00 4
3 0.75 3
2 0.50 2
1 0.25 1
0 0.00 0
1 -0.25 1
5 —-0.501 5
3 -0.75 1 3
—1.001 .

Figure 9. Evolution of By with time. The left column shows meridional cuts through the NS while the right column shows equatorial cuts. The resolution is B,
and r¢y = 2. From top to bottom the four rows are r = 0.02, 0.18, 1.74, and 3.54.
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Figure 10. Evolution of By with time. The left column shows meridional cuts through the NS while the right column shows equatorial cuts. The resolution is

A, and reye = 2. The top row is r = 3.52 and the bottom row ¢ = 10.08.
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Figure 11. Growth of selected coefficients of the magnetic field with time; /, m correspond to spherical harmonic degree and order, while r corresponds to
degree of Jacobi polynomial. In the left-hand panel, we show the result of calculations with resolution B and in the right-hand panel we show the truncated
results computed with resolution A.

noted that azimuthal magnetic field with m ~ 14 start emerging from the initial fluctuations. The azimuthal number m = 14 is seen as the
number of regions with negative values of By in the equatorial cut in Fig. 9.

In order to investigate growth of azimuthal magnetic field in more detail, we identify the coefficients of the spectral expansion with
the largest absolute value at age 15 Myr. From this selection we exclude the coefficients corresponding to the initial condition. We plot the
evolution of this identified cluster of harmonics in Fig. 11 for numerical resolutions A and B. The contribution of these harmonics to the
solution increases from 107 (roughly the level of noise perturbations added to the simulations) to (2 — 3) x 10~ when these harmonics
start affecting the ambipolar velocity field. Although the resolution A is only half of the resolution B, we see the growth of exactly the same
harmonics during the first 15 Myr. The behaviour after the saturation is different, which means that after the saturation harmonics with number
[ > 32 start contributing to the evolution.
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Figure 12. A meridional cut showing the By component of magnetic field at 29 Myr, computed with resolution B. Colour shows the strength of By, while black
solid lines correspond to field lines for B, and By components.

The growth of well-resolved spectrally localized structures is an indication of instability. We have thus shown that an initial axisymmetric
poloidal magnetic field is unstable under effects of ambipolar diffusion in three dimensions, giving rise to non-axisymmetric structures. Using
Fig. 11, we conclude that the growth rate of this instability is &2 Myr or 0.2 in dimensionless units. The instability is saturated around
15-20 Myr when the selected harmonics reach maximum value.

This instability is intrinsically 3D and was not seen before in 1D and 2D simulations. Earlier on, Castillo et al. (2017) found a formation
of toroidal magnetic field in 2D, axisymmetric simulations. Our azimuthal field might be related to that one but has a complicated structure in
the azimuthal direction. Castillo et al. (2017) found that their newly generated toroidal magnetic field is bounded within the closed magnetic
field lines of poloidal magnetic field. It is not the case in our simulations. In Fig. 12, we see that B is generated also in regions of open field
lines. This difference might be related to the following factors: (1) our simulations are not axisymmetric, (2) our By is therefore also not a
purely toroidal magnetic field, and (3) we added a crust with finite conductivity in our simulations.

We show evolution of magnetic energy computed in our low-resolution simulations (A resolution) in Fig. 8. The total magnetic energy
decay is quite similar to that computed in high-resolution simulations (B resolution). There are some small differences around 20 Myr which
might be related to a slight delay in development of non-axisymmetric magnetic field. On longer time-scales it becomes apparent that magnetic
energy decay is exponential with time-scale of ~60 Myr, i.e. ~3 ambipolar diffusion time-scales estimated using velocities derived from the
numerical solution. The energy decays in our simulations much faster and much stronger than it was found in axisymmetric simulations by
Castillo et al. (2017). We do not see any indications that magnetic energy stops decaying after some time. We could speculate that magnetic
energy decay might slow down when total magnetic energy becomes comparable (i.e. 2-3 times stronger) to the non-axisymmetric part of the
energy. It will require a decay of one order of magnitude more, i.e. on a time-scale of another 150 Myr.

3.3 Astrophysical implications

In this section, we summarize the results of our simulations which could be probed in astronomical observations. These are the structure and
evolution of surface magnetic field, surface temperature, and crust failure.
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Figure 13. Left-hand panel: energy release in the NS crust rate due to the Ohmic decay at 23 Myr for ro, = 2 at depth R = 0.95 Rys. Right-hand panel:
luminosity as a function of time.

3.3.1 Deep crustal heating

The presence of electric currents in the crust lead to its heating. We can estimate the rate of this heating as follows (see e.g. De Grandis et al.
2020, Igoshev et al. 2021a):

1 L .12
€= — [L(V X B)] erg em™ sl (58)
4

In our dimensionless system the energy release rate is:

- IR
e =1 [V x (@ x A" (59)
We show this dimensionless quantity in Fig. 13. Most of the energy is released in the deep NS crust around R = 0.95 Rys. To convert the
dimensionless energy release into cgs units, we use the conversion factor:

2p2
c*Bj

€Ehn = ——F—F——
0 2 p2 ’
167 RNSJO

(60)

which is the volumetric energy release rate. Thus each cm? in the deep crust releases up to ~10'% erg s~!, see Table 1. If we numerically
integrate this energy release over the whole NS we obtain:

- . -2
¢ = /X(r) [V X (V x A)] av. 61)
To convert this value into cgs we use the value:

€0 = Rigel. (62)

We plot the evolution of the energy release rate in Fig. 13. During the first 10 Myr the energy release rate stays at the level of ~10?° erg s~

Since energy is released in the deep crust, a part of this energy could be emitted as neutrino radiation and cannot be detected. If a significant
fraction of this energy reaches the NS surface it allows the NS to stay relatively hot with surface temperature given by

1/4

L S

T=(—+—) ~I0°K (63)
47TRNS(J'B

The energy release starts growing after 1 Myr when the instability started developing. The heat release reaches its maximum around 20-25 Myr
when the instability reaches its saturation.

Spatially, the energy release concentrates towards the magnetic equator where the crust thermal conductivity is limited. Further simulations
of magneto-thermal evolution are required to understand what the surface map could look like. In any case the heat is not concentrated toward
small-scale structures but instead forms a wide belt around the equator. This thermal emission might thus be detected as the bulk NS emission.
It is known that some older NSs have bulk temperatures comparable to 10° K (see e.g. Mignani, Pavlov & Kargaltsev 2008; Pavlov et al. 2009).

The magnetic energy decays and this energy is released from the system in the form of the deep crust heating which evolves with age.
The energy release pattern in the deep crust also has azimuthal angular structure with m = 14; that is, it is the same as the current structure.
Thus, this pattern evolves with time and by 160 Myr simplifies to m = 4.
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Figure 14. Evolution of surface magnetic field strength as a function of time.
3.3.2 Structure and evolution of surface magnetic field

We show the evolution of magnetic field strength at the equator and pole in Fig. 14. While the surface field at the pole decays with the same
rate, the field at the equator is affected by the growth of the small-scale field. Its decay thus proceeds with different rates. Overall, the decay of
magnetic field proceeds on a time-scale of 2120 Myr, i.e. on twice the time-scale for decay of magnetic energy (E o< B2), and on the time-scale
of six ambipolar diffusion time-scales estimated based on numerical velocity. We see no indications that magnetic field decay stops. It is
possible to extrapolate that in our particular setup we could suggest that a magnetar-strength field decays to values of 10% G on a time-scale of
1.1 Gyr under the influence of ambipolar diffusion.

Small-scale magnetic field with m = 14 emerges to the NS surface on a time-scale of 2 Myr. This structure is most noticeable in the
By component, which was absent in our initial conditions. In Fig. 15 we show B, and B, components of magnetic field. This component has
filaments stretching in the north—-south direction. The B, component has a clearer m = 14 structure. The surface pattern evolves and forms
m = 4 by 160 Myr. As is clear from the plots, the dipolar component stays dominant even at these long time-scales, although the degree of
dominance falls from 15 times to 4 times.

Unexpected small-scale magnetic fields were discovered in millisecond radio pulsars (see e.g. Bilous et al. 2019). Our results indicate
that ambipolar diffusion could give rise to higher order multipoles in old neutron stars.

3.3.3 Crust failure

The electric current formed as a result of ambipolar diffusion could lead to crust failure. To check if it is the case we compute the elastic strain
tensor & following the prescription of (Lander et al. 2015; Gourgouliatos, De Grandis & Igoshev 2022):

B 3 3 S o
Eaijatf = \/3233 + 534 + EBg — 4(B - By)?, (64)

3w [Mshear

where we used the Einstein summation rule, and g i the shear modulus of the NS crust, assumed to be 103 dyn cm™? (Ruderman
1969). More modern estimates for the shear modulus close to the core—crust boundary are 1.8 x 10°° dyn cm~? (Hoffman & Heyl 2012). In
equation (64), By stands for the initial magnetic field configuration when the crust froze. The magnetic field B is the instantaneous magnetic
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Figure 15. Surface magnetic field for r¢, = 2 at dimensionless time 21 Myr (top row) and at 161 Myr (bottom row).

field. The NS crust fails according to the von Mises criterion (Mises 1913) when:

1 .
HEGUU” > 0.1, (65)

where 0.1 is the maximum breaking strain. We plot the value of NS crust strain in Fig. 16. The maximum value after 15 Myr of evolution is
2.5 x 103 which is not enough to break the crust.

4 CONCLUSIONS

In this work, we used the Dedalus code to study ambipolar diffusion in neutron star cores. Unlike the previous analysis in one and two
dimensions, we integrate the equations in three dimensions using the spherical coordinate system. We also include the neutron star crust with
finite conductivity.

Our work has following caveats:

(i) A neutron star core is expected to be in a superconducting and superfluid state, which will probably significantly affect the magnetic field
evolution described here. Despite the significant progress recently reached in investigations of how neutron vortices and magnetic flux tubes
interact with each other, the detailed equations describing the evolution and its importance is a matter of active scientific debate. Therefore,
we refrain from implementing the superfluidity and superconductivity at the moment.

(i) We assume negligible baryon velocity, which is not the case at the beginning of the simulations. The main expected impact of this
assumption is that we underestimated the speed of ambipolar diffusion, which might be a factor of a few times faster than in our simulations.
Because of this assumption we are able to write equations in the one-fluid approximation. In future work we plan to implement the two-fluid
approximation.

(iii) Given limitations in computing power we had to restrict radial profiles for coefficients £; and &4 by introducing the parameter rqy =
2. Under realistic conditions we see the formation of a compact current sheet at the crust—core boundary in the equatorial plane with radial
extent smaller than 50 m, which corresponds to our finest resolution.

Given these caveats, we discovered the instability of pure poloidal axisymmetric magnetic field under influence of ambipolar diffusion
in weak coupling mode. This instability leads to development of wave-like B, (kind of toroidal component) which is composed of harmonics
with [ = 21, 25, 28 with m = 10, 12, 14. This well-resolved cluster of harmonics grows from initial perturbations by four orders of magnitude
over the first 15 Myr (1.5 dimensionless times for By = 10'* G). The growth of instability is exponential with a typical time-scale of 2 Myr
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Figure 16. NS crust strain after 167 Myr, shown in a meridional cut.

(0.2 dimensionless time). The azimuthal magnetic field reaches saturation around 20 Myr. The instability induces strong electric current in the
NS crust and leads to exponential decay of magnetic energy on a time-scale of 60 Myr in our setup with initial B, = 10" G at the pole.
Our work has the following potential astrophysical implications:

(i) We found that ambipolar diffusion creates electric currents in the deep crust and allows energy release at the level of 10 erg s~! on a
10 Myr time-scale. Thus an NS could stay relatively hot with temperatures of 2210 K for millions of years if it had a strong initial magnetic
field 210" G. NSs with these temperatures were discovered in the past using optical, UV, and X-ray telescopes. Future missions such as the
Large UV/Optical/IR Surveyor (LUVOIR; The LUVOIR Team 2019) as well as the next generation of X-ray telescopes such as Strobe-X (Ray
et al. 2019) could be used to measure surface temperatures for large number of old neutron stars and confirm or reject our numerical results.
More work is required to produce reliable surface maps which will be possible to compare with UV and soft X-ray light curves.

(ii) In our simulations, the dipolar component of magnetic field decays on a time-scale of 120 Myr, which is expected to be sensitive
to the conductivity of the deep crust. Further numerical simulations are required to establish a firm relationship between decay time-scale,
initial magnetic field strength and configuration, and conductivity of the deep crust. Ultimately, these decay time-scales will be used in pulsar
population synthesis to decode evolutionary relations between different classes of neutron stars (such as magnetars, central compact objects,
radio pulsars, and dim isolated X-ray sources).

(iii) The instability leads to development of azimuthal magnetic field with initial wavenumber m = 14 which merges with time and simplifies
its structure reaching m = 4 by 160 Myr. Many old radio pulsars continue to operate below the classical death line for dipolar magnetic field
(Medin & Lai 2007). If ambipolar diffusion operates in these stars, it could be an important mechanism to increase the curvature of open field
lines near the crust and facilitate the pair production allowing an NS to shine as a radio pulsar.

(iv) Ambipolar diffusion does not seem to cause any crust failure for magnetic field 10'* G.
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APPENDIX A: DERIVATION OF THE EQUATION FOR CHEMICAL EQUILIBRIUM DEVIATION

We start with the same system of equations as Passamonti et al. (2017):

- - .o
> - - v - MWy, MWy
—vu,,—m;vq>+e<E+le> =-r -4 2
c Tpn Tpe
- v A MEWen MWy
-V —m;Veé —e | E+ —XB | = —— + ——,
c Ten Tep

S —mr S = Ml M
Tnp The
where i, pt., and p, are chemical potentials for protons, electrons, and neutrons, ® is the gravitational potential, my, my, and m{ are
effective masses of proton, neutron, and electron, respectively. Absolute velocities for different species are v, and v., while relative velocities
between species are Wy, = U, — Uc. Here, 7, are relaxation times for collisions between protons and neutrons. This system contains one more
equation in comparison to Goldreich & Reisenegger (1992) for motion of neutrons which are not fixed.
We add the first two equations and subtract the third equation:

e 5 Ed * 2
JxB _ My, Wpn _ ny, Wp

— V(AR) = VO +m? —m}) + (AD)

cne Ton Tnp
In this equation, we combine Ap =, + i — p,. The right-hand side does not contain any terms with w,. because of conservation of
momentum, SO npm; [Tpe = Nemy/Tep and J)pe = —ﬁ)ep, and electroneutrality n. ~ n, = n.. Following Passamonti et al. (2017) we assume that
electron—neutron interactions are much weaker in comparison to proton—neutron interactions which are mediated by the strong force. That is
why we neglected terms with 7, and 7,.. We also assume that contribution of electrons to NS mass is negligible, i.e. m; +mi—m; ~0. We
combine the terms on the right as follows:
miw mEw mEw n. miw miw

pm Do T | T Tpoen (A2)

Tpn Tnp Tpn Ny Tpn XnTpn

where x, = n,/(n, + n,). Overall, at this stage we have the following equation:

£ M Wy
_V(AM)+&:P7P’ (A3)

ne XnTpn
where we define:

- jxB
f5=

1 - - -
= H(V X B) x B. (A4)

We take the divergence of equation (A3) and multiply by (—1):

R ~ £ L /miw
Vi(Ap) =V - LLANES (97”> . (A5)
ne XnTpn
We expand the last term on the right, multiplying numerator and denominator by n.:
o /miw mt . - mt
V~( P "“): P v.(ncwpn)+ncw’pn.v( P ) (A6)
XnTpn XnFeTpn XM Tpn

Following the assumption by Passamonti et al. (2017), we similarly assume:

- - LA
V- (newp,) = — P (A7)
n

Further we substitute 7.y, from equation (A3) into equation (A6):

- XnTpnMe =
gy = T (wmm + ff) . (A8)
p c
Thus, the final equation is written as
- mEl R £ X N £ N m*
Pam - A= (L) Sl (a4 L2 v-(—*’). (A9)
e Tpn ne m; ne XnMeTpn

APPENDIX B: VERIFICATION OF THE CODE AND CHOICE OF NUMERICAL RESOLUTION

Comparing our short simulations for a range of temperatures (see Fig. 5) we notice that while the solution for A x looks very similar to Fig. 3 in
Passamonti et al. (2017), our amplitude is approximately three times larger. The exact reason for this difference is unknown. Our guess is that
the difference appears because we normalize the equations differently. In the absence of open-source code used by Passamonti et al. (2017),
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Figure B2. Left-hand panel: electric current j, at 600 Kyr in simulations with rey = 2. Middle and right-hand panels: no restriction on &3, &4 for resolution B
(middle panel) and for resolution D (right-hand panel).

the difference is nearly impossible to track. Despite this difference in amplitude we successfully reproduce the ambipolar velocity speeds and
its patterns. In all our simulations Au/pg < 1 which justifies application of linear approximation for reaction rates. With the cooling of the
NS when temperature drops from 7y = 1 to Ty = 0.1 the velocity pattern transforms from irrotational-dominated flow to solenoidal-dominated
flow in agreement with Passamonti et al. (2017). We successfully reproduce the location of zeros in this flow pattern.

We notice that radial profiles for £3 and &4 span many orders of magnitude from NS centre to the core—crust boundary. Passamonti et al.
(2017) remarked that parameter b, see equation (38), is measured in km and decays towards the core—crust interface reaching values around
200 m. Although our resolution is sufficient to resolve structures with size ~50 m in radial direction at the core—crust boundary, we do not
seem to resolve the process completely. This is the motivation for introducing the parameter r,, Which restricts the maximum value reached
by &5 and &,.

We show the result of our simulations in Fig. B1. While the velocity field stays mostly smooth in the case of r., = 2 (left-hand panel),
small-scale noise-like structures emerge if no cut is imposed (right-hand panel). The rise of these structures coincides with appearance of a
strong current at the core—crust boundary near 6 = 90°, see Fig. B2 for details. It is clear from this figure that large values of £; and &4 cause
appearance of compact current (see middle and right-hand panels of Fig. B1). When we increase the numerical resolution the size of this
current decays, but is still not fully resolved even with resolution D. It is to avoid these probable numerical artefacts that we introduced ry =
2 in our basic simulations. When we introduce this restriction currents are well resolved and the velocity field looks much smoother.

In order to check that behaviour which we identified in our simulation is actual physical behaviour and not a problem of the code, we run
shorter simulations with different numerical resolution and varying parameter 7. We demonstrate the results of these simulations in Fig. B3.
A field with similar structure emerges in simulations with ., = 20 and better radial resolution. This toroidal magnetic field reaches maxima
at radial distance of r &~ (0.8 Rys, i.e. well below the crust. When we increase the numerical resolution even further and removed restriction
on radial profiles £; and &4 we notice that a very similar toroidal magnetic field is formed. It requires significant computational resources to
evolve simulation with resolution D on time-scales of 10-20 Myr.
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resolution C and r¢, = 20. The last row shows the results of simulations with resolution D and no r,; imposed.

APPENDIX C: DERIVATION OF THE INITIAL CONDITION FOR VECTOR POTENTIAL

The initial condition by Akgiin et al. (2013) is written for poloidal and toroidal magnetic fields and not for their potentials. Namely, Akgiin

et al. (2013) writes the magnetic field as

b=VaxVeé+pVo,

845

(ChH
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while the standard poloidal—toroidal decomposition is:

b=V xV x (byf)+V x (biF). (€2)
Here V¢ = ¢/(r sin ) and:

o« = f(x)sin®6, (C3)
where f(x) could be written as
35 , 21 , 15 ¢

= —x"— — —x". c4
f(x) g T ar t3g* (2))
Here, x = r € (0, 1]. The respective scalar field for toroidal component is written as

(o — 1) for o > 1,
= C5

p {0 for o < 1. )

First, we consider only the poloidal part of the magnetic field. We transform the first term of equation (C1) and write it as
by =V x (aV¢). (C6)

In this case we just need to find b, such that V x (bp?) = a%qj. Expanding the curl and assuming that the initial condition is axisymmetric we

obtain:
10b Vo =
A

using the same radial function f{x) as by Akgiin et al. (2013). The equation (C7) can be solved if we assume:

f@) Gy ()
rsinf

bp(r,0) = f(r)cosé. (C8)
The same initial condition can also be written in terms of vector potential A:

Vx A=B=9x [0+ x )], (C9)

which we can write in components of the vector potential:

A = by,

Ay = [6 x (bp?)] , (C10)

Ay = [6 x (bj)]i

In our case:

A, = 0,
Ag = 0, (C11D)
Ay = LD sing.

If we next add the toroidal magnetic field:
¢

=V x (b), (C12)
rsin6

B

then expanding the curl we obtain:
ob, _ B

— = C13
99  siné (C13)
We can solve this differential equation for cases when o > 1:

1 0
by = 15 (c0s(36) — 9cos(6)) f(x) — 2 (x)cos + log (cot H) : (€19

For the cases o < 1 we have to use a correct constant.

This paper has been typeset from a TEX/I&TgX file prepared by the author.
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