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2020

In this thesis, I present the research works carried during my Ph.D. period from 2014

to 2019, on topics of the high energy completion and the low energy exploration of the

Standard Model (SM). The focus will be put on four finished papers.

Firstly, we introduce the extensions of the Standard Model that are not only com-

pletely asymptotically free, but are such that the UV fixed point is completely UV at-

tractive. Semi-simple gauge groups with elementary scalars in various representations

are explored. We also present a Pati-Salam model for illustration.

We then attempt to build the asymptotically safe extensions of the Standard Model

using the large number-of-flavour technique.

Next, we build a phenomenological model that describes the mass and decay width

spectra of the lightest pseudo-scalar and scalar meson nonets at low energy. We then

apply this model to the study of quark matter, and find that udQM (quark matter

consists of up and down quarks only) generally has a lower energy per baryon than the

strange quark matter and normal nuclei for baryon number A > Amin with Amin & 300.

After that, we present the work on the ud quark stars (udQSs) that are composed of

udQM. Distinct signatures are discussed compared to the conventional study regarding

strange quark stars. The tidal deformabilities in binary star mergers, including the

udQS-udQS and udQS-HS cases, are calculated. This study points to a new possible

interpretation of the GW170817 binary merger event, where udQS may be at least one

component of the binary system detected.
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Chapter 1

Introduction

The Standard Model (SM) founded 50 years ago has achieved a huge success with the

experimental validation reaching TeV energies. It describes three fundamental forces: the

strong, weak, electromagnetic interactions with the gauge group SU(3)C×SU(2)L×U(1)Y

respectively. The electroweak sector SU(2)L × U(1)Y was introduced by Weinberg to

model leptons [1], and later was extended to the quark sector, which additionally is

gauged under colour SU(3)C group.

The Standard Model is built in the paradigm of the Quantum Field Theory (QFT).

In QFT, particles are treated as the excitations of the quantized fields. When calculating

physical observables like the scattering amplitudes, the quantum physics enters as the

loops in the Feynman diagrams, which may result in divergences in the calculation. The

Renormalization Group (RG) method [2, 3] is the basic approach to cure these notori-

ous divergences, where the counterterms are introduced for the cancellation of infinities.

RG introduces scale dependence for the strength of the couplings. The function describ-

ing the changing rate of any coupling g over energy scale µ is called “beta function”:

β = dg/d lnµ. The renormalization of any pure non-abelian gauge group leads to the

asymptotic freedom (β ≤ 0) [4, 5], in which the coupling goes asymptotically small to

zero. Oppositely, the abelian gauge coupling and scalar quartic coupling grow asymp-

totically larger and ultimately reach infinity at some high energy scale (the Landau pole

problem), as shown in Figure. 1.1.

Towards the ultraviolet (UV) scale, it was found that the gauge couplings of the

Standard Model gauge group SU(3) × SU(2) × U(1) tend to merge at the scale of 1015

GeV [7], assuming no new physics enters in the intermediate region. The unification of

couplings provides a first hint of the Grand Unified Theories (GUT) as the possible UV

completion of the Standard Model, where the SM can be embedded into a non-abelian

gauge group with higher rank beyond the GUT scale. This picture automatically cures

1



Chapter 1. Introduction 2

Λ

g1

g2

g3

yt

5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

log10HΜ�GeVL

SM
C

ou
pl

in
gs

Figure 1.1: Running of the SM couplings [6]. The Higgs quartic coupling is evaluated at 1-loop, the
top Yukawa and the gauge couplings are evaluated at 2-loop order. The abelian gauge coupling (green
dashed) and the quartic (black) diverge at large scales beyond Planck scale.

the U(1) Landau pole problem, but generally induces proton decay faster than what the

experiments suggest. Another serious problem is the so-called the naturalness problem or

the hierarchy problem, in which the Higgs mass acquires a quadratic correction sensitive

to the new physics scale at UV, causing tension with the light mass experimentally

observed. We will try to address these problems via constructing UV fixed points in

Chapter 4 and Chapter 5.

Reversing the renormalization flow of asymptotic freedom back towards the infrared

(IR) scale implies that the SU(3) gauge coupling αs becomes very strong at low energy

around 200 MeV, the scale of which is conventionally denoted as ΛQCD. Therefore, strong

dynamics has to be involved at long-distance scale ∼ 1/ΛQCD, which gives rise to the

colour confinement that only colour singlet states can be observed experimentally. In the

picture of effective field theory (EFT), we can integrate out the heavy mass freedoms of

the UV physics so that the effective description of low energy physics can be obtained,

with high mass dimension terms suppressed by the heavy mass scale integrated out. In

this way, one can tell which term plays a more important role than the others in the

determination of low energy physics. However, the lack of knowledge on IR strong dy-

namics makes it extremely hard to derive the effective description from first principles.

Therefore, some intuitive guesses have to be made, with the correctness examined by the

theoretical consistency or from the experimental tests. For example, we know that u, d, s

quarks have relatively small quark masses, so QCD should have an approximate chiral

flavour symmetry SU(3)L×SU(3)R. The chiral condensate formed in QCD vacuum can
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break this symmetry dynamically down to the diagonal SU(3)V group, from which eight

Goldstone bosons are generated, with their masses given by the explicit chiral symmetry

breaking due to the finite current quark masses. The eight Goldstone bosons can be

naturally interpreted as the eight components of a pseudo-scalar octet. Models incorpo-

rating this simple physics picture, including the Nambu-Jona-Lasinio model (NJL) [8, 9],

the linear and non-linear sigma models [10, 11, 12, 13] have achieved huge successes on

explaining the QCD phenomenology.

Colour confinement leads to the common state of quarks in forms of hadrons, either

qq̄ meson or qqq baryon. But the collective many-body interactions at the high density

regime may lead to a phase transition from the hadronic matter to the quark matter,

a state composed entirely of quarks instead of neutrons and protons. It is a natural

and fundamental question to ask what the most stable form of QCD matter is. We will

explore this question in Chapter 6.

1.1 Organization of the Thesis

In Chapter 2, we give an overview of the UV completion of SM. We introduce some

background knowledge for the QCD dense matter in Chapter 3. In Chapter 4 and

Chapter 5, we present our work on the UV completion of the Standard Model through

some asymptotically free [17] and asymptotically safe [18] extensions, respectively. After

that, we explore the physics at IR, proposing a new form of quark matter, udQM [19],

in Chapter 6. The related gravitational-wave probe [20] is presented in Chapter 7. In

the appendix, we present the details of the generalized meson potential and the study of

finite-size effects used in Chapter 6.



Chapter 2

Overview of the UV completions

In this chapter, we give an overview of the current status of UV completion, introducing

the background knowledge of the asymptotically free extension for Chapter 4, and the

asymptotically safe extension for Chapter 5. We first give a recap on the grand unified

theory (GUT) that embeds the SM to gauge groups with a higher rank. Then we intro-

duce the program on the asymptotic free extensions of the SM, in which all couplings are

made asymptotically free at high energy scale. After that, we present the other possible

UV completions of the SM via asymptotic safety, where the couplings may achieve a

set of non-zero UV fixed points. Finally, we briefly introduce the UV completion of the

gravity sector.

2.1 The Grand Unification Theory

What is the ultimate fate of particle physics at high energy? A straightforward specula-

tion is that the SM gauge group may be embedded into a simple group with an equal or

larger rank. To see this, note that the one loop beta function of gauge theories has the

following general form

β =
dg

dt
=

bg3

(4π)2
, (2.1)

where t = lnµ and

b = −
(

11

3
C2(G)− 4

3
ωC(rf )nF −

1

3
C(rs)nS

)
. (2.2)

Here nF is the number of fermion flavour. ω is 1
2

for Weyl fermions and 1 for Dirac

fermions. The Lie group factors C2(r) · I = T aT a so that C2(G)δab = facdf bcd for the

4
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adjoint representation. And C(r)δab = Tr(T aT b). For the fundamental representation

of SU(N) group, C2(G) = N , C(rf ) = C(rs) = 1/2. Implementing Eq. (2.1) for the

Standard Model gauge group with corresponding matter content, it turns out all Stan-

dard Model couplings tend to meet at the high energy scale (∼ 1015 GeV) [7], where a

unification into a larger Lie group can be achieved. This is the picture of “Grand Unified

Theory”.

The minimal GUT group is SU(5), which has rank four as the SM does. The Standard

Model fermions can perfectly fit into 5 and 10 representation of SU(5). To break SU(5)

to the SM, we need a scalar in adjoint representation 24 of SU(5), with the Higgs doublet

in 5 for the subsequent electroweak symmetry breaking. However, SU(5) GUT suffers

some severe problems. On the theoretical side, one needs to introduce an additional

SU(5) singlet to incorporate right-hand neutrino, which is needed for the generation of

the neutrino mass observed. Besides, it has the “doublet-triplet splitting” problem: the

colour triplet component of 5 must have its mass at the GUT scale, while the remaining

Higgs doublet resides at the electroweak scale. On the experimental side, the current

proton decay bound has already ruled out the minimal SU(5) model, since the lepto-

quarks (gauge bosons of SU(5) that carry both lepton number and quark number) cause

the proton to decay too fast.

A more plausible GUT group is SO(10). The spinor representation 16 of SO(10)

naturally incorporates the SM matter freedoms in its component 15, with the remaining

1 for the right-hand neutrino. It can give a better fit to the proton lifetime compared to

SU(5) GUT. The supersymmetric extensions can improve the fit further, but there is no

LHC signature of supersymmetry so far.

One can also seek to unify the SM into a higher-rank semi-simple gauge group, like the

Pati-Salam SU(4)C × SU(2)L × SU(2)R [21] and the Tri-unification SU(3)3 [22]. In the

SU(4) of Pati-Salam unification, the fourth colour is the lepton number. The fundamental

representation of Pati-Salam (4,1,2) and (4,2,1) can be naturally embedded into the

16 of SO(10), so that it can also be seen as an intermediate unification between SM and

SO(10), which can help saturate the proton lifetime constraint.

2.2 UV Completion with Asymptotic Freedom

In this section, we introduce the Complete Asymptotic Freedom (CAF) program [19, 14,

15, 16], in which all couplings are made asymptotically free at high energy scale. In 1973,

Cheng et al. [14] initiated this program and studied related aspects in SU(N) and O(N)

gauge groups with fermions in vector, adjoint, and tensor representation. Later in 2014,
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Giudice [16] et al. and our group [19] generalized this to the semi-simple gauge group

almost at the same time.

The main struggle is to realize the asymptotic freedom for the quartic coupling, since

the couplings of non-abelian gauge group are intrinsically asymptotically free, and the

abelian gauge group can be embedded into a non-abelian gauge group at UV. As we will

see, the gauge group with a larger rank and matter content with fewer scalar freedoms

helps to reach this goal.

We review the basic idea to realize CAF in [14]. The one-loop β-functions are sufficient

for the study of asymptotic freedom. For each of the gauge couplings, the β-function only

depends on itself, as introduced in Eq. (2.1). Therefore, when the β-function coefficient

b > 0, the gauge coupling g increases as the energy scale µ increases. Oppositely, b ≤ 0

gives the asymptotic freedom. For the Yukawa coupling y, its β function has the generic

form

βy =
1

(4π)2
(c y3 − d g2y), (2.3)

where the coefficients c, d > 0. The dependence on g can be eliminated with a change of

variable ȳ ≡ y2/g2, which gives

(4π)2g−2βȳ = 2c ȳ2 − (d+ b)ȳ, (2.4)

where the dependence on b has appeared due to the insertion of Eq. (2.1). To have

asymptotically free y amounts to find a UVFP for ȳ. Eq. (2.4) shows a stable UVFP

requires that d + b > 0, in which case ȳ = 0 is the stable UVFP. The result is that ȳ

decreases asymptotically as

ȳ(t) ∝ t
d+b
b . (2.5)

So the contribution of Yukawa couplings is negligible in the β-functions of quartic cou-

plings in the deep UV. For a scalar Φi with potential

Vλ = λΦ∗iΦiΦ
∗
jΦj, (2.6)

the one loop β-function for λ is

(4π)2βλ = e λ2 − f λg2 + k g4. (2.7)

The coefficients e, f , k can be calculated from the Feynman diagram shown as Fig. 2.1.
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If Φ is in the fundamental representation of a SU(NA) gauge group, then e = 4(N + 4),

f = 6(N− 1
N

), k = 3(N−1)(N2 +2N−2)/4N2. We may again eliminate the dependence

(a) (b) (c)

Figure 2.1: Diagrammatic representations of the e, f, k terms in Eq. (4.6), respectively [14]. The dashed
line and the wavy line denote the scalar and the gauge boson, respectively.

on g by a change of variable λ̄ ≡ λ/g2, which gives

(4π)2g−2βλ̄ = e λ̄2 − λ̄(2b+ f) + k. (2.8)

The fixed points should satisfy βλ̄ = 0, which is simply a quadratic equation for λ̄ and

there are two real roots λ̄∗1,2 when

(2b+ f)2 − 4ek > 0. (2.9)

Stability requires λ > 0. This constraint translates to 2b+ f < 0, since e is always

positive. Together with Eq. (4.8), these imply that complete asymptotic freedom favours

the absolute value of b as small as possible, which can be achieved by adding more fermion

degrees of freedom without changing the sign of b.

We will present our related work in Chapter 4.

2.3 UV Completion with Asymptotic Safety

A theory featuring an interacting UV fixed point corresponds to the scenario of asymp-

totic safety (AS). AS was first introduced by Weinberg [23] to address the issue of the

non-renormalizability of Einstein gravity. Later, people applied this idea to gauge theo-

ries, particularly in the context of the Veneziano limit where both colour number NC and

flavour number NF are sent to infinity while their ratio is kept fixed [24, 25]. In 2017,

we attempted to realize asymptotic safety in the finite NC regime [18] with the large NF
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technique [26], where NF is taken to infinity while keeping NC finite [26]. Here we give

a brief review on the large NF technique [26]. The abelian β-function is defined as

β(α) =
∂ lnα

∂ lnµ
. (2.10)

The one loop result is β(α) = 2A/3 where A ≡ NFα/π. The beta function can be

re-arranged as an expansion of 1/NF :

3

2

β(α)

A
= 1 +

∞∑
i=1

Fi(A)

N i
F

. (2.11)

We can re-sum the fermion bubble chain diagrams (Fig. 2.2) to obtain the leading 1/NF

contribution F1 [27, 28]:

...

+

...

...

Figure 2.2: Diagrams of the fermion bubble chain [27].

F1(A) =

∫ A
3

0

I1(x)dx, (2.12)

with

I1(x) =
(1 + x) (2x− 1)2 (2x− 3)2 sin (π x)3 Γ (x− 1)2 Γ (−2x)

(x− 2) π3
. (2.13)

One can handle the integration with the Cauchy principal value prescription. The result

is shown in Figure 2.3. The poles are at A = 15/2 + 3n for integer n ≥ 0. The first

singularity at A = 15/2 gives rise to an interacting UV fixed point for a large enough

NF .
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Figure 2.3: F1(A) as defined in (2.12).

For non-abelian gauge theory SU(NC), the beta function in 1/NF expansion is:

3

2

β(α)

A
= 1 +

∞∑
i=1

Hi(A)

N i
F

. (2.14)

where A = NFTRα/π with TR = 1/2. Holdom [26] derived from [28] that

H1(A) = −11

4

CG
TR

+

∫ A/3

0

I1(x)I2(x)dx, (2.15)

I2(x) =
CR
TR

+
(20− 43x+ 32x2 − 14x3 + 4x4)

4 (2x− 1) (2x− 3) (1− x2)

CG
TR

, (2.16)

where the Lie factors are CG = NC , CR = (N2
c − 1)/2Nc. The result is illustrated in

Figure 2.4. The poles are at A = 3, 15/2, · · · , 3n + 9/2. The first singularity at A = 3

A

H1(A)

–16

–14

–12

–10

–8

–6

0 1 2 3 4 5 6 7
 

Figure 2.4: H1(A) as defined in (2.15).
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gives rise to an interacting UV fixed point as long asNF is large enough so that the leading

1/NF order contribution dominates. Note that the pole structures are independent of

the renormalization scheme [29]. We will use the resulted UV fixed points to construct

asymptotically safe extensions of the SM in Chapter 5.

Another kind of study on the large-NF bubble chain shown in Fig 2.2 is in the context

of the QCD perturbative expansion resummation related to the infrared Landau pole in

the running coupling, assuming NF is large enough for the dominance of bubble chain

contribution. In the bubble chain approximation, the running of coupling induces a facto-

rial divergence in the perturbative expansion coefficients, generating a set of singularities

referred to as renormalons in the Borel transform. The difference between the contour

choices in the Borel integration, the so-called renormalon ambiguity, gives a power-like

correction, which hints some non-perturbative effects possibly missed from the pertur-

bative expansion. In contrast, there is no no ambiguities in the results of the large NF

program we are studying here, since there is no infrared Landau pole for the coupling

running and and the bubble chain dominance is not ad hoc.

2.4 UV completion with Gravity

Serious problems emerge when Einstein’s gravity meets quantum physics. Firstly, Ein-

stein’s gravity suffers from the non-renormalizability problem, in which the graviton

scattering amplitudes tend to diverge in the deep UV. A way to get around this problem

is to treat Einstein’s gravity as merely an effective field theory at the low energy scale.

Eventually, some unknown UV completion should cure the non-renormalizability prob-

lem. Secondly, S. Hawking found the black hole information paradox that the evolution

of quantum entanglement is not unitary in the black hole background. Any candidate

theory of UV completion should address these two problems at least.

It turns out both problems can be resolved by the theory of quadratic gravity [32, 33],

in which the second-order of Ricci scalar and Ricci curvature terms are included, in

addition to the Einstein-Hilbert action. It turns out that the gravitational couplings of

quadratic gravity are weakly coupled with the matter sector at UV, and thus will not

help removing the Landau pole of the SM. Therefore, the Landau pole problem in the SM

has to be resolved by the SM sector its own. This can be achieved by constructing UV

fixed points for the SM sector, as introduced in previous sections. In this way, a complete

and well-defined quantum field theory of the SM and the gravity can be extrapolated to

infinite energy scales. However, the spectrum of quadratic gravity has a notorious ghost,

for which the sign of propagator is negative, potentially ruining the unitarity and stability
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of the theory. Although the issue of ghost has not been settled in a widely-accepted way,

some recent studies argued that the problems of unitarity and stability are avoided by

showing that the ghost does not appear in the asymptotic spectrum [34], with only some

acausal behaviour left that can not be observed due to its extremely short timescale [35].



Chapter 3

Overview of QCD dense Matter

In this chapter, we introduce some background knowledge on QCD dense matter related

to our study of quark matter later in chapter 6.

The fundamental building blocks of QCD are quarks and gluons. At low density,

quarks and gluons are in the form of hadrons like protons and neutrons. When the

density gets higher, some exotic phases of matter may appear. In order to study the

baryonic matter in the high density regime, we first recall some related basic knowledge

of thermodynamics. Then we recap the role of chiral symmetry in the low energy QCD

dynamics, with the linear sigma model presented as an effective description. After that,

we introduce the current understanding and modelling of hadronic matter and quark

matter. Finally, we review the related study on compact stars that are composed of

either hadronic matter or quark matter.

3.1 Thermodynamics Basics

In thermodynamics, the grand potential (free energy) of a system is

Ω = E − TS − µN, (3.1)

where E is the (internal) energy. T , S, µ, N are the temperature, entropy, chemical

potential, and the particle number, respectively. The differential form of Eq. (3.1) reduces

to

dΩ = −SdT − PdV −Ndµ (3.2)

using the fundamental thermodynamics equation

dE = TdS − PdV + µdN, (3.3)

12
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with P as the pressure and V as the volume. Therefore, the number density n has the

relation

n =
N

V
= − 1

V

∂Ω

∂µ
. (3.4)

Besides, with Eq. (3.1) and the Euler’s equation

E = TS − PV + µN, (3.5)

one obtains the simple relation

P = −Ω

V
= nµ− ρ (3.6)

at T = 0. An alternative derivation is from Eq. (3.3)

P = −∂E
∂V

= − ∂E

∂(N/n)
= n2∂(ρ/n)

∂n
(3.7)

= nµ− ρ (3.8)

with relation µ = dρ/dn substituted. Thus,

µ = ρ/n = E/N at P = 0. (3.9)

In the following study, we absorb the volume factor into the grand potential and set

temperature T = 0.

3.2 Chiral Symmetry and the Linear Sigma model

Gellmann and Levy [10] proposed the linear sigma model for the nucleon interactions.

This model can be recast as a more fundamental picture in terms of quarks. It encom-

passes an SU(Nf )L × SU(Nf )R global chiral symmetry, which is the basic ingredient of

QCD with Nf massless quark flavours. This chiral symmetry is spontaneously broken

into the diagonal SU(Nf )V group by the non-zero vacuum expectation values of the σ

field at the potential minimum.

The Lagrangian for the linear sigma model [10, 36, 38] is:

L = Tr
(
∂µΦ†∂µΦ

)
− V (Φ), (3.10)
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with the scalar potential

V (Φ) = Vinv(Φ) + Vb(Φ), (3.11)

where Vinv is the chiral invariant part:

Vinv = λ1

(
Tr Φ†Φ

)2
+ λ2 Tr

(
Φ†ΦΦ†Φ

)
+m2 Tr

(
Φ†Φ

)
+ c
(
det Φ + det Φ†

)
.

The c term is the t’Hooft term that signals U(1)A breaking. Vb includes the terms that

explicitly break the chiral symmetry. We denotes

Φ = TaΦa = Ta (σa + iπa) , (3.12)

where Ta = λa/2 with a = 0, . . . , 8 are the nine generators of the U(3), with λa =

1 ∼ 8 the Gell-Mann matrices and λ0 =
√

2
3

1. The generators Ta are normalized to

Tr(TaTb) = δab/2 and obey the U(3) algebra [Ta, Tb] = ifabcTc and {Ta, Tb} = dabcTc.

dabc and fabc are the symmetric and antisymmetric structure constants respectively, with

fab0 = 0, dab0 =
√

2
3
δab . σa and πa form the scalar and pseudoscalar meson nonets:

Taσa =
1√
2


1√
2
a0

0 + 1√
6
σ8 + 1√

3
σ0 a−0 κ−

a+
0 − 1√

2
a0

0 + 1√
6
σ8 + 1√

3
σ0 κ̄0

κ+ κ0 − 2√
3
σ8 + 1√

3
σ0

 ,

Taπa =
1√
2


1√
2
π0 + 1√

6
π8 + 1√

3
π0 π− K−

π+ − 1√
2
π0 + 1√

6
π8 + 1√

3
π0 K̄0

K+ K0 − 2√
3
π8 + 1√

3
π0

 .

Here the charged and neutral pions are π± ≡ (π1±i π2)/
√

2 and π0 ≡ π3, respectively. For

kaons, K± ≡ (π4±i π5)/
√

2, K0 ≡ (π6+i π7)/
√

2, and the conjugate K̄0 ≡ (π6−i π7)/
√

2.

The remaining pseudoscalar components π0 and π8 mix into the η and η′ meson. For

scalar mesons, a0 and κ are the parity partners of pion and kaon, respectively. The

remaining scalar components σ0 and σ8 mix into the σ and the f0.

The minimal model includes the following linear term [36, 38]

Vb = Tr
[
H(Φ + Φ†)

]
, (3.13)

where H = Taha. Here ha are external fields that explicitly break the chiral symmetry.

More explicitly, h8 is responsible for breaking the degeneracy between strange and non-

strange sectors, while h3 is responsible for the isospin breaking of the non-strange sector.
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In the following discussion, we focus on the isospin-symmetric case where h3 = 0.

The potential can induce spontaneous symmetry breaking so that Φ field obtains an

expectation value

〈Φ〉 ≡ Ta σ̄a ≡ T0 σ̄0 + T8 σ̄8, (3.14)

with
∂V

∂σ̄0

= 0,
∂V

∂σ̄8

= 0. (3.15)

at the vacuum. The non-strange (σn) and strange (σs) flavour basis has the relation:(
σn

σs

)
=

1√
3

(√
2 1

1 −
√

2

)(
σ0

σ8

)
, (3.16)

so that Eq. (3.14) converts to

〈Φ〉 ≡ 1

2
diag(σ̄n, σ̄n,

√
2σ̄s). (3.17)

The PCAC relation gives

σ̄0 = (fπ + 2 fK)/
√

6, σ̄8 =
2√
3

(fπ − fK) . (3.18)

With Eq. (3.16), these lead to

σ̄n = fπ, σ̄s =
√

2fK −
fπ√

2
. (3.19)

The mass spectra of scalar and pseudo-scalar mesons are:

(m2
S)ab =

∂2V

∂σa∂σb
, (m2

P )ab =
∂2V

∂πa∂πb
, (3.20)

with ma0 = (mS)11 = (mS)22 = (mS)33, mκ = (mS)44; mπ = (mP )11 = (mP )22 = (mP )33,

mK = (mP )44. By the diagonalization of the (0, 8) elements, we obtain the masses of

(σ, f0) for the scalar sector and those of (η′, η) for the pseudo-scalar sector:

m2
φ1

= (m2
i )00 cos2 θi + (m2

i )88 sin2 θi + (m2
i )08 sin 2θi,

m2
φ2

= (m2
i )00 sin2 θi + (m2

i )88 cos2 θi − (m2
i )08 sin 2θi
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with a defining relation for θi:

tan 2θi =
2 (m2

i )08

(m2
i )00 − (m2

i )88

, (3.21)

where i = S, (φ1, φ2) = (σ, f0) for the scalar sector, and i = P, (φ1, φ2) = (η′, η) for the

pseudo-scalar sector. The results of couplings (λ1, λ2,m
2, c, h0, h8) are obtained by solv-

ing Eq. (3.15), Eq. (3.20), and Eq. (3.21) as the functions of two decay constants (fπ, fK)

and four of the eight meson masses (mπ, mK , mη, mη′ , mσ, mf0, mκ, ma0). We present a

benchmark with (fπ, fK ,mπ,mK ,
√
m2
η +m2

η′ ,mσ) = (92.4, 113, 138, 496, 1103.6, 600) MeV

[37, 38]. The solution for the coupling values is shown in Table 3.1.

λ1 λ2 m2 (MeV2) c (MeV) h0 (MeV3) h8 (MeV3)
1.400 46.484 (342.523)2 4807.835 (286.094)3 −(310.960)3

Table 3.1

This minimal model gives the right mass predictions for η and η′, but yields the values

of ma0,mf0,mκ larger than 1 GeV. The difficulty on fitting all scalar meson masses below

1 GeV is a common problem for any known variation of the linear sigma model when only

the linear term is included in the explicit breaking sector, no matter taking variations

with a large departure on inputs data [39], including vector mesons, or replacing the

t’Hooft term by the Veneziano-Witten term [40]. This deficiency motivates us to extend

the explicit breaking sector. We will present our related work in Appendix A.

3.3 Nuclear Matter

In this section, we introduce the basic properties of nuclear matter that constrain the nu-

clear model building. Then we introduce some basic models of nuclear matter, capturing

the fundamental physics and satisfying the introduced properties.

3.3.1 Properties

The total mass of an atomic nucleus composed of protons and neutrons can be described

by the relation

m = Zmp +Nmn − EB, (3.22)

where mp and mn are the rest mass of a proton and a neutron, with Z and N denoting

their numbers respectively. EB is the binding energy of the nucleus. The semi-empirical
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mass formula (the Bethe-Weizsäcker mass formula) approximates EB as

EB(A,Z) = aVA− aSA2/3 − aC
Z(Z − 1)

A1/3
+ asymI

2A, (3.23)

where A = Z + N is the baryon number, and I = (N − Z)/A is the isospin asymme-

try parameter. The coefficients (aV , aS, aC , asym) denote the volume, surface, Coulomb,

isospin contributions, respectively. The values of these coefficients are determined by

fitting experimental data of nuclei masses [41, 42, 43], giving

(aV , aS, aC , asym) = (15.76, 17.81, 0.711, 23.7) (3.24)

within a few percent uncertainty, depending on how they are fitted to the nuclear data.

Note that aV ∼ 16 MeV indicates the largest binding energy for isospin-symmetric case

with the Coulomb contribution turned off. The analysis of electron-nucleus scattering

determines the number density at saturation limit to be n0 ≈ 0.16 fm−3. Any theory of

nuclear matter should meet this minimal set of constraints on binding energy and number

density at the saturation limit.

The compression modulus K is defined as:

K = 9[n2 d
2

n2
(
ρ

n
)]n=no (3.25)

characterizing the stiffness of the equation of state, which directly influences the maxi-

mum mass of the compact star that the nuclear matter compose. A direct measurement

of K is from the giant monopole excitation in nuclei, which constrains K to the range

K = 200− 300 MeV. Recent nuclear data suggests K ≈ 234 MeV.

The nucleon effective mass m∗ at the saturation density is expected to lie within the

range 0.7mN ∼ 0.8mN from the analysis of neutron scattering with Pb nuclei.

Varying Eq. (3.23) with respect to charge Z, one obtains the Z(A) function for the

most stable configuration:

Zmin =
2asymA

aCA2/3 + 4asym

. (3.26)
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3.3.2 The Walecka Model and the GM model

The original version of the Walecka model [44] has the form:

L = ψ̄ (i��∂ − (m− gσσ))ψ +
1

2

(
∂µσ∂µσ −m2

σσ
2
)
− 1

3
mb (gσσ)3 − 1

4
c (gσσ)4

− 1

4
ωµνωµν +

1

2
m2
ωω

νων ,
(3.27)

where σ and ων are the scalar meson and vector meson coupled to baryon ψ, respectively.

From the Lagrangian above, one can write down the equations of motion (EOM) and

solve the system with the charge neutrality and chemical equilibrium conditions. In the

bulk (large particle number) limit, one can take the relativistic mean-field approximation

where the scalar and vector fields are replaced by their mean values. The EOM thus

become:

gσσ = −(
gσ
mσ

)2〈ψ̄ψ〉 −mbg2
σ (gσσ)2 − c g2

σ (gσσ)3 ,

gωω0 = (
gω
mω

)2〈ψ̄γ0ψ〉,

gωωk = 0,

(3.28)

where

〈ψ̄ψ〉 =
∂E

∂m
=

4

(2π)3

∫ pF

0

d3p
m√

p2 +m2
(3.29)

is the scalar density, and

〈ψ̄γ0ψ〉 = 〈ψ†ψ〉 = n = 2

∫ pF

0

d3p

(2π)3
=

p3
F

3π2
(3.30)

is the vector density in the Thomas-Fermi approximation where the mass varies very

slowly compared to the scale of the fermion Compton wavelength.

From Eq. (3.28), one can observe that for the Yukawa couplings and the meson masses,

only their ratios xσ = gσ/mσ, xω = gω/mω are relevant to the EOM. They can be used

to fit the parameters of bulk nuclear property, such as the binding per nucleon aV and

the saturation density n0, as discussed in section 3.3.1. The two scalar self-interaction

b and c terms are needed to fit (K,m∗). And xρ = gρ/mρ is needed to fit asym further.
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The generalized model is the GM model [45]:

L =
∑
B

ψ̄B (i��∂ −mB)ψB +
1

2

(
∂µσ∂µσ −m2

σσ
2
)
− 1

4
ωµνωµν +

1

2
m2
ωω

νων

+
1

2
m2
ρρ

µ·ρµ −
∑
B

(
gσBψ̄BσψB + gωBψ̄B�ωψB + gρBψ̄Bγ

µτ ·ρµψB
)

− 1

3
mNb (gσσ)3 − 1

4
c (gσσ)4 +

∑
L=e−, µ−

ψ̄L (i��∂ −mL)ψL.

The sum over B spans all the lowest baryon octet (p, n,Λ,Σ+,Σ−,Ξ−,Ξ0) and ∆ quar-

tet. Fitting (n0, aV , K,m
∗/mN , asym) = (0.153, 16.3, 300, 0.7, 32.5) gives xσ = gσ/mσ =

3.434, xω = 2.674, xρ = 2.100, b = 0.00295, and c = −0.00107 for the non-hyperonic

matter. For the hyperonic matter, the hyperon-meson coupling to mass ratios determined

from the empirical Λ binding energy (≈ 28 MeV) are xσH = 0.6, xωH = 0.6, xρH = 0.653.

These solutions are the widely-used parameter sets of non-hyperonic and hyperonic GM1

model, respectively.

Hadronic stars with the non-hyperonic GM1 EOS have maximum mass 2.36M�, while

those with hyperonic GM1 EOS have the maximum mass ∼ 1.65M�. The reduction of

maximum mass by the hyperonic composition is a general feature in compact star physics,

which we will elaborate more in Section 3.5.

3.4 Quark Matter

Unlike hadrons where quarks are confined, it is also possible for quarks to have the decon-

fined form, i.e. the so-called quark matter (QM). To study this state, we need to incor-

porate the essential ingredients of QCD, which result in two categories of approaches: (1)

Dynamical approaches like the NJL model and the Dyson-Schwinger formalism, where

non-perturbative effects need to be solved self-consistently. (2) Phenomenological Models

like the MIT bag model, where a crude bag constant is introduced to account for the

non-perturbative contribution of the QCD vacuum, and the quark-meson model, where

an effective meson potential replaces the bag constant. Though being rather phenomeno-

logical, the quark-meson model captures more realistic dynamics of the QCD vacuum,

like the flavour dependence and density dependence, compared to the conventional bag

model.
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3.4.1 The MIT bag model

The MIT bag model [46, 47] is the most-used model for the study of quark matter. It

was originally proposed to model hadrons, in which all quarks are confined in a bag-like

configuration. A bag constant B is introduced to account for all the non-perturbative

effects of QCD vacuum. Later people applied this model to the study of quark matter [48,

55]. The total energy density of the quarks confined in the bag is given by [49]

ε =
∑
f

εf +B. (3.31)

where εf denotes the kinetic energy contribution of individual quark or lepton flavour f .

The pressure from the bag constant together with the external pressure P counterbalance

the internal pressure of P i of the individual quarks and leptons contained in the bag:

P +B =
∑
f

P f , (3.32)

We know that the relativistic gas has an EOS Pf = εf/3, so that one obtains for this

massless case the equation of state (EOS).

P = (ε− 4B)/3, (3.33)

so that ε = 4B at zero pressure.

For the non-interacting Fermi gas, we can take the integral form of Eq. (3.1) for each

fermion flavour f :

Ωf =
2

(2π)3

∑
f

∫ √µ2
f−m

2
f

0

d3p (
√
p2 +m2

f − µf )

= − 1

4π2

[
µf (µ

2
f −m2

f )
1/2

(
µ2
f −

5

2
m2
f

)
+

3

2
m4
f ln

µf + (µ2
f −m2

f )
1/2

mf

]
.(3.34)

And correspondingly

P f =
cf

6π2

∫ pFf

0

dp
p4√

p2 +m2
f

, ρf =
cf

2π2

∫ pFf

0

dp p2
√
p2 +m2

f , nf =
cf

6π2
p3
Ff , (3.35)

where cf = 2 (spin)× 3(colour) for quarks, and cf = 2 (spin) for the colour-singlets like

leptons, and pFf =
√
µ2
f −m2

f is the Fermi momentum. Note that these integrals can be
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completed into closed forms, and they obey the thermodynamics relation Eq. (3.8). The

relativistic limit of Eq. (3.35) takes the simple form

P f =
µ4
f

4π2
, ρf = 3

µ4
f

4π2
, nf =

µ3
f

π2
. (3.36)

Despite the simplicity of the original MIT bag model, it suffers from several prob-

lems [50]. The successful fit of the ordinary hadron masses results in a universal bag

constant value of BMIT ≈ 56 MeV/fm3. However, both the QCD sum rules and the QCD

phase transition at high temperatures indicate a much larger bag constant value. Be-

sides, the bag model has the “dihyperon H” problem, where an H particle with (uds)2

composition is predicted by the bag model to have a mass smaller than two times Λ (uds)

mass. And with some parameter space, it can be smaller than two times the neutron

mass. However, no experimental evidence has been found for the existence of H. All

these sicknesses question the universality of the bag constant. It is thus very possible

that B does depend on the density, colour, flavour, temperature, etc. In the next section,

we present the quark-meson model, which can account for the density-dependent and

flavour-dependent feedback of the quark gas on the QCD vacuum.

3.4.2 The Quark-Meson Model

In the quark-meson model, the effective bag constant of the bag model is replaced by the

meson potential, which can account for the physical properties of QCD vacuum like the

flavour dependence and the density dependence where the conventional bag model fails.

The starting Lagrangian takes the form [51]

LQ = Ψ̄ (i��∂ − gΦΦ) Ψ + Tr
(
∂µΦ†∂µΦ

)
− V (Φ), (3.37)

where V (Φ) is the meson potential Eq. (A.2) with the meson multiplet Φ, Eq. (A.3).

A general framework to apply this quark-meson model to the study of quark matter at

bulk limit (infinite baryon number) is as follows: one can transform the meson potential

from original octet-singlet basis (σ0, σ8) to the non-strange (σn) and strange (σs) flavour

basis: (
σn

σs

)
=

1√
3

(√
2 1

1 −
√

2

)(
σ0

σ8

)
, (3.38)
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In the mean field approach, the equations of motion ares obtained from ∂Ω/∂σi = 0,

where Ω = Ωf + V (Φ) with Ωf defined in Eq. (3.34). Thus,

∂V

∂σn
= −

∑
i=u,d

g < ψ̄iψi >, (3.39)

∂V

∂σs
= −gs < ψ̄sψs >, (3.40)

where the right hand sides represent the quark condensates:

< ψ̄iψi > =
∂Ωf

∂σi
=

6

(2π)3

∫ pFi

0

d3p
mi√
p2 +m2

i

, (3.41)

with mu,d = gnσn assuming isospin symmetry. The Fermi momentum for each flavour is

pFi = pFfi
1/3, where the quark fractions are fi = ni/(NCnA), pF = (3π2nA)1/3 and nA is

the baryon number density. The quark scalar energy densities are [52, 53]

ρψ =
∑
i=u,d,s

2NC

(2π)3

∫ pFi

0

d3p
√
p2 +m2

i , (3.42)

ρφ = ∆V +
1

2

∑
i=n,s

(∇σi)2, (3.43)

where ∆V is the potential energy with respect to the vacuum. The flavour composition

of the quark gas and the radius R can be determined by minimizing the total energy

E =

∫ R

0

d3r(ρψ + ρφ). (3.44)

The system is in chemical equilibrium with respect to the weak processes:

s→ u+ e− + ν̄e, d→ u+ e− + ν̄e. (3.45)

Neglecting the chemical potential of the neutrino, the chemical equilibrium gives the

relation

µd = µs = µu + µe, (3.46)

where µi =
√
p2
Fi +m2

i . For the free-interacting fermion gas, it can be shown that

the chemical equilibrium condition is equivalent to the energy minimization over flavour

composition in charge neutral configuration. With the input parameters in Table. 3.1

for a benchmark study, the corresponding numerical solutions as the functions of the
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effective baryon Fermi momentum pF = (3π2nA)1/3 are shown in Fig. 3.1, from which we
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Figure 3.1

see that the minimum of E/A is at pF = p̄F ≈ 383 MeV with E/A ≈ 940.2 MeV. Besides,

we see that no strange fraction appears at p̄F , which means the two-flavour quark matter

is more stable than the three-flavour one, but neither is more stable than the ordinary

nuclei. In Chapter 6, using this quark-meson model but with a more realistic meson

potential, we obtain an E/A for the non-strange quark matter even smaller than 930

MeV for the most stable nuclei 56Fe. The general feature that two-flavour is more stable

than the three-flavour case is mainly due to the fact that the scalar potential is far more

steep in the σs direction than it is in the σn direction, as shown in Figure 3.2.

Figure 3.2: 3D plot of the scalar potential V (σn, σs) (orange surface). The black line denotes the scalar
field trajectory from the EOM solution. The black dot denotes the potential minimum, while the red
dot maps to the E/A minimum. All axes are in units of MeV.

As we can see from Fig. 3.1a, at the limit of zero baryon number density, the scalar

fields approach to their physical vacuum expectation values (VEVs). As the number
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density increases, the σn field tends to decrease rapidly towards the chiral limit where up

and down quarks become almost massless so that the relativistic limit pF � m can be

taken. The relativistic energy per baryon number has the form [19]:

ε =
ρ

nA
=

(χNCp
4
F )/4π2 + Vn
n

=
3

4
NCpFχ+ 3π2Vn/p

3
F , (3.47)

where NC = 3 is the colour factor and χ =
∑

i f
4/3
i is the flavour factor. Vn is the

contribution for the meson potential along the non-strange direction, which can be treated

as the effective bag constant. The valley of Vn is very shallow compared to that of Vs,

and its magnitude is insensitive to the density change before strangeness turns on. Thus,

we can approximate Vn as a constant and minimize the energy with respect to pF , from

which one obtains

εmin = 3
√

2π
(
χ3Vn

)1/4
, at which p̄F ≈ (

12π2Vn
NCχ

)1/4. (3.48)

The formulas above give a good match to the exact numerical result with a mere error

of a fraction of one percent due to the tiny quark mass.

3.4.3 Hypothesis of Absolutely Stable Quark Matter

Bodmer [54], Witten [55] and Terazawa [56] proposed that the strange quark matter

(SQM) may be the true ground state of cold matter. This is the so-called “Strange

Quark Matter Hypothesis”. In the following we give a simple reasoning.

For the ud quark matter (udQM), charge neutrality requires nu ≈ 1/2nd, which leads

to µd = 21/3µu from Eq. (3.36). Thus, for the bound state where the external pressure

goes to zero, Eq. (3.32) leads to the bag constant

B2 =
∑
u,d

P f = (1 + 24/3)µ4
u/4π

2. (3.49)

For the strange quark matter, the fraction of each flavour is the same, so that they share

a common chemical potential µ̄. Hence the bag constant is

B3 =
∑
u,d,s

P f =
3µ̄4

4π2
. (3.50)

For a universal bag constant, B2 = B3 = B. Thus, the ratio of energy per baryon E/A,
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which equals the ratio of average chemical potential referred to Eq. (3.9), is

E/A
∣∣
3

E/A
∣∣
2

=
µ̄

1
3
µu + 2

3
21/3µu

=

(
3

1 + 24/3

)3/4

≈ 0.89. (3.51)

Therefore, this simple argument suggests that the three-flavour quark matter (SQM)

is always more stable than the two-flavour case. To see how the bag constant affects the

overall stability, note that the inverse of Eq. (3.49) tells µu = ( 4π2

(1+24/3)
B2)1/4, thus

E/A
∣∣
2

= 3(
1

3
µu +

2

3
21/3µu) = 934 MeV × B

1/4
2

145 MeV
. (3.52)

Similarly, for the three-flavour case,

E/A
∣∣
3

= 3µ̄ = 934 MeV × B
1/4
3

162.8 MeV
. (3.53)

Note that the 934 MeV denotes the sum of the E/A = 930 MeV for the most stable

nuclei 56Fe and a 4 MeV correction due to the surface effects of quark matter lumps [48].

Therefore,

BSQM ∈ [1454, 162.84] MeV4 ≈ [57.8, 91.9] MeV/fm3 (3.54)

for the absolute stable SQM. Note that the lower bound guarantees the stability of 56Fe

over the nonstrange quark matter.

However, as we note, this conclusion crucially depends on the validity of the relativistic

limit and the assumption of B2 = B3. Later it was found that B2 actually is significantly

smaller than B3 in realistic models like the quark-meson model. We can observe this

directly from Figure 3.2 that the meson potential height in non-strange direction is much

shallower in strange direction, leading to B2 < B3 since the meson potential amounts to

the effective bag constant. Therefore, it was shown the two-flavour quark matter, udQM,

actually is more stable than the three-flavour quark matter [57, 58], and even normal

nuclei when the baryon number A is sufficiently large above Amin & 300 [19]. We will

consider the related details in Chapter 6. Note that the large Amin ensures the stability

of ordinary nuclei in the current periodic table.

3.4.4 Finite-size effect and Amin

When the particle number decreases from the bulk limit, the surface effect and Coulomb

effect become more important and tend to destabilize the bound state. The energy can
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be approximated as the following general form1:

E =
∑
i

(ΩV + niµi)V + σS +
3

5

Z2

R
(3.55)

where V = 4/3πR3, S = 4πR2 for a spherical system. σ denotes the surface tension.

With the surface information input in Eq. (3.55), one can determine Amin below which

the state becomes unbounded. In general, a large E/A or σ will result in a large Amin.

A commonly adopted way to account for the finite-size effect is to modify the density

of states using the multiple reflection expansion (MRE) as k2ρMRE/(2π
2) [59, 60, 61],

where

ρMRE = 1 +
6π2

kR
fS

(
k

m

)
, (3.56)

where R is the radius of the sphere. And

fS = − 1

8π

(
1− 2

π
arctan

k

m

)
, (3.57)

represents the surface contributions. The finite-size effect enters into calculations through

the replacement of phase space integrals:∫ Λ

0

· · ·k
2 dk

2π2
−→

∫ Λ

ΛIR

· · ·k
2 dk

2π2
ρMRE, (3.58)

where the IR cut-off ΛIR is the largest solution of the equation ρMRE(k) = 0 with

respect to the momentum k. We note that the surface tension that determines the value

of Amin has large uncertainties depending on the methods used and effects included.

The conventional MIT bag model [60], NJL model [62, 63, 64], and the linear sigma

model [65, 66, 67] generally predict small surface tension σ < 30 MeV/fm2. However,

large values are obtained for the NJL model with the aforementioned “multiple reflection

expansion (MRE)” framework [62] (σ = 145 ∼ 165 MeV/fm2), and models including

charge screening effect (σ = 50 ∼ 150 MeV/fm2) [68], though smaller or larger values are

not strictly excluded. Constraints of surface tension from the recent LIGO gravitational

wave events are studied in [69].

A more exact way to study the finite size effect is by fitting the energy formula

Eq. (3.55) with the exact value of energy for each particle number. The E(A) information

can be derived from the equation of motion that is numerically solved at each particle

1We neglect the discussion of curvature contribution here.
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number. The related calculation details are presented in Appendix B. We adopted this

approach in the study of udQM [19] to determine Amin and the corresponding surface

tension, giving Amin ≈ 300 with a surface tension σ ≈ 20 MeV/fm2 that is robust against

parameter variations.

3.5 Compact Stars

Compact stars have large masses and small radii, which result in high density and pressure

in the interior. White dwarfs (WDs) are the compact stars composed of relativistic

electrons, the degenerate pressure of which counterbalances the gravity pull, resulting in

an upper bound for their masses, the so-called “Chandrasekhar limit” around 1.4M�.

Beyond the Chandrasekhar limit, the stars may further collapse to black holes or neutron

stars (NSs) where the high compactness leads to the neutron abundance from the process

p+ e− → n+ ν, (3.59)

so that the degenerate pressure of the neutron gas balances the gravitational pull. Direct

observational evidence of NSs is from the electromagnetic radiation emitted by highly

magnetized rotating NSs or WDs. The mass measurements taken from binary pulsar

systems via radio signals give the typical masses M ∼ 1.4M� with maximum masses

above 2M� [73, 74, 75], while the radii measurements from the X-ray extraction result

in a large uncertainty R = 6.8− 13 km. From these, one can estimate the average mass

density to be around three times the density of heavy nuclei. For compact stars composed

of hadrons, the density falls to the density of iron (∼ 7.85 g/cm3) at the star surface.

A neutron star typically has an atmosphere and an interior divided into four regions:

the outer crust, the inner crust, the outer core, and the inner core. The outer crust

composed of ions and electrons extends from the surface to the neutron drip density

ρdrip ≈ 0.22 MeV/fm3.2 Free neutrons start to appear in the inner crust, which ranges

from ρdrip to roughly 0.5ρ0, where ρ0 ≈ 157 MeV/fm3 is the saturation nuclear matter

density. The outer core that varies from 0.5ρ0 to 2ρ0 is a mixture of protons, neutrons,

electrons, and muons in β equilibrium. A heavier neutron star can have an inner core

with ρ > 2ρ0, where the exotics like hyperon, ∆ resonance, or defined quarks may appear.

The EOS models in these layers are very complicated and have large uncertainties.

Measurements of masses and radii, tidal deformability during star mergers, and other

astrophysical observations can help pin down a more accurate picture of hadronic EOS.

2Units conversion 1 MeV/fm3 ≈ 1.783× 1012g/cm3.
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To see how the astrophysical constraints of masses and radii can map to the EOSs or

vice versa, one starts from the TOV equation [70, 71]

dp(r)

dr
= − [m(r) + 4πr3p(r)] [ρ(r) + p(r)]

r(r − 2m(r))
,

dm(r)

dr
= 4πρ(r)r2 ,

with the boundary condition p(R) = 0,m(R) = M for a given central pressure PC .

From this, one can obtain the (M,R) solution as a function of PC for a given matter

EOS P (ρ). Oppositely, one can utilize this mapping to constrain matter EOSs from the

(M,R) information.

Hadronic Matter and Hadronic Star

We can approximate the hadronic matter EOS by a polytrope form in different layers of

neutron star:

P = Kργ. (3.60)

Different values of K and γ encode the information about the hadronic matter compo-

sition of neutron stars. With this polytrope approximation, an analytical expression of

M −R can be obtained [72]

M = −ξ2
1θ
′
1(4π)−1/(γ−1)

(
Kγ

G(γ − 1)

)1/(2−γ)(
R

ξ1

)(4−3γ)/(2−γ)

∝ R(4−3γ)/(2−γ),

(3.61)

where ξ and θ′ are γ-dependent variables. At low density, the matter composition is

dominated by the relativistic electron gas so that γ ∼ 4/3, while γ ∼ 2 at the high-

density region (around ns). From Eq. 3.61, we see that this 4/3 . γ . 2 range means

that the magnitude of M is negatively correlated with that of R. Another observation

is that at the low-density limit M ∝ K3/2, which is independent of R, approaching the

minimum neutron star mass ∼ 0.1M�. And R ∝ K1/2 at large density limit, which is

independent of M . These determine the general shape of M − R curve for the hadronic

stars. A general feature is that a stiffer EOS gives a larger mass and a larger radius

with a smaller central density nc. Stars with ρc > ρc(Mmax) are unstable against any

radial mode of oscillations, due to the imbalance of the gravitational attraction over the

repulsive force resulting from the degenerate fermion matter.

In one family scenario where it is assumed that all compact stars are within one family

of hadronic matter EOS, the discovery of pulsars with large masses above 2M� [73,

74, 75] ruled out a large amount of soft EOSs. Furthermore, the recent gravitational
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wave observation of the binary neutron star merger event (GW170817) tells the tidal

deformability Λ < 800, ruling out a large number of too-steep EOSs. In contrast, one

can also utilize the constrained EOSs to pin down the astrophysical observables that

have large experimental uncertainties. For example, the X-ray extraction suggests 6.8 .

R1.4M�/km . 13.8, and later studies utilizing the constrained EOS obtained a much

narrower range [76, 77, 78].

At high density (above 2ns), hyperons and ∆ resonances are expected to appear in the

star interiors, which tend to soften the EOS and thus make it difficult to get a star mass

larger than 2M�, in conflict with with the observations of massive pulsars [73, 74, 75].

This is the so-called “hyperon puzzle”. Moreover, the lower bound of the average tidal

deformability Λ̃ in the one-family scenario excludes compact stars with small radii, which

may have tension with what the X-ray analyses suggest [79]. Therefore, it is natural to

expect that the stars with large masses and large radii are the quark stars (QSs) composed

of quark matter, and most of the ones with small maximum mass and small radii are the

hadronic stars (HSs). This possibility is the so-called “two-families” scenario.

Quark Matter and Quark Star

The EOS of quark matter has the linear form

P = ac2(ρ− ρs). (3.62)

Causality requires a ≤ 1. In the relativistic limit, a = 1/3, which can get modified by

the finite quark mass effect. ρs is the density at the surface where the pressure goes to

zero, and thus ρs = 4B in bag model from Eq. (3.33), or ρs = 4Beff in other effective

models like the quark-meson model. The simple linear form makes it possible to perform

a dimensionless rescaling [83, 84]

ρ̄ =
ρ

ρs
, p̄ =

p

ρs
, r̄ = r

√
ρs, m̄ = m

√
ρs, (3.63)

so that the TOV solution of Eq. (7.5) is also dimensionless, and thus is independent of

any specific value of Beff . The results on M̄ = M
√

4Beff and R̄ = R
√

4Beff of quark

stars are shown in Fig. 3.3a. The TOV solution of any other EOS with a different Beff

value can be obtained directly from rescaling the dimensionless solution back. The max-

imum mass and the corresponding radius are thus obtained: Mmax ≈ 15.17/
√
Beff M�,

RMmax ≈ 82.8/
√
Beff km, where Beff takes value in units of MeV/fm3. For strange quark

stars composed of SQS, Beff = BSQM ∈ [57.8, 91.9] MeV/fm3 referring to Eq. (3.54). The
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Figure 3.3

explicit M − R solution is shown in Fig. 3.3. The maximum mass that SQSs can pos-

sibly reach is Mmax ≈ 15.17/
√

57.8 M� ≈ 1.99M�. Therefore, SQSs based on the MIT

bag model cannot satisfy the 2M� constraint put by the experimental observations of

massive pulsars [73, 74, 75], unless a large perturbative QCD (pQCD) effect or a colour-

superconducting phase is included [80]. This difficulty can be naturally resolved by ud

quark stars in the context of absolutely stable udQM. We will present the related details

in Chapter 6 and Chapter 7.

Provided the hypothesis of stable quark matter is true, it is natural to expect that all

compact stars are actually quark stars. On the one hand, one expects a rapid conversion

from hadronic matter to quark matter inside compact stars due to the large energy

difference and small surface tension between the two phases. On the other hand, the

pollution of strangelet or udlet, a small chunk of SQM or udQM, may convert all hadronic

stars into quark stars. There are many observation indications against this possibility, but

most arguments tend to be model-dependent. For example, the phenomenon of the pulsar

glitch, a sudden increase of pulsar spin frequency, observed in the pulsars like the Vela

pulsar and the Crab pulsar, has been argued against the possibility that all pulsars are

quark stars since conventional models of glitch phenomena involve a superfluid neutron

state. However, there are some candidate models that have addressed this issue in the

context of some particular forms of quark matter, such as the solid quake model [81], or

the crystalline colour superconducting (CCSC) phase [82].



Chapter 4

UV: Stable Asymptotically Free

Extensions of the Standard Model

In this chapter, we explore possible extensions of the Standard Model that are not only

completely asymptotically free, but are such that the UV fixed point is completely UV

attractive. We denote such extensions of the Standard Model as SAFEs. All couplings

flow towards a set of fixed ratios in the UV. The fixed points can help relieving the

notorious Landau pole problem, so that the extensions can be extrapolated to infinite

energy scales. Motivated by low scale unification, semi-simple gauge groups with elemen-

tary scalars in various representations are explored, with a Pati-Salam type benchmark

model. The text in this chapter is reproduced from [17].

4.1 Introduction

We start by considering an elementary Higgs boson in a world without low energy super-

symmetry. In this world there are two conflicting demands on the nature of new physics

on higher mass scales. Naturalness strongly constrains the new physics to prevent un-

wanted contributions to the Higgs mass. Either the new physics mass scale cannot be

much higher than the Higgs mass or the Higgs coupling to the new physics must be

extremely weak. The other demand on the new physics is that it must significantly alter

the running of couplings, including the quartic coupling of the Higgs. This is because the

Landau poles in the quartic coupling and the U(1) hypercharge coupling would signal

new mass scales of the dangerous type. To avoid this requires new massive degrees of

freedom that do couple to standard model fields and thus are also dangerous for natural-

ness. These two demands are suggesting that if there is new physics to cure the Landau

problem then it must enter at as low a scale as possible to minimize the naturalness

31
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problem.

The absence of Landau poles is a requirement for the theory to be UV complete, or in

other words that there is a description of the theory on arbitrarily high energy scales in

terms of elementary fields. The fermions and gauge bosons of asymptotically free gauge

theories are prime examples of truly elementary fields. The standard model is not of

this type, but it often thought that there is no reason it should be given the presence

of gravity. The onset of gravitational effects at Planckian energies is usually taken to

mean that the theory experiences a complete change of character on these scales. But

once again this is at odds with naturalness. It is only if gravity somehow exerts only a

very minimal effect on the scalar sector in a UV complete theory is there is any hope of

naturalness.

There have been recent attempts to show how the effects of gravity in UV complete

quantum field theories could be consistent with naturalness. Ref. [85] illustrated a pro-

posed mechanism in a 2D model of quantum gravity. These authors introduce the concept

of “gravitational dressing” of a QFT, where Planck mass effects modify the S-matrix di-

rectly without inducing any physical mass scales. Ref. [33] (see also [86]) suggests that

the pure gravitational action in the high energy regime just contains two terms, an R2

term and the Weyl term 1
3
R2 − R2

µν . The Einstein-Hilbert term is induced via the VEV

of a new scalar field with non-minimal coupling to R. The point is that the gravita-

tional interactions may then be both renormalizable and asymptotically free [32, 87, 88].

Ref. [33] argues that such a gravity sector could be arranged to couple sufficiently weakly

to the standard model fields to preserve naturalness. The gravity sector here is not quite

complete because of a ghost and a tachyon in the spectrum.

Our interest here is the other half of the problem, how to build UV complete quantum

field theories containing truly elementary scalar fields. We approach this by searching

for gauge theories containing both fermions and scalars where all couplings run to zero

in the UV. This could provide a completely asymptotically free extension (CAFE) of the

standard model. A nice study of this type was conducted long ago in [14]. There the

constraints were found on theories with a simple gauge group with varying numbers of

scalar fields in various representations and with fermions. Gauge, quartic and Yukawa

couplings were considered. CAFEs were found and described in terms of UV fixed points

(UVFPs) where ratios of couplings approached fixed values. The fixed points were also

required to be UV attractive from all directions in coupling space. Thus these are CAFEs

that also have complete UV stability, and we denote such an extension of the standard

model as a SAFE. That such theories were found in [14] may have been of interest to

the construction of grand unified theories. But the study showed that it was difficult
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for the scalars that were allowed to sufficiently break down the original gauge theory

via the Higgs mechanism. For this reason and perhaps also because it was thought that

gravity would nevertheless provide an ultraviolet cutoff, it appears that SAFEs were

never considered to be of particular importance in GUTs.

Our work can be considered to be a continuation of this old work. Since we need to

embed the standard model into a gauge group without a U(1) factor at the lowest possible

scale we are here dealing with low scale unification. Thus we must extend the original

work to semi-simple gauge groups. A minimal requirement is that the scalar content of

the theory must yield the Higgs doublet after symmetry breaking. We don’t require that

the scalars be entirely responsible for gauge symmetry breaking, other than electroweak

symmetry breaking, since we leave open the possibility that strong interactions could

dynamically break some symmetries.

After the work [14] there were attempts to find other realistic CAFEs, not necessarily

grand unified. From our point of view these attempts were not completely successful since

UV stability was dropped (see review [15] and references therein and in particular [89]).

The fixed point was allowed to be UV repulsive in some directions in coupling space. In

this case the space of couplings that do flow to the fixed point has reduced dimensionality.

This amounts to constraints (sometimes called predictions) on the low energy couplings

that are also affected by higher order corrections. Satisfying the constraints would require

fine tuning the couplings order by order in perturbation theory. In our work we shall

insist on complete UV stability.

Much more recently there has been another attempt to find UV complete theories with

elementary scalars, but this time the search was for nontrivial UVFPs [25]. Unlike the

case of asymptotic freedom, here the fixed point requires knowledge of the β-functions

beyond lowest order. Interesting examples were found but here again complete UV

stability was not attained. Also, in this context the work in [90] suggests that the

transition from a regime of running couplings to a nontrivial UVFP is sufficient to cause

a contribution to the Higgs mass. So in this case as well, the corresponding mass scale

must be as low as possible.

The prototype of low scale unification is the Pati-Salam model [21], based on the gauge

group SU(4)× SU(2)L × SU(2)R, with the fermions of one family in the (4, 2, 1)L + (4,

1, 2)R representation. Our study will answer the question as to whether scalars can be

added such that a SAFE results. But we shall set up our study in a more general context

where we consider products of various SU(N) gauge groups with various scalars that may

transform simultaneously under two or three of these gauge groups. We only consider

scalars in the fundamental representation since then we can expect a Higgs doublet to
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emerge after symmetry breaking. These results may be of more general interest for model

building.

Since we are discussing theories that are UV complete above the Planck scale, one

might wonder about the effect of gravity on the running couplings of the matter fields.

This was discussed in the quadratic higher derivative gravity theories of [33, 86]. The

coupling f 2
2 , appearing as 1/f 2

2 times the Weyl term, is always asymptotically free with

both gravity and matter fields contributing with the same sign to the β-function. This

means that f 2
2 is typically much smaller than the gauge couplings in the deep UV, and so

its effect can be neglected. The coupling f 2
0 appearing in the R2 term will be asymptoti-

callly free only if the ratio f 2
0 /f

2
2 becomes negative in the UV. Depending on the matter

content it is possible that f 2
0 could run relatively slowly and thus play a more significant

role. Here we note a discrepancy in the calculated f 2
0 contribution to the scalar quartic

β-functions in [33] and [86]. In the following we shall ignore the possible effect of gravity

on the matter β-functions.

This chapter is organized as follows. In Sec. 4.2 we first review the basic idea to

realize SAFEs with a simple Lie group. Then we generalize the study to a semi-simple

gauge group in Sec. 4.3, as motivated by low scale unification. For quantitative study we

choose several benchmarks for gauge groups and scalar representations. In Sec. 4.4 we

present and discuss the numerical results. Based on these studies we consider the simplest

example of a SAFE with low scale unification in Sec. 4.5. We conclude in Sec. 7.4.

4.2 SAFEs with Simple Lie Group

In this section we review the basic idea to realize SAFEs in [14]. This reference sys-

tematically studied the simple group SU(N) or O(N) case with fermions and scalars in

various representations. Here we supplement their work with some numerical results for

comparison with our later analysis.

Since we study UV asymptotic freedom, the one loop β-functions are sufficient to

study the UV behavior. At one loop the coupled β-functions of gauge, Yukawa and

quartic couplings can be solved sequentially. For the gauge coupling, its β-function only

depends on itself and yields

β =
dg

dt
=

bg3

(4π)2
⇒ g2(t) = −8π2

bt
(4.1)

with t = ln(µ/Λ). b < 0 gives asymptotic freedom with an infrared Landau pole at t = 0

(µ = Λ). The β-function coefficient b gives the running speed of gauge coupling at large
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t. For the Yukawa coupling y, its β-function has the generic form

(4π)2βy = ayy
3 − agg2y, (4.2)

where ay, ag > 0. The dependence on g can be eliminated with a change of variables

ȳ ≡ y2/g2, and this gives

(4π)2g−2βȳ = 2ȳ [ayȳ − (ag + b)] , (4.3)

where dependence on b has appeared. To have asymptotically free y amounts to finding

a UVFP for ȳ. When ag + b ≤ 0 and since ȳ ≥ 0 by definition the only UVFP is ȳ = 0,

which is UV repulsive. A stable UVFP requires that ag + b > 0 in which case ȳ = 0 is

the stable UVFP. The result is that ȳ decreases asymptotically as

ȳ(t) ∝ t
ag+b

b . (4.4)

As clarified in [14], the same conclusion applies to the more complicated case when the

Yukawa couplings are described by a matrix. So in SAFEs, the contribution of Yukawa

couplings is negligible in the β-functions of quartic couplings in the deep UV.

We may illustrate the general features with one scalar Φi in the fundamental repre-

sentation of a SU(N) gauge group. The gauge invariant scalar potential at dim = 4 has

only one term,

V4 = λΦ∗iΦiΦ
∗
jΦj. (4.5)

The one loop β-function for λ is

(4π)2βλ = 4 (N + 4)λ2 − 6λg2

(
N − 1

N

)
+

3(N − 1)(N2 + 2N − 2)

4N2
g4. (4.6)

This β-function is composed of three pieces: the positive pure quartic terms, negative

gauge-quartic terms and positive pure gauge terms. To have βλ = 0 the three contribu-

tions should be comparable and so this disfavors a large hierarchy between quartic and

gauge couplings. In particular quartic couplings must also run as 1/t in the deep UV.

We may again eliminate the dependence on g by a change of variables λ̄ ≡ λ/g2,

which gives

(4π)2g−2βλ̄ = 4 (N + 4) λ̄2 − λ̄
[
2b+ 6

(
N − 1

N

)]
+

3(N − 1)(N2 + 2N − 2)

4N2
(4.7)
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with b again appearing in the linear term. Defining r ≡ b/bM where bM = −11N/3 is the

pure gauge boson contribution, the regions with 2b+6(N− 1
N

) > 0 and 2b+6(N− 1
N

) < 0

meet at the value r0 = 9
11

(1 − 1/N2). These two regions correspond to the slow gauge

running (rs < r0) and fast gauge running (rf > r0) cases respectively, and there is a

one-to-one mapping with 2rsbM + 6(N − 1
N

) = −(2rfbM + 6(N − 1
N

)) and λ→ −λ.

βλ̄ = 0 is simply a quadratic equation for λ̄ and there are two real roots when[
2b+ 6

(
N − 1

N

)]2

− 12

N2
(N + 4)(N − 1)(N2 + 2N − 2) > 0. (4.8)

This inequality sets an upper (lower) bound on r in the slow (fast) running region with

solutions λ̄ > 0 (λ̄ < 0). For the present example the lower bound on r in the branch

r > r0 is always above one and so this cannot be realized with any matter assignment.

Also this region is disfavored due to the upper bound on r from the UV stability of

Yukawa coupling and the vacuum stability condition for the quartic coupling λ̄ > 0. So

we need only consider the slow running region, where the inequality (4.8) sets N ≥ 3.

N 2 3 4 5 6 7 8 N≫ 1

Max r 0 0.02 0.09 0.13 0.17 0.19 0.21 0.35

Min nF 0 16 20 24 28 31 35 3.6N

Figure 4.1: The maximum r = b/bM for one fundamental scalar of SU(N) and the minimum number
nF of Dirac fundamental fermions to achieve this.

For each N ≥ 3, we present the upper bound on 0 ≤ r ≤ 1 for various N in Fig. 4.1.

We can determine the number of Dirac fermions nF to satisfy this bound from

b = bM + nF bF +
1

6
. (4.9)

The minimum nF basically grows with N , and it is shown for the fundamental represen-

tation bF = 2/3 in the last row in Fig. 4.1.

For each N, b that satisfy (4.8) and r < r0 there are two positive real roots λ̄1 < λ̄2.

Given the positive contribution from the pure quartic and pure gauge terms, it is the

smaller root λ̄1 that is stable, i.e. dβ/dλ̄ < 0 at λ̄ = λ̄1. For each N we depict λ̄1, λ̄2 for all

possible b in Fig. 4.2, where red and blue label stable and unstable UVFPs respectively.

b → 0 at the ends of each line. In large N � 1 limit, the stable and unstable UVFPs

become insensitive to N and these end values approach 0.14 and 1.3 respectively. For a

stable UVFP, λ̄ is always smaller than one. Also, the stable UVFP λ̄1 is UV attractive
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Figure 4.2: The values of λ̄ = λ/g2 at stable (red) and unstable (blue) UVFPs as r varies over the
allowed range.

with respect to all quartic couplings λ̄ < λ̄2.

By increasing the size and/or number of scalar representations, a larger N may be

required to achieve a SAFE. This generally does not allow sufficient scalar fields to

break the simple gauge group in some realistic manner [14]. For example SU(5) grand

unification typically requires two scalars, in the adjoint and fundamental representations,

to break SU(5) down to the SM. But with this set of scalars the theory is a SAFE only

if N ≥ 7.

For a given gauge group, the larger the total number of scalar degrees of freedom,

the tighter is the constraint on b [14]. This general feature will carry over to our gener-

alizations and it is another motivation to restrict ourselves to scalars in the fundamental

representation.

4.3 Generalization to Semi-simple Lie Group

Motivated by low scale unification we shall focus on scalar fields transforming under the

following two types of gauge groups with Ni ≥ 2.

(1) : SU(NA)× SU(NB), (2) : SU(NA)× SU(NB)× SU(NC) (4.10)

We first discuss the behavior of Yukawa couplings for the semi-simple case. In the simplest

case of a single Yukawa coupling y, as a generalization of the β-function in (4.3) we find

(4π)2g−2
j βȳ = 2ȳ

[
ayȳ −

∑
i 6=j

aig
2
i /g

2
j − (aj + bj)

]
, (4.11)
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where ȳ = y2/g2
j and with gj one of the gauge couplings. The ai depend on the scalar and

fermion representations. In the deep UV the gauge coupling gi approaches its asymptotic

form and becomes insensitive to its initial value. So we may replace the ratio of gauge

couplings in (4.11) by their β-functions coefficients, i.e. g2
i /g

2
j → bj/bi. If

1 +
∑
i

ai
bi
< 0 (4.12)

then there is a stable UVFP and it is at ȳ = 0.

We have checked various fermion and scalar representations for the gauge groups in

(4.10). It turns out that (4.12) is easy to satisfy since ai ∼ Ni and bi is negative. In

some cases (4.12) may put a upper bound on bi, but as we shall see below, in the param-

eter space of interest the constraint is much weaker than constraints from the quartic

couplings. For a matrix of Yukawa couplings we expect these features will continue to

hold, as in [14]. Therefore in our study of SAFEs for semi-simple gauge group we will

focus on the quartic couplings and neglect the contribution of Yukawa couplings in their

β-functions.

We now build four benchmarks for semi-simple Lie groups in (4.10).

Case A: SU(NA)× SU(NB) with (NA, NB)

For the gauge group SU(NA) × SU(NB) the simplest nontrivial setup is to have one

scalar field Φik that transforms in the fundamental representation of both groups, i.e.

(NA, NB). The most general dim = 4 scalar potential is

V4 = λdΦ
∗
ikΦikΦ

∗
jlΦjl + λsΦ

∗
ikΦilΦ

∗
jlΦjk (4.13)

when at least one Ni > 2. λd and λs denote double trace and single trace couplings

respectively. In the deep UV, the β-functions for these quartic couplings are

(4π)2βλd = 4
[
(NANB + 4)λ2

d + 2 (NA +NB)λdλs + 3λ2
s

]
− 6λd

[(
NA −

1

NA

)
g2
A

+

(
NB −

1

NB

)
g2
B

]
+

3

4

[(
1 +

2

N2
A

)
g4
A +

(
1 +

2

N2
B

)
g4
B

]
+ 3g2

Ag
2
B

(
1 +

1

NANB

)
(4π)2βλs = 4λs [(NA +NB)λs + 6λd]− 6λs

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B

]
+

3

4

[(
NA −

4

NA

)
g4
A +

(
NB −

4

NB

)
g4
B

]
− 3g2

Ag
2
B

(
1

NA

+
1

NB

)
(4.14)
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It is straightforward to verify that (4.14) reduces to (4.6) in the single gauge group case

with NB → 1, gB → 0 and λd + λs → λ. The NA = NB = 2 case corresponds to the

bidoublet in the left-right symmetric model and it has a larger set of couplings [91].

Case B: SU(NA)× SU(NB) with (NA, NB) and (NA, 1)

In the second benchmark we consider the same gauge group with two scalars. We don’t

expect to learn much by considering two copies of (NA, NB), especially since the replica-

tion of scalars was considered in [14]. For the combination (NA, 1) + (1, NB) there is a

limit where the two scalars decouple and so this case is also of not much interest. So we

will study two different scalars that share a common gauge group.

Φ
(1)
ik : (NA, NB), Φ

(2)
j : (NA, 1) (4.15)

NA specifies the common gauge group. The most general scalar potential when at least

one Ni > 2 has five terms,

V4 = λd1Φ
(1)∗
ik Φ

(1)
ik Φ

(1)∗
jl Φ

(1)
jl + λs1Φ

(1)∗
ik Φ

(1)
il Φ

(1)∗
jl Φ

(1)
jk + λ2Φ

(2)∗
i Φ

(2)
i Φ

(2)∗
j Φ

(2)
j

+ 2λd12Φ
(1)∗
ik Φ

(1)
ik Φ

(2)∗
j Φ

(2)
j + 2λs12Φ

(1)∗
ik Φ

(1)
jk Φ

(2)∗
j Φ

(2)
i . (4.16)

Here there are two mixing couplings λd12, λs12. The one loop β-functions are presented

in (4.31) in Appendix A. Due to the presence of the common gauge group we shall find

that there is no UVFP solution where the mixing couplings vanish and the two scalars

decouple.

Case C: SU(NA)×SU(NB)×SU(NC) with (NA, NB, 1) and (NA, 1, NC)

With the enlarged gauge symmetry SU(NA)× SU(NB)× SU(NC), the next interesting

scalar content starts with two scalars. It is again interesting to study the case with two

different scalars sharing a common gauge group. The case different from Case B is the

following.

Φ
(1)
ik : (NA, NB, 1), Φ

(2)
ja : (NA, 1, NC) (4.17)

We set NA > 2 for the common gauge group. In the context of the Pati-Salam model,

this setup may correspond to left-right symmetric scalars (4, 2, 1) and (4, 1, 2). The scalar

potential is

V4 = λd1Φ
(1)∗
ik Φ

(1)
ik Φ

(1)∗
jl Φ

(1)
jl + λs1Φ

(1)∗
ik Φ

(1)
il Φ

(1)∗
jl Φ

(1)
jk + λd2Φ

(2)∗
ia Φ

(2)
ia Φ

(2)∗
jb Φ

(2)
jb + λs2Φ

(2)∗
ia Φ

(2)
ib Φ

(2)∗
jb Φ

(2)
ja
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+ 2λd12Φ
(1)∗
ik Φ

(1)
ik Φ

(2)∗
ja Φ

(2)
ja + 2λs12Φ

(1)∗
ik Φ

(1)
jk Φ

(2)∗
ja Φ

(2)
ia , (4.18)

where λd12, λs12 are mixing couplings. We may consider a simplified version of this theory

by imposing a Z2 symmetry, the analogy of left-right symmetry in the Pati-Salam model.

Case C1 (Z2 symmetry) : NB = NC , gB = gC , λd2 = λd1, λs2 = λs1 (4.19)

This Case C1 amounts to picking a special slice in the whole parameter space, with only

two gauge couplings and four quartic couplings. The β-functions are presented in (4.32).

We denote by case C2 the general case with six quartic couplings. The β-functions

are in (4.33).

In the case of the Pati-Salam model with ΦL = (4, 2, 1) and ΦR = (4, 1, 2) we may

construct a gauge invariant quartic term with the Levi-Civita symbol,

V4 ⊃
1

2
λεεiji′j′εklεk′l′

[
Φ

(1)
ik Φ

(1)
jl Φ

(2)
i′k′Φ

(2)
j′l′ + h.c.

]
. (4.20)

This amounts to Det(Φ) for 4 × 4 matrix Φ ≡ ( ΦL ΦR ), which vanishes for ΦL = ΦR.

The modified β-functions with the λε contribution are presented in (4.34), (4.35).

Case D: SU(NA)× SU(NB)× SU(NC) with (NA, NB, NC)

In the last benchmark we study a scalar representation charged under all three groups.

In particular we consider the fundamental representation Φika : (NA, NB, NC). This type

of scalar field is less studied in literature since its VEV breaks all gauge symmetries at

the same scale. But in view of finding SAFEs it is intriguing to ask whether it helps to

have a scalar transforming under more gauge groups. The scalar potential is

V4 = λdΦ
∗
ikaΦikaΦ

∗
jlbΦjlb + λs1Φ∗ikaΦjkaΦ

∗
jlbΦilb

+ λs2Φ∗ikaΦilaΦ
∗
jlbΦjkb + λs3Φ∗ikaΦikbΦ

∗
jlbΦjla. (4.21)

There are now three single trace couplings. The one loop β-functions are presented

in (4.36), and they are symmetric under interchanges between (NA, λs1), (NB, λs2) and

(NC , λs3). One can verify that (4.36) reduces to (4.14) with NC → 1, gC → 0 and

λd + λs3 → λd, λs1 + λs2 → λs.

In the Pati-Salam model with one (4, 2, 2) scalar we may construct another Levi-Civita

term,

V4 ⊃
1

6
λεεiji′j′εklεmnεacεbd [ΦikaΦjlbΦi′mcΦj′nd + h.c.] . (4.22)
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The β-functions involving λε are presented in (4.37) and (4.38).

4.4 Numerical results and analysis

In this section we present the numerical results and analysis of the four benchmarks. As

before we change variables λ̄i = λi/g
2
j where gj is one of the gauge couplings. Then we

replace the ratios of different gauge couplings by their asymptotic values, g2
i /g

2
j → bj/bi.

This leaves us with coupled quadratic equations of the λ̄i. Taking case A as an example,

the β-functions in (4.14) become

(4π)2g−2
A βλ̄d = 4

[
(NANB + 4) λ̄2

d + 2 (NA +NB) λ̄dλ̄s + 3λ̄2
s

]
− λ̄dbA

[
2 +

6

bA

(
NA −

1

NA

)
+

6

bB

(
NB −

1

NB

)]
+

3

4
b2
A

[
1

b2
A

(
1 +

2

N2
A

)
+

1

b2
B

(
1 +

2

N2
B

)
+

4

bAbB

(
1 +

1

NANB

)]
(4π)2g−2

A βλ̄s = 4λ̄s
[
(NA +NB)λ̄s + 6λ̄d

]
− λ̄sbA

[
2 +

6

bA

(
NA −

1

NA

)
+

6

bB

(
NB −

1

NB

)]
+

3

4
b2
A

[
1

b2
A

(
NA −

4

NA

)
+

1

b2
B

(
NB −

4

NB

)
− 4

bAbB

(
1

NA

+
1

NB

)]
,

(4.23)

where λ̄i = λi/g
2
A.

With these we can solve for the UVFP of {λ̄i} as functions of Ni and bi. Since the

coupled quadratic equations are usually difficult to solve analytically, we find numerical

solutions for a parameter scan over Ni, bi. To illustrate the pattern, we choose 2 ≤ Ni ≤ 8.

The β-function coefficients bi depend on the matter and are model dependent. For

convenience we use ri ≡ bi/bi,M , where bi,M = −11Ni/3, and we consider the range

0 < ri ≤ 1. The {λ̄0,i} at UVFPs should be real but need not be positive.

To find UV stability we study the RG flows in vicinity of the UVFP. At linear order

it is characterized by the matrix

Dij(λ̄0,i) ≡
∂βλ̄i
∂λ̄j

∣∣∣∣
λ̄i=λ̄0,i

. (4.24)

The UVFP is absolutely stable as long as all eigenvalues κk of Dij(λ̄0,i) are negative. The

UVFP for the λ̄i’s is approached along the directions of the eigenvectors as t−κk/2bA .

4.4.1 Constraints on ri ≡ bi/bi,M from the parameter scan

We find that the distribution of solutions as a function of the ri’s share similar features

for all our benchmarks. For each Ni set we scan over ri space with the step δri = 0.01 for
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Figure 4.3: The projection of the parameter scan on the rA-rB plane in Case A for different {NA, NB}.
The step size of the parameter scan is δri = 0.01.

0 < ri ≤ 1. This step is comparable to the minimum matter contribution for Ni . 10.

The projections on the rA-rB plane for Case A with NA = 6 and 2 ≤ NB ≤ 9 are

presented in Fig. 4.3. In each panel the black dot line denotes bA = bB. This figure

highlights the fact that it is a large hierarchy between NA and NB that helps most to

achieve a SAFE. And when there is a hierarchy it is the ri of the larger gauge group that

is bounded from above.

We present the upper bounds on ri for all our benchmark models in Fig. 4.4 and

Fig. 4.5. This information can be used to constrain the matter content to achieve SAFEs.

To illustrate the number fraction of viable points for each Ni set, we use dark (light) blue

for more (less) viable points. Fig. 4.4(a) for Case A is symmetric under NA ↔ NB and the

general features mentioned above are quite clear. Well off the diagonal only the ri of the

large gauge group is constrained and this constraint becomes more relaxed for increasing

hierarchy between NA and NB. For the near-diagonal elements there are upper bounds

on both rB (upper) and rA (lower) for the two gauge β-functions. The NA = NB = 2

case has a larger set of quartic couplings and we have checked that it does not yield a

SAFE.

We may briefly consider the fate of the fast running solutions, as we did for the

simple gauge group. The vanishing of the linear terms in (4.23) defines a boundary on
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(a) Case A

N 2 3 4 5 6 7 8

2 0 0 0.03 0.08 0.11 0.14 0.15

3 0 0 0 0.04 0.08 0.10 0.13

4 0.03 0 0
0.06
0.02

0.05 0.08 0.10

5 0.08 0.04
0.02
0.06

0.03
0.03

0.09
0.04

0.06 0.08

6 0.11 0.08 0.05
0.04
0.09

0.06
0.06

0.12
0.06

0.07

7 0.14 0.10 0.08 0.06
0.06
0.12

0.08
0.08

0.13
0.07

8 0.15 0.13 0.10 0.08 0.07
0.07
0.13

0.09
0.09

(b) Case B

N 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0

3 0 0 0 0 0* 0* 0*

4 0 0 0 0
0.08
0.01

0.08
0.01

0.08
0.01

5 0.02 0 0 0
0.06
0.01

0.13
0.02

0.13
0.02

6 0.07 0.03
0.01
0.03

0.01
0.01

0.03
0.02

0.09
0.03

0.16
0.03

7 0.10 0.06 0.04
0.03
0.07

0.03
0.04

0.05
0.03

0.10
0.04

8 0.12 0.09 0.06 0.05
0.04
0.08

0.04
0.05

0.07
0.05

(c) Case C1

N 2 3 4 5 6 7 8

2 0 0 0.03 0.08 0.11 0.13 0.14

3 0 0 0 0.04 0.07 0.10 0.12

4 0 0 0 0 0.04 0.07 0.09

5 0 0 0 0 0 0.04 0.06

6 0.03 0 0 0 0 0 0.04

7 0.06 0 0 0 0 0 0

8 0.09 0.03 0 0 0 0 0

(d) Case D

N (2,2) (3,2) (i,j)

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0.03 0 0

7 0.06 0 0

8 0.08 0.02 0

Figure 4.4: The upper bounds of ri where 0 means no solutions. For the first three cases they are
functions of NA (row) and NB (column); the last one is a function of NA (row) and (NB , NC) (column).
A single number gives the upper bound on the ri with the largest Ni. Two numbers provide limits on
rB (upper) and rA (lower). 0∗ denotes marginal cases where the existence of solutions goes beyond our
parameter scan accuracy.

the rA − rB plane as follows,

2 +
6

rAbA,M

(
NA −

1

NA

)
+

6

rBbB,M

(
NB −

1

NB

)
= 0 . (4.25)

The region below (above) the boundary features slow (fast) running, and the UVFP

solutions in the two regions are related by a rescaling of the ri and λi → −λi. In this

Case A we find that the boundary (4.25) and thus all fast running UVFP solutions are

outside of the physical region 0 < ri ≤ 1.

For Case B in Fig. 4.4(b), since the two scalars are charged differently under SU(NA)×
SU(NB), the pattern becomes asymmetric. The rows and columns denote the common
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(a) NA=2

N 2 3 4 5 6 7 8

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 1
.03
.03 1

.03

.08 1
.03
.11 1

.03

.13 1
.03
.15

5 0 0 1
.08
.03 1

.08

.08 1
.08
.11 1

.08

.13 1
.08
.15

6 0 0 1
.11
.03 1

.11

.08 1
.11
.11 1

.11

.13 1
.11
.15

7 0 0 1
.13
.03 1

.13

.08 1
.13
.11 1

.13

.13 1
.13
.15

8 0 0 1
.15
.03 1

.15

.08 1
.15
.11 1

.15

.13 1
.15
.15

(b) NA=4

N 2 3 4 5 6 7 8

2 0 0 0 0 0* 0* 0*

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0* 0 0 0 1
.05
.05 1

.05

.08 1
.05
.10

7 0* 0 0 0 1
.08
.05 1

.08

.08 1
.08
.10

8 0* 0 0 0 1
.10
.05 1

.10

.08 1
.10
.10

(c) NA=6

N 2 3 4 5 6 7 8

2 .031
1 0 0 0 0 0 .111

.02

3 0 0 0 0 0 0 0*

4 0 0 0 0 0 0 0*

5 0 0 0 0 0 0 0*

6 0 0 0 0 0 0 0*

7 0 0 0 0 0 0 .05
.02
.02

8 .11.02
1 0* 0* 0* 0* .05

.02

.02
1.07
.07

(d) NA=8
N 2 3 4 5 6 7 8

2 .09
1
1 .06

1
1 .03

1
1 .02

1
.06 .01

1
.02 .02

1
.02 .04

1
.02

3 .06
1
1 .03

1
1 0 0 0 0 0

4 .03
1
1 0 0 0 0 0 0

5 .02
.06
1 0 0 0 0 0 0

6 .01
.02
1 0 0 0 0 0 0

7 .02
.02
1 0 0 0 0 0 0

8 .04
.02
1 0 0 0 0 0 0

Figure 4.5: In Case C2 the upper bounds on ri for various NA as functions of NB (row) and NC
(column). The three constraints are presented with the notation (rA)rCrB .

gauge group SU(NA) and SU(NB) respectively. When NA ≥ NB we see the similar

pattern as Case A in the lower left part of the table but with a smaller viable parameter

space. In the upper right corner, i.e. NB > NA, the common group is small and then for

the (NA, 1) scalar it is difficult to obtain solutions.

In Fig. 4.4(c) we present the bounds for Case C1 with Z2 symmetry, with row and

column for SU(NA) and SU(NB) respectively. The NA > NB region, the lower left

corner, now has a more stringent constraint on rA compared to Cases A and B. This

is due to enhanced pure quartic terms in the β-functions of (4.32). For the NB > NA

region, the upper right corner, there are more solutions compared to Case B since the two

copies of SU(NB) enhance the gauge-quartic terms. Here the constraint on rB applies

to both of the large SU(NB) gauge groups. For the special case NA = 4, NB = NC = 2

where we see zero solutions, one more coupling λε in (4.20) gets involved. Given that its

β-function is proportional to λε, its UVFP is at zero, and so whether or not it is stable
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it cannot alter the lack of a UVFP in the other couplings.

For Case D we only find a small number of (NA, NB, NC) values with viable solutions,

as shown in Fig. 4.4(d). Here we assume NA (row) is the largest while (NB, NC) (column)

has NB ≥ NC . The paucity of solutions here is basically due to the appearance of a

4NANBNC λ̄
2
d term in βλd . Again the extra coupling λε in (4.22) for the special case

NA = 4, NB = NC = 2 does not affect the lack of a UVFP.

Finally we turn to Case C2. It depends on all three NA, NB, NC and the results cannot

be summarized in one 2D plane. But we do find that the constraints when NB = NC are

quite similar to Case C1 in Fig. 4.4(c). The general upper bounds on rA, rB, rC for various

NA are displayed in Fig. 4.5 as functions of NB (row) and NC (column). We present these

limits using the notation (rA)rCrB . From the four tables one can see that solutions tend to

appear when some hierarchy develops between the three values NA, NB, NC . Among the

possibilities, a hierarchy with a large common gauge group is the most efficient. And it

can be seen that the upper bound on ri is typically relaxed or nonexistent (= 1) in those

cases where the associated Ni is small relative to some other Nj.

4.4.2 λ̄j values from the parameter scan

Next we show results for the values of the quartic couplings at the UVFPs. We define

λ̄j ≡ λj/g
2
i where gi is the coupling of the largest gauge group. We saw in previous

section that this coupling runs most slowly in the UV (has the smallest bi) and thus is

the largest gauge coupling.

We start from the simplest Case A with only two quartic couplings. In Fig. 4.6, for

some typical (NA, NB), the first row shows the projection of the parameter scan on the

λ̄d-λ̄s plane, while the second row shows the rA-rB projection for comparison. Among

all UVFP of (4.23) we depict the stable and unstable solutions by red and blue dots

respectively. The situation is clearest for the left plots where the ratio NA/NB is the

greatest. For each (rA, rB), there are always a pair of solutions, one stable and one

unstable with smaller and larger λ̄d respectively. With decreasing rA we go through

different arcs from inside out, where the arc length depends on the number of viable rB.

In rA → 0 limit, the solutions become independent of rB and reach the corners of the red

and blue regions that possess the largest distance between stable and unstable UVFPs.

When NA, NB are similar both gauge couplings play significant roles and the solution

pattern becomes more involved.

The unstable solution in each case is actually a saddle point, with one direction UV

attractive and the other one repulsive. Also, at least for 2 ≤ Ni ≤ 8, we find that the

quartic couplings at the UVFPs are positive and typically of order 0.1 or 0.2 times the
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Figure 4.6: The projection of the parameter scan on the λ̄d − λ̄s (first row) and rA-rB (second row)
planes for different {NA, NB}. The quartic couplings are normalized by the largest gauge coupling. The
red and blue dots represent stable and unstable UVFPs respectively. Note that some characteristics of
these plots are determined by the step size of the parameter scan.

largest gauge coupling. The stability of tree level potential demands the conditions

λ̄d + λ̄s > 0, 2λ̄d + λ̄s > 0 , (4.26)

but here they put no further constraint.

In comparison to these slow running UVFPs the unphysical fast running UVFPs again

come in pairs, but one is a saddle point and the other is completely unstable. Another

curiosity occurs when one of the Ni is very large, e.g. NA ≥ 26 and NB = 2. Then

four slow running UVFPs can occur, one stable, two saddle points, and one completely

unstable. The two new UVFPs correspond to a large λ̄s > 0, with which the coefficient

of linear λ̄d term in βλ̄d becomes positive and the root of λ̄d is negative. The fast running

version of these UVFPs would be characterized by the same four types, which is more

interesting here because one is stable. But at least for the cases we have considered the

fast running solutions are outside the physical range of the ri’s, and they produce tension

for Yukawa couplings and vacuum stability.

For Case B with five quartic couplings we project the higher dimensional space onto

three 2D planes. In Fig. 4.7 we show the case NA = 8, NB = 2. Compared with the
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Figure 4.7: Projection of the parameter scan on some coupling planes for Case B with NA = 8, NB = 2.

counterpart in Case A we see a similar pattern of stable and unstable UVFP pairings on

the λ̄d1-λ̄s1 plane. For some ri there are four UVFPs and the additional pair of solutions

are saddle points. They correspond to different λ̄2 as shown on λ̄d1-λ̄2 plane. The mixing

couplings λ̄s12 and λ̄d12 are both positive and away from zero. They make considerable

positive contribution to βλd1 , βλs1 , βλ2 , causing the number of solutions to decrease.

Figure 4.8: Projection of the parameter scan on some coupling planes for Case C1 with NA = 2, NB =
8. The right panel is a ri projection, where blue and green denote the points with 2 and 4 UVFPs
respectively.

For Case C1 the large common group case NA > NB has quite similar features to

Case A. Given the dominance of the common gauge group there are two UVFPs for each

viable ri and the one with the smaller λ̄d is UV stable. In the small common gauge group

case, NA < NB, some new types of solutions emerge. For illustration we present the

UVFPs for NA = 2, NB = 8 in the left and middle panels of Fig. 4.8. For some ri there

are again an extra pair of UVFPs at saddle points. They possess a large λ̄d1 (left) and a

negative λ̄d12 (middle). The corresponding ri with four UVFPs are denoted by the green

dots in the right panel.

With a large positive λ̄d1 we find that the mixing coupling λ̄d12 can be negative,

but then the coefficient of λ̄d12 in βλ̄d12
is positive and the solution becomes unstable.
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Mixing couplings are usually positive for stable UVFPs, but a new feature we see here

is that they can be close to zero. This is due to the suppressed pure gauge terms in the

β-functions of the mixing couplings, which only receives a small contribution from the

common gauge group (it is 0 for NA = 2 case). Finally the general picture of UVFPs for

Case C2 without the Z2 symmetry is similar to Case C1.

Figure 4.9: Projection of the parameter scan on some coupling planes for Case D with NA = 8, NB =
2, NC = 2.

Case D has four quartic couplings, one double trace and three that are single trace.

We depict the projections λ̄s1-λ̄d and λ̄s2-λ̄d in Fig. 4.9 for NA = 8, NB = NC = 2.

The typical feature is reflected on the range of single trace couplings at UVFPs. We

find that the coupling with a single trace associated with the largest gauge group λ̄s1

has comparable size with other couplings at UVFPs, while those associated with small

gauge groups, λ̄s2 or λ̄s3, could be close to zero or even slightly negative. Again this is

determined by the dominant pure gauge terms in the β-functions.

4.5 The Simplest Model

As a general feature of the previous results, when a hierarchy in the sizes of the different

gauge groups helps to achieve SAFEs, the gauge coupling associated with the largest

group is constrained to run quite slowly. A small ratio ri = bi/bi,M requires a sufficient

number of fermions. We first check whether some number of chiral fermions gauged under

SU(NA)× SU(NB)× SU(NB) could work. We assume the fermion content

ΨL : (NA, NB, 1), ΨR : (NA, 1, NB), QL : (1, N̄B, NB), (4.27)

with nF copies of ΨL + ΨR and nQ copies of chiral fermions QL. To be anomaly free

when NB > 2 we need an integer ratio nF/nQ = NB/NA. (For NB = 2 we only need
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nFNA + nQNB to be even [92].) The β-function coefficients of two gauge couplings are

bA = −11

3
NA + nF

2NB

3
+ bA,s, bB = −11

3
NB + nF

2NA

3
+ bB,s, (4.28)

if we use nQ = NAnF/NB. bi,s is the scalar contribution and for instance bA,s =

NB/3, bB,s = NB/6 for Case C. Since the scalar contributions are small we need nF

sufficiently large to render bi of the largest gauge group small for SAFEs as in Fig. 4.4.

On the other hand, nF is bounded from above by the requirement that all gauge cou-

plings are asymptotically free, i.e. bA, bB < 0. It turns out that no nF may satisfy both

requirements. The alternative then is to introduce the appropriate number of fermions

that only transform under the large gauge group.

Two low scale unification models with a long history in the literature are both based

on a product of three gauge groups. One is the triunification model based on SU(3) ×
SU(3) × SU(3) [93] and the other is the Pati-Salam model SU(4) × SU(2)L × SU(2)R

[21]. Our results show that the former cannot be SAFE and so we turn to the latter. In

this case of all the SAFEs that we have found there is only one that is of relevance. From

the results for Case A we find that we can add a single scalar Φ transforming as (4, 2, 1).

We choose (4, 2, 1) rather than (4, 1, 2) to ensure that Φ will yield the SM Higgs doublet.

As we have just discussed, the constraint on the SU(4) β-function from Fig. 4.4,

|b4| . 0.44, requires additional fermions. Thus in addition to the nF families of standard

fermions FL/R we have a number nf of Dirac fermions fL/R transforming only under

SU(4). These fermions are vector-like, they can have mass without breaking the gauge

symmetries. These masses are additional parameters in the model. The particle content

is then as shown in Table 4.1. Upon the breakdown SU(4) → SU(3) we see that the

model predicts a coloured scalar doublet in addition to the Higgs doublet.

Table 4.1: Matter fields in the simplest model.

Fields Number SU(4) SU(2)L SU(2)R
FL nF 4 2 1
FR nF 4 1 2
fL,R nf 4 1 1
Φ 1 4 2 1

The one loop β-functions are

b4 =
2

3
(2nF + nf ) +

1

3
− 44

3
, bL =

4

3
nF +

2

3
− 22

3
, bR =

4

3
nF −

22

3
(4.29)

where nF and nf are defined in Table 4.1. As shown in Fig. 4.10(a) there are only two
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Figure 4.10: The two viable points in (4.30) showing (a) the β-function coefficients and (b) the coupling
ratios at the UVFPs.

viable points with nF ≥ 3,

P1 : nF = 3, nf = 15; P2 : nF = 4, nf = 13, (4.30)

that give SAFEs. The corresponding fixed point values of the coupling ratios, for both

the stable and unstable cases, are shown in Fig. 4.10(b).
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Figure 4.11: Quartic coupling flow towards the UV for the case P1, showing the stable and unstable
fixed points. gL/g4 is set to its fixed point value.

Fig. (4.11) shows how the quartic couplings flow towards the UV for the case P1.

The basin of attraction lies to the left of a line on which the unstable fixed point sits.

Although the SU(2)L gauge coupling gL is given by its fixed point value gL/g4 = 1/8

for this plot, the basin of attraction hardly changes as long as gL/g4 . 1 down to some

IR scale of interest. For gL/g4 & 1 the boundary starts to move significantly to the left,

until at gL/g4 ≈ 2 the quartic couplings can no longer both be positive at that IR scale.

By also imposing the vacuum stability conditions in (4.26) on the basin of attraction, we
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find that the viable flows for the λ̄i are restricted to a finite region that shrinks if gL/g4

grows larger.

SU(4) must break at a high enough scale, at least higher than O(100) TeV, due

to constraints for example from the rare decay K → eµ. (The constraints on SU(2)R

breaking are not so strong.) On the other hand the (4, 2, 1) scalar Φ is not available to

break SU(4) since the VEV 〈Φ〉 would also break SU(2)L. The VEV of an additional

(4, 1, 2) scalar would be sufficient to break the Pati-Salam gauge group down to SU(3)×
SU(2)L × U(1), but then the model would not be SAFE. This leaves strong dynamics

as the possible origin for this breakdown. We note that the fermion content includes

the right-handed neutrino, and a right-handed neutrino condensate does break the Pati-

Salam gauge group down in the desired manner.1 Lepton number is violated, but baryon

number and proton stability is preserved.

Here we see the remaining tension in a low scale unification model because there

is still some hierarchy between the unification scale and the Higgs mass that remains

unexplained. In our case the neutrino condensate would give rise to a massive SU(4)

gauge boson which in turn will contribute to the Higgs mass via the diagram in Fig. 4.12.

Some other peculiar property of the strong interactions would be needed to explain the

suppression of K → eµ and the small Higgs mass simultaneously.

Figure 4.12: One loop correction to the Higgs mass from an SU(4) gauge boson.

Another property of the model is that no Yukawa couplings are allowed by the Pati-

Salam gauge symmetries. So Yukawa couplings would have to be induced by the same

strong interactions that break these symmetries. The resulting couplings are not too

constrained by symmetries since they need only respect the unbroken SM symmetries.

SU(2)R is broken and so there is no reason to expect mt = mb and SU(4) is broken and

so there is no reason to expect mb = mτ etc. Dynamically generated Yukawa couplings

may seem peculiar but they just correspond to certain induced three-point amplitudes

with soft UV behavior, just as dynamical masses are induced two-point amplitudes with

soft UV behavior.

With regard to a strong SU(4) there are two other requirements to meet. The first

concerns the impact of higher loop corrections on the SU(4) β-function. Because the

1The SU(4) preserving condensate 〈F̄F 〉 would break SU(2)L × SU(2)R but the resistance offered
by SU(2)L × SU(2)R to this breaking is enhanced by the number of chiral doublets.
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one loop contribution is restricted to be small, the higher order contributions can be

relatively large. If these contributions are positive then an infrared fixed point (IRFP)

can arise that is approached from below. We need to check that it is large enough for

dynamical symmetry breaking. The second requirement is that we need the SU(3) β-

function to turn sufficiently positive below this breaking scale, so that αs can approach

the desired ∼ 0.12 value at the electroweak scale. The fact that it does turn positive

is to be expected since SU(4) has a small negative β-function, and the removal of a

negative gauge contribution due to SU(4) breaking can turn it positive. In other words

it is the additional vector-like fermions in the model that can produce a positive SU(3)

β-function. Here we find a SU(3) IRFP that is approached from above, but only down

to the mass scale of these fermions. These fermion masses could thus be close to a TeV.

From the first requirement the number n′f of vector-like fermions present in the theory

at the SU(4) breaking scale needs to be less than the number nf listed in (4.30). (The

fermions not present must have some larger mass.) From the second requirement n′f
cannot be too small. By considering 4-loop β-functions [94] we find that perhaps the

best compromise is 2nF + n′f = 15. Then the SU(4) IRFP is at α4 ∼ 0.43 while the

SU(3) IRFP is at αs ∼ 0.12. The difference between these two numbers is interesting

but it is not certain that it is large enough.

4.6 Conclusions

In this chapter we explore the construction of UV complete quantum field theories con-

taining truly elementary scalar fields without UV Landau poles. We extend the old

study in [14] to search for SAFEs for semi-simple gauge groups, which is well motivated

to achieve low scale unification. The UV property of gravity is far from clear and we re-

strict ourselves to study β-functions of the coupled system of gauge, Yukawa and quartic

couplings.

We review the basic idea of a SAFE in Sec. 4.2 and present numerical results of simple

gauge group for comparison with latter analysis. In Sec. 4.3 we generalize the analysis

to the semi-simple gauge groups in (4.10), which includes the Pati-Salam model and

other low scale unification models as examples. We only consider scalars in fundamental

representations, both to incorporate the SM Higgs and to minimize the number of scalar

degrees of freedom. We build up four benchmarks for quantitative study and the β-

functions are presented in (4.14) and Appendix 4.7. Our main numerical results and

analysis are presented in Sec. 4.4. We search for solutions by parameter scan over gauge

group size Ni and β-function coefficients bi. For each Ni set, we find the upper bounds
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on ri ≡ bi/bi,M . To provide a guide for model building, we present these upper bounds

in Fig. 4.4 and Fig. 4.5 for all benchmarks. In Sec. 4.5 we consider the simplest model

that illustrates some of the issues to be faced in SAFE model building.

We list here the properties of the UVFP in SAFEs that we have observed.

• The gauge couplings and typically most of the quartic couplings are running as 1/t

in fixed ratios.

• Stability demands that the Yukawa couplings vanish more rapidly, 1/tα with α > 1,

as do those quartic couplings that have vanishing λ̄i.

• Fewer scalar degrees of freedom helps to achieve SAFEs.

• A hierarchy in the sizes of the different gauge groups helps to achieve SAFEs.

• Among all UVFPs there is always one that is UV stable.

• SAFEs with negative quartic couplings are rare.

• The gauge coupling associated with the largest group is typically constrained to

run the slowest of all the couplings. Since its associated b is the smallest, it is the

largest coupling in the UV.

• To achieve this small b the theory typically needs some number of vector-like

fermions that are only charged under the largest gauge group(s).

If the coupling ratios remain anywhere in the vicinity of the fixed point as the cou-

plings themselves grow larger, then it will be the case that the largest gauge group grows

strong first in the infrared. This situation may be related to the real world where the

quartic couplings and the gauge couplings of the small electroweak gauge groups are ob-

served to be small. In fact in our simplest model we saw that the IR flow of couplings

was such that a linear combination of the quartic couplings was bounded from above.

Yukawa β-functions often have the additional property that they are proportional to

the Yukawa couplings to all orders. Thus if they are actually set to their stable fixed

point values they are in fact identically vanishing. In our simplest model we saw that the

Yukawa couplings identically vanished by gauge symmetry, and thus were only allowed

to be generated once the symmetry was broken. It appears that this breakdown and

generation of the Yukawa couplings occurs at the scale where the largest gauge group

grows strong. The picture is that Yukawa couplings have a dynamical origin in contrast

to the truly fundamental gauge and scalar quartic couplings.
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It is interesting to compare a SAFE involving several gauge groups to the case of

grand unification. In the latter case relations between gauge couplings are fixed by the

unification of several gauge groups at some scale. In the SAFE, the ratios of all couplings

are flowing to fixed values at the UVFP. But while the theory is fixed in the UV, the

theory in the IR is dependent on which flow path the theory is on. A SAFE could be

extended to gravity if gravity is also asymptotically free, as is the case for quadratic higher

derivative gravity theories. In such a theory all coupling ratios, including gravitational

couplings, may be fixed in the deep UV. In this case the ratios of the non gravitational

couplings at this ultimate fixed point may differ from what we have described here.

In summary our results show that it might be possible to construct realistic completely

asymptotically free gauge theories with complete UV stability containing both fermions

and scalars in context of semi-simple gauge groups. This is in contrast to the studies

reviewed in [15] that typically suffer from UV instability. Our results may be of interest

to unification model building beyond the Pati-Salam model, and it can be generalized to

incorporate other scalar representations that may be of interest in that context.

Note Added: As we were finalizing this work we saw the new paper [16]. This paper

discusses CAFEs that are not SAFEs, since nonvanishing Yukawa couplings at unstable

fixed points are utilized. We also noticed a particular quartic term (third term in their

(A.3f)) that we missed that would be present in our Case C with (4, 2, 1) and (4, 1, 2)

scalars. This term has the same property we discussed for the Levi-Civita term and it

does not change the absence of a SAFE in this case. Otherwise our β-functions agree

where they overlap up to the normalization of the quartic couplings.

4.7 Appendix: β-functions

In this appendix, we present the one loop β-functions for the quartic couplings for Cases

B, C and D. As explained in Sec. 4.3, Yukawa couplings can be neglected in the scalar

β-functions in the context of SAFEs. Thus our expressions only contain quartic and

gauge couplings terms.

For Case B, we deduce the five one loop β-functions from the potential (4.16),

(4π)2βλd1 = 4
[
(NANB + 4)λ2

d1 + 2 (NA +NB)λd1λs1 + 3λ2
s1

]
+ 4λd12 (NAλd12 + 2λs12)

− 6λd1

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B

]
+

3

4

[(
1 +

2

N2
A

)
g4
A +

(
1 +

2

N2
B

)
g4
B

]
+ 3g2

Ag
2
B

(
1 +

1

NANB

)



Chapter 4. UV: Stable Asymptotically Free Extensions of the Standard Model55

(4π)2βλs1 = 4λs1 [(NA +NB)λs1 + 6λd1] + 4λ2
s12 − 6λs1

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B

]
+

3

4

[(
NA −

4

NA

)
g4
A +

(
NB −

4

NB

)
g4
B

]
− 3g2

Ag
2
B

(
1

NA

+
1

NB

)
(4π)2βλ2 = 4

[
(NA + 4)λ2

2 +NBλd12(NAλd12 + 2λs12) +NBλ
2
s12

]
− 6λ2

(
NA −

1

NA

)
g2
A

+
3

4
g4
A

[(
NA −

4

NA

)
+

(
1 +

2

N2
A

)]
(4π)2βλd12

= 4
[
2λ2

d12 + λ2
s12 + λd1 ((NANB + 1)λd12 +NBλs12) + λs1 ((NA +NB)λd12 + λs12)

+ λ2 ((NA + 1)λd12 + λs12)
]

− 3λd12

[
2

(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B

]
+

3

4

(
1 +

2

N2
A

)
g4
A

(4π)2βλs12 = 4λs12 (NAλs12 + 4λd12 +NBλs1 + λd1 + λ2)

− 3λs12

[
2

(
NA −

1

NA

)
g2
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(
NB −

1
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)
g2
B

]
+

3

4

(
NA −

4

NA

)
g4
A (4.31)

where NA denotes the common gauge group.

Case C is split into two benchmarks. In Case C1, by imposing Z2 symmetry as in

(4.18), we deduce one loop β-functions for the four quartic couplings from (4.19).

(4π)2βλd1 = 4
[
(NANB + 4)λ2

d1 + 2 (NA +NB)λd1λs1 + 3λ2
s1

]
+ 4NBλd12 (NAλd12 + 2λs12)
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(4π)2βλs12 = 4λs12 (NAλs12 + 4λd12 + 2NBλs1 + 2λd1)

− 6λs12

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B

]
+

3

4

(
NA −

4

NA

)
g4
A (4.32)

Case C2 denotes the general case without Z2 symmetry. The one loop β-functions for
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the six quartic couplings are

(4π)2βλd1 = 4
[
(NANB + 4)λ2

d1 + 2 (NA +NB)λd1λs1 + 3λ2
s1
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(4π)2βλs2 = (4π)2βλs1(NB → NC , gB → gC , λd1 → λd2, λs1 → λs2)
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They are symmetric under interchange λd1 → λd2, λs1 → λs2, NB → NC and gB → gC .

When NA = 4, NB = NC = 2, a new quartic coupling can be constructed by the Levi-

Civita symbol as in (4.20). The β-functions are then modified as

(4π)2βdi → (4π)2βdi + 8λ2
ε , (4π)2βsi → (4π)2βsi − 8λ2

ε . (4.34)

The β-function of this new coupling is

(4π)2βε = 4λε [λd1 + λd2 − λs1 − λs2 + 4(λd12 − λs12)]− 9

2
λε(5g

2
4 + g2

L + g2
R). (4.35)

For Case D, there are one double trace and three single trace couplings. From potential

(4.21), we deduce following β-functions,

(4π)2βλd = 4
[
λ2
d (NANBNC + 4) + 2λd (λs1 (NA +NBNC) + λs2 (NANC +NB) + λs3 (NANB +NC))
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+ 2NAλs2λs3 + 2NBλs1λs3 + 2NCλs1λs2 + 3
(
λ2
s1 + λ2

s2 + λ2
s3

) ]
− 6λd

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B +

(
NC −

1

NC

)
g2
C

]
+

3

4

[(
1 +

2

N2
A

)
g4
A +

(
1 +

2

N2
B

)
g4
B +

(
1 +

2

N2
C

)
g4
C

]
+ 3

(
g2
Ag

2
B

NANB

+
g2
Ag

2
C

NANC

+
g2
Bg

2
C

NBNC

)
(4π)2βλs1 = 4

[
λ2
s1 (NBNC +NA) + 2λs1 (3λd +NBλs2 +NCλs3) + 4λs2λs3

]
− 6λs1

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B +

(
NC −

1

NC

)
g2
C

]
+

3

4
g4
A

(
NA −

4

NA

)
+ 3

[
g2
Bg

2
C − g2

A

(
g2
B

NB

+
g2
C

NC

)]
(4π)2βλs2 = 4

[
λ2
s2 (NANC +NB) + 2λs2 (3λd +NAλs1 +NCλs3) + 4λs1λs3

]
− 6λs2

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B +

(
NC −

1

NC

)
g2
C

]
+

3

4
g4
B

(
NB −

4

NB

)
+ 3

[
g2
Ag

2
C − g2

B

(
g2
A

NA

+
g2
C

NC

)]
(4π)2βλs3 = 4

[
λ2
s3 (NANB +NC) + 2λs3 (3λd +NAλs1 +NBλs2) + 4λs1λs2

]
− 6λs3

[(
NA −

1

NA

)
g2
A +

(
NB −

1

NB

)
g2
B +

(
NC −

1

NC

)
g2
C

]
+

3

4
g4
C

(
NC −

4

NC

)
+ 3

[
g2
Ag

2
B − g2

C

(
g2
A

NA

+
g2
B

NB

)]
(4.36)

For NA = 4, NB = NC = 2 case, the modification of β-functions from the Levi-Civita

term in (4.22) is quite similar to that in Case C. We find

(4π)2βd → (4π)2βd + 8λ2
ε , (4π)2βs1 → (4π)2βs1 − 8λ2

ε . (4.37)

The β-function of this new coupling is

(4π)2βε = 24λε (λd − λs1)− 9

2
λε(5g

2
4 + 2g2

L + 2g2
R). (4.38)



Chapter 5

UV: Asymptotically Safe Standard
Model via Vectorlike Fermions

In this chapter, we explore the asymptotically safe extensions of the Standard Model

with the large number-of-flavour techniques. The text in this chapter is reproduced from

[18].

5.1 Introduction

Although the Standard Model (SM) of particle interactions is an extremely successful

theory of nature, it is an effective theory but not a fundamental one. Following Wilson

[2, 3], a theory is fundamental if it features an ultraviolet fixed point. The latter can be

either non-interacting (asymptotic freedom) [17, 4, 5, 14, 15, 16, 98, 99, 100, 102, 177]

or interacting (asymptotically safe) [25, 103, 104] or mixed [99, 104, 105, 106]. Except

for the non-abelian gauge couplings none of the remaining SM couplings features an

ultraviolet fixed point.

Here we extend the idea of a safe QCD scenario in [107] to the entire SM. We argue

that an asymptotically safe completion of the SM can be realized via new vector-like

fermions1. Our work relies on the limit of a large number of fermion matter fields, which

allows us to perform a 1/NF expansion [26, 109]. Here the relevant class of diagrams

can be summed up to arbitrary loop order, leading to an UV interacting fixed point for

the (non) abelian interactions of the SM. Thus, we go beyond the cornerstone work of

[25] where UV safety is realized in the Veneziano-Witten limit by requiring both Nc and

NF to go to infinity with their ratio fixed, and adjusting it close to the value for which

asymptotic freedom is lost. Depending on how these new vector-like fermions obtain

1An interesting complementary approach appeared in [108]. Here the authors add new fermions in
higher dimensional representations of the SM gauge groups, hoping for a (quasi) perturbative UV fixed
point. The models were unable to lead to a safe hypercharge and Higgs self-coupling.
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their masses, we can either introduce new scalars that generate fermion masses through

new Yukawa operators or, simply introduce explicit vector-like mass operators.

5.2 Building Asymptotic Safety

In the following, we focus on the latter most economical case and explore the following

three distinct SM SU(3)× SUL(2)× U(1) charge assignments and multiplicity:

i) NF (3, 2, 1/6);

ii) NF3 (3, 1, 0)⊕ NF2 (1, 2, 1/2);

iii) NF3 (3, 1, 0)⊕NF2 (1, 3, 0)⊕NF1 (1, 1, 1).

To the above one needs to add, for each model, the associated right charge-conjugated

fermions. The above models are to be viewed as templates that allow us to exemplify

our novel approach in the search of an asymptotically safe extension of the SM. The

basic criterion is that different fermions should have the same charge if it is non-zero;

otherwise the summation technique fails (see Eq. (5.4) and the corresponding discussion).

In fact we have checked that other models (e.g. NF3 (3, 1, 2/3) ⊕ NF2 (1, 3, 0) featuring

new top primes) lead to similar results as the ones used here2. Finally, we neglect (in

model (i)) possible mixing among the new vector-like fermions and SM quarks. We start

by considering the RG equations describing the gauge-Yukawa-quartic to two loop order

including vector-like fermions. We have checked that our results agree for the SM case

with the ones in [110, 111]. We used [112, 113] for the vector-like fermions contributions to

gauge couplings and [114, 115] for the contributions to the Higgs quartic. The associated

2Following our innovative approach, a recent follow-up paper appeared [178], in which the set NF3

is abandoned. Here QCD remains asymptotically free while the rest of the SM gauge couplings are still
safe.
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beta functions read:

β1 =
dα1

dt
=

(
b1 + c1α1 + d1α3 + e1α2 −

17

3
αyt

)
α2

1

β2 =
dα2

dt
= (−b2 + c2α2 + d2α3 + e2α1 − 3αyt)α

2
2

β3 =
dα3

dt
= (−b3 + c3α3 + d3α2 + e3α1 − 4αyt)α

2
3

βyt =
dαyt
dt

=

(
9αyt −

9

2
α2 − 16α3 −

17

6
α1

)
αyt + β2loop

yt

β1loop
αh

=
dαh
dt

=
3

8

(
α2

1 + 3α2
2 + 2α1 (α2 − 4αh) +

+ 64α2
h − 24α2αh + 32αhαyt − 16α2

yt

)
β2loop
αh

=
1

6

(
−4DR3S2 (R2)α2

2NF2 (2α1 + 6α2 − 15αh)

− 4DR3DR2α
2
1Y

2NF1 (2α1 + 2α2 − 5αh)) + βSM
αh 2loop

βSM
αh 2loop

=
1

48

(
−379α3

1 − 559α2α
2
1 − 289α2

2α1 + 915α3
2

)
+

1

48

(
1258α2

1 + 468α2α1 − 438α2
2

)
αh − 312α3

h

+
1

48
(1728α1 + 5184α2)α2

h

(5.1)

where t = ln (µ/MZ) and α1, α2, α3, αyt , αh are the U(1), SU(2), SU(3), top-Yukawa

and Higgs self-couplings respectively and we have used the normalization

αi =
g2
i

(4π)2 , αyt =
y2
t

(4π)2 , αh =
λh

(4π)2 . (5.2)

βSM
αh 2loop

and β2loop
yt represent two loop SM contributions to the RG functions of αh and

αyt , which are not shown explicitly. DR2 , DR3 represent the dimensions of the repre-

sentations (R2, R3) under SU(2) and SU(3) while S2 (R2) represents the Dynkin index

of the representation R2. The contributions of the SM chiral fermions are encoded in

b1, b2, b3, c1, c2, c3, d1, d2, e2, e3 in Eq.(5.3) and can be distinguished from the new vector-
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like contributions that are all proportionals to a “DR” coefficient

b1 =
41

3
+

8

3
Y 2NFDR2DR3 , c1 =

199

9
+

8

3
Y 4NFDR2DR3

b2 =
19

3
− 4NF

3
DR3 , c2 =

35

3
+

49NF

3
DR3

b3 = 14− 4NF

3
DR2 , c3 = −52+

76NF

3
DR2

d1 =
88

3
+

32

3
Y 2NFDR2DR3 , e1 = 9 + 6Y 2NFDR2DR3

d2 = 24 +
16

3
NFDR3 , e2 = 3 + 4Y 2NFDR3

d3 = 9 + 3NFDR2 , e3 =
11

3
+ 4NFY

2DR2 ,

(5.3)

where for simplicity, the above explicit coefficients only apply to fundamental repre-

sentations (models (i) and (ii)); for higher dimension representations the corresponding

Casimir invariants and the Dynkin index should be incorporated.

The following diagrams (see Fig. 5.1) encode the infinite tower of higher order con-

tributions to the self-energies related to the gauge couplings. These diagrams can be

summed up analytically (the abelian and non-abelian cases were first computed respec-

tively in [27] and [28]).

...

+

...

...

Figure 5.1: Higher order self-energy diagram

To the leading 1/NF order, the higher order (ho) contributions to the RG functions of

β2 and β3 are given by [26] and have been generalized to the case with any hypercharge

Y and semi-simple group (F1 first appeared in [27]):

βho1 =
2A1α1

3

F1(A1)

NF

; βhoi =
2Aiαi

3

H1i(Ai)

NF

(i = 2, 3) , (5.4)
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where

A1 ≡ 4α1NFY
2DR2DR3 ; A2 ≡ 2α2NFDR3

A3 ≡ 2α3NFDR2

F1 =

∫ A/3

0

I1(x)dx

H1i =
−11

2
Nci +

∫ A/3

0

I1(x)I2(x)dx (Nci = 2, 3)

I1(x) =
(1 + x) (2x− 1)2 (2x− 3)2 sin (πx)3

(x− 2)π3

×
(
Γ (x− 1)2 Γ (−2x)

)
I2(x) =

N2
ci − 1

Nci

+
(20− 43x+ 32x2 − 14x3 + 4x4)

2 (2x− 1) (2x− 3) (1− x2)
Nci .

We recall that the validity of the summation depends on our first criterion which implies

that for each gauge group we have only a single Ai, constraining the possible vector-like

models. F1 has poles at A = 15/2 + 3n while H1i has poles at A = 3, 15/2, · · · , 3n+ 9/2.

In this chapter we concentrate on the first UV pole branch (A = 15/2 for F1 and A = 3

for H1i). Note that the pole structure of H1i is the same for all the non-abelian groups,

implying that when NF is fixed, the non-abelian gauge coupling values will be very close

to each other if DR2 = DR3 . The presence of the UV poles at F1 and H1i guarantees

the existence of an UV safe fixed point for the gauge couplings. Note that the functions

F1 and H1i are scheme independent according to [116]. We therefore expect the pole

structure and the related UV fixed points to be scheme independent. Physical quantities,

such as scaling exponents, were computed in [25]. The 1/N2
F terms are negligible for NF

sufficiently large. Specifically, as pointed out in [26], for SU(3) one finds that NF needs

to be larger than 32 while for U(1) one finds NF ≥ 16.

Thus the total RG functions for the gauge-Yukawa subsystem can be written as:

β1tot = β1 (α1tot, α2tot, α3tot, αyttot) + βho1 (α1tot)

β3tot = β3 (α1tot, α2tot, α3tot, αyttot) + βho3 (α3tot)

β2tot = β2 (α1tot, α2tot, α3tot, αyttot) + βho2 (α2tot)

βyttot =

(
9αyttot −

9

2
α2tot − 16α3tot

)
αyttot + β2loop

yttot ,

(5.5)

where αitot corresponds to the gauge couplings including the leading 1/NF contribution

to the self-energy diagrams, and αyttot is the accordingly modified Yukawa coupling.

We also avoided the double counting problem due to the simultaneous presence of the
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ci (i = 1, 2, 3) terms in Eq. (5.1) and the leading terms of βho2, βho3 in Eq. (5.4). We

employ the MS scheme, which is a mass independent RG scheme allowing us to investigate

the running of the couplings independently of the running vector-like masses, except for

threshold corrections that can be shown to be controllably small.

Solving Eqs. (5.5), we obtain the running coupling solutions depicted in Fig. 5.2 by

the blue, green, red and purple curves, corresponding respectively to the U(1), SU(2),

SU(3) gauge couplings and top Yukawa coupling; the orange curve corresponding to the

Higgs coupling has not yet been included. It is clear that all the gauge couplings are UV

asymptotically safe while the top Yukawa coupling is asymptotically free. Note that the

sub-system encounters an interacting UV fixed point at 3.2 × 1013 GeV which is safely

below the Planck scale and so gravity contributions can be safely ignored. For the UV

fixed point to exist, the choice of the initial value of the gauge coupling is not crucial

since the only requirement is αi (t0) < αi (t∗) , (i = 1, 2, 3) where t0 = ln (µ0/MZ) is an

arbitrary initial scale and t∗ is the scale for the UV fixed point. For simplicity, instead

of sequentially introducing new vectorlike fermions, we assume they are introduced all at

once at a particular scale3 near their MS-scheme mass m(m) = m (m ≈ µ = 2 TeV (or

t = 3) in Fig. 5.2). Note that a too small NF will fail the 1/NF expansion. To produce

αh

1/2α1
α2

α3

10αy
0 5 10 15

Log10
μ

GeV

0.00

0.02

0.04

0.06

0.08

0.10

0.12

αi

Figure 5.2: Running of the gauge-Yukawa couplings as function of the RG time with log10 base using
model (ii) (NF3 (3, 1, 0) ⊕ NF2 (1, 2, 1/2)). The blue, green, red and purple curves correspond respec-
tively to the U(1), SU(2), SU(3) gauge and top Yukawa couplings. The top Yukawa coupling αy and
U(1) gauge coupling α1 have been rescaled by a factor 10 and 1/2 respectively to fit all couplings on one
figure. The orange curve depicts the two loop level Higgs quartic coupling αh in the same model. Here
NF3 = 40, NF2 = 24 and the initial values of the gauge and Yukawa couplings are chosen to be the SM
coupling values at 2 TeV while the Higgs quartic coupling is chosen to be 0.0034.

Fig. 5.2, we have used model (ii) with NF3 = 40, NF2 = 24 with the initial values of the

3We have checked that our results change very little if we employ different vector-like fermion masses
corresponding to a larger matching scale e.g. m ≈ µ = 100 TeV; the UV fixed point transition scale
increases accordingly to around 1016 GeV.
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gauge and Yukawa couplings chosen to be the SM coupling values at 2 TeV corresponding

to t0 = 3:

α3(t0) = 0.00661 α2(t0) = 0.00256

α1(t0) = 0.00084 αy(t0) = 0.00403 (5.6)

We emphasize that the basic features of the gauge and Yukawa curves in Fig. 5.2 are

generic and not limited only to model (ii). Figures similar to Fig. 5.2 result for all three

vector-like fermion models (i, ii, iii).

We next consider the Higgs quartic coupling whose beta function to two loop order

is given in Eq. (5.1). We first plot βαh as a function of αh for model (ii) with the values

of the gauge and Yukawa couplings at the fixed point and NF3 = 40, NF2 = 24. Fig. 5.3

shows that there exist four different regions denoted as I, II, III, IV . Depending on the

choice of the initial value of αh, the Higgs self-coupling can be in any of these distinct

phases. Because we are searching for asymptotic safety we are only interested in phase

III. To guide the reader we mark with a red dot in Fig. 5.3 the ultraviolet critical value4

of αh. The plot shows that for the Higgs self-coupling to be asymptotically safe it must

run towards the ultraviolet to values within region III, where the other couplings have

already reached their fixed point values. If, however, the dynamics is such that it will run

towards ultraviolet values immediately below the critical one the ultimate fate, dictated

by phase II, is vacuum instability.

Fig. 5.3 also provides a few insights for constraining viable vector-like fermion models.

The expression of β2loop
αh

in Eq. (5.1) shows the new vector-like fermions will only provide

negative contributions to β2loop
αh

when NF2 is order of 10. In conjunction with Fig. 5.3,

we expect that the smaller the negative contribution of these new vector-like fermions,

the smaller the critical value of αh, and the easier to enter phase III. Actually, we

find that the pure SM RG function of αh (without new vector-like fermion contributions

to βαh only) provides the smallest critical value of αh, commensurate with the above

expectation. Alternatively, if these negative contributions are too large, the cubic curve

of βαh will never intersect the αh axis and we will never achieve an asymptotically safe

solution (only two phases remain in this limiting case). We learn that the smaller the

hypercharge and dimension of the representation, the smaller will be the critical value of

αh (making it easier to realize asymptotic safety for the Higgs quartic). Following this

4We distinguish the ultraviolet critical value with the initial critical value of αh, discussed later. The
former quantity is scale dependent; thus the ultraviolet critical αh is at a scale close to the UV fixed
point. The latter quantity is an IR quantity, above which the Higgs self-coupling flows to an UV fixed
point; we shall take this inital critical αh to be at 2 TeV.
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criterion, model (ii) should have the smallest critical value of αh.

I II III IV-0.05 0.05 0.10
αh

-0.15

-0.10

-0.05

0.05

0.10

0.15

βαh

Figure 5.3: This figure shows βαh
with αh with the values of the gauge and Yukawa couplings at the

fixed point and NF3 = 40, NF2 = 24. There exists four different kinds of phases denoted as I, II, III, IV
dependent on the initial value of αh. The red point denotes the ultraviolet critical value of αh which
determines whether we could have a UV safe fixed point with positive or negative αh value.

We obtain the same results for the gauge and Yukawa couplings as before, taking

their initial values to be the SM ones at 2 TeV as in (5.6). We find that to obtain

an asymptotically safe solution for αh we must choose its initial value to be (at least)

αh(t = 3) = 0.0034, about six times the SM value at that scale. For the SM initial value

αh(t0) = 0.00054 the theory achieves the negative value αh = −0.06 at the UV fixed point,

yielding an unstable vacuum. The results for model (ii) (again using NF3 = 40, NF2 = 24)

are shown in Fig. 5.2, with the Higgs quartic coupling in orange.

We thus attain UV completion for the whole gauge-Yukawa-Higgs system with gauge

and Higgs quartic couplings (α1, α2, α3, αh) asymptotically safe and top Yukawa coupling

αt asymptotically free. The UV fixed point occurs at 3.6 × 1014 GeV – well below the

Planck scale and so gravity contributions can be safely ignored. The unique feature

in Fig. 5.2 occurs because when α2 reaches its fixed point value βαh almost vanishes.

However when α1 increases to its final value the almost fixed point in the scalar coupling

settles to its true fixed point value. In addition this feature, for fixedNF3 = 40, disappears

gradually when increasing NF2 from 18 to 25. This is because the larger NF2, the smaller

α2 is; consequently the self-coupling is more sensitive to the change in α1.

We have further explored which regions of parameter space (αh, NF3, NF2) can yield

asymptotic safety. We find that αh reaches its lowest critical value of 0.0027 when

NF2 = 18 and 32 ≤ NF3 ≤ 220 (insensitive to NF3 and the bounds of NF3 are discussed

below). This critical αh value can be further decreased by considering large NF of order

a few hundred. Interestingly, there exists an upper value of NF above which the A in

Eq. (5.4) goes beyond the first UV pole, moving therefore to the second branch of F1 and
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H1. Within the first branch, the smallest critical αh with large NF occurs for αh = 0.002

with NF2 near and slightly below the boundary (say NF2 = 590) above which one needs to

move to the second branch. The result is insensitive to NF3 as well and 32 ≤ NF3 ≤ 220

where the upper bound NF3 = 220 is due to the second branch of α3 while the lower

bound NF3 = 32 is to satisfy leading 1/NF expansion. The UV fixed point occurs below

but near the Planck scale. An initial investigation of these other branches suggest that a

SM Higgs self-coupling value might be reached, but we leave in-depth investigations for

future studies.

Comparing models (i) and (ii), we find that the critical value of αh is overall much

higher for model (i). However, similar to model (ii), at very large NF one can decrease

αh below αh(t0) = 0.0049, corresponding to the lowest critical value one can achieve for

small NF . For example, for an initial value of αh = 0.0035 one encounters a UV fixed

point provided NF ≥ 105. It is possible to further decrease αh with increasing NF .

For model (iii), we have a similar trend as the previous models. For simplicity,

we consider the case where NF1 = NF2 and note that to achieve αh = 0.0035 (still

quite large compared to the SM), one needs NF3 = 40 and NF1 = NF2 ≥ 131. Here

we find the smallest critical Higgs self-coupling occurs for αh = 0.00176 with NF1 =

2200, NF2 = 147, NF3 = 138. These values correspond to the uppermost values allowed

by the first branches of the corresponding F1 and H1 functions. This Higgs quartic value

is, however, still three times its SM one at 2 TeV, which is roughly two times the value

at the electroweak scale. We expect that the critical αh further decreases in the second

branch when considering even larger NF . We have checked that our results are stable

against the introduction of known higher order terms in 1/NF proportional to the F2∼4

and H2∼4 functions.

5.3 Conclusion

Summarising, for all three vector-like-fermion models, with SM gauge and top Yukawa

couplings values as initial conditions at IR, we are able to realize UV completion of the

gauge-Yukawa subsystem (gauge couplings asymptotically safe and Top Yukawa coupling

asymptotically free). Upon including the Higgs quartic coupling, we find that its initial

low energy value must attain a certain threshold for a given choice of the number of vector-

like fermions. Above this critical value, we attain a UV asymptotically safe completion,

whereas below this value the system is UV unstable. For the three vector-like-fermion

models we studied, model (ii) possesses the lowest critical value of αh = 0.0027 for

a relatively small number of flavours NF . This value is still larger than the (as yet
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unmeasured) SM Higgs quartic coupling. If at future colliders the Higgs quartic coupling

is found to be 5 − 6 times larger (predicted in some studies without altering the SM

RG functions e.g. [117]), model (ii) could realize asymptotic safety for the whole gauge-

Yukawa-Higgs system. Intriguingly an αh close to the SM value, say around 2 times

at electroweak scale, can be achieved for very large values of NF1 in model (iii) within

the first branch of the F1 and H1 functions. This allows complete asymptotic safety at

energies below but near the Planck scale.

Our results pave the way to new approaches for making the SM fully asymptotically

safe5.

5Indeed, building on the present approach in [178] it has been shown that one can construct related
asymptotically safe SM extensions in which the Higgs quartic coupling matches the SM value. In [182]
instead, asymptotic safety is achieved via dynamical symmetry breaking of a calculable UV fixed point.



Chapter 6

IR: Quark matter may not be
strange

We finished our exploration of UV physics in previous chapters. Now we switch our

discussion to the dense matter physics at the infrared scale in this chapter. With a

phenomenological quark-meson model that can accommodate the density-dependent and

flavour-dependent feedback of QCD vacuum, we obtain an unprecedented result that

non-strange quark matter (udQM) is more stable than the strange quark matter and

normal nuclear matter for baryon number A > Amin with Amin & 300. The text in this

chapter is reproduced from [19].

6.1 Introduction

Hadronic matter is usually thought to be the ground state of baryonic matter (matter

with net baryon number) at zero temperature and pressure. Then quark matter only

becomes energetically favorable in an environment like at a heavy ion collider or deep

inside the neutron star. However as proposed by Witten [55] (with some relation to

earlier work [54, 56, 119, 120]), quark matter with comparable numbers of u, d, s, also

called strange quark matter (SQM), might be the ground state of baryonic matter, with

the energy per baryon ε ≡ E/A even smaller than 930 MeV for the most stable nuclei
56Fe.

With the lack of a first-principles understanding of the strong dynamics, the MIT bag

model [121] has long been used as a simple approximation to describe quark matter. In

this model constituent quark masses vanish inside the bag, and SQM is found to reach

lower energy than quark matter with only u, d quarks (udQM). If SQM is the ground state

down to some baryon number Amin, as long as the transition of ordinary heavy nuclei

with A > Amin to SQM needs a simultaneous conversion of a sufficiently large number of

68
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down quarks to strange quarks, the conversion rate can be negligibly small [52]. A faster

catastrophic conversion could occur if the ground state was instead udQM. So quite often

the energy per baryon is required to satisfy εSQM . 930 MeV . εudQM [52, 122].

On the other hand, since the periodic table of elements ends for A & 300, this

catastrophe can be avoided if Amin & 300 for udQM. It is also recognized that the bag

model may not adequately model the feedback of a dense quark gas on the QCD vacuum.

How the u, d, s constituent quark masses respond to the gas should account for the fact

that flavour symmetry is badly broken in QCD. This can be realized in a quark-meson

model by incorporating in the meson potential the flavour breaking effects originating in

the current quark masses. Through the Yukawa term the quark densities drive the scalar

fields away from their vacuum values. The shape of the potential will then be important

to determine the preferred form of quark matter. This effect has already been seen in

NJL and quark-meson models [57, 58, 123, 124, 125]. These are studies in the bulk limit

and they tend to find that udQM has lower ε than SQM with the conclusion that neither

is stable.

The possibility that udQM is actually the ground state of baryonic matter has been

ignored in the literature, but it shall be our focus in this letter. With an effective

theory for only the scalar and pseudoscalar nonets of the sub-GeV mesons with Yukawa

coupling to quarks, we demonstrate a robust connection between the QCD spectrum

and the conditions for a udQM ground state in the bulk, i.e. εudQM . 930 MeV and

εudQM < εSQM. We shall also show that surface effects are of a size that can ensure that

Amin & 300 by numerically solving the scalar field equation of motion. This points to

the intriguing possibility that a new form of stable matter consisting only of u, d quarks

might exist not far beyond the end of the periodic table.

6.2 The meson model

Here we study an effective theory describing the mass spectra and some decay rates of

the scalar and pseudoscalar nonets of the sub-GeV mesons. The QCD degrees of freedom

not represented by these mesons are assumed to be integrated out and encoded in the

parameters of the phenomenological meson potential. We view our description as dual to

one that contains vector mesons [126]. With the parameters determined from data, we

can then extrapolate from the vacuum field values to the smaller field values of interest

for quark matter.

We find that a linear sigma model provides an adequate description without higher
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dimensional terms,

Lm = Tr
(
∂µΦ†∂µΦ

)
− V, V = Vinv + Vb. (6.1)

Φ = Ta (σa + iπa) is the meson field and Ta = λa/2 (a = 0, . . . , 8) denotes the nine

generators of the flavour U(3) with Tr(TaTb) = δab/2. Vinv is chirally invariant,

Vinv = λ1

(
Tr Φ†Φ

)2
+ λ2 Tr

(
(Φ†Φ)2

)
+m2 Tr

(
Φ†Φ

)
− c (det Φ + h.c.) . (6.2)

The c term is generated by the ’t Hooft operator. Boundedness from below requires that

λ1 + λ2/2 > 0. For there to be spontaneous symmetry breaking in the absence of Vb

requires that 8m2(3λ1 + λ2) < c2.

Vb =
∑8

i=1 Vbi describes the explicit SU(3) flavour breaking by incorporating the

current quark mass matrix M = diag(mu0,md0,ms0).

Vb1 = b1 Tr
(
Φ†M+ h.c.

)
,

Vb2 = b2εijkεmnlMimΦjnΦkl + h.c. ,

Vb3 = b3 Tr
(
Φ†ΦΦ†M

)
+ h.c. ,

Vb4 = b4 Tr
(
Φ†Φ

)
Tr
(
Φ†M

)
+ h.c. ,

Vb5 = b5 Tr
(
Φ†MΦ†M

)
+ h.c. ,

Vb6 = b6 Tr
(
ΦΦ†MM† + Φ†ΦM†M

)
,

Vb7 = b7

(
Tr Φ†M+ h.c.

)2
,

Vb8 = b8

(
Tr Φ†M− h.c.

)2
. (6.3)

Other possible terms have been eliminated by a field redefinition [127]. We adopt ms0 =

94 MeV and mud0 = 3.4 MeV [37]. This general set of terms is successful at describing the

lightest scalar and pseudoscalar nonets, with all masses below 1 GeV, which is typically

not possible when keeping the Vb1 term only [36, 38, 40]. The size of the bi coefficients are

made more meaningful by normalizing w.r.t. the estimates of Naive Dimensional Analysis

(NDA) [128] to obtain dimensionless NDA couplings,

λ̄1,2 =
f 2
π

Λ2
λ1,2, m̄

2 =
1

Λ2
m2, c̄ =

fπ
Λ2
c, b̄1 =

1

fπΛ
b1,

b̄2 =
1

Λ
b2, b̄3,4 =

fπ
Λ
b3,4, b̄5−8 = b5−8. (6.4)

fπ is the pion decay constant and Λ = 4πfπ is an effective cutoff.

In the meson model chiral symmetry breaking of QCD is realized by the non-zero

vacuum expectation values of the neutral scalar meson fields at the potential minimum,
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〈Φ〉 = T0v0 + T8v8 = 1
2
diag(vn, vn,

√
2vs), where we use the non-strange and strange

flavour basis: σn =
√

2√
3
σ0 + 1√

3
σ8, σs = 1√

3
σ0 −

√
2√
3
σ8. The deformation by M naturally

implies an SU(3) breaking vacuum vn 6=
√

2vs. A standard gauging of the model then

leads to vn = fπ = 92 MeV, vs =
√

2fK − fπ/
√

2 = 90.5 MeV [37, 38].

The mass spectra for the scalar and pseudoscalar nonets are derived by M2
s,ab =

∂2V/∂σa∂σb and M2
p,ab = ∂2V/∂πa∂πb. With isospin symmetry the eight independent

masses are m2
a0

= M2
s,11, m2

κ = M2
s,44, m2

π = M2
p,11, m2

K = M2
p,44 and m2

σ,m
2
f0
,m2

η,m
2
η′

after diagonalizing the (0, 8) sectors. The rotations are defined as: σ0 = cos θsσ−sin θsf0,

σ8 = sin θsσ + cos θsf0 and π0 = cos θpη
′ − sin θpη, π8 = sin θpη

′ + cos θpη.

We solve the 12 free parameters (λ1, λ2, c, m
2, b1, ..., b8) in (6.1) in terms of two

decay constants, eight meson masses and two mixing angles. θp is related to the diphoton

radiative decay widths of η′, η and the strong decay widths of a0, κ. θs needs to fit the

small and large ππ widths of f0 and σ respectively, which implies that the σ meson is

quite close to the non-strange direction.

Table 6.1: The NDA couplings for benchmarks

λ̄1 λ̄2 m̄2 c̄ b̄1 b̄2

Set 1 −0.06 0.33 −0.13 0.33 −4.4 0.19

Set 2 0.04 0.16 0.05 0.27 −1.6 −0.14

b̄3 b̄4 b̄5 b̄6 b̄7 b̄8

Set 1 −4.2 2.5 −3.0 50 1.4 4.7

Set 2 −0.18 0.09 4.0 5.2 −3.9 −5.5

Table 6.1 presents two benchmarks for the meson model. The parameters of set 1

are chosen to give a good fit to the data, however this leads to a rather large value for

the NDA coupling b̄6. Given the theoretical uncertainties associated with the neglected

higher dimensional terms, allowing the masses and decay widths to depart from the

experimental values could be more sensible. An example with up to 10% departures

gives the smaller NDA couplings of set 2.

Table 6.2 compares the experimental values [37] with the results of the two bench-

marks, including predictions for some decay widths. The f0, a0 widths have large KK

threshold corrections and so for these Flatté [129] rather than Breit-Wigner widths are

used. In these cases we also compare to ratios Rf0 , Ra0 that involve the strange and non-
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Table 6.2: The meson masses (in MeV), mixing angles, and decay widths (in MeV, keV for scalar,
pseudoscalar).

mπ mK mη m′η θp

Exp 138 496 548 958 NA

Set 1 138 496 548 958 −15.0◦

Set 2 148 454 569 922 −10.8◦

ma0 mκ mσ mf0 θs

Exp 980± 20 700-900 400-550 990± 20 NA

Set 1 980 900 555 990 31.5◦

Set 2 887 916 555 955 21.7◦

Γη→γγ Γη′→γγ Γσ→ππ Γκ→Kπ

Exp 0.52-0.54 4.2-4.5 400-700 ∼ 500

Set 1 0.59 4.90 442 451

Set 2 0.54 4.87 422 537

Γf0→ππ Rf0 Γa0→ηπ Ra0

Exp 10-100 3.8-4.7 50-100 1.2-1.6

Set 1 11 4.3 37.4 2.4

Set 2 20 4.0 52.0 1.2

strange amplitudes [130, 131]. We have checked that turning on explicit isospin breaking

(mu0 6= md0) has negligible impact on this study. But it does turn on the π0 − η(η′)

mixing angles, ε and ε′. ε is found roughly consistent with experiments [132, 133], while

ε′ can be compared to future measurements.

6.3 Quark matter in general

Now we can employ the meson model to study quark matter. Quark matter can become

energetically favorable due to the reduction of the constituent quark masses in the pres-

ence of the quark densities. QCD confinement on the other hand prevents net colour

charge from appearing over large volumes. We suppose that these residual QCD effects

on the energy per baryon are minor, similar to the way they are minor for the constituent

quark model description of much of the QCD spectrum.

With the Yukawa coupling to quarks, Ly = −2gψ̄Φψ, the equations of motion for the
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spherically symmetric meson fields of interest are [134, 135]

∇2σn(r) =
∂V

∂σn
+ g

∑
i=u,d

〈ψ̄iψi〉,

∇2σs(r) =
∂V

∂σs
+
√

2g〈ψ̄sψs〉.
(6.5)

∇2 = d2

dr2 + 2
r
d
dr

and there are NC = 3 colours of quarks. The quark gas is described by

the Fermi momentum for each flavour pFi = pFfi
1/3 where the quark fractions are fi =

ni/(NCnA), pF = (3π2nA)1/3 and nA is the baryon number density. The r dependence of

these quantities is determined by the equations of hydrostatic equilibrium.

The forces driving the field values are from the scalar potential and the quark gas

densities 〈ψ̄iψi〉 = 2NC
(2π)3

∫ pFi
0

d3p mi/
√
p2 +m2

i . In the interior the quark massesmu,d(r) =

gσn(r)+mud0 and ms(r) =
√

2gσs(r)+ms0 become smaller than the vacuum values mudv

and msv. The radius R of the bound state is defined where σi(r) and pFi(r) quickly

approach their vacuum values.

Electrons play a minor role for any A, and they need not be contained when R

becomes smaller than the electron Compton wavelength, i.e. A . 107 [52]. The quark,

scalar and Coulomb energy densities are [52, 53]

ρψ =
∑
i=u,d,s

2NC

(2π)3

∫ pFi

0

d3p
√
p2 +m2

i ,

ρφ = ∆V +
1

2

∑
i=n,s

(∇σi)2, ρZ =
1

2

√
αVC nZ . (6.6)

∆V is the potential energy w.r.t. the vacuum. nZ = 2
3
nu − 1

3
(nd + ns) is the charge

density, VC is the electrostatic potential and α = 1/137. The flavour composition of the

quark gas and the radius R can be determined by minimizing the energy of the bound

state E =
∫ R

0
d3r(ρψ + ρφ + ρZ) [60].

6.4 Quark matter in the bulk limit

At large A, finite size effects can be ignored and then both the meson fields and quark

densities can be taken to be spatially constant. From (6.5) and for given (pF , fi) the

meson fields take values where the two forces balance. Among these force balancing

points we can find the values of (p̄F , f̄i) that minimize the energy per baryon ε = (ρψ +

ρφ + ρZ)/nA, with the uniform charge density ρZ = 4π
5
αR2n2

Z . The flavour composition

f̄i is driven to charge neutrality in the large A limit to avoid the dominance of ρZ .
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Figure 6.1: The field values σn, σs (blue dashed, left axis) and the energy per baryon number ε (red

solid, right axis) in the bulk limit. The vertical lines denote the values of p
(n)
F , p̄F and p

(s)
F .

Fig. 6.1 presents the field values and the energy per baryon as functions of pF , after

minimization w.r.t. the fi, for the Set 1 benchmark with mudv = 330 MeV (which implies

g = 3.55 and msv = 548 MeV). The minimum energy per baryon is ε̄ = 903.6 (905.6)

MeV at p̄F = 367.8 (368.5) MeV with f̄s ≈ 0 for Set 1 (Set 2). For both sets udQM is

the ground state of baryonic matter in the bulk.

As pF increases from small values the fields move away from the vacuum along the

least steep direction, which is a valley oriented close to the σn direction. σn drops rapidly

at p
(n)
F and at p̄F the minimal energy per baryon ε̄ is reached. p̄F can be estimated by

minimizing the relativistic quark and potential energies

ε ≈ 3

4
NCpFχ+ 3π2 ∆Vn

p3
F

(6.7)

w.r.t. pF only. χ =
∑

i f
4/3
i and ∆Vn is the potential difference along the valley. This

gives

ε̄ ≈ NCχ̄ p̄F (6.8)

and

p̄4
F ≈

12π2∆Vn
(NCχ̄)

, (6.9)

with only u and d quarks contributing in χ̄. fs will finally turn on for pF & p
(s)
F when it is

energetically favorable to produce strange quarks (that may or may not be relativistic).

Our conclusion regarding udQM relies on the features that p
(n)
F . p̄F . p

(s)
F and

ε̄ . 930 MeV. These quantities can be estimated with a parameter scan of the meson

model along with mudv ≈ 330-360 MeV. The scan is constrained to be no more than

about 10% outside the experimental ranges and with NDA coupling magnitudes less
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than 15. We find the ranges p
(n)
F ≈ 280-305 MeV, p̄F ≈ 355-395 MeV, p

(s)
F & 550 MeV

and ε̄ ≈ 875-960 MeV. As an example of sensitivity to the lightest meson masses, Fig. 6.2

shows a ε̄ vs mσ projection of the parameter space where we see that realistic values of

mσ favor stable udQM.
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Figure 6.2: ε̄ vs mσ from the parameter scan.

6.5 Determination of Amin for udQM

At smaller A we need to include finite size effects and the Coulomb energy contribution.

We adopt the approximation that the values of pF and fi are constants, nonvanishing

only for r < R, which has been found to give a good approximation for the binding

energy [196]. For each A we solve for the profile of the field σn(r) moving along the

valley using (6.5) and find the configuration, including the radius R, that minimizes the

energy E.

For the Set 1 benchmark with mudv = 330 MeV, the numerical solutions of the electric

charge and the minimal energy per baryon as functions of A are presented by blue dots

in Fig. 6.3 and Fig. 6.4 respectively. It turns out that the electric charge of udQM can be

well estimated by simply minimizing the quark and Coulomb energies of the relativistic

u, d gas with charge Z = NCA(f̄u(A) − 1/3), as shown by the blue line in Fig. 6.3. We

find Z ≈ 0.86
αNC

A1/3 for large A. The shaded region denotes configurations that are stable

against decays into ordinary nuclei.

Fig. 6.4 shows that the surface effect increases the energy and destabilizes the udQM

configuration for A < Amin. For Set 1 (Set 2) Amin ≈ 320 (450) is large enough to

prevent normal nuclei from decaying to udQM. The numerical results of ε̄(A) can be well
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Figure 6.3: The electric charge of udQM: full result (blue dots) and the bulk approximation (blue line).
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Figure 6.4: The minimal energy per baryon ε̄(A) for udQM (lower), compared to the charge neutral
configuration (upper).

approximated by incorporating a surface tension term 4πR2Σ into the bulk analysis:

ε̄(A) ≈ ε̄+ 46
Σ

p̄2
FA

1/3
+ 0.31

αZ2p̄F
A4/3

. (6.10)

Here ε̄ and p̄F reflect the value of χ̄ for given Z and A. From fits from the two Sets and

other examples we find that Σ ≈ (91 MeV)3, and that it varies less than ε̄ as displayed

in Fig. 6.2. So as long as ε̄ & 903 MeV we can expect that Amin & 300. The surface

term dominates the Coulomb term for all A, and so the analog of fission that ends the

periodic table does not occur for udQM.
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6.6 Discussion

If Amin for udQM is close to the lower limit, it raises the hope to produce this new form

of stable matter by the fusion of heavy elements. With no strangeness to produce this

may be an easier task than producing SQM. Due to the shape of the curve in Fig. 6.3,

there would still be the issue of supplying sufficient neutrons in the reaction to produce

udQM, as in the attempts to produce normal superheavy nuclei in the hypothetical

“island of stability” around A ≈ 300 [136]. udQM may instead provide a new “continent

of stability” as shown in Fig. 6.3, in which the largest values of Z/A are of interest for

production and subsequent decay to the most stable configuration. As with SQM, the

further injection of neutrons (or heavy ions [137, 138]) can cause the piece of udQM to

grow with the release of an indefinite amount of energy [139].

Neutron stars could convert to ud quark stars. Due to the potential barrier generated

by the surface effects, the limiting process for the conversion of a neutron star is the

nucleation of a bubble of quark matter initially having the same local flavour composition

as the neutron star, via a quantum or thermal tunneling process [140]. There is then a

subsequent weak decay to the stable state, SQM or udQM, as the bubble grows. The

barrier for conversion leads to the possibility that there can co-exist both neutron stars

and quark stars [141]. In comparison to SQM, udQM predicts a smaller ρ̄ = 4∆Vn given

the same ε̄. So ud quark stars allow a larger maximum mass, which is of interest for

pulsars with M ∼ 2M� [73, 74]. The possible superconducting nature of quark matter

in stars may have interesting implications, more so for its transport rather than bulk

properties [49].



Chapter 7

IR: Probing udQM via Gravitational
Waves

As previous chapter has discussed, udQM can be the ground state of matter for baryon

number A > Amin with Amin & 300. In this chapter, we explore the ud quark stars

(udQSs) that are composed of stable udQM, in the context of the two-families scenario in

which udQSs and hadronic stars (HSs) can co-exist. Here we show that the requirements

of Amin & 300 and the most-massive compact star observed being udQS together put

stringent constraints on the allowed parameter space of udQSs. Then we study the related

gravitational-wave probe of the tidal deformability in binary star mergers, including

the udQS-udQS and udQS-HS cases. The obtained values of the tidal deformability at

1.4 solar mass and the average tidal deformability are all in good compatibility with

the experimental constraints of GW170817/AT2017gfo. This study points to a new

possible interpretation of the GW170817 binary merger event, where udQS may be at

least one component of the binary system detected. The text in this chapter is reproduced

from [20].

7.1 Introduction

In the conventional picture of nuclear physics, quarks are confined in the state of hadrons.

However, it is also possible that quark matter, a state consisting of deconfined quarks,

exists. Bodmer [54], Witten [55] and Terazawa [56] proposed the hypothesis that quark

matter with comparable numbers of u, d, s quarks, also called strange quark matter

(SQM), might be the ground state of baryonic matter. However, this hypothesis is based

on the bag model that cannot adequately model the flavor-dependent feedback of the

quark gas on the QCD vacuum. Improved models have shown that quark matter with u,

d quarks (udQM) only is more stable than SQM [57, 51, 19, 142], but with the common

78
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conclusion that neither is more stable than ordinary nuclei. In a recent study [19],

with a phenomenological quark-meson model that can give good fits to all the masses

and decay widths of the light meson nonets and can account for the flavor-dependent

feedback [143, 144], the authors demonstrated that udQM can be more stable than the

ordinary nuclear matter and SQM when the baryon number A is sufficiently large above

Amin & 300. The absolute stability of udQM is tested to be robust within 10% departures

of the experimental data. The large Amin ensures the stability of ordinary nuclei in the

periodic table, which also results in a large positive charge. Recently, a collider search

for such high-electric-charge objects was attempted using LHC data [145].

One can also look for the evidence of udQM from the gravitational-wave detections

experiments. The binary merger of compact stars produces strong gravitational wave

fields, the waveforms of which encode the information of the tidal deformation that is

sensitive to the matter equation of state (EOS). In general, stars with stiff EOSs can be

tidally deformed easily due to their large radii.

The GW170817 event detected by LIGO [146] is the first confirmed merger event

of compact stars. Together with the subsequent detection of the electromagnetic coun-

terpart, GRB 170817A and AT2017gfo [147], they inspired a lot of studies that greatly

move our understanding of nuclear matter forward [148, 149, 150, 151, 152, 153, 154, 156,

76, 157, 158, 159, 160, 155]. The initial analysis [146] determines the chirp mass of the

binary is determined to be Mc = 1.188M�. For the low spin case, the binary mass ratio

q = M2/M1 is constrained to the range q = 0.7 − 1.0. Upper bounds have been placed

on the tidal deformability at 1.4 solar mass Λ(1.4M�) . 800, and on the average tidal

deformability Λ̃ ≤ 800 at 90% confidence level. Later, an improved LIGO analysis [161]

gives Mc = 1.186+0.001
−0.001M�, and a 90% highest posterior density inverval of Λ̃ = 300+420

−230

with q = 0.73 − 1.00 for the low spin prior. Lower bounds have been placed from

AT2017gfo with kilonova models [149, 151, 150]. However, to the author’s knowledge,

the more strict lower bounds obtained in such analysis, including Λ(1.4M�) & 200 [150]

and Λ̃ & 242 [151], are all assuming neutron star EOS. Therefore, we will not use them

to constrain our study of quark stars here.

Conventionally, binary mergers are studied in the one-family scenario where it is

assumed that all compact stars are within one family of hadronic matter EOS [146,

152, 153, 154, 156]. However, the discovery of pulsars with large masses above 2M�

[73, 74, 75] ruled out a large number of soft EOSs that were expected with the presence

of hyperons and ∆ resonances in the interiors. Therefore, it is natural to expect that the

stars with masses above 2M� and large radii are actually quark stars (QSs), and most of

the ones with small masses and small radii are the hadronic stars (HSs). This possibility
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is the so-called “two-families” scenario, which is based on the hypothesis that absolutely

stable quark matter (either SQM or udQM) exists, and that the hadronic stars can coexist

with quark stars [162]. The binary merger in the two-families scenario includes three

cases: HS-HS [155], HS-QS [156] and QS-QS [163]. Alternatively, dropping the hypothesis

that quark matter is the ground state gives the twin-stars scenario [156, 159, 160], where

quark matter only appears in the interiors of hybrid stars.

Several things make ud quark stars (udQSs), which are composed of udQM, very

distinct compared to the strange quark stars (SQSs) that are composed of SQM. Firstly,

udQSs can satisfy 2M� constraint more easily than HSs and SQSs [19, 164] due to

the non-hyperonic composition and the small effective bag constant. Secondly, the co-

existence of HSs and QSs requires that the conversion of hadronic matter to quark matter

is neither too fast nor too slow compared to the age of our universe. In contrast to the

co-existence study for SQSs where the conversion requires the presence of hyperons which

only emerge above 1.5 solar mass, the conversion regarding udQSs can happen at a smaller

mass range since no hyperonic composition is needed. Therefore, it is possible that udQSs

can co-exist with HSs even at the small mass range below 1.5M�. This reasoning raises

the possibility for GW170817 being a udQS-udQS merger or a udQS-HS merger despite

the smallness of the chirp mass 1.186M� and high mass ratio q = 0.73−1.00. Besides, the

possibility of QS-QS case sometimes is disfavoured for GW170817/AT2017gfo because

of the kilonova observation of nuclear radioactive decay [165]. However, it is possible

that the udQM ejected is quickly destabilized by the finite-size effects and converts into

ordinary or heavy nuclei. The conversion is far more rapid for udQM than for SQM,

due to a much larger Amin and the non-strange composition so that there is no need

to involve extra weak interactions to convert away strangeness. Note that the radii

constraints derived from GW170817 are mostly for hadronic EOSs in the context of the

one-family scenario [152, 153, 154], so that they have no much relevance to the udQSs in

the two-families scenario we are discussing here.

Motivated by these considerations, we explore the properties of udQSs and the related

gravitational-wave probe in the two-families scenario, including the binary merger cases

udQS-udQS and udQS-HS. We will discuss the related compatibility and constraints from

GW170817. Note that we ignore the discussion of the HS-HS case since this possibility

is not directly related to the study of quark stars and is disfavoured to some extent for

GW170817 based on the consideration of prompt collapse [155].
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7.2 Properties of udQSs

The EOS of udQM can be well approximated by the simple form p = 1/3 (ρ − ρs),

where ρs is the finite density at the surface. For the EOS of SQM, the coefficient 1/3 is

modified by the strange quark mass effect, with the ρs value also being different. In the

region of interest for udQM, we can take the relativistic limit where energy per baryon

number in the bulk limit takes the form: E/A = ρ/nA ≈ (χNCp
4
F/4π

2 + Beff)/nA =

3/4NCpFχ + 3π2Beff/p
3
F [19], where NC = 3 is the color factor and χ =

∑
i f

4/3
i is

the flavour factor, with the fraction fu = 1/3 = 1/2 fd for udQM. The effective Fermi

momentum is pF = (3π2nA)1/3. Beff is the effective bag constant that accounts for the

QCD vacuum contribution. Note that in this udQM study, we can approximate Beff as

an effective constant since its dependence on flavor and density only causes a substantial

effect when strangeness turns on at very large density [19, 57, 51]. Minimizing the energy

per baryon number with respects to pF for fixed flavour composition gives

E

A
= 3
√

2π
(
χ3Beff

)1/4
, (7.1)

at which p = 0, ρ = ρs = 4Beff . Eq. (7.1) matches the exact numerical result of the

phenomenological meson model [19] extremely well with a mere error ∼ 0.3% due to a

tiny u(d) quark mass. It was shown in [19, 57, 51] that Beff has a smaller value in the

two-flavour case than in the three-flavour case, so that udQM is more stable than SQM

in the bulk limit. Absolute stability of udQM in the bulk limit implies E/A . 930 MeV,

which corresponds to

Beff . 56.8 MeV/fm3. (7.2)

from Eq. (7.1). In general, a larger E/A or Beff gives a larger Amin. The stability of

ordinary nuclei against udQM requires Amin & 300, which translates to E/A & 903 MeV

or

Beff & 50 MeV/fm3 (7.3)

for the quark-meson model that matches the low energy phenomenology [19]. This quark-

meson model also results in a quark-vacuum surface tension σ ≈ (91 MeV)3 that is robust

against parameter variations.

The linear feature of udQM EOS makes it possible to perform a dimensionless rescal-

ing on parameters [83, 84]

ρ̄ =
ρ

4Beff

, p̄ =
p

4Beff

, r̄ = r
√

4Beff , m̄ = m
√

4Beff , (7.4)
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which enter the TOV equation [71, 70]

dp(r)

dr
= − [m(r) + 4πr3p(r)] [ρ(r) + p(r)]

r(r − 2m(r))
,

dm(r)

dr
= 4πρ(r)r2,

(7.5)

so that the rescaled solution is also dimensionless, and thus is independent of any specific

value of Beff . The TOV solution with a specific Beff value can be obtained directly

from rescaling the dimensionless solution back with Eq. (7.4). Solving the rescaled TOV

equation with udQM EOS gives the dimensionless result shown in Figure 7.1, with the

maximum rescaled mass at (M̄, R̄) = (M
√

4Beff , R
√

4Beff) = (0.0517, 0.191), mapping

to Mmax ≈ 15.174/
√
Beff M�, RMmax ≈ 82.79/

√
Beff km. Therefore, the requirement that

udQS has maximum mass not smaller than the recently observed most-massive compact

star J0740+6620 (M ≈ 2.14+0.10
−0.09M�) [75] implies

Beff . 50.3+4.5
−4.4 MeV/fm3, (7.6)

which constrains more strictly than what Eq. (7.2) imposes. Interestingly, the central

value of the upper bound Eq. (7.6) is very close to the lower bound Eq. (7.3) at the

critical value Bc ≈ 50 MeV/fm3. To be more conservative, we can take 10% departures

considering the theoretical and experimental uncertainties [60, 62, 63, 64, 65, 66, 67, 75],

so that the allowed window of Beff for udQS is:

{BudQS} ≈ [45, 55] MeV/fm3 (7.7)

with central value Bc ≈ 50 MeV/fm3. The corresponding M − R solution is shown in

Figure 7.2.

Note that some SQS studies [156, 163, 80] exploited similar small Beff to have max-

imum masses above 2M�, but the smallness is not natural considering the appearance

of strangeness, and a large perturbative QCD (pQCD) effect or a color-superconducting

phase has to be included to guarantee the stability.

The response of compact stars to external disturbance is characterized by the Love
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Figure 7.1: M̄ -R̄ of udQS. The black dot at (M̄, R̄)= (0.0517, 0.191) denotes the maximum mass con-
figuration.
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Figure 7.2: M -R of udQSs. Lines with darker color are with larger effective bag constant Beff , which
samples (45, 50, 55) MeV/fm3 respectively. The black dots denote the maximum mass location.

number k2 [166, 167, 168, 169],

k2 =
8C5

5
(1− 2C)2[2 + 2C(yR − 1)− yR]

× {2C[6− 3yR + 3C(5yR − 8)] + 4C3[13− 11yR

+ C(3yR − 2) + 2C2(1 + yR)]

+ 3(1− 2C)2[2− yR + 2C(yR − 1)] log(1− 2C)}−1 .

(7.8)

Here C = M/R = C(M̄). And yR is y(r) evaluated at the surface, which can be obtained
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by solving the following equation [169]:

ry′(r) + y(r)2 + r2Q(r)

+ y(r)eλ(r)
[
1 + 4πr2(p(r)− ρ(r))

]
= 0 ,

(7.9)

with boundary condition y(0) = 2. Here

Q(r) = 4πeλ(r)(5ρ(r) + 9p(r) +
ρ(r) + p(r)

c2
s(r)

)

− 6
eλ(r)

r2
− (ν ′(r))

2
,

(7.10)

and

eλ(r) =

[
1− 2m(r)

r

]−1

, ν ′(r) = 2eλ(r)m(r) + 4πp(r)r3

r2
. (7.11)

c2
s(r) ≡ dp/dρ denotes the sound speed squared. For stars with a finite surface density

like quark stars, a matching condition should be used at the boundary yext
R = yint

R −
4πR3ρs/M [170]. Solving Eq. (7.9) with the ρ(r) and p(r) obtained from Eq. (7.5), one

obtains the function k2(C). The dimensionless tidal deformability Λ = 2k2/(3C
5) as a

function of mass M̄ is thus obtained accordingly. The result is shown in Fig. 7.3.
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Figure 7.3: The tidal deformability Λ vs rescaled star mass M̄ for udQSs. For M̄ with M = 1.4M�, red
band represents the region with Beff ∈ {BudQS}, and red dashed line is with Beff = Bc. Blue band is
the GW170817 constraints on Λ(1.4M�) [146].

We see from Fig. 7.3 that for M = 1.4M� and Beff ∈ {BudQS}, one has M̄ =

M
√

4Beff ∈ [0.032, 0.035], as the red band in Figure 7.3 represents. Mapping this range

to Fig. 7.3 gives Λ(1.4M�) ∈ [530, 857]. And Λ(1.4M�) ≈ 670 for Beff = Bc. We see that

these results are well compatible with the GW170817 constraint Λ(1.4M�) . 800 [146].

In particular, the point where Λ(1.4M�) reaches the upper bound Λ(1.4M�) ∼ 800 puts
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a more stringent lower bound that BudQS & 47.9 MeV/fm3. We also see that the result

is not sensitive to the possible uncertainties related to the lower bound of Λ(1.4M�)

constraint.

7.3 Binary Merger in the Two-Families Scenario

The average tidal deformability of a binary system is defined as:

Λ̃ =
16

13

(1 + 12q)

(1 + q)5
Λ(M1) +

16

13

q4(12 + q)

(1 + q)5
Λ(M2), (7.12)

where M1 and M2 are the masses of the binary components. And q = M2/M1, with

M2 being the smaller mass so that 0 < q ≤ 1. Then for any given chirp mass Mc =

(M1M2)3/5/(M1 +M2)1/5, one has M2 = (q2(q + 1))1/5Mc and M1 = ((1 + q)/q3)1/5Mc.

7.3.1 udQS-udQS Merger

In this case, the average tidal deformability can be expressed as a function of the rescaled

mass parameter M̄ = M
√

4Beff :

Λ̃ =
16

13

(1 + 12q)

(1 + q)5
Λ(M̄1) +

16

13

q4(12 + q)

(1 + q)5
Λ(M̄2). (7.13)

Substituting the Λ(M̄) obtained previously into the formula above, we get the results

shown in Fig. 7.4. Note that in this figure, the lower end of each curve is determined by

requiring each component of the binary system not to exceed its maximum mass. The

M̄c value of each end is negatively correlated with the q value, since for a given Mc the

less symmetric system has a larger component mass which can exceed their maximum

mass more easily. The general shape of the figure matches our qualitative expectation.

For given M̄c, a smaller mass ratio q maps to a smaller Λ̃. Besides, for given q, a larger

rescaled mass M̄c = Mc

√
4Beff corresponds to a smaller Λ̃. These features are all due to

the general fact that quark stars with larger masses have larger compactness, and thus

are less likely to be tidally deformed.

As Fig. 7.4 shows, for GW170817 in which Mc = 1.186M�, the constraint Λ̃ =

300+420
−230 [161] translates to 0.4 . q . 1 for Beff ∈ {BudQS}, and especially to q = 0.74

for Beff = Bc = 50 MeV/fm3, all of which are compatible with the GW170817 constraint

q = 0.73 − 1.00 [146]. We see that q & 0.73 and Λ̃ . 720 put a more stringent lower

bound that BudQS & 49.5 MeV/fm3. We also see that BudQS is not constrained much by

the lower bound of Λ̃.
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Figure 7.4: The average tidal deformability Λ̃ vs the rescaled chirp mass M̄c for the udQS-udQS merger
case. Black curves are with q = M2/M1 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1) from left to right, respectively.
For the GW170817 event in which Mc = 1.186M�, the red band represents the region of M̄c with
Beff ∈ {BudQS}, and the red dashed line is with Beff = Bc. The blue band is the GW170817 constraint

on Λ̃ [161].

7.3.2 udQS-HS Merger

For the udQS-HS merger case, we need the information of the hadronic matter EOS,

which has large uncertainties in the intermediate-density region. Based on nuclear physics

alone, the EOS should match the low density many-body calculation and high density

pQCD result [171]. Here we use three benchmarks of hadron matter EOSs, SLy [172,

173] Bsk19 and Bsk21 [174] that have unified representations from low density to high

density. Bsk19 is an example of soft EOSs. HSs with Bsk19 have maximum mass Mmax =

1.86M� < 2M� and R1.4M� = 10.74 km < 11 km. The feature of small masses and

small radii is preferred for the typical HSs branch of the two-families scenario. For

illustration, we also show benchmarks of a hard EOS (Bsk21) with Mmax = 2.27M�,

R1.4M� = 12.57 km, and a moderate one (SLy) with Mmax = 2.05M�, R1.4M� = 11.3 km.

With Eq. (7.12), the Λ(M) results of udQS, and the HS EOS benchmarks, we obtain the

average tidal deformability Λ̃ of the udQS-HS system, as shown in Fig. 7.5.

We see from Fig. 7.5 that the order of Λ̃ for different HS EOSs matches the expectation

from the general rule that a HS with a stiffer EOS or a QS with a smaller effective bag

constant has a larger radius, and thus has larger deformability. Lines with different

hadronic EOSs tend to merge at lower q as Λ̃ gets dominated by the contribution of

large-mass quark stars. We see a good compatibility with current GW170817 constraint

Λ̃ = 300+420
−230 when q = 0.73 − 1.00, except for an exclusion of the stiffest hadronic EOS

(Bsk21).



Chapter 7. IR: Probing udQM via Gravitational Waves 87

0.2 0.4 0.6 0.8 1.0

200

400

600

800

q

Λ
˜

Figure 7.5: The average tidal deformability Λ̃ vs q = M2/M1 for the udQS-HS merger case, with M2

being the mass of hadronic star and Mc = 1.186M� for the GW170817 event. For HS EOS, SLy (blue),
Bsk19 (red), Bsk21 (black) are used. For udQS EOS, lines with darker color are with larger Beff , which
samples (45, 50, 55) MeV/fm3 ∈ {BudQS} respectively. The blue band and grey band are the GW170817

constraints on Λ̃ and q respectively [161].

7.4 Conclusions

We have discussed the distinct properties that make udQSs good candidates for the

two-families scenario in which hadronic stars can co-exist with quark stars. We have

shown that the requirements of Amin & 300 and Mmax & 2.14M� together stringently

constrain the effective bag constant of udQSs to Beff ≈ 50 MeV/fm3. A 10% relax-

ation that accounts for the possible uncertainties gives the conservative range BudQS ∈
[45, 55] MeV/fm3. Then we studied the related gravitational-wave probe of tidal de-

formability of binary star mergers including the udQS-udQS and udQS-HS cases. For

the udQS-udQS case, the upper bound of tidal deformability and the binary mass ratio of

GW170817 further confine the allowed parameter space to BudQS ∈ [49.5, 55] MeV/fm3.

Also with the dimensionless rescaling method used, the analysis can be straightforwardly

generalized to arbitrary binary chirp mass and effective bag constant for current and

future gravitational-wave events. The udQS-HS case is also well compatible with the

GW170817 constraints. These point to a new possibility that GW170817 can be identi-

fied as either a udQS-udQS merger or a udQS-HS merger event.

Note Added: As we were finalizing this work, we became aware of the new paper [175]

around the same time. With a special version of the NJL model, their paper has some dis-

cussions on the Λ(1.4M�) of non-strange quark stars for the low spin case of GW170817,

and they also found that Λ(1.4M�) can match the experimental constraints in certain
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parameter space. However, they neglected the study of the two-families scenario and

the corresponding average tidal deformability Λ̃. And they only explored the parameter

space in which udQM is more stable than SQM, with the parameter space where udQM

is even more stable than nuclear matter remaining uncertain in their model.



Chapter 8

Conclusions and Future Prospects

In this thesis, we have explored the new possibilities of the Standard Model and beyond.

Towards the high energy scale, the asymptotically free and asymptotically safe exten-

sions of the Standard Model are explored in Chapter 4 and Chapter 5 respectively. An

exhaustive search on the asymptotically free extensions with semi-simple gauge groups

has been completed, with the parameter space of stable UV fixed points being identi-

fied. Using the large number-of-flavour techniques, we constructed the asymptotically

safe extensions by adding gauged vector-like fermions. These works resurrected the in-

terest in these topics, motivating many following studies. For the complete asymptotic

freedom program, in particular, detailed construction in the context of SO(N) GUT with

a UV-complete quadratic gravity sector was done in [176, 177], but with the generation

of the electroweak scale remaining to be addressed. For the large-NF asymptotically

safe program, some more complete studies of the quartic coupling beta function showed

that the quartic coupling blows up when abelian gauge coupling reaches its UV fixed

point [178, 179]. Also, Antipin et al. [181] showed that for the abelian gauge group

the mass anomalous dimension γm blows up at the abelian UV fixed point, violating

the unitarity bound γm ≤ 2. These deficiencies motivate people to extend the study to

the semi-simple GUT [180], but the possibility of constructing an asymptotically safe

extension of a simple-group GUT remains open.

At the low energy scale, with a phenomenological quark-meson model as an effective

description of QCD dynamics, we showed in Chapter 6 that quark matter composed of

u, d quarks only is more stable than both strange quark matter and normal nuclei for

baryon number A & 300 beyond the periodic table. Finally, in Chapter 7, we discussed

the distinct gravitational properties of udQM, and the probe of udQM via gravitational

waves. In particular, we pointed out a new possible interpretation of the GW170817

binary merger event, where ud quark star may be at least one component of the binary

system detected.

89
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Our very first publication of udQM [19] has attracted media reports [186]. Apart from

the importance on understanding the fundamental nature, the study also leads to great

potential impacts on human life for an old idea that using quark matter as a new source

of energy. Recently, a search for high-electric-charge objects like udQM is attempted

in collider using LHC data [145]. There are some remaining important questions to be

addressed:

1. Can ud quark stars (udQSs), which are composed of udQM, co-exist with neutron

stars considering the transition rate [183] from nuclear matter to udQM?

2. How does the perturbative QCD correction and the colour-superconductivity phase

affect the properties of udQM?

3. Can udQM be a viable candidate for dark matter [184]?

4. How do we incorporate udQM in cosmological settings (QCD first-order phase

transition) [55]?

5. How do we identify and extend those searches for SQM that are most relevant

for udQM? Especially, how can we build viable fusion experiments so that we can

produce udQM on earth [185]? And how can udQM be probed in cosmic rays [187]?

The works related to the first and second questions are explored in substantial progress,

but they are not included in this thesis due to time constraints. The other questions

remain to be studied in the future.
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Appendix A

The Generalized Meson Model

In this chapter, we elaborate the generalized SU(3)L×SU(3)R linear sigma model used in

Chapter 6. This model includes an extended sector of explicit chiral symmetry breaking

terms so that numerical fits of current experimental constraints on the masses and decay

widths are accomplished. Once the isospin breaking effect is included, this model predicts

the right value of the isospin-breaking parameter ε within the experimental uncertainties.

The work is through my collaboration with Bob Holdom and Jing Ren.

A.1 Introduction

QCD has the approximate chiral symmetry SU(3)L × SU(3)R due to the smallness of

u, d, s current quark masses compared to that of the other flavours. Effective models

incorporating this chiral symmetry have achieved huge successes in describing the low-

lying QCD spectrum, among which the linear sigma model is widely used for its simplicity

and generality.

In the sense of simplicity, the MIT bag model is also simple and elegant. It introduces

a bag constant to account for all the non-perturbative effects of QCD vacuum. But it

fails on the generality. The chiral symmetry is badly broken at starting point, and thus

it is hard to model light pseudo-scalar mesons. Besides, it suffers from the failure in

describing finite-temperature QCD. Moreover, it neglects many important physics like

the density-dependent and flavour-dependent feedback of the quarks on the QCD vacuum.

In contrast, the linear sigma model can accommodate these aspects naturally.

The Lagrangian for the minimal linear sigma model [10, 36, 38] is:

Lm = Tr
(
∂µΦ†∂µΦ

)
− V (Φ) (A.1)
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with the scalar potential

V (Φ) = Vinv(Φ) + Vb(Φ), (A.2)

where Vinv is the chiral invariant part:

Vinv = λ1

(
Tr Φ†Φ

)2
+ λ2 Tr

(
Φ†ΦΦ†Φ

)
+m2 Tr

(
Φ†Φ

)
+ c
(
det Φ + det Φ†

)
.

The c term is the t’Hooft term that signals U(1)A breaking. And Vb is the explicit

breaking part. We denotes

Φ = TaΦa = Ta (σa + iπa) , (A.3)

where Ta = λa/2 with a = 0, . . . , 8 are the nine generators of the U(3), with the λa

the usual eight Gell-Mann matrices and λ0 =
√

2
3

1. The generators Ta are normalized

so that Tr(TaTb) = δab/2 and obey the U(3) algebra [Ta, Tb] = ifabcTc and {Ta, Tb} =

dabcTc respectively with the corresponding standard symmetric dabc and antisymmetric

fabc structure constants of the SU(3) group and fab0 = 0, dab0 =
√

2
3
δab . σa and πa form

the scalar and pseudoscalar meson nonets, respectively.

Taσa =
1√
2


1√
2
a0

0 + 1√
6
σ8 + 1√

3
σ0 a−0 κ−

a+
0 − 1√

2
a0

0 + 1√
6
σ8 + 1√

3
σ0 κ̄0

κ+ κ0 − 2√
3
σ8 + 1√

3
σ0

 ,

Taπa =
1√
2


1√
2
π0 + 1√

6
π8 + 1√

3
π0 π− K−

π+ − 1√
2
π0 + 1√

6
π8 + 1√

3
π0 K̄0

K+ K0 − 2√
3
π8 + 1√

3
π0

 ,

where the charged and neutral pions are π± ≡ (π1 ± i π2)/
√

2 and π0 ≡ π3, respectively.

For kaons, K± ≡ (π4 ± i π5)/
√

2, K0 ≡ (π6 + i π7)/
√

2, and the conjugate K̄0 ≡ (π6 −
i π7)/

√
2. The remaining pseudoscalar components π0 and π8 mix into the η and η′ meson.

For scalar mesons, a0 and κ are the parity partners of pion and kaon, respectively. The

remaining scalar components σ0 and σ8 mix into the σ and f0 meson.

We can include the following simple linear term for explicit breaking effects [36, 38]

Vb = Tr
[
H(Φ + Φ†)

]
, (A.4)

where H = Taha. Here ha are external fields that explicitly break the chiral symmetry.

More explicitly, h8 is responsible for breaking the degeneracy between strange and non-

strange sectors, while h3 is responsible for the isospin breaking of the non-strange sector.

In the following discussion, we focus on the isospin-symmetric case where h3 = 0.
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The minimal model gives the right mass predictions for η and η′, but yields the value

of mf0,mκ larger than 1 GeV. The difficulty on fitting all scalar meson masses below 1

GeV is common for any known variation of the linear sigma model if only the minimal

linear explicit breaking term is included, like the variation with a large departure on

input data [39], with vector mesons included, or with a replacement of t’Hooft term by

the Veneziano-Witten term [40]. This motivates us to extend the explicit breaking sector.

A.2 Generalized Meson Model

We generalize the minimal model by including all possible explicit breaking terms. The

full potential is:

V = Vinv + Vb (A.5)

where Vinv is the chiral invariant part:

Vinv = λ1

(
Tr Φ†Φ

)2
+ λ2 Tr

(
Φ†ΦΦ†Φ

)
+m2 Tr

(
Φ†Φ

)
+ c
(
det Φ + det Φ†

)
. (A.6)

The c term breaks the axial U(1)A symmetry explicitly. And Vb explicit break the

SU(3)L × SU(3)R chiral symmetry:

Vb =
8∑
i=1

Vbi, (A.7)

Vb1 = b1 Tr
(
Φ†M+ h.c.

)
, Vb2 = b2εijkεmnlMimΦjnΦkl + h.c. ,

Vb3 = b3 Tr
(
Φ†ΦΦ†M

)
+ h.c. , Vb4 = b4 Tr

(
Φ†Φ

)
Tr
(
Φ†M

)
+ h.c. ,

Vb5 = b5 Tr
(
Φ†MΦ†M

)
+ h.c. , Vb6 = b6 Tr

(
ΦΦ†MM† + Φ†ΦM†M

)
,

Vb7 = b7

(
Tr Φ†M+ h.c.

)2
, Vb8 = b8

(
Tr Φ†M− h.c.

)2
, (A.8)

where M = diag(mu0,md0,ms0) = m̄ud diag(1, 1, x) is the current quark mass matrix,

with m̄ud = (mu + md)/2 and x = ms0/m̄ud. Here we have removed three redundant

terms

b9eijkemnlΦimMjnMkl+h.c., b10 Tr
(
Φ†MM†M

)
+h.c., b11 Tr

(
M†M

)
Tr
(
M†Φ

)
+h.c.,

(A.9)

from the Kaplan-Manohar ambiguity [127].

This extension can make the fitting of all the meson nonet masses below 1 GeV

possible, where other studies with the Vb1 term only failed [36, 38, 40]. The values of
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the bi coefficients are made more physical by normalizing with the formalism of Naive

Dimensional Analysis (NDA) [128]:

λ̄1,2 =
f 2
π

Λ2
λ1,2, m̄

2 =
1

Λ2
m2, c̄ =

fπ
Λ2
c, b̄1 =

1

fπΛ
b1,

b̄2 =
1

Λ
b2, b̄3,4 =

fπ
Λ
b3,4, b̄5−8 = b5−8, (A.10)

where fπ is the pion decay constant, and Λ = 4πfπ is an effective cutoff. Hereafter we

only use the NDA couplings and omit the bars.

The chiral symmetry breaking is realized by the non-zero vacuum expectation values

at the potential minimum,

〈Φ〉 = T0v0 + T8v8 =
1

2
diag(vn, vn,

√
2vs), (A.11)

where we have used the relation(
σn

σs

)
=

1√
3

(√
2 1

1 −
√

2

)(
σ0

σ8

)
. (A.12)

The deformation by M naturally implies an SU(3) breaking vacuum vn 6=
√

2vs. A

standard gauging of the model then leads to vn = fπ = 92 MeV, vs =
√

2fK − fπ/
√

2 =

90.5 MeV [37, 38].

The mass spectra for the scalar and pseudoscalar nonets are derived by

M2
s,ab = ∂2V/∂σa∂σb, (A.13)

M2
p,ab = ∂2V/∂πa∂πb. (A.14)

With the isospin symmetry, the mass spectra are m2
a0

= M2
s,11 = (MS)22 = (MS)33,

m2
κ = M2

s,44, m2
π = M2

p,11 = (MP )22 = (MP )33, m2
K = M2

p,44 and m2
σ,m

2
f0
,m2

η,m
2
η′ after

diagonalizing the (0, 8) sectors through the rotations:

σ0 = cos θsσ − sin θsf0, σ8 = sin θsσ + cos θsf0, (A.15)

and

π0 = cos θpη
′ − sin θpη, π8 = sin θpη

′ + cos θpη, (A.16)

so that the mass matrix transforms as:

m2
φ1

= (m2
i )00 cos2 θi + (m2

i )88 sin2 θi + (m2
i )08 sin 2θi,

m2
φ2

= (m2
i )00 sin2 θi + (m2

i )88 cos2 θi − (m2
i )08 sin 2θi,

(A.17)
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with

tan 2θi =
2 (m2

i )08

(m2
i )00 − (m2

i )88

, (A.18)

where i = S, (φ1, φ2) = (σ, f0) or (f0, σ) for the scalar sector, and i = P, (φ1, φ2) =

(η′, η) or (η, η′) for the pseudo-scalar sector. Note that from Eq. (A.18) the θ angle

should lies between [−45◦, 45◦], but one can rotate φ1 to φ2 via replacement θ → θ+ π
2

to

account the degeneracy σ ↔ f0 and η ↔ η′, so that the real periodicity is 180 degree. In

the following figures, we shift the result of domain [−135◦,−45◦] to [−45◦, 45◦] denoted

by the lighter colour lines.

A.3 Solutions for Couplings

We determine the 12 couplings (λ1, λ2, c,m
2, b1 ∼ b8) by solving the EOM with 6 inputs

from the pseudoscalar nonet (mπ,mK , fK , fπ,mη,mη′), 4 inputs from the scalar nonet

(mσ(500),mf0(980),mκ(500),ma0(980)), and the mixing angle (θp, θs). All inputs for

solving the system are shown in table A.1. Note that the mixing angles are adjusted to

fit the decay width constraints shown in Table A.2.

Table A.1: The experimental constraints on the meson masses (in MeV) [37].

mσ mκ ma0 mf0 mπ mK mη m′η θs θp

Exp 400-550 700-900 980± 20 990± 20 138 496 548 958 NA NA

Table A.2: The experimental values of decay widths [37]. Units are MeV for the scalar mesons, and are
keV for the pseudoscalar mesons.

Γη→γγ Γη′→γγ Γσ→ππ Γκ→Kπ Γf0→ππ Γa0→ηπ

Exp 0.52-0.54 4.2-4.5 400-700 ∼ 500 10-100 50-100

Here we point out some general features observed from the exact solution:

• (λ2, c, b3, b5, b6, b8, ε) have no any dependence on (mσ, f0, θs).

• The decay widths of κ and a0 only depend on (λ2, c, b3), all of which are independent

of (mσ, f0, θs) from point above. Therefore the variations of (mσ, f0, θs) won’t have

any influence on the decay widths of κ and a0.
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• The decay width of σ0 has no dependence on mf0, and the decay width of f0 has

no dependence on mσ. This inverse relation can be seen easily simply from an

interchange symmetry accompanied with θs → θs +π/2 in the their definition from

the (0, 8) basis to this mass basis.

• The combination (λ1 + λ2/2) is independent of θp, and thus θp is irrelevant to the

global stability condition (λ1 + λ2/2) > 0.

The explicit solutions are plotted in Fig. A.1, Fig. A.2, Fig. A.3 and Fig A.4, where

we use lighter colour to denote the results shifted from from θ → θ + π/2. For those

couplings having no dependence on θs (θP ), we present them as functions of θP (θS).
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Figure A.1: Couplings of chiral invariant terms λ1, m2 that are θs-dependent (left), and λ2, c that only
depend on θp (right).
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Figure A.2: Couplings of explicit breaking terms that are θs-dependent: b1, b4 (left) and b7 (right).

We observe two interesting features observed from the numerical solution:

• Only λ1, m2, and b4 are sensitive to the variation of mσ compared to that of mκ.
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Figure A.3: Couplings of explicit breaking terms b2, b5 (left), b3, b8 (right) that only depend on θp.
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Figure A.4: Coupling of explicit breaking term b6 that only depends on θp.

• The potential height along the non-strange direction is only sensitive to the varia-

tions of mσ and mπ.

A.4 Decay Widths

From the Feynman diagrams, we know that the decay width of a→ b+ c is

Γ =
S|p|
8πm2

a

g2
a, (A.19)

where

|p| =
√
m4
a − 2m2

am
2
b − 2m2

am
2
c +m4

b − 2m2
cm

2
b +m4

c

2ma

, (A.20)

with S accounting for the symmetry and flavour factors. Here ga is the coupling strength

(vertex factor), which can be extracted from the expansion of the meson potential over
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the flavour basis. Thus, the decay width of σ (σ → ππ) has the form:

gσ = −
√

3

12
[
√

2 cos θs ((−4fK − 2fπ)λ1 − 2fπλ2 + c− 2b3 − 2(x+ 2)b4)

− 2 sin θs((−4fK + 4fπ)λ1 + fπλ2 + c+ b3 − 2(x− 1)b4)],

(A.21)

with the factor Sσ = 3/2 · 22 = 6. From the rotational symmetry between φ1 → φ2,

we can directly obtain gf0 = gσ|θs→θs+π
2
, with the same factor Sf0 = 3/2 · 22 = 6. The

dominant Brit-Wigner decay widths of the scalar mesons σ and f0 predicted from our

model are shown Figure A.5a. One can see that the θs value is mainly constrained by

the decay widths of σ and f0, which prefer θs ∈ [20◦, 35◦]. Interestingly, this range gives

a small b̄7 referring to Figure A.6. The band of Γf0 is narrower mainly because it has no
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(a) Decay widths of σ (black) and f0 (red) in units of MeV
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(b) Decay widths of κ (black) and a0 (red) in units of MeV

Figure A.5: Decay widths of scalar mesons with the couplings solutions

dependence on mσ, which instead causes a large uncertainty band for Γσ.

For the dominant decay width of κ (κ→ Kπ):

gκ =
1

2
((−2fK + fπ)λ2 − c− xb3) , (A.22)

with factor Sκ=3. For a0(980) (a0 → ηπ):

ga0 =

√
3

6
[
√

2 sin θp(−2fπλ2 + c− 2b3) + 2 cos θp(fπλ2 + c+ b3)], (A.23)

with the factor Sa0=1. Considering that the decay widths of κ, a0 have no dependence

on θs, we show their results as functions of θp in Figure A.5b.

An important caveat is that, when comparing the calculated results to the experi-

mental value of the decay widths of f0(980) (f0 → ππ) and a0(980) (a0 → ηπ), we need

to further include the threshold effects using Flatté method [129, 131], in which the cross



Appendix A. The Generalized Meson Model 100

section being close to the mass threshold takes the form:

σel = 4π|fφ|2, fφ =
1

|p|
mRΓφ

m2
R − s− imR(Γφ + Γφ

KK̄
)
, (A.24)

where φ = f0 or a0, and s = (p1 + p2)2 ≈ m2
R with mR as the resonance mass. Γφ

KK̄
=

ḡφK
√
s/4−m2

K above threshold, Γφ
KK̄

= iḡφK
√
m2
K − s/4 below threshold, with ḡφK the

coupling (vertex factor) of φ to the two kaons. Γφ denotes Γf0→ππ and Γa0→ηπ. Then from

Eq. (A.24), we can directly obtain the half width of σel.

The diphoton decay widths of pseudoscalar mesons has the expression [131]:

ΓPγγ =
|~p|3

8π
|APγγ|2, (A.25)

where |~p| = m/2, and

Aηγγ = −5

9
T Pu sin ψ̄P −

√
2

9
T Ps cos ψ̄P ,

Aη′γγ =
5

9
T Pu cos ψ̄P −

√
2

9
T Ps sin ψ̄P ,

Aπ0γγ =
1

3
T Pu , (A.26)

with

T Pu =
Ncα

πfπ
, T Ps =

Ncα

π(2fK − fπ)
. (A.27)

where α = 1/137. The results are shown in Figure A.6. We see that the most probable

Figure A.6: The diphoton decay widths of η (red) and η′ (black) in units of keV vs θp in units of degree.
Lines with lighter colour denote the results 90◦-shifted from the θP ∈ [−135◦,−45◦] domain.
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region to fit the experimental diphoton width constraint is θP ∈ [−20◦,−10◦].

A.5 Benchmark Sets

Here we present two explicit benchmarks, the inputs of which are shown in Table A.3.

The parameters of set 1 are chosen to give a good fit to the experimental data of the

Table A.3: The choice of inputs for the benchmark sets

mσ mκ ma0 mf0 mπ mK mη m′η θs θp

Set 1 555 900 980 990 138 496 548 958 31.5◦ −15.0◦

Set 2 555 916 887 955 148 454 569 916 21.7◦ −10.8◦

mass spectrum. However, this leads to a rather large value for the NDA coupling b̄6,

as Table A.4 shows. Therefore, given the theoretical uncertainties associated with the

neglected higher dimensional terms, allowing the masses and decay widths to depart from

the experimental values could be more sensible. Set 2 is such an example with deviations

up to 10% but can give smaller NDA couplings. The resulted (NDA) couplings of the

two benchmarks is shown in Table A.4.

Table A.4: The solution of NDA couplings for the benchmark sets

λ1 λ2 m2 c b1 b2 b3 b4 b5 b6 b7 b8

Set 1 −0.06 0.33 −0.13 0.33 −4.4 0.19 −4.2 2.5 −3.0 50 1.4 4.7

Set 2 0.04 0.16 0.05 0.27 −1.6 −0.14 −0.18 0.09 4.0 5.2 −3.9 −5.5

The resulted predictions for the decay widths are shown in Table A.5. The f0, a0

widths have large threshold corrections, and thus the corresponding Flatté [129] widths

are calculated.

Table A.5: The prediction of decay widths (in MeV, keV for scalar, pseudoscalar) from the benchmark
sets.

Γη→γγ Γη′→γγ Γσ→ππ Γκ→Kπ Γf0→ππ Γa0→ηπ

Set 1 0.59 4.90 442 451 11 37.4
Set 2 0.54 4.87 422 537 20 52.0
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A.6 Isospin breaking

We generalize this study to the isospin breaking case by replacing the spurion matrix

M = (m̄ud, m̄ud,ms) with M = m̄ud (1 − τ, 1 + τ, x), where the parameter τ = (md −
mu)/(md + mu) ≈ 0.38, representing the size of isospin breaking. We can expand our

results into perturbative series of τ . This inclusion of isospin breaking contributes to a

change of scalar potential δV . Then we find the new minimum of V + δV , allowing the

values of the scalar fields to have vu 6= vd. From the second derivatives at the minimum,

the new mass matrices and mixing angles are thus determined. We find that the relevant

physical quantities, like the mass spectrum, change less than 1%, as shown in Table A.6.

These departures are small since m̄udτ/(4πfπ) is small.

Table A.6: Comparison of model fit for the isospin symmetric case and the isospin breaking case (for set
1)

Set mσ mκ mπ mK mη mη′ fπ fK ma0 mf0

isospin symmetric 550 900 138 496 547 957.78 92 110 980 980
isospin breaking 555.1 903.62 138.58 488.7 548 957.84 92 109.3 980.1 994.4

However, the isospin breaking turns on the π0 − η(η′) mixing angles ε and ε′, which

parameterize the basis transformation matrix from the flavour basis to the mass basis: π0

η

η′

 = U

 φ3

ηns

ηs

 , (A.28)

where the unitary matrix U is parameterized as

U =

 1 ε1 + ε2 cosψ −ε2 sinψ

−ε2 − ε1 cosψ cosψ − sinψ

−ε1 sinψ sinψ cosψ

 , (A.29)

with conventional definitions ε = ε2 + ε1cosψ, ε′ = ε1sinψ, assuming ε, ε′ � 1. And the

flavour basis is related to the gauge basis via the transformation: φ3

ηns

ηs

 = V

 φ3

η0

η8

 , where V =
1√
3


√

3 0 0

0
√

2 1

0 1 −
√

2

 . (A.30)

Thus, the transformation matrix from the gauge basis to the flavour basis is S = UV ,

which leads to the relation ψ = θ+ arctan
√

2 ≈ θ+ 54.74◦. The diagonalization of mass
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matrix from (φ3, φ0, φ8) basis to (π0, η, η′) basis via S determines ε = 0.018 (for set 1),

which is roughly consistent with experiments [132, 133], while ε′ can be compared to

future measurements.

A.7 Summary and Discussion

In this chapter, we studied a phenomenological meson model that describes the mass and

decay width spectra of the lightest pseudoscalar and scalar meson nonets with a full set

of explicit chiral symmetry breaking terms. A general scan of parameter space within the

current experimental uncertainties is presented, and two explicit benchmarks are given.

Some general features regarding the exact solutions are discussed. We also addressed the

isospin breaking effect, which turns out to have negligible effect except for generating the

ε parameter that is consistent with the experimental constraint.

Some further developments of this model may include reinvestigating the finite-

temperature study of the chiral phase transition [38, 39], and the comparison of the

generalized linear sigma model with chiral perturbation theory [190, 191, 192].



Appendix B

Yukawa Bound State with A
Self-interacting Scalar

In this chapter, we study the Yukawa bound states, in which fermions Yukawa couple to

a self-interacting real scalar. Both the bulk limit and the region of finite particle numbers

are explored. General analyses are given, with a double-well type scalar potential as an

explicit benchmark. This work elaborates the numerical method used in the study of

finite-size effect in Chapter 6.

B.1 Introduction

The study of Yukawa bound states has been explored in the context of the Walecka

model (introduced in Section 3.3.2), and of the fermion Q-balls (fermion non-topological

soliton) [193, 194, 195], where the bound state stability is guaranteed by the conserved

fermion number. A simple example of the fermion Q-ball is the case where the fermion

field ψ couples to a hermitian scalar field σ via Yukawa interaction −yσψ̄ψ. The fermion

mass mψ is thus m = yσ. When the fermion number in the system is large, one can

take the Thomas-Fermi approximation dm/dr << m2, in which the scalar field varies

very slowly compared to the scale of the fermion Compton wavelength. The scalar field

can be self-interacting with a potential U(σ), which is commonly assumed to have a

double-well shape. The feedback of the Yukawa interaction can drive the scalar field

rolling to different values, leading to the masses of the fermions changing spatially. A

general feature is that the fermions tend to be much less massive in the interior than

they are in the exterior, resulting in a bound state. The surface-dominant case where σ

rolls between two degenerate minima of the scalar potential was studied in [193]. The

volume-dominant case, in which σ rolls between the local maxima and the global minima

of the scalar potential, was studied in [194].

104
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More recently, Wise et al. [196] studied such Yukawa bound states but in the context

of dark matter. In contrast to the preceding studies, they also studied the finite fermion

number regime away from the bulk limit. However, in their study, the scalar is free of self-

interactions. In this work, we complete the study by introducing self-interaction for the

scalar sector, and explore the finite particle number regime away from the bulk limit. For

simplicity, we only consider the volume-dominant case here, with the surface-dominant

case left for the future work.

B.2 General Model

The Lagrangian for the general model of a Yukawa bound state is:

L = ψ̄∂µγµψ −mψψ̄ψ − yψ̄ψφ+
1

2
(∂φ)2 − V (φ). (B.1)

Treating fermions as particle and scalars as fields, for the static configuration we have

L = −
∑
i

m(xi)
√

1− ẋi2 −
∫
d3x

(
1

2
(∇φ)2 − V (φ)

)
, (B.2)

where the effective fermion mass is

m(xi) = mψ + yφ(xi). (B.3)

From the Lagrangian above, the equation of motion (EOM) for the scalar field thus is:

∇2φ(x) = y
∑
i

δ3(x− xi)
√

1− ẋi2 +
∂V (φ(x))

∂φ(x)

= y
∑
i

δ3 (x− xi)
m(xi)√

m(xi)2 + p2
i

+
∂V (φ(x))

∂φ(x)
, (B.4)

where we have substituted the fermion canonical momentum: pi = m(xi)ẋi/
√

1− ẋi2.

The Hamiltonian thus is:

H =
∑
i

√
m(xi)2 + p2

i −
1

2

∑
i

yφ(xi)
m(xi)√

m(xi)2 + p2
i

+

∫
d3x

(
V (φ)− 1

2
φ
∂V

∂φ

)
. (B.5)

For the degenerate fermion gas, the summation over all ith fermion translates to:

N∑
i=1

−→
∫
d3r

∫
d3p

(2π)3
f(r, p), (B.6)



Appendix B. Yukawa Bound State with A Self-interacting Scalar 106

where f(r, p) = 2θ (pF − p) θ(R− r). Thus

N =
∑
i

1 =
4

3π

∫ R

0

drr2p3
F . (B.7)

Assuming that pF is r-independent1, we have

pF =

(
9πN

4

)1/3
1

R
. (B.8)

Substituting Eq. (B.6) into Eq. (B.4), the EOM of the scalar field becomes:

d2φ

dr2 +
2

r

dφ

dr
= θ(R− r)Ff + Fφ, (B.9)

where

Ff =
y

π2
m(r)3i(

pF
m

), (B.10)

Fφ =
∂V

∂φ
, (B.11)

with

i(z) =

∫ z

0

du
u2

√
1 + u2

=
1

2
z
√

1 + z2 − 1

2
arcsinh(z), z = pF/m. (B.12)

To have a qualitative picture of Eq. (B.9), we can make an analogy with the EOM of the

one dimensional particle mechanics (φ↔ x, r ↔ t):

··
x = −2

t
ẋ+ θ(tR − t)Fψ + Fφ, (B.13)

which describes a unit mass particle that moves with a driving force Fψ in the region

of 0 ≤ t ≤ tR, plus a damping friction f = −2
t
ẋ and a force of resistance Fφ that both

appear in entire time frame.

The energy from Eq. (B.5) is:

E = Eψ + Eφ, (B.14)

1In the more realistic case, pF should have dependence on r, such as the one based on hydrody-
namics consideration [196]. We have examined our self-interacting case and found that such spatial
dependence does not cause substantial change for our results. Therefore, we use the Eq. (B.8) as a good
approximation of pF for the following analysis.
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where

Eψ =

∫ R

0

dr
4

π
r2

(
m4h(

pF
m

)− 1

2
yφm(r)3i(

pF
m

)

)
, (B.15)

Eφ = 4π

∫
drr2

(
V (φ)− 1

2
φ(x)

∂V

∂φ

)
, (B.16)

and

h(z) =

∫ z

0

duu2
√

1 + u2 =
1

4
(i(z) + z3

√
1 + z2). (B.17)

In the relativistic limit z � 1, i(z)→ z2, h(z)→ z4/4, while in the non-relativistic limit

z � 1, i(z)→ h(z)→ z3/3.

Note that Eq. (B.1) can be rewritten as

L = ψ̄∂µγµψ − yΦψ̄ψ +
1

2
(∂Φ)2 − V (Φ) (B.18)

where Φ = v + φ, v = mψ/y. For a double-well potential

V (Φ) =
λ

4!
(Φ2 − v2)2 =

λΦ4

4!
− 1

12
λv2Φ2 +

λv4

4!
, (B.19)

after substitution λ = 6u2/v2 and Φ = v + φ, the expression changes to

V (φ) =
u2

4v2
φ4 +

u2

v
φ3 + u2φ2. (B.20)

Referring to Eq. (B.16), to have a finite total energy, φ(r → ∞) must reach the zero of(
V (φ)− 1

2
φ ∂V/∂φ

)
, i.e. φ = 0 or φ = −2v, being the degenerate vacua of V (φ).

B.2.1 Bulk limit

In the large particle number (bulk) limit, one can take the mean field approximation for

the scalar field, so that Eq. (B.9) reduces to Ff = −Fφ, i.e.

y

π2
m(r)3i(

pF
m

) = −∂V
∂φ

. (B.21)

Notice that both Ff and Fφ approach to zero when φ is close to the local maximum of

the scalar potential where ∂V/∂φ → 0 and m → 0, giving an EOM solution φ ≈ −v.

The result of energy can thus obtained by taking the relativistic limit (z = pF/m � 1)

of Eq. (B.15):

Eψ →
4

π

∫ R

0

drr2(m4h(z))→ 1

π

∫ R

0

drr2(m4
ψz

4) = c0
N4/3

R
=

3

4
pFN. (B.22)
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And

Eφ =
4

3
πR3V0 =

3π2

p3
F

V0N, (B.23)

from Eq. (B.16). Therefore, the total energy per particle number is

ε =
E

N
=
Eψ + Eφ

N
=

3

4
pF +

3π2

p3
F

V0 (B.24)

The minimization of E/N over pF gives:

εmin = 31/4
√

2π V
1/4

0 (B.25)

with pF = pFm = 31/4
√

2πV
1/4

0 = εmin. The binding energy per particle

εB = mψ − εmin, (B.26)

is thus obtained. For the double-well potential Eq. (B.20).

V0 = V (Φ = 0) = V (φ = −v) = λv4/4! =
1

4
u2v2, (B.27)

so that the analytical results above become:

εmin = 31/4
√
π
√
uv = pFm (B.28)

from which εB = mψ − 31/4
√
π
√
uv. Assuming pF ≈ pFm for finite particle number, then

from Eq. (B.8)

Rm =

(
9πN

4

)1/3
1

pFm
=

c√
u v

N1/3, (B.29)

where c = 35/122−2/3π1/6 ≈ 0.823.

B.2.2 Finite N

When the particle number decreases to finite value away from the bulk limit, the effective

fermion mass gets larger so that the things become more non-relativistic, and the finite-

size effect has to be accounted. The non-relativistic limit z = pF/m � 1 is maximally

achieved when φ→ 0 so that m→ mψ and pF � mψ so that Eφ → 0. In this limit, since

Eψ =
4

π

∫ R

0

drr2(m4h(z))→ 3mψ
h(z)

z3
,
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the binding energy is thus

εUN := mψ(1− 3
h(z)

z3
)
z→0−−→ 0−. (B.30)

For each particle number, we solve for the profile of the field φ(r) while scanning

the radius R to find the configuration that minimizes the energy. The results on energy

interpolate the aforementioned relativistic and non-relativistic limits. To be more specific,

the shooting method is employed for the numerical solving. For any given N and R, we

solve Eq. (B.9) for with the boundary conditions φ′|r=0 = 0 and φ|r=0 = φ0 for r ≤ R,

and then solve Eq. (B.9) for the r > R domain using the obtained value of φ(R) and

φ′(r = R) as the boundary condition. The value of φ0 is determined via scanning from

−v to 0 until φ can reach zero somewhere at r > R. This scheme often requires very

high precision when either u or N grows large.

We solve for the cases where mψ = 100 GeV, α = y2/(4π) = (0.1, 1.0, 5.0) and scalar

mass u = (10, 50, 100) GeV. The units GeV can be replaced by any other units with

mass dimension one, depending on what physics scale we are interested in. Results on

the scalar field configurations for different particle numbers are shown in Figure B.1.

In general, the field rolls between the −v and zero from the interior to the exterior of

the bound state, so that the fermions become more massive away from the center of

the bound state. One can see that the scalar field becomes more like a constant as the

particle number increases. The depth of the surface region becomes shallower as either

the particle number or the scalar self-interacting strength increases.

Figure B.1: Solutions of Eq. (B.9) with mψ=100 GeV, α = 5 for N = 10, 103, 105 (left to right),
respectively. Red lines denote the fields inside the bound states, while black lines map to the fields
outside. Lines with darker colour are with larger u, which sample u = (10, 50, 100) GeV, respectively.

The boundary radius that minimizes the energy for a given particle number is shown

in Figure B.2. In general, a larger scalar self-interaction or a smaller Yukawa coupling
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tends to suppress the size of the bound state radius. As we have examined, the numerical

Figure B.2: Radius R that minimizes the energy vs the particle number N . Lines with darker colour
are with larger u, which sample u = (10, 50, 100) GeV, respectively.

result of the radius gives a very good match to the analytical prediction from Eq. (B.29).

Results on the binding energy per particle for different particle numbers are shown

in Figure B.3. We can see that the relativistic (bulk) limit gives the upper bound of

Figure B.3: The binding energy per fermion number εB(N). Lines with darker colour are with larger u,
which sample u = (10, 50, 100) GeV, respectively.

binding energy. One can see that a larger scalar self-interaction or a smaller Yukawa

coupling tends to destabilize the bound state. Note that the cases with u = 50, 100 GeV

for α = 0.1, and u = 100 GeV for α = 1, are not shown due to the fact that their binding

energy turns out to be negative for any particle number. These numerical results match

our expectation from Eq. (B.26).
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B.3 Discussion

In this work, we studied the fermion bound state with a self-interacting scalar in the bulk

limit and the finite particle number regime. With the shooting method employed, we

can solve the equations of motion and obtain the results of the field, radius, and energy

configuration for a given set of Yukawa coupling and scalar self-interacting strength. As

the particle number increases, the bound state size increases and things become more

relativistic. Therefore, the obtained results interpolate between the analytical expecta-

tion from the relativistic and non-relativistic limits. In general, the scalar self-interaction

tends to destabilize the bound states, while the Yukawa coupling has the opposite effect.

Later we applied this work into the study of quark matter in [19], which was repro-

duced in Chapter 6 of this thesis. When we were trying to incorporate this work to the

study of dark matter bound states, we became aware of the work [197], which carried out

such studies. They also studied the synthesis of such bound states in early universe [198],

and the related compact star physics in [199].
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