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Abstract In this study, we explore how a fermion–
antifermion ( f f ) pair interacts via an exponentially decaying
potential. Using a covariant one-time two-body Dirac equa-
tion, we examine their relative motion in a three-dimensional
flat background. Our approach leads to coupled equations
governing their behavior, resulting in a general second-order
wave equation. Through this, we derive analytical solutions
by establishing quantization conditions for pair formation,
providing insights into their dynamics. Notably, we find that
such interacting f f systems are unstable and decay over
time, with the decay time depending on the Compton wave-
length of the fermions.

1 Introduction

In the realm of quantum mechanics, understanding the behav-
ior of f f pairs under the influence of various potentials is
crucial for unraveling the intricacies of particle interactions.
One particularly intriguing scenario arises when these parti-
cles interact through exponentially decaying potentials [1,2].
This phenomenon not only sheds light on the fundamental
nature of fermionic interactions but also holds significance
in diverse areas ranging from high-energy particle physics to
condensed matter physics. The study of f f pairs interacting
via exponentially decaying potentials presents a fascinating
avenue for exploring the delicate balance between attractive
and repulsive forces within quantum systems. Unlike other
potentials, which may exhibit linear or polynomial decay, the
exponential decay introduces unique characteristics that pro-
foundly influence the behavior of the interacting particles. In
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this investigation, we will try to understand the underlying
principles governing the dynamics of fermionic systems sub-
ject to an exponentially decaying potential. Through a the-
oretical analysis, we aim to elucidate the impact of various
parameters on the resulting phenomena, unraveling the rich
tapestry of quantum behavior encapsulated within these sys-
tems. Furthermore, the insights gleaned from this study are
anticipated to have far-reaching implications across multiple
disciplines. From elucidating the behavior of quark-antiquark
pairs in the context of quantum chromodynamics to shedding
light on the emergence of exotic states in condensed mat-
ter systems, the ramifications of understanding f f interac-
tions mediated by exponentially decaying potentials are man-
ifold. Furthermore, deriving closed-form analytical solutions
for the renowned wave equations, especially those involv-
ing exponentially decaying potentials [1,2], seems unfeasible
across all scenarios.

Various studies have examined the dynamics of fermions
influenced by exponentially decaying interaction potentials.
For instance, under the effect of these potentials, de Castro
and Hott [3] derived analytical solutions for the Dirac equa-
tion in (1+1)-dimensions. Peña et al. [4] reported analytical
bound state solutions with spin and pseudo-spin symmetries,
using the Green–Aldrich approximation for the centrifugal
term. Long et al. [5] explored the behavior of relativistic
fermions in the context of minimum length using the Bethe
ansatz method. Ikot [6] investigated the Dirac equation con-
sidering a generalized Hylleraas potential through the exten-
sion of the Nikiforov–Uvarov method. Arda et al. [7] found
approximate analytical solutions for the pseudo-spin sym-
metric Dirac equation. Moreover, Dirac fermions have been
studied across various scalar interaction potentials, includ-
ing exponentially decaying potentials (see, e.g., [8]). Conse-
quently, approximations are often employed to handle these
complex systems involving exponential potentials [1,2]. To
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mitigate complexity, one-body test fields are frequently uti-
lized, though it is important to underline that exponentially
decaying potentials are predominantly utilized in the con-
text of mutually interacting particles [1,2]. However, the
investigation into relativistic f f pairs and fermion–fermion
systems interacting via exponentially decaying inter-particle
interaction potential remains elusive. Moreover, in the the-
oretical examination of composite systems formed by inter-
acting particles, it is imperative that the equations encompass
the kinematics of each particle, as noted by Barut [9].

In classical quantum mechanics, a widely accepted
approach for characterizing bound, scattering, and resonance
states entails employing one-time equations formulated with
wave functions contingent upon the coordinates of indi-
vidual particles. These equations incorporate independent
Hamiltonians for each particle plus inter-particle interaction
potentials. However, transitioning to the realm of relativistic
physics poses several challenges in elucidating the behavior
of many-body systems. Among these hurdles is the “many-
time problem,” stemming from retardation effects, alongside
the intricacies surrounding the total spin of composite sys-
tems comprising multiple spinning particles. Consequently,
the requisite equations must be one-time, entirely covariant
formulations that encompass many bodies, accounting for
retardation effects and accurately encapsulating spin alge-
bra [9]. Moreover, such equations must integrate the most
comprehensive electromagnetic potentials, alongside spinor
fields contingent upon spacetime position vectors for each
particle. To delineate the dynamics of fermionic many-body
systems, a non-perturbative equation emerged from quan-
tum electrodynamics by leveraging the action principle [9].
Additionally, it was established that this equation could be
derived as an excited state of Zitterbewegung [10]. Never-
theless, in (3 + 1)-dimensions, exact solutions to this equa-
tion remain elusive, even for renowned two-body systems
like one-electron atoms [11], positronium-like unstable sys-
tems [12], and other interacting f f pairs [13]. This is pre-
dominantly due to the incorporation of spin algebra in the
aforementioned equation, constructed through the Kronecker
product of Dirac matrices, resulting in a set of 16 radial
equations governing the relative motion of f f or f f sys-
tems upon separating the radial and angular components. In
(3+1)-dimensions, this equation engenders coupled second-
order equations, with subsequent studies demonstrating that
perturbation methods alone can address these resultant equa-
tions [12,13]. Nonetheless, indications suggest that obtaining
exact solutions of the fully-covariant two-body Dirac equa-
tion appears plausible for low-dimensional systems or spe-
cific f f systems characterized by dynamical symmetry [14–
18]. This fully-covariant equation has found application in
diverse scenarios, ranging from elucidating the dynamics of
an exciton in a monolayer medium [14], estimating mass
spectra for neutral mesons [15]. Furthermore, this equation’s

utility extends to scrutinizing the evolution of certain f f or
f f systems in curved spaces [16–20].

In this manuscript, we endeavor to explore the motion
of a minimally coupled1 f f pair within the realm of rel-
ativistic quantum mechanics, specifically focusing on their
interaction through an exponentially decaying potential. Our
approach involves employing the fully-covariant two-body
equation. To achieve this, we introduce the two-body Dirac
equation within a three-dimensional spacetime background,
both globally and locally flat. For any arbitrary inter-particle
interaction potential, we derive a set of coupled equations
that govern their relative motion. This set of equations leads
to a second-order wave equation, encompassing a general
central potential. By considering an exponentially decaying
potential as the inter-particle interaction potential, we derive
a conditionally exact analytical solutions. In doing so, we
establish quantization conditions for the formation of such
pairs, offering valuable insights into their dynamic behavior.

This paper is structured as follows: In Sect. 2, we introduce
the corresponding two-body equation and derive a matrix
equation. In Sect. 3, we present a conditionally exact solution
(owing to a three-term recurrence relation) of the resulting
second-order wave equation. Finally, in Sect. 4, we provide a
summary and discuss the fundamental characteristics of such
systems.

2 Matrix equation

In this section, let us start by introducing the fully-covariant
two-body Dirac equation in 2 + 1-dimensional globally and
locally flat spacetime background that can be described by
the following metric with the signature (+,−,−)

ds2 = c2dt2 − dx2 − dy2, (2.1)

where c is the light speed and t, x, y are the coordinates
within the considered flat spacetime. For a mutually interact-
ing fermion–fermion systems in this space-time background,
the two-body Dirac equation can be written as the following
[15]

1 In the context of the Dirac equation, the interaction potential terms can
be classified into three main categories: scalar, non-minimal, and mini-
mal. Scalar potentials only affect the time component of the Dirac equa-
tion, essentially altering the particle’s mass. This alters the energy across
all momentum states. Non-minimal potentials couple the fermions to
external fields, resulting in additional terms in the Dirac equation that
involve the spin operator and the electromagnetic vector potential. Mini-
mal interactions, on the other hand, involve the coupling of the fermions
to the electromagnetic field via the electromagnetic vector potential.
These potentials arise from the minimal coupling prescription in quan-
tum field theory, where the fermion’s charge couple to the electromag-
netic field in the most straightforward manner.
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Fig. 1 Inter-particle interaction potential V(r) vs r . Here, we set α =
1/137 and Z = 1 = d

{[
γ μ f D f

μ + i
mc

h̄
I2

]
⊗ γ t f

+γ t f ⊗
[
γ μ f D f

μ + i
mc

h̄
I2

]}
�

(
x f
μ, x f

μ

)
= 0, (2.2)

D f = ∂ f
μ + ie f A f

μ

h̄c
, D f = ∂ f

μ + ie f A f
μ

h̄c
, (2.3)

for a f f ( f f ) pair with mass of m (each). Here, e stands for
electric charge, h̄ is the reduced Planck constant, Aμ is the
electromagnetic 3-vector potential, the Greek indices indi-
cate the coordinates within the considered background and
the symbol ⊗ means Kronecker product. Here, � is the bi-
local spinor field dependent on the space-time position vec-

tors (x f
μ, x f

μ ) of the particles and it is constructed through
direct product of symmetric two Dirac spinors. The gener-
alized Dirac matrices (γ μ) are determined by using the flat
Dirac matrices (γ a ,a = 0, 1, 2.) and inverse tetrad fields (eμ

a )
through the relation: γ μ = eμ

a γ a . The flat Dirac matrices
are chosen in terms of Pauli spin matrices as the following:
γ 0 = σz , γ 1 = iσx and γ 2 = iσy according to the signature
(+,−,−) since σ 2

x(y,z) = I2 where I2 is two-dimensional
identity matrix. The inverse tetrad fields are determined
through eμ

a = gμνebνηab where gμν = diag(c−2,−1,−1) is
the contravariant metric tensor and ηab = diag(1,−1,−1) is
the flat Minkowski tensor. The tetrads can be obtained by the
relation: gμν = eaμe

b
νηab where gμν = diag(c2,−1,−1) is

the covariant metric tensor. Accordingly, we can obtain the
generalized Dirac matrices as the following

γ t f ( f ) = σz

c
, γ x f ( f ) = iσx , γ y f ( f ) = iσy, (2.4)

where i = √−1. Here, we are interested in a f f pair inter-
acting through a central interaction potential without con-
sidering any other external force. Hence, we can take into
account this interaction through the following components
of the electromagnetic 3-vector potential

At = V(|x f
μ − x f

μ |), Ax = 0 = Ay .

Now, it can be useful to write the corresponding matrix equa-
tion in the following form ♦̂� = 0, where ♦̂ is

γ t f ⊗ γ t f
[
∂
f
t + ∂

f
t + iV

]

+γ x f
∂
f
x ⊗ γ t f + γ t f ⊗ γ x f

∂
f
x (2.5)

+γ y f ⊗ γ t f ∂
f
y + γ t f ⊗ γ y f

∂
f
y

+i
mc

h̄

[
I2 ⊗ γ t f + γ t f ⊗ I2

]
. (2.6)

According to the metric (2.1), we can factorize the space-
time-dependent composite field �(t, r, R) as

� = e−iωt �̃(r, R),

in which ω is the relativistic frequency of the considered sys-
tem, and R and r refer to center of mass motion coordinates
and relative motion coordinates, respectively. The center of
mass and relative motion coordinates are introduced through
[20]

rμ = x f
μ − x f

μ, Rμ = x f
μ + x f

μ

2
, x f

μ = 1

2
rμ + Rμ,

x f
μ = −1

2
rμ + Rμ, ∂

f
xμ

= ∂rμ + 1

2
∂Rμ,

∂
f
xμ

= −∂rμ + 1

2
∂Rμ, (2.7)

for equal masses of two particles. In Eq. (2.7) it can be seen

that ∂ f
xμ

+∂
f
xμ

= ∂Rμ . This means the evolution of the consid-
ered pair, associated with the relativistic frequency, is deter-
mined with respect to the proper time ∂Rt . Here, we will try to
explore the relative motion of the considered pair. To acquire
this, we need to get rid of the center of motion coordinates. We
can consider such a static pair whose center of mass is at rest
at the spatial origin. Of course, this requires that the particles
must carry opposite momenta with respect to each other. At
that rate, we may observe any pairing effect, only. Under this
assumption, the resulting equation can be expressed in terms
of relative motion coordinates and results in ♦̂�̃(rx , ry) = 0
given explicitly by

⎛
⎜⎜⎜⎝

ϕ(r) − m̃ D̂− −D̂− 0
−D̂+ ϕ(r) 0 −D̂−
D̂+ 0 ϕ(r) D̂−

0 D̂+ −D̂+ ϕ(r) + m̃

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

ψ1(rx , ry)
ψ2(rx , ry)
ψ3(rx , ry)
ψ4(rx , ry)

⎞
⎟⎟⎠ = 0, (2.8)
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where D̂∓ = ∂rx∓i∂ry ,ϕ(r) = ω/c−V(r), and m̃ = 2mc/h̄.
Here, it is clear that the spinor components depend explic-
itly on the relative motion coordinates, as ψu(rx , ry), (u =
1, 2, 3, 4.). In search of a symmetry, we can consider to
exploit the angular symmetry in polar space. To map the
system into polar coordinates, we can use the spin rais-
ing/lowering operators, given by D̂± = e∓iφ

(
∂r ∓ i

r ∂φ

)
,

only for the transformed spinor components [15]

⎛
⎜⎜⎝

ψ1(rx , ry)
ψ2(rx , ry)
ψ3(rx , ry)
ψ4(rx , ry)

⎞
⎟⎟⎠ ⇒

⎛
⎜⎜⎝

ψ1(r)ei(s−1)φ

ψ2(r)eisφ

ψ3(r)eisφ

ψ4(r)ei(s+1)φ

⎞
⎟⎟⎠ ,

where r is the relative radial distance between the particles
and s is the total spin of the resulting composite system
formed by a coupled f f pair.

3 Conditionally exact solutions

In this section, we derive first a set of coupled equations, and
then we show a non-perturbative second-order wave equation
for a static and spinless system formed by a f f pair inter-
acting through a central (inter-particle) interaction potential
V(r). Then, we will use quasi-exactly solvable methods to
analyze the dynamics of the system in question. The matrix
equation (2.8) leads to a set of coupled equations consisting
of four first-order differential equations. By adding and sub-
tracting these equations, one can derive following equations
set

ϕ(r)ψ+(r) − m̃ψ−(r) + 4ψ
′
0(r) = 0, (3.1)

ϕ(r)ψ−(r) − m̃ψ+(r) = 0, (3.2)

ϕ(r)ψ0(r) − ψ
′
+(r) = 0, (3.3)

where prime (
′
) indicates derivative with respect to r ,

ψ±(r) = ψ1 ± ψ4 and ψ0 = ψ2 = −ψ3. The equations
(3.3) can be solved for ψ+, and results in the following non-
perturbative second-order wave equation

ϕ (r) ψ ′′+ (r) − ϕ′ (r) ψ ′+ (r)

+1

4

[
ϕ (r)3 − m̃2ϕ (r)

]
ψ+ (r) = 0, (3.4)

whereϕ (r) = 
−V (r),
 = ω/c,V (r) = A exp
(
−r/λ̃

)
,

m̃ = 2mc/h̄ = 2/λ, and λ̃ = λd. We have also to use the
change of variables x = V (r) /
 ∈ [0, A/
 ] to obtain

x2ψ ′′+ (x) + x

1 − x
ψ ′+ (x)

+1

4

[
−α2x2 + 2α2x − β2

]
ψ+ (x) = 0, (3.5)

where α = i λ̃
 and β = d
√

4 − λ2
 2 are used here. Let
us use the substitution

ψ+ (x) = N xβ/2 e−αx/2H (x) , (3.6)

to obtain

x (1 − x) H ′′ (x) +
[
αx2 − (β + α) x + (β + 1)

]
H ′ (x)

+1

2
[α (β − α) x + ζ ] H (x) = 0, (3.7)

where

ζ = (1 − α)(β − α). (3.8)

Next we use the power series expansion

H (x) =
∞∑
j=0

C j x
j+σ , (3.9)

in (3.7) to obtain

∞∑
j=0

C j

[
α ( j + σ) + α

2
(β − α)

]
x j+σ+1

+
∞∑
j=0

C j

[
ζ

2
− ( j + σ) ( j + σ − 1) − ( j + σ) (β + α)

]
x j+σ

+
∞∑
j=0

C j [( j + σ) ( j + σ − 1)

+ ( j + σ) (β + 1)] x j+σ−1 = 0. (3.10)

This would, in turn, imply that

∞∑
j=0

{
C j+2 [( j + σ + 1) ( j + σ + 2) + ( j + σ + 2) (β + 1)]

−C j+1

[
( j + σ) ( j + σ + 1) + ( j + σ + 1) (β + α) − ζ

2

]

+C j

[
α ( j + σ) + α

2
(β − α)

]}
x j+σ+1 = 0, (3.11)

provided that σ = 0, and

C1 = − ζ

2 (β + 1)
C0. (3.12)

We may now obtain the three terms recursion relation

C j+2 [( j + 1) ( j + 2) + ( j + 2) (β + 1)]

+C j+1

[
ζ

2
− j ( j + 1) − ( j + 1) (β + α)

]

+C j

[
α j + α

2
(β − α)

]
= 0. (3.13)

We may now truncate the power series (3.9) to a poly-
nomial of order n + 1 ≥ 1 by imposing the conditions that

123



Eur. Phys. J. C           (2024) 84:801 Page 5 of 7   801 

0 0.002 0.004 0.006 0.008 0.01
0

2000

4000

6000

8000

10000

12000
i

n

0 0.002 0.004 0.006 0.008 0.01
0

0.005

0.01

0.015

0.02

0.025

n

n=1 n=2 n=3 n=4

Fig. 2 The frequency iωn and corresponding decay time (τn) vary with the Compton wavelength λ. Here we take c = 1

∀ j = n we have Cn+2 = 0, Cn+1 �= 0, and Cn �= 0. The
first condition Cn+2 = 0 truncates the power series to a
polynomial of order n + 1. However, since Cn+1 �= 0, and
Cn �= 0, one may use the conditions that the coefficients of
Cn+1 �= 0 and Cn �= 0 identically vanish to facilitate condi-
tionally exact solvability of the problem (c.f., e.g., [21,22]).
That is, for Cn �= 0 we have

αn + α

2
(β − α) = 0 
⇒ β = α − 2n, (3.14)

and for Cn+1 �= 0 we obtain

n (n + 1) + (n + 1) (β + α) = ζ

2
, (3.15)

to imply that

(1 − α)(β − α)

2
= n (n + 1) + (n + 1) (β + α) . (3.16)

We may now use (3.14) and (3.16) to obtain

α = n2

n + 2
⇒ iω = c

λd

[
n2

n + 2

]
. (3.17)

Moreover, β = √
4d2 + α2 and β = α − 2n, one obtains

d = dn = ± 2n√
2n + 4

⇒ dn = 2n√
2n + 4

> 0. (3.18)

That is, for every n we have a different d = dn value. This
relation would therefore identify a correlation between our
parameter d and the quantum number n. Consequently, the
results in (3.14), (3.16), and (3.17) would yield

iωn = c

λdn

[
n2

n + 2

]

= c

λ

[
n√

2n + 4

]
⇒ h̄ωn = −i mc2

[
n√

2n + 4

]
.

(3.19)

Only under such conditions that our power series is truncated
to a polynomial of order n + 1 ≥ 1. Therefore, the condi-
tion that the coefficients of Cn+1 �= 0 and Cn �= 0 vanish
identically would manifestly facilitates conditionally exact
solvability of the problem at hand. Notably, such a condi-
tionally exact solution puts some parametric constraint (in
our case, the allowed values of d = dn; n > 0, loosing
n = 0 state in the process of conditionally exact solvability,
therefore), which is, in fact, a usual price one has sometimes
to pay when conditional exact solvability is involved. Very
recently, similar conditionally exact solvability for such three
terms recursion relations is suggested for the confluent [21]
and the biconfluent [22] Heun type functions/series solutions.
The frequency expression (3.19) allows us to determine the
decay time (τn = 1/|ωImn |) of the damped modes

τn = λ

c

√
2n + 4

n
, (3.20)

provided n ≥ 1 (note that � ∝ exp(−iωt) ). The relationship
between decay time and the Compton wavelength λ is evi-
dent in Fig. 2. Additionally, it is apparent that the decay time
of this composite system can be very long if the Compton
wavelength is very long. However, each state decays faster
for small λ values.pg
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4 Summary and discussions

This study explores the relative motion of a f f pair in (2+1)-
dimensional flat space-time, interacting via an exponentially
decaying inter-particle interaction potential. We seek analyti-
cal solutions to the fully-covariant one-time two-body Dirac
equation derived from quantum electrodynamics using the
action principle. For such a spinless composite system, we
derive a non-perturbative second-order wave equation and
find its solution by establishing quantization condition for the
formation of such pairs. This approach enables us to deter-
mine relativistic frequency modes. The frequency modes ωn

are found in purely imaginary form, representing the time
evolution of the composite field � ∝ exp(−iωnt). The
explicit form of the frequency spectra is given by: Im(ω)n =
−i c

λ
n√

2n+4
. Here, λ denotes Compton wavelength for the

fermion (or its antiparticle, the antifermion), c is the speed
of light, and n is the overtone number (n = 1, 2, · · · ). More-
over, these states cannot be steady states and decay over
time. Thus, the time evolution of the system depends explic-
itly on the Compton wavelength but is controlled also by
the relationship between the scaling factor and the overtone
number n. Notably, the time evolution is independent of the
strength of the interaction. Our results show that frequency
modes always have a negative signature, indicating that the
corresponding quantum states decay over time, with decay
time (τn) depending the Compton wavelength and the scaling

since τn = λ
c

√
2n+4
n . The dependence of the decay time of

these damped modes is illustrated in Fig. 2, showing that the
decay time of such f f pairs is dominated by the n = 1 state,
especially for long λ (or for small rest mass). These results
suggest also that all physically possible quantum states decay
faster if λ is small.

On the other hand, we may feasibly extend our findings
to f f pairs within condensed matter systems, utilizing the
Fermi speed rather than the speed of light in vacuum, could
prove highly beneficial. Given that the Fermi speed (vF ) typi-
cally falls considerably below the speed of light (c). Our find-
ings suggest that fermionic states within condensed matter
environments can exist for longer duration compared to their
vacuum counterparts. This adaptation can be useful for mod-
eling and comprehending phenomena in condensed matter
physics, where pair behavior is of course influenced by also
environmental and material characteristics. Consequently, in
principle, we can apply our findings to f f pairs in con-
densed matter systems by substituting the speed of light in
vacuum with the Fermi velocity (vF ≈ c/300). Essentially,
this implies that the decay time of such interacting f f pairs
in condensed matter mediums can be approximately 3 × 102

times longer. Our result given by Eq. (3.20) may be applied
to electron–hole pairs in two-dimensional materials without
loss of generality. In this context, the result (3.20) becomes

τ1 = √
6

λ

vF
, (4.1)

when n = 1. This suggests a decay time of approximately
∼ 10−17 seconds for electron–hole systems in the S-state
within monolayer materials, even without accounting for spe-
cific material properties and thermal effects (see also [23]).
This finding aligns with the results obtained for excitons
in certain two-dimensional materials [23]. Furthermore, our
model could be very useful in explaining the dependence
of the decay time of excitonic states [23] on the effective
dielectric constant of monolayer materials, which could be
explored in future research.

Exploring how f f pairs interact under exponentially
decaying potentials is a fascinating area in physics [1,2]
(see also [24]). These potentials appear in different physi-
cal scenarios, reflecting a range of interactions, such as those
mediated by virtual particles in quantum field theory. Under-
standing the dynamics of f f pairs in these conditions could
enhance our grasp of particle physics in both flat and curved
spaces.
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