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Abstract

We use a deformed “center-stablised” gauge theory, which can be brought
into a weak coupling regime while remaining confined and gapped, as a toy
model to study some ideas from real QCD. The deformed model has the
correct nontrivial #-dependence and degeneracy of topological sectors con-
jectured for QCD, and is, apparently, smoothly connected to the strongly
coupled undeformed Yang-Mills, so that we can perhaps expect to get some
qualitative insights into QCD. We demonstrate the presence of a nondisper-
sive contact term in the topological susceptibility, which contributes with
the opposite sign to normal dispersive contributions coming from physical
propagating degrees of freedom. We further show that, despite the system
being completely gapped with no massless physical degrees of freedom, the
system has a Casimir-like, power scaling, dependence on boundaries, in con-
trast with the naive expectation that a system with only massive degrees of
freedom should have a weak (exponentially small) dependence on long dis-
tance effects. This behaviour suggests the possibility for a solution for the
cosmological dark energy problem coming from the strongly coupled QCD
sector on a manifold with a boundary, which would have the correct sign and
be of the correct order of magnitude. Next, we investigate the interaction
between point-like topological charges (monopoles) and extended sheet-like
topological defects (domain walls) in attempt to explain some recent lattice
QCD results suggesting that extended topological objects are more impor-
tant to understanding the relevant field configurations in QCD than the
instantons traditionally expected. Finally, we derive the existence of ex-
cited metastable vacuum states and calculate their decay rate to the true
ground state of the theory, comparing with the expected results discussed
years ago in proper QCD. The presence of metastable vacuum states with
a nonzero effective § parameter, like those present in the deformed model,
could explain P and CP violation in heavy ion collisions observed on an
event by event basis, which seem to average away over many events.
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Lay Summary

We investigate a toy model related to the true theory for the strong nuclear
interaction which binds nuclear matter. The toy model is much easier to
work with, but preserves many important aspects of the true theory, espe-
cially related to the vacuum structure. We use this simplified model to study
some ideas in the true theory, in which there are no obvious ways to perform
the relevant calculations. Our computations provide some insight into a par-
ticular dependence of the bulk energy density on the size of the system, the
structure of the type of configurations relevant in the theory, and some old
questions about semi-stable vacuum states. These results could help explain
the origins for cosmological dark energy, some recent results in a different
lattice approximation which differ from conventional wisdom, and some odd
observations in heavy ion collisions.
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Preface

Chapter 2| is primarily a review of the deformed “center-stabilised” gauge
theory model discussed by Lawrence Yaffe and Mithat Unsal in [85], and
as such, aside from a few corrections and expanded discussions, does not
represent any original work attributable to myself. Chapter |3| is adapted
from work titled “Topological Susceptibility and Contact Term in QCD: A
Toy Model” published in Physical Review D 85:044039 [80]. The content in
Chapter 4| is published as “Casimir Scaling in Gauge Theories with a Gap:
Deformed QCD As a Toy Model” in Physical Review D 86:065029 [79].
Chapter 5] is published as “Long Range Order in Gauge Theories: Deformed
QCD As a Toy Model” in Physical Review D 87:085027 [81]. Chapter [6]
was the result of a project in collaboration with another student, Amit
Bhoonah, with whom I worked on the numerical simulations presented, and
is published as “Metastable vacuum decay and 6 dependence in gauge theory.
Deformed QCD as a toy model.” in Nuclear Physics B 890:30 [7]. I did the
bulk of the writing for that paper, and actually removed the short section
Amit wrote in the text of Chapter 6}, since it was not particularly relevant for
this presentation, such that the text presented here represents my writing.
In all four of these works my supervisor, Ariel Zhitnitsky, suggested the
fundamental ideas and wrote many of the parts about historical context
and relation to other theories and models scattered throughout.
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Chapter 1

Introduction

Gauge theories, the class of Quantum Field Theories (QFTs) exhibiting gen-
eralised versions of the gauge symmetry from electrodynamics, have been ex-
tremely successful in describing the fundamental forces (excepting gravity)
via vector boson mediated particle interactions. Quantum Electrodynam-
ics (QED) has been relatively easy to work with, being weakly coupled and
amenable to perturbation theory at all accessible scales, and has matched ex-
periment extremely well. By contrast, Quantum Chromodynamics (QCD),
the theory for the strong nuclear force, is strongly coupled (highly nonlin-
ear) at low temperature. The coupling runs down at higher temperature,
but unfortunately the system undergoes a phase transition (crossover) from
“confined” hadronic matter to a “deconfined” quark gluon plasma state be-
fore the coupling is small in a perturbative sense. This means that, while
there is a weak coupling regime, the perturbative calculations we can do at
weak coupling cannot tell us much about the confined phase. As a result,
people have looked for other ways to approach QCD, including: phenomeno-
logical models that attempt to write down informed guesses for an effective
theory; lattice models that discretise space and attempt to calculate cor-
relators by brute force Monte-Carlo simulation of the path integral; and
AdS/CFT calculations that produce weakly coupled dual gravity theories
to QCD-like strongly coupled field theories.

Each of the approaches mentioned above has its shortcomings. Phe-
nomenological approaches can be difficult to get any predictive power from,
since they are not necessarily describing any behaviour accurately outside
the observed phenomena they are based on. Lattice QCD is extremely nu-
merically expensive, requiring significant time on expensive supercomputers
to do realistic calculations. It can also be quite difficult to get any kind of
physical intuition about the reasons for effects seen on the lattice. AdS/CFT
does not have a known direct dual to QCD, so instead makes some argu-
ments in supersymmetric models and/or gauge models with different gauge
groups than the SU(3) describing real QCD.

Hopefully, despite not having a perfect calculational tool, using multiple
desperate approaches will allow us to form an increasingly good picture of
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the behaviour of real QCD as we see similar effects in different approxi-
mations. As such, we investigate a different approximation to those listed
above, the so called “center-stablised” or “deformed” gauge theory devel-
oped by Lawrence Yaffe and Mithat Unsal [85], and apply it to carry out
some calculations. The model is built by taking a normal gauge theory,
with Yang-Mills Lagrangian, and adding an extra term (deformation) to the
Lagrangian acting as a potential penalty for the order parameter for the de-
confinement phase transition. This means, by suitable choice of parameters,
we can enforce a confined phase to arbitrarily large temperature (and so
arbitrarily small coupling). Thus, we can work in a model which is weakly
coupled, so amenable to perturbation theory and semiclassical treatment,
but describes a confined system which is, apparently, smoothly connected
to the real strongly coupled system without a phase transition between the
two.

We begin, in Chapter |2, by reviewing the relevant aspects of the model,
showing the two dual descriptions, as a Coulomb gas of topological monopoles
and as a coupled sine-Gordon model, for the low energy effective theory at
weak coupling. In Chapter |3, we discuss the topological susceptibility, a
key element in the resolution of the U(1)4 problem in QCD, and demon-
strate the presence of a nondispersive “contact” term in both dual descrip-
tions of the low energy effective theory. The contact term has the opposite
sign to the contribution from any physical propagating degrees of freedom
as is necessary to satisfy the Ward Identity, which requires a cancellation
with the contribution coming from the physical fields. Previously, there was
no consistent method for deriving the contact term in a four dimensional
gauge theory. Instead, Witten inserted this term directly by hand [93] and
Veneziano added an extra “ghost” field that leads to a contact term when
integrated out [90, 91], but in this model the contact term arises naturally.
[80]

Next, we show, in Chapter |4, that a zero mode analysis of the monopole
configurations describing the Coulomb gas description gives a Casimir-like
power scaling for the bulk energy density, as described by the topological
susceptibility, rather than the naive expectation for a gapped system with
no massless physical. If only physical degrees of freedom contribute, their
dispersion relations dictate an exponential suppression of any bulk depen-
dence on the boundary. In contrast, the deformed model has a nondispersive
We further argue that, if it persists in undeformed QCD at strong coupling,
such a Casimir scaling could lead to a solution for the cosmological dark
energy naturally following from QCD on a bounded manifold, without the
need for new fields or new physics. [79]
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In Chapter [5, we address some recent lattice QCD results suggesting
that the topological defects, relevant in gauge configurations that saturate
the path integrals, are extended objects looking like interleaved sheets of
opposite topological charge, rather than the point-like instantons people
have traditionally discussed. A class of domain wall objects that appear in
the deformed model have similar properties, being (classically) topologically
stable with sheets of opposite topological charge interleaved. We consider
their interaction with point-like monopoles and explain a possible dynamical
reason for the absence of point-like objects in relevant configurations. [81]

Finally, in Chapter 6, we demonstrate the presence of metastable vacuum
states (with energy higher than the true vacuum) in the deformed model and
calculate the decay rate from the metastable states to the true vacuum. We
also discuss how the presence of such metastable states can, if similar states
exist in undeformed strongly coupled QCD, lead to P and CP effects that
have apparently been observed in some heavy ion collisions. [7]



Chapter 2

Description of the Model

In this chapter we discuss the “center-stabilised” deformed Yang-Mills de-
veloped in [85] and references therein, before moving on to a discussion of
the topological properties of this theory in Chapter |3, and some applications
in Chapters and [6. In the deformed theory an extra term is put into the
Lagrangian in order to prevent the center symmetry breaking that charac-
terises the QCD phase transition between “confined” hadronic matter and
“deconfined” quark-gluon plasma. The extra term is a penalty for states
in which the order parameter for such a transition develops an expectation
value. Thus, we have a theory which remains confined at high temperature
in a weak coupling regime, and for which it is claimed [85] that there does not
exist an order parameter to differentiate the low temperature (non-Abelian)
confined regime from the high temperature (Abelian) confined regime. This
means we can do some simple semiclassical calculations in a confined the-
ory that, as we shall discuss, retains some interesting properties of, and is
smoothly connected to, undeformed Yang-Mills. For some other extensions
of this model related to inclusion of adjoint fermions, extensions to general
gauge groups, and so on, see[60-62] and references therein. We follow [85]
in deriving the relevant parts of the theory.

2.1 Formulation of the Theory

We start with pure Yang-Mills (gluodynamics) with gauge group SU(N) on
the manifold R x S* with the standard action

1
SYM = d*r —tr [F? 2.1
[ gt ()], (21)
and add to it a deformation action,

1
AS = - 3z EP [Q(x)], (2.2)



2.1. Formulation of the Theory

built out of the Wilson loop (Polyakov loop) wrapping the compact dimen-
sion,

Q(x) = P [¢if dors Aalxra)] (2.3)

The “double-trace” deformation potential P [{2] respects the symmetries of
the original theory and is built to stabilise the phase with unbroken center
symmetry. It is defined by

LN/2)
PIl= ) anltr[Q7]. (2.4)

n=1

Here |N/2] denotes the integer part of N/2 and {a,} is a set of suitably
large positive coefficients.

The centre of the gauge group is the subgroup of elements which com-
mute with all elements of the full group, is isomorphic to Zy for the gauge
group SU(N), and is the symmetry corresponding to the confinement decon-
finement phase transition. The first term of P [Q], proportional to |tr [€2]]?
(with a sufficiently large positive coefficient), will prevent breaking of the
center symmetry from Zy to Z; with order parameter (tr[€2]), but will not
prevent tr [QZ] from developing a vacuum expectation value so that it will
not prevent the center symmetry breaking from Zy to Zs with order pa-
rameter (tr [QQ] ). The term proportional to ‘tr [QQ] ‘2 however does prevent
such a symmetry breaking. Likewise, for each other subset Z, of Zn (with
N mod p = 0), there needs to be a corresponding term, proportional to
ltr [7]|%, in the deformation potential. This is the reason for including

terms up to ‘tr [QLN/QJ] ‘2. Note that for real life QCD the gauge group is
SU(3) and so in that case only one term would be necessary,

P[] =a|tr Q). (2.5)

In undeformed pure gluodynamics the effective potential for the Wilson
loop, whose expectation value acts as an order parameter, is minimised for
Q an element of Zp, which corresponds to a deconfined phase. The deforma-
tion potential with sufficiently large {a,} however changes the effective
potential for the Wilson line so that it is minimised instead by configura-
tions in which tr [2"] = 0, which in turn implies that the eigenvalues of 2
are uniformly distributed around the unit circle. Thus, the set of eigenvalues
is invariant under the Zy transformations, which multiply each eigenvalue
by €27*/N (rotate the unit circle by k/N). The center symmetry is then
unbroken by construction. The coefficients, {a,}, can be suitably chosen
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such that the deformation potential, P [Q], forces unbroken symmetry at
any compactification scales [85], but for our purposes we are only interested
in small compactifications (L < A~! where L is the length of the compact-
ified dimension, interpreted as an inverse temperature, and A is the QCD
scale). The idea here is to go to weak coupling for mathematical control
but to look at low-energy behaviour at that scale since we are interested
in vacuum behaviour. At small compactification, the gauge coupling at the
compactification scale is small so that we can work in a perturbative regime
and explicitly evaluate the potential for the Wilson loop due to Quantum
fluctuations as in [32, 85]. The one-loop potential is

V Q] :/RS d%%V[Q(x)], (2.6)
with -
2 1 9
vl =-5 > — ltr[Q"]°. (2.7)
n=1

The undeformed potential for the Wilson loop is minimised when 2 is
an element of the center, Zy, so that Q = e2™*/NV The deformation poten-
tial must therefore overcome this one-loop potential and force 2 to not
choose one particular element of Zy. We must choose the coefficients {ay,}
to be larger than 2/ (7?n*). A simple choice is a, = 4/ (7*n*). With this
choice, the full one-loop effective potential for the Wilson loop is minimised
for tr [2"] = 0 for all n # 0 mod N, indicating unbroken center symmetry.

2.2 Infrared Description

As mentioned in the previous section, we are interested in the regime in
which the compactification size is small, L < A~!, and so the gauge coupling
is small at the compactification scale, g? (1/L) < 1. So, in our deformed
theory, the combined effective potential for the Wilson loop is the sum of
and , which is minimised by field configurations with

2 = Diag (1, >N AN eQm(N*l)/N> , (2.8)

up to conjugation by an arbitrary element of SU(N). The configuration
can be thought of as braking the gauge symmetry down to its max-
imal Abelian subgroup, SU(N) — U(1) 1. In the gauge in which Q is
diagonal, the modes of the diagonal components of the gauge field with zero



2.2. Infrared Description

00 A Standard Deformed A OO
Yang-Mills Yang-Mills

deformation
Georenrarniennnnainninnnand >

~

2 L
L. 2.
=]
3
deconfined :
phase :
¥
{Com—)
0 =0

Figure 2.1: Diagram depicting the deformation removing the phase transi-
tion to a deconfined phase at weak coupling. It is based on a similar diagram
from [85].

momentum along the compactified dimension describe the U(1)V~! pho-
tons. Modes of the diagonal gauge field with non-zero momentum in the
compactified dimension form a Kaluza-Klein tower and receive masses that
are integer multiples of 27 /L and become large for small L. The remain-
ing off-diagonal components of the gauge field form a Kaluza-Klein tower of
charged W-bosons which receive masses that are integer multiples of 27 /N L.
Then the lightest W-boson mass, my = 27w /N L, describes the scale below
which the dynamics are effectively Abelian.

As described in [85], the proper infrared description of the theory is a di-
lute gas of N types of monopoles, characterised by their magnetic charges,
which are proportional to the simple roots and affine root of the Lie al-
gebra for the gauge group U(1)". Although the symmetry breaking is
SU(N) — U(1)N~1, it is simpler to work with U(1)" and, as we will see,
the extra degree of freedom will completely decouple from the dynamics.
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The extended root system is given by the simple roots,

ar = (1,-1,0,...,0) = &5 —és,
€5 = (0717_17"'70) = é2_é37

. (2.9)
aN-1 = (07"‘70717_1) = é]\f—l_é]\fv

and the affine root,
ay = (-1,0,...,0,1) = éx—é.

We denote this root system by A,g and note that the roots obey the inner
product relation
Qg -0y = 200 — 0g,bp+1 — Og,b—1- (2.10)

For a fundamental monopole with magnetic charge a, € A,g, the topo-
logical charge is given by

1 - 1
— 4 —
0= /RS a'e ooatt [Fu ™| = 45 (2.11)
and the Yang-Mills action is given by
Sym = d*z itI‘ [F2 ]
R3x S1 2g? m

8 2
:giQyQ\. (2.12)

1 .
dre ——t [F FW}
/]R3><S1 v 292 e

The second equivalence hold because the classical monopole solutions are
self dual [32], )
Fu=Fu.

For an antimonopole with magnetic charge —a,, the Yang-Mills action is
the same and the topological charge changes sign, Q = —1/N.

So the infrared description, at distances larger than the compactification
length L, is given by a three dimensional dilute monopole gas with N types
of monopoles (and so N types of anti-monopoles) interacting by a species
dependent Coulomb potential with interactions defined by the inner product
(2.10)),

2”)2 (foa) - (o)

Vos(r) =L

27\ 2 28, — 6ap_1 — O,
— 47 4T ab a,b—1 a,b—l—l7 (213)
g 47 |r|
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where the overall sign is plus for a monopole-monopole or antimonopole-
antimonopole interaction and minus for a monopole-antimonopole interac-
tion. For a given monopole configuration with n(*) monopoles and 7(®)

antimonopoles of types a = 1,..., N, at positions rgf ),k: =1,...,n% and
f,(:), k =1,...,7% respectively, the three dimensional U(1)" magnetic field
is given by

n(@) (a) 7la) _(a)

N
B =Y oy |3 rk(a)‘?’_z ” rl()r’ - e

a=1 Y k=1 47T‘X—I'k, =1 47r)x—f'la
Letting
M@ = pla) 4 ﬁ(a)7
I‘(a) . (a) for k S n(a)
k N ’(:)n(a> for k>n(® ’ (2.15)
Q(a) _ +1 for k<nl@
k —1 for k>n@ °

we can write (2.14) in a more compact form,

M@ (®

X>:Z ZQk

The action for such a monopole configuration is a combination of the monopole
self-energies and the Coulomb interaction potential energies for each pair of
monopoles,

47 ‘x - r]ga) ‘3 (2.16)

N
SMG = Sself Z M(a) + Sintv (217)
a=1
where
2 L M (@) pr(b)
T
Sint = Z aaap | 33 QVQ ( —rl(b)) (2.18)
a,b=1 k=1 =1
and )
= . 2.1
G = (219)

The canonical partition function is then given, as usual, by a sum over all

possible monopole configurations with a statistical weight e,

N
= / I an'@ =S, (2.20)
a=1
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with measure

(@ (@)

00 n(@ oo (@)
(@) _ (¢/2) «€/2)" (a) ()
dpl® = Y- =T ST RBHd l_Ildrk . (2.21)

nla)=0 -(a) 0

The monopole fugacity, ¢, describes the density of monopoles and is given
by,
¢ =C e 5 = Am3, (g 2N) - e‘ASe_8”2/N92(mW), (2.22)

where the C factor is the one-loop functional determinant in the monopole
background as described in the appendix of [85].

Next we show explicitly that the above monopole partition function
(2.20)) is equivalent to a sine-Gordon partition function which describes the
proper #-dependence for the QCD vacuum.

2.3 Monopole Sine-Gordon Equivalence

The sine-Gordon partition function for this model describes a three dimen-
sional N-component real scalar field theory, given by

N
Z = / [[ Doa e Sl (2.23)
a=1
with

Sdual = /R3 B [21L ( ) —CZCOS g O ] ) (2.24)

Considering the cosine term,

N N
exp [C/ Az ) " cos(ag - a)] = [[exp [C/ >z cos(ag - a’)]
R3 a=0 a=1 R3
N ¢ , ,
- H exp [ >z (ew‘”"'7 + e_m“'a)] ;
ol 2 Jps

(2.25)

we can apply the power series representation for the exponential, e =
> a™/n!, and get

N oo M@ M@

s (C@m I [ /R Pa (eiaa.g(zm>+ema.a<xm>ﬂ

a=1 | p(a)=0 m=0
(2.26)

10
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We then make use of the binomial theorem,

(z+y)" = Zn: ( Z ) 2" FyF with < Z > = (n_”l'g)'k‘ (2.27)

where du® is given in 1) Thus, inserting 1} into the sine-Gordon
partition function (2.23)), we have

N
= (a) _ 3
Z /al;Il[Daadu }exp[ I5} Rgd:zﬁ]

1 . N M@
L=> (Vo) -1 QWs(x\" —x)a, - o(x), (2.29)
2 5
a=1 k=1
where ) )
— (9
=7 (51) (2:30)
Treating the last term in the exponent as a source term,
. N M@
—1 a a
Tx) =5 SN Qe(x" — x)aa, (2.31)
a=1 k=1

and completing the square with the shift o(x) — o(x)+ [ d®y G(x—y)J(y),
we have,

zz%/

in which Zj is the functional determinant

Zy= / [ﬁ Daa] exp [_2/8 /R . 3z (VU)2:|. (2.33)
a=0

11

ﬁ)du(“)] exp {g /R3 d*z /RB d*y [T (x)G (x — y)J(y)]} ,
(2.32)
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The above determinant does not contain any of the relevant physics and is
just a constant prefactor that will drop out of any calculation of operator ex-
pectation values in the monopole ensemble. Finally, inserting the expression
for the source , the partition function becomes,

[ N
z-z [ |]] dﬂ(w] x
a=0

— 2 N
exp G Z
b=

a,b=1

M (a) pp(b)
S e QPQVGx x|, (2.34)
k=1 1=0

1

which is the partition function for the monopole gas from (12.20)).
Next, including a #-parameter in the Yang-Mills action,

Svym — Svym +i0/

R3x g1 1672 Tom2 " [FWFW} (2.35)

with FH = e'P9 5, multiplies each monopole fugacity by e®/N and anti-
monopole fugacity by e~®/N . In the dual sine-Gordon theory this inclusion
is equivalent to shifting the cosine term so that E|

1 /g\2 Vo2 N 0
o <%> (Vo) —(;cos <aa.0'+N>
The 6 parameter enters the effective Lagrangian as 0/N which is the
direct consequence of the fractional topological charges of the monopoles
. Nevertheless, the theory is still 2r periodic. This 27 periodicity of
the theory is restored not due to the 27 periodicity of Lagrangian (2.36]).
Rather, it is restored as a result of summation over all branches of the
theory when the levels cross at § = w(mod 27) and one branch replaces
another and becomes the lowest energy state. Indeed, the ground state
energy density is determlned by minimisation of the effective potential -
when summation Zl -0 ! over all branches is assumed in the definition of the
canonical partition function ( - It is given by

N-1
. 1 0+ 2wl
Epnin(0) = — Vh_r)]réo VL In { ;:O exp [VCN cos (N )} } , o (2.37)

We note in passing that there is a typo in [85] in sine-Gordon representation which
is corrected here. Also, it has been stated (incorrectly) in [85] that the sine-Gordon
Lagrangian is 27 periodic as a result of a symmetry. This statement is incorrect, as the
claimed symmetry is not in fact a symmetry of the theory, such that 8 parameter enters
the Lagrangian as /N as it should. To check this insert & = 0 and notice that the
6-dependence is explicitly different after the transformation suggested in [85].

Sdual — (236)
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2.3. Monopole Sine-Gordon Equivalence

where V' is 3d volume of the system. shows that in the limit V — oo
cusp singularities occur at the values at § = 7 (mod 27) where the lowest
energy vacuum state switches from one analytic branch to another. The
first derivative of the vacuum energy, which is proportional to the topological
density condensate, is two-valued at these points. This means that whenever
0 = 7 (mod 27) we stay with two degenerate vacua in the thermodynamic
limit. If, on the other hand, the thermodynamic limit is performed for
a fixed value of 8, any information on other states is completely lost in
. Correspondingly, the 27 periodicity in 6 is also lost in infinite volume
formulae. We miss the chance to know about additional states when we
work in the infinite volume limit from the very beginning. As a result, usual
V = oo formulae become blind to the very existence of a whole set of different
vacua, which is in fact responsible for restoration of the 27 periodicity in 6.
The model under consideration explicitly supports this pattern in deformed
QCD where all computations are under complete theoretical control.

Such a pattern is known to emerge in many four dimensional supersym-
metric models, and also gluodynamics in the limit N = oco. It has been
further argued [34] that the same pattern also emerges in four dimensional
gluodynamics at any finite N. We follow, in fact, the technique from [34]
to arrive at (2.37)) in analysing the 6 periodicity of the theory. The same
pattern emerges in holographic description of QCD [96] at N = oo as well.

Finally, considering the expectation value

N
- 1
+iay-o a
(eFiov o)y = / a”lDUa dul )] X

exp{—ﬂ 3 B (VU)2+J-U:Fi5(.T—y)Ozb-U:|}
R3

B
N
Z B 471'2L a
:ZO/ Hdu(“)le MG exp |+ ZZQ g Gl —y) |
a=0 a=1 k=1
(2.38)

we note that the operator €@ is the creation operator for a monopole

of type a at x, i.e. '
Mg (x) = e@ao(), (2.39)

Likewise, the operator for an antimonopole is My (x) = e @) The
expectation values of these operators in fact determine the ground state of
the theory.
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2.4. Mass Gap

2.4 Mass Gap

The cosine potential in the sine-Gordon action gives rise to a mass
term for the dual scalar fields. Expanding the potential around the minimum
o = 0 up to quadratic order and rescaling & — L(27)?/g%0 to put the
kinetic term into canonical form, and gives (up to a constant term)

N
1
V(o) = §m<27 Z;(Ua—i-l — i), (2.40)
with
9 21\ 2
ms =L — ) . (2.41)
g

The above mass term is diagonalised by the discrete Fourier transform

N
]. —2miab
— N e "0y, (2.42)
VN 2

&b =
a=0
becoming
N
1 -
V(o) = §Zm2\aal2, (2.43)
a=1

where m, = m, sin(ra/N). So the only scalar field which remains massless
is the Nth field, which is the field associated with the affine root. Inserting
the discrete Fourier transform into the full cosine potential however
shows that the Nth field drops out of the cosine potential completely, so
although it remains massless, it completely decouples from the theory and
does not interact with the other components at all.
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Chapter 3

Topological Susceptibility
and Contact Term

This chapter reproduces the work presented in [80]. We explicitly demon-
strate the presence of a contact term in the topological susceptibility for the
deformed gauge theory. It contributes with a sign opposite the contributions
from physical propagating degrees of freedom such that the relevant Ward
identities are satisfied.

3.1 The Contact Term and Degeneracy of
Topological Sectors

In this section we present an overview of the nature of the contact term
which is not related to any physical degrees of freedom . We explain how
we know about its mere existence because of requirements imposed by the
anomalous Ward Identities, which require its presence. We also give a sim-
ple two dimensional example explaining how this term emerges in gauge
theories. The nature of this “weird” contribution is entirely determined by
the topological properties of the model rather than the physical propagating
degrees of freedom of the system. Thus, we will find similar behaviour in
theories with similar topological properties irrespective of the particularities
of the theories. Such calculations cannot be carried out at present in un-
deformed QCD, but can in the simplified deformed model we consider. As
such, because this model exhibits a similar topological structure to what we
expect for proper undeformed QCD, we have some hope that calculations,
which can be performed here, can provide some useful insight.

3.1.1 The Contact Term

We start with definition of the topological susceptibility x which is the
main ingredient of the resolution of the U(1)4 problem in QCD [90, 91,
93], see also [42, 54, 64]. The necessity for the contact term in topological
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3.1. The Contact Term and Degeneracy of Topological Sectors

susceptibility x can be explained in few lines as follows. We define the
topological susceptibility y in the standard way:

2
:8%55@9) —tim [ dize (T {q(x), q(O)}), (3.1)

x(0 =0) -

where 6 is the conventional 6§ parameter which enters the Lagrangian along
with topological density operator g(x), see precise definitions below. The
most important feature of the topological susceptibility y, for our present
discussion, is that it does not vanish in spite of the fact that ¢ = 9, K" is
total divergence. Furthermore, any physical state of mass mg, momentum
k — 0 and coupling (0|¢|G) = c¢ contributes to the dispersive portion of
the topological susceptibility with negative sign E|

Xaiporsve ~ T, [ @™ (T {g(a),9(0)})

2
k=0 —k% —m2 mZ,

while the resolution of the U(1)4 problem, which would provide a physical
mass for the 1’ meson, requires a positive sign for the topological suscepti-
bility (3.3), see the original reference [90] for a thorough discussion,

Xnon—dispersive — éli%/d%l’@lkx <T{Q<‘r)7 Q(O)}> > 0. (33)

Therefore, there must be a contact contribution to y, which is not related to
any propagating physical degrees of freedom, and it must have the “wrong”
sign, by which we mean opposite to any term originating from physical
propagators, in order to saturate the topological susceptibility . In the
framework [93] the contact term with the “wrong” sign has been simply
postulated, while in refs.[90, 91] the Veneziano ghost had been introduced
to saturate the required property . This Veneziano ghost field is simply
an unphysical degree of freedom with the “wrong” sign in the kinetic term
such that it generates the same contact term when integrated out. It should
be emphasised that these two descriptions are equivalent and simply two
separate ways of describing the same physics and that in these two pictures,
the claim that the “contact” term does not come from physical propagating
degrees of freedom is manifest.

2We use the Euclidean notations where path integral computations are normally per-
formed.

16



3.1. The Contact Term and Degeneracy of Topological Sectors

It should be mentioned here that the “wrong” sign in topological sus-
ceptibility is not the only manifestation of this “weird” unphysical
degree of freedom. In fact, one can argue that the well known mismatch
between Bekenstein-Hawking entropy and the entropy of entanglement for
gauge fields is due to the same gauge configurations which saturate the con-
tact term in the topological susceptibility in QCD as discussed in [101]. In
both cases the extra term with a “wrong” sign is due to distinct topologi-
cal sectors in gauge theories. This extra term is non-dispersive in nature,
can not restored from the conventional spectral function through dispersion
relations, and is not associated with any physical propagating degrees of
freedom.

3.1.2 Topological Susceptibility and Contact Term in 2D
QED

The goal here is to give some insights on the nature of the contact term using
a simple exactly solvable two dimensional QFE Dy [48]. We follow [100, 101]
to discuss all essential elements related to the contact term.

We start by considering two dimensional photodynamics (QED formu-
lated without fermions) which is naively a trivial theory as it does not have
any physical propagating degrees of freedom. However, we shall argue that
this (naively trivial) two dimensional photodynamics nevertheless has a con-
tact term which is related to the existence of different topological sectors
in the theory. Thus, the presence of degenerate topological sectors in the
system, which we call the “degeneracy” for shortﬂ , is the source for this
contact term which is not related to any physical propagating degrees of
freedom.

The topological susceptibility y in this model is defined as follows

62

X= 5 lim d*ze™* (TE(z)E(0)), (3.4)

3Not to be confused with conventional term “degeneracy” when two or more physically
distinct states are present in the system. In the context of this paper, the “degeneracy”
references the existence of winding states |n) constructed as follows: 7T|n) = [n+1). In
this formula the operator 7 is the large gauge transformation operator which commutes
with the Hamiltonian [T, H] = 0, implying the “degeneracy” of the winding states |n).
The physical vacuum state is unique and constructed as a superposition of |n) states. In
path integral approach the presence of N different sectors in the system is reflected by
summation over k € Z in (3.12), (3.13), and (3.14).
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3.1. The Contact Term and Degeneracy of Topological Sectors

where ¢ = 5~ E is the topological charge density operator and

/ d%z q(z) = e/ d*z E(z) =k (3.5)
27

is the integer valued topological charge in the 2d U(1) gauge theory, F(z) =
01As — 09 A1 is the field strength. The expression for the topological sus-
ceptibility in 2d Schwinger QED model when the fermions are included into
the system is known exactly [67, 68]

2

e 9 [ e
XQED = 3 dx[é(z)—

2
s Ko(ulal) | (36)

where 12 = €2/ is the mass of the single physical state in this model, and
Ko(p|z]) is the modified Bessel function of order 0, which is the Green’s func-
tion of this massive particle. The expression for x for pure photodynamics
is given by with coupling e = 0 in the brackets E| which corresponds to
the de-coupling from matter field ¢, i.e.

2 2

XE&M = % / 42 [6%(x)] = ﬁ. (3.7)

The crucial observation here is as follows: any physical state contributes to
x with negative sign

€ €

Xdispersive ™ Ill—r&) . <0| 2”?]‘;;>£n7|igE|0> < 0, (3.8)
in accordance with the general formula in four dimensions discussed
previously. In particular, the term proportional —Ky(u|z|) with negative
sign in equation (3.6) results from the only physical field of mass p. How-
ever, there is also a contact term [ d?z [52(37)] in and {i which
contributes to the topological susceptibility x with the opposite sign, and
which can not be identified according to with any contribution from
any physical asymptotic state. In the two-dimensional theory without a
fermion (photodynamics), there are no asymptotic states since there are no
possible polarisation states, and so it is clear that the contact term is
not related to any physical propagating degree of freedom. Likewise, with
a fermion included, there is one physical degree of freedom, yet we see also
the additional “contact” contribution in (3.6)).

4the factor % in front of l) does not vanish in this limit as it is due to our definition
(3-4) rather than result of dynamics
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3.1. The Contact Term and Degeneracy of Topological Sectors

This term has fundamentally different, non-dispersive nature. In fact it
is ultimately related to different topological sectors of the theory and the
degeneracy of the ground state as we shortly review below. Without this
contribution it would be impossible to satisfy the Ward Identity because
the physical propagating degrees of freedom can only contribute with sign
(—) to the correlation function as (3.8) suggests, while the Ward Identity
requires xorp(m = 0) = 0 in the chiral limit m = 0. One can explicitly
check that Ward Identity is indeed automatically satisfied only as a result of
exact cancellation between conventional dispersive term with sign (—) and

non-dispersive term (3.7) with sign (+),

2 o T 2
XQED = 3 d*z |6°(z) — TFQKO(MW)
e? e 1 e?
=—|l-——=|=-—=[1-1=0 (3.
472 [ Y uz] 472 [ I=0. (39)

Therefore, contact term actually plays a crucial role in maintaining the
consistency of the theory, because the Ward Identity can not be satisfied
without it. While the exact formula is known, it does not hint at
the kind of physics responsible for the contact term with the “wrong sign”,
mainly what sort of field configurations should saturate the contact term.
Below, we provide some insights on this matter.

3.1.3 The Contact Term from Summation Over Topological
Sectors

The goal here is to demonstrate that the contact term in the exact formulae
and is a result of the summation over different topological k
sectors in the 2d pure U(1) gauge theory. The relevant “instanton-like”
configurations are defined on a two dimensional Euclidean torus with total
area V as follows [67, 68],

ok ok

AP =~ e’ eBW = =2, (3.10)
such that the action of this classical configuration is
1 2712 k2
= [ d*zE* = : 3.11
2/ v eV ( )

This configuration corresponds to the topological charge k£ as defined by
(3.5). The next step is to compute the topological susceptibility for the
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3.1. The Contact Term and Degeneracy of Topological Sectors

theory defined by the following partition function

Z = Z/DAe—éfd%EQ. (3.12)

kEZ

All integrals in this partition function are Gaussian and can be easily eval-
uated. The result is determined essentially by the classical configurations
(3.10) and since real propagating degrees of freedom are not present
in the system of pure U(1) gauge field theory in two dimensions. We are
interested in computing x defined by equation . In the path integral
approach it can be represented as follows,

62 1
XE&M = 12z Z/DA/ d2a;E(1‘)E(O)e L[ d2eB? (3.13)
kEZ

This Gaussian integral can be easily evaluated and the result is as follows
[100, 101],

42k 272 k2
5 ) o212 exp(— o2V )
XBam = ~—5 - V - <2 (3.14)
477'2 Z ( 27r2k2)
exp(——5—
keZ T

In the large volume limit V' — oo one can evaluate the sums entering
by replacing >, ., — J dk, and the leading term in equation takes
the form 2 i 2y 2
XE&M—R'V‘W‘E—R. (3.15)
A few comments are in order. First, the obtained expression for the
topological susceptibility is finite in the limit V' — oo, coincides with
the contact term from exact computations (3.6)), performed for the
2d Schwinger model, and has the “wrong” sign in comparison with any
physical contributions . Second, the topological sectors with very large
k ~ V€2V saturate the series . As we can see from the computations
presented above, the final result is sensitive to the boundaries, in-
frared regularisation, and many other aspects which are normally ignored
when a theory from the very beginning is formulated in infinite space with
conventional assumption about trivial behaviour at infinity. Lastly, the con-
tribution does not vanish in a trivial model with no propagating
degrees of freedom present in the system. This term is entirely determined
by the behaviour at the boundary, which is conveniently represented by
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3.1. The Contact Term and Degeneracy of Topological Sectors

the classical topological configurations describing different topologi-
cal sectors , and accounts for the degeneracy of the ground state. In this
way, large distance physics enter despite the lack of physical long distance
degrees of freedom. Furthermore, we know that this term must be present
in the theory when the dynamical quarks are introduced into the system.
Indeed, it plays a crucial role in this case as it saturates the Ward Identity
as shows.

We conclude this section by noting that the contact term in the frame-
work of [48] can be computed in terms of the Kogut-Susskind ghost by
replacing the standard path integral procedure of summation over different
topological sectors above as follows. The topological density ¢ = 5= FE in

2d QED is given by = F = (i)@ (D(Z) — D¢1> where q[ﬁ is the physical
massive field of the model and ¢; is the ghost [48]. The relevant correlation

function in coordinate space which enters the expression for the topological
susceptibility (3.4)) can be explicitly computed using the ghost as follows

e

XoEp(z) = <T%E(x), —E(0))

eN2 T d?p —ipx 1 1
~Go) &) e et

- (£)' [#@ - Skotuish] G219

where we used the known expressions for the Green’s functions. The ob-
tained expression precisely reproduces the exact result as claimed. In
the limit e — 0 when the fermion matter field decouples from gauge de-
grees of freedom we reproduce the contact term , which was
previously derived as a result of summation over different topological sec-
tors of the theory. The non-dispersive contribution manifests itself in this
description in terms of the unphysical ghost scalar field which provides the
required “wrong” sign for the contact term. These two different descriptions
are analogous to the same two computations in four dimensions mentioned
in Section with and without the Veneziano ghost, and again we em-
phasise the equivalence of the two. In the picture wherein the contact term
is saturated by a ghost field we see again how the contact term is not related
to physical propagating degrees of freedom.
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3.2. Topological Susceptibility in the Deformed QCD

3.2 Topological Susceptibility in the Deformed
QCD

Next we consider the topological susceptibility in the deformed theory dis-
cussed in the previous chapter in both the monopole and sine-Gordon for-
malisms. We define the topological density ¢(x) and topological charge @
by

1
1672
and as in the topological susceptibility x is given by

0= / dw i [Fu ] =1 [ d g(x)] (3.17)
R3 xSt R3

x=Llim [ d’z ™ (g(x)q(0)). (3.18)

First, in next subsection we compute the topological susceptibility directly,
using the monopole gas representation. As the next step, we reproduce our
results using sine Gordon representation of the theory. Finally, we compute
the topological susceptibility with a single massless quark introduced into
the system. Essentially, the goal here is to discuss the same physics related
to the nondispersive contact term and topological sectors in the deformed
model for QCD, in close analogy to our discussions in 2d QED in Section

3.1L

3.2.1 Topological Susceptibility in the Monopole Picture

In order to compute the functional form of the topological susceptibility in
the monopole theory we consider the topological density,

(x) = - [F FW} __16ijk4§: 7@ p@
E 1672 e T 872 = jk L4
N
= 4%2 <A§;’)> [v . B(“)(x)} ’
a=1

where the U(1)" magnetic field, B' = eijk4Fj;€/2g is given by

(3.19)

n(a) (a) n(@) (a)

B@(x) = 2 q, S oXID N XTh | (3)

9 k=1 47 )x — r,(f) k=1 47 ‘x — r,(f)
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3.2. Topological Susceptibility in the Deformed QCD

and <Afla)> is just the expectation value of the diagonal gauge fields in the

compact direction,
2w
A(“)> L 21
(4 = n (3.21)

The above u® are the fundamental weights for the SU(N) algebra and are
defined by
1
pe oy = iégag = 4. (3.22)
Inserting the magnetic field for the monopole ensemble into the topological

density expression (3.19) and applying Gauss’s theorem to the result, we
arrive at

N n(@) (@)
1 a —-a
0 = Y7 (Do —x) =Y a” - x)
1 a a
= WZ Z Q;)é(r,(g)—x),
a=1 k=1

which obviously gives the proper topological charge for a single monopole
or antimonopole, Q = +1/N. The topological density operator g(x) has
dimension four as it should.

The expectation value (g(x)g(0)) is the topological density operator
evaluated at each point inserted in the partition function ,

1 N
(qq) = Z/Hdu(a) [¢(x)q(0)] ¢~ Sint
a=1
1 ﬂ ”iM(Q)M(b)[()(w (@ )] e
N d'u ‘ Q ¢ Q 5(1‘ “ X)(S(r ) e Pint
ZN2]2 i e s k l k
1
~ ZN22 /dllz Z [QmQn 6(rm — x)d(ry,)] e Snt
- ZN2L2/d“{5(X)Z5(Fm)e Sint 4
3% (@@ (e — x) ()] S
m n#m
- N<L2 {6(x) —0(0)}, (3.24)
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3.2. Topological Susceptibility in the Deformed QCD

where we have condensed the indices to just m and n which run over each
monopole in the ensemble. In the above expression, the double sum of delta
functions gives a set of terms in which each pair of monopoles in the ensemble
are moved to the points x and 0 and computes the partition function given
that arrangement. The monopole gas experiences Debye screening so that
the field due to any static charge falls off exponentially with characteristic
length m_ 1. The number density A/ of monopoles is given by the monopole
fugacity, ~ (, so that the average number of monopoles in a “Debye volume”
is given by

N =m;3¢ = (£>3 L (3.25)

=m, 5 \/T?’C . .

The last inequality holds since the monopole fugacity is exponentially sup-
pressed, ¢ ~ e Y/ 92, and in fact we can view 1} as a constraint on
the validity of our approximation. The statement here is that inserting or
removing a particular monopole will not drastically affect the monopole en-
semble as a result of condition , so that we can compute expectations
of operators in the original ensemble without considering the back-reaction
on the ensemble itself. Then, because removing any given monopole does
not significantly change the ensemble, we can treat the delta functions in the
third line of as simply creation operators. The second term in ,
which is a dispersive term, reduces to the form (MTM) since it is only non-
zero for monopole-antimonopole pairs of the same type. The factor overall
factor of ¢ and additional factor in O(() in formula appears because
each monopole we remove from the ensemble leaves a factor of (/N in the
monopole measure, and there are N(®) such terms for each type of monopole
so that we are left with just a factor of (.

The computed non-dispersive contribution to the topological sus-
ceptibility in the deformed gauge model has exactly the same structure we
observed in two dimensional QED discussed in Section 3.1l In particular, it
is expressed in terms of a §(x) function, and it has the “wrong sign” sim-
ilar to . Furthermore, this contribution is not related to any physical
propagating degrees of freedom, but rather, it is determined by degener-
ate topological sectors of the theory. The corresponding “degeneracy” is
formulated in terms of monopoles which essentially describe the tunnelling
transitions between those “degenerate” sectors, see Section for more
comments on the physical meaning of the formula. If we neglect a small
term O(¢) in formula we arrive to the following final expression for
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3.2. Topological Susceptibility in the Deformed QCD

the topological susceptibility in deformed gauge theory without quarks

=gz [ 2809 = 7. (3.26)
It has dimension four as it should. This expression is a direct analog of
equation derived for two dimensional QED. The same formula
can be computed also in the dual sine-Gordon theory by differentiation of
the ground state energy density with respect to the 0 as general
expression (3.1)) states

o 82E‘min(9) C

N¢
xym(@=0)= = —, i
26*  |,_,  NL

Enin(0=0) = T (3.27)

Agreement between the two computations can be considered as a consistency
check of our approach in the weakly coupled regime. One can explicitly see
that the general relation xyu ~ Emin(6 = 0)/N? holds for the deformed
model as a result of §/N dependence in equation . Real strongly
coupled QCD is that the vacuum energy scales as N? in QCD rather than,
apparently, ~ N in . To rectify these two, note that the domain of
validity for this model is defined by LNA < 1, as discussed in [85], so that
L~1/N.

3.2.2 Topological Susceptibility in the Presence of the
Light Quarks

Our goal here is to introduce a single massless quark 1 into the system to
see how the topological susceptibility changes in this case. We anticipate
that the emerging structure should be very similar to as the topo-
logical susceptibility must vanish in the presence of massless quark in the
system: xgocp(mg = 0) = 0 as the direct consequence of the Ward Identities
discussed in Section [3.1L

The low energy description of the system in confined phase with a single
quark is accomplished by introducing the 7’ meson. As usual, the ’ would be
conventional massless Goldstone boson if the chiral anomaly is ignored. In
the dual sine-Gordon theory the 1’ field appears exclusively in combination
with the 6 parameter as § — 6 — /. As it is well known, this is the direct
result of the transformation properties of the path integral measure under
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3.2. Topological Susceptibility in the Deformed QCD

the chiral transformations ¢ — exp(iyg,%/)dj. Therefore we have,

N
zZ = / [[ PoaDy exp{—Ss — Sy — Sint} (3.28)

a=0

1 g \?2
_ e 2
o = /Rgdx 2L (277) (Vo)

e
S, = /Rgda: (Vi)

N 0
Sint = —/Rgdg’x-caz:lcos<oza-a'+ Nn)’

where coefficient ¢ determines the normalisation of the 7’ field and has di-
mension one. This coefficient, in principle, can be computed in this model,
but such a computation is beyond the scope of the present work and not
particularly illuminating. In four dimensional QCD the coefficient c is ex-
pressed in terms of standard notations as (¢/L) — fg,. In terms of these
parameters the 7’ mass is given by

2 _ ¢

mi, = ——.
cN

2 (3.29)

Since i’ shows up in the Yang-Mills Lagrangian as n'F F, we can com-
pute our requisite expectation, (F'F', FF'), by functional differentiation with
respect to 17/,

(a(x)q(y)) = 5

(3.30)

Thus we have,

((x)q(y)) = ;577,6@/7707377'

— ;/DaDn’ [Ni? /d3r1 d(r1 —x)d(r _Y)] e

1 2
— Z/Do-Dn' []\sz /d37‘1/d3r2 O(r;1 —x)o(ra —y)Xx

0'(r) 1'(ra) | s
a,bzzl N N
— gz |00 3) - G )] (3.31)
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3.2. Topological Susceptibility in the Deformed QCD

The first term in is precisely non-dispersive contact term with the
“wrong sign” that we computed previously in pure gauge theory using two
different methods, see and . The second term represents the
conventional dispersive contribution of the physical 1’ state H One can
compute it by redefining ' — n'/y/c field to bring its kinetic term S,y to
the canonical form. In the lowest order approximation it is reduced to the
conventional Green’s function of the free massive 7' scalar field with mass

determined by (3.29), such that

e—mn/ T

XQCcD = /d%(q(x)q(y)) = % /d3a: [5(){) — m%/ =0, (3.32)

4mr
where we represented the canonical 7y’ propagator in terms of its free Green’s
function in three dimensions.

The structure of this equation follows precisely the same pattern we ob-
served in analysis of two dimensional QED, see . Indeed, it contains the
non-dispersive term due to the degeneracy of the topological sectors of the
theory. This contact term (which is not related to any physical propagating
degrees of freedom) has been computed using monopoles describing the tran-
sitions between these topological sectors . The second term emerges
as a result of insertion of the massless quark into the system. It enters
XqQcp precisely in such a way that the Ward Identity xgocp(mgq =0) =0 is
automatically satisfied as a result of cancellation between the two terms in
close analogy with the two dimensional case . We should also mention
that very similar structure emerges in real strongly coupled QCD in the
framework wherein the contact term is saturated by the Veneziano ghost.
This structure has been confirmed by QCD lattice studies, see [102, 104] for
some details and references to original lattice results.

5This additional interactions due to the 1’ exchange may in fact be used as a probe
to study the relevant topological charges present in the system. It was precisely the idea
behind the proposal, see relatively recent papers [56, 99] and earlier references therein,
that /N behaviour unambiguously implies that the relevant vacuum fluctuations must
have fractional topological charges 1/N. In the present weakly coupled regime these ideas
have a precise realisation as the basic vacuum fluctuations are indeed the fractionally
charged monopoles . The results of [56, 99] are in fact much more generic as they
are not based on a weakness of the interaction or semiclassical expansion, but rather, on
generic features of the 1’ system which are unambiguously fixed by the Ward Identity.
In the approach advocated in [56, 99] one can not study the dynamics of fractionally
charged constituents in contrast with the present paper where the dynamics is completely
fixed and governed by . However, the fact that the constituents carry fractional
topological charge 1/N can be recovered in the approach |56, 99] because the color-singlet
1’ field enters the effective Lagrangian in a unique way and serves as a perfect probe of
the relevant topological charges of the constituents in the system.
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3.2. Topological Susceptibility in the Deformed QCD

3.2.3 Interpretation

The results derived in previous sections were formulated in Euclidean space
using conventional FKuclidean path integral approach. Our goal here is to
give a physical interpretation of these results in physical terms formulated
in Minkowski space time. First of all, the 6(x) function which appear in the
expression for topological susceptibility should, in fact, be understood
as total divergence,

Y~ /5(x) P = / &z 9, (ﬁ;) - %g as, <47f23) . (3.33)

Indeed, the starting point to derive x was the topological density operator
(3.23) which is expressed in terms of §(x — x;) functions, but in fact rep-
resents the topologically nontrivial boundary conditions determined by the
behaviour at a distant surface Sy as states. The representation
explicitly shows that we are not dealing with ultraviolet (UV) properties
of the problem wherein our approximation breaks down. Our treatment of
the problem is perfectly justified as §(x — x;) functions actually represent
the far infrared (IR) part of physics rather than UV physics. This explains
why our description is valid for  >> L in spite of presence of the apparently
UV singular elements such as the §(x — x;) functions which appear in the
equations in sections and [3.2.2]

Our next comment is about the interpretation of the classical monopole
gas from chapter [2. The monopoles in our framework are not real particles,
they are pseudo-particles which live in Fuclidean space and describe the
physical tunnelling processes between different winding states |n) and |n +
1). The grand canonical partition function written in terms of the classical
Coulomb gas is simply a convenient way to describe this physics of
tunnelling. In particular, the monopole fugacity ¢ together with factor L1
should be understood as number of tunnelling events per unit time per unit
volume

VT 7 (3.34)

where extra factor N in accounts for N different types of monopoles
present in the system. The expression is precisely the contact term,
up to factor 1/N? computed in . It is not a coincidence that number
of tunnelling events per unit time per unit volume precisely concurs with
the absolute value of the energy density of the system , since the en-
ergy density in our model is saturated by the topological fluctuations
which are not related to any physical propagating degrees of freedom. We

(/\/ of tunnelling events) _N¢
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3.3. Comments

emphasise that while this energy density is not related to any fluctuations
of real physical particles, this energy, nevertheless, is still real physical ob-
servable parameter, though it can not be defined in terms of conventional
Dayson T-product. Instead, it is defined in terms of the Wick’s T-product,
see Appendix of [101] on a number of subtleties with definition of the energy.

Finally, the characteristic Debye screening length which appears in the
Coulomb gas representation in chapter

-1

g
- _27r\/LT>>L (3.35)

rD=m
should be interpreted as a typical distance in physical 3d space in which the
tunnelling event is felt by other fields present in the system. The tunnelling
interpretation also explains the “wrong” sign in residues of the correlation
function as we describe the tunnelling in terms of the Euclidean
objects interpolating between physically equivalent topological sectors |n)
rather than the tunnelling of conventional physical degree of freedom be-
tween distinct vacuum states in condensed matter physics.

3.3 Comments

The main results of this chapter can be formulated as follows. We studied a
number of different ingredients related to # dependence, the non-dispersive
contribution in topological susceptibility with the “wrong sign”, topological
sectors in gauge theories, and related subjects using a simple “deformed
QCD?”. This model is a weakly coupled gauge theory, which however has all
the relevant essential elements allowing us to study difficult and nontrivial
questions which are known to be present in real strongly coupled QCD.
Essentially we tested the ideas related to the U(1)4 problem formulated
long ago in [42, 54, 64, 90, 91, 93] in a theoretically controllable manner
using the deformed gauge theory as a toy model. One can explicitly see
how all the crucial elements work. Here we compute the contact term in the
topological susceptibility, or , directly, reproducing conjectured
results by Witten [93], who put in the contact term by hand, and Veneziano
[90, 91], who put in some auxiliary ghost fields that saturate the contact term
when integrated out. See [106] for more details about the use of auxiliary
fields in this context.

As this model is a weakly coupled gauge theory, one can try to formu-
late (and answer) many other questions which are normally the preroga-
tive of numerical Monte Carlo simulations. One such question is the study
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3.3. Comments

of scaling properties of the contact term. We can address what happens
to the contact term when the Minkowski space-time R31 gets slightly de-
formed. For example, what happens when infinite Minkowski space-time
R3 1 is replaced by a large, but finite size torus? Or, what happens when
the Minkowski space-time R3 1 is replaced by FRW metric characterised by
the dimensional parameter R ~ H~! describing the size of horizon (H being
the Hubble constant)? A naive expectation based on common sense suggests
that any physical observable in QCD must not be sensitive to very large dis-
tances ~ exp(—AqcpR) as QCD has a mass gap ~ Aqcp. Such a naive
expectation seems to formally follows from the dispersion relations similar
to , which dictate that a sensitivity to very large distances must be ex-
ponentially suppressed with a mass gap present in the system, and there are
not any physical massless states in the spectrum. However, as we discussed,
along with conventional dispersive contribution in the system, there is
also the non-dispersive contribution (3.3)) which emerges as a result of topo-
logically nontrivial sectors in four dimensional QCD. This contact term may
lead to a power-like corrections R~! + O(R~2) rather than exponential-like
~ exp(—AqcpR) because the dispersion relations do not dictate the scaling
properties of this term. In fact, this term in the deformed model in infinite
Minkowski space has been explicitly computed in this chapter and it is given
by , . As our model is a weakly coupled gauge theory, one can,
in principle, compute the correction to the formulae , due to the
finite size of the system [79]. In other words, one can then try to compute
the corrections to the monopole fugacity { when the model is formulated
in a finite manifold determined by size R. This is the content of the next
chapter.
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Chapter 4

Casimir Scaling and Dark
Energy

This chapter reproduces the work presented in [79]. We show that the
deformed model exhibits a power-like Casimir scaling with the size of the
manifold it is placed on, rather than the exponential scaling one might expect
for a gapped theory.

4.1 Motivation

The main motivation for the study presented in this chapter is a suggestion
on the dynamical Dark Energy (DE) model which is entirely rooted in the
strongly coupled QCD, without any new fields and/or coupling constants
[88,89, 100, 101]. The key element of the proposal [88, 89, 100, 101] is based
on paradigm that the relevant energy which enters the Einstein equations is
in fact the difference AF = E — Ej\jini between the energies of a system in a
non-trivial background and Minkowski space-time geometry, similar to the
well known Casimir effect when the observed energy is a difference between
the energy computed for a system with conducting boundaries (positioned
at finite distance L) and infinite Minkowski Spaceﬂ This paradigm is based
on the conjecture that gravity, as described by the Einstein equations, is a
low-energy effective interaction which, as such, should not be sensitive to
the microscopic degrees of freedom in the system but to some effective scale.
Thus, the energy density that enters the semiclassical Einstein equations
should not be the “bare” energy as computed in QFT, and indeed we know
it cannot be, but rather a “renormalised” energy density. We propose the
renormalisation scheme given above which sets the vacuum energy to zero in

SHere and in what follows we use term “Casimir effect” to emphasise the power like
sensitivity to large distances irrespective of their nature. A crucial distinct feature which
characterises the system we are interested in is the presence of dimensional parameter
L ~ H™! (where H is a Hubble constant) in the system which discriminates it from
infinitely large and flat Minkowski space-time.
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4.1. Motivation

Minkowski space wherein the Einstein equations are automatically satisfied
as the Ricci tensor identically vanishes.

The above prescription is in fact the standard subtraction procedure
that is normally used for the description of horizon thermodynamics [6, 35]
as well as in a course of computations of different Green’s function in a
curved background by subtracting infinities originating in the flat space
[8]. In the present context such a definition AE = (E — Ejpnk) for the
vacuum energy was first advocated in 1967 by Zeldovich [97] who argued
that pyac ~ Gmg with m,, being the proton’s mass. Subsequently, such a
definition for the relevant effective energy AE = (E — Ejink) which enters
the Einstein equations has been advocated from different perspectives in a
number of papers, see, for example, the relatively recent works [45, 46, 50,
52,59, 69, 78, 98] and references therein.

We study the scaling behavior of AE when the background deviates
slightly from Minkowski space. The difference AE must obviously vanish
when any deviations (parametrised by Hubble constant or inverse size of the
visible universe, H ~ L) go to zero as this corresponds to the transition to
infinite flat Minkowski space. A naive expectation based on common sense
suggests that AE ~ exp(—Aqcp/H) ~ exp(—10%') as QCD has a mass
gap ~ Aqcop ~ 100 MeV, and therefore, AE must not be very sensitive to
size of our universe L. ~ H~!'. Such a naive expectation formally follows
from the dispersion relations which dictate that a sensitivity to very large
distances must be exponentially suppressed when the mass gap is present in
the system|”].

However, as emphasised in [100, 101] in strongly coupled gauge theories
along with conventional dispersive contribution there exists a non-dispersive
contribution, not related to any physical propagating degrees of freedom.
This non-dispersive (contact) term generally emerges as a result of topolog-
ically nontrivial sectors in four dimensional QCD. The variation of this con-
tact term with variation of the background may lead to a power like scaling
AE ~ H+O(H)? rather than to an exponential like AE ~ exp(—Aqcp/H)
since its contribution is not determined by some gapped dispersion relations.
If true, the difference between two metrics (FLRW and Minkowski) would
lead to an estimate

A3
AE ~ % ~ (1073eV), 1/L ~ H ~ 10"V (4.1)

"The Casimir effect due to the massless E&M field obvious shows such power depen-
2
dence AE = ——%~. Similar computations for a massive scalar particle with mass m
leads to an exponentially suppressed result AE ~ exp(—mlL) as expected, see e.g.|57].
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4.1. Motivation

which is amazingly close to the observed dark energy value today. It is
interesting to note that expression reduces to Zeldovich’s formula
Pvac ™~ Gmg if one replaces Agcp — mp and H — GA3QCD. The last
step follows from the solution of the Friedman equation

&G

H? = 5 (ppE+pr), poE ~ HAep (4.2)

when the dark energy component dominates the matter component, ppgp >
pr- In this case the evolution of the universe approaches a de-Sitter state
with constant expansion rate H ~ GAgQC p as follows from .

A comprehensive phenomenological analysis of this model has been re-
cently performed in [12], see also [65, 71] where comparisons with current
observational data including Snla, BAO, CMB, BBN have been presented.
The conclusion was that this model is consistent with all presently available
data. The main goal here is not comparison of this model with observations;
we refer the reader to [12] on this matter. Rather, the purpose of this chap-
ter is to attempt to get some deep theoretical insights behind the Casimir
type behaviour in a gapped theory such as QCD.

Another motivation to study the Casimir like behaviour in QCD is a
proposal [102, 104] that the P odd correlations observed at RHIC and LHC
is in fact another manifestation of long range order advocated in this work.
Furthermore, an apparently universal thermal spectrum observed in all high
energy collisions when the statistical thermalisation could never be reached
in the systems, might be also related to the same contact term, not related
to any physical propagating degrees of freedom, see [102, 104] and references
therein for the details.

There are a number of arguments supporting the power like behaviour
AFE ~ H + O(H)? in gauge theories, see Section where we present some
general arguments suggesting the Casimir like corrections in gauge theories
with nontrivial topological structure. However, it is always desirable and
very instructive to see how the general arguments work in some simplified
settings.

First, one can examine the exactly solvable two dimensional QED. De-
spite this model containing only a single physical massive field, still one can
explicitly compute AE ~ L~! which is in drastic contrast with the naively
expected exponential suppression, AE ~ e [86].

Another piece of support for this power-like behaviour is an explicit
computation in a simple case of a Rindler space-time in four dimensional
QCD [55, 100, 102]. These computations explicitly show that the power
like behaviour emerges in four dimensional gauge systems in spite of the
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4.2. Casimir-Type Behaviour in Deformed QCD

fact that the physical spectrum is gapped. Thus, a power-like behaviour
is not a specific feature of two dimensional physics. Accounting for the
non-trivial topological sectors in QCD in Rindler space was accomplished
in [55, 100, 102] using unphysical auxiliary field, the so-called Veneziano
ghost, which encodes the same “contact term” described in the previous
chapter. As discussed, the inclusion of different topological sectors was
instead introduced by an unphysical ghost field which saturates the “contact
term”.

Finally, power like behaviour AE ~ L~! is also supported by recent
lattice results [36]. The approach advocated in [36] is based on the physical
Coulomb gauge wherein nontrivial topological structure of the gauge fields
is represented by the so-called Gribov copies. The power like correction
~ L' had been also noticed, though in quite different context, in [74]
where numerical computations were performed using the so-called instanton
liquid model.

While a number of supporting arguments presented above suggest the
Casimir-type power law scaling AE ~ H +O(H)? in strongly coupled QCD,
a simple explanation for this behaviour is still lacking. Indeed, skeptics
would argue that two dimensional example [86] is a special case, while in
four dimensions everything could be very different. A similar skepticism can
also be expressed with the ghost based computations [55, 100, 102] as the
entire treatment of the problem is based on an auxiliary ghost field which
does not belong to the physical Hilbert space and has been inserted by
hand. Finally, the numerical computations [36, 74] can not provide a simple
physical picture explaining the nature of the phenomenon as the entire effect
is hidden in numerics.

This is precisely the goal for the present study: to consider the energy
dependence on the boundary conditions this simplified (“deformed”) ver-
sion of QCD which, on one hand, is a weakly coupled gauge theory wherein
computations can be performed in theoretically controllable manner. On
other hand, this deformation preserves all the relevant elements of strongly
coupled QCD such as confinement, degeneracy of topological sectors, non-
trivial § dependence, presence of non-dispersive contribution to topological
susceptibility, and other crucial aspects, for this phenomenon to emerge.

4.2 Casimir-Type Behaviour in Deformed QCD

Up to this point the theory was formulated on R? x S! with small compact-
ification size L for compact time coordinate S' and infinitely large space
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4.2. Casimir-Type Behaviour in Deformed QCD

R3 describing three other dimensions. Here however, we are actually in-
terested in behaviour of the system when a space with large dimensions R?
receives some small modifications, for example the theory is defined in a ball
R3 — B3 with L being a very large size of the compact dimension of the
sphere S? which is a boundary of the ball B3. Such a modification can be
thought as a simplest way to model and test the sensitivity of our theory to
arbitrary large distances such as size of our visible universe determined by
the Hubble constant H/Aqcp ~ 10741, We want to know how the topolog-
ical susceptibility of the system which describes the 6 dependent portion of
the vacuum energy FEy,c(6 = 0) changes with slight variation of that large
size of the system. We assume that L. ~ H~! ~ 10 Gpc is much larger than
any other scales of the problem. Essentially we want to see whether our
deformed model with a mass gap m, predicts an exponential scaling typical
for a free massive particle

AE(L) = [E(B®) — E(R®)] ~ exp(—m,L) (4.3)

or demonstrates a Casimir type behaviour

2
AE(L) = [E(B*) — E(R®)] ~ i +0 (i) : (4.4)

If we did not have a non-dispersive contribution in our system, we would
immediately predict the behaviour as the only available option for a
gapped theory in close analogy with conventional Casimir computations for
a massive particle AE(LL) ~ exp(—mlL), see for example the review paper
[57]. However, our system is more interesting as it exhibits a non-dispersive
term resulting from degeneracy of topological sectors in gauge theory as
discussed in the previous chapter. This contact term, being unrelated to any
physical degrees of freedom, may provide different scaling properties since
conventional dispersion relations do not dictate its behaviour at very large
distances. As we shall argue, the deformed gauge model indeed exhibits the
Casimir type behaviour in a drastic departure from the conventional
viewpoint represented by equation . As we reviewed in the previous
section we interpret a tiny deviation of the f-dependent vacuum energy
Ey,c in expanding universe (in comparison with Minkowski space-time) as a
main source of the observed dark energy. The Casimir type behaviour
plays a key role in possibility of such an identification.

We start our discussion in Section with conventional 4d instanton
computations [77] in which infrared regularisation for some gauge modes is
required and achieved by putting the system into a sphere with finite radius
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4.2. Casimir-Type Behaviour in Deformed QCD

L. It allows us to compute power like corrections to the standard instan-
ton density [77]. However, the corresponding corrections being computed
for a fixed instanton size p can not be interpreted as a physically observ-
able quantity because the integral ([ dp) over large size instantons diverges
for this system when semiclassical approximation for large p breaks down.
Nevertheless, this example explicitly shows when and why a Casimir type
correction (to conventional formula computed in infinite R* space) emerges.

Next, we compute a similar correction for the deformed model in Section
4.2.2) wherein a Casimir type correction also appears, resulting from the same
physics related to topological sectors of the theory. In contrast with the pre-
vious case, the correction computed in this system is physically “observable”
quantity as it represents the vacuum energy of the system. Indeed, the tun-
nelling transitions in this case are described by weakly coupled monopoles,
such that semiclassical computations of the vacuum energy , ex-
pressed in terms of the density ( of pseudo-particles are fully justified. The
size of pseudo-particles (fractionally charged monopoles) which describe the
tunnelling events in this model is fixed by construction [80), 85] so there is
no divergence as seen in the instanton case.

We conclude in Section [4.4] with a few final comments.

4.2.1 Casimir-Type Corrections for 4D Instantons

Our goal here is to study a power like correction to the instanton density
described in the classic paper [77]. As such, we adopt 't Hooft’s notation,
and in particular, use the same background-dependent gauge Cy = D“AZ a
which drastically simplifies all computations. Essentially, the problem is re-
duced to analysis of the normalisation factors for finite number of zero modes
(8 for SU(2) gauge group) in this gauge wherein the system is defined in a
sphere with large but finite radius radius L. Essentially we follow the con-
struction described in section XI of [77]. The corresponding normalisation
factor explicitly enters the expression for the instanton density as it ac-
companies the integration over collective variables. The contribution from
non-zero modes does not exhibit such corrections as we argue in Section
4.2.3. We now concentrate on the zero modes and power like corrections
which accompany the normalisation factors if the system is defined on a
large but finite space Bf (four dimensional interior of a ball of radius L)
rather than an infinite space R*.
We start with four translational zero modes which have the form

Azqu(y) ~ nauu(l + 7“2)_2, v=1,..,4 (4.5)
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where we use 't Hooft’s notations for 7,,, symbols and dimensionless coor-
dinate 12 = :UZ measured in units of p = 1. Computing the corresponding

correction factor due to the translation zero modes k¢, we have

_ Jyd= A2 3 1
S AT {1 o O(W] '

K (4.6)
The corresponding correction factor to the instanton density has power like
correction as anticipated. As a result of additional rotational symmetry one
should expect, in general, .=2 corrections, while translation zero modes lead
to a much smaller correction ~ L~ as equation shows. As such, it
will be neglected in what follows. Dilation and global gauge rotations lead
to ~ L™2 as we discuss below.

For the dilation zero mode

ALt (14 72) (4.7)
a similar formula reads
féL dz[A} T (v))? 3 1
iL = “ras o ~|1l-=+0(—)|, 4.8

such that the correction to the instanton density is proportional to \/kqi. =~
(1 52).

Computing the corresponding contribution due to three zero modes re-
lated to global gauge rotations requires much more refined analysis as ex-
plained in [77]. This is due to the specific features of the background de-
pendent gauge Cy = D, Aj, ™" when the corresponding three modes are pure
gauge artifact. As shown in [77] the corresponding contribution is finite,
but very sensitive to the infrared regularisation determined by the size R
of large sphere. The corresponding contribution to the instanton density is
~ (MV)3/2 where V is the four volume, while Ay ~ V! is defined as follows

Jy d*zlu;(0))?

Jy dAz[ye(b)]
VA

W(b) = nauuﬁbuk%a

M b=1,2,3, (4.9)

v

Yub) = Duﬂ)a(b):%mﬁbxu(lfixw-

The corresponding power like corrections can be computed in a similar man-
ner to the other zero modes, except that we must retain the regularisation
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since the denominator above diverges as ~ V. So we have the two correction

factors fL 4 w (b)]2
_ Jo dzlYy ~ 3 1
Bnum. = WWEW >~ [1 T2 +O(L4)] )

and

V(R Jo dale @ [, 4 1
den. = V(L) fOR d4x[1/1a(b)]2 — |:1 L2 +O< ):| .

The fraction, V(R)/V (L), is the correction to V in the instanton density
factor, and is included here so that we can take the regularisation R — oco.
The combined gauge rotation correction factor is then

Knaum. 1 1
= ~ |14+ —+0(— 4.10
Krot. Fden. |: + LQ + (]L4 ):| ) ( )

such that the correction to the instanton density is proportional to (et )%/? ~
(1+ %) Accidentally, for SU(2) gauge group the leading L.=2 correction
from the dilation and global gauge rotations exactly cancel each
other. This accidental cancellation does not hold for general SU(N) gauge
group when power of k.. enters the instanton density with a different power.

We remark here that the technique used in [77] is essentially a varia-
tional approach wherein the boundary conditions are implemented implicitly
rather than explicitly. It allows us to use all the zero modes ,,
as well as standard classical instanton solution in the original form defined
on R* in which the conformal invariance is a symmetry of the system. So in
this approach, neither the instanton itself, nor its zero modes ,,
are solutions of the equation of motions which vanish at the boundary. This
approach has been tested in many follow up papers, and we adopt it in the
present work using the same technique in the next section. We also point
out that the conformal invariance is explicitly broken in the one instanton
sector by the size of the instanton p, such that corrections take the form
({C—Z)”. It is restored by the integration [ dp. However, in this paper we are
interested in by the computation in one instanton sector only when dimen-
sional parameter p is explicitly present in the system, and is small and fixed,
as it is in the deformed model discussed in chapters |2 and

The important message here is that such kind of power correction do ap-
pear in general. The source of these corrections is a long range tail of zero
modes. We can not derive a definite conclusion from these computations
because the integral over large size instantons ([ dp) diverges and the semi-
classical approximation breaks down. However, the same problem studied
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in the deformed gauge theory model considered in Section does not
suffer from such deficiencies as semiclassical computations are under com-
plete theoretical control. Thus, a Casimir like correction to the monopole
fugacity ¢ in this model is explicitly translated to the correction to the vac-
uum energy density and topological susceptibility , supporting
and in huge contrast with naive expectation (4.3). It is important to note
that the source of the corrections in the deformed model is the same as in
the undeformed QCD considered here, and that source is the long range
tails of the zero modes, which lead to large distance sensitivity. The only
difference is that the role of the instanton size p in computations above in
the one instanton sector is played by the inverse monopole mass m;[,l in the
next section. Because it is a true scale of the problem however, mljvl is not
integrated over as p is.

4.2.2 Casimir-Type Corrections for 3D Monopoles

We now turn to the deformed gauge theory described in chapters |2| and
wherein the low-energy behaviour is given by a U(1)" Coulomb gas of
monopoles in Euclidean R3. Basically, we want to understand the depen-
dence of the monopole fugacity, ¢, which comes out of the measure trans-
formation to collective coordinates, on the size of the system, L. In this
case, as in the previous section, we consider the interior of a sphere of large
but finite radius L. There are four zero-modes present in this system: three
translations since the monopoles are in R3, no dilations since the monopole
size is fixed by the symmetry-breaking scale in this model my,, and one
gauge rotation since the gauge group for a given monopole is U(1). As in
[77], we work in a regular gauge to remain sensitive to the large distance
physics. The monopole solution in the “hedgehog” regular gauge is given by

14

V2) = ema—s |1— _ mwlz|
H " |x|2 sinh (my |x|) |’
a :I:a
P*(z) = e [mw || coth (mw |z[) — 1], (4.11)

where we adapted notations from [19, 21] treating the monopole measure in
supersymmetric Yang-Mills theory. In formula vy, denotes the three
spacial gauge fields for the classical solution, and ¢® the gauge field in the
compact time direction (the “Higgs” field in this model) when all fields can
be combined in a single 4d field v,,.

We then want to compute the correction factors for the collective coordi-
nate measure coming from these four zero modes when the system is defined
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in a large but finite sphere. We closely follow 't Hooft’s treatment [77] pre-
sented in the previous section We start by considering the translation
modes defined by the spacial derivative of the classical monopole solution
(4.11)) with respect to the collective coordinate position

Z2 (v) = —0yvp (x — z) + Dpyvy, = v, (4.12)
where the minus sign is because 0/90z = —9/0x since z only enters as = — z,
and vy, is the field strength since the covariant derivative is Dy, = O, —

i [Um, *]. The second term on the right hand side of is necessary to keep
Z% (v) in the background gauge, see [19, 21] for more detailsﬁ This leads us
to the following expression for correction factor due to the translation zero
modes L

B 1L0) O PO SR Y
T R dia[Ze ()2 my L L2

Next we consider the gauge rotation zero-mode. As in the previous
section, the contribution to the collective coordinate measure, and so the
monopole fugacity, is ~ ()\V)% where V' is the three-volume and A is given
by

K

) (4.13)

Jy &z [B;ﬂQ

fv d3$[¢a]2
1
B, = 56,“,,)8,,1); =D, " (4.14)
Again, the denominator diverges as ~ V and we look at the two correction
factors L
d3 B 2
Rnum. = w = |:1 - ; + 0(12):|
fo d m[BZ] my L L
and

VR fy e [ 31
den. = V(L) fOR d31;[¢a]2 ~ |:1 +O(L2 ):| .

myy L
The total correction factor for the gauge rotation mode is then

Knum. 2 1
rot. = ~ 1+ —+4+0(=)], 4.15
firot. Rden. |: * me * (LZ >:| ( )

8There is also a more extended (and careful) discussion of both the derivation of the
“hedgehog” solution, , and this gauge transformation that must added to the simple
derivatives with respect to the zero mode collective coordinates in order to satisfy the
gauge condition, presented in Chapter 4 of [72].
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and therefore the total correction to the monopole fugacity from the (4.14)
is \/Krot. ~ (1 + i) Assembling the total correction to the fugacity,

3/2 1/2 1 1
e s O] (4.16)

Thus, the deformed gauge theory, when put on a manifold with a bound-
ary, receives some corrections to the monopole fugacity compared to Minkowski
space that are power-like in the manifold size. The correction to the
monopole fugacity leads immediately to the same correction to the topolog-
ical susceptibility and so the background energy density since, as we saw in
the previous chapter,

N 0
Evym(0) = 7 cos (NC>,
B _ O?Eym(9) S
xym(@=0) = e |, T NI (4.17)

Here we considered only the lowest branch from (2.37) at § = 0 for simplicity.
To be more precise,

1 1
oW =¢[1- 5+ o). (4.18)
where ( is the monopole fugacity which enters the relation computed
in infinite Minkowski space. We emphasise that the energy density changes
in the bulk of space-time, not only in the vicinity of the boundaries, similar
to the Casimir effect when the bulk energy density changes as a result of
merely presence of the boundary. To reiterate, the deformed model, despite
the presence of a mass gap, displays a surprising Casimir-like sensitivity
to large distance boundaries, such that the energy density differs from the

Minkowski space value by AE ~ #ﬂﬂlﬁ Again, this is in contrast to the naive

expectation based on analysing the physical degrees of freedom, AE ~ e~k

with m ~ m, being the lowest mass scale of the problem (4.3).

4.2.3 Non-Zero Mode Contributions

Computations of the Casimir corrections presented in the previous section
were based on an analysis of the zero modes when the corresponding nor-
malisation factor explicitly enters the instanton/monopole density. Now, we
want to present some arguments suggesting that corrections due to the non-
zero mode contributions can be neglected, and, therefore, cannot cancel the
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4.2. Casimir-Type Behaviour in Deformed QCD

zero modes contribution. Indeed, the computation of non-zero mode contri-
bution is reduced to an analysis of the phase shifts in the scattering matrix
which can not change the normalisation of the wave function itself. The only
changes that occur are phase shifts. Furthermore, an absolute normalisation
is dropped from the final formula for the instanton/monopole density when
the ratio of the eigenvalues is considered. This argument is consistent with
observation that non-zero mode contribution depends on matter context of
the theory as it varies when massive scalar of spinor fields in different rep-
resentations are part of the consideration. At the same time, the Casimir
type corrections computed above are exclusively due to the gauge portion of
the theory, not its matter context. Indeed, these Casimir corrections were
derived in pure gluodynamics. So, it is difficult to imagine how a Casimir
correction to a non-zero mode contribution (even if it is nonzero) might
cancel a Casimir type correction originating from an analysis of gauge zero
modes.

We also comment that the correction L.~ occurs as a manifestation of a
slow power like decay of the zero modes in the background of a topologically
nontrivial gauge configuration. It should be contrasted with conventional
behaviour of zero modes with a mass gap present in the system from the very
beginning (for example, the well studied problem of a double well potential).
In former case, the zero modes decay according to a power law leading to
the Casimir type correction, while in the later case, the zero modes are well
localised configurations which decay exponentially fast at large distances and
can not be sensitive to large distance physics. The mass gap is present for all
physical degrees of freedom in both models. However, in the former case the
mass gap emerges as a result of the same instanton/monopole dynamics,
while in the later a mass gap was present in the system from the very
beginning and it was not associated with any instanton/monopole dynamics.
QCD obviously belongs to the former case, and we therefore expect this effect
will persist in real strongly coupled QCD.

Next, our computations of the Casimir correction to the instanton/
monopole density are based on assumption of the dilute gas approximation.
This is enforced in Section by a finite instanton size p which is kept
fixed and small. On other hand, the semiclassical approximation in Section
is automatically justified due to the parametrically small fugacity ¢,
and total neutrality in this system is automatically achieved as long as the
size of the system L is much larger than the Debye screening length m !, see
. In other words, we assume L >> m_ ! such that neutrality of the sys-
tem is automatically satisfied with exponential accuracy. The finite size of
the manifold does not spoil this neutrality if condition IL > m_! is satisfied.
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Furthermore, the computation of the monopole’s fugacity ¢ and correspond-
ing corrections can be performed without taking into account of the
interaction of a monopole with other particles from the system as it would
correspond to higher order corrections in density expansion ~ ¢2. This is
precisely the procedure which was followed in the original computations by
Polyakov in [58] and in the deformed model in [85] at weak coupling.

Also, we emphasise that in the variational approach developed in [77]
neither the classical solution nor the corresponding zero modes vanish at
the boundary of a finite size manifold. The constraints related to the finite
size IL of the manifolds are accounted for implicitly rather than explicitly in
this approach. In particular, one should not explicitly cut off the classical
action of the configuration as a result of finite size L in which the instan-
ton/monopole is defined as this contribution is implicitly taken into account
by the variational approach. However, even if we use an explicit cutoff for
classical solution it still cannot cancel the zero mode corrections as these
terms have different behaviour in V. The correction to the classical solution
would be one and the same for any N, while corrections due to zero modes
depend on N as the correction counts number of gauge rotations for
SU(N) gauge theory.

Finally, it is quite possible that we overlooked some other possible cor-
rections (for example, some corrections due to the boundaries which may
occur in the vicinity of these boundaries). We emphasise that our main
result is not the computation of a specific coefficient in front of the correc-
tion to fugacity in equation . Rather, our main point is that these
types of corrections do occur in a system with a gap, and it is very difficult
to imagine that some boundary corrections might mysteriously cancel these
computed bulk corrections. Therefore, we next present some arguments and
examples suggesting that a Casimir type behaviour in gauge theories is in
fact quite generic, rather than a peculiar feature of our choice of system.

4.3 Topological Sectors and the Casimir
Correction in QCD

In this section we want to present few generic arguments suggesting that
the emergence of a Casimir-like behaviour is not an accident, and not a
computational peculiarity. Rather, the effect has a deep theoretical roots
as argued in [103]. We review these arguments starting with analogy with
the well known Aharonov-Casher effect as formulated in [63]. The relevant
part of that work can be stated as follows. If one inserts an external charge
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into superconductor wherein the electric field is exponentially suppressed
~ exp(—r/\) with A being the penetration depth, a neutral magnetic fluxon
will be still sensitive to an inserted external charge at arbitrary large dis-
tance. The effect is purely topological and non-local in nature. The crucial
point is that this phenomenon occurs, in spite of the fact that the system
is gapped, due to the presence of different topological states in the system.
We do not have a luxury of solving a similar problem in strongly coupled
four dimensional QCD analytically. However, one can argue that the role
of the “modular operator” of [63], which is the key element in the demon-
stration of long range order, is played by the large gauge transformation
operator 7 in QCD, which also commutes with the Hamiltonian [T, H] = 0,
such that our system must be transparent to topologically nontrivial pure
gauge configurations, similar to the transparency of the superconductor to
the “modular electric field”, see [103] for the details.

We interpret the computational results in a number of systems where
Casimir like corrections have been established as a manifestation of the
same physics which can be described in terms of the operator 7. We should
mention that there are a few other systems, such as topological insulators,
where a topological long range order emerges in spite of the presence of a
gap in the system.

There are a number of simple systems in which the Casimir type be-
haviour AE ~ L=1 + O(IL)~2 has been explicitly computed. In all known
cases this behaviour emerges from non-dispersive contributions such that
the dispersion relations do not dictate the scaling properties of this term.

The first example is an explicit computation [86] in exactly solvable
two-dimensional QED defined in a box size L. The model has all elements
crucial for present work: non-dispersive contact term which emerges due to
the topological sectors of the theory. This model is known to be a theory of
a single physical massive field. Still, one can explicitly compute AE ~ L~1
in contrast with naively expected exponential suppression, AE ~ e . An-
other piece of support for a power like behaviour is an explicit computation
in a simple case of Rindler space-time in four dimensional QCD [55, 100, 102]
where Casimir like correction have been computed using the unphysical
Veneziano ghost which effectively describes the dynamics of the topolog-
ical sectors and the contact term when the background is slightly modi-
fied. Thus, power-like behaviour is not a specific feature of two dimensional
physics.

Our next example is 2d CPV~1 model formulated on finite interval with
size I [53]. In this case one can explicitly see emergence of AE ~ L1
in large N limit in close analogy to our case where a theory has a
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gap, but nevertheless, exhibits the power like corrections. The correction
computed in [53] also comes from a non-dispersive contribution which can
not be associated with any physical propagating degrees of freedom, similar
to our case .

Power like behaviour AE ~ L~ is also supported by recent lattice re-
sults [36]. The approach advocated in [36] is based on physical Coulomb
gauge, in which nontrivial topological structure of the gauge fields is repre-
sented by the so-called Gribov copies leading to a strong infrared singularity.
Thus, the same Casimir-like scaling emerges in a different framework where
the unphysical Veneziano ghost (used in [55, 100, 102]) is not even men-
tioned.

The very same conclusion also follows from the holographic description
of the contact term presented in [103]. The key element for this conclusion
follows from the fact that the contact term in holographic description is
determined by massless Ramond-Ramond (RR) gauge field defined in the
bulk of 5-dimensional space. Therefore, it is quite natural to expect that
massless R-R field in holographic description leads to power like corrections
when the background is slightly modified.

To avoid any confusion with terminology we follow [103] and call this
effect as “Topological Casimir Effect” where no massless degrees of freedom
are present in the system, but nevertheless, the system itself is sensitive to
arbitrary large distances. It is very different from conventional Casimir effect
where physical massless physical photons are responsible for power like be-
haviour. From the holographic viewpoint discussed in [103] the “Topological
Casimir Effect” in our physical space-time can be thought as conventional
Casimir effect in multidimensional space when massless propagating R-R
field in the bulk is responsible for this type of behaviour, although this field
is not a physical asymptotic state in our four dimensional world.

4.4 Comments

We tested a sensitivity of the deformed gauge theory model with non-trivial
topological features to arbitrary large distances. A naive expectation based
on dispersion relations dictates that a sensitivity to very large distances
must be exponentially suppressed when a mass gap is present in the
system. However, we argued that along with conventional dispersive contri-
bution there exists a non-dispersive contribution, not related to any physical
propagating degrees of freedom. This non-dispersive (contact) term with the
“wrong sign” emerges as a result of topologically nontrivial sectors, and can
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be explicitly computed in our model. The variation of this contact term
with variation of the background leads to a power like “Topological Casimir
Effect” in accordance with the arguments presented in Section and
in contrast with the naively expected exponential suppression (4.3)).

The Topological Casimir Effect in QCD, if confirmed by future analytical
and numerical studies, may have profound consequences for understanding
of the expanding FLRW universe we live in. We already mentioned in Sec-
tion that the observed cosmological dark energy may is fact be just
a manifestation of this Topological Casimir Effect without adjusting any
parameters. In the adiabatic approximation the universe expansion can be
modeled as a slow process in which the size of the system adiabatically de-
pends on time L(¢) which leads to extra energy as equations and
suggest. Such a model is obviously consistent with observations if L(t) is
sufficiently large [87]. We do not insist that this is the model of our uni-
verse. Rather, we claim that if the effect persists in strongly coupled QCD,
the energy density which can not be identified with any physical propagat-
ing degrees of freedom, is sensitive to arbitrary large distances as a result
of nontrivial topological features of QCD. Different geometries (such as an
FLRW universe) obviously would lead to different coefficients. Nonetheless,
the important message from these computations in our simplified model is
that the energy density in the bulk is sensitive to arbitrary large distances
comparable with the visible size of the universe, and that this sensitivity
comes not from any new physics but simply from the proper treatment of
the topological structure of QCD.

We should mention, also, that with regard to extending from imposed
boundaries in flat space, as we considered here, to effective boundary con-
ditions due to curvature, the nontrivial holonomy along the compact (S!)
dimension is an important aspect of this model that warrants consideration.
Mainly, there is no contradiction with the conventional argument that only
a curvature R ~ H? should enter the bulk energy density in such an analysis
on a curved (FLRW) manifold. This is because ¢ A, dz* around the com-
pact dimension is an invariant characteristic of the system which cannot be
reduced to the curvature, similar to the Aharonov-Bohm effect, where the
relevant phenomenon is expressed in terms of the potential A, rather than
the field strength F),,. Essentially, this is just the statement that the effect
is due to topological properties not local field configurations. For more on
the topic of nontrivial holonomy and calculations in curved space see [107].

Finally, we add that a comprehensive phenomenological analysis based
on this idea has been recently performed in [12] where comparison with
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current observational data including Snla, BAO, CMB, BBN has been pre-
sented, see also [13, 27, 55, 65, 66, 71] with related discussions. The conclu-
sion was that the model is consistent with all presently available data,
and we refer to these papers on analysis of the observational data.
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Chapter 5

Long Range Order and
Domain Walls

This chapter reproduces the work presented in [81]. We consider the interac-
tion between extended two dimensional domain walls and localised point-like
topological monopoles. The domain walls considered here are topological de-
fects that interpolate between the vacuum state and itself, essentially just a
winding.

5.1 Motivation

The main motivation for the work presented in this chapter is the recent
Monte Carlo studies in pure glue gauge theory which have revealed some
very unusual features. To be more specific, the relevant gauge configura-
tions display a laminar structure in the vacuum consisting of extended, thin,
coherent, locally low-dimensional sheets of topological charge embedded in
4d space, with opposite sign sheets interleaved, see the original lattice QCD
results [3, 37-39]. A similar structure has been also observed in lattice QCD
by different groups [10, 11, 40, 41, 49] and also in a two dimensional C' PN ~1
model [1]. Furthermore, the studies of localisation properties of Dirac eigen-
modes have also shown evidence for the delocalisation of low-lying modes
on effectively low-dimensional surfaces. The following is a list of the key
properties of these gauge configurations which we wish to study:

1) The tension of the “low dimensional objects” vanishes below the crit-
ical temperature and these objects percolate through the vacuum, forming
a kind of a vacuum condensate;

2) These “objects” do not percolate through the whole 4d volume, but
rather, lie on low dimensional surfaces 1 < d < 4 which organise a coherent
double layer structure;

3) The total area of the surfaces is dominated by a single percolating
cluster of “low dimensional object”;
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4) The contribution of the percolating objects to the topological suscep-
tibility has the same sign compared to its total value;

5) The width of the percolating objects apparently vanishes in the con-
tinuum limit;

6) The density of well localised 4d objects (such as small size instantons)
apparently vanishes in the continuum limit.

It is very difficult to understand the above properties using conventional
quantum field theory analysis. Indeed, the QCD lattice results [3, 10, 37~
41, 49] imply that the topological density distribution is not localised in any
finite size configurations such as instantons; rather the topological density
is spread out on the surface of low-dimensional sheets. Such a structure can
not be immediately seen in gluodynamics, at least not at the semiclassical
level. At the same time, these Monte Carlo results could be interpreted very
nicely with a conjecture that the observed structure is identified with the
extended D2 branes in a holographic description[30, 31, 103].

One of the key elements of this conjecture is assumption that the ten-
sion of the D2 branes vanishes below the QCD phase transition T' < T,
such that an arbitrarily large number of these objects can be formed. The
second key element in identification of the structure observed on the lat-
tice [3, 10, 37-41, 49] with the holographic description in terms of the D
branes is the assumption that the topological density distribution which is
originally localised in well defined D0 branes (instantons), somehow spreads
out along extended D2 branes as a result of the interaction between D0-D2
branes, leading to their binding. Such a picture was basically motivated, as
mentioned in [31, 103], by the structure which emerges in supersymmetric
field theories [20] where the relevant dynamics can be indeed formulated in
terms of the strongly bound D0-D2 configurations.

In this chapter, we investigate precisely the second idea above in the
framework of the “deformed gauge theory” developed in [85] and discussed
in Chapter 2. The deformation allows us to bring the gauge theory into a
weakly coupled regime wherein calculations can be performed in theoreti-
cally controllable manner. In spite of the great deal of analytic control pro-
vided, the deformed theory preserves many of the relevant structures present
in strongly coupled QCD including confinement, degeneracy of topological
sectors, and the correct nontrivial 6 dependence. Furthermore, it seems,
there is no order parameter differentiating the weakly coupled deformed
regime from the strongly coupled regime, which reproduces undeformed
QCD [85], so that the qualitative behaviour of the two theories may be
quite similar.

In particular, the deformed theory exhibits two important structures of
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note: first, the topological charge in this model is carried by the fractionally
charged monopoles with topological charges @ = £1/N; and second, there
are domain walls present in the system as a result of a generic 27 period-
icity of the effective low energy Lagrangian governing the dynamics. Given
these ingredients, we would like to test the following two ideas which are
apparently related to the configurations observed in the lattice simulations
[3, 10, 37-41, 49]:

1) the domain walls form precisely a double layer structure with opposite
sign sheets of the topological charge density interleaved;

2) the monopoles and domain walls attract each other and the topological
charge originally localised on monopoles spreads out along the domain walls.

If the second occurs, there will be few well-localised finite sized sources
carrying the topological charge. Instead, the topological charge density will
be spread over extended domain walls, which is precisely the pattern that
has been observed in simulations [3, 10, 37-41, 49]. For other discussions
related to long range order in this model see [4, 106].

We note that a similar picture of attraction between monopoles and
domain walls was originally discussed in a cosmological context [23], see also
the related papers [2, 22, 24] and references therein. The basic idea there is
that if physical monopoles and domain walls are present in the system, there
will be an attractive force between them. Then, if these objects collide, the
monopole’s winding number (monopole charge) spreads out on the surface
of the domain wall, and will be eventually pushed to the boundaries at
infinity. This effect was suggested as a solution of the so-called “cosmological
monopole problem”. In our context we do not have real physical monopoles
and real physical domain walls in Minkowski space, but rather Euclidean
monopoles and domain walls which must be interpreted as configurations
describing the tunnelling processes in physical Minkowski space, see [103]
for a detailed discussion of this point. Nevertheless, the formal structure of
the problem and relevant features (such as attraction between the objects
and spreading the magnetic charge over the surface) are very much the same.

The structure of our presentation is as follows. In Section 5.2, we con-
struct the domain walls and explicitly demonstrate the double layer struc-
ture apparently observed on the lattices. Then, in Section |5.3| we study the
interaction of the domain walls and monopoles. And, finally, in Section
we comment on the important aspects of these results.
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5.2 Domain Walls in Deformed Gauge Theory

In the deformed theory there is a discrete set of degenerate vacuum states
as a result of the 27 periodicity of the effective Lagrangian for the o
fields, and thus there exist domain wall configurations interpolating between
these states. The corresponding configurations are not however conventional
domain walls similar to the well known ferromagnetic domain walls in con-
densed matter physics which interpolate between physically distinct vacuum
states. Here, instead, the corresponding configuration interpolates between
topologically different but physically equivalent winding states |n), which
are connected to each other by a large gauge transformation. Therefore,
the corresponding domain wall configurations in Euclidean space are inter-
preted as configurations describing tunnelling processes in Minkowski space,
similar to Euclidean monopoles which also interpolate between topologically
different, but physically identical states. This interpretation should be con-
trasted with the conventional interpretation of static domain walls defined
in Minkowski space when the corresponding solution interpolates between
physically distinct states.

In fact, a similar domain wall which has an analogous interpretation is
known to exist in QCD at high temperature (in the weak coupling regime)
where it can be described in terms of classical equations of motion. These
are the so-called Z domain walls which separate domains characterised by
a different value for the Polyakov loop at high temperature. As is known,
see the review papers [29, 75] and references therein, these Zy domain walls
interpolate between topologically different but physically identical states
connected by large gauge transformations similar to our case. These objects
can be described in terms of classical equation of motion and have finite
tension ~ T3 such that their contribution to path integral is strongly sup-
pressed. While the corresponding topological sectors are still present in the
system at low temperature (though they are realised in a different way) it is
not known how to describe the fate of these Zy walls in QCD in the strong
coupling regime where the semiclassical approximation breaks down.

The domain walls to be discussed below in the deformed model are very
much the same as Zy domain walls at high temperature and their contri-
bution to path integral is also strongly suppressed as their tension is finite
in the weak coupling regime. Nevertheless, one can study the structure of
these domain walls, as well as their interaction with dynamical magnetic
monopoles. Furthermore, as we discussed in Section the domain wall
structure is apparently observed in the lattice simulations, which imply that

51



5.2. Domain Walls in Deformed Gauge Theory

they may have effectively vanishing tension at low temperature. We conjec-
ture that the domain walls we describe below in the weak coupling regime
in the deformed model slowly become the objects (with effectively vanish-
ing tension) which are observed in lattice simulations [3, 10, 37-41, 49] in
the strong coupling regime, as we adiabatically increase the coupling con-
stant without hitting the phase transition as argued in [85]. This portion
of the theory can not be tested in the deformed model in the semiclassi-
cal approximation, but hopefully this portion of strongly coupled dynamics
can be understood in the future using different techniques, such as the dual
holographic description as advocated in the present context in [103].

5.2.1 Domain Wall Solution

There are a few different types of domain walls supported by the system
(2.36)) which have different physical meanings. Here we focus on the discrete
symmetry of the effective Lagrangian (2.36))

1 g 2 2 N 0
9T <%) (Vo) —(;Cos (aa~0'+N>

given by the 27 shift, o, — o, + 27, where any component of o field can
be shifted by 27 independently. To simplify analysis, we consider a single
specific non-vanishing component for the o field sitting at a—th position,

Sdual —
R3

o= (0,0,0“”,0, o ,0) a=1,..N. (5.1)

This component describes a specific diagonal element of the original non-
Abelian field strength. For example, y!) corresponds to the following struc-
ture in conventional matrix notations

1 0 0
g 0 —1 0

B(I)Z%LVJ(D' 0| (5.2)
0 0 0 0

There are N different domain wall types similar to the monopole case since
classification of our system is based on a; € A,g. We emphasise that there
are only (IN—1) physical propagating photons in the system as one scalar sin-
glet field, though it remains massless, completely decouples from the system,
and does not interact with other components at all, as we saw in Chapter
2. As a result of this structure, a configuration with N different types of
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magnetic monopoles will carry zero magnetic charge and one unit of the
topological charge @ = 1 as each monopole carries Q = 1/N topological
charge. The corresponding configuration can be identified with a conven-
tional instanton with () = 1 which is made of NV constituents. A similar
comment also applies to the domain wall structure: a configuration with N
different types of domain walls on top of each other will produce a trivial
vacuum configuration as the Abelian components of the magnetic field will
cancel each other, similar to the magnetic monopole construction. Thus, al-
though there are N different types of the domain walls in our construction,
only (N — 1) of them are independent exactly as with the monopoles.

In what follows, without loss of generality, we consider the N = 2 case.
In this case there is only one physical field x = (01 — 02) which corresponds
to a single diagonal component from the original SU(2) gauge group. The
orthogonal combination (o 4 02) decouples from the system as explained in
the original paper [85] and can be seen immediately in this situation. The

action (2.36) becomes,
L 19\ 2
So= | da (L) (v
X /Rs TACTIINEY

¢/ P [cos (x + g) + cos (—x + g)] - (53)

In terms of the y field, the classical equation of motion which follows from
(5.3) and which determines the profile of the domain wall has the form

Vi — mi siny =0, (5.4)

where we take 6 = 0 for simplicity, and the mass of x field m, = 2m, is
related to the Debye correlation length . The solution of this sine-
Gordon equation which interpolates in one direction centered at the origin
between x(z = —o0) = 0 and x(z = +00) = 27, and which is centered at
zp = 0 being independent of x,y coordinates is well known

X(z) = 4arctan [exp(m,2)] . (5.5)

We are now in position to explain the physical meaning of this solution. As
we mentioned before, this domain wall solution does not describe a
physical domain wall which interpolates between physically distinct vacuum
states, but rather interpolates between topologically different but physically
identical states. We remark that a similar construction has been considered
previously in relation to the so-called N = 1 axion model [33, 92], more
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recently in the QCD context in [28], and in high density QCD in [76]. In the
previously considered cases [28, 33, 76, 92] as well as in present case
there is a single physical unique vacuum state, and interpolation cor-
responds to the transition from one to the same physical state. Therefore,
such domain walls are not stable objects, but will decay quantum mechani-
cally, see Appendix [A] for corresponding estimates. Nevertheless, if life time
of the configuration is sufficiently large, it can be treated as stable
classical background, and it can be used to study the interaction of domain
walls with monopoles, which is one of the main objectives of present work,
see Figure depicting the transition between two topologically different
paths corresponding to the decay of some domain wall state to a domain wall
free ground state. The path wrapping the peg represents a state with some
domain walls, while the path that does not denotes a state with no domain
walls. We can deform the domain wall path by lifting it over the obstacle
so that we can unwind it and deform it into the domain wall free path. If
the path describes domain walls with some weight, then it would require
some energy to lift over the obstacle. If this energy is not available, then
classically, the configurations that wind around the peg are stable. Quan-
tum mechanically, however, the domain wall could still tunnel through the
peg, and so the configurations are unstable quantum mechanically, see the
estimate for this probability in Appendix [Al

One can view these “additional” vacuum states, which are physically
identical states and which have extra 2w phase in operator , as an
analog to the Aharonov-Bohm effect with integer magnetic fluxes where
electrons do not distinguish integer fluxes from identically zero flux. Our
domain wall solution describes interpolation between these two phys-
ically identical states. Finally, we should also comment that, formally, a
similar soliton-like solution which follows from the action appears in
the computation of the string tension in Polyakov’s 3d model [58, 85]. The
solution considered there emerges as a result of the insertion of external
sources in a course of computing the vacuum expectation of the Wilson
loop. In contrast, in our case, the solution is an internal part of the
system without any external sources. Furthermore, the physical meaning
of these solutions are fundamentally different. In our case the interpreta-
tion of the solution is similar to an instanton describing the tunnelling
processes in Minkowski space, while in the computations [58, 85] it was an
auxiliary object which appears in the computation of the string tension.

The width of the domain wall is determined by m; 1 while the domain
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Non-Trivial Path
(Domain Wall State)

Trivial Path
(Ground State)

Figure 5.1: Picture depicting the transition between paths corresponding
to the decay of some domain wall state to a domain wall free ground state.
Inspired by a similar picture in [28].

wall tension o for the profile (5.5) can be computed and is given by

~+o00o 1 g ) 5
o = 2'/_ a5 (52) (V)

[e.e]

B )~ 69

In the deformed model, the topological charge density distribution (2.11))

55



5.2. Domain Walls in Deformed Gauge Theory

can be written as

q(x) = #tr [FMVFMV} _ = 1]k4ZFa)F

- () frmo],
a=1

where the U(1)" magnetic field, B* = eijk4ij/29 is expressed in terms of
the scalar magnetic potential as

(5.7)

2
F\ = 29 cepdio®, B = ﬁw( ) (5.8)
In the last step of we have replaced the field in the compact direction
by it’s vacuum expectation value since we are considering a semiclassical
approximation.
With the explicit solution at hand , the magnetic field distribution
for the domain wall is given by

g 4my
B, = ( ) : 5.9
? ArL/ (e™x? + e~Mx?) (5.9)

and the topological density can then be computed using formula (/5.7) with
the following result

C gy = 46 (e — e

q(2) = Fsinxy = —

L L (emxz +e—mxz)2' (510)

From equation , we see that the net topological charge @ ~ [ dz ¢(z)
on the domain wall vanishes. However, the charge density has an interesting
distribution; it is organised in a double layer structure, which is precisely
what apparently has been measured in the lattice simulations mentioned
earlier [3, 37-39]. For a graphical depiction see Figure which is a 3d ren-
dering of the domain wall solution (5.5). The same double layer structure
can be seen by computing the magnetic charge density pj; which is defined
as

4

v B0 = (34) 52
— 4. (49”) (emo? — e7™7) | (5.11)

(emgz +e mgz)Z
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Thus, the relation between the topological charge density (5.10) and mag-
netic charge density (5.11) holds for the domain wall

)= (L) (1) -omt (5.12)

in agreement with the general expression (5.7)).

From egs. , , we see that an average density of magnetic
monopoles filling the interior of domain wall is expressed in terms of the
same parameter ( which characterises the average monopole’s density in the
system . One can interpret this relation as a hint that the topological
charge sources have a tendency to reside in vicinity of the domain walls
rather than being uniformly distributed. We further elaborate on this matter
in Section 5.3

It is interesting to note that the domain walls in the deformed model are
very similar (algebraically) to well known domain walls studied previously
in some SUSY models, see the review article [82]. Of course, there are fun-
damental differences between the two: in SUSY models the domain walls
interpolate between physically distinct vacuum states, in contrast with our
domain walls which correspond to interpolation between topologically differ-
ent but physically identical states. Therefore, the interpretation in these two
cases is fundamentally different: in SUSY models the domain walls are real
physical objects, while in our deformed model they should be interpreted
similar to instantons, objects which describe the tunnelling processes, see
[103] for more comments on this interpretation. Furthermore, the classifi-
cation of the domain walls in SUSY models is based on the flavour group
symmetry breaking SU(Ng) — U(1)VF~1 in contrast with colour symmetry
breaking we consider here. However, the formal classification of the domain
walls in SUSY models based on simple roots from the flavour group is very
much the same as classification in our case based on SU(N) — U(1)N~!
breaking pattern, see equations and . These similarities include,
in particular, highly nontrivial properties such as ordering of the domain
walls or their passing through each other. However, these questions will not
be elaborated on in the present work.

The most important lesson from this analysis is that the double layer
structure naturally emerges in the construction of the domain walls in the
weak coupling regime in deformed gauge theory. As claimed in [85] the
transition from the high temperature weak coupling regime to the low tem-
perature strong coupling regime should be smooth without encountering any
phase transitions on the way. Therefore, it seems reasonable to identify the
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Topological Charge Density

Across DW

Figure 5.2: Graph showing the two layer structure of the topological charge
density plotted against one direction across the Domain Wall and the other
one of the two dimensions along it.

double layer structure found in this work (5.10) with the double layer struc-
ture from lattice measurements [3, 37-39] when one slowly moves along a
smooth path from the weak coupling to the strong coupling regime.

5.3 Domain Wall - Monopole Interaction

From expressions and one can infer that the interaction, or to be
more precise, the algebraic structure, of the domain wall with monopoles is
very similar to monopole - monopole/antimonopole interactions. Since our
domain walls are not dynamical configurations of the system, but rather,
should be treated as a background classical fields, we can not address some
hard fundamentally quantum issues such as: what the density of domain
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wall configurations looks like, or why the topological charge density is mostly
spread out in the domain walls rather than in localised objects, similar to
the pattern lattice simulations suggest [3, 37-39]. Rather we can formulate
a different question which can be addressed in the weak coupling regime.
What happens to the monopoles if they are formed in the presence of the
domain walls? As the number of different types of domain walls, N, is equal
to the number of different types of monopoles, one could assume that a
specific monopole type “a” will find a corresponding most attractive domain
wall. Therefore, we concentrate below on analysis of a specific configuration
containing two relevant elements: a domain wall of type and a nearby
anti-monopole with magnetic charge —a; and topological charge Q@ = —1/N.

We now consider the domain wall configurations discussed in the previous
section interacting with monopole configurations. In these computations
the domain walls are treated as classical background fields, and as such
we do not consider fundamentally quantum questions, such as the density of
domain walls. Instead, we consider some questions which can be answered in
the semiclassical context. We focus on the interaction between a monopole
and domain wall, each acting as magnetic sources, and compute the energy
of the configuration as a function of separation distance between the two.
Therefore, the question we are addressing is where would a point charge
prefer to sit in the presence of our domain wall? As stated in Section [5.1}
this question is motivated by lattice simulations [3, 37-39] which suggest
that the density of well localised 4d objects (such as small size 4d instantons)
apparently vanishes. We should emphasise that our domain walls should not
be thought of as empty objects, but should instead be thought of as already
filled by magnetic monopoles with density determined by . Indeed, as
discussed back in Section the sigma fields are a dual description for a
monopole gas model, so any configuration of sigma fields can be thought of
as some distribution of monopoles.

Again, we consider the simplified scenario of SU(2), which corresponds
to considering the interaction between a single type of domain wall, a, and
a monopole of the same type, or to be more precise an antimonopole so that
the magnetic charge is —q,. The domain wall is defined as previously, ,
but centered at a distance zy from the origin, so that the magnetic scalar
potential is given by (letting m = m,)

Xz (X) = 4arctan [em(zfzo)] . (5.13)
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Binding energy as a function of separation distance
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Figure 5.3: Plot of the numerical result for the binding energy at various
separation distances between domain wall and monopole. Notice that for
zp < 0, the monopole to the right of the domain wall, there is an “attractive”
potential with a minimum near zg = 0.

The monopole is defined such that it is a point source solution to the Klein-
Gordon equation,

V2p (x) —mp (x) =6 (x), (5.14)

centered at the origin (xg = 0), and is thus an approximate solution to the
sine-Gordon equation, (5.4), away from the origin. The magnetic potential
of the monopole is then given by the well known Yukawa potential,

e_m‘x‘

¢ (x) = (5.15)

drmlx|

We then consider the configuration of monopole and domain wall sepa-
rated by a distance zyp and would like to compute the magnetostatic energy
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(Euclidean action) as a function of zg. The energy associated with just a
domain wall alone is proportional to the area of the domain wall, which is
infinite in this case, so we compute instead the difference between the energy
of the two together and the energy of the two independently,

AE (ZO) =S5 [Xzo + SO] -5 [Xzo] -5 [(10] ’ (5'16)

where S is given by (axes have been rescaled relative to (5.3)))

Sx| = /RS d3x B (Vx)? —m?cos x| . (5.17)

The quantity AFE defines a “binding energy” and is finite. We cannot how-
ever compute it analytically, and so we compute above integrals numerically
instead, for zy varying near the domain wall. Some technical details of the
computation are as follows. We work in a cylindrical volume oriented across
the domain wall such that it respects the symmetries of the physical geome-
try. The cylinder is defined around the origin with radius 10/m and length
30/m, so that we neglect the space outside of this region. It is valid to
do so since the monopole potential is exponentially suppressed with length
constant m and we are considering a binding energy. We were forced to
remove a small volume around the origin when computing the potential en-
ergy term because the structure is that of the cosine of a divergent quantity,
which is highly oscillatory. The potential energy due to the removed piece
is bounded by the volume removed since it is a cosine so that we can make
it arbitrarily small. These two approximations make up the bulk of the
numerical uncertainty, which is ~ m?2/106.

Performing the numerical integration results in the plot given in Figure
There is an attractive potential between the monopole and domain
wall with the monopole on one side (z9p < 0), and a slightly repulsive one
for the other side (z9 > 0). The small barrier for zy > 0 is difficult to see
in Figure but obvious in Figure [5.5) which is just a plot of only points
beyond zg > 3 with a much finer vertical scale. Also, there is a minimum
at 2o ~ 1/10m (see Figure [5.4), while the peak of the domain wall charge
distribution is ~ 1/m. Thus the monopole would prefer to sit “inside” the
domain wall, between the center and the peak of the sheet with the same
charge density. It is interesting that the monopole (with charge —a) is
attracted to the domain wall sheet with the same charge (—«) rather than
the sheet of opposing charge («), but the theory is non-linear so it is not
altogether unexpected. It also suggests a dynamical stability (at least at the
classical level) of the domain wall in addition to the topological stability.
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Binding energy as afunction of separation distance (close up)
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Figure 5.4: Close up plot of the points near the minimum in Figure |5.3

showing that the minimum is to the 2y < 0 side of the center.

Figure 5.3 is not the complete story since we have not considered pos-
sible changes in the magnetic flux distribution coming from the monopole.
Basically, the monopole shape could deform in response to the interaction
with the domain wall, so as to become less spherically symmetric. In order
to properly treat this problem, we should allow the spherical distribution of
the monopole to vary to some superposition of solutions to the Klein-Gordon
equation . This described further calculation is beyond the scope of
this work, but we conjecture that the magnetic field will prefer to orient
itself along the domain wall, so that the magnetic flux will be pushed out
to the edge of the domain wall at the boundary of space, similar to argu-
ments presented in refs. [2, 22, 24] in cosmological context. In this way, we
have a picture in which any point-like magnetic monopoles become bound
to extended domain walls with any magnetic flux being pushed along the
domain walls to infinity. Apparently, this is precisely the picture discovered
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Binding energy as a function of separation distance (close up)
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Figure 5.5: Close up plot of the points to the right in Figure |5.3| showing
the small barrier present on the zy > 0 side. Notice the much finer vertical
scale.

in lattice simulations [3, 37-39] wherein very few localised 4d objects are
observed in the system.

As a preliminary toward calculating the angular dependence if we allow
the angular distribution to vary, we write a more general expression for a
monopole-like solution to the Klein-Gordon equation , which depends
on the angular coordinates:

o' (x) ~ HV (imr) Y, (60, 6), (5.18)

where H\" are the spherical Hankel functions of the first kind and the Y,
are the spherical harmonics. Assuming the azimuthal axis is oriented across
the domain wall, the problem is azimuthally symmetric and the spherical
harmonics reduce to Legendre polynomials of cos(f).

When we attempt to calculate the binding energy as defined above for
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it is negative and divergent for n > 2. It thus appears that the sys-
tem is very semsitive to angular changes. Furthermore, the divergence in
AFE seems to come from the core (near the divergence in ¢) since it is
highly sensitive to the amount of the core we remove when performing the
numerical calculations. This however is also the region in which this ap-
proximation by Klein-Gordon monopoles is not really justified, and in fact
the whole low-energy effective theory is suspect. We therefore conclude that
some other more sophisticated techniques will be required to address this
problem of angular distribution, and as such it is well beyond the scope
of this work. Nevertheless, we do conjecture that the flux will have a ten-
dency to spread along domain wall, but unfortunately cannot make a more
quantitative claim.

5.4 Comments

There are two important results of this work. Firstly, a double layer struc-
ture similar to that which is observed in lattice simulations [3, 37-39] natu-
rally emerges in the construction of the domain walls in the weak coupling
regime in the deformed gauge model. Secondly, monopole configurations
characterised by well localised topological (and magnetic) charge interact
with domain walls in such a way that there is an attraction between the two,
and the monopole favors a position inside the domain wall. We introduced
these domain walls as external background fields, while they are expected to
be dynamical configurations with effectively vanishing tension in the strong
coupling regime. We further suggest a tendancy that the magnetic field due
a monopole in the presence of a domain will tend to align with the domain
wall, such that the flux is pushed to the boundary of the domain wall. If
this effect persists in strongly coupled regime, it could be an explanation
for the observation in lattice simulations [3, 37-39] that there are no well
localised objects with finite size which would carry the topological charge.
In weak coupling the domain wall solution is a nicely behaved smooth
function, but what happens when we transition slowly to the strong cou-
pling regime? The holographic picture suggests that the effective domain
wall tension vanishes and so they can be formed easily in vacuum. It is
possible that the domain walls become “clumpy” with a large number of
folders. Such fluctuations would then increase the entropy of the domain
wall, which eventually could overcome the intrinsic tension. If this happens,
the domain walls would look like very crumpled and wrinkled objects with
large number of folds, and as such, the domain walls may loose their natural
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dimensionality, and become characterised by a Hausdorff dimension as some
recent lattice simulations suggest [11]. Nevertheless, the topological charge
distribution on larger scales after averaging over a large number of these
foldings should be sufficiently smooth so that the double layer structure
would not disappear because the transition from weak to strong coupling
should be sufficiently smooth as argued in [85]. Therefore, we identify the
double layer structure found in this work with the double layer struc-
ture from the lattice measurements [3, 37-39]. These particularities of the
transition from weak to strong coupling are also interesting future questions,
which will require an analysis beyond the semi-classical level.
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Chapter 6

Metastable Vacuum Decay

This chapter reproduces the work presented in [7]. We demonstrate the
presence of metastable vacuum states and calculate the decay rate from
such states to the true ground state in the context of the deformed model
discussed in Chapter

6.1 Motivation

A study of the QCD vacuum state in the strong coupling regime is the pre-
rogative of numerical Monte Carlo lattice computations. However, a number
of very deep and fundamental questions about the QCD vacuum structure
can be addressed and, more importantly, answered using some simplified
versions of QCD. Here, we study a set of questions related to metastable
vacuum states and their decay to the true vacuum state using the deformed
gauge theory model wherein we can work analytically. This model describes
a weakly coupled gauge theory, which however preserves many essential ele-
ments expected for true QCD, such as confinement, degenerate topological
sectors, proper 6 dependence, and so on, as we have seen in previous chap-
ters. This allows us to study difficult and nontrivial features, particularly
related to vacuum structure, in an analytically tractable manner.

The fact that some high energy metastable vacuum states must be
present in a gauge theory system in the large N limit has been known for
quite some time [94]. A similar conclusion also follows from the holographic
description of QCD as originally discussed in [96]. Furthermore, the decay
rate of these excited vacua in the large N limit in strongly coupled pure
gauge theory can be estimated as I' ~ exp(—N%) [73].

The fundamental observation on the emergence of these excited vacuum
states was made in a course of studies related to the resolution of the U(1)4
problem in QCD in the large N limit [90, 91, 93]. In the present work we
do not introduce quarks (which play an essential role in the formulation of
the U(1)4 problem) into the system, but rather, study pure gluodynam-
ics, and the metastable vacuum states which occur there. Nevertheless, the
key object relevant for the resolution of the U(1)4 problem, the so-called
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topological susceptibility y, still emerges in our discussions in pure gluody-
namics because it plays an important role in understanding the spectrum
of the ground state and multiple metastable states. Indeed, the topologi-
cal susceptibility is defined as x(6) = %. Therefore, the information
about the ground (or in general metastable) states Fyac(6) is related to the 6
behaviour of the system formulated in terms of the topological susceptibility
x(6).

When some deep questions are studied in a simplified version of a theory,
there is always a risk that some effects which emerge in the simplified ver-
sion of the theory could be just artifacts of the approximation, rather than
genuine consequences of the original underlying theory. Our study using
this deformed theory as a toy model is not free from this potential difficulty
with potential misinterpretation of artifacts as inherent features underlying
QCD. Nevertheless, there are few strong arguments suggesting that we in-
deed study some intrinsic features of the system rather than some artificial
effects. The first argument is discussed in the original paper on “centre-
stablised Yang-Mills” [85], which we have been calling the “deformed gauge
theory model”, where it has been claimed that this model describes a smooth
interpolation between a strongly coupled gauge theory and the weakly cou-
pled deformed model without any phase transition by combining a smooth
deformation and an apparently smooth transition to small compactification.
In addition, there are a few more arguments based on our previous expe-
rience with the this model, which also suggest that we indeed study some
intrinsic features of QCD rather than some artifact of the deformation.

Our arguments are based on the computations presented in Chapter
(published in [80]) of the contact term in the deformed theory, see also [84]
for some related discussions. The key point is that this contact term with a
positive sign (in the Euclidean formulation) in the topological susceptibility
X is required for the resolution of the U(1)4 problem [90, 91, 93]. At the
same time, any physical propagating degrees of freedom must contribute
with a negative sign. In [93] this positive contact term has been simply
postulated while in [90, 91] an unphysical Veneziano ghost was introduced
into the system to saturate this term with the “wrong” sign in the topological
susceptibility. This entire non-trivial picture has been successfully confirmed
by numerical lattice computations. More importantly for the present studies,
this picture has been supported by our analytical computations in which
all the nontrivial crucial elements for the resolution of the U(1)4 problem
emerge.

Indeed, the non-dispersive contact term in the topological susceptibility
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can be explicitly computed in this model and is given by [80]

Xcontact = /d4x<Q($)aq(O)> ~ /d3IE [5(X)]7 (61)

where ¢(z) is the topological density operator. It has the required “wrong”
sign as this contribution is not related to any physical propagating degrees of
freedom, but is rather related to the topological structure of the theory, and
has a §(x) function structure as it should. In this model y is saturated by
fractionally charged weakly interacting monopoles describing the tunnelling
transitions between topologically distinct, but physically equivalent topolog-
ical winding sectors as discussed previously. Furthermore, the d(x) function
in should be understood as a total divergence related to the infrared
(IR) physics, rather than to ultraviolet (UV) behaviour as explained in [80]

M
Xcontact ™~ /5(X) d3$ = / d31' 8# <47r333> . (6.2)

The singular behaviour of the contact term has been confirmed by lattice
computations where it has been found that the singular behaviour at x — 0
is an inherent IR feature of the underlying QCD rather than some lattice
size effect [10, 38, 40, 41].

In addition, one can explicitly see how the Veneziano ghost postulated in
[90, 91] is explicitly expressed in terms of auxiliary topological fields which
saturate the contact term in this model as was shown in [106]. In other
words, the 1’ field in this model generates its mass (which is precisely the
formulation of the U(1)4 problem) as a result of a mixture of the Goldstone
field with the topological auxiliary field governed by a Chern-Simons like
action, see [106] for the details.

All these features related to the 6 dependence which are known to be
present in the strongly coupled regime also emerge in the weakly coupled
deformed toy model. Therefore, we interpret such behaviour as a strong
argument supporting our assumption that the deformed model properly de-
scribes, at least qualitatively, the features related to the 6 dependence and
vacuum structure of QCD, including the presence of metastable states which
is main subject of the present work.

The specific computations we perform related to the metastable vacuum
states have never been performed using numerical lattice (or any other)
methods. Therefore, we do not have the same luxury present in our previous
studies of the contact term [80] in which our results were supported by
numerous lattice computations. Nevertheless, as the specific questions about
the metastable states are closely related to much more generic studies of the
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0 dependence in the system, as reviewed above, we are still confident that
our results presented below, based on the deformed model, are inherent
qualitative properties of QCD rather than some artificial effects which may
occur due to the deformation.

Our presentation is organised as follows. In Section we explic-
itly demonstrate the presence of metastable states in the deformed gauge
model. In Section we review the general strategy to compute a decay of
metastable vacuum states to the true vacuum in the path integral formula-
tion. In Section [6.4] we present our numerical analysis on the life time of the
metastable states as a function of a “semi-classicality” which is a parameter
determining the region of validity of our semiclassical computations. Fi-
nally, we conclude in Section [6.5| with speculations on possible consequences
and manifestations of our results for physics of heavy ion collisions where a
metastable state might be formed as a result of collision, and the system,
which is order the size of a nuclei, might be locked in this state for sufficiently
long period of time ~ 10 fm/c.

6.2 Metastable Vacuum States

Here we concentrate on the Euclidean potential density for the o fields at
=0,

N

U(g) =Y [1—cos(on — ons1)], (6.3)

n=1
where again o1 is identified with o;. To simplify notations we skip a large
common factor A in our discussions which follow. We restore this factor in
our final formula. Also, we have added a constant () so that the potential
is positive semi-definite. The lowest energy state, denoted by o(~), is the
state with all o fields sitting at the same value (0,, = 0,+1) and has zero
energy. This is clearly the true ground state of the system, but there are
also potentially some higher energy metastable states. For an extremal state
we must have

ou
=0 6.4
%o, (6.4)
for all n, which immediately gives
sin (oy, — opt1) = sin (op—1 — on) . (6.5)

A necessary condition for a higher energy minimum of the potential is thus
that the o fields are evenly spaced around the unit circle or (up to a total
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rotation),
2mn
On = m—, (6.6)
where m is an integer. A sufficient condition is then
0*U
— >0, 6.7
do? (6.7)
again for all n. This gives us
cos (0, — opt1) + cos (op—1 — o) > 0, (6.8)

which using gives

cos <m?\7;> > 0. (6.9)

So, we get a constraint on m in the form of , and also on N. From
it is quite obvious that metastable states always exist for sufficiently large
N, which is definitely consistent with old generic arguments [94]. In our
simplified version of the theory one can explicitly see how these metastable
states emerge in the system, and how they are classified in terms of the
scalar magnetic potential fields o (x).

We should also remark here that a non-trivial solution with m # 0 in
does not exisﬂ in this simplified model for the lowest N = 2,3,4.
Therefore, in our study we always assume N > 5.

Looking back at the potential , the lowest energy of the possibilities
are given by m = +£1, so that the lowest energy metastable states, denoted
by o) are given by (again up to a constant rotation)

2
o) = i%”. (6.10)

To understand the physical meaning of the solutions describing the non-
trivial metastable vacuum states, we recall that the operator ¢/ @) ig the
creation operator for a monopole of type a at point x, as it was explicitly
demonstrated in [80],

Mg (x) = e@ao(), (6.11)

Therefore, the vacuum expectation value (M, (x)) describes the magneti-
sation of a given metastable ground state classified by the parameter m.

9N = 4 deserves a special consideration as at m = =+1 the second derivative 1i
vanishes. It may imply a presence of the massless particles in the spectrum for these
excited vacuum states. It may also correspond to a saddle point in configuration space.
We shall not elaborate on this matter in the present work.
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As one can see from , the corresponding vacuum expectation value
(M,(x)) always assumes the element from the centre of the SU(N) gauge
group. Specifically, for the lowest metastable vacuum states given by (6.10),
the magnetisation is given by

(M (x)) = exp [izm . (6.12)

The fact that the confinement in this model is due to the condensation
of fractionally charged monopoles has been known since the original paper
[85]. Now we understand the structure of the excited metastable states also;
mainly, these metastable vacuum states can be also thought of as a con-
densate of the monopoles. However, the condensates of different monopole
types, n from , are now shifted by a phase such that the corresponding
magnetisation receives a non-trivial phase (6.12)).

A different, but equivalent way to classify all these new metastable vac-
uum states is to compute the expectation values for the topological density
operator for those states. By definition

i anual (9)

o6 =0
= —i%(sin (g O))m = —i%sin (T) :

The imaginary 7 in this expression should not confuse the readers as we work
in Euclidean space-time. In Minkowski space-time this expectation value is
obviously a real number. A similar phenomenon is known to occur in the
exactly solvable two dimensional Schwinger model wherein the expectation
value for the electric field in the Euclidean space-time has an i, see [105]
for discussions in present context. The expectation value is the order
parameter of a given metastable state.

A crucial point we want to make here is that a metastable vacuum state
with m # 0 in general violates P and CP invariance since the topological
density operator itself is not invariant under these symmetries. Precisely
this observation inspires our suggestion, discussed in Section that such
metastable states could be the major source of the local P and CP viola-
tion observed in heavy ion collisions at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven, and the Large Hadron Collider (LHC).

Now we come back to our discussions of the lowest metastable states
(6.10). Putting the metastable configuration back into the potential
we find that the energy density separation between the true ground state

(#u [FWF“”} Y = (6.13)
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and the lowest metastable states (6.10) is given bym

¢ = (E(+) - EH) =N [1 — cos <3\7;>} . (6.14)

The choice of sign in is irrelevant for the purposes of calculating the
vacuum decay since the two states m = 41 are degenerate in terms of en-
ergy and so have the same energy splitting with respect to the ground state.
These states, however, are physically distinct as the expectation value of the
gauge invariant operator has opposite signs for these two metastable
vacuum states. This implies that all P and CP effects will have the op-
posite signs for these two states, while the probability to form these two
metastable states is identical, as is the decay rate. So, while our fundamen-
tal Lagrangian is invariant under these symmetries, the metastable vacuum
states, if formed, may spontaneously break that symmetry.

6.3 Metastable Vacuum Decay

In this section we briefly review the general theory and framework for calcu-
lating metastable vacuum decay rates in Quantum Field Theory, restating
the important results for the three dimensional model discussed above. For a
more thorough discussion see Appendix or the original papers [14, 15, 47].
There is also a great, and fairly extensive, discussion on this topic in Chap-
ter 7 of [72]. The process for the decay of a metastable vacuum state to the
true vacuum state is analogous to a bubble nucleation process in statistical
physics. Considering a fluid phase around the vaporisation point, thermal
fluctuations will cause bubbles of vapor to form. If the system is heated
beyond the vaporisation point, the vapor phase becomes the true ground
state for the system. Then, the energy gained by the bulk of a bubble tran-
sitioning to the vapor phase goes like a volume while the energy cost for
forming a surface (basically a domain wall) goes like an area. Thus, there

1'We should comment here that the vacuum energy of the ground state E*) ~ N in
this model scales as N in contrast with conventional N? scaling in strongly coupled QCD.
However, the ratio e/E(i> ~ N72 shows the same scaling as in strongly coupled QCD.
The difference in behaviour in large N limit between weakly coupled “deformed QCD” and
strongly coupled QCD obviously implies that we should anticipate a different asymptotic
scaling for the decay rate in the large N limit in our simplified model in comparison with
result [73]. As we discuss in Sections and [6.4.3) this is indeed the case. Furthermore,
the region of validity in this model shrinks to a point in the limit N — oo as discussed
in [85]. Therefore, the asymptotic behaviour at N — oo should be considered with great
caution.
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is some critical size such that smaller bubbles represent a net cost in energy
and will collapse while larger bubbles represent a net gain in energy. Once a
bubble forms which is larger than the critical size it will grow to consume the
entire volume and transition the whole of the sample to the vapor phase. To
understand the lifetime of such a ’superheated’ liquid state, the important
calculation is, therefore, the rate of nucleation of critical bubbles per unit
time per unit volume (I'/V'). Similarly, we aim to calculate this decay rate
for our system from the metastable state o(t) to the ground state o(~),
though through quantum rather than thermal fluctuations. Classically, a
system in the configuration o) is stable, but quantum mechanically the
system is rendered unstable through barrier penetration (tunneling).
The semiclassical expression for the tunneling rate per unit volume is
given by [14, 15, 47]
r

7= Ae%E(@)/h 1 4 O (h)] (6.15)

where Sg is the Euclidean action and is evaluated in the field config-
uration called the “Euclidean bounce” which we have denoted o,. The Eu-
clidean bounce is a finite action, spherically symmetric configuration which
solves the classical equations of motion and interpolates from the metastable
state to a configuration “near” the ground state and back.

In the limit of small separation energy e the bounce approaches o)
more closely and spends longer in the region nearby, so that the bounce
configuration resembles a bubble with the interior at o(~), the exterior at
o), and a domain wall surface interpolating between the tw. If the
bubble is very large, corresponding to very small €, then the curvature at
the interpolating surface is small and the surface appears flat.

Therefore, if the separation energy, €, between the two states is small, we
need only solve for the one dimensional soliton interpolating between o (*)
and o(~) which solves

N 1 /do, 2
S1= dxz s\ +1—cos(op — ont1) |- (6.16)
n=1

This is called the thin-wall approximation, and is the framework in which
we will work. In the deformed model, as discussed in the previous section,

10One should comment here that this model also exhibits very different types of the
domain walls, mainly those considered in Chapter |5/ (and [81]). The objects discussed
there are fundamentally different from solutions in the present work as they essentially
describe the tunnelling events between different topological sectors, while in here the
domain wall-like objects play the auxiliary role in order to evaluate the life time of a
metastable state.
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6.3. Metastable Vacuum Decay

the separation € ~ 1/N, so that the thin-wall approximation coincides with
the large N approximation.
For the thin wall approximation the full action reduces to

3

S3 = 4w R*S| — %WR?)E = 1—3677%, (6.17)
where the last step is computed by using variational analysis to get R =
251 /e. Notice again the similarity to a bubble nucleation problem. This
extremal action with respect to the bubble size is in fact a maximum, and
as such the action increases with R for smaller size and decreases with R
for larger. Hence, the bounce configuration which saturates the decay rate
is essentially a bubble of critical size as discussed when making this analogy
to bubble nucleation.

The condition for the validity of the thin wall approximation is essentially
that the interior of the bubble is very near the true ground state (=) so
that it is nearly stable and stays near o(~) for large p. We want Ry > 1,
where p? = 9?U/d02(a(7)) is the curvature of the potential at the ground
state; here = v/2. Thus, we need

2V/285; > e, (6.18)

where € is given by (6.14).

We now have everything required to calculate the exponent for the vac-
uum decay assuming we can solve for a classical path associated with
the one dimensional action interpolating between the two states o (1)
and o(7). We have not discussed the coefficient A, and indeed it is a much
more complicated problem related to the functional determinant of the full
differential operator, 625/do?. This calculation is beyond the scope of this
work for the deformed model as it does not change the basic physical pic-
ture advocating in this work. We want to see that the leading factor in the
decay rate is indeed exponentially small, and our computations are justified
as long as our semiclassical parameter is sufficiently large, N' > 1.
Furthermore, we anticipate that the dependence on N in the exponent is
much more important than the N dependence in pre exponential factor
~ 625/80%. The only power -like corrections which may emerge from the
determinant is through a factor of \/Sg /27 for each zero mode [15], and we
can safely neglect these corrections in comparison with much more profound
exponential behaviour in N, see Sections and
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6.4 Computations

We now proceed to solve the equations of motion
d?o,,
dz?

with o1 identified with o1, derived from the action (6.16) subject to the
boundary conditions

=sin (o, — opt1) — sin (o1 — oy , (6.19)

on (x = —00) =0, (6.20)
and
27
N
The ¢ in (6.21) is a relative rotation angle between the two boundaries,
since each of the two states are only defined up to a rotation. The angle is
determined by demanding a minimal action interpolation. That is, we should
minimise the action with respect to the interpolating field configuration and
also with respect to this angle . The final solution thus obtained will then
be defined only up to an arbitrary total rotation which will be important
later. Additionally, we expect the solution to be a soliton (instanton-like) in
the sense that it should be well contained with only exponential tails away
from the center so that the interpolation occurs in an exponentially small
region. The characteristic size of this region, we expect, is given by m_! in
the original model, or just 1 in dimensionless notations used here. Then, we
can calculate the vacuum decay rate as

F 53 3_53
o2 .22
. <2ﬁ) e, (6.22)

on (T — +00) = —n+ . (6.21)

where we have put in the part of the coefficient that we can calculate related
to the zero modes in the system. There are six zero modes: three transla-
tions, two spacial rotations, and the one global o-rotation discussed earlier.
We now discuss in Section the numerical technique employed to solve
this problem, and in Section[6.4.2 the results of these numerical calculations.

6.4.1 Numerical Technique

The sine-Gordon equation for a single field, v’ = sin(u), has a soliton solu-
tion given by
u (x) = 4arctan (e), (6.23)

75



6.4. Computations

interpolating between 0 and 27, which seems like good starting point. As
such, we choose a similar form for the initial guess at the solution for the
coupled equations, and hence define our initial guess to be of the form

op = (% + %) 4 arctan (e”). (6.24)
This initial guess has two important properties; it satisfies the boundary
conditions (6.20) and (6.21)), and tails off toward those boundaries as decay-
ing exponentials for x — +oo, which is the type of behaviour expected, as
discussed previously.

The equations of motion are on an infinite domain and must be
truncated to be solved numerically. We want to truncate the domain to a re-
gion beyond which changes in the o; (r) are numerically insignificant. Given
that the tails of the o, (r) (and we expect the final solution) are decaying
exponentials, choosing the domain [—16, 16] means that the boundary values
are within ~ 1077 of their final values and is suitable for our purpose.

In order to promote numerical stability particularly around the boundary
values we employ Chebyshev spectral methods for integrals and derivatives,
as described in [9][83], using an unevenly spaced Chebyshev grid given by

; = cos (m) Y 0<i<N, (6.25)
Np

where N, is the number of grid points. Notice that the Chebyshev grid
defines a domain [~1, 1] and so we scale # — {5 in order to express functions
with the chosen domain on the spectral grid.

From now on, we will use the following notation: o’ denotes the i*" grid
point of the n'" field, where N is the total number of fields while N, is the
number of grid points. The differentiation matrix (N, x N,) is given by [9]
(page 570) as

2N12+1 ==
B 2N§+1 i=j=N,
Dij = _ T .
2(1-22)

(_1)i+jpi 7 ?é ]

pj(i—;)

(6.26)

where,

) 2 j=0orN
bi 1 otherwise.
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Any higher derivative is then given by repeated multiplication by D.
This differentiation matrix is basically just the linear operator describ-
ing interpolating a function on the grid points by an Nzt)h order polynomial
and differentiating that polynomial. Since it uses knowledge of the entire
function rather than just the few nearby points like a finite difference, the
accuracy of the derivative is generally much better than any small order fi-
nite difference. Furthermore, using a grid spaced in this way provides much
more numerical stability, counteracting the so called Runge phenomenon
[83], which leads to large oscillations near boundaries of uniform grids.

The algorithm we employ to minimise the action with respect to the
field configuration is a gradient descent method, which is to treat the action
as a potential over the configuration space formed by each o field at each
grid point, then to take steps in the negative gradient direction. Essentially,
iterating the expression

aﬁl — a; — 525%
ol = ol + (D) — dsin (o, — ol y,)
+ §sin(of_4 —ob) (6.27)

where ¢ is a chosen step size, which we start as § = 1. At each iteration,
we enforce the boundary conditions and check if the action applied to
the new configuration is in fact smaller than the old configuration. If so, we
move to the new configuration. If not, the step was too large and we have
overstepped the section of the potential with a downward slope, so we go
back to the old configuration and reduce the step size by 6 — ¢/2 and iterate
this procedure until we find a good step or reduce the step size below our
desired precision. We then reset § = 1 and continue until we cannot find a
good step within our desired precision. Once reaching a position from which
no step reduces the action, we are within the defined precision of a minimum
of the action. In order to probe more of the configuration space we took a
Monte-Carlo-like approach wherein we adjusted our initial guess by adding
some Gaussian noise in an envelope, (1 —|z|)?. We chose an envelope of this
form because we expect that the solution has the sort of exponential tails
of our initial guess (6.24), while we do not know the form of the core of the
domain wall. Thus, it is sensible to probe more of the configuration space
related to the specific details of the core.
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Figure 6.1: Plot of some simulation data for the one dimensional action
(6.16)) as a function of the angle ¢ between the boundary conditions done
for N =7.

6.4.2 Results

The first issue we address is the question about the favoured angle, ¢, be-
tween the two boundaries, and . In order to find the angle we
chose (arbitrarily) N = 7 and varied the angle in the range [—m, 7] — 87/7,
and look at the action S as a function of . The results of that simulation
are plotted in figure The center point on the plot, —87/7, may seem
odd, but it is the value for ¢ which leads to a maximally symmetric solution,
so it is very believable minimum for the potential, and indeed this is what
we see. The solution for the minimal ¢ field configuration corresponding to
¢ = —8n/7 is shown in figure across the domain wall. Extending these
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Simulation Data for o-Fieldsin N.=7
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Figure 6.2: Plot of some simulation data for the o field configuration plotted
across the domain wall done for N =7 and ¢ = —87/7.

results to arbitrary N we set

w=—W<N;1>, (6.28)

which just ensures that the solution we look for is maximally symmetric in
the same sense as the fields in figure basically that o, = —on4+1-n. We
have checked that this choice of ¢, , does in fact lead to the lowest
action configuration for N = 20 and N = 35 with results much like those
shown in figure for N =7, so we are comfortable with our assumption.

Next, we are expecting a non-perturbative function of the form I'/V ~
exp [—F (N)] [73,94], so running simulations for I'/V (') we plot the results
in the form F (N). This plot is given in figure[6.3|where the points and error
bars given are the mean and standard deviation for 25 trials of our simulation
at each IV between 15 and 75 using 312 Chebyshev grid points; it is shown
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Figure 6.3: Plot of some simulation data for the decay exponent F' (N)
plotted for N in the range 15 to 75.
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on a log-log scale to emphasise the power law behaviour of F' ().

The particular fit parameters are given for completeness but should not
be regarded as terribly important. In fact, the most important result for the
present analysis is that the computations are performed in a theoretically
controllable manner where every single step is justified in the semi-classical
limit governed by the parameter NV > 1. We are after all working in
a toy model, and as such should expect a good qualitative picture but not
take the numerical details too seriously. It is however interesting that the
final form for the decay rate is given as, putting the parameter A back in,

g ~ exp {—N (aNb> } (6.29)

with both a and b positive. Thus, the decay rate does drop off exponentially
in N and our other semiclassical parameter A/, and indeed faster than any
perturbation term would describe as previously conjectured. It is a semi-
classical calculation, but the behaviour is fundamentally non-perturbative,
and it is only parametrically justified when N > 1.

A few comments are in order. First, our numerical estimates can
be only trusted for finite N > 5, but not for parametrically large N — oo
where the region of validity of the model shrinks to a point. Furthermore,
if the external parameter N were allowed to vary in a very large region it
may lead (and, in fact, it does) to a systematic error in our numerical sim-
ulations. This is because in our numerical simulations we assume that all
our variables are order of unity, rather than having some functional depen-
dence on N, which may not be the case when the external parameter N is
allowed to vary in wide region of parameter space. Finally, one should not
expect that our formula would reproduce the asymptotic behaviour
[73] due to the differences in large N scaling between the deformed model
and strongly coupled QCD. As mentioned previously, the main goal of our
computations is to support the qualitative, rather than quantitative picture
of metastable vacua and their decay, conjectured in [94, 96] in a simplified
model where calculations are parametrically justified at AN/ > 1 and finite
N. Nevertheless, there is room to improve our numerical simulations in a
much wider range of N as a result of a recent analysis [51] in which the
asymptotic expression at N — oo has been analytically computed. These
improvements are discussed in the next section.

6.4.3 Improved Results

Recently, an analytical analysis of the asymptotic behaviour of this calcula-
tion, inspired by the above numerical results, has been carried out [51] with
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the asymptotic expression for the decay rate per unit volume given by

r 256 N7/2
"~ eXp [ 03 (m — 9)2] . (6.30)
We briefly reproduce these results in Appendix|Cl The asymptotic expression
gives us a hint about how to produce a better estimate for the decay
rate for very large N > 1 in comparison with our naive numerical results
presented in Section above, wherein we assumed that parameter N is
not allowed to vary in an extended region of parameter space.

Indeed, the analysis in [51] suggests the specific reason for the disparity
between the asymptotic expression and the numerical results shown in figure
for large N. Mainly, the asymptotic guess solution is given by

o (z) = <‘j\’; - 2) arctan [exp (-2\/533)] , (6.31)

which has a size ~+/N changing with the parameter N. Our guess solution
does not scale with N and so becomes an increasingly bad guess at
asymptotically larger IV, such that our numerical solver becomes increasingly
likely to find some other local minimum of the action. Furthermore, our
integration domain was fixed for all N as we did not even attempt to consider
any large variations with N in our analysis in Section [6.4.2. When we
allow the external parameter N to become large, the true minimal action
interpolating trajectory eventually will not fit in the finite size numerical
grid which we fixed for all N. Essentially, forcing boundary conditions on
too small a domain also forces a higher action local minimum as IV increases.
This is precisely the mechanism by which a systematic error is introduced
into the numerical simulations as a result of large variation in the external
parameter N, as suggested in the previous section.

Fortunately, the analytical expression which is valid for asymp-
totically large N suggests a simple fix to improve our numerical solution at
higher N by explicitly taking into account the variation of the trajectory
size with this parameter. Technically, we can allow the integration domain
to scale ~+/N, and start with the asymptotic guess in which the large
parameter N explicitly enters, as the initial guess for the “improved” numer-
ical algorithm. Again, we added some Gaussian noise to get an ensemble of
25 initial guesses for each N and relaxed them as described in Section [6.4.1]
to arrive at a minimum of the action. These improved results are shown in
figure plotted along with the asymptotic expression for the decay rate
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Figure 6.4: Plot of the improved simulation data for the decay exponent
F (N) plotted for N in the range 7 to 75.

and the first few points from the original simulations in Section [6.4.2. They
reproduce the previous results for finite NV < 15 and approach the asymp-
totic result given in [51] from below for large N. Numerically, the
asymptotic expression , which is formally valid at N — oo, describes
our improved simulation data sufficiently well (with accuracy better than
10%) only at large N > 35.

6.5 Comments

Our comments here can be separated into two different parts: solid theo-
retical results within the deformed model; and some speculations related to
strongly coupled QCD realised in nature.

We start with the first part of the conclusion in which our basic result
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is as follows. We have demonstrated that the deformed model shows (once
again) that some qualitative features expected to occur in the strongly cou-
pled regime in the large N limit as argued in [94] do emerge in the simplified
version of the theory as well. We demonstrated the existence of metastable
vacuum states with energy density higher than the ground state by € ~ 1/N,
and have shown that the lifetime of the metastable states is exponentially
suppressed in this model with respect to the semi-classicality parameter N.
The suppression increases even further with increasing number of colours N
for a fixed NV, and it is given by (6.29).

In this simplified system one can explicitly see these metastable states,
how they are classified, and the microscopic dynamics which govern the
corresponding physics. The P and CP invariance is generally violated in
these metastable vacuum states as the expectation value for the topological
density explicitly shows. We believe that this feature of spontaneous
breaking of the P and CP invariance in metastable states is quite a generic
feature which is shared by strongly coupled pure gauge theories (for suf-
ficiently large N). Precisely this feature of the metastable states plays a
crucial role in our speculative portion of the conclusion.

Therefore, we now speculate that precisely this spontaneous symmetry
breaking effect is responsible for the asymmetries in event by event studies
observed at the RHIC (Relativistic Heavy Ion Collider) and the LHC (Large
Hadron Collider). To be more specific, the violation of local P and CP
symmetries has been the subject of intense studies for the last couple of
years as a result of very interesting ongoing experiments at RHIC [16, 26]
and, more recently, at the LHC [17, 18, 25, 70], see [44] for a recent review
and introduction to the subject with a large number of references to original
papers.

The main idea for explaining the observed asymmetries is to assume
[43, 44] that an effective §(Z,t);ng # 0 is induced in the process of cooling
of the system representing the high temperature quark-gluon plasma. In
other words, the system in the process of cooling may spontaneously choose
one or another state which is not the absolute minimum of the system cor-
responding to the 8 = 0, but rather, some excited state, similar to the old
idea when the disoriented chiral condensate can be formed as a result of
heavy ion collisions. The key assumption is that this induced 6(&,t);nq # 0
is coherent on a relatively large scale, of order the size of nuclei ~ 10 fm. If
a state with (0(Z,t);nq) # 0 is indeed induced, it implies a violation of the
local P and CP symmetries on the same scales where 6(Z, t);,q # 0 is corre-
lated. It may then generate a number of P and CP violating effects, such as
Charge/Chiral Separation (CSE) and Chiral Magnetic (CME) Effects, see
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[44] for a recent review.

One of the critical questions for the applications of the CME to heavy
ion collisions is a correlation length of the induced (0(Z, t)inq) # 0. Why are
these P odd domains large?

We suggest that the system being originally formed at high temperature
might be locked in one of these metastable states during the cooling stagelﬂ.
If this happens one should obviously expect a number of P and CP effects
to occur coherently in the entire system characterised by a large scale of
order the size of nuclei L > AééD. We therefore identify 0(Z,t)ing # 0
from [43] with the effective theta parameter 27/N which enters and
which manifests a spontaneous violation of the P and C'P symmetries in the
system.

The presence of such long range order (which itself is a consequence of
a spontaneous selection of a metastable vacuum state in the entire system
during the cooling process) may explain why the CME is operational in
this system and how the asymmetry can be coherently accumulated. This
identification would justify the effective Lagrangian approach advocated
in [43, 104] wherein 0(Z,t);nq is treated as a slow background field with
correlation length much larger than any conventional QCD fluctuations,
L > AééD. It is important to emphasise that the P and CP symmetries
are good symmetries of the fundamental QCD. As mentioned in footnote
the asymmetries can only be observed in heavy ion collisions in event
by event analyses when the system might be locked, for sufficiently long
period of time 7 ~ L/c > Aéém in a metastable state in one collision with
one specific sign for the topological density . Because the metastable
states with opposite signs for the topological density operator have
the same energy, which state is chosen for a particular event is random and
evenly distributed. Thus, it is clear that if one averages over a large num-
ber of events, the asymmetry will be washed out as the probability to form
these metastable states is identical and the lifetime for the two is the same
as we mentioned in Section [6.2l However, in the event by event studies the
asymmetry will be evident in the system. Apparently, this is precisely what
has been observed. The P and CP violation is seen in collider events only
on an event by event basis but averages to zero over many events, see the

2 The P and CP symmetries, of course, are good symmetries in QCD. The probability
to produce the m = +1 state from equation is identical to that to produce the
m = —1 state. Therefore, there will not be any P and CP violating effects if one averages
over a large number of events. However, one should expect some asymmetries if one
analyses the system on an event by event basis, which is precisely the procedure used at
RHIC and the LHC, see [44] for a recent review.
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recent review paper [44] for details.
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Chapter 7

Conclusion

We examined some interesting aspects of the modified deformed gauge the-
ory developed by Lawrence Yaffe and Mithat Unsal [85] in a confined phase
in an theoretically controllable manner, which is impossible with current
methods in real strongly coupled QCD. This model, as discussed in Chapter
2, is constructed by taking a standard Yang-Mills Lagrangian and putting
in an extra potential by hand that penalises an expectation value for the
Wilson line in the compact direction. The Wilson line acts as an order
parameter for a center symmetry breaking that characterises the deconfine-
ment phase transition, so that the extra potential, if chosen to be strong
enough, forces a confined phase. Thus, we have a system at weak coupling
(small compactification scales) that is nonetheless confined and gapped, for
which the low energy effective dynamics is given by two dual descriptions:
a multi-species Coulomb gas; or a coupled sine-Gordon model.

In Chapter [3| we calculated the topological susceptibility analytically in
both dual descriptions, demonstrating the presence of a nondispersive con-
tact term with the sign opposite that of the contribution from any physical
propagating degrees of freedom. We discussed the necessity of such a term
in the resolution of the U(1) 4 problem in QCD, which provides the physical
mass for the 7’ meson, and explained how such a term has previously been
postulated either directly or via an extra unphysical ghost field. In the de-
formed model however, the contact term emerges naturally and can be seen
in both descriptions.

Next, in Chapter 4], we considered the Coulomb gas description for the
deformed model, and performed an analysis of the zero modes for the col-
lective coordinates of a monopole, following a similar analysis performed by
Gerard 't Hooft [77] in his classic paper on four dimensional instantons. We
calculated the corrections to these zero mode contributions to the measure
due to a finite size of the manifold. The results of this analysis are that
the monopole fugacity, and so also the bulk energy density, receives some
Casimir-like power law corrections based on the size of the manifold. This is
in contrast to the naive expectation that in a gapped system with only mas-
sive degrees of freedom should only have a weaker exponentially suppressed
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dependence on the boundary. We further argued that, if such an effect per-
sists in strongly coupled undeformed QCD, it provides a natural solution
to the cosmological dark energy problem, with a rough prediction for the
magnitude, HA?C)QCD ~ (1073eV)*, that is of the correct order of magnitude.
Furthermore, this explanation requires no new physics, coming merely from
long distance ‘nondispersive” effects in the QCD sector interacting with a
finite sized manifold.

Then, in Chapter [5, performed a numerical analysis of the interaction
between a point-like topological monopole and an extended topological do-
main wall in the sine-Gordon description. The domain wall solution in the
sine-Gordon picture is qualitatively similar to relevant gauge configurations
discussed in the context of some Lattice QCD simulations [3, 10, 37-41, 49],
which suggest that extended topological objects are more relevant than the
point-like instantons that have been discussed traditionally. We found that
the lowest energy configuration involves the monopole sitting within the do-
main wall toward the side with the same topological charge as the monopole.
This result suggests a dynamical reason for the absence of instanton-like con-
figurations in lattice simulations, and perhaps a dynamical stability for the
domain walls also, above and beyond the classical topological stability.

Finally, in Chapter [6, we demonstrated the presence of metastable vac-
uum states with energy greater than the true ground state in the deformed
gauge model, and calculated the decay rate from the lowest energy of such
states to the ground state following the procedure developed by Sidney Cole-
man [14, 15]. We solved for configurations interpolating between the true
vacuum state and the higher energy metastable state numerically, then used
these to find the decay rate as a function of N., the number of colours de-
fined by the gauge group SU(N) for the model, confirming the predicted
behaviour predicted by Edward Witten for undeformed gauge theory at
large N, [95]. As expected, the result is given as I'/V ~ exp[aN?], for some
coefficients a and b which we computed, confirming a nonperturbative ori-
gin for such behaviour since this dependence cannot arise at any order of
perturbation expansion.

The deformed gauge theory model is an extremely useful toy model for
studying ideas in true undeformed gauge theory, especially topological prop-
erties, in a confined phase. It allows for semiclassical analysis of a topologi-
cally nontrivial, confined theory with a mass gap at weak coupling, which is
smoothly connected parametrically to undeformed strongly coupled Yang-
Mills gauge theory. As shown, we can calculate quantities that are impos-
sible to compute in undeformed strongly coupled QCD, and test ideas that
have only been postulated in true QCD.
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Appendix A

Domain Wall Decay

Here we briefly discuss the decay of domain walls between physically equiva-
lent domains by hole formation. The decay mechanism for a domain wall is a
tunnelling process which creates a hole in the domain wall that connects the
X = 0 domain on one side of the wall to the y = 27 domain on the other, see
. Because the ground state on the two sides is physically identical, it is
possible for the fields to remain in the ground state as they pass through the
hole. That is, there is no interpolation (winding) as they pass through the
hole. This lowers the energy of the configuration over that where the hole
was filled by the domain wall transition by an amount proportional to R?
where R is the radius of the hole. The hole, however, must be surrounded
by a string-like field configuration which interpolates between an unwound
configuration and a wound one. This string represents an excitation in the
heavy degrees of freedom and thus costs energy, however, this energy scales
linearly as R. Thus, if a large enough hole can form, it will be stable and
the hole will expand and consume the wall. This process is commonly called
quantum nucleation and is similar to the decay of a metastable wall bounded
by strings; therefore, we use a similar technique to estimate the tunnelling
probability. The idea of the calculation was suggested in [92] to estimate the
decay rate in the so-called N = 1 axion model. In a QCD context similar
estimates have been discussed for the 1’ domain wall in large N QCD in [28]
and for the ' domain wall in high density QCD in [76].

If the radius of the nucleating hole is much greater than the wall thick-
ness, we can use the thin-string and thin-wall approximation. This approxi-
mation is justified, as we shall see, when we calculate the critical radius R,.
In this case, the action for the string and for the wall are proportional to
the corresponding worldsheet areas

So (R* x S') = 2rRLa — wR* Lo. (A1)

The first term is the energy cost of forming a string, where « is the string
tension and 27 RL is its worldsheet area. The second term is the energy gain
by forming the hole over keeping the domain wall, in which ¢ is the wall
tension and wR2L is its worldsheet volume. We should note that formula
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Appendix A. Domain Wall Decay

(A.1)) replaces the following more familiar expression for the classical action,
which was used in previous similar computations [28, 76]

4
So(RY) = 47 R%a — ?”R%. (A.2)

Minimizing (A.1) with respect to R we find the critical radius R. and the
action Sy,
e 3 al ma?L
Ro=2 Sy (R3xs!) = , (A.3)
o

g

which replace the more familiar expressions for the critical radius R, = %‘1

and classical action Sp(R*) = % from [28, 76].
Therefore, the semiclassical probability of this process is proportional to

T ~ exp <—”O‘2L) (A.4)

g

where ¢ is the DW tension determined by , while « is the tension of the
vortex line in the limit when the interaction term ~ ( due to the monopole’s
interaction in the low energy description is neglected and the U(1)
symmetry is restored. In this case the vortex line is a global string with
logarithmically divergent tension

1 g \2 R
o~ 271'@ (%) In Rco,r,e (AS)

where R ~ m !'is a long-distance cutoff which is determined by the width
of the domain wall, while R, ~ L where the low energy description breaks
down. The vortex tension is dominated by the region outside the core, so
our estimates for computing a to the logarithmic accuracy are justified.
Furthermore, the critical radius can be estimated as

Ro=2 T ln( 1 ) (A.6)

o 2m, my L

which shows that the nucleating hole ~ R, is marginally greater than the

wall thickness ~ my ! as the logarithmic factor In(=-7) ~ In A" > 1 when

my

N > 1 is the large parameter of the model, see (3.25). Therefore, our
thin-string and thin-wall approximation is marginally justified.

As a result of our estimates (A.4), (5.6), (A.5) the final expression for

the decay rate of the domain wall is proportional to

T ra?L 3(49 31n2(m>1<L)
~ exp(_ s )Nexp - ()" B
~ exp (=7 - NIn’N) <1,

(A7)
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with + being some numerical coefficient. The estimate supports our
claim that in the deformed gauge theory model, with a weak coupling regime
enforced and N > 1, our treatment of the domain walls as stable objects is
justified.
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Appendix B

Metastable Vacuum Decay

In this appendix we briefly review the general theory and framework for
calculating metastable vacuum decay rates in Quantum Field Theory. For
a more thorough discussion see [14, 15]. The process for the decay of a
metastable vacuum state to the true vacuum state is analogous to a bubble
nucleation process in statistical physics. Considering a fluid phase around
the vaporisation point, thermal fluctuations will cause bubbles of vapor to
form. If the system is heated beyond the vaporisation point, the vapor
phase becomes the true ground state for the system. Then, the energy
gained by the bulk of a bubble transitioning to the vapor phase goes like
a volume while the energy cost for forming a surface (basically a domain
wall) goes like an area. Thus, there is some critical size such that smaller
bubbles represent a net cost in energy and will collapse while larger bubbles
represent a net gain in energy. Once a bubble forms which is larger than
the critical size it will grow to consume the entire volume and transition
the whole of the sample to the vapor phase. To understand the lifetime of
such a ’superheated’ liquid state, the important calculation is, therefore, the
rate of nucleation of critical bubbles per unit time per unit volume (I'/V').
Similarly, we aim to calculate this decay rate for our system with from the
metastable state o(t) to the ground state o(~), though through quantum
rather than thermal fluctuations.

Consider a general system with a ground state field configuration, ¢(~),
and metastable field configuration, ¢(*), with an energy density difference
between the two given by e. Qualitatively the potential for the system
should be understood as something like Figure B.1l Classically, a system
in the configuration ¢(~) is stable, but quantum mechanically the system is
rendered unstable through barrier penetration (tunneling).

The semiclassical expression for the tunneling rate per unit volume is
given by [15]

r

7= Ae=E@)/M 1 L O ()] (B.1)

where the Euclidean action, Sg, is the action upon analytically continuing
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Qualitative diagram for potential

Energy density

@ [

@-field configuration

Figure B.1: Qualitative picture for the potential of a general system with a
global ground state, ¢(7), and a higher energy metastable state, ¢(*), with
an energy splitting between the two given by e.

to imaginary time and is given by
a4 |1 2, 1 2
Sp= [ &'z |5 (09)" + 5 (Ve)" +U(9)] - (B.2)

We have explicitly left & in to emphasise the semiclassical expansion.
The action, , in the exponent of is evaluated in the field con-
figuration called the “Euclidean bounce” which we have denoted ¢;. The
Euclidean bounce is a finite action configuration which solves the classical
equations of motion and interpolates, in Euclidean time, from the metastable
state to a configuration “near” the ground state and back. Making reference
to the potential depicted in Figure continuing to Euclidean time essen-
tially describes a system with the sign of the potential flipped. As such, the
bounce describes a path starting at the now local maximum ¢(*) at ¢t — —cc
rolling down into the valley and up to the classical tuning point near the
higher peak ¢(=), then reversing and traveling back to ¢(*) at ¢ — +oo. In
order for the action to be finite the bounce must also tend to ¢(*) as the
spacial coordinates go to infinity in any direction.

Additionally, we have glossed over one technicality by representing ¢ as
a single dimension while in fact it is not. In principle there is a classical
turning surface, call it X, rather than a single point and so there may be
many paths from the peak at ¢(*) to the surface ¥. The resolution however
is straightforward. Each such path contributes as (B.1) and so the path
of minimal action is the dominant path. For details see [5]. Furthermore,
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the minimal action path is spherically symmetric so that the action can be
written in terms on a single radial dimension,

Sp = /OOO (27%p") dp [; (flﬁ)z +U (¢)

Thus, the bounce we should find is the minimal action configuration which
solves the equation of motion,

. (B.3)

2o, 3ds

subject to the boundary conditions ¢ — ¢(*) as p — co and do/dp — 0 as
t— 0.

In the limit of small separation energy e the bounce approaches the peak
#(=) more closely and spends longer in the region around the peak, so that
the bounce configuration resembles a bubble with the interior at ¢(~), the
exterior at (1), and a domain wall surface interpolating between the two. If
the bubble is very large, corresponding to very small ¢, then the curvature at
the interpolating surface is small and the surface appears flat. Alternately,
simply note that the second term in goes like 1/p, so if the fields only
change appreciably around a thin surface at large p, the second term can be
neglected and the equation of motion reduces further to the much simpler

form )

d”¢

— =U'(9). B.5

=V (5.5)
Therefore, if the separation energy, €, between the two states is small, we
need only solve for the one dimensional soliton interpolating between )
and ¢(~) which solves 1) This is called the thin-wall approximation, and
is the framework in which we work in Chapter 6. In the deformed model
discussed in Chapter the separation ¢ ~ 1/N?2, so that the thin-wall
approximation coincides with the large N approximation.

For the thin wall approximation the full action reduces to

1
Sp ~ —§7r2R46 +21° R3S, (B.6)
where 57 is the one dimensional action across the domain wall given by

Slz/d:n [; <;>2+U(¢)

(B.7)
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Appendix B. Metastable Vacuum Decay

What remains then is to determine the size of the bubble, R. The stipula-

tion that the bounce configuration describes a classical path implies that it
extremises the action . Thus, by variation,

dSg

T =0= —212 R3¢ + 6m°R%Sy, (B.8)

which yields R = 357 /e. Notice again the similarity to a bubble nucleation
problem. This extremal action with respect to the bubble size is in fact
a maximum, and as such the action increases with R for smaller size and
decreases with R for larger. Hence, the bounce configuration which saturates
the decay rate is essentially a bubble of critical size as discussed when making
this analogy to bubble nucleation.
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Appendix C

Asymptotic Vacuum Decay

Here we briefly reproduce the large N. asymptotic calculation for the metastable
vacuum decay rate performed in [51]. Starting with the action (2.24),

0
3 2 _ v
27r /]R3 d’x nE—l [ Van m; cos <on Ont1 + N)} , (C.1)

with m, = CL (2r/g)?, adding the constant shift and rescaling z — x/mq
we have the action used for our calculations in Chapter |6,

_ d3ac Z [ Van + 1 — cos (Jn — Opa1 + ;)] , (C.2)

1 2
M=z (57)
melL \27
is our semi-classicality parameter. Then, considering the same two vacuum

states (o5, = 0 and 0, = 27n/N) with the energy difference ¢ = 27(7—0)/N,
we introduce the ”centre of gravity” (X) and ”distance” (o) as

where

1 N
:NZO—”, O=0N — 01, (C'B)

in terms of which the vacuums are given by

n—1 1 n 1
_5 B N 4
on +<N—1 2)‘7 N>1 (N 2>U’ (C.4)

for ¢ = 0 and ¢ = 27, with ¥ = 0 being equivalent to our previously
discussed choice of ¢, (6.28). In terms of those redefinitions, we have the
action

2
S—>/\//d3 [ (Vo)? —i—l—cosa—i—;N], (C.5)
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Appendix C. Asymptotic Vacuum Decay

which immediately gives (ignoring the last term which is small for large N)
the kink solution,

o (x) = 4arctan [exp (—2 Ji:):)] , (C.6)

Si = 4\/§ (C.7)

and the 1d action

as claimed.
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