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A quantum algorithm for string matching
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Pradeep Niroula®'*™ and Yunseong Nam

Algorithms that search for a pattern within a larger data-set appear ubiquitously in text and image processing. Here, we present an
explicit, circuit-level implementation of a quantum pattern-matching algorithm that matches a search string (pattern) of length M inside
a longer text of length N. Our algorithm has a time complexity of é(\/ﬁ), while the space complexity remains modest at O(N + M). We
report the quantum gate counts relevant for both pre-fault-tolerant and fault-tolerant regimes.
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INTRODUCTION

Pattern matching is one of the core algorithms in computer
science that stand to benefit from quantum computers'-2. Pattern
matching algorithms are used ubiquitously used in image
processing®*, the study of DNA sequences®, and data compression
and statistics®, to name a few. Thus, accelerating pattern matching
using a quantum computer would be a boon to all these areas.

The simplest form of pattern matching is string matching. In
string matching, given a long string 7 of length N, we search for a
pattern P of length M with M < N”. Depending on the application,
we may need to search for an exact match or a fuzzy match, or a
match with some wildcards®.

The best known classical algorithm for string matching is the
Knuth-Pratt-Morris algorithm, which has the worst-case time
complexity of QN+ M)°>'°. The best-known algorithms for
approximate string matching have a similar run-time of
O(N + M). For random strings, the exact matching complexity is
lower bounded by Q((N/M)log (M))"".

Ramesh and Vinay developed an exact string matching
quantum algorithm with a query complexity of O(v/N 4+ vM)'.
This algorithm uses Grover's search to identify the position at
which a segment of length M from 7 matches the pattern P,
where each of the checks is done using a nested Grover search.
However, this work does not construct explicit oracles required and
the total time complexity, measured in units of gate depth, is
bound to increase once we account for the gate-level complexity of
accessing the text and pattern from a database. Another approach
that relies on a quantum solver for the dihedral hidden subgroup

problem'? has a time complexity of O((N/M)"/220(V1eaM)) for
average-case matching'>. This work also assumes that M is larger
than the logarithm of the length N, i.e M = w(log N) and fails with
a high probability for certain worst-case inputs. In our work, we do
not make any assumptions on the length of pattern or the
distribution of inputs.

In this paper, we present a string-matching algorithm, based on
generalized Grover's amplitude amplification', with a time
complexity of O(v/N) for arbitrary text length N and pattern
length M <N. Note our algorithm does not rely on a quantum
database, incurring no initialization overhead of the database,
expected to be O(N), that would overshadow any quantum
advantage. The techniques we develop for our algorithm can
readily be extended to solve pattern matching problems in higher
dimensions. Over the course of detailing each step of our

algorithm, we also ensure to provide a gate-by-gate level
instruction to construct relevant quantum circuits. This allows us
to straightforwardly obtain a concrete estimate of the total gate
counts. The gate counts we report help us establish contexts as to
when we may expect quantum computers to be of help in the
problem space of pattern matching.

Our paper is organized as follows. To motivate the readers, we
first compare our main results that are derived in the remainder of
the paper with the current state of the art. After the comparison,
we provide an outline of our string-matching algorithm. In Section
“Results”, we provide the details of the algorithm, including the
explicit circuits for all necessary oracles. We then calculate the
overall complexity of our algorithm. We provide an estimate for
gate counts in terms of CNOT and T gates, useful for pre-fault
tolerant and fault tolerant regimes, respectively. We summarize
our paper in Section “Discussion” and discuss the implications of
our results.

We start by pointing out that our work differs from'3, where the
algorithm therein targets an average case input, in that we, as in',
provide a quantum algorithm for pattern matching for the worst
case inputs. The work in'® further assumes M = w(log(N)),
whereas the work in' and the work reported in this manuscript
do not. We rely on a Grover oracle (see Section “Grover oracle”)
that simply checks if a state is an all-zero state in the
computational basis, whereas the oracles in refs '* are random
memory access oracles of the form 3 _,|i}|0) — > ",|i)|t;) where t;is
the ith bit of a text. As such, we are unaware of an efficient
quantum circuit that implements the oracle (see Section G.4 of the
appendix of ref. > for the best-known construction) without
resorting to quantum random access memory (QRAM)'S. The
known blueprints for QRAM'® have polylogarithmic time complex-
ity in the size of memory to be accessed. In our case, the size of
memory is O(N) and, therefore, QRAM queries will incur at
additional multiplicative cost of at least O((log N)?). Moreover, we
would also have to account for the cost of initializing the quantum
memory—this is expected to take a number of operations linear in
N'. In contrast, our algorithm does not assume any random
access oracles. We also provide an explicit circuit for the Grover
oracle we need using elementary quantum gates, specifically
single-qubit Clifford, T, and CNOT gates.

Note the algorithm in ref. * fails with a probability O(1/N) over
the choice of 7 and P. For certain worst-case 7 and P, the
algorithm inherently fails to return a match. In addition, there is
internal randomness in the algorithm which contributes to an
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Table 1. Comparison of our work with prior algorithms discussed in this paper.

Paper Query complexity Oracle details Time complexity Comment

[ 0(v/Nlog (/N/M)log M + /M(log M)?) Random access oracle - Worst case
[13] O((+/N/M)2(3/2/ (@og23)l0g:M (|6 ()3 2|og N) Random access oracle - Average case
This work O(v/N) Explicit oracle provided O(VN((log N)? + log (M))) Worst case

respective papers.

The oracles for refs ' and ' provide random access to bits in the text and pattern. This random-access oracle is not needed in our work. Instead, for our work,
by oracle, we mean a Grover oracle that checks if a register is in an all-zero state. We provide an explicit construction for such an oracle. The time complexities
for refs ' and ' are unknown because the time of execution depends on the random-access oracles, which do not have a circuit-level construction in the

additional probability of failure. Our work also fails with probability
O(1/N) if there is a match between 7 and P, but this is purely
due to the internal randomness of Grover's algorithm. We can
simply repeat the algorithm to suppress the failure probability
to be arbitrarily small, with the average repetition number of
N/(N — 1). We make no assumptions on the distribution of text and
pattern and the algorithm works for all possible inputs. This may
be contrasted to the impossibility to suppress the failure
probability by repeated use of the algorithm for the worst-case
inputs in ref. '3,

Our algorithm has a space complexity of O(N + M) since we
need N (M) qubits to store the text (pattern). With N > M, we may
omit the M dependence and simplify it to O(N). The space
complexities of*'* depend on the space complexity of the oracle.
Assuming an N-bit register containing the text to be searched over
is prepared in QRAM, in the bucket-brigade model, the bulk of the
space complexity comes from routing qutrits, where random
access over N bits of information requires O(N) routing qutrits.
Expending a constant number of qubits for each quitrit, the space
complexities of '3 are Q(N), and likely O(N).

Finally, unlike the two prior works, the simplicity of our
algorithm allows us to not just provide an explicit circuit-level
blueprint for the algorithm but also estimate the quantum
resources needed to implement it. A summary of the comparison
between our work and"'? is given in Table 1.

In the remainder of this section, we outline the steps of our
algorithm. The detailed implementation is presented in Section
“Results”.

1. Initialize two quantum registers to

[tot1ta... tn-1)|PoPr --- Pr—1),

where t; and p; denote the ith bit of string 7 and pattern P,
respectively.

2. Transform the first register containing the string 7 into a
superposition of N states, where each state is a bit-shifted
state of the original state of the first register, shifted by O, 1,
2.., N — 1 bits. This results in, assuming modulo-N space for
the bit indices,

1 N—1
(W2|t0+kt1+kt2+k-u tN1+k>) lPop1 - Pu-1) Q)
pad

3. Compute XOR between the first M bits of the first register
and all M bits of the second register to obtain

ﬁ;“mktuk.., N1 k) o
[(Po @ tork)(P1 ® t1ik) - (Py_1 @ tm—144))-

4. The second register is all zeros if the pattern matches with
the first M bits of 7. The register contains d ones if the string
and the pattern differ in d bit positions.

5. Use the generalized Grover search or amplitude amplifica-
tion'* to isolate the state where the second register has all
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zeros (when searching for exact match) or has fewer than D
matches (in the case of fuzzy search).

RESULTS

In this section, we lay out the detailed implementation of the
algorithm we outlined above. Specifically, we detail the transfor-
mations and registers used to implement the algorithm. One of
the central transformations to be used in our algorithm is the
cyclic shift operator. We present the details of its construction in
Section “Construction of the cyclic-shift operator.” We also present
the construction of the necessary Grover oracle in Section “Grover
oracle” for completeness.

To encode a binary string 7 of length N and a binary pattern P
of length M, we use quantum registers of N and M qubits,
respectively. This can be done by using identity and bit-flip gates

on a quantum register initialized as |0)®(N+M). Denoting the
encoded states as

N—-1
T) = Jtotr .. tv-1) = @),

i=0
M=1
|P) = |pop1--- Pu_1) = % ’Pj>:
=
where t; (p) is the ith bit of string 7 (P), together with an index
register of n qubits in the zero states, we prepare on a quantum
computer a composite initial state

N—1 M-1
) = 0" [@m} [®|pj>}, "
i=0 j=0

where, for convenience, we assumed N = 2". Next, we apply an n-
qubit Hadamard transform H®" (or a Fourier transform in case of
N=2" for n € N) on the index register to produce a uniform
superposition of |0),]1), ... [N —1), i.e,

N M1
(H="0)*") {gm)} {@) p;)

@)

(1 NZ—:1 N—1 qu >
=L k ) { ti } pi)l-
Wk:o‘ ) gl i) g j

(5)
We now apply a cyclic shift operator S that left-circular shifts
the qubits of the target state by k positions, where the values of k
are encoded in the control state (see Section “Construction of the

cyclic-shift operator” for details). Applying S on the first two
registers results in

s(50)(&0)] (&)

_ ﬁlg'” (gltm) (Ajﬂﬂiélpf>>~

At this point, we check for the match between the cyclically-
shifted text strings in the second register and the pattern string
stored in the third register. We use an XOR operation between
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each of the first M bits of the second register with each of the M
bits of the third register. For instance, if the XOR results are all
zeros, the strings match. With the help of CNOT gates on a
quantum computer then, we obtain, with an abuse of notation,

ﬁ,:g\k)CNOT@M (§\t,»+k)) <I;(§£\pj>>]

=z [|k> <<§) |ti+k>) <@) P& ff+k>>} ~

The final register, to this end, contains the number of mismatches
between the pattern and the first M bits of the string register.
Indeed, it is all zero if and only if those two string segments match
completely.

We may now use the generalized Grover search or amplitude
amplification' to search for the state where the pattern register is
in |0) state (in the case of exact search). If this state is found, we
know that the pattern occurs in the string. We also obtain the
position from the index register where this match occurs. In
addition to the exact match, we can also use this method to
search for fuzzy matches or matches with wildcards by construct-
ing appropriate Grover oracles.

Construction of the cyclic-shift operator

In this subsection, we explicitly construct a circuit that implements
the cyclic-shift operator S. The two-register operator S is defined
according to

N-1 N-1 N—1
k>®|ri>} _ [|k>®skn> _ [|k>®|r,-+k>] ®
i=0 i=0 i=0

To implement the k-controlled circular shift operator S, we
consider k in its binary encoded form |k} as |ko)|k1)... |kn—1), such
that 2% + 2'k; + ... + 2" 'k,_; = k. The circular bitwise rotation
by k in the second register can then be implemented by a product
of controlled-shift operators that shifts the target qubits by 2/ bits,
conditioned on the kith qubit. Using S$qSp = Sa16, We may now
write

N—1 n—1 N=1 /n-1
k) Q) Sulty) = (@\kj>> ®(Hs§f”) It:). 9)
i=0 j=0

i=0 \j=0

S

where S(;’) applies a shift of 2/ bits on the second register, which
encodes the text 7, controlled by the jth qubit of the index
register |k). The circuit decomposition of this as a visual guide is
shown in Fig. 1.

The decomposition shown in (9) reveals that, together with (8),
it suffices to now consider the controlled bit-shift operators S(zf
that circular shifts by 2/ bits for some j conditioned on qubit ¢ to
implement the cyclic-shift operator S. To this end, in order to

construct the circuit for Szf-, we first consider an operator S,

ko —o—

ki —eo—

|k) ko ——
kn—1 S S e
to — I H — -
my | B
e L Z 4L

Fig. 1 Circuit diagram for circular bitwise rotation operator S;. A
shift by k bits can be achieved by a product of log (k) controlled
shift operations.
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without any controls, which, as we show below, can be
implemented using SWAP gates. We later promote the swap
gates to a controlled version, effectively replacing the SWAP gates
with controlled-SWAP (Fredkin) gates.

A circular shift operator S, by s bits applies a permutation P, in
modulo N space, of the form

Po={N—s,N—s+1,N—s+2,..., N—s—1}, (10)

where the N — sth bit is inserted in the zeroth position, N — s + 1th
bit is inserted in the first position, and so on. Any such
permutation can be decomposed into a product of transpositions.
As a result, a circular shift operation of the form (9) can be
decomposed into a product of SWAP operations.

We now calculate how many SWAP-operation layers are needed
to efficiently apply the permutation of the form (10). With a register
with N qubits, we can apply N/2 SWAP operations in parallel. Using
the N/2-parallel SWAP operator, we can move N/2 qubits to their
right positions in a single time step. This leaves us with sorting the
remainder of N/2 bits. At each subsequent time step, the number
of qubits that need to be swapped decreases by half. Therefore, we
can arbitrarily permute N qubits in O(log (N)) time steps using
parallel SWAP operations. A sample diagrammatic representation
of this unitary operation is shown in Fig. 2. This implies that each of
the controlled shift operators Sg in (9) can be achieved in
O(log (N)) time steps using parallel controlled-SWAP operators.

We next discuss a method to apply as many as N/2 parallel swap
operations, controlled on the same qubit in the index register. As
shown below, we achieve this at the cost of N/2 clean ancilla qubits.

We start by considering a fan-out CNOT operation, acting on the
control qubit in a state |kj> and N/2 clean ancilla qubits initialized
to |0) as targets. This results in N/2 copies of ‘k,-}, which can then
be used to implement up to N/2 Fredkin gates in a single time
step. Once all necessary Fredkin gates have been implemented,
we undo the fan-out operation and return all ancilla qubits to |0)

1
1

TTLLTTT

T

Fig. 2 A diagrammatic representation of the circular shift
operator. In this example, we left circular shift a register of 8 qubits
by 6 positions within two-time steps. This kind of operation can in
general be performed in depth log (N) — 1 using parallel SWAP
operations, where N is the size of the qubit register.
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states. We recycle the freed-up ancilla qubits for the subsequent
control qubits, one at a time.

The time cost of the fan-out operation is O(log (N)). Since there
are O(log (N)) parallel SWAP layers required for the implementa-
tion of the qubit permutation discussed in Section “Construction
of the cyclic-shift operator”, the overall time complexity of ng) is

O(log (N)).

Grover oracle

To complete our algorithm, we need a Grover oracle U,, that acts on

the pattern register, required to amplify and help identify exact

matches or close matches. The oracle may be defined according to
M=1

ZX,'Sd,

i=0

M—1
Z X,'>d,
i=0

*‘X()X‘] XM_1>

amn

UW‘XoX‘] XM,1> =
+‘XOX1 XM,1>

where d is zero if we desire to find exact matches and a small
number if we desire to find close matches. Assuming an architecture
that has long-range interactions, we can obtain this oracle in
O(log (M)) depth using O(M) ancilla qubits. We note in passing that
there have also been proposals to implement a single-step n-control
Toffoli that takes O(1) time in trapped-ion and neutral-atom
architectures'®, For the remainder of the paper, however, we take
the circuit-depth complexity of this oracle to be O(log (M)).

Time complexity

In this subsection, we compute the time complexity of our
algorithm. Encoding of strings 7 and P takes O(1) time. The
Hadamard transformation applied to the index register takes O(1)
time as well, The cyclic-shift operator S takes time O((log (N))?),
since each Sg-(’) operator, including the fan-out and its uncompute
operation, takes O(log (N)) time and j=0,1,2,....log (N) — 1.
The evaluation of XOR results via CNOT gates takes time O(1), as it
admits a straightforward parallel operation. Lastly, the Grover
oracle has the complexity O(log (M)). The overall complexity of
the steps considered so far, a single Grover step, is then
0((log (N))? -+ log (M)).

For the Grover search to be successful, we need to repeat the
Grover steps ng/N) times. This brings the total complexity to
O(+/N((log (N))* + log (M))).

Space complexity

In addition to the N and M qubits needed to encode the search
string and the pattern, we need O(log (N)) qubits for the index
register. For the depth-optimized implementation of our algo-
rithm we need N/2 ancilla qubits for the index register.
Furthermore, O(M) ancilla qubits are required for the depth-
optimized Grover oracle implementation. Therefore, the space
complexity of our string-matching algorithm is O(N + M).

Gate counts

In this section, we obtain an estimate for the gate count in terms
of CNOT and T gates. We chose the two gates as metrics since it is
widely expected that two-qubit gates, such as CNOT, are expected
to dominate the cost of implementation in the pre-fault tolerant
regime, whereas T gates are expected to dominate the cost of
implementation in the fault-tolerant regime, assuming the
standard gate set of Clifford +T.

The strings 7 and P can be encoded in qubits initially in |0)
state using only identity and bit-flip(X) gates and thus the
encoding step has zero cost. A Hadamard transform of the index
register in (5) needs log (N) Hadamard gates, requiring zero cost
as well. The cyclic shift operator S in (6) consists of log (N)
applications of S§‘> operators. Each SE‘) operator consists of a CNOT
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fan-out to N/2 — 1 target qubits, its inverse, and at most N — 1
Fredkin gates, since the permutation specified in (10) of size as
large as N can be decomposed into at most N — 1 transpositions.
As shown explicitly in Supplementary Note 1, based on circuit
identities reported in refs '”?°, each Fredkin gate costs 7 CNOT
gates and 7 T gates. Thus the cyclic shift operator costs at most
(8N —9)log (N) CNOT gates and [7(N — 1)]log (N) T gates. Next,
the XOR operation in (7) takes M CNOT gates. Lastly, the Grover
oracle of (11), using a parallelized version of the results reported
in®" (see Supplementary Note 2 for details), can be implemented
with 6M — 12 CNOT gates and 8M — 17 T gates with a linear
overhead in ancilla upper bounded by M — 3.

Finally, we need to repeat this v/N times for amplitude
amplification. The total CNOT and T count is, thus, given by

# CNOT = (7M — 12 + (8N — 9)log (N)) x 2v/N,
#T = (8M — 17 +7(N — 1)log (N)) x 2N,

where the factor of 2 comes from the fact that for amplitude
amplification, we need to apply a unitary to produce a state |p) =
U|0) and also the inverse unitary U'.

Based on (12), we see that searching for a pattern with 20 ASCI|
characters (or 160 bits) in a text file that is 1 MB long would
require about 10'> CNOT and T gates. Similarly, searching for a
kilobyte-long pattern of a genetic signature in a genome
sequence of 1 GB would require more than 10" CNOT and T
gates. We expect classical computers to outperform quantum
computers for datasets of such length. However, for applications
like matching templates in data generated by gravitational-wave
experiments which may be petabytes long (matching a me%abyte—
long signature in the petabyte-long text would require 10> CNOT
and T gates), we may expect to see the quantum advantage.

(12)

DISCUSSION

In this paper, we have constructed a quantum string-matching
algorithm that admits a circuit-depth  complexity of
O(v/N((log (N))* + log (M))). We also provide an explicit gate-
level implementation of our algorithm, enabling a concrete
estimate of quantum resources needed. The direct use cases of
the matching algorithm range from a simple text search in a large
file to detecting patterns in an image. The simple matching
procedure can help, for example, in making intelligent recom-
mendations based on pictures in a consumer device®?, detecting
defects in industrial lithography?3, detecting signals in large time-
series data collected in experiments like the Laser Interferometer
Gravitational-Wave Observatory®*, etc. In these applications, the
typical size of data to be searched varies between ~10° and ~10'°
bytes. Our algorithm admits processing of such data size in time
steps ~ Cx (log,(N))*v/N, where C <20 and N is the number of
bits in the data. We hope the speed-up provided by the quantum
algorithm contributes to further advances in these areas.
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