
ARTICLE OPEN

A quantum algorithm for string matching
Pradeep Niroula 1,2✉ and Yunseong Nam 3✉

Algorithms that search for a pattern within a larger data-set appear ubiquitously in text and image processing. Here, we present an
explicit, circuit-level implementation of a quantum pattern-matching algorithm that matches a search string (pattern) of lengthM inside
a longer text of length N. Our algorithm has a time complexity of ~Oð

ffiffiffiffi
N

p
Þ, while the space complexity remains modest at O(N+M). We

report the quantum gate counts relevant for both pre-fault-tolerant and fault-tolerant regimes.

npj Quantum Information (2021) 7:37 ; https://doi.org/10.1038/s41534-021-00369-3

INTRODUCTION
Pattern matching is one of the core algorithms in computer
science that stand to benefit from quantum computers1,2. Pattern
matching algorithms are used ubiquitously used in image
processing3,4, the study of DNA sequences5, and data compression
and statistics6, to name a few. Thus, accelerating pattern matching
using a quantum computer would be a boon to all these areas.
The simplest form of pattern matching is string matching. In

string matching, given a long string T of length N, we search for a
pattern P of length M with M ≤ N7. Depending on the application,
we may need to search for an exact match or a fuzzy match, or a
match with some wildcards8.
The best known classical algorithm for string matching is the

Knuth-Pratt-Morris algorithm, which has the worst-case time
complexity of Θ(N+M)9,10. The best-known algorithms for
approximate string matching have a similar run-time of
Θ(N+M). For random strings, the exact matching complexity is
lower bounded by ΩððN=MÞlog ðMÞÞ11.
Ramesh and Vinay developed an exact string matching

quantum algorithm with a query complexity of ~Oð
ffiffiffiffi
N

p
þ

ffiffiffiffi
M

p
Þ1.

This algorithm uses Grover’s search to identify the position at
which a segment of length M from T matches the pattern P,
where each of the checks is done using a nested Grover search.
However, this work does not construct explicit oracles required and
the total time complexity, measured in units of gate depth, is
bound to increase once we account for the gate-level complexity of
accessing the text and pattern from a database. Another approach
that relies on a quantum solver for the dihedral hidden subgroup

problem12 has a time complexity of ~OððN=MÞ1=22Oð
ffiffiffiffiffiffiffiffiffiffiffi
log ðMÞ

p
ÞÞ for

average-case matching13. This work also assumes that M is larger
than the logarithm of the length N, i.e M ¼ ωðlog NÞ and fails with
a high probability for certain worst-case inputs. In our work, we do
not make any assumptions on the length of pattern or the
distribution of inputs.
In this paper, we present a string-matching algorithm, based on

generalized Grover’s amplitude amplification14, with a time
complexity of ~Oð

ffiffiffiffi
N

p
Þ for arbitrary text length N and pattern

length M ≤ N. Note our algorithm does not rely on a quantum
database, incurring no initialization overhead of the database,
expected to be O(N), that would overshadow any quantum
advantage. The techniques we develop for our algorithm can
readily be extended to solve pattern matching problems in higher
dimensions. Over the course of detailing each step of our

algorithm, we also ensure to provide a gate–by–gate level
instruction to construct relevant quantum circuits. This allows us
to straightforwardly obtain a concrete estimate of the total gate
counts. The gate counts we report help us establish contexts as to
when we may expect quantum computers to be of help in the
problem space of pattern matching.
Our paper is organized as follows. To motivate the readers, we

first compare our main results that are derived in the remainder of
the paper with the current state of the art. After the comparison,
we provide an outline of our string-matching algorithm. In Section
“Results”, we provide the details of the algorithm, including the
explicit circuits for all necessary oracles. We then calculate the
overall complexity of our algorithm. We provide an estimate for
gate counts in terms of CNOT and T gates, useful for pre-fault
tolerant and fault tolerant regimes, respectively. We summarize
our paper in Section “Discussion” and discuss the implications of
our results.
We start by pointing out that our work differs from13, where the

algorithm therein targets an average case input, in that we, as in1,
provide a quantum algorithm for pattern matching for the worst
case inputs. The work in13 further assumes M ¼ ωðlog ðNÞÞ,
whereas the work in1 and the work reported in this manuscript
do not. We rely on a Grover oracle (see Section “Grover oracle”)
that simply checks if a state is an all-zero state in the
computational basis, whereas the oracles in refs 1,13 are random
memory access oracles of the form

P
i ij i 0j i !

P
i ij i tij i where ti is

the ith bit of a text. As such, we are unaware of an efficient
quantum circuit that implements the oracle (see Section G.4 of the
appendix of ref. 15 for the best-known construction) without
resorting to quantum random access memory (QRAM)16. The
known blueprints for QRAM16 have polylogarithmic time complex-
ity in the size of memory to be accessed. In our case, the size of
memory is O(N) and, therefore, QRAM queries will incur at
additional multiplicative cost of at least OððlogNÞ2Þ. Moreover, we
would also have to account for the cost of initializing the quantum
memory—this is expected to take a number of operations linear in
N17. In contrast, our algorithm does not assume any random
access oracles. We also provide an explicit circuit for the Grover
oracle we need using elementary quantum gates, specifically
single-qubit Clifford, T, and CNOT gates.
Note the algorithm in ref. 13 fails with a probability O(1/N) over

the choice of T and P. For certain worst-case T and P, the
algorithm inherently fails to return a match. In addition, there is
internal randomness in the algorithm which contributes to an

1Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA. 2Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College
Park, MD, USA. 3IonQ, College Park, MD, USA. ✉email: pniroula@umd.edu; nam@ionq.co

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00369-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00369-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00369-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00369-3&domain=pdf
http://orcid.org/0000-0001-8941-7774
http://orcid.org/0000-0001-8941-7774
http://orcid.org/0000-0001-8941-7774
http://orcid.org/0000-0001-8941-7774
http://orcid.org/0000-0001-8941-7774
http://orcid.org/0000-0002-2742-3447
http://orcid.org/0000-0002-2742-3447
http://orcid.org/0000-0002-2742-3447
http://orcid.org/0000-0002-2742-3447
http://orcid.org/0000-0002-2742-3447
https://doi.org/10.1038/s41534-021-00369-3
mailto:pniroula@umd.edu
mailto:nam@ionq.co
www.nature.com/npjqi

additional probability of failure. Our work also fails with probability
O(1/N) if there is a match between T and P, but this is purely
due to the internal randomness of Grover’s algorithm. We can
simply repeat the algorithm to suppress the failure probability
to be arbitrarily small, with the average repetition number of
N/(N− 1). We make no assumptions on the distribution of text and
pattern and the algorithm works for all possible inputs. This may
be contrasted to the impossibility to suppress the failure
probability by repeated use of the algorithm for the worst-case
inputs in ref. 13.
Our algorithm has a space complexity of O(N+M) since we

need N (M) qubits to store the text (pattern). With N >M, we may
omit the M dependence and simplify it to O(N). The space
complexities of1,13 depend on the space complexity of the oracle.
Assuming an N-bit register containing the text to be searched over
is prepared in QRAM, in the bucket-brigade model, the bulk of the
space complexity comes from routing qutrits, where random
access over N bits of information requires O(N) routing qutrits.
Expending a constant number of qubits for each qutrit, the space
complexities of1,13 are Ω(N), and likely Θ(N).
Finally, unlike the two prior works, the simplicity of our

algorithm allows us to not just provide an explicit circuit-level
blueprint for the algorithm but also estimate the quantum
resources needed to implement it. A summary of the comparison
between our work and1,13 is given in Table 1.
In the remainder of this section, we outline the steps of our

algorithm. The detailed implementation is presented in Section
“Results”.

1. Initialize two quantum registers to

t0t1t2 ¼ tN�1j i p0p1 ¼ pM�1j i;
where ti and pi denote the ith bit of string T and pattern P,
respectively.

2. Transform the first register containing the string T into a
superposition of N states, where each state is a bit-shifted
state of the original state of the first register, shifted by 0, 1,
2..., N− 1 bits. This results in, assuming modulo-N space for
the bit indices,

1ffiffiffiffi
N

p
XN�1

k¼0

t0þkt1þkt2þk ¼ tN�1þkj i
 !

p0p1 ¼ pM�1j i (1)

3. Compute XOR between the first M bits of the first register
and all M bits of the second register to obtain

1ffiffiffi
N

p
P
k
t0þkt1þk ¼ tN�1þkj i

ðp0 � t0þkÞðp1 � t1þkÞ¼ ðpM�1 � tM�1þkÞj i:
(2)

4. The second register is all zeros if the pattern matches with
the first M bits of T . The register contains d ones if the string
and the pattern differ in d bit positions.

5. Use the generalized Grover search or amplitude amplifica-
tion14 to isolate the state where the second register has all

zeros (when searching for exact match) or has fewer than D
matches (in the case of fuzzy search).

RESULTS
In this section, we lay out the detailed implementation of the
algorithm we outlined above. Specifically, we detail the transfor-
mations and registers used to implement the algorithm. One of
the central transformations to be used in our algorithm is the
cyclic shift operator. We present the details of its construction in
Section “Construction of the cyclic-shift operator.” We also present
the construction of the necessary Grover oracle in Section “Grover
oracle” for completeness.
To encode a binary string T of length N and a binary pattern P

of length M, we use quantum registers of N and M qubits,
respectively. This can be done by using identity and bit-flip gates
on a quantum register initialized as 0j i�ðNþMÞ. Denoting the
encoded states as

Tj i ¼ t0t1 ¼ tN�1j i ¼
NN�1

i¼0
tij i;

Pj i ¼ p0p1 ¼ pM�1j i ¼
NM�1

j¼0
pj
�� �; (3)

where ti (pi) is the ith bit of string T (P), together with an index
register of n qubits in the zero states, we prepare on a quantum
computer a composite initial state

ψj i ¼ 0j i�n
ON�1

i¼0

tij i
" # OM�1

j¼0

pj
�� �" #

; (4)

where, for convenience, we assumed N= 2n. Next, we apply an n-
qubit Hadamard transform H⊗n (or a Fourier transform in case of
N ≠ 2n for n 2 N) on the index register to produce a uniform
superposition of 0j i; 1j i; ¼ N � 1j i, i.e.,

H�n 0j i�n� � NN�1

i¼0
tij i

� � NM�1

j¼0
pj
�� �" #

¼ 1ffiffiffi
N

p
PN�1

k¼0
kj i

	
 NN�1

i¼0
tij i

� � NM�1

j¼0
pj
�� �" #

:

(5)

We now apply a cyclic shift operator S that left-circular shifts
the qubits of the target state by k positions, where the values of k
are encoded in the control state (see Section “Construction of the
cyclic-shift operator” for details). Applying S on the first two
registers results in

S 1ffiffiffi
N

p
PN�1

k¼0
kj i

	
 NN�1

i¼0
tij i

	
� � NM�1

j¼0
pj
�� � !

¼ 1ffiffiffi
N

p
PN�1

k¼0
kj i

NN�1

i¼0
tiþkj i

	
 NM�1

j¼0
pj
�� � !

:

(6)

At this point, we check for the match between the cyclically-
shifted text strings in the second register and the pattern string
stored in the third register. We use an XOR operation between

Table 1. Comparison of our work with prior algorithms discussed in this paper.

Paper Query complexity Oracle details Time complexity Comment

[1] Oð
ffiffiffiffi
N

p
log ð

ffiffiffiffiffiffiffiffiffiffi
N=M

p
ÞlogMþ

ffiffiffiffi
M

p
ðlogMÞ2Þ Random access oracle – Worst case

[13] Oðð
ffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ2ð3=2Þ

ffi
ð2log 23Þlog 2M

p
ðlogMÞ3=2logNÞ Random access oracle – Average case

This work Oð
ffiffiffiffi
N

p
Þ Explicit oracle provided Oð

ffiffiffiffi
N

p
ððlogNÞ2 þ log ðMÞÞÞ Worst case

The oracles for refs 13 and 1 provide random access to bits in the text and pattern. This random-access oracle is not needed in our work. Instead, for our work,
by oracle, we mean a Grover oracle that checks if a register is in an all-zero state. We provide an explicit construction for such an oracle. The time complexities
for refs 1 and 13 are unknown because the time of execution depends on the random-access oracles, which do not have a circuit-level construction in the
respective papers.

P. Niroula and Y. Nam

2

npj Quantum Information (2021) 37 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

each of the first M bits of the second register with each of the M
bits of the third register. For instance, if the XOR results are all
zeros, the strings match. With the help of CNOT gates on a
quantum computer then, we obtain, with an abuse of notation,

1ffiffiffi
N

p
PN�1

k¼0
kj iCNOT�M NN�1

i¼0
tiþkj i

	
 NM�1

j¼0
pj
�� � !" #

¼ 1ffiffiffi
N

p
PN�1

k¼0
kj i

NN�1

i¼0
tiþkj i

	
 NM�1

j¼0
pj � tjþk

�� � !" #
:

(7)

The final register, to this end, contains the number of mismatches
between the pattern and the first M bits of the string register.
Indeed, it is all zero if and only if those two string segments match
completely.
We may now use the generalized Grover search or amplitude

amplification14 to search for the state where the pattern register is
in 0j i state (in the case of exact search). If this state is found, we
know that the pattern occurs in the string. We also obtain the
position from the index register where this match occurs. In
addition to the exact match, we can also use this method to
search for fuzzy matches or matches with wildcards by construct-
ing appropriate Grover oracles.

Construction of the cyclic-shift operator
In this subsection, we explicitly construct a circuit that implements
the cyclic-shift operator S. The two-register operator S is defined
according to

S kj i
ON�1

i¼0

tij i
" #

¼ kj i
ON�1

i¼0

Sk tij i
" #

¼ kj i
ON�1

i¼0

tiþkj i
" #

: (8)

To implement the k-controlled circular shift operator Sk, we
consider k in its binary encoded form kj i as k0j i k1j i¼ kn�1j i, such
that 20k0+ 21k1+…+ 2n−1kn−1= k. The circular bitwise rotation
by k in the second register can then be implemented by a product
of controlled-shift operators that shifts the target qubits by 2j bits,
conditioned on the kjth qubit. Using SaSb ¼ Saþb, we may now
write

kj i
ON�1

i¼0

Sk tij i ¼
On�1

j¼0

kj
�� � !ON�1

i¼0

Yn�1

j¼0

SðkjÞ
2j

 !
tij i: (9)

where SðkjÞ
2j

applies a shift of 2j bits on the second register, which
encodes the text T , controlled by the jth qubit of the index
register kj i. The circuit decomposition of this as a visual guide is
shown in Fig. 1.
The decomposition shown in (9) reveals that, together with (8),

it suffices to now consider the controlled bit-shift operators SðcÞ
2j

that circular shifts by 2j bits for some j conditioned on qubit c to
implement the cyclic-shift operator S. To this end, in order to
construct the circuit for SðcÞ

2j
, we first consider an operator S2j

without any controls, which, as we show below, can be
implemented using SWAP gates. We later promote the swap
gates to a controlled version, effectively replacing the SWAP gates
with controlled-SWAP (Fredkin) gates.
A circular shift operator Ss by s bits applies a permutation Ps, in

modulo N space, of the form

Ps ¼ fN � s;N � sþ 1;N � sþ 2; ¼ ;N � s� 1g; (10)

where the N− sth bit is inserted in the zeroth position, N− s+ 1th
bit is inserted in the first position, and so on. Any such
permutation can be decomposed into a product of transpositions.
As a result, a circular shift operation of the form (9) can be
decomposed into a product of SWAP operations.
We now calculate how many SWAP-operation layers are needed

to efficiently apply the permutation of the form (10). With a register
with N qubits, we can apply N/2 SWAP operations in parallel. Using
the N/2-parallel SWAP operator, we can move N/2 qubits to their
right positions in a single time step. This leaves us with sorting the
remainder of N/2 bits. At each subsequent time step, the number
of qubits that need to be swapped decreases by half. Therefore, we
can arbitrarily permute N qubits in Oðlog ðNÞÞ time steps using
parallel SWAP operations. A sample diagrammatic representation
of this unitary operation is shown in Fig. 2. This implies that each of
the controlled shift operators Skj

2j
in (9) can be achieved in

Oðlog ðNÞÞ time steps using parallel controlled-SWAP operators.
We next discuss a method to apply as many as N/2 parallel swap

operations, controlled on the same qubit in the index register. As
shown below, we achieve this at the cost of N/2 clean ancilla qubits.
We start by considering a fan-out CNOT operation, acting on the

control qubit in a state kj
�� � and N/2 clean ancilla qubits initialized

to 0j i as targets. This results in N/2 copies of kj
�� �, which can then

be used to implement up to N/2 Fredkin gates in a single time
step. Once all necessary Fredkin gates have been implemented,
we undo the fan-out operation and return all ancilla qubits to 0j i

Fig. 1 Circuit diagram for circular bitwise rotation operator Sk. A
shift by k bits can be achieved by a product of log ðkÞ controlled
shift operations.

Fig. 2 A diagrammatic representation of the circular shift
operator. In this example, we left circular shift a register of 8 qubits
by 6 positions within two-time steps. This kind of operation can in
general be performed in depth log ðNÞ � 1 using parallel SWAP
operations, where N is the size of the qubit register.

P. Niroula and Y. Nam

3

Published in partnership with The University of New South Wales npj Quantum Information (2021) 37

states. We recycle the freed-up ancilla qubits for the subsequent
control qubits, one at a time.
The time cost of the fan-out operation is Oðlog ðNÞÞ. Since there

are Oðlog ðNÞÞ parallel SWAP layers required for the implementa-
tion of the qubit permutation discussed in Section “Construction
of the cyclic-shift operator”, the overall time complexity of SðcÞ

2j
is

Oðlog ðNÞÞ.

Grover oracle
To complete our algorithm, we need a Grover oracle Uw that acts on
the pattern register, required to amplify and help identify exact
matches or close matches. The oracle may be defined according to

Uw x0x1 ¼ xM�1j i ¼
� x0x1 ¼ xM�1j i

PM�1

i¼0
xi � d;

þ x0x1 ¼ xM�1j i
PM�1

i¼0
xi>d;

8>>><
>>>:

(11)

where d is zero if we desire to find exact matches and a small
number if we desire to find close matches. Assuming an architecture
that has long-range interactions, we can obtain this oracle in
Oðlog ðMÞÞ depth using O(M) ancilla qubits. We note in passing that
there have also been proposals to implement a single-step n-control
Toffoli that takes O(1) time in trapped-ion and neutral-atom
architectures18. For the remainder of the paper, however, we take
the circuit-depth complexity of this oracle to be Oðlog ðMÞÞ.

Time complexity
In this subsection, we compute the time complexity of our
algorithm. Encoding of strings T and P takes O(1) time. The
Hadamard transformation applied to the index register takes O(1)
time as well. The cyclic-shift operator S takes time Oððlog ðNÞÞ2Þ,
since each SðkjÞ

2j
operator, including the fan-out and its uncompute

operation, takes Oðlog ðNÞÞ time and j ¼ 0; 1; 2; :::; log ðNÞ � 1.
The evaluation of XOR results via CNOT gates takes time O(1), as it
admits a straightforward parallel operation. Lastly, the Grover
oracle has the complexity Oðlog ðMÞÞ. The overall complexity of
the steps considered so far, a single Grover step, is then
Oððlog ðNÞÞ2 þ log ðMÞÞ.
For the Grover search to be successful, we need to repeat the

Grover steps Oð
ffiffiffiffi
N

p
Þ times. This brings the total complexity to

Oð
ffiffiffiffi
N

p
ððlog ðNÞÞ2 þ log ðMÞÞÞ.

Space complexity
In addition to the N and M qubits needed to encode the search
string and the pattern, we need Oðlog ðNÞÞ qubits for the index
register. For the depth-optimized implementation of our algo-
rithm we need N/2 ancilla qubits for the index register.
Furthermore, O(M) ancilla qubits are required for the depth-
optimized Grover oracle implementation. Therefore, the space
complexity of our string-matching algorithm is O(N+M).

Gate counts
In this section, we obtain an estimate for the gate count in terms
of CNOT and T gates. We chose the two gates as metrics since it is
widely expected that two-qubit gates, such as CNOT, are expected
to dominate the cost of implementation in the pre-fault tolerant
regime, whereas T gates are expected to dominate the cost of
implementation in the fault-tolerant regime, assuming the
standard gate set of Clifford+ T.
The strings T and P can be encoded in qubits initially in 0j i

state using only identity and bit-flip(X) gates and thus the
encoding step has zero cost. A Hadamard transform of the index
register in (5) needs log ðNÞ Hadamard gates, requiring zero cost
as well. The cyclic shift operator S in (6) consists of log ðNÞ
applications of SðcÞs operators. Each SðcÞs operator consists of a CNOT

fan-out to N/2− 1 target qubits, its inverse, and at most N− 1
Fredkin gates, since the permutation specified in (10) of size as
large as N can be decomposed into at most N− 1 transpositions.
As shown explicitly in Supplementary Note 1, based on circuit
identities reported in refs 19,20, each Fredkin gate costs 7 CNOT
gates and 7 T gates. Thus the cyclic shift operator costs at most
ð8N � 9Þlog ðNÞ CNOT gates and ½7ðN � 1Þ�log ðNÞ T gates. Next,
the XOR operation in (7) takes M CNOT gates. Lastly, the Grover
oracle of (11), using a parallelized version of the results reported
in21 (see Supplementary Note 2 for details), can be implemented
with 6M− 12 CNOT gates and 8M− 17 T gates with a linear
overhead in ancilla upper bounded by M− 3.
Finally, we need to repeat this

ffiffiffiffi
N

p
times for amplitude

amplification. The total CNOT and T count is, thus, given by

#CNOT ¼ ð7M� 12þ ð8N � 9Þlog ðNÞÞ ´ 2
ffiffiffiffi
N

p
;

T ¼ ð8M� 17þ 7ðN � 1Þlog ðNÞÞ ´ 2
ffiffiffiffi
N

p
;

(12)

where the factor of 2 comes from the fact that for amplitude
amplification, we need to apply a unitary to produce a state ψj i ¼
U 0j i and also the inverse unitary U†.
Based on (12), we see that searching for a pattern with 20 ASCII

characters (or 160 bits) in a text file that is 1 MB long would
require about 1013 CNOT and T gates. Similarly, searching for a
kilobyte-long pattern of a genetic signature in a genome
sequence of 1 GB would require more than 1017 CNOT and T
gates. We expect classical computers to outperform quantum
computers for datasets of such length. However, for applications
like matching templates in data generated by gravitational-wave
experiments which may be petabytes long (matching a megabyte-
long signature in the petabyte-long text would require 1025 CNOT
and T gates), we may expect to see the quantum advantage.

DISCUSSION
In this paper, we have constructed a quantum string-matching
algorithm that admits a circuit-depth complexity of
Oð

ffiffiffiffi
N

p
ððlog ðNÞÞ2 þ log ðMÞÞÞ. We also provide an explicit gate-

level implementation of our algorithm, enabling a concrete
estimate of quantum resources needed. The direct use cases of
the matching algorithm range from a simple text search in a large
file to detecting patterns in an image. The simple matching
procedure can help, for example, in making intelligent recom-
mendations based on pictures in a consumer device22, detecting
defects in industrial lithography23, detecting signals in large time-
series data collected in experiments like the Laser Interferometer
Gravitational-Wave Observatory24, etc. In these applications, the
typical size of data to be searched varies between ~106 and ~1015

bytes. Our algorithm admits processing of such data size in time
steps � C ´ ðlog 2ðNÞÞ

2 ffiffiffiffi
N

p
, where C < 20 and N is the number of

bits in the data. We hope the speed-up provided by the quantum
algorithm contributes to further advances in these areas.

DATA AVAILABILITY
All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials. Additional data related to this paper may be
requested from the authors. Correspondence and requests for material should be
addressed to Y.N. (nam@ionq.co).

Received: 10 June 2020; Accepted: 13 January 2021;

REFERENCES
1. Ramesh, H. & Vinay, V. String matching in O(n+m) quantum time. J. Discret.

Algorithms 1, 103–110 (2003).
2. Sasaki, M., Carlini, A. & Jozsa, R. Quantum template matching. Phys. Rev. A 64,

022317 (2001).

P. Niroula and Y. Nam

4

npj Quantum Information (2021) 37 Published in partnership with The University of New South Wales

3. Landau, G. M. & Vishkin, U. Pattern matching in a digitized image. Algorithmica
12, 375–408 (1994).

4. Bunke, H. & Bühler, U. Applications of approximate string matching to 2d shape
recognition. Pattern Recognit. 26, 1797–1812 (1993).

5. Chang, W. I. & Lawler, E. L. Sublinear approximate string matching and biological
applications. Algorithmica 12, 327–344 (1994).

6. Wyner, A. J. String Matching Theorems and Applications to Data Compression and
Statistics. PhD Dissertation, (Stanford University, 1994).

7. Charras, C. & Lecroq, T. Handbook of Exact String Matching Algorithms. (Citeseer,
2004).

8. Singla, N. & Garg, D. String matching algorithms and their applicability in various
applications. Int. J. Soft Comput. Eng. 1, 218–222 (2012).

9. Knuth, D. E., Morris, J. H. Jr & Pratt, V. R. Fast pattern matching in strings. SIAM J.
Comput. 6, 323–350 (1977).

10. Hakak, S. I. et al. Exact string matching algorithms: Survey, issues, and future
research directions. IEEE Access 7, 69614–69637 (2019).

11. Yao, A. C. C. The complexity of pattern matching for a random string. SIAM J.
Comput. 8, 368–387 (1979).

12. Kuperberg, G. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35, 170–188 (2005).

13. Montanaro, A. Quantum pattern matching fast on average. Algorithmica 77,
16–39 (2017).

14. Brassard, G., Hoyer, P., Mosca, M. & Tapp, A. Quantum amplitude amplification
and estimation. Quantum Computation and Information Vol. 305 of AMS Con-
temporary Mathematics Series (eds Lomonaco, S. J. & Brandt, H. E.) 53–74, 2002.

15. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum
simulation with quantum speedup. Proc. Natl. Acad. Sci. USA 115, 9456–9461 (2018).

16. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys.
Rev. Lett. 100, 160501 (2008).

17. Park, D. K., Petruccione, F. & Rhee, J. K. K. Circuit-based quantum random access
memory for classical data. Sci. Rep. 9, 1–8 (2019).

18. Rasmussen, S. E., Groenland, K., Gerritsma, R., Schoutens, K. & Zinner, N. T. Single-
step implementation of high-fidelity n -bit toffoli gates. Phys. Rev. A 101, 022308
(2020).

19. Nam, Y., Ross, N. J., Su, Y., Childs, A. M. & Maslov, D. Automated optimization of large
quantum circuits with continuous parameters. npj Quantum Inf. 4, 1–12 (2018).

20. Nam, Y. et al. Ground-state energy estimation of the water molecule on a
trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

21. Maslov, D. Advantages of using relative-phase Toffoli gates with an application to
multiple control Toffoli optimization. Phys. Rev. A 93, 022311 (2016).

22. Yuan, C., Heller, G. S., Rybakov, O., Ramaswamy, S., & Thomas, J. O. Object
Recognition for Three-dimensional Bodies, US Patent 9,424,461 (2016).

23. Chu, X., Lauber, J. A., & Runyon, J. R. Detecting Defects on a Wafer Using Template
Image Matching, US Patent 9,311,698 (2016).

24. Owen, B. J. & Sathyaprakash, B. S. Matched filtering of gravitational waves from
inspiraling compact binaries: computational cost and template placement. Phys.
Rev. D 60, 022002 (1999).

ACKNOWLEDGEMENTS
The authors would like to thank Jae Pak at IonQ for helpful conversations. P.N.
acknowledges funding by the DoE ASCR Accelerated Research in Quantum
Computing program (award No. DE-SC0020312) and the DoE ASCR Quantum
Testbed Pathfinder program (award No. DE-SC0019040).

AUTHOR CONTRIBUTIONS
P.N. designed the algorithm under the supervision of Y.N. P.N. and Y.N. prepared
the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-021-00369-3.

Correspondence and requests for materials should be addressed to P.N. or Y.N.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

P. Niroula and Y. Nam

5

Published in partnership with The University of New South Wales npj Quantum Information (2021) 37

https://doi.org/10.1038/s41534-021-00369-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A quantum algorithm for string matching
	Introduction
	Results
	Construction of the cyclic-shift operator
	Grover oracle
	Time complexity
	Space complexity
	Gate counts

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

