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The purpose of this lecture series will be to discuss attempts to explain high 

energy data using classical intuition augmented by Regge behavior. 

I. GENERAL FEATURES OF TWO BODY INTERACTIONS 

E · h h h · h · dcr h h k xperiments s ow t at, at ig energies, dcose as a very s arp pea near 

e = 0 0 
0 , a smaller peak at e = 180 , and is very low in between. These general features 

do not change as s varies. We will not consider the backward peak until later since 

the backward peak can be obtained by generalizing forward peak results. These 

features will have important implication for the models we will discuss. 

Partial wave analysis of the amplitude gives 

dcr 
which can be normalized so dt 

A(s,t) = ~(2t+l)fl(s)Pl(cosB) 

_L_
2

1Al 2
• Unitarity at low energies gives 

4k 2i5l (s) 
e -1 

2ik 
where 5 would be real. 

h b · h dcr · 11 b h f d d b k d k T e o servation t at dt is very sma etween t e orwar an ac war pea s 

(1.1) 

indicates that many partial waves contribute to (1.1) so it is plausible to replace 

the sum over l with an integral. Near the forward direction and l large, 
l k 

Pl(cosB) ~ J
0

(tB). Define b = k =the impact parameter. Since (-t) 2 ~kB, (1.1) 

becomes 00 

A ( 1. 2) 

The integral can be extended tot = 0 since low l waves do not appear important. If 

f(s,b) is approximately factorizable then the shape of the forward peak is independent 

of s, as is observed. In some cases the peak shrinks ass increases, but we will 

assume that this is not crucial. 

Several aspects of (1.2) should be noted. The arguments used to motivate it 

from (1.1) are heuristic. However, (1.2) can be used as an exact representation of 

A in impact parameter space. In the case 

of spinning particles, (1.2) can be easily 

generalized by making b a 2 dimensional 

vector 1 to the incident momentum (see 

Fig. 1). Then an integral representation 

for J
0 

gives 

z 

Center-of-mass System coordinates 

Fig. 1 
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r 2 in·b 
A(s,t) = d £ e ~ -F(s,£) ,, (1. 3) 

which is the 2 dimensional Fourier transformation. For spinless particles, F 

depends only on s and 1£1. The representations (1.2) and (1.3) are very useful when 

s is large, t is small, and the radius of the interaction region large. In the 

resonance region where s is small, these representations could be used, but would 

be very complicated. When 

transferred and lsi 2 ~ -t. 

is large, t is approximately the transverse momentum 

The deBroglie wave packet spread is proportional to t 
so at high s the wave packet feels only a small part of the scatter at a time. 

is of the order of the n Compton wavelength. We might expect classical physics 

b 
max 

to be useful for constructing models when the wave packet size is much smaller than 

b 
max 

The problem now is to find f(s,b). The concept of a potential is very useful 

in classical physics so let us try to use it to generate f(s,b). One aspect of this 

concept which will be useful to us is the additivity of potentials. Sometimes the 

potential of a composite system is the sum of the potentials of each constituent, 

e.g., nuclear scattering or the quark model. We will use potentials which are 

instantaneous in time and depend on spatial parameters. 

Suppose we are given a potential. How can we use it? 1) Schr6dinger's 

equation is not relativistically invariant. Since we are interested in velocities 

close to c, we must be cautious. 2) Covariant equations lead to retardation diffi­

culties. 3) The last possibility is to use the potential as an effective potential, 

i.e., like a single scattering term. If we know the outgoing and incoming wave 

function, we know the scattering matrix. The equation of motion is equivalent to 

a definition of the potential. 

Consider one dimensional motion through a slowly varying potential
1 

H\jr p = (1.4) 

is Schrtldinger's equation where 2m = h = 1. 

modified by a phase change and absorption. 

We expect the incoming wave to be 
-i(kx-wt) 

The boundary condition is 1jr ~ e 

as x ~oo so it is reasonable to try \jr(x, t) 

~2w " 

-iW(x,t) = e . This gives 

The trial solution W 

gives 

i a + (2!~/ +v 
Clx2 Clx 

(1. 5) 

x 
a J dx'V(x')-kx+wt where a,w are undetermined parameters 

-co 

(1. 6) 

2 
We want to satisfy this for any V(x) so the choice w = k and a 1 

leaves 
2k 
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0 l_ dV + _l_ V2 
2k dx ( 2k)2 

h k dV h" . . f" d were >> V, dx t 1s 1s sat1s 1e . This the eikonal approximation. 

The eikonal wavefunction is 
x 

exp[- ~k,{ dx'V(x')+i(kx-wt)l (1. 7) 

- 00 

This is essentially the WKB approximation in one dimension. In three dimensions the 

eikonal wavefunction is given by 

x 

w(.!?_,x) =exp[- ~k,{ dx'V(.!?_,x')+i(kx-wt) l 

- 00 

(1. 8) 

assuming that there is negligible transverse deflection of the incident particle, 

i.e., that e ~ 0. 

The transition matrix element from state k to state k' is - -

(1. 9) 

Choose a coordinate system with ~ along the z axis. Define ~ = (k '-k k '-k ) . 
x x' y y out 

Substitute (1.7) for Wk (x) in (1.9) and compare with (1.3). Note k '~ k so 
z z 

e 
i(k -k ')z z z ":: 1. This gives 

F(s,£) 

00 z 

fv(b,z)dz ex/- L (dz'V(.£,z')l 
'I I_ 2k, ( 1. 10) 

- 00 - 00 

(See Ref. 1). The s dependence is in V(b,z). A similar result can be obtained 

from the Bethe-Salpeter equation. The integral in (1.10) is of the form 

b f(z) f(b) f(a) J dxf'(z)e = e -e . Thus 
a oo 

F(s,.£) 1 rl i {v( b)d l 1-eiX(s,£) -exp - 2k ,_ z ,_ z = (l.11) 

- 00 

with 
00 

X(s,.!?_) ~k,{ V(z,.!?_)dz ( 1. 12) 

- 00 

Note that the assumption of a straight line trajectory is essential in getting (1.11). 

Equations (1.11) and (1.12) constitute the eikonal approximation to the amplitude. 

This is comparable to the partial wave expansion (1.1) with X(s,b) = 25t=kb(s); 
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( 1. 13) 

The essence of the eikonal approximation is that the phase shift is a homogeneous 

linear functional of the potential (Ref. 2). 

We would like to describe the eikonal approximation without using the 

Schrtldinger equation. Defining a "Born approximation" allows us to do this. If V 

is small then 

(1.14) 

which can be inverted, since X is small, to give 

x r 2 i,s.·b 
d ,s.e -T (g) 

, Born 
( 1. 15) 

(see Ref. 2) 
iX 

Equation (1.15) and F = 1-e can be used as a starting point for the eikonal 

approximation. Incidently, these are true in the optical model. This allows us to 

use T in the sense of a relativistic single scattering term at high energies. 
Born 

The eikonal approximation shows how to iterate such a term to get the complete 

amplitude. 

We need a model for T on the mass shell. Note that the connection of X 
Born 

with T is trivial if we assume X small. 
Born 

We extend the small X functional form 

to large X. How do we know that calculating higher terms in X (multiple scattering 

corrections) gives reasonable results? 

physics so let's be optimistic and try. 

explain many features of data simply. 

The approach works in molecular and nuclear 

The goal is to find a TB that will orn 

II. 
3-6 

SCATTERING BY COMPOSITE SYSTEMS 

Consider the scattering of an elementary particle by a composite system A. 

(Fig. 2) We will assume that there is an 

additive 2 body potential between the 

projectile and each constituent. 

assume no recoil or motion of the 

We also 

constituents during the collision. Then 

VA(b,z) = ~ V.(b-b.,z-z.) where the E 
j J J J 

dependence is suppressed. The additivity 

of the potential implies that the phase 

shifts are additive so 
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a:> 

k .fvA ('E_,z)dz = l X/'E_-'E_j) (2 .1) 

a:> j 

The potential concept was used to motivate the additivity of the phase shifts. 

For a quantum description of target, use nuclear wave function 

The transition amplitude is 

lw1<r1···rn) > 

lw2<r1 ... rn) > 

initial state 

final state 

T12 < 2jT(b,b 1 ... bn)jl > =,~ w2*(r1 ... rn)T(b;b 1 .. bn)\jl 1(r1 .. rn)d
3

r 1 ... d
3
rn 

(2. 2) 

where .!:.j ('E_j,zj). For elastic scattering w1 = w2 so (2.2) becomes 

with p = lwi
2

. The integration weighs each specific configuration with its 

probability. 

(2. 3) 

In Glauber's theory of multiple scattering one defines "profile functions" 

which implies 

1-r 
A 

iXA 
r = 1-e 

A 
r. 

J 

iX.(b-b.) 
1-e J J 

:rc/1-I'j) or rA = Irj- I rirj + ... 
j i,j 

{i?'j) 

(2. 4) 

with N summations. This is a multiple scattering series. The first term is linear 

in scattering from each constituant and is called the impulse term since it gives 

the impulse approximation. The second 

term corresponds to two scatterings. Our 

approximation that the scattering is mainly 

forward means that the projectile is unlikely 

to be scattered twice by the same 

constituent as in Fig. 3. 

As an example consider the elastic 

f d 
. 1 scattering o a :re on euterium. 
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= ,{d3
r {rP(b-b 1)+rn(b-b2)-rP(b-b 1)rn(b-b2)} p(r) 

2 2 -a r 
e e 

2 2 2 -ex (£.
1 

+z ) 

(2. 5) 

assumed for scattering the n on free protons and neutrons implies that in the eikonal 
-t32b2 

approximation r ~ ce The single scattering terms give 
p,n 

(2. 6) 

and the double scattering term gives 

(2.7) 

The Fourier transform from impact parameter space to momentum transfer space gives 

T (t) 

~~ is proportional to the square of T(t) 

and has the features shown in Fig. 4. In 
do 

general dt has N slopes when there are N 

constituants. As N -co the curve becomes 

a Bessel function as in Fig. 5. This 
7-9 

effect is observed in heavy nuclei. 

Now we will relate the eikonal 
10-12 

approximation to the droplet model by 

making the number of constituents in our 

composite model N -co. Assume all the 

constituents have the same wave function, 

for instance they could be in harmonic 

oscillator wave functions. Define S by 

T(b;b 1 ... bn) = l-S(b;b 1 ... bn). Assuming 

the scattering is independent gives 

S = 11 S.(b-b.) where S.(x) = 1-r.(x) = 
j J J J J 

e i X j ( x) . Calling p . ( r) = cp . -J< ( r) cp . ( r) , 
J J J 

using the factorization properties of cp 

and S, and normalizing with< 211 > = 1 

logdo 
dt 

do 
lo~ 
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~ positive first term(impulse) 

~~ 
'~quare of total amplitude 

--\ negative second term 
~uble 'cattering) 

I \ 

\ I \ 

\) 
- t---) 

Fig. 4 

Fig. 5 
-t~ 



in (2.2) gives 

T(b) 

where 

is the T matrix for one constituant. Then 

I lN 
T(b) = 1-j l-r (b) 

- 0 

(2. 9) 

(2. 10) 

(2. 11) 

We want to get a simple result as N ->co. If we hold the cross section of the 

composite system constant, then the cross section of each constituent must decrease. 

A canonical assumption is 

This gives 
- N 

T(b) = 1-[1- 2£Ell 

Now consider the short range approximation. 

acts as a delta function of b-b . 
r 

Then r 0 (b) = Lf/21 D(b) gives 

Define 
co 

D(b) = ,{ p(b,z)dz 

- co 

~ 1-e -y(b). (2. 12) 
N ->co 

iX(b-b
1

) 
The term e in (2.10) 

T(b) = 1-e-y(O)D(b) (2.13) 

The number y(O) is given by experiment. D(b) is independent of the projectile in 

this approximation. When the projectile is complex the same result holds. As an 

example, in optics y(O) is the opacity and D(b) corresponds to the optical depth. 

Another example is ~N scattering where D(b) has the shape given in Fig. 6. D(b) is 

the distribution of the proton with "R" representing its size. A third example is 
7-9 

scattering from a nucleus. D(b) is given by Fig. 7. 

D(b) 
~ 

R 

Fig. 6 

D(b) 

Fig. 7 
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b < R 
l-e-y(O)D(b) (2. 14) 

b>R 

which gives (from (1.2) and (1.11)), 

co 

T(t) i~dbJ0 (b(-t)~)[l-e-y(O)D(b)] 
0 

R r k 
~ jbdbJ0 (b (-t) 2

) 

0 

2 k 
iR J 1(R(-t)

2
) = 2 

----"--,-k- iR F ( t) 
R(-t) 2 

(2. 15) 

F(t) is plotted in Fig. 8. T gives the diffraction pattern of black spheres. When 

)' is purely real it gives an imaginary T. 

)' can be made complex to give the correct 

phase for (say) nN scattering. Then (2.15) 

predicts T for nA scattering where N is a 

nucleon and A a nucleus. Fits to high 

energy np and pp elastic scattering using -t~ 

as free parameters Rey and Im)', and Fig. 8 
. 10 11 assuming ' that D is given by electromagnetic form factors, agree to about 10% 

2 
when -t < 1 GeV , as sketched in Fig. 9. In practice Im)' can be neglected. Note 

do 
logdt 

o. 1.0 

I 
( 

-t(GeV) 

A 

Fig. 9 Fig. 10 

that this model is inconsistent with moving Pomeron models since there is no 

shrinkage. The model gives crtot = 2crel = 2R
2

, for the nuclear case (2.15). 

Now we will generalize to the scattering of two composite systems A,B. See 

Fig. 10. The separation of the center of masses at collision is b. 

T (b) = {d
3

r 1 ... d
3

r < B,2IT(b ;b1 ... bN)jB,l >, a a , N a (2.16) 

where a is a constituent in the projectile, A. This can be summed over a to give 
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TAB(b) ,{d3r~A ... d3 r~A < A,21[1- IT (1-Ta(b-ba))llA,l >. (2.17) 

a 
For elastic scattering this becomes 

(2.18) 

where iX_ = iX . . E (constituant +B --> constituant +B) -a(O)D(b). In the short range 

approximation as NA, NB -->oo we find 

el [ T (b) = 1-
AB (2.19) 

with 

(2. 20) 

This is a convolution of the distributions. When y is constant this is the "coherent 
3 

droplet model" of Chou and Yang. The qualitative features of (2.18) and (2.19) 

hold even if N 1 oo. DA(b) and DB(b) can be successfully (for nN and NN scattering) 

estimated by electromagnetic form factors. This approach can be applied to inelastic 
5 

scattering with DA(b) interpretated as an operator that rearranges the distribution 

of A. What is needed are excitation form factors, e.g., yN--> N*. 

The qualitative features of a multiple scattering series can be seen using a 
-b2/2R2 

Gaussian for X(b) = ice which can be justified from Regge theory (where R 

depends on s), from statistical mechanics, or pragmatically. It gives 

T(t) . 2 { tR
2

/2 c
2 

tR
2

/4 ~ tR
2

/2n } 
iR ce - 22 ! e + ... - nn! e + .. (2. 21) 

When -t is small the series damps rapidly; however, for large -t higher order terms 

in the interaction strength c are important. The number of terms that are important 

is proportional to ltl. See Fig. 11. When -t is very targe the saddle point from 

the method of least descent gives the envelope e-(R(-t)
2

) for T. This is the Jaffe 

bound. n=l 

tnlT I n 

(etc.) 
Fig. 11 
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III. ABSORPTIVE FORMULA 

We want to lead up to including Regge poles. Suppose V = V +V 
effective 0 1 

where v
1 

is weak and v
0 

has a simple or known form. For instance v
0 

could come from 

the Pomeron and v
1 

from the charge exchange or isospin dependent part. We have 

X(b) = x
0

(b)+X
1

(b) where x
1 

<< 1 for all important b. In charge exchange this is 

satisfied when the energy is sufficiently high. Then 
. X i x0 i x0 i x

0 T(b) = 1-ei ~ 1-e (l+iX
1
)=(1-e )-ie x

1 
(3 .1) 

Following (1.2) and (1.11), define 

(3. 2) 

(3. 3) 

Equations (3.2) and (3.3) are known as the absorption formula, also called the 

Sopkovich-Jackson-Gottfried absorption formula, or the distorted wave Born approxi­

mation because the factor eiXo(b) distorts the usual Born formula. If T
0

(t) is 
. x (b) 

known from the high energy limit of data, then we can invert T
0

(b) to get ei 0 

The data on T
1
(t) gives x

1
(b) since T

1
(t) is linear in x

1
(b). 

As an illustration consider the black disk approximation in a nucleus. 

Figure 12 shows an example of what can occur in impact parameter space. T1(t) has 

the lower partial waves absorbed by the 
·x (b) 

ei 0 factor. Figure 13 shows what xl - .... 
..... ,,./ 

'- ·x 
this gives in t space. The J

0 
and J

1 
contributions are out of phase. This 

phenomena is clearly seen in nuclei. 

\ i 0 
11------'1 1-e 

\~ 
We could get x1(b) from one 

2 
particle exchange with amplitude -f--

µ -t 
It is known that the absorption formulas 

describe modifications due to elastic 

scattering in the initial and final states. 

See Fig. 14. The formalism discussed 

above applied to inelastic processes 
0 + like n p -+ n n. We would like to extend 

it to processes like n-p-+ wn which is 

not really charge exchange unless we 

invoke SU(6) to equate the n and w. This 

is not totally satisfactory. Another 

1 
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J 

R 

Fig. 

e 

l 
( 

iX0 I 

\~ x1e 

' ' 
b---=7 

12 

iX0 



w 

j 

Fig. 13 

k 
w = R(-t) 2 

Fig. 14 

justification of the application of the formalism to this reaction comes from 
2 

studying the multichannel version of the problem. Let channel 1 be np and channel 

2 be wn. Then we can associate different potentials for different channels. 

Then 

T (t) (11 
21 

Tll(np _,. np): vll 

T
22

(wn--+ wn): v
22 

T
12 

(np _. wn): V 
12 

(3 .4) 

(3. 5) 

with 25 = 250+~1 , ~O diagonal and ~l off diagonal, <<I. If we ignore non-commutativity 

of ei-OQ(b) and i_25
1

(b), we get 

(3. 6) 

Usually it is assumed that v
11 v22 so ~o rx

0 
avoids the commutation problem. 
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IV. EFFECTIVE POTENTIAL AND OPTICAL MODEL 

The formula 

(4.1) 

was derived by considering the matrix element for the scattering of an elementary 

projectile by a composite target. 

iX 
e 

i L'. X. elem 

< ole j J lo> (4.2) 

We then assumed Xjelem is independent of sand t, i.e., gi5(b-b
1
), and built up a 

theory of effective two body potentials for composite-composite scattering. The 

effective potential has a very simple constituent-constituent scattering "ancestor" 

even though it could appear very complicated. 

So far the use of potentials was only for motivation. There are other methods 

of obtaining the eikonal formula. Later we will discuss a field theory with heavy 

vector meson exchange which gives the formula. Note that the potential description 

often resembles elastic unitarity so the Schr~dinger equation is usually interpreted 

as keeping only elastic intermediate states. In composite theories rearrangements 

are important and are equivalent to inelasticity which in fact dominates. The 

nuclear optical potential in Glauber theory has much physical content in common 

with multiperipheral models. Unitarity gives 

ImA =\{IT L, pp 

In the multiperipheral model T is pp ~ n 
the amplitude shown in Fig. 15. The sum 

over lots of intermediate states can give 

a Pomeron-like object, i.e., 

A(s,t ~ 0) ~ isa(t) with a(t) ~ l+Et. The 

scattering is dominated by inelastic 

intermediate states. 

In alternate models like Huang's 
13 

incoherent droplet model hadrons are 

considered arrangement of bits. Another 

arrangement of p gives p+6n. N depends 

on kinetic energy so this model is a 

Fig. 15 

theory of interaction, not just the states of a p alone. During a collision the 

bits mix randomly. To determine the probability of a final state we just count 

the number of rearrangements giving the state. If something like this is true, 
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then following Glauber, eiXJo >in (4.2) can be interpretated as a rearrangement of 

some of the constituants. Projecting this on< oJ gives the elastic matrix element, 
·x 

however, many inelastic intermediate states contribute. ei Jo> has a small overlap 

with < oJ for small impact parameters. In 

Fig. 15 the initial state has the role of 

< oJ. Both approaches in their simplest 
excited 

versions leave out the process in Fig. 16. 

Later we will look at this comparison 

again when discussing Regge cuts. 

Another way to study the potential 

is to add production processes to non­

relativistic potentials.
2 

This can be 

done with the multichannel considerations 

discussed previously. Denote 2-body channels by j. Then 

<v2+k2H1 = ~v1j*j 
j 

proton 

1 
Pomeron 

Fig. 16 

(4.3) 

where the momenta are assumed to be the same in each channel. In Ref. 2 it is shown 

that we can find an effective potential that includes multichannel effects. In 

general it is nonlocal. The idea of the proof is to construct Green's function for 

the other channels 2, .. ,n resulting in 

m,n 

such that 
2 2 r eff (V +k )11r 1 =, V (x 1 ,x)\lf1 (x ')dx 1 (4.5) 

effective-local 
As the energy increases, we hope that (4.5) approaches V(x) iJr 1 (x). 

Recently there has been much interest in field theoretic approaches to the 
14-20 

eikonal model. The goal is to derive X from a model field theory where 

S=expi(X) and X is the Born approximation. 

h d 18 . 1 . C eng an T.T. Wu in e ectromagnetism. 

The most ambitious attempt is that of H. 
14 

Torgerson's approach is to start with 

the interaction Lagrangian Lint = g1jryµ1jrVµ to couple spin ~ to neutral spin 1 

particles. Elastic scattering of two fermions is then 

< finalJsJinitial > = < fJTexpfa
4
xL. Ji> ';c int 

(4. 6) 

which cannot be solved in general. We want the high s limit which supposedly is a 

classical limit so we neglect self energy diagrams (the fermion sees only its local 

region). Then the only diagrams remaining are those where each vector is emitted 
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and absorbed by a fermion. Glauber solved (4.6) within these assumptions in 1951, 

getting 

< s > < exp[ g ~ r 6(X I -x) 1 > (4.7) 

where 6 is the Born term corresponding to one vector exchange. The assumptions 

imply that time ordering is not needed and that the emission and absorptions are 

independent. 

V • REGGE EXCHANGE 
2 

Consider a one particle exchange approximation to the amplitude, A ~ --1--­
µ -t 

(See Fig. 17). In configuration space this corresponds to a Yukawa potential, i.e., 

in the s channel we see a potential. In the 

t channel this looks like a resonance or 

bound state which shows a peak in the cross 

section at its mass. Since A does not 

depend on cose it is an s-wave resonance 
t 

in the t channel. The Chew-Frautschi plots 

have many resonances. We want to include 
2 

a whole family in a Born term like __g_:::_ µz-=t . 
To do this we use the Regge theory 

g 

s {T 
t 

Fig. 17 

formalism (ignoring signature, spin, and the possibility of cuts and fixed poles for 

now) to get ~(t)sa(t) for the amplitude at large s and fixed t. This is the Born 

approximation to the potential due to the exchange of the family. If ~(t) is slowly 
a+bt ~ ~ 

varying then we get e for the amplitude where b = btns and b constant. 

This approach gives selection rules on the particle quantum numbers. For 
0 

instance, consider n-p ~ n n. In the t channel the exchanged object must have 

isospin 1 so 

dcrj 
dt 

2a(O) -2 
s (5. 1) 

The relevant trajectory is that of the p with a(O) ~ ~. Thus the effective spin 

of the exchanged object is ~. This fits the data very well whereas one particle 

exchange does not. 

If C)> (0) 
dcr = 1 then the amount of shrinkage of dt as s increases indicates the 

slope of the P trajectory on the Chew-Frautschi plot. Sometimes there is shrinkage 

and sometimes there is none, suggesting that the trajectory may be flat. This is 

supported by the lack of evidence for mesons on such a trajectory. These facts 

suggest that the Pomeron is not a Regge pole and should be treated separately. We 

will look for a classical description of it. 
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VI. HYBRID MODEL OR ABSORPTION MODEL
21 

In this model the Pomeron singularity is assumed to come from the droplet model 

and to be different from ordinary Regge poles. The potential is a sum of a droplet 

model term and Regge terms. The droplet model implies that the Pomeron is a fixed 

pole. If we assume that the droplet model holds literally at positive t then it 

violates analyticity and unitarity. This can be rectified by a cut which masks the 

Pomeron pole in the t > 0 region of the Chew-Frautschi plot. We will not worry about 

this since we will apply the model only when t < 0. Note that we are not taking the 

radical Regge theory where all the singularities in the physical region of the J 

plane are simple moving poles. The Regge picture we will use has the following 

features: (not applied to elastic scattering) 

1) No resonances in the t channel implies no forward peaks in the s channel 

(example, since no doubly charged meson resonances have been seen we expect no peaks 

in n+n - n-N++ which is true experimentally). 

2) The energy dependence comes from a(O). This we find by extrapolation from 
2 

positive m . 

3) Shrinkage of the forward peak in charge exchange scattering. 

Competing models such as the coherent droplet model do not give the above 

features since they do not have crossing and thus say nothing about the t channel. 

The hybrid model gives the above features. 

As an example of a hybrid model calculation consider pp - pp and neglect spin 

(which is a few percent correction). Suppose there is a Pomeron contribution to the 

amplitude AP and a Regge pole contribution AR. Assume that 

A = iC[F (t)J
2 

(6.1) p p 

where F is the electromagnetic form factor of the proton. Any non-magnetic form 
p 

factor works. A useful fit is 

with µ
2 ~ 0.7 Gev

2
. 

F (t) ~ 
p 

(6.2) 

(6.1) can be motivated by arguing that the interaction between bits is pointlike 

and the the distribution of bits is proportional to the electromagnetic form factors. 

We have normalized the amplitude to give 

da 
dt 

We next assume exchange degeneracy so 

jA(s,t) j
2 

. 

13(t)Sa(t)-l 
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(6.3) 

(6.4) 



which for [w+f
0

, p+A
2

] trajectories is real. For small t 

AR~ y exp(a+b
1
t) 

(6.5) 

We neglect one particle exchange, such as n exchange which contributes a fraction of 

a millibarn whens is above 5 GeV. Equations (6.1), (6.2) and (6.5) give the eikonal 

2 2 
X(b) icb3K

3
(µb) + ysa(O)-le-b 12R 

where x
0 

is the Po~eron eikonal, x1 is the Regge eikonal, K
3 

is the third order 

Bessel function of imaginary argument, b is the impact parameter, and R2 = 2b
1

. 

Since x
0 

>> x1 we can substitute x
0 

and x
1 

in 

3 
k [ -cb K (µb)1 

Jo(b(-t) 2) 1-e 3 I 

(3.2) and (3.3) getting 

(6.7) 

2/2R2 iXO (b) 
T

1 
=,~db J0 (b(-t)~)ysa(O)-le-b e (6.8) 

iXO 2 I 2 
e can be approximated by (1-ce-b 

2
RO ]. From (6.7) jT

0
1
2 

has the shape in 

Fig. 18 and Tl becomes to second order in b/R
0 

1 2 2 2 2 
dbJ (b(-t) 72)e-b 12R (1-ce-b 12Ro ] 

0 

~ a(0)-1{ ys e 

2 
R t 

2 
-c 

-2 
with R2 

-2 -2 
= RO +R also looks like 

Fig. 18 except the dips are displaced 

since the Pomeron and Regge pole 

contributions (6.1) and (6.4) are out of 

phase. jTj
2 

has the shape given in tnlT
0

j2 

Fig. 19. As s increases the Regge pole 

vanishes and jTj
2 ~ jT

0
j
2

, i.e., the dips 

get deeper. We shall later study the J 

plane singularities which lead to the two 

terms in (6.9) 
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1.0 

(6.9) 

-t~ 

Fig. 18 



-t~ 

Fig. 19 

VII. COMPARISON OF MODELS 

The hybrid model resulted from the assumption 

ABorn(s,t) = Adroplet model+ARegge pole (7 .1) 

where Adroplet model is due to a fixed pole at a 1. 
.22-24 

The Frautschi and Margolis 

model used (7.1) replacing the droplet term with a moving Pomeron term. Their 
-bra -1 Pomeron is assumed to have a trajectory a(t) = l+a't and phase [l+e ](sinna) , 

thus they get elastic shrinkage. It is easy to pass from one model to the other if 

a• ~ o. 
Next we will compare predictions of various models for pp, pp, pn scattering. 

do 
for pp and pp is given in Fig. 20. It is important to note that the curves cross 

dt 
over. The pp curve shrinks as s increases, the pp forward peak expands, and the dip 

in the pp curve becomes less pronounced. First consider what simple Regge theory 

implies about the cross-over. The Regge contribution to the elastic scattering is 

given by 

pp 

pp 

pn 

P-tw+f
0

+p+A
2 

P-w+f
0 

-p+A
2 

P+w+f
0

-p-A2 

(7. 3a) 

(7. 3b) 

(7. 3c) 

The sign change from (7.3a) to (7.3b) is due to odd signature vector poles. The 

sign change from (7.3a) to (7.3c) is due to I=l poles. 

Assume the same trajectory function a(t) = ~+at for all but P. Empirically 
- 2 

otot(pp) > otot(pp) ~ otot(pn) ~ constant for 3 < s < 20 GeV . The optical theorem 
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then implies that Im(p+A2) 

Fig. 20 

Im(-p-A
2

) independent of s. Since 

p 
-i:n:cx 1-e 

sin:n:cx 

l+e -i:n:CX 
A2 = sin:n:cx 

t:3 (t) scx(t) 
p 

(7 .4) 

if t:'.>P = t:3 then, by (7.4), Im(p+A2) 
A2 

o. If t:3 = t:3 also then there is cancellation 
w f

0 
of Imw with Imf

0 
leaving only ImP in o (pp) and o (pn). We will assume complete 

tot tot 
exchange degeneracy t:3 (t) = t:'.>A (t), t:3 (t) = t:'.>f (t). This is predicted by bootstrap 

p 2 w 0 

schemes and finite energy sum rule. 

t:'.>A (t) requires a zero at cx(t 0 ) = 0 to cancel a pole in the physical region 
2 

0 f :n: p -> T)n. do - O 
Exchange degeneracy implies that t:'.>P(t0 ) = 0 so dt(:n: p-> :n: n) should 

be 0 at t = t
0

. This is not seen, but we can salvage exchange degeneracy by using 

cuts to fill in the dip at t=t
0

. In general, to kill ghosts (as in A
2

) and to 

decouple spin flip amplitudes at nonsense wrong signature points we need zeroes of 
25-27 

t:3 at ex= 0,-1,-2, ... corresponding tot = -0.5, -1.5, etc. 

The cross-over effect in Fig. 20 is not due to nonsense zeroes and not due to 

large spin flip cancellation so it remains a mystery in the simple Regge model. The 

hybrid model gives it nicely since cancellation of the two terms in (6.9) for some 

t
0 

will give T
1 
~ 0. The P term in (7.3a and b) is large and imaginary whereas the 
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p, A2 terms are small. The f
0 

term has the same sign for pp and pp scattering. The 

w term can explain the cross-over if its contribution (plus correction) is positive 

for t
0 

< t < 0 and negative for t < t 0 . 

In general from fits to polarization data we find that I=l exchange corresponds 

to helicity-flip and I=O corresponds to non-flip. The absorptive corrections to 

helicity-flip amplitudes are smaller than to helicity non-flip for small t. 
- 0 

The amplitude for the reaction :n: p __,. :n: n is pred0titinantly helicity flip. 

The corrections go like ttns. The differential cross section and polarization are 

given by 

da 
dt 

2ImG *G + -
(7. 5) 

where G (G+) is the helicity (non) flip amplitude. If the phase of G+ and G_ are 

equal then (f = 0. This is the case if only one Regge pole contributes. The simple 

Regge model predicts that since only p is exchanged, cJ> should be 0. Experiments 

givec?~ (15±5%) for•te[O.l, 0.2]Gev
2

. In the hybrid model the phases of G+ and G 

are modified by absorptive corrections. When parameters are fitted to other 

reactions, the model gives Fig. 21. The ummeasured part of the polarization curve 

is very difficult to measure. 
+ ++ 

The polarization of the reaction :n: p ~ K ~ is easier to measure since the 

d h + . d. . 1 . . 28 h 1 . . h ecay of t e ~ in icates its po arization. T e re evant trajectories are t e 

K*'s. If we assume exchange degeneracy 

and SU(3) symmetry we can use p and A2 
parameters. The differential cross section 

and the calculated (M. Blackmon, private 

communication) and measured polarization 

are sketched in Fig. 22. (see next page) 

The break in ~~ occurs near the point where 

(f> is maximum as can be seen from (7.5). 

Again exchange degeneracy without absorption 

corrections predicts zero polarization. 

Now we will study the J plane 

singularities corresponding to the two terms 

in (6.9). Recall that the Sommerfeld-Watson - 100%-

transformation of the partial wave series 

~ Ft(t)Pt(zt) results in a background 

integral, a sum over Regge poles, and 

possibly a sum over cuts. The contour 

which initially enclosed the positive 
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+ L: Po 1. 

.tn do 
dt 

+1.0 

0 

-1.0 

0.4 0.8 

+ ++ 
:n:p~Kz: 

3 GeV/c 

7 GeV /c 

2 
-t (GeV ) 

f 3 GeV /c (typical) da" 

0.4 0.8 

Fig. 22 

- 142 -



-~+i co 
,r-. 

Background I~ 

Integral 
Contour ~ 

I 

-~-i co 

Fig. 23 

J, plane 
integers has been opened as shown in Fig. 

23. A simple pole at J, = a(t) has the 

asymptotic behavior in s with t fixed so 

~(t)sa(t). A cut may be represented by a 

dense set of poles. Asymptotically this 

~pole 

_H\ 

gives 
a (t) 

c 

w (.t 't) 

,{ W(J,,t)sJ,dJ, 

- co 

(7. 6) 

where a (t) is the branch point and W(J,,t) 
c 

is the discontinuity across the cut which 

has been chosen to lie left of a (t). This 
c 

can be approximated by L ~ (t)sCtTI(t). The 
n 

n 
region of the cut away from a (t) does not 

c 
effect the asymptotic behavior so only the 

discontinuity close to the end point matters. 

If the discontinuity is regular at the 

branch point, we may expand W 

w(a (t))+(.t-a (t)) (~w) + ..... . 
c c o/, .t=a 

c 

~0 (t)+(t-ac(t)~1 (t)+ (7. 7) 

d b . . (7 6) U . a atns h" . an su stitute in . . sing s = e , t is gives 

A ~o (t) 

a (t) 
c 

s 
.tns 

a (t) 
c 

s + ~l (t) 2 + ... 
(.tns) 

(7 .8) 

which is normalized so~~= -flAl
2

. The series (7.8) converges too slowly for 
s 

present experimental energies. However, if we knew the asymptotic behavior of the 

amplitude sufficiently well we could deduce the nature of the J plane singularities. 

The first term represents a constant discontinuity w. The other terms represent 

discontinuities that vanish at the branch point. If the Pomeron is a simple cut 

with constant discontinuity, then it produces a total cross section 

1 
a = ImA(s,O) T s 

a (O) 
1 s c 

s J,ns 

To compare with the hybrid model, consider the case T 
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charge exchange(CEX) 
0 Tl at t= . Then (6.9) gives 

2 

cRO ) 13(0)sa(O)-l. 

2 2 
RO +R 

The first tenn represents an ordinary Regge pole; however, since 

(7. 10) 

2 
R = 2(b2+a 1.lns) 

and Ro is independent of s, the second term, which is a correction tenn, has the 

asymptotic fonn 13(0)(.tns)-lsa(O)-l and thus represents a cut. [The nonnalizations in 

(6.9) and (7.8) differ by a factor of so the branch point and Regge pole occur at 
2 2 2 

a(O).] As S ->oo, R ->co, R
1 

--> R
0 

constant. So fort# 0, 

A(s, t) --> -

2 
tRO /2 (0)-1 

e 13(0) sex 
a'.tns (7 .11) 

where lt.tnsl >> 1 and l.tnsl >> 1. Since the power of s does not vary with tin this 

limit, the cut is fixed as shown in Fig. 24 for the case of the p trajectory. 

In the Frautschi-Margolis model22 - 24 with a moving Pomeron, the approximation 
-b2 /2R 2 

1-ce O which was used to derive (6.9) must be replaced by a series of 

Gaussians, giving at large (-t) 

\~ 
L nn! 

e 

2 
tR

0 
/n 

(7. 12) 

2 
with R

0 
o:.tns. The moving cuts accumulate to an effective line as shown in Fig. 25. 

29-31 . 
Most Regge theorists believe that there are cuts in the J plane on the 

evidence from perturbation theory. The first such evidence came from Amati, Fubini 

and Stanghellini (AFS) who studied the unitarity diagrams in Fig. 26 and found that 

they give a cut whose discontinuity is J A *A . Mandelstam showed that when Fig. 26 
n n 

is interpreted as a Feynman diagram, off-mass-shell contributions cancel the cut. 

He then found non-planar Feynman diagrams such as Fig. 27, which produced cuts at 

the same location as the AFS cuts. Unitarity cannot be used to give the discon­

tinuity so the importance of the diagram is unknown. The absorptive model gives the 

cuts in the right position and gives the discontinuity with the correct sign relative 

to the pole. The correct sign is important since it produces the dip, the cross-over 

effect, and the polarization. Other models such as that of AFS give the wrong sign. 

This suggests that the cut is not due to two body unitarity. The multiperipheral 

model also gives the wrong sign unless absorption is added in the intennediate 
32 ·11 d . . 28 states as i ustrate in Fig. . 

If the absorptive model is correct then it contains non-planar diagrams as 

in Fig. 27. For example, in deuteron-deuteron scattering the diagram in Fig. 29 

gives a Regge cut according to Mandelstam's argument. It is also the second term in 
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Fig. 26 
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n 
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Fig. 27 

Regge poles 

Fig. 29 

a (t) 
p 
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the multiple scattering series. 

Now we will examine in more detail the similarities and contrasts between the 

absorption model and un.i.tarity models. We will see that (3.3) resembles elastic 

unitarity. Define x
1 

= A
1
pole(s,b) and eiXo = l+iA

0
(s,b). Then (3.2) and (3.3) 

become 

(7. 13) 

T
1
(s,t) 

= pole c A
1 

(s,t)+A
1 

(s,t) (7. 14) 

where 

(7. 15) 

and 

c f' ~ pole 
A1 (s,t) = ~/b dbJ0 (b(-t) )A0 (s,b)A1 (s,b) (7.16) 

is a correction term due to a cut. If the elastic contribution A
0 

is mostly positive 
c . . . pole 

imaginary, then A
1 

(s,t) has a minus sign relative to A
1 

(s,t). 

The integral ]db was motivated by a discrete sum on t. In the s channel A
1

c 

has the expansion 

where 

and 

Then (7 .16) is 

A c 
1 

A c 
1 

(' 

AO;t(s) =,/dz 1A0 (s,z')Pt(z') 

pole r pole 
Al;t = /dz 11A1 (s,z")Pt (z") 

00 

~/~z 'dz"A0 (s,z ')A/ole (s,z"l I (2t+l)Pt (z)P.t (z ')P.t (z") l 
t=O 

k 
The term in brackets is the Mandelstam kernel 8(6)/(6)

2 where 

(7. 17) 

(7. 18) 

(7.19) 

. (7. 20) 

2 2 2 
/:::,. = z +z' +z" -zzz'-zz'z"-zzz"+l and e is the step function. Int space (7.20) 

becomes 

(7. 21) 

which is the absorption or eikonal formula. The Mandelstam kernel K depends on s 
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since the Jacobian transfonning (7.20) to (7.21) does. 

Now compare (7.21) with the results of two particle unitary applied to the 

box diagram in Fig. 30. Let B be its 

amplitude 

B(s) = {ImB(s ') ds' 
1 s'-s (7 .22) 

Two particle unitarity (AFS) gives the 

absorptive part of B, 
Fig. 30 

Abs[B(s)] .fat 1 dt 11A0*(s,t')A1(s,t")K(s,t;t';t") (7.23) 

which looks similar to (7.21). K is the same, however (7.21) is the whole amplitude 

unlike Abs[B]. Also, (7.23) has a complex conjugation of an amplitude which is 

mostly imaginary so the si.gn is opposite. 
pole . 

In (7.23) A1 is not necessarily a Regge pole. However, in such a case, 

suppose A ~ sO'{)(t)-l and A 
0 1 1 

sa1(t)-l. Now K has the property that ass ~oo, it 

is significant only when(-t 11 )
72 k k 

+ (-t 1
)

2 ~ (-t) 2
• Then 

c r ao(t')+al(t")-2 
A (s,t) ~ ;dt'dt"s 

For large s and small t this gives 

c 
A (s, 0) 

a (0)-1 
c 

s 
lns 

(7. 24) 

(7. 25) 

where ac(O) = Cto(O)+a1(0)-l. The cut has the same position as the AFS model gave 

although the sign and magnitude are different. If we take t f 0, the slope of 

a (t) can be 
c 

a '= a'/2. c p 
in Fig. 31. 

dominates. 

found. For instance, if we start with a
0 

= a 1 = ap' then we get 

We can iterate choosing Clo = app ana a 1 = ap. The results are shown 

The cuts are not very interesting for t > 0 since the pole contribution 

If the Pomeron and p are iterated then we get Fig. 32. 

2 
Rel 

2 

1 
a (t) 

p Rel 

Fig. 31 

a 
PP 

t -7 
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To see how important the cuts are consider typical cross sections at 

E ~ 20 Gev. 

25 mbarns 

CTelastic ~ 10 mbarns 

a ~ 100 µbarns (single p cut) 
charge exchange 

CT ~ 70 µbarns 
y-exchange 

CT ":: 1 µbarns (double p cut). 
double charge exchange 

The last is known to be small for some reactions but could be important for the 

diagram in Fig. 33. 
c 

We have seen that A
1 

(s,t) is related to Feynman diagrams in the shape of a 

box instead of unitarity diagrams such as 
29 

Fig. 30. Mandelstam showed that unless 

the intermediate particles are held on 

the mass shell, the Feynman diagram gives 

no cut. For some mysterious reason we 

need to throw away the contributions when 

the particles are off the mass shell. A 

heuristic justification for this is that 

p 

n 

- 0 :n: 

p 

:n: 

if the intermediate particles are composite 

and loosely bound, then they can break 
Fig. 33 

up when they are off the mass shell. If we assume that the propagators oscillate 

wildly off the mass shell, then we need consider only mass shell contributions. 

Gribov and Migdal claim that the absorptive part of an amplitude such as in Fig. 26 

is less than or equal to the sum over all orders of the non-planar Feynman diagrams 

in Fig. 34. If their argument can be 

strengthened then it will provide the 

justification. 

It was pointed out earlier that the 

hybrid model and multiperipheral model 

neglect Fig. 16. It was hoped that this 

correction is small. The correction to the 

cross section has been estimated at about 
33 

10%. Henyey et. al. try to make the 

(all crossed graphs) correction by multiplying A
1

c by A with 

Fig. 34 A ~ 1. A should be close to 1 since A = 1 
dCT 

gave reasonable results for the cross-over effect, polarization, and dt If A>> 1 
dCT 

then exchange degeneracy is intolerable and the location of dips in dt depend on s. 
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Henyey et. al.
33 

choose A~ 2 and get secondary peaks in~~ from multiple scattering. 

Data at higher s may decide which version of the absorptive model is better. 

Another way of including absorption is to insert Regge poles in K matrix which 
-1 

is defined by T = B(l-ipk) . B is the Born approximation and has resonance poles. 

Poles and cuts are generated by this method; however, more art is needed to explain 

data. 

VIII. THEORIES OF PRODUCTION 

A simple but.unsuccessful model for production is the bremsstrahlung model 

which results from assuming that the particles are produced by the legs of elastic 

scattering amplitudes as illustrated in 

Fig. 35. The amplitude for the diagram is 

Ae (s,t) ~with Aet assumed to be the 
s

1
-m 

mass-shell amplitude, and g the (mass shell) 

nN coupling constant. This model works 

well in quantum electrodynamics (possibly 

because the photon's mass is strictly zero), 

but the results of this model are too large 

by at least a factor of ten for nN ~ nnN. 

t 

Fig. 35 

The main reason for this failure is that the Compton wavelength of the emitted n is 

always smaller than or comparable to the interaction radius. 

A more successful model is the "synchrotron radiation model" which is moti-

d b 1 . 1 f h d. . 34 h d. d vate y c assica concepts o sync rotron ra iation. T e power ra iate in 
. d 2 

electrodynamics is proportional to (dtJ) . We will consider pp ~ ppn and assume 

that in the center of momentum system the protons have classical trajectories that 

are arcs of circles of radius p in the interaction region, which is a sphere of 

radius R. See Fig. 36. Such a circular trajectory would result if the interaction 

Fig. 36 

region contained a uniform magnetic field. 

The impact parameter b(B) is related to 

daet 
(dcose), p, and R by the following argument. 

The elastic cross section is given classi­

cally by daet = 2nbdb. Integrating, we get 
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b cose 

Gl{b'db' { dae.t dcose• 
/"'- , dcose• 

(8 .1) 

O backward 
angle 

When cose 1 we want: 1{b
2

(0) 
2 

l{R so b(O) = R. Geometry gives 

2 2 ~ e 
p(8) = (R -b ) cotz - b(8) 

Next we assume the particle has a constant velocity so knowing p(8), we know the 

trajectory ;(t). 

Next we postulate an appropriate classical current in the form of 
-> -> -> 

J(x,t) = g5(x-r(t)) assuming that it is a scalar. The LSZ formalism applied to the 

amplitude for the diagram in Fig. 37 gives 

(8.3) 

We are assuming that J is a c-number so it can be pulled out of the matrix element 

leaving 

(8.4) 

where< I>= Aelastic(p 1
1 p2 •;p1p2)5

4
(p 1+p2-p 1

1 -p2
1

) is taken from data. If the 

interaction Lagrangian for mesons with nucleons is g ¢wy
5

w, then at large s, -t 
l{N -> -> 

with w's localized in wave packets J is equivalent to g1{N¢5(x-r(t)) so we get g=gl{N 

in this region. Other assumptions are needed, for instance we can take for non­

asymptotic t values the replacement 

.k 
A 

1 
. (s,t)-> (A /,(s,t 1)A ,(s,t2)) 2 

e astic e e.., (8.5) 

to give proper damping in t 1 and t 2 . Also we must symmetrize for the initial 

protons. 
-> -> 

Then we can substitute the trajectory r(t) in (8.4) and get S(k). Similar 

Fig. 37 

p I 

1 

__. 
- - k 

p I 

2 

arguments work for vector meson production. 
+ 0 0 There are old data on pp->p1{1{ , ppl{ , pp~ , 

0 
ppw at 12.5 GeV which agree fairly well 

h h d 1 1 d. . 34 wit t e mo e s pre ictions. 

The synchrotron radiation model works only 

for large angle production; for small angles 

we need to assume more quantum properties. We 

have considered a radiation eikonal mode1. 35 

The main idea is to interpret the interaction 
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Lagrangian g~J as subtracting probability from elastic scattering. The assumptions 

are 

1) J = g ~ Jw(b,z) J
2 

where w is given by (l.7)(one dimensional motion), and 
z 2 2 2 

2) V(b,z) ~ iAexp[- £...__ - ~] =the potential occuring in elastic scattering 
2R

2 
2R

2 

where y = E/M accounts for Lorentz contraction. The appropriate value of g can be 

obtained from Adler's self-consistency condition. The S matrix in (8.3) can be 

generalized to the case of n meson emission if the emissions are assumed to be 

independent: 

This can be summed to get 

where n is a phase 
n 2 

inel 
22 ~ eg n. 0 0 n 
n 

r 2n 
o ~ an Is 12 ~ ~ n 

n 0 n n n! n 

space factor. The total inelastic cross section 

The probability of 

0 __ n_~ 

22 0 I 

n' n 

producing n particles is 

is 

2 35 
Maximizing gives n ~ g n for a Poisson distribution. In Heckman's model, 

(8.6) 

(8.7) 

(8. 8) 

(8. 9) 

increases as lns at large s. This model can be used to calculate differential cross 

sections of pp~~++ anything and pp~ p +anything. These are easy to measure 

with one armed spectrometers and the data have the general features at fixed s shown 

in Fig. 38. The prediction is in excellent agreement at small angles and starts to 
0 

differ around angles of 20 in the center of momentum system. 
36 Gundzik has worked on a scheme to 

calculate pp ~ pp using the concepts of the 

above models. In the unitarity diagram in 

Fig. 39, J is the source and sink of the 

intermediate pions. The phase of the emitted 

pions is important here. Also the similar 

diagram with two N* in the intermediate state 

is important. Many parameters are needed 

in this model. 

Another classical theory 
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of multiple production was constructed by 

Landau ten years ago. It is related to 

Huang's model since the hadrons are consid­

ered to be blobs of gas. When they collide 

they are assumed to form a symmetrical pill 

box containing shock waves. The shock wave 

Fig. 39 generates entropy and the flux of entropy 
37 

is identified with the amount of particles produced. The sequence of events in a 

collision is illustrated in Fig. 40. The model predicts n ~ Elab~' which is not 

contradicted by available data. 38 

(a) 

~ 
I...._ very hot (b) 

(highly excited) region 

(c) 

Fig. 40 

The number emitted with angle e is 

-k((c')~-( )~) 2 
dn~ce 2 TJ dTJ (8.10) 

where c, c' are constants, depending on the initial state and TJ = ln(tanG). The 

energy flux is given by 

w(G) ~ 

1 1 ~ 
-( c 11+n) - -( c "TJ) 3 ., 3 

e (8. 11) 
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Hagedorn's fireball model is similar to the above model in the sense that both have a 

maximum temperature; however Hagedorn requires arbitrary parameters. Higher energy 

accelerators are needed to test these models. 

In conclusion classically based models work better than diagrammatic models 

do for the above data. This might be expected since high s is expected to give 

classical limits. Of course, we may find surprises such as a breakdown of micro­

causality; however the operational point of view says try until we find a problem. 

IX. DIELECTRIC SPHERES AND SHARP BOUNDARY MODELS 

Consider the scattering of light, of wave number k, by a dielectric sphere of 

uniform index of refraction n and radius a in optics. Mie solved this fifty years 

ago. When (k) gets large the solution becomes a sum of many Bessel functions. 

Nussenzweig
39 

used the Sommerfeld-Watson transformation to study this problem. One 
do finds a lot of fine structure as is illustrated in Fig. 41. The shape of dn resembles 

db 
that of hadron scattering. The peaks occur when dB =co. For instance, the backward 

peak can result from the rays in Fig. 42. The Sommerfeld-Watson transformation for 

the limit k ~co gives J plane singularities (Regge poles) on the locii in Fig. 43. 

The glory effect is due to poles on the curved section of the locii. The effect can 

sometimes be observed from an airplane flying over clouds. Sunlight scattered back­

ward from water droplets of the right radius in the clouds can produce bright colored 

rings around the shadow of the plane. The color implies that the effect is due to 

a backward diffractive process from small droplets. 

do 
an 

-1 case 

Fig. 41 

+l 
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J, plane 

Fig. 43 

40 A quick and dirty derivation of the glory effect from a sharp sphere is the 

following: write the partial-wave expansion 

Since P J, (-z) 

f(B) 
1 

2ik 

.t (-) PJ,(z), (9.1) becomes 

2ikf (8 -::: rr) \ 
L 

\--, 2i0 .t 
L (2.t+l)( e -1) p .t (case) 

.t 

2i0/, 2i0.t+l 
(2/,+l)[e -e ]PJ,(-cose). 

J,=0,2,4 

(9 .1) 

(9.2) 

2i0 J, • 
If we assume the e is a slowly varying function of .t then the term in brackets 

b · t d b Cl e 2i0 J, and (9. 2) becomes can e approxima e y Cl.t 

f(e-::: rr) = i ~ dbJ (b(-u)~) 2-[e2io(b)_l] , I c o 2lb (9.3) 

Compare this with the forward amplitude 

(9.4) 

Thus the backward peak is related to the forward peak. The prediction works roughly 
+ + - -for the backward peaks of re p and K p but does not work for re p and K p. The s 

dependence of the peaks is predicted to be 

which is not strongly violated for such cases. 

varying is not good in general.) 

(9.5) 

25.t 
(The assumption that e is slowly 

A more rigorous approach to the glory effect analogy for backward scattering 
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is to use the Regge pole expansion. If the Regge poles on the locii in Fig. 43 are 

d ( ) b h h b k d k b f . 41 h b k assume to occur at as a+ s t en t e ac war np pea can e 1t. T e ac -

ward peak in nC scattering has been studied in a model where the n is internally 

reflected. J0 (R(-u)~) fits the data.
42 

M.C. Li has been working on similar appli-
. 43 cations. 

The sharpness of the edge of the dielectric sphere is very important in 

geometrical optics; however, for high s scattering of hadrons, the width of the edge 
44 

becomes large. If the analogy holds, then the backward peak should go away. 

Suppose there is a discontinuity inn in hadrons, for instance, if they are 

droplets with a skin. Then excited states may be surface waves. For instance, 
+ - + -

in pp~ pN* where N* can be~ (1480), 3/2 (1520), 5/2 (1690), 7/2 (2190), etc., a 

simple surface-wave model explains the s and t dependence for the first two and 
45 y M fails for the second two. The matrix element to excite L surface wave can be 

approximated by45 
co 

TLM(6) = ;LyLM(I,O)~dbJM(i:.b)H(b) 
0 

where H(b) is the distribution of matter in the interaction region (skin) and 
k 

6 = (-t) 2
• For a nearly-square well potential 

(9.6) 

We can assume 1-eiX(b) is a Gaussian in b and then sum the square of (9.6) over M to 

get the cross section. Perhaps this model is discovering systematics that will come 

out of someone's dynamics. 
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