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The purpose of this lecture series will be to discuss attempts to explain high

energy data using classical intuition augmented by Regge behavior.

I. GENERAL FEATURES OF TWO BODY INTERACTIONS

Experiments show that, at high energies, E%ggg has a very sharp peak near
6 = Oo, a smaller peak at 6 = 1800, and is very low in between. These general features
do not change as s varies. We will not consider the backward peak until later since
the backward peak can be obtained by generalizing forward peak results. These
features will have important implication for the models we will discuss.

Partial wave analysis of the amplitude gives

A(s,t) = 2(21+1)ft(s)PL(c059) (1.1
which can be normalized so %% = —l§|A|2. Unitarity at low energies gives
4k”, .
218£(s)
_e -1
fz(s) =TS where & would be real.

The observation that g% is very small between the forward and backward peaks

indicates that many partial waves contribute to (1.1) so it is plausible to replace

the sum over 4 with an integral. Near the forward direction and 4 large,

ES
Pz(cose) = JO(LG). Define b = % = the impact parameter. Since (-t)* = k&, (1.1)
becomes ool
1/
A=1i fb deO(b(-t)z)f(s,b) . (1.2)

0

The integral can be extended to £ = 0 since low ¢ waves do not appear important. If
f(s,b) is approximately factorizable then the shape of the forward peak is independent
of s, as is observed, 1In some cases the peak shrinks as s increases, but we will
assume that this is not crucial.

Several aspects of (1.2) should be noted. The arguments used to motivate it
from (l.1) are heuristic. However, (1.2) can be used as an exact representation of
A in impact parameter space. In the case
of spinning particles, (1.2) can be easily
generalized by making b a 2 dimensional //////ff\\\\\\\

i~
vector l to the incident momentum (see / b \\

v

v
N

Fig. 1). Then an integral representation

for JO gives

Center-of-mass System coordinates

Fig. 1
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A(s,t) = fdzg B (1.3)

[

which is the 2 dimensional Fourier transformation. For spinless particles, F
depends only on s and IEI. The representations (1.2) and (1.3) are very useful when
s is large, t is small, and the radius of the interaction region large. 1In the
resonance region where s is small, these representations could be used, but would

be very complicated. When is large, t is approximately the transverse momentum
transferred and |g|2 ¥ -t. The deBroglie wave packet spread is proportional to %
so at high s the wave packet feels only a small part of the scatter at a time. bmax
is of the order of the x Compton wavelength. We might expect classical physics

to be useful for constructing models when the wave packet size is much smaller than
bmax'

The problem now is to find £(s,b). The concept of a potential is very useful
in classical physics so let us try to use it to generate f(s,b). One aspect of this
concept which will be useful to us is the additivity of potentials. Sometimes the
potential of a composite system is the sum of the potentials of each constituent,
e.g., nuclear scattering or the quark model. We will use potentials which are
instantaneous in time and depend on spatial parameters.

Suppose we are given a potential. How can we use it? 1) Schr¥dinger's
equation is not relativistically invariant. Since we are interested in velocities
close to ¢, we must be cautious. 2) Covariant equations lead to retardation diffi-
culties. 3) The last possibility is to use the potential as an effective potential,
i.e., like a single scattering term. If we know the outgoing and incoming wave
function, we know the scattering matrix. The equation of motion is equivalent to
a definition of the potential.

1
Consider one dimensional motion through a slowly varying potential :

_ .0 _ 52 _ _.0
Hy i Y (P+H)y, P 1% (1.4)
is Schr8dinger's equation where 2m = A = 1. We expect the incoming wave to be
modified by a phase change and absorption. The boundary condition is ¢ — e_l(kx-wt)
as x = so it is reasonable to try y(x,t) = e-lw(x’t). This gives
2
oW _ . 9 W oW, 2
i A (1.5)
ox
X
The trial solution W = @ [ dx'V(x')~kx+wt where o,w are undetermined parameters
-
gives
. d 2
W= da o+ (V) k) Y (1.6)

We want to satisfy this for any V(x) so the choice w = k2 and o = %E leaves
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0 = é—k%‘l+ 12\/2
o (2k)

where k >> V, g% this is satisfied. This the eikonal approximation.

The eikonal wavefunction is

X
Vo= exp[— %E\/pdx'v(x')+i(kx-wt)} . (1.7)
- )

This is essentially the WKB approximation in one dimension. In three dimensions the

eikonal wavefunction is given by

X
¥(b,x) = exp[- %{-‘/ﬁdx'v(h,x')+i(kx-wt)] (1.8)
- o
assuming that there is negligible transverse deflection of the incident particle,
i.e., that 6 = 0.

The transition matrix element from state k to state k' is
St
T(k',k) = i /"d?’xv(x)q;kout(x)el& X (1.9)

Choose a coordinate system with k along the z axis. Define q = (k_'-k_,k _'-k ).
- X Xy vy

Substitute (1.7) for WEUt(x) in (1.9) and compare with (1.3). Note kz' w kz S0

i(kz-kz')z
e ~% 1. This gives
© z
r i
F(s,b) =,/ V(b,z)dz exp[- EE\/“dz'V(h,z’)} . (1.10)
- QO i - Q

(See Ref. 1). The s dependence is in V(b,z). A similar result can be obtained

from the Bethe-Salpeter equation. The integral in (1.10) is of the form
b

f dxf'(z)ef(z) = ef(b)-ef(a). Thus
a (e ]
r i iX(s,b)
F(s,b) = l-expL- o5 | V(bydz | = 1-e"502 (1.11)
- ®
with
[¢ 0]
X(s,b) = - %1; V(z,b)dz . (1.12)
- @

Note that the assumption of a straight line trajectory is essential in getting (1.11).
Equations (1.11) and (1.12) constitute the eikonal approximation to the amplitude.

This is comparable to the partial wave expansion (l.1l) with X(s,b) = 285=kb(s);
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= [dzgeig'E(l-eiX) . (1.13)

Teikonal _,

The essence of the eikonal approximation is that the phase shift is a homogeneous
linear functional of the potential (Ref. 2).

We would like to describe the eikonal approximation without using the
Schrbddinger equation. Defining a '"Born approximation' allows us to do this. If V

is small then

T =T =/d23eiﬂ'9(1-eix) (1.14)

Born

which can be inverted, since X is small, to give

2 ig-b
. 1.1
X \/d qe —’I‘Born(g) (1.15)
(see Ref. 2)
Equation (1.15) and F = l-e1X can be used as a starting point for the eikonal
approximation. Incidently, these are true in the optical model. This allows us to

use TBorn in the sense of a relativistic single scattering term at high energies.

The eikonal approximation shows how to iterate such a term to get the complete

amplitude.

We need a model for TBorn on the mass shell. Note that the connection of X

with TBorn is trivial if we assume X small. We extend the small X functional form

to large X. How do we know that calculating higher terms in X (multiple scattering
corrections) gives reasonable results? The approach works in molecular and nuclear
physics so let's be optimistic and try. The goal is to find a TBorn that will
explain many features of data simply.

-6
II. SCATTERING BY COMPOSITE SYSTEMS3

Consider the scattering of an elementary particle by a composite system A.
(Fig. 2) We will assume that there is an
additive 2 body potential between the
projectile and each constituent. We also
assume no recoil or motion of the
constituents during the collision. Then

Vv, (b,z) =% V, (b-b,,2-z,) where the E
A(P>2) .J(J J)

J
dependence is suppressed. The additivity

of the potential implies that the phase

shifts are additive so

Fig. 2
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%X, (b) = ‘2"1; [V, (B,z)dz =Z xj(g-kj) . (2.1)
o j

The potential concept was used to motivate the additivity of the phase shifts,

For a quantum description of target, use nuclear wave function

[Wl(rl...rn) > = initial state

I

le(rl---rn) > final state

The transition amplitude is

= = * . 3 3
Ty = < 2|T(b,b1...bn)]1 > fx]fz (r;-.-r)T(bsb . b )y (r)..x YA r)...d
(2.2)
where £j = (Ej,zj). For elastic scattering Wl = wz so (2.2) becomes
T, (b) = /P (r r YT (b;b b )d3 d3 (2.3)
11 oplryeeer sbyeewb )dir e d Ty .
. 2 , . . . . . . .
with p = lw] . The integration weighs each specific configuration with its
probability.
In Glauber's theory of multiple scattering one defines "profile functions"
ix iX.(b=b,)
P =1-e >, p=1-e 3 3
A il
which implies - .
1-7, = x,(1-I’,) or T =ZI‘.-Z r.r, +.. 2.4
5 = 7y (1Ty) or T, 5 Ry (2.4)
i i,]
(i#3)

with N summations. This is a multiple scattering series. The first term is linear
in scattering from each constituant and is called the impulse term since it gives
the impulse approximation. The second
term corresponds to two scatterings. Our
approximation that the scattering is mainly
forward means that the projectile is unlikely
to be scattered twice by the same
constituent as in Fig. 3.

As an example consider the elastic

scattering of a 5 on deuterium.

Fig. 3

- 127 -



TD(b) = \/der {rp(b-bl)+Pn(b-b2)-Pp(b-bl)Pn(b—bz)}'p(r)

22 -, ")

£ = (82 W[ =p~e = e
2
da. t/4p
G ~e (2.5)
p,n

assumed for scattering the 5 on free protons and neutrons implies that in the eikonal

-g2p2
approximation Pp ~ ce B . The single scattering terms give

>

e-(02+52)b2

/1d3rp(r)F(b—bl) =c (2.6)
and the double scattering term gives
2 2,.2
/jd3rp(r)P(b-b1)P(b+bl) = 2o (@H2B DD (2.7)

The Fourier transform from impact parameter space to momentum transfer space gives

N
T(t) = ic {%xp [_—_%—_5_}_C exp[———g———§—1 j (2.8)
4(a+p) 4o +267)
dg . .
E% is proportional to the square of T(t) h positive first term(impulse)

and has the features shown in Fig. 4. 1In
\

Si:://ﬁquare of total amplitude

~ negative second term
\ \\‘\.4! (double scattering)
-

d
general E% has N slopes when there are N

constituants. As N — o the curve becomes

a Bessel function as in Fig. 5. This logdd
- dt
effect is observed in heavy nuclei.7 9

Ve

Now we will relate the eikonal Ly \
- t
10-12 by .

approximation to the droplet model

making the number of constituents in our
composite model N - . Assume all the
constituents have the same wave function,

for instance they could be in harmonic
oscillator wave functions. Define S by
T(b;bl...bn) = l-S(b;bl...bn). Assuming

the scattering is independent gives dg

1
S =_ﬂ S.(b-b.) where §,(x) = 1-T'.(x) = %84t
g ] ]
iXs (%) %
€ ) ) J (r)CPJ(r))

using the factorization properties of ¢

Calling pj(r) =@

and S, and normalizing with < 2]1 >=1 —t———
Fig. 5
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n iX(b-b.) :
T(b) = 1- H ‘/ﬁd3rjpj(rj)e T - 1'{500})} @2
i=1

in (2.2) gives

where

Py iX(b-b_)
So(0) = [ d'rp(r)e T 1-T,(b) . (2.10)

PO(b) is the T matrix for one constituant. Then
N

T(b) = 1-]1-F0(b)] ) (2.11)

We want to get a simple result as N - . If we hold the cross section of the
composite system constant, then the cross section of each constituent must decrease.

A canonical assumption is

=1
o) =5 7(b).
This gives N
b -7(b
T(b) = 1-[1- Z%fll — 1-7®) (2.12)
N - o
iX(b-b.)
Now consider the short range approximation. The term e in (2.10)
acts as a delta function of b-br. Define
fe'e}
D(b) = /o(b,Z)dZ
- @
Then Po(b) = Zégl D(b) gives )
-y(0)D(b
T(b) = 1-¢ 7 (OD®) . (2.13)

The number y(0) is given by experiment. D(b) is independent of the projectile in
this approximation. When the projectile is complex the same result holds. As an
example, in optics y(0) is the opacity and D(b) corresponds to the optical depth.
Another example is nN scattering where D(b) has the shape given in Fig. 6. D(b) is
the distribution of the proton with "R" representing its size. A third example is

scattering from a nucleus.7-9 D(b) is given by Fig. 7.

~

large value

D(b) D(b)

b — 5 R b—>
Fig. 6 Fig. 7
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1 b<R
1-o"7(OD(b) _ { (2.14)

0b>R

which gives (from (1.2) and (1.11)),

[ee]
T(t) = i/;deO(b(-t)%')[l—e'7(O)D(b)]
0
L L iRZJl(R(-t)f) )
= 1[bdbI(b(-6)%) = e = IRF(E) (2.15)
6 R(-t)?

F(t) is plotted in Fig. 8. T gives the diffraction pattern of black spheres. When

7 is purely real it gives an imaginary T.

7 can be made complex to give the correct
phase for (say) zN scattering. Then (2.15) \\\
predicts T for mA scattering where N is a F () /f} AN

nucleon and A a nucleus. Fits to high \\4/] k//f' \VZ

energy np and pp elastic scattering using —t —)
as free parameters Rey and Imy, and Fig. 8
10,11

assuming that D is given by electromagnetic form factors, agree to about 10%

2
when -t < 1 GeV , as sketched in Fig. 9. 1In practice Imy can be neglected. Note

N A
S
logg'g °
dt g 0
) v
&
o
T 0
- ’
! z
0. 1.0 -t (Gev ;
( ) Fig. 9 Fig. 10
that this model is inconsistent with moving Pomeron models since there is no
shrinkage. The model gives Ocor — 20e1 = 2R2, for the nuclear case (2.15).

Now we will generalize to the scattering of two composite systems A,B. See

Fig. 10. The separation of the center of masses at collision is b,
T (b) = [d3r a3 < B,2|T(b_sb,...b )|B,1 > (2.16)
o o? . 10 N s s P17 Py , s .

where ¢ is a constituent in the projectile, A. This can be summed over (¢ to give
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_ [ .3 3.1 o
T, (® —\/d rlA...d rNA <A,2|l:1-H (1-T (b ba))]IA,l > . (2.17)

(o]
For elastic scattering this becomes
NA
iX_ (b-b,..)
el .. _ 3 %3 (B bry
T,p (®) = 1- 1 \/d TP, (r))e (2.18)
o=1

where iXB =i -a(0)D(b). 1In the short range

X . . =
(constituant +B — constituant +B)
approximation as N,, N_ — o we find
A "B N

iXB(E_Erl)-J A 1%, 5 (0)

TABel(b) = 1-[[d3ripA(rl)e l-e (2.19)

with
X, 5 () = iy(oyfdh'DA@'-g)DB@w : (2.20)

This is a convolution of the distributions. When 7 is constant this is the "coherent
droplet model'" of Chou and Yang.3 The qualitative features of (2.18) and (2.19)
hold even if N # 0. DA(b) and DB(b) can be successfully (for N and NN scattering)
estimated by electromagnetic form factors. This approach can be applied to inelastic
scattering with DA(b) interpretated as an operator5 that rearranges the distribution
of A. What is needed are excitation form factors, e.g., yN - N¥,

The qualitative features of a multiple scattering series can be seen using a
Gaussian for X(b) = ice—bz/2R2 which can be justified from Regge theory (where R

depends on s), from statistical mechanics, or pragmatically. It gives

2 2 2 n 2
T(t) = iR {cetR /2 e JERT/A 0 (e) R /2n+..} . (2.21)

22! nn!

When -t is small the series damps rapidly; however, for large -t higher order terms

in the interaction strength ¢ are important. The number of terms that are important

is proportional to ]t}. See Fig. 11. When -t is very iarge the saddle point from
- - 2
the method of least descent gives the envelope e R85 for T. This is the Jaffe
bound. n=1
2
3
ln]Tnl 4
5
(etc.)
Fig. 11 -t
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ITII. ABSORPTIVE FORMULA

1 i i . =
We want to lead up to including Regge poles Suppose Veffective V0+-V1

where V., is weak and V0 has a simple or known form. For instance VO could come from

1

the Pomeron and V, from the charge exchange or isospin dependent part. We have

1
X(b) = Xo(b)+X1(b) where Xl << 1 for all important b. 1In charge exchange this is
satisfied when the energy is sufficiently high. Then
. iX iX iX
T(b) = 1-e™ ¥ 1 O(1tiX)=(l-e )-ie Oxl . (3.1)
Following (1.2) and (1.11), define
L iX,(b)
To(t) =i /ﬁbdeo(b-(-t)z)[l-e ] (3.2)
i, (b)
T,(8) = T-T = /PbdeO(b(-t)z)e X (B) - (3.3)

Equations (3.2) and (3.3) are known as the absorption formula, also called the
Sopkovich~Jackson-Gottfried absorption formula, or the distorted wave Born approxi-
mation because the factor eixo(b) distorts the usual Born formula. TIf T.(t) is
known from the high energy limit of data, then we can invert TO(b) to get eixo(b).
The data on Tl(t) gives Xl(b) since Tl(t) is linear in Xl(b)'

As an illustration consider the black disk approximation in a nucleus.
Figure 12 shows an example of what can occur in impact parameter space. Tl(t) has
the lower partial waves absorbed by the
eiXO(b) factor. Figure 13 shows what Xy
this gives in t space. The JO and Jl b \\uf

contributions are out of phase. This \\\ iXO

phenomena is clearly seen in nuclei. \ éf//

We could get Xl(b) from one 2 N
& Y

particle exchange with amplitude 5 . 0
u -t
It is known that the absorption formulas

describe modifications due to elastic
scattering in the initial and final states. iXO

See Fig. l4. The formalism discussed

above applied to inelastic processes f(
\

like #°p = % n. We would like to extend

-

\
. . - ) . . VQ Xle
it to processes like  p = wn which is 7 N

not really charge exchange unless we R
b—>

invoke SU(6) to equate the n and w. This

is not totally satisfactory. Another Fig. 12
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wo [\ o

~ I (W) \ ! / o=t
w \//// -

L
w = R(-t)*

-t
i Fig. 14

T (%) \ ,Z/\\ [\~
YERYAY

~ I (W

Fig. 13

justification of the application of the formalism to this reaction comes from
2
studying the multichannel version of the problem. Let channel 1 be np and channel

2 be wun. Then we can associate different potentials for different channels,

Tll(np - p): V11

Tzz(wn - wn): V

22
Ty, (P = wn): Vv, . (3.4)
Then
11 Tizy N
T(t) = <; / = i/;deO(b(—t)z)e{;—exp[iz(b)]} (3.5)
21 T22
with X = X0+X1, XO diagonal and Xl off diagonal, << T. 1If we ignore non-commutativity

of elxo(b) and i%l(b), we get

r O
Il(t) = | bdeO(b(-t)Z)e zl(b) . (3.6)
Usually it is assumed that V11 = V22 so %0 = IXO avoids the commutation problem.
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IV. EFFECTIVE POTENTIAL AND OPTICAL MODEL

The formula
T(t) = i/l‘)deO(b(-t)%)[l-eiX(b)} (4.1)

was derived by consgidering the matrix element for the scattering of an elementary

projectile by a composite target.

iX

iy X elem
e =< Ole i

0> (4.2)

We then assumed Xjelem

is independent of s and t, i.e., gi6(b-b1), and built up a
theory of effective two body potentials for composite-composite scattering. The
effective potential has a very simple constituent-constituent scattering "ancestor"
even though it could appear very complicated.

So far the use of potentials was only for motivation. There are other methods
of obtaining the eikonal formula. Later we will discuss a field theory with heavy
vector meson exchange which gives the formula. Note that the potential description
often resembles elastic unitarity so the Schr¥dinger equation is usually interpreted
as keeping only elastic intermediate states. 1In composite theories rearrangements
are important and are equivalent to inelasticity which in fact dominates. The

nuclear optical potential in Glauber theory has much physical content in common

with multiperipheral models. Unitarity gives

ImA =Z ‘/‘ITPP . nlzcmn

In the multiperipheral model T is

pp 7 n
the amplitude shown in Fig. 15. The sum
over lots of intermediate states can give
a Pomeron-like object, i.e.,
A(s,t = 0) ~ iso‘(t) with a(t) ¥ l+et. The
scattering is dominated by inelastic

intermediate states.

In alternate models like Huang's

incoherent droplet model13 hadrons are
considered arrangement of bits. Another Fig. 15

arrangement of p gives p+6nx. N depends

on kinetic energy so this model is a

theory of interaction, not just the states of a p alone. During a collision the
bits mix randomly. To determine the probability of a final state we just count

the number of rearrangements giving the state. If something like this is true,
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then following Glauber, eiX 0 > in (4.2) can be interpretated as a rearrangement of
some of the constituants. Projecting this on < Ol gives the elastic matrix element,
however, many inelastic intermediate states contribute. eiXIO > has a small overlap
with < Ol for small impact parameters. In
Fig. 15 the initial state has the role of
< OI. Both approaches in their simplest

N, *# = excited
versions leave out the process in Fig. 16. % proton
Later we will look at this comparison
again when discussing Regge cuts.

Another way to study the potential T
is to add production processes to non- Pomeron
relativistic potentials.2 This can be Fig. 16
done with the multichannel considerations

discussed previously. Denote 2-body channels by j. Then

(V2+k2)11;1 = Zvljwj (4.3)
J
where the momenta are assumed to be the same in each channel. 1In Ref. 2 it is shown
that we can find an effective potential that includes multichannel effects. 1In
general it is nonlocal. The idea of the proof is to construct Green's function for

the other channels 2,..,n resulting in

veH x1x) =\Zl Vi (DG (10T GO (0BT R) (4.4)
m,n
such that
(¥+k2)¢1 = [Veff(x',x)wl(x')dx' . (4.5)
As the energy increases, we hope that (4.5) approaches V(x)effective-localwl(x).
Recently there has been much interest in field theoretic approaches to the
eikonal model.M-20 The goal is to derive X from a model field theory where

S=expi(X) and X is the Born approximation. The most ambitious attempt is that of H.
1
Cheng and T.T. Wu 8 in electromagnetism. Torgerson's approach14 is to start with

1

the interaction Lagrangian Lin = gW?“WVu to couple spin % to meutral spin 1

t
particles. Elastic scattering of two fermions is then

< finallslinitial > =< flTexp/;4xLintli > (4.6)

which cannot be solved in general. We want the high s limit which supposedly is a
classical limit so we neglect self energy diagrams (the fermion sees only its local

region). Then the only diagrams remaining are those where each vector is emitted
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and absorbed by a fermion. Glauber solved (4.6) within these assumptions in 1951,

getting

<8 >=Z exp{gz/pﬁxx'-x)1 > 4.7

where A is the Born term corresponding to one vector exchange. The assumptions

imply that time ordering is not needed and that the emission and absorptions are

independent.

V. REGGE EXCHANGE

2
Consider a one particle exchange approximation to the amplitude, A ~* “g——
u -t
(See Fig. 17). 1In configuration space this corresponds to a Yukawa potential, i.e.,
in the s channel we see a potential. 1In the
g
t channel this looks like a resonance or
bound state which shows a peak in the cross
s u

section at its mass. Since A does not

depend on cos@t it is an s-wave resonance S
in the t channel. The Chew-Frautschi plots K\—/;i—_'J

have many resonances. We want to include t
a whole family in a Born term like —%—— .
he-t Fig. 17

To do this we use the Regge theory
formalism (ignoring signature, spin, and the possibility of cuts and fixed poles for
now) to get B(t)sa(t) for the amplitude at large s and fixed t. This is the Born
approximation to the potential due to the exchange of the family. If B(t) is slowly
varying then we get ea+bt for the amplitude where b = Psns and b = constant.

This approach gives selection rules on the particle quantum numbers. For

0 .
instance, consider n-p - 5 n. In the t channel the exchanged object must have

isospin 1 so

do

dt

L

2
- Sa(O)l - SZa(O)-Z . (5.1)
t*0 g

The relevant trajectory is that of the p with q(0) * %. Thus the effective spin
of the exchanged object is %. This fits the data very well whereas one particle
exchange does not.

If O?(O) = 1 then the amount of shrinkage of g% as s increases indicates the
slope of the P trajectory on the Chew-Frautschi plot. Sometimes there is shrinkage
and sometimes there is none, suggesting that the trajectory may be flat. This is
supported by the lack of evidence for mesons on such a trajectory. These facts
suggest that the Pomeron is not a Regge pole and should be treated separately. We

will look for a classical description of it.
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VI. HYBRID MODEL OR ABSORPTION MDDEL21

In this model the Pomeron singularity is assumed to come from the droplet model
and to be different from ordinary Regge poles. The potential is a sum of a droplet
model term and Regge terms. The droplet model implies that the Pomeron is a fixed
pole. If we assume that the droplet model holds literally at positive t then it
violates analyticity and unitarity. This can be rectified by a cut which masks the
Pomeron pole in the t > 0 region of the Chew-Frautschi plot. We will not worry about
this since we will apply the model only when t < 0. Note that we are not taking the
radical Regge theory where all the singularities in the physical region of the J
plane are simple moving poles. The Regge picture we will use has the following
features: (not applied to elastic scattering)

1) No resonances in the t channel implies no forward peaks in the s channel
(example, since no doubly charged meson resonances have been seen we expect no peaks
in n+n - n_N++ which is true experimentally).

2) The energy dependence comes from «(0). This we find by extrapolation from
positive m2.

3) Shrinkage of the forward peak in charge exchange scattering.

Competing models such as the coherent droplet model do not give the above
features since they do not have crossing and thus say nothing about the t channel.
The hybrid model gives the above features.

As an example of a hybrid model calculation consider pp — pp and neglect spin
(which is a few percent correction). Suppose there is a Pomeron contribution to the
amplitude AP and a Regge pole contribution AR. Assume that
]2

A= iC[Fp(t) (6.1)

P

where Fp is the electromagnetic form factor of the proton. Any non-magnetic form

factor works. A useful fit is
2
2
F (t) ~ <—E—> (6.2)
p 2
u =t

2 2

with u ¥ 0.7 Gev
(6.1) can be motivated by arguing that the interaction between bits is pointlike
and the the distribution of bits is proportional to the electromagnetic form factors.

We have normalized the amplitude to give

do _ 2

i LICHO R (6.3)
We next assume exchange degeneracy so

Ay = B(ysHE) -1 (6.4)
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which for [w+f0, p+A,] trajectories is real. For small t

2
A_ = 7y exp(a+tb.t)
R 1 (6.5)

B(t) = 7y exp(bzt), b1 = b2+a'jns, 7 =p(0), a = [a(0)-1]gns.

We neglect one particle exchange, such as 5 exchange which contributes a fraction of

a millibarn when s is above 5 GeV. Equations (6.1), (6.2) and (6.5) give the eikomnal

2, 2
X(b) = icb3K3(“b) b s -1 -b%/2R

X (D) +X, (b) (6.6)

where XO is the Pomeron eikonal, Xl is the Regge eikonal, K, is the third order

3

Bessel function of imaginary argument, b is the impact parameter, and R2 = Zbl.

Since Xo >> X1 we can substitute XO and X1 in (3.2) and (3.3) getting

r L —cb3K3(ub)7
o %/b db Jo(b(-t)z) 1-e (6.7)

=3
1]

2 iX_(b)
a(O)-le-bZ/ZR . 0

o]
]

1
1 k/; db Jo(b(-t)z)ys (6.8)

2
J. From (6.7) IT

Fig. 18 and T, becomes to second order in b/R0

1XO

b2 /2R
e can be approximated by [l-ce 0

0]2 has the shape in

2,,.2 2, 2
-b“/2R [1_Ce—b /2Rg ]

1, > 75X fo abg (-0 B

2

Rt 2 2
. a(0)-1 2 % R, t/2
= 7s e c\73 5 /¢ (6.9)
R, R

1

. -2 -2, -
with R2 = R0 +R
Fig. 18 except the dips are displaced

ITllz also looks like

since the Pomeron and Regge pole

contributions (6.1) and (6.4) are out of

phase. |T|2 has the shape given in Ln|T0l2
Fig. 19. As s increases the Regge pole

vanishes and ITIZ - }Tolz, i.e., the dips

get deeper. We shall later study the J

plane singularities which lead to the two

terms in (6.9)

-
O

-t —>

Fig. 18

- 138 -



lanlz

Fig. 19
VII. COMPARISON OF MODELS
The hybrid model resulted from the assumption
ABorn(S,t) - Adroplet model+ARegge pole (7.1)

droplet model 2-24

where A is due to a fixed pole at @ = 1. The Frautschi and Margolig
model used (7.1) replacing the droplet term with a moving Pomeron term. Their
Pomeron is assumed to have a trajectory a(t) = l4+x't and phase [1+e-iﬂa](sinnoo_l,
thus they get elastic shrinkage. It is easy to pass from one model to the other if
a' = 0.

Next we will compare predictions of various models for pp, Eb, pn scattering.
do
dt _
over. The pp curve shrinks as s increases, the pp forward peak expands, and the dip

for pp and Ep is given in Fig. 20. It is important to note that the curves cross

in the Sp curve becomes less pronounced. TFirst consider what simple Regge theory

implies about the cross-over. The Regge contribution to the elastic scattering is

given by
pp = Ptwtf +oth, (7.3a)
PP = P-whf-otA, (7.3b)
pn = P+w+fo-p-A2 (7.3c)

The sign change from (7.3a) to (7.3b) is due to odd signature vector poles. The
sign change from (7.3a) to (7.3c) is due to I=1 poles.
Assume the same trajectory function q(t) = %+at for all but P. Empirically

- ~ ~ 2 .
atot(pp) > 9 t(pp) otot(pn) constant for 3 < s < 20 GeV . The optical theorem
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d
(G

Fig. 20

then implies that Im(p+A2) = Im(-p—Az) independent of s. Since

=i
l-e hi(e

p =~ Bp(t)s

singQ

a(t)

14 17O a(t)
2 sinno BAz(t)s ? (7.4)

>
]

if p =8, then, by (7.4), Im(p+A, ) = 0. If B = p. also then there is cancellation
p A2 2 w f0

of Imw with Imfo leaving only ImP in ctot(pp) and otot(pn). We will assume complete

exchange degeneracy Bp(t) = BA (t), Bw(t) = 6f (t). This is predicted by bootstrap
2 0
schemes and finite energy sum rule.

BA (t) requires a zero at q(t = 0 to cancel a pole in the physical region
2

of n-p - nn. Exchange degeneracy implies that Bp(t

0)
= do, - _ O
0) = 0 so dt(n P st n) should

be 0 at t = to. This is not seen, but we can salvage exchange degeneracy by using

cuts to fill in the dip at t=t In general, to kill ghosts (as in A2) and to

decouple spin flip amplitudes gt nonsense wrong signature points we need zeroes of
B at ¢ = 0,-1,-2,... corresponding to t = -0.5, -1.5, etc.25_27

The cross-over effect in Fig. 20 is not due to nonsense zeroes and not due to
large spin flip cancellation so it remains a mystery in the simple Regge model. The
hybrid model gives it nicely since cancellation of the two terms in (6.9) for some

will give T. = 0. The P term in (7.3a and b) is large and imaginary whereas the

o 1
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0, A2 terms are small. The fo term has the same sign for pp and Ep scattering. The
w term can explain the cross-over if its contribution (plus correction) is positive

for tO < t < 0 and negative for t < t

In general from fits to polarigation data we find that I=1 exchange corresponds
to helicity-£flip and I=0 corresponds to non-flip. The absorptive corrections to
helicity~flip amplitudes are smaller than to helicity non-flip for small t.

The amplitude for the reaction n-p - non is predominantly helicity flip.

The corrections go like tgns. The differential cross section and polarization are

given by
2ImG ,*G
oo g, 2ot &= —F (7.5)
e, | “+le_|

where G_ (G+) is the helicity (non) flip amplitude. If the phase of G+ and G_ are
equal then <Y~= 0. This is the case if only one Regge pole contributes. The simple
Regge model predicts that since only p is exchanged, CP should be 0. Experiments
give<?‘¥ (1545%) for-te[0.1, O.2]GeV2. In the hybrid model the phases of G, and G_
are modified by absorptive corrections. When parameters are fitted to other
reactions, the model gives Fig. 21. The ummeasured part of the polarization curve
is very difficult to measure.

The polarization of the reaction n+p - K+Z+ is easier to measure since the
decay of the Z+ indicates its polarization.28 The relevant trajectories are the
K*¥'s. If we assume exchange degeneracy
and SU(3) symmetry we can use p and A2
parameters. The differential cross section
and the calculated (M. Blackmon, private

communication) and measured polarization

are sketched in Fig. 22. (see next page) T
0.
The break in %% occurs near the point where (jj 5. -t =7
I

(}D is maximum as can be seen from (7.5).
Again exchange degeneracy without absorption
corrections predicts zero polarization.

Now we will study the J plane
singularities corresponding to the two terms

in (6.9). Recall that the Sommerfeld-Watson = 100%*“

transformation of the partial wave series

2 Fl(t)PJ(zt) results in a background

2 Fig. 21
integral, a sum over Regge poles, and

possibly a sum over cuts. The contour

which initially enclosed the positive
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JI+P N K+Z+
dg
in at
3 GeV/c
7 GeV/c
! L
I ]
0.4 0.8 )
-t (GeV )
+1.0
3 GeV/c (typical) data
s*pol. 0
-1.0

Fig. 22
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integers has been opened as shown in Fig.
-34i © L plane
23. A simple pole at £ = ¢q(t) has the

asymptotic behavior in s with t fixed so
a(t
p(t)s M.

Background / dense set of poles. Asymptotically this
Integral
Contour A l;pole

A cut may be represented by a

gives
t
a (1)

f wee,stas , (7.6)

-

where o%(t) is the branch point and W(#,t)
is the discontinuity across the cut which
f has been chosen to lie left of O%(t)' This
can be approximated by % Bn(t)soh(t). The

n
region of the cut away from o%(t) does not

effect the asymptotic behavior so only the
-%-i © discontinuity close to the end point matters.
If the discontinuity is regular at the

Fig. 23 branch point, we may expand W

W,t) = w(ac(t))+(z-ac(t))(g—f- ...

Bo(t)+(z—o%(t)61(t)+ e 7.7)

and substitute in (7.6). Using sa = eo%ns’ this gives

o%(t) aé(t)

A= /WW(L,t)szdL = Bo(t) §Z;g__ + Bl(t)§~———§ +... (7.8
‘ (4ns)

which is normalized so %% = —%lA]z. The series (7.8) converges too slowly for

present experimental energies. However, if we knew the asymptotic behavior of the
amplitude sufficiently well we could deduce the nature of the J plane singularities.
The first term represents a constant discontinuity W. The other terms represent
discontinuities that vanish at the branch point. If the Pomeron is a simple cut

with constant discontinuity, then it produces a total cross section

a (0)
-1 rmags,0y = Lo — (7.9)
op =3 (s, s Ins . .

To compare with the hybrid model, consider the case T = TOPomeranChon
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T charge exchange (CEX) at

1 t=0. Then (6.9) gives

2
cR
%% (s,0) - (1 - _°_> SO (7.10)
N 2

RO +R

The first term represents an ordinary Regge pole; however, since R2 = 2(b2+a'Lns)

is independent of s, the second term, which is a correction term, has the
-lsa(O)-l

and RO

asymptotic form B(0) (4ns) and thus represents a cut. [The normalizations in

(6.9) and (7.8) differ by a factor of so the branch point and Regge pole occur at

2
a(0).] As § - o, R2 ~®, R, RO2 = constant. So for t # O,

2 2
cR0 tRo /2 . a0y -1
a'tns © B(0)s

A(s,t) - - (7.11)

where ltzns‘ >> 1 and ]znsl >> 1. Since the power of s does not vary with t in this

limit, the cut is fixed as shown in Fig. 24 for the case of the p trajectory.
22-24

In the Frautschi-Margolis model with a moving Pomeron, the approximation
1%, -b2 /2R
e = l-ce which was used to derive (6.9) must be replaced by a series of
Gaussians, giving at large (-t)
N n tR 2/n -R (t)%
- 0
Z%—% e se 9 , (7.12)
2
with RO o gns. The moving cuts accumulate to an effective line as shown in Fig. 25.
Most Regge theorists believe that there are cutszg_31 in the J plane on the

evidence from perturbation theory. The first such evidence came from Amati, Fubini
and Stanghellini (AFS) who studied the unitarity diagrams in Fig. 26 and found that
they give a cut whose discontinuity is [ An*An. Mandelstam showed that when Fig. 26
is interpreted as a Feynman diagram, off-mass-shell contributions cancel the cut.
He then found non-planar Feynman diagrams such as Fig. 27, which produced cuts at
the same location as the AFS cuts. Unitarity cannot be used to give the discon-
tinuity so the importance of the diagram is unknown. The absorptive model gives the
cuts in the right position and gives the discontinuity with the correct sign relative
to the pole. The correct sign is important since it produces the dip, the cross-over
effect, and the polarization. Other models such as that of AFS give the wrong sign.
This suggests that the cut is not due to two body unitarity. The multiperipheral
model also gives the wrong sign unless absorption is added in the intermediate
states32 ag illustrated in Fig. 28.

If the absorptive model is correct then it contains non-planar diagrams as
in Fig. 27. For example, in deuteron-deuteron scattering the diagram in Fig. 29

gives a Regge cut according to Mandelstam's argument. It is also the second term in
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Fig. 25

Fig. 27
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Regge poles

Fig. 29
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the multiple scattering series.
Now we will examine in more detail the similarities and contrasts between the
absorption model and unitarity models. We will see that (3.3) resembles elastic

unitarity. Define X, = A1p°1e(s,b) and X0 = 1+iA(s,b). Then (3.2) and (3.3)

become

To(s,6) =\/% deO(b(—t)%)AO(s,b) (7.13)

T (s,0) = /; dbJ (b (-t) )[1+1A (s,b)]A p°le( ,b)

= A1p01e(s,t)+A1C(s,t) (7.14)

where

A1P01e(s,t) = /; deO(b(-t)%)Alp°1e(s,b) (7.15)
and

Alc(s,t) = %/; deo(b(-t)%)AO(s,b)Alp01e(s,b) (7.16)

is a correction term due to a cut. If the elastic contribution A_ is mostly positive
imaginary, then A1 (s,t) has a minus sign relative to A po ( ,EB).

The integral [db was motivated by a discrete sum on . In the s channel Alc

has the expansion

A% =10 ;E‘(2£+1)A0 RO pOIe(s)Pj(zs) (7.17)
)
where
N
Agyy(s) = [dz'ay(s,2B, (2") (7.18)
and
AL §°1e - /; "AP ®(s,amP, (2") . (7.19)
Then (7.16) is ©
Alc = i/éz'dz"Ao(s,z')A1p°1e( ")( ) (24+1)P, (2)P, (z")P (z")] . (7.20)
‘ £=0

L
The term in brackets is the Mandelstam kernel 6(A)/(A)? where

A= zz+z'2+z"2-zzz'-zz'z"-zzz"+l and 6 is the step function. 1In t space (7.20)

becomes

(s £) = /Wt'dt"A (s,t")A, Pole o tmyk(s,t;ttsem (7.21)

which is the absorption or eikonal formula. The Mandelstam kernel K depends on s
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since the Jacobian transforming (7.20) to (7.21) does.
Now compare (7.21) with the results of two particle unitary applied to the
box diagram in Fig. 30. Let B be its

amplitude

B(s) = /119§§§é1 ds' . (7.22)

Two particle unitarity (AFS) gives the

|
A0 l Alpole

absorptive part of B,
Fig. 30

Abs[B(s)] = /:it'dt"AO*(s,t ')Al(s,t")K(s,t sttt (7.23)

which looks similar to (7.21). K is the same, however (7.21) is the whole amplitude
unlike Abs[B]. Also, (7.23) has a complex conjugation of an amplitude which is
mostly imaginary so the sign is opposite.

In (7.23) Alp01e is not necessarily a Regge pole. However, in such a case,

suppose AO ~ sCYO(t)_1 and Ai ~ sal(t)-l. Now K has the property that as s =, it

o

i L
is significant only when(-t'")? + (-t")” < (-t)?. Then

] 0 (£ )40y (£™) =2
A (s,t) —» /;t'dt"s . (7.24)
For large s and small t this gives
o, (0)-1
c s
A (s,0) 70 (7.25)

where o%(O) = Ob(0)+a1(0)-1' The cut has the same position as the AFS model gave
although the sign and magnitude are different. If we take t # 0, the slope of

o%(t) can be found. For instance, if we start with O = o
Oé' = og/Z. We can iterate choosing o = Obp and = ob. The results are shown

= Ob, then we get

in Fig. 31. The cuts are not very interesting for t > 0 since the pole contribution

dominates. If the Pomeron and p are iterated then we get Fig. 32.

2 —— 2 ——
Rest a () Relt

1L+ P o (t
/ 14 ,(t)
o

/ O‘pp = pe

— - a3o
- //////// t —>

Fig. 31 Fig. 32
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To see how important the cuts are consider typical cross sections at

E ~ 20 GeV.

ctotal - 25 mbarns

o .=
elastic

0charge exchange

Oy-exchange

%double charge exchange

10 mbarns

= 70 pbarns

~ 100 pbarns (single p cut)

= 1 pybarns (double p cut).

The last is known to be small for some reactions but could be important for the

diagram in Fig. 33.

We have seen that Alc(s,t) is related to Feynman diagrams in the shape of a

box instead of unitarity diagrams such as
Fig. 30. Mandelstam showed29 that unless
the intermediate particles are held on

the mass shell, the Feynman diagram gives
no cut. For some mysterious reason we

need to throw away the contributions when
the particles are off the mass shell. A
heuristic justification for this is that

if the intermediate particles are composite

and loosely bound, then they can break

Fig. 33

7

up when they are off the mass shell. TIf we assume that the propagators oscillate

wildly off the mass shell, then we need consider only mass shell contributions.

Gribov and Migdal claim that the absorptive part of an amplitude such as in Fig. 26

is less than or equal to the sum over all orders of the non-planar Feynman diagrams

(all crossed graphs)

in Fig. 34. If their argument can be
strengthened then it will provide the
justification.

It was pointed out earlier that the
hybrid model and multiperipheral model
neglect Fig. 16. It was hoped that this
correction is small. The correction to the
cross section has been estimated at about
107%,. Henyey et. 3l.33 try to make the
correction by multiplying AlC by A with

Fig. 34 A2 1. A should be close to 1 since A = 1
gave reasonable results for the cross-over effect, polarization, and %% . IEA>>L
then exchange degeneracy is intolerable and the location of dips in E% depend on s.

- 148 -



Henyey et. gl.33 choose A ® 2 and get secondary peaks in %% from multiple scattering.
Data at higher s may decide which version of the absorptive model is better.

Another way of including absorption is to insert Regge poles in K matrix which
is defined by T = B(l-ipk)—l. B is the Born approximation and has resonance poles.
Poles and cuts are generated by this method; however, more art is needed to explain

data.

VIII. THEORIES OF PRODUCTION

A simple but. unsuccessful model for production is the bremsstrahlung model
which results from assuming that the particles are produced by the legs of elastic
scattering amplitudes as illustrated in
Fig. 35. The amplitude for the diagram is

A (s,t) —&  with A agssumed to be the
¢ s —m2 et

1
mass-shell amplitude, and g the (mass shell)

nN coupling constant. This model works

well in quantum electrodynamics (possibly
because the photon's mass is strictly zero),

but the results of this model are too large

Fig. 35

by at least a factor of ten for sN — nnN.
The main reason for this failure is that the Compton wavelength of the emitted n is
always smaller than or comparable to the interaction radius.

A more successful model is the "“synchrotron radiation model" which is moti-
vated by classical concepts of synchrotron radiation.34 The power radiated in
electrodynamics is proportional to (g;ﬁ)z. We will consider pp — pprx and assume
that in the center of momentum system the protons have classical trajectories that
are arcs of circles of radius p in the interaction region, which is a sphere of
radius R. See Fig. 36. Such a circular trajectory would result if the interaction
region contained a uniform magnetic field.

The impact parameter b(8) is related to
doez

(dcose
The elastic cross section is given classi-

)}, p, and R by the following argument.

cally by dcez = 2xbdb. 1Integrating, we get
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b cosf

el
brabt = | Y9 4coso’ = gbZ (0 8.1
25b'd doos0" cos 7b™ (6) . (8.1)

0 backward
angle

2
When cosf = 1 we want: ubz(O) = xR so b(0) = R. Geometry gives

p(B) = (Rz-bz)%cotg - b(0)

Next we assume the particle has a constant velocity so knowing p(6), we know the
trajectory ¥(t).

Next we postulate an appropriate classical current in the form of
J(;,t) = g&(;—¥(t)) assuming that it is a scalar. The LSZ formalism applied to the

amplitude for the diagram in Fig. 37 gives

(k) = < p,'p,'k;out|p p,;in >

4 ik'x .
N\/ﬂd xe < pl'pz';outlJ(x)[plpz;ln > . (8.3)

We are assuming that J is a c-number so it can be pulled out of the matrix element

leaving

sk ~ < p,'p,"'s0ut|p;p,in > /nd3xelk.x/;tg6(;-;(t)) (8.4)

v

4
= ' v, - [ ' 7
where < | > Aelastic(pl Py ,p1p2)6 (p1+p2 Py'-Py ) is taken from data. If the
interaction Lagrangian for mesons with nucleons is gﬂN¢w75¢, then at large s, -t
with {'s localized in wave packets J is equivalent to gﬁN¢6(§—?(t)) SO we get g=gﬂN
in this region. Other assumptions are needed, for instance we can take for non-

asymptotic t values the replacement

X
t £.))*
Aelastic (518 = (B (5,8 DA,(5:69)) (8.3
to give proper damping in £ and t2. Also we must symmetrize for the initial

- -
protons. Then we can substitute the trajectory r(t) in (8.4) and get S(k). Similar
arguments work for vector meson production.

P There are old data on pp»pﬂﬂ+, ppﬂo, PPHO»

ppwo at 12.5 GeV which agree fairly well

with the model's predictions.

The synchrotron radiation model works only
for large angle production; for small angles
we need to assume more quantum properties. We
have considered a radiation eikonal model.3

The main idea is to interpret the interaction
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Lagrangian g¢J as subtracting probability from elastic scattering. The assumptions

are

1) J=g %;Iw(b,z)lz where ¥ is given by (1.7) (one dimensional motion), and
2 2 2

2) V(b,z) = ilAexp[- ;—— - Z—Ei] = the potential occuring in elastic scattering
R 2R

where 7y = E/M accounts for Lorentz contraction. The appropriate value of g can be
obtained from Adler's self-consistency condition. The § matrix in (8.3) can be
generalized to the case of n meson emission if the emissions are assumed to be

independent:

S(kl,...,kn) =‘/K< pl'pz';out]plpz;in > < jl(xl) >...< jn(xn) >
=3, 1] 5, (k) . (8.6)
i
This can be summed to get
2.n 2.n
2

g ~fdn s 2282 o =~ &) e (8.7)
n J n' n n! n n!

where } is a phase space factor. The total inelastic cross section is
n

. 2
Olnel =30 ~ef Q. The probability of producing n particles is

n
n
o 2 .n 2
n_ (@ o8 0 (8.8)
5o, n! ’ )
n
nl
I . - 2 . . . . 35
Maximizing gives n ~ g O for a Poisson distribution. In Heckman's model,
3
2 _ d’k 2
g o= /w—w-|J(k)l (8.9)

increases as 4ns at large s. This model can be used to calculate differential cross
sections of pp — n+ + anything and pp = p + anything. These are easy to measure
with one armed spectrometers and the data have the general features at fixed s shown
in Fig. 38. The prediction is in excellent agreement at small angles and starts to
differ around angles of 20° in the center of momentum system.

Gundzik has worked on a scheme36 to LAB angle =
0 mrad.

calculate pp — pp using the concepts of the /////”_—__—-—"‘\\\\

above models. 1In the unitarity diagram in 2

Fig. 39, J is the source and sink of the SOk

intermediate pions. The phase of the emitted

pions is important here. Also the similar
diagram with two N* in the intermediate state

is important. Many parameters are needed

in this model.

Another classical theory Fig. 38 LAB
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0 e} of multiple production was constructed by

Landau ten years ago. It is related to

/T*(el)

J(gz) they are assumed to form a symmetrical pill
box containing shock waves. The shock wave
Fig. 39 generates entropy and the flux of entropy

37
is identified with the amount of particles produced. The sequence of events in a

collision is illustrated in Fig. 40. The model predicts n ~ Elab%’ which is not

contradicted by available data.38

'R very hot (®)

_e__a (highly excited) region

.7
-
02
>
(c)
N
\\
,I
e/
Fig. 40
The number emitted with angle 6 is
L L2
1 1\ 2_ 2
dn ~ ce 2((e) =M dn (8.10)

where ¢, c¢' are constants, depending on the initial state and rn = gn(tan@). The
energy flux is given by

1 1, . %
g(C"+n)- g(c )
w(@) ~ e . (8.11)
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Huang's model since the hadrons are consid-

ered to be blobs of gas. When they collide



Hagedorn's fireball model is similar to the above model in the sense that both have a
maximum temperature; however Hagedorn requires arbitrary parameters. Higher energy
accelerators are needed to test these models.

In conclusion classically based models work better than diagrammatic models
do for the above data. This might be expected since high s is expected to give
classical limits. Of course, we may find surprises such as a breakdown of micro-

causality; however the operational point of view says try until we find a problem.

IX. DIELECTRIC SPHERES AND SHARP BOUNDARY MODELS

Consider the scattering of light, of wave number k, by a dielectric sphere of
uniform index of refraction n and radius a in optics. Mie solved this fifty years
ago. When (k) gets large the solution becomes a sum of many Bessel functions.

9
Nussenzweig3 used the Sommerfeld-Watson transformation to study this problem. One

finds a lot of fine structure as is illustrated in Fig. 41. The shape of %% resembles
that of hadron scattering. The peaks occur when db ©, For instance, the backward

de
peak can result from the rays in Fig. 42. The Sommerfeld-Watson transformation for

the limit k — o gives J plane singularities (Regge poles) on the locii in Fig. 43.
The glory effect is due to poles on the curved section of the locii. The effect can
sometimes be observed from an airplane flying over clouds. Sunlight scattered back-
ward from water droplets of the right radius in the clouds can produce bright colored
rings around the shadow of the plane. The color implies that the effect is due to

a backward diffractive process from small droplets.

<

N
do
dQ

\/\—‘—\,—‘ >

Ll

-1 cosf +1
Fig. 41 Fig. 42
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£ plane

e,

Fig. 43

A quick and dirty derivation of the glory effect from a sharp sphere4 is the

following: write the partial-wave expansion

1 N 2i6‘c
= e— } -
£(9) Tik Z_-J(2.6+1)(e l)Pz(cose) . (9.1
£
Since Pj(-z) = (-)LPL(Z), (9.1) becomes
o N 2io, 240, 4
2ikE(6 = n) ~ /. (22+1D) [e -e ]Pz(-cose). (9.2)
£2=0,2,4
2165
If we assume the e is a slowly varying function of £ then the term in brackets

3

can be approximated by St e2165 and (9.2) becomes

£(0 % n) = ;/; deO(b(-u)%) %E[eZia(b)-1] . (9.3)

Compare this with the forward amplitude

; .
£(6* 0) = ik/; deo(b(-t)z)[e216(b)-1] ) (9.4)
Thus the backward peak is related to the forward peak. The prediction works roughly
for the backward peaks of ﬂ+p and K+p but does not work for ﬂ-p and K-p. The s

dependence of the peaks is predicted to be

~1dg,, ~
S 306 % 0) (9.5)
25

which is not strongly violated for such cases. (The assumption that e is slowly

do,, ~
dQ(e )

varying is not good in general.)
A more rigorous approach to the glory effect analogy for backward scattering
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is to use the Regge pole expansion. If the Regge poles on the locii in Fig. 43 are
assumed to occur at (s) = atbs then the backward np peak can be fit.41 The back=-
ward peak in 5C scattering has been studied in a model where the x is internally

42

L
reflected. JO(R(-u)Z) fits the data. M.C. Li has been working on similar appli-

cations.

The sharpness of the edge of the dielectric sphere is very important in
geometrical optics; however, for high s scattering of hadrons, the width of the edge
becomes large. If the analogy holds, then the backward peak should go away.

Suppose there is a discontinuity in n in hadrons, for instance, if they are
droplets with a skin. Then excited states may be surface waves. For instance,
in pp —> pN¥* where N% can be %+(1480), 3/2-(1520), 5/2+(1690), 7/2_(2190), etc., a
simple surface-wave model explains the s and t dependence for the first two and
fails for the second two.45 The matrix element to excite Y M surface wave can be

L
approximated by45 ®

M ~ ¢ M x
= — b .
TL (V) cLYL (2,0) deM(Ab)H(b) (9.6)
0
where H(b) is the distribution of matter in the interaction region (skin) and

i
A = (-t)?. For a nearly-square well potential

H(b) ~ %S (1-e1X(P)y

iX(b
We can assume l-e *(b) is a Gaussian in b and then sum the square of (9.6) over M to
get the cross section. Perhaps this model is discovering systematics that will come

out of someone's dynamics.
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