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1

INTRODUCTION

Examples of thin membranes are very numerous and diverse, from amphiphilic
bilayers to polymerized sheets, biological cell membranes and atomically-thin
two-dimensional materials [1–5]. Although these systems are very different micro-
scopically, they have in common that, in a coarse-grained continuum picture, they
can be represented as two-dimensional (2D) media able to deform and fluctuate
in three-dimensional space. After the progress of renormalization, scaling, and
universality concepts in the theory of critical phenomena, the possibilty to identify
universal properties in the physics of membranes has been the focus of an intense
theoretical research. Already in the 1980s, it was realized that the structural be-
havior of 2D continuum media cannot be completely universal, because it depends
crucially on the degree of internal order, fluid, crystalline, or hexatic, of the matter
composing the system [1, 2]. Fluid layers—such as, for example, non-polymerized
lipid bilayers—were predicted to be always in a highly-entropic "crumpled phase" [1,
4, 5]. The pioneering work of Nelson and Peliti [6] has shown instead that solid
membranes, with a nonzero shear modulus, can remain macroscopically flat, even
in absence of a supporting substrate and of an applied tension, provided that
the temperature is not too large. This crucial theoretical prediction, strikingly
in contrast with a naive application of the Mermin-Wagner theorem [7, 8], can
be traced to a strong suppression of out-of-plane thermal fluctuations induced by
a geometric "frustration" effect: fluctuations with a nonzero Gaussian curvature
generate inevitably a nonzero shear strain and are suppressed by an energy-costly
elastic stress. As a result, for temperatures lower than a crumpling transition
temperature Tc, thermal fluctuations induce a random distribution of ripples, but
do not destroy the macroscopic orientational order of the system [6]. The properties
of the "flat phase", at the same time, are strikingly determined by the presence of
thermal ripples. As it was soon realized, already in the first investigations in the
field, the nonlinear mechanical effects drive the distribution of thermal fluctuations
to a strongly-interacting renormalization-group (RG) fixed point [9–12]. Similarly to
order-parameter fluctuations at a second-order phase transition [13–16], correlation
functions of elastic degrees of freedom (the long-wavelength phonon modes) exhibit
a scale-invariant distribution, controlled by universal non-integer exponents. The
scaling phenomenon translates into singular power-laws in all response functions.
For example, when the system is subject to a small externally applied stress,
the response is not linear: the stress-strain relation is governed by an anomalous
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2 introduction

Hooke’s law ε(σ) ∝ σα [11, 17, 18], governed by an universal noninteger exponent
α.

Following the first pioneering predictions, the anomalous elasticity of freestanding
crystalline membranes has attracted a vast research effort for more than four
decades. The picture of a scale-invariant flat phase, the existence of a RG fixed
point, and the quantitative calculation of critical exponents have been addressed by
complementary field-theoretical techniques (the ε-expansion [10, 19–21], the large-
dc expansion [9, 12, 22], the self-consistent screening approximation [23–25], and
the nonperturbative renormalization group [26–28]) and by numerical simulations
(see, for example, Refs. [4, 25, 29–38]), leading, over the years, to a growing control
over theoretical predictions.
Motivated by phenomenological applications to graphene and other laboratory

realizations of crystalline membranes, numerous analyses have addressed extensions
of the theory including effects of disorder [17, 25, 39–44], a quenched preferred
metric [45, 46], long-range interactions [47, 48], elastic anisotropy [25, 49, 50],
finite-size effects [18, 51–53], fluctuating charge degrees of freedom [54, 55], and
other1.
From the experimental side, an evidence in support of the existence of the flat

phase and the corresponding scaling behavior has been reported in Ref. [56], which
analyzed scattering of light and x rays from an ensemble of spectrin networks
extracted from the membrane of red blood cells. In the context of inorganic sur-
faces and two-dimensional materials, some experiments conducted in the 1990s
explored the conformations of an ensemble of graphite oxide (GO) membranes in
suspension [57–59]. The membranes observed in Ref. [57] had sizes of the order of
microns and estimated thicknesses between 50 and 100 Å. The scattering structure
facture exhibited scale invariance over an order of magnitude of length scales
(between 500 and 5000 Å), but the scaling exponent could not be interpreted via
the roughness exponent expected for the flat phase. In contrast, the data were
interpreted as resulting from a collection of crumpled membranes or a polydisperse
mixture between flat and crumpled membranes. The possibility that the mem-
branes were frozen into non-equilibrium conformations was also not ruled out. The
observation of micrometer sized GO membranes in Ref. [58] indicated evidence of
a crumpled state and a transition to a more compact collapsed structure triggered
by a change of solvent concentrations. The analysis of Ref. [59], however, revisited
measurements of GO by a freeze-fracture method and found, in the non-collapsed
phase, a structure factor with an exponent more close to that expected for a flat
phase. The small interval of wavevector probed in the experiment, however, was
not sufficient to establish the presence of a flat phase in a conclusive way. Other
early-investigated crystalline membranes are for example molybdenum disulfide
(MoS2) and polymerized lipid bilayers (see Refs. [1, 4, 5] for references). In the case

1 The list of contributions in this chapter is very far from being complete.



introduction 3

of partially-polymerized bilayers, the experiments in Ref. [60] provided evidence of
a low-temperature wrinkled phase, which may be induced by quenched disorder
(see also Ref. [19, 43]).

After the isolation of graphene by Geim and Novoselov in 2004, the progress in
fabricating and controlling individual atomically-thin two-dimensional crystals has
offered new opportunities to study anomalous elasticity and scaling phenomena.
Since the binding forces of a substrate and strong external stresses suppress out-of-
plane fluctuations, the critical behavior is expected to be observable in free-standing
or suspended graphene subject to a weak tension. Quantitative estimates and
numerical simulations show that a clean free-standing graphene membrane at room
temperature should exhibit the critical flat phase behavior at all scales larger than
a few nanometers [3, 38, 51, 61, 62] and for tensions smaller than tenths of N/m [17].
Experimentally, the existence of out-of-plane random deformations in suspended
graphene samples has been widely documented [63–74]. The random deformations,
in general, are not only induced by thermal fluctuations, but depending on the
sample preparation and the experiment geometry, can be induced for example by
defects, inhomogeneous stress, and boundary forces. These different effects can
give rise to distorsions with very different wavelengths and aspect ratios. Despite
these difficulties, some experiments have reported on observations of anomalous
effects. For example, Ref. [69] measured the bending rigidity of a micrometer-sized
polycrystalline graphene sample immersed in water at room temperature. The
resulting value was found to be more than 1000 times larger than the microscopic
rigidity of graphene. This strong enhancement of rigidity may be a signature
of nonlinear renormalization effects—the frustration of out-of-plane motion due
to shear elasticity. The renormalization in this case, may not be triggered by
temperature effects, but rather by large static ripples present in the sample,
evidenced by interferometric measurements. Refs. [69, 72] reported on experimental
signatures of an anomalous Hooke’s law in suspended graphene samples subject
to small stress. Evidence of strong fluctuation effects have also been identified
in Refs. [74–77], which explored mechanical and thermodynamic properties of
suspended graphene membranes made defective by controllable ion bombardment.
The experimental reports [69, 72, 74] have indicated that interpretation of data
require an account of static ripples.
In addition to providing new experimental platforms for testing predictions,

two-dimensional materials have opened the way to atomistic numerical simulations.
This approach is made possible by the simple structure of these materials which,
in contrast with a lipid bilayer or a thick graphite oxide system, have a simple
unit cell composed of just a few atoms. Fluctuations of clean graphene samples
have been simulated by complementary techniques, from classical Monte Carlo
and molecular dynamics methods [62, 78] to quantum path approaches [36, 38]. A
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Figure 1.1: Snapshot from a molecular dynamics simulation of graphene (Courtesy of
Jan Los).

snapshot of a fluctuating graphene membrane simulated by a molecular dynamics
method is shown in Fig. 1.1.
The contributions presented in this thesis focus mostly on renormalization

group and field theory methods in disorder-free membranes. Chapter 3 presents
a calculation of the fixed point and the scaling indices at second order in the
ε-expansion. At the moment in which the work was completed, the result was the
first calculation beyond leading order in ε. During the last two years, analyses
developed by other authors have pushed calculations to three- [19, 20] and four-loop
orders in the expansion [21], leading to an improved quantitative control. Chapter 4
investigates a fundamental question: whether the scale invariance emerging at the
fixed point is enhanced to a full conformal invariance. The analysis is performed
to all orders in the ε-expansion and is worked out considering two alternative
dimensional continuations of membrane theory. For both models, the theory is
shown to be scale-invariant but not conformal. This implies that the recently
developed bootstrap methods [79, 80] cannot be straightforwardly applied to
membrane theory. At the same time, the result sheds light in the search for general
connections between scale and conformal symmetries. Chapter 5 presents an analysis
on how quantum mechanical effects affect the low-temperature thermodynamic
of crystalline membrane. Finally, chapter 6, illustrates a theory of fluctuations in
bilayer graphene, obtained by combining a phenomenological model, an ab-initio
calculation of model parameters, and a numerical solution of Dyson equations
within the self-consistent screening approximation. All chapters have been written
by modifying and extending the text of published articles (see page 181 for a list
of publications).

In order to make the reading of the thesis more self-contained, chapter 2 provides
an introduction to the statistical mechanics of thermally-fluctuating membranes.



2

STATIST ICAL MECHANICS OF MEMBRANES

This chapter provides brief introduction to the statistical mechanics of fluctuating
membranes, focused on the physics of the flat phase and, in particular, on the
effects of thermal fluctuations in homogeneous crystalline layers (without defects
and disorder). After discussing the elasticity theory of solid membranes, this
chapter introduces two crucial theoretical predictions, already derived in the first
investigations on the field: the stability of the flat state and the existence of
anomalous scaling behavior. We then review field-theoretical methods for the
description of scaling behavior and the analogies between flexible membranes and
critical phenomena. The quick introduction presented here does not attempt to
provide a complete review of the vast field of fluctuating membranes. The objective
is instead to give a summary of conceptual and methodological aspects used in the
research works of this thesis, which are presented in the succeeding chapters.

Some parts of this chapter have been derived from the article:
Achille Mauri and Mikhail I. Katsnelson, "Scale without conformal invariance in
membrane theory", Nucl. Phys. B 969, 115482 (2021); preprint: arXiv:2104.06859
(2021)
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6 statistical mechanics of membranes

2.1 continuum elasticity theory

In the theory of phase transition and critical phenomena, a crucial phenomenon
is the universality of scaling behavior. Systems with very different microscopic
constituents near a critical point can exhibit identical scaling properties, provided
that they have the same symmetries and dimensionality [14, 81, 82]. For example,
the behavior of an Ising ferromagnet at the Curie point is identical, when looked
upon from a sufficiently large distance, to the critical opalescence of a liquid-vapor
mixture. From a fundamental point of view, universality derives from the fact that
the scaling behavior is induced by thermal fluctuations which have a wavelength
much larger than the atomic scales. The behavior of diverse systems can be thus
analyzed in terms of similar continuum field theories, despite having very different
models at an atomistic scale.
In the theory of fluctuating membranes, similarly, it is useful to analyze a

continuum-medium description, which is simpler than a microscopic dynamical
theory, but still captures the physics of long-wavelength fluctuations [1, 3, 4, 6, 10–12,
19, 22, 25]. For a 2D solid which is able to deform into the three-dimensional space,
the natural continuum-medium model is provided by elasticity theory [1, 6, 83]. In
this framework, the kinematic description of the configurations of the membrane
can be given by introducing a continuous 2D coordinate x ∈ R2, which acts as
a label distinguishing different infinitesimal area elements, and a 3D coordinate
r(x) specifying the location of area elements in 3D space (see Fig. 2.1). A given
function r(x) fixes a specific ’snapshot’ of the system, by assigning the coordinates
of all infinitesimal elements. Although the coordinate x on the manifold could
be chosen arbitrarily [11], for solid surfaces the crystalline structure singles out a
natural choice: the identification of x with the rest coordinates of the atoms in an
undeformed structure. With this convention, x is defined in such way that r(x) = x

when the medium assumes a planar and undeformed configuration. To describe
deformations it is then convenient to parametrize r(x) = (xα +uα(x), h(x)), where
the Greek index α = 1, 2 runs over 2D cartesian components, uα is the component
of the displacement r(x)−x in the direction parallel to the plane, and h(x) the out-
of-plane displacement (see Fig. 2.1). According to elasticity theory, the Hamiltonian
of the deformed medium can be assumed to take the form1:

H = Hcurv +

∫
d2x

[
c
(1)
α1β1

Uα1β1 + c
(2)
α1β1,α2β2

Uα1β1Uα2β2

+ c
(3)
α1β1,α2β2,α3β3

Uα1β1
Uα2β2

Uα3β3
+ ...

]
,

(2.1)

1 More exactly, H could be interpreted as a free energy functional obtained by a partial trace over
microscopic degrees of freedom at fixed h(x) and uα(x). To simplify the notation, the elastic free
energy will be referred to as a Hamiltonian since as usual the partial free energy plays the same
role of an effective Hamiltonian in the Gibbs distribution Z−1 exp[−H/(kBT )] [1, 6, 84].
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Figure 2.1: Schematic representation of a deformed crystalline membrane.

where

Uαβ =
1

2
(∂αr · ∂βr− δαβ) =

1

2
(∂αuβ + ∂βuα + ∂αh∂βh+ ∂αuγ∂βuγ) (2.2)

is the strain tensor2, and Hcurv denotes contributions to the free energy involving
higher derivatives ∂2r, ∂3r, ... The underlying assumption is that the Hamiltonian
can be written as a local functional of strains, which is valid in absence of long-range
forces. Assuming locality, Eq. (2.1) is the most general possible form of free energy
consistent with homogeneity and isotropy of the 3D space.

The conventional choice that r(x) = x in the ’ground state’ at zero temperature
implies that the linear coefficient c(1)

α1β1
must be equal to zero3. The coefficients

c(2), c(3), ... in Eq. (2.1), then play the role of linear and nonlinear elastic moduli,
and encode anharmonic elasticity at arbitrarily high order. For small fluctuations
near a quasi-planar configuration, the dominant effect is due to the leading term
of second order with respect to strain, which is controlled by the coefficient c(2).
The matrix c(2) must transform as an invariant tensor with respect to the discrete
symmetries of the crystal. For hexagonal lattices, this forces the elastic constants

2 The Einstein summation convention is assumed throughout the thesis, and the notation ∂α is
used as a short-hand for ∂/∂xα.

3 Other conventions are possible and often used in the literature (see, for example, Refs. [11, 12,
26, 41]). For example, a choice could be to define the reference point in such way that r(x) = x
at a given temperature T . Any choice of parametrization gives the same physical results.
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to be actually fully isotropic under all continuous rotations4 [83]. As a result, in
the Hamiltonian H = Hcurv +Hel, the elastic contribution can be approximated as

Hel =
1

2

∫
d2x
[
λ(Uαα)2 + 2µUαβUαβ

]
. (2.3)

The coefficients λ and µ are, respectively, the first Lamé modulus and the shear
modulus.
For 2D membranes which are able to deform into three-dimensional space it is

essential to take into account not only the elastic energy but also a stiffness to
extrinsic curvature [1, 10]. An energy term describing resistance to curvature can
be written as [1, 10]

Hcurv =
κ

2

∫
d2x(∂αn · ∂αn) , (2.4)

where κ is the bending rigidity and n(x) is, for each point of the membrane, the
local normal to the surface. The specific form of curvature energy is not unique.
Another form which is often considered in the literature is [22, 26]

H ′curv =
κ

2

∫
d2x(∂2r)2 . (2.5)

For small deformations, both Hcurv and H ′curv reduce to the same expression,
κ(∂2h)/2. The difference between the two terms, thus, is unimportant, at least when
the membrane is in its low-temperature "flat phase" (see Sec. 2.2), characterized
by small deformations with respect to a planar state.
When the membrane is not free but subject to an externally-imposed in-plane

tension σ, the free-energy includes an additional term coupling tension with the
in-plane displacement [18, 41, 52, 85]. For small in-plane strain and within an
"isotensional ensemble" this term can be written as5

Hσ = −σ
∫

d2x ∂αuα . (2.6)

For small deformation Hσ can be equivalently interpreted as a coupling of the form
−σ(A‖ − A), where A is the rest area of the membrane and A‖ the area of the
projection of the membrane on the xy plane.

The overall energy can thus be modelled, collecting elastic, tension, and curvature
terms as

H =
1

2

∫
d2x
[
κ(∂2r)2 + λ(Uαα)2 + 2µUαβUαβ − 2σ∂αuα

]
. (2.7)

4 See Ref. [49, 53] for theories of anisotropic crystalline membranes.
5 The "isotensional ensemble" is the 2D analogue of the conventional fixed-pressure, fixed-

temperature ensemble in three-dimensions: the tension is fixed and the area is allowed to fluctuate.
Most analyses in this thesis focus on membranes subject to a vanishing tension and with free
boundaries, which are expected to be captured by an isotensional ensemble with σ = 0. For an
analysis of the complementary "isometric" ensemble see Ref. [18].
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An essential property of H is that, after expansion in terms of uα and h it is
nonlinear : the strain elasticity terms give rise to terms of the type ∂u(∂h)2 and
(∂h)4. These nonlinearities arise even if, as in Eq. (2.7), the energy is expanded only
up to the Hookean order. The reason is that the very definition of the strain tensor
Uαβ , which is dictated by rotational invariance, is a nonlinear expression when
expanded in terms of uα and h. These nonlinearities of purely geometric origin are
responsible for driving some of the most important phenomena in membrane: the
stability of a flat phase and scaling behavior.

2.2 flat phase and crumpling transition

At finite temperature, the partition function Z and the thermal averages can
be computed by using the free energy (2.7) as an effective Hamiltonian in the
Gibbs probability distribution P = Z−1 exp[−H/(kBT )]. The statistical mechanical
behavior of this model has been investigated extensively for more than three
decades6, and is briefly introduced in this chapter.
A crucial prediction, already derived in the first theoretical investigations [1,

6, 9, 10], is that 2D crystalline membrane can exist, even for vanishing external
tension σ = 0, in a thermodynamically-stable "flat phase", characterized by
an extended, macroscopically planar, state. This strikingly contrasts with one-
dimensional polymers and two-dimensional fluid membranes [1, 4, 23], which for
zero tension are always "crumpled" manifolds, even at an arbitrary low temperature
(see Fig. 2.2). The very nontrivial character of this prediction can be appreciated
by noticing the following analogy [1]. After identification of the local normal vector
n(x) with a Heisenberg spin, the bending rigidity term κ(∂αn)2/2 plays a role
analogue to an exchange stiffness tending to align the spins. Since for σ = 0 the
membrane model is completely isotropic, we can thus make a parallelism with a
fully-symmetric Heisenberg model without an applied magnetic field. It is well
known that the Heisenberg model in two dimensions remains paramagnetic at
arbitrarily low temperature: in the thermodynamic limit, the spins are disordered
and the average magnetization in vanishing field is zero for any T > 0 [15]. The
phase structure of membranes, instead, includes a flat phase and a crumpled phase
and thus realizes the analogues of ferromagnetic order and a paramagnetic state.

Why crystalline membranes behave so differently from the 2D Heisenberg model
can be explained by two different reasons. First, the local normal n(x) cannot
fluctuate arbitrarily as if it was a localized spin, because the condition that n(x)

is orthogonal to the surface imposes additional constraints [1, 86]. Secondly, the
out-of-plane fluctuations which tend to disorder the flat phase are suppressed not
only by the bending stiffness but also by elastic strain energy, an effect which has no

6 See, for example, Refs. [1, 3, 4, 6, 9–12, 18, 19, 22, 23, 25–28].
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Figure 2.2: Qualitative structural behavior of crystalline membranes in the flat phase (a)
and in the crumpled phase (b). The arrows represent unit vectors normal to the surface.
In the flat phase, the vectors are ’ferromagnetically’ ordered, while in the crumpled phase
they are decorrelated beyond a coherence length. Membrane theory predicts that the flat
phase is stable below a finite transition temperature Tc. Above Tc, the system behaves as
a crumpled manifold. (Figure redrawn from [4]).

analogue in the spin model. The suppression of out-of-plane modes derives from the
fact that most curved configurations must inevitably induce a local elastic strain.
If we imagine to consider a fixed profile of out-of-plane displacement, specified
by a function h(x), it is in general impossible to choose in-plane displacements
uα(x) in such way that the total deformation has zero strain at each point. This
follows directly from the fact that uα(x) provides two degrees of freedom while
Uαβ(x) = 0 requires the solution of three constraints (one for each independent
components of the symmetric 2×2 matrix Uαβ) [1]. This results in a frustration of
thermal out-of-plane fluctuations and a suppression of their amplitude [1, 6]. A
mathematical basis for describing this frustration effect is provided by the Gauss’s
Theorema Egregium, which relates components of extrinsic and intrinsic curvatures.
As a consequence of the theorem, deformations for which the Gaussian curvature
K(x) = det

[
(n · ∂α∂βr)

]
is nonzero must inevitably present a position-dependent

strain field and, thus, a nonzero elastic energy7 [6, 87].
The elastic strain fields induced by out-of-plane deformations propagate at a

distance, leading to effective long-range forces. For this reason, the theory of
crystalline membranes does not fulfill the assumptions of the Mermin-Wagner
theorem [7, 8, 11, 25, 88]. Despite being two-dimensional, the membrane exhibits
at low-temperatures, extended orientational order.
To make the discussion quantitative, it is necessary to solve the statistical me-

chanical problem explicitly. As in many field-theoretical calculations, it is useful to
consider, instead of the physical case of 2D membranes in three-dimensions, the
more general problem of a D-dimensional manifold embedded in d-dimensional

7 For an introduction to differential geometry methods in membranes see for example Chap. 7 of
Ref. [1].
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space. The derivation of the Hamiltonian for arbitrary dimensionalities remains
almost identical to that in Sec. 2.1. The in-plane displacement field uα(x), how-
ever, becomes a D-dimensional vector and similarly all Greek indices become
D-dimensional cartesian components. The out-of-plane field h(x), which is a scalar
in the physical case, becomes promoted to a vector h(x) ∈ Rdc with dc = d−D com-
ponents. The free energy (2.7) remains then valid, with r(x) = (xα + uα(x),h(x)),
and Uαβ(x) = (∂αuβ + ∂βuα + ∂αh · ∂βh + ∂αuγ∂βuγ)/2, where ∂αh · ∂βh denotes
the scalar product in dc-dimensional space8.

2.3 harmonic approximation

For a system with finite size in the limit of very low temperatures, the amplitudes
of fluctuations are small and the anharmonic effects are suppressed. In this case,
the theory can be well described by a harmonic approximation. In the framework of
the isotensional ensemble [18], we assume that the tension σ is fixed while the total
projected area of the system is free to fluctuate. The harmonic fluctuation theory is
then derived by expanding the Hamiltonian H at quadratic order near its minimum.
Explicit calculation shows that the minimum occurs at h = 0, uα(x) = (ξ(0)−1)xα.
The extension factor ξ(0) describes the macroscopic stretching of the membrane in
the zero-temperature limit of the model (2.7), and is fixed, for small strain, by the
zero-temperature equation of state

(Dλ+ 2µ)(ξ(0) − 1) = σ , (2.8)

which is the linear Hooke’s law. Expansion of the free energy at the minimum then
gives, at quadratic order and for ξ(0) ' 1, the Hamiltonian

H(2) =
1

2

∫
dDx

[
κ(∂2h)2 + σ(∂αh · ∂αh) + κ(∂2uγ)2

+ (λ+ µ)(∂αuα)2 + µ(∂αuβ)(∂αuβ)
]
,

(2.9)

which describes, at linearized level, the fluctuations of non-uniform modes of
uα(x) and h(x). The equipartition theorem then shows that, at finite temperature
T , the amplitude of in-plane and out-of-plane fluctuations in Fourier space are,
respectively9,10:

8 A less straightfoward adaptation is needed if the bending rigidity is described by a term κ(∂αn ·
∂αn)2/2 because the unit vector normal to the surface n(x) loses meaning in general dimension
D 6= 2, d 6= 3. However, as shown in Ref. [10], the product ∂αn · ∂αn can be rewritten in terms
of the components of the curvature tensor. The expression in terms of curvature has a natural
extension to generic dimensionality.

9 The Latin indices i and j run over Cartesian components of dc-dimensional space.
10 In a model in which the bending rigidity is not represented as κ(∂2r)2/2 but modeled via a term

involving the square of the extrinsic curvature tensor [10], the fluctuation spectrum of in-plane
modes does not contain the contribution κq4, but only the elastic stiffness terms.
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〈uα(q)uα(−q′)〉 = (2π)2δ(q− q′)D(0)
αβ (q) ,

〈hi(q)hj(−q′)〉 = (2π)2δ(q− q′)G(0)
ij (q) ,

D
(0)
αβ (q) =

kBTP
L
αβ(q)

κq4 + (λ+ 2µ)q2
+
kBTP

T
αβ(q)

κq4 + µq2
,

G
(0)
ij (q) =

kBTδij
κq4 + σq2

.

(2.10)

In Eq. (2.10), PLαβ(q) = qαqβ/q
2 and PTαβ(q) = δαβ − PLαβ(q) are longitudinal and

transverse projectors. The fact that both amplitudes diverge for q → 0 reflects
the gapless nature of acoustic phonons, which play the role of Goldstone modes
associated with the spontaneously-broken translational invariance (the energy does
not depend on h and uα but only on their derivatives). The fluctuation spectrum
of the h field, furthermore, shows that when σ = 0, the dispersion of out-of-plane
modes becomes doubly soft [11, 25, 61, 88–90]: it diverges as q−4 and not as q−2.
This stronger divergence can be traced to the fact that when σ = 0 the system
presents, in addition to translational invariance, also rotational symmetry in the
d-dimensional ambient space. This symmetry is spontenaously broken by the flat
phase, which develops long-range orientational order. The out-of-plane phonon
field h then plays the role of a Goldstone fluctuation associated not only with
translational symmetry but also with the broken rotations. As it was already noticed
by Lifshitz in 1952 [89] the broken rotational symmetry forces the dispersion to be
doubly soft.
Although the harmonic approximation could be a valid description for finite

size systems at small T , the strong infrared (IR) singularities generated by the
small q behaviors in Eq. (2.10) destroy its validity in the thermodynamic limit.
The failure of the linearized theory becomes evident, for example, if we try to
use the Hamiltonian (2.9) to estimate the value of the projected area A‖ at finite
temperatures. Using the thermodynamic relations of the fixed-tension ensemble
A‖/A ' 1 − ∂G/∂σ and the harmonic approximation to the Gibbs free energy
density G = −A−1kBT lnZ gives [18]

A‖
A
' 1 +

σ

λ+ 2µ/D
− dc

2

∫
dDq

(2π)D
kBT

κq2 + σ
. (2.11)

For zero applied tension, the reduction of the projected area [11, 18, 72, 85, 91]

A‖
A

= 1− dc
2

∫
dDq

(2π)D
kBT

κq2
(2.12)

reflects physically the fact that out-of-plane undulations tend to shrink the average
size of the membrane in the planar directions (see Fig. 2.3).
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Figure 2.3: Schematic representation of the contraction of the area: at finite T , the
thermally excited out-of-plane undulations reduce the projected extension in the xy
plane [11, 18, 72, 85, 91].

The difficulty with this harmonic theory is that in the physical dimension D = 2,
the integral (2.12) is infrared divergent. This seems to indicate that the flat phase
is unstable at arbitrarily small T , similarly to systems obeying the Mermin-Wagner
theorem. In fact, as it has long been realized [1, 6, 12], the flat phase is physically
stable, but can only be described by a theory which goes beyond the harmonic
approximation.

2.4 momentum-shell renormalization group

The effect of anharmonic interactions can be understood by using an analysis based
on Wilson’s momentum-shell renormalization group [18, 51]. At low temperatures,
the smallness of undulations allows us to approximate [1, 6, 10–12, 41]

(∂2r)2 ' (∂2h)2 ,

Uαβ ' uαβ =
1

2
(∂αuβ + ∂βuα + ∂αh · ∂βh)

(2.13)

and, thus, to replace the full model (2.7) with the Hamiltonian

H =
1

2

∫
d2x
[
κ(∂2h)2 + λ(uαα)2 + 2µuαβuαβ − 2σ∂αuα

]
. (2.14)

The neglected terms can be shown, in fact, to be irrelevant in the flat phase, in the
sense of the perturbative renormalization group and within an ε-expansion11 [10–
12].

The Hamiltonian (2.14) contains anharmonic interactions of order h4 and uh2,
but is a quadratic function with respect to the in-plane displacement field uα(x).

11 See Sec. 2.5 and chapter 3 for a discussion on the ε-expansion.
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It is thus convenient to integrate out explicitly the fluctuations of uα(x), which
can be done exactly via the calculation of a Gaussian functional integral. Similarly
to the theory of compressible magnets, the Gaussian integration over uα requires a
careful separation between uniform modes of ∂αuα (with momentum q = 0) and
non-uniform fluctuation parts (with Fourier components at non-zero momentum
q 6= 0) [1, 18, 85]. In the isotensional ensemble, the zero mode u0‖

αβ of the strain
tensor (∂αuβ+∂βuα)/2 is integrated out without constraints and the integral over its
components has the effect to remove all interactions with zero momentum transfer [1,
18]. The remaining integral over the nonuniform in-plane displacement fields gives
rise, instead, to an effective quartic interaction for out-of-plane undulations. After
integration, the effective field theory for h fields reads [6, 10, 23, 25]

Heff = − Aσ2

2(λ+ 2µ/D)
+

1

2

∫
q

(κq4 + σq2)|h(q)|2

+
1

4

∫
k1,k2,k3

Rαβ,γδ(q)k1αk2βk3γk4δ

(
h(k1) · h(k2)

)(
h(k3) · h(k4)

)
,

(2.15)

where h(k) are Fourier components of h, k4 = −k1 − k2 − k3,
∫
k

=
∫

dDk/(2π)D

denotes momentum integration, and A is the total area (in D dimensions, the
total D-dimensional volume). The bare vertex function Rαβ,γδ(q) depends only
on the momentum transfer q = k1 + k2 = −k3 − k4 and is given by Rαβ,γδ =

bNαβ,γδ + µMαβ,γδ, with b = µ(Dλ+ 2µ)/(λ+ 2µ),

Nαβ,γδ(q) =
1

D − 1
PTαβ(q)PTγδ(q) , (2.16)

Mαβ,γδ(q) =
1

2
(PTαγ(q)PTβδ(q) + PTαδ(q)PTβγ(q))−Nαβ,γδ(q) . (2.17)

The effective interaction (2.15) describes quantitatively the geometric frustration
effect described in Sec. 2.2. After fixing a given configuration of the out-of-plane
displacement field h(x), it is impossible in general to adjust the in-plane displace-
ment field uα(x) in such way to make the strain uαβ(x) vanish at all points. The
non-vanishing strain induced by out-of-plane fluctuations results in the nonlinear
interaction, quartic in h(x), expressed in the second line of Eq. (2.15).

The solution of the nonlinear model by renormalization group methods presents
a close analogy to the theory of critical phenomena [13–16, 81]. The RG equation
can be derived by the following sequence of steps12. (i) Integrating out modes
within a momentum shell e−`Λ < |k| < Λ, where Λ is the maximum wavenumber
in the system (of the order of the inverse of the lattice spacing). After integration,
the initial microscopic Hamiltonian is mapped to an effective theory for slowly

12 More generally, the RG transformation could be defined as a combination of a scale transformation
and a general nonlinear change of field variables [92].
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varying modes with momenta |k| < e−`Λ, where the effects of short-wavelength
modes are encoded in a renormalization of effective interactions. Following step
(i), the renormalization group transformation is defined by two additional steps:
(ii) rescaling momenta as q = e−`q′, and (iii) rescaling the field as h(q) =

e`(D−∆)h′(q′) [13, 14]. After steps (i), (ii), and (iii), the microscopic Hamiltonian is
mapped to an effective Hamiltonian Heff(`), dependent on the scale factor `, which
lives in the same space of the initial Hamiltonian (it has the same cutoff Λ and
the same number of degrees of freedom) [93], but which physically describes the
system when regarded with a resolution and a magnification lowered by a factor e`.
Similarly to the theory of critical phenomena, it is sufficient to consider simple

truncated forms of the Hamiltonian Heff(`) to obtain a qualitatively correct solution
of the theory. In the simplest approximation, it can be assumed that Heff(`) has the
same functional form of Eq. (2.15), but with renormalized, `-dependent, parameters
κ(`), b(`), µ(`), σ(`). With this assumption, it can be shown that renormalized
parameters evolve with scale according to the differential RG equations13,14

dκ

d`
= −ηκ+

2aDkBT (b+ (D − 2)µ)ΛD−2

κΛ2 + σ
,

dσ

d`
= (2− η)σ ,

db

d`
= (4−D − 2η)b− aDdckBTb

2ΛD

(κΛ2 + σ)2
,

dµ

d`
= (4−D − 2η)µ− 2aDdckBTµ

2ΛD

(D + 1)(κΛ2 + σ)2
.

(2.18)

where η = 4−D + 2∆ is the anomalous dimension, and

aD =
2(D + 1)

D(D + 2)

Γ(D/2)

(4π)D/2
. (2.19)

The structure of Eqs. (2.18) can be understood as follows. The first terms on the
right hand side of Eqs. (2.18), which do not depend explicitly on T , describe simply
the effect of rescaling lengths and field amplitudes. The anomalous dimension η can
be chosen arbitrarily without changing physical predictions of the theory but, as in

13 For derivations (in different notations and field-theoretical schemes) see Refs. [18–20, 51].
14 Eqs. (2.18) are derived by computing one-loop Feynman diagrams illustrated in Fig. 2.4, assuming

that internal lines are confined to the momentum shell e−`Λ < |k| < Λ. Since in the differential
form of the RG flow the width of the momentum shell is infinitesimal, the one-loop calculation
is in fact exact within the framework of perturbation theory. Indeed, each loop in a Feynman
diagram corresponds to a free momentum integration. Thus diagrams with L ≥ 2 loops are
suppressed by powers of (d`)L and do not contribute to the differential equation. Eqs. (2.18) are
however approximate due to the truncation of the action. The one-loop structure is a general
property of momentum-shell implementations of the RG and also emerges in exact formulations of
the renormalization group such as the Wegner-Houghton RG [94] and the Wetterich equation [95].
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Figure 2.4: Feynman graphs determining the renormalizations of the bending rigidity
and elastic constants expressed in Eqs. (2.18). The solid line represents the propagator
of flexural fields G(0)

ij (k) = kBT/(κk
4 + σk2), the curly line the nonlinear interaction

(kBT )−1Rαβ,γδ(q)k1αk2βk3γk4δ.

the theory of critical phenomena, needs to be set to a special value in order for the
RG to exhibit fixed points. The terms proportional to kBT on the right-hand side
of Eqs. (2.18) describe, instead, renormalizations induced by the interplay between
anharmonic effects and thermal fluctuations and can be explicitly calculated by
evaluating the Feynman diagrams in Fig. 2.4. The equations show that, due to the
interaction of fluctuations, the bending rigidity κ becomes enhanced by nonlinear
effects, while the elastic moduli, represented by b and µ become softened. The
direction of these renormalization can be intuitively understood by an analogy
with the familiar properties of a sheet of paper [1, 74]. Compared to a perfectly flat
sheet, a corrugated sheet of paper which is on average flat but presents random
buckles is much easier to stretch: pulling the system from one side generates a
dilatation of the in-plane projected area by "ironing" the ripples rather than
by stretching the molecular bonds. At the same time, a buckled sheet of paper
presents an enhanced stiffness to curvature, and for strong buckling can hold its
own gravitational weigth [1, 74]. The same occurs in corrugated iron roofs [1], which
receive a strong enhancement of the effective bending rigidity from the interplay
between elasticity and their geometrical shape.
Differently from κ, b, and µ, the external in-plane tension σ does not receive

corrections from fluctuations: the self-energy diagram (a) in Fig. 2.4 vanishes
as q4 where q is the momentum, and does not contain a term proportional to
q2 corresponding to a tension renormalization. This property can be traced to
rotational invariance and the related Ward identities [11, 12, 18] (see Sec. 2.5).
To solve the RG equations, it is convenient to introduce the couplings

b̂ =
kBTbΛ

D−4

κ2
, µ̂ =

kBTµΛD−4

κ2
, σ̂ =

σ

κΛ2
(2.20)

which are dimensionless quantities for any D. The anomalous dimension η can be
chosen in any conventional way without modifying the physics of the system [14].
To study membranes with small external tension, it is convenient to choose

η =
2aD(b̂+ (D − 2)µ̂)

1 + σ̂
, (2.21)
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in such way that, by Eq. (2.18), dκ/d` = 0. The RG flow can thus be rewritten as

dσ̂

d`
= (2− η)σ̂ ,

db̂

d`
= (4−D − 2η)b̂− aDdcb̂

2

(1 + σ̂)2
,

dµ̂

d`
= (4−D − 2η)µ̂− 2aDdcµ̂

2

(D + 1)(1 + σ̂)2
,

(2.22)

where η is fixed by Eq. (2.21).
Eq. (2.22) shows immediately that the surface σ0 = 0 is invariant under the RG

flow. This is a consequence of the fact that for zero external in-plane tension, the
system is symmetric under rotations in d-dimensional space15. Since symmetries
are preserved under renormalization, if σ0 = 0 initially, it must remain zero at each
step of the RG trajectory.
When restricted to the surface of rotationally-invariant theories, the RG flow

takes, for D < 4, the form illustrated in Fig. 2.5. There are four fixed points,
denoted as P ′1, P ′2, P ′3, P ′4 at which the renormalization group flow stops [18–20,
51]. At these points, the theory becomes scale-invariant: it remains equal to itself
under a change of length scale. The coordinates and anomalous dimensions at the
four fixed points are listed in table 2.1.

b̂ µ̂ η

P ′1 0 0 0

P ′2
4−D

(dc+4)aD
0 2(4−D)

dc+4

P ′3 0 (D+1)(4−D)
(4(D2−D−2)+2dc)aD

2(D−2)(D+1)(4−D)
4(D2−D−2)+2dc

P ′4
4−D

(2D2−2D+dc)aD

(D+1)(4−D)
2(2D2−2D+dc)aD

D(D−1)(4−D)
(2D2−2D+dc)

Table 2.1: Coordinates of fixed points and corresponding anomalous dimensions. The
values of the anomalous dimensions are exact at first order in ε = 4 −D [19, 20]. For
D = 2 and dc = 1, P ′2 and P ′4 have, in this approximation, η = 4/5 [18, 51].

A generic solid membrane with nonzero shear modulus is described by an initial
theory having b 6= 0 and µ 6= 0. If the temperature T is small, the model is very
close to the "Gaussian fixed point" P ′1, which is the harmonic approximation.

15 More precisely, after taking the small-undulation approximation, the theory is invariant under
the transformations h→ h+Aαxα, uα → uα −Aαxα, which are linearized versions of rotations
in the d-dimensional embedding space [1, 10, 11]. See Sec. 2.5 for a discussion of the symmetries
of the small-undulation approximation.
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P′1

P′2

P′3

P′4

µ̂

b̂

Figure 2.5: RG flow for tensionless membranes (σ0 = 0). The figure represents the flow
functions (2.22) in the case D = 3.99, dc = 1.

However, after many iterations of the RG transformations, the effective theory
flows, independently of the initial conditions, to the fixed point P ′4. As a result, in
the limit of large length scales and small wavevectors, thermal ripples are governed
by an effective theory which is universal, independent on the temperature and the
material parameters [1, 6, 9–11, 26]. Furthermore, being a fixed point, the model
described by P ′4 is scale-invariant16. Scaling arguments can be used to show that
correlation and response functions behave in the limit of long wavelengths and
small tension, as power laws with universal non-integer exponents. In particular,
the correlation function 〈hi(q)hj(−q′)〉 = (2π)Dδ(q− q′)Gij(q) behaves, for zero
applied tension and q → 0, as Gij(q) ∝ δij/|q|4−η∗ where η∗ is the anomalous
dimension at the fixed point. Higher-order correlations are also scale-invariant
in the long-wavelength limit: the n-point function 〈hi1(q1)hi2(q2)...hin(qn)〉 =

(2π)Dδ(q1 +q2 + ...+qn)G
(n)
i1i2...in

(q1,q2, ...,qn) satisfies the self-similarity relation

G
(n)
i1i2...in

(ρq1, ρq2, ..., ρqn) = ρD−n(D−∆)G
(n)
i1i2...in

(q1,q2, ...,qn)

= ρD−
n
2 (D+4−η∗)G(n)

i1i2...in
(q1,q2, ...,qn) .

(2.23)

16 In the physical case D = 2, the tensor Mαβ,γδ(q) vanishes identically and thus the coupling
constant µ becomes redundant. In the limit D → 2, the two fixed points P ′2 and P ′4 remain formally
distinct, but their anomalous dimensions approach the same limiting value. The coalescence of
the two fixed points implies that both P ′2 and P ′4 can be regarded as alternative continuations of
the theory from dimension D = 2 to a general dimensionality. The use of P ′2 as a dimensional
continuation is discussed in detail in chapter 3.
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As mentioned in Sec. 2.2, an essential consequence of scaling behavior is that,
differently from the harmonic model, the full nonlinear theory admits a stable
flat phase in the thermodynamic limit, which spontaneously breaks rotational
symmetry and which exhibits long-range orientational order [1, 6, 10, 12]. This can
be seen by noticing that, within the small undulation theory (2.14), the average
projected area is given by the relation [11, 12, 18, 22, 41, 51, 85, 91]

A‖
A

= 1 +
σ

λ+ 2µ/D
− 1

2
〈(∂αh · ∂αh)〉 = 1 +

σ

λ+ 2µ/D
− 1

2

∫
q

q2Gii(q) . (2.24)

This expression can be derived, for example, by applying the Hellmann-Feynman
theorem A∂G/∂σ

∣∣
T

= 〈∂H/∂σ〉 to the Hamiltonian (2.15). For zero tension σ = 0,
the anomalous dimension η∗ > 0 makes the integral

∫
q
q2Gii(q) convergent in the

thermodynamic limit, even in dimension D = 2. This ensures the stability of a flat
phase at sufficiently low temperatures [11, 12, 18, 25, 41, 85, 96].

Since renormalization softens the elastic constants b and µ, the effect on in-plane
translational order is opposite: rather than stabilizing the crystalline order, they
lead to an enhancement of the amplitude of fluctuations. Eq. (2.18) implies in
particular that the physical elastic constants bR(q) and µR(q) (coarse-grained
but expressed in standard units of measurements, without rescaling) vanish as
bR(q) ∝ q4−D−2η∗ , µR(q) ∝ q4−D−2η∗ where q is the momentum scale [10, 11]. As a
result, the propagator of in-plane displacement fields Dαβ(q) scales as 1/q6−D−2η∗ ,
which is more infrared-singular than in the harmonic approximation D(0)

αβ ∝ 1/q2

(see Eq. (2.10)).
Scale invariance and the existence of a fixed point also imply that the response

functions are governed by universal power law. An important example is the stress-
strain relation, which can be accessed by experiments on suspended graphene [69,
72]. It can be shown that in the limit of a very small external stress σ → 0, the
ordinary linear relation becomes replaced by an anomalous Hooke’s law : the strain
ε(σ) scales for σ → 0 as ε(σ) ∝ σ1/γ where γ = (2− η∗)/(D − 2 + η∗) [11, 12, 18,
41, 51, 85].

2.4.1 External tension

The RG equations (2.18), (2.22) show that the external tension σ is a relevant
perturbation: a deviation from the "critical surface" σ = 0 grows under scaling. This
reflects the fact that a membrane under stress behaves in the long-wavelength limit
in a very different way from a tensionless membrane. In the case of tensile stress,
σ > 0, tension has the effect to suppress the amplitude of out-of-plane fluctuations
by introducing the "mass" term σk2 in the dispersion G−1

ij (k) = δij(κk
4 +σk2). For

σ < 0, instead, the applied stress is compressive and tends to buckle the membrane
out of plane. For this reason the equilibrium phase of tensionless membranes can
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also be interpreted as the critical state associated with a "buckling transition" [11,
18, 52] separating the regimes σ > 0 and σ < 0. The role played by tension in the
phase diagram has some analogy with the role of an applied magnetic field in a
spin system below the Curie point [11]. The buckled state with σ < 0 (a 2D solid
subject to lateral compression) however is much more complex [11] that a spin
system with negative magnetic field, which is just the mirror image of a system
with positive field17.

2.4.2 Remarks

In most applications of RG approaches, locality plays an essential role [14–16, 81].
Since the effective Hamiltonian (2.15) is not local, the applicability of RG theory
may appear problematic. Actually, the effective interaction Rαβ,γδ(q)k1αk2βk3γk4δ

×(h(k1) · h(k2))(h(k3) · h(k4)) is not a generic fourth order coupling: in real
space, it corresponds to a long-range interaction between two local composite
operators. By using a Hubbard-Stratonovich (HS) transformation, the model can
thus be expressed by an effective theory having only local vertices. A more explicit
derivation will be described in chapter 3, where it is shown that the line of theories
with µ = 0 and b 6= 0 can be represented by a quasi-local model, involving an
auxiliary scalar field χ, proportional to the Airy stress function. A similar derivation
could be used in the case µ 6= 0, b 6= 0. In this case, the HS transformation could
be achieved by introducing an auxiliary tensor field. After HS transformation,
standard RG methods can be applied18.
As a second remark, note that the integration over the field uα is a simple

step only due to the small-undulation approximation 2.13. In the full theory (2.7),
integration over uα would generate instead a complex model, with infinitely many
non-local vertices. The analysis in Sec. 2.5 shows that terms beyond the small-
undulation approximation are in fact irrelevant in the ε-expansion. This justifies
the application of standard RG methods to the non-local model19.

17 See, for example, Refs. [18, 83, 97–99] for discussions of buckling, wrinkling, and other elastic
instabilities.

18 The coupling matrix Rαβ,γδ(q) has a non-analytic dependence on q proportional to q−4. Thus,
after Hubbard-Stratonovich transformation, the kinetic term (∝ q4) of auxiliary fields is local (see
Chap. 3). Note, however, that in the framework of perturbation theory, standard RG methods can
be applied even to theories in which propagators are non-local but interaction vertices are local
(see for example Refs. [15, 100] for a discussion in the context of magnetic phase transitions).

19 A systematic analysis of the full theory (2.7) is a complex task. This problem has been addressed,
for example, by a large-d method in Ref. [9] and by non-perturbative renormalization group
approaches in Refs. [26–28].
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2.5 perturbation theory and the ε-expansion

The picture of a scale-invariant flat phase has been corroborated by numerous
field theoretical techniques, such as the ε-expansion [10–12, 19, 20, 96], the large-d
expansion [9, 22, 96], the self-consistent screening approximation [23–25], and
the nonperturbative renormalization group [26–28]. These techniques are closely
analogue to similar methods in the theory of critical phenomena and provide a basis
for a systematic expansion of the scaling index η. The next sections summarize
the main results obtained in the literature by these complementary techniques,
starting from the ε-expansion method.

As in the case of second-order phase transitions [14–16, 81, 101] the ε-expansion
is based on the fact that the critical fixed point approaches the Gaussian fixed
point at a certain dimension Duc (the upper critical dimension). The scaling index
η is thus small near Duc and can be expanded in powers of ε = Duc − D. The
upper critical dimension Duc is determined by a stability analysis of the Gaussian
fixed point: for D > Duc the harmonic approximation is stable and anharmonic
effects are irrelevant while for D < Duc anharmonic effects become relevant and
drive the RG flow away from the Gaussian fixed point.
In the case of the flat phase of crystalline membrane, the scaling behavior of

propagators implies that the canonical dimensionalities [15] of in-plane and out-of-
plane displacement field are respectively {uα} = (D − 2)/2 and {h} = (D − 4)/2.
It is then simple to check that for D > 4 all anharmonic interactions consistent
with translational and rotational invariance are irrelevant. For D < 4, instead,
the anharmonic interaction (∂αh · ∂αh)2 and other are relevant at the Gaussian
fixed point. The upper critical dimension20 is, therefore, Duc = 4 [10] and the
ε-expansion is a series expansion of η(D) in powers of ε = 4−D.
Similarly to the Ginzburg-Landau theory [101], the series coefficients η(D) =

η1ε+η2ε
2+... can be computed from a Feynman graph expansion of any theory in the

universality class of the flat phase fixed point. In order to discuss the perturbative
series, it is useful to start from the model membrane Hamiltonian (2.7) (adapted to
general D = 4− ε and dc 6= 1). After the field rescalings h→ h̄ = (

√
κ/(kBT ))h,

uα → ūα = κ/(kBT )uα, the reduced Hamiltonian H = H/(kBT ) reads, in the case
of zero external stress

H =
1

2

∫
dDx

[
(∂2h̄)2 + α0(∂2ūα)2 + λ0(Ūαα)2 + 2µ0ŪαβŪαβ

]
, (2.25)

where λ0 = kBTλ/κ
2, µ0 = kBT/κ

2, α0 = kBT/κ and

Ūαβ =
1

2

(
∂αūβ + ∂βūα + ∂αh̄ · ∂βh̄ + α0∂αūγ∂β ūγ

)
. (2.26)

20 That Duc = 4 is evident in the RG flow expressed in Eq. (2.18) and in the coordinates of the
fixed points in table 2.1.
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A simple dimensional analysis shows that h̄ has the units of q(D−4)/2 while ūα has
units qD−3, where q is a wavevector scale21. Since H, appears in the exponential
of the partition function e−H, it must be dimensionless. Matching dimensionalities
shows that λ0 and µ0 have dimension q4−D, while α0 has dimension q2−D.
As a result, near four dimensions, λ0 and µ0 are weakly relevant while α0 has

a negative canonical dimension ≈ −2 and, thus, is irrelevant. According to the
general theory of the field-theoretical ε-expansion [15], the canonically-irrelevant
interactions are not essential for the calculation of the exponents and can be set
equal to zero without changing the structure of universality classes near D = 4

and the values of the exponents to all orders in powers of ε.
It is thus possible to set α0 = 0 and to analyze the effective model

H =
1

2

∫
dDx

[
(∂2h̄)2 + λ0(ūαα)2 + 2µ0ūαβ ūαβ

]
, (2.27)

with ūαβ = (∂αūβ + ∂β ūα + ∂αh̄ · ∂βh̄)/2. This effective theory is identical to the
small-undulation Hamiltonian introduced in section 2.4, which contains only the
relevant and marginal part of propagators and interactions. The irrelevance of α0

near four dimension thus shows that the small-undulation theory actually remains
to all orders in the ε-expansion [10–12].

2.5.1 Symmetries of the effective Hamiltonian

The neglection of the irrelevant parameter α0 induces a "deformation" of the
symmetries of the Hamiltonian [10, 11]. The full model (2.25), before neglection of
α0, is symmetric under translations and rotations of the membrane in d-dimensional
space. The corresponding infinitesimal transformations read, in terms of rescaled
fields h̄ and ū,

h̄′(x) = h̄(x) + B⊥ , (translations in ⊥ space)

ū′α(x) = ūα(x) +B‖α , (translations in ‖ space)
h̄′l = h̄l + E⊥lmh̄m , (rotations in ⊥ space)

ū′α = ūα + E
‖
αβ(xβ + α0ūβ) , (rotations in ‖ space){

h̄′(x) = h̄(x) + Aα(xα + α0ūα(x))

ū′α(x) = ūα −Aα · h̄(x)
. (mixed rotations)

(2.28)

In Eqs. (2.28), B⊥, B‖α, and Aα are fixed, space-independent, vectors and E(⊥)
lm =

−E⊥ml, E
‖
αβ = −E‖βα fixed antisymmetric matrices.

21 The unit of the in-plane field, qD−3, differs from the power-counting dimension q(D−2)/2 because
in the Hamiltonian (2.25) the propagator of ūα is not canonically normalized: the part of the
action quadratic in ūα is multiplied by factors λ0 and µ0 which are not dimensionless.
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The effective Hamiltonian (2.27) obtained by neglecting irrelevant operators is
instead invariant under{

h̄′(x) = h̄(x) + B⊥ + Ē⊥ · h̄ + Aαxα

ū′α(x) = ūα(x) +B
‖
α + E

‖
αβxβ −Aα · h̄(x)

, (2.29)

which is the α0 → 0 limit of (2.28)22,23.
The Ward identities [10, 11, 15] imply that order by order in the perturba-

tive expansion (2.27), the effective action Γ[h̄(x), ūα(x)], generating functional of
one-particle irreducible correlation functions, is also invariant under the transfor-
mations (2.29).

2.5.2 Diagrammatic rules, Ward identities, and infrared divergences

The elasticity theory defined in Eq. (2.27) has a perturbative expansion described
by the Feynman rules illustrated in Fig. 2.6.

Figure 2.6: Feynman rules for the elasticity theory of crystalline membranes. Solid and
wiggly lines represent propagators of the h̄ and of the ūα field respectively. The model
has a three-leg vertex, corresponding to interactions of the form (∂ū)(∂h̄)2 and a four-leg
vertex corresponding to (∂h̄)4.

22 For compactness, Eq. (2.29) is expressed by collecting together the action of independent generators.
The notation Ē · h stands for the vector E⊥lmhm.

23 The invariance of the effective Hamiltonian under the transformation (2.29) was derived in
Refs. [10, 11].
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Some of the most crucial properties of the perturbative series can be understood
by explicit inspection of diagrams after calculating the fundamental "building
block"

= −(b0Nαβ,γδ(q) + µ0Mαβ,γδ(q))k1αk2βk3γk4δ ,

(2.30)

which is identical to the effective interaction obtained by integrating out the in-
plane displacement fields (see Eqs. (2.16), (2.17)). The tensors Nαβ,γδ and Mαβ,γδ,
being constructed from transverse projectors, annihilate the component of k1, k2,
k3, and k4 which is longitudinal to the momentum transfer q. Since, by momentum
conservation, k1 + k2 = −k3 − k4 = q, it follows that the vertex (2.30) vanishes
as k2

i when one of the momenta ki (i = 1, ..., 4) tends to zero at fixed q.
This simple property provides the basis of how the Ward identity is realized

diagrammatically. In any one-particle irreducible (1PI) diagram [15], each external
solid line which is attached to an internal curly line comes with a factor k2

i of
its momentum. The substitution (2.30) can be applied to all internal dashed and
wiggly lines a part from those internal dashed lines which, when cut, disconnect the
diagram (see Fig. 2.7). As a result, it can be checked by inspection of diagrams that
the effective 1PI action24 must take the form Γ[h̄(x), ūα(x)] = Γ[∂α∂βh̄(x), ūαβ(x)].
In other words, Γ is a (generally nonlocal) functional of the strain tensor ūαβ(x)

and of the curvature tensor. This ensures consistency with the Ward identities
associated with the transformations (2.29).

A particular case of the Ward identities is an analogue of the Goldstone theorem
ensuring that the ultrasoft behavior of flexural phonons is preserved to all orders
in perturbation theory [11, 25, 85, 88]. The exact propagator of out-of-plane
phonons, including all diagrammatic corrections, is determined by expanding the
effective action Γ at second order in h̄ at its minimum. The minimum occurs
for h̄ = 0, ūα = (ξ − 1)xα or any other configuration obtained by application of
the symmetries (2.29). After setting the value of ξ by the condition ∂Γ/∂ξ = 0,
the expansion of the effective action cannot contain terms linear in ūαβ . As a
result, the fluctuation free energy at quadratic order in h̄(x) receives contributions
only from curvature terms and is suppressed by four gradients. In Fourier space
Ḡ−1
ij (q) = δijq

4g−1(q), where g−1(q) is a non-analytic function of q.

24 The 1PI effective action is the generating functional of one-particle irreducible correlation functions
(self-energies and proper vertices) [15]. It can be defined as the action which, when used at tree
level (without loop diagrams), effectively gives the full correlation functions of the bare theory
including all loop corrections.
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Figure 2.7: Examples of one-particle irreducible diagrams. The diagrams are suppressed
by two powers of k1, k2, k3, k4 whenever one of these momenta tends to zero. The
dashed lines on the right side of the diagrams cannot be combined according to the
substitution (2.30) because the corresponding diagrams with wiggly lines would not be
one-particle irreducible. The sum of the two diagrams gives a contribution to the effective
action at first order in the strain ūαβ and fourth order in the curvature ∂α∂βh̄.

The massless character of flexural phonons gives rise to infrared divergences
which destroy the perturbative expansion for any ε > 0, similarly to the case of
critical phenomena [16]. For example, the self-energy diagram at one-loop order
evaluates to [25]

(2.31)
The flexural propagator obtained by N insertions of this self-energy diagram scales
as q−4−Nε and, for N large, becomes more and more singular. As a result, at order
≈ 2/ε in perturbation theory, insertion of the dressed propagator as a subdiagram
generates divergences in all correlation functions25.
Within the ε-expansion, however, correlation functions can be defined via a

double series, expanding not only in coupling constants but also in powers of ε [15].
In the double series, q−ε ≈ 1 − ε ln q + ε2 ln2 q/2 − .. is replaced by powers of
logarithms and the infrared singularities disappear.

2.5.3 Renormalization within the dimensional regularization scheme

For ε→ 0 the theory behaves as a renormalizable model with dimensionless coupling
constants, which can be studied by renormalization theory. The RG equations
were first derived by Aronovitz and Lubensky using dimensional regularization
and minimal subtraction [10]. As in any renormalizable field theory, divergences
can be removed by adding one counterterm for each local interaction which (i)
is consistent with symmetries and (ii) is relevant or marginal according to power
counting [15].

25 The same phenomenon occurs in the theory of phase transitions [16].



26 statistical mechanics of membranes

In the case of membranes, the Ward identities associated with the spontaneously-
broken symmetries (2.29) imply that the model can be renormalized by considering
the renormalized Hamiltonian [11, 96]

H̃[h̃, ũα] =
1

2

∫
dDx

[
Z(∂2h̃)2 +Mεgλ(ũαα)2

+ 2Mεgµũαβ ũαβ + 2r0ũαα
]
.

(2.32)

In Eq. (2.32),M is an arbitrary wavevector scale, Z, Gλ, Gµ, and r0 are functions of
the dimensionless renormalized coupling constants λ̃, µ̃, and ũαβ = (∂αũβ +∂β ũα +

∂αh̃ · ∂βh̃)/2 is the renormalized strain tensor. The counterterm r0ũαα encodes
the change of average area induced in the membrane by thermal fluctuations. For
membranes with free boundaries, it is always possible to remove the contribution∫

dDxr0uαα from the Hamiltonian by a change of variables of the form ũα →
ũα + εxα [11]. This shows that the value of r0 has no effect on correlation functions
but only on the value of the average area. Furthermore, power-counting shows
that r0 diverges quadratically, in contrast with Z, Gλ, and Gµ, which diverge
logarithmically. Within dimensional regularization, therefore, it can be taken
formally equal to zero [11, 15, 81].
The renormalized Hamiltonian is therefore

H̃[h̃, ũα] =
1

2

∫
dDx

[
Z(∂2h̃)2 +Mεgλ(ũαα)2 + 2Mεgµũαβ ũαβ

]
. (2.33)

Correlation functions calculated with the Hamiltonian (2.32) are finite for ε →
0 when expanded in powers of the renormalized coupling constants λ̃ and µ̃.
Comparing Eq. (2.27) with (2.33) shows that bare and renormalized quantities are
related as [10, 11]:

h̄ =
√
Zh̃ , ūα = Zũα , λ0 =

Mεgλ
Z2

,

µ0 =
Mεgµ
Z2

, H̃[h̃, ũα] = H[h̄, ūα] .

(2.34)

Renormalization group equations follow, as usual, from the fact that bare correlation
functions are independent of M [10, 11]. After introduction of the RG functions

η =
∂ lnZ

∂ lnM

∣∣∣
λ0,µ0

, βλ =
∂λ̃

∂ lnM

∣∣∣
λ0,µ0

, βµ =
∂µ̃

∂ lnM

∣∣∣
λ0,µ0

, (2.35)

the RG equations read[
∂

∂ lnM

∣∣∣
λ̃,µ̃

+ βλ
∂

∂λ̃

∣∣∣
M,µ̃

+ βµ
∂

∂µ̃

∣∣∣
M,λ̃

+
(n

2
+ `
)
η

]
G̃

(n,`)
i1..in;α1...α`

(k1, ..,kn;q1, ..,q`) = 0 .

(2.36)
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In Eq. (2.36), G̃(n,`)
i1..in;α1...α`

(k1, ..,kn;q1, ..,q`) denotes the renormalized correlation
function with n external h lines and ` external uα lines.

The RG coefficient functions η, βλ and βµ are, by definition, dimensionless and
thus can only depend on λ̃, µ̃, and ε, but not on the scale parameterM . In addition,
the coefficient functions can be extracted, via the RG equation (2.36), from the
knowledge of renormalized correlation functions, which are finite. As a result, η,
βλ, and βµ must also be finite26 when ε→ 0.

The RG functions, the fixed points, and the corresponding anomalous dimensions
have been calculated at one-loop order in Refs. [10, 11]. Over the last two years,
the calculation has been extended to two [19], three [20], and four [21] loops. The
flow of coupling constants in the one-loop approximation reads

βλ = −ελ̃+
dc

16π2

(
λ̃2 + λ̃µ̃+

1

6
µ̃2

)
+

5

8π2

λ̃µ̃(λ̃+ µ̃)

λ̃+ 2µ̃
,

βµ = −εµ̃+
dc

96π2
µ̃2 +

5

8π2

µ̃2(λ̃+ µ̃)

λ̃+ 2µ̃
,

η =
5

16π2

µ̃(λ̃+ µ̃)

λ̃+ 2µ̃
,

(2.37)

and is illustrated in Fig. 2.8.
For membranes with generic elastic constants, RG trajectories connect the

Gaussian fixed point P1 to an infrared-attractive interacting fixed point P4 [10,
12].

A different behavior emerges on the lines µ0 = 0 and B0 = λ0+2µ0/D = 0, which
describe, respectively, membranes with zero shear modulus and zero compression
modulus. For these special values of the bare elastic constants, the theory presents
additional symmetries [11]. When µ0 = 0, the model is invariant under the shift
uα → uα+ sαβxβ for any traceless matrix sαβ . For vanishing bulk modulus B0 = 0,
the theory is instead invariant under uniform compression (uα → uα + `xα) or,
more, generally under the transformation uα → uα + τα for any vector field τα
satifsying the conformal Killing equation ∂ατβ + ∂βτα = 2δαβ(∂γτγ)/D [11, 102]27.
The flows restricted to these lines terminate at two different fixed points, P2 and
P3

28. Physically, the line µ0 = 0 and the fixed point P2 have been associated to

26 The finiteness of RG functions is a general property of all renormalizable field theories (see, for
example, Refs. [15, 81]).

27 This symmetry is not equivalent to the usual notion of conformal invariance intended in CFT:
the conformal transformation, here, does not act on the coordinates x, but, rather, acts as a shift
of the field itself. In two dimensions with λ0 + µ0 = 0, the linear model of in-plane displacement
fields is also conformal in the standard CFT sense if uα is regarded as a collection of scalars (see
Ref. [103]).

28 The line µ0 = 0 corresponds, to all orders in perturbation theory, to the line µ̃ = 0, as it can
be verified by inspecting the structure of Feynman diagrams. The curve in the (λ̃, µ̃) plane
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P1

P2

P3

P4

B0 = 0

λ̃

µ̃

Figure 2.8: Renormalization group flow for the flat phase of crystalline membranes at
one-loop order [10].

fluid membranes29 [10, 11]. The line B0 = 0, instead, has a physical counterpart,
for example, in two-dimensional twisted kagome lattices [102].

Coordinates of fixed points at one-loop order are reported in table 2.2, together
with the more recent four-loop result obtained in Ref. [21].

When the renormalized couplings are fixed to the coordinates (λ̃∗, µ̃∗) of the
infrared-stable fixed point P4, the RG equations (2.36) imply that correlation
functions exhibit scaling behavior. In particular the flexural Green function behaves
asGij(q) ∝ δijq−4+η∗ [11]. The in-plane Green function, instead, exhibits the power-
law behavior Dαβ(q) ∝ q−6+D+2η∗ . Consistently with the discussion in Sec. 2.4,
these results ban be interpreted as a power-law divergence of the scale-dependent
bending rigidity κR(q) ∝ q−η∗ , and as a power-law softening of elastic constants
λR(q) ∝ q4−D−2η∗ , µR(q) ∝ q4−D−2η∗ .

corresponding to B0 = 0, instead, is less straightforward to express explicitly. In Ref. [11],
which used a renormalized bulk modulus as fundamental coupling constant, this line corresponds
simply to B̃ = 0. However, defining minimal subtraction with λ̃ and µ̃ as couplings reshuffles the
parametrization of renormalization constants in a non-trivial way. At leading order in perturbation
theory the curve B0 = 0 corresponds to the line λ̃+ µ̃/2 = 0. Already at two loop order, however,
the coordinates of the fixed point P3 can be seen to lie outside of this line. In Ref. [19], this was
interpreted as an artifact of the renormalization scheme. It is likely in fact that the RG-invariant
manifold B0 = 0 is not a straight line, but, rather, a curve (λ̃, µ̃) plane.

29 A difficulty in this interpretation, however, is that the elastic energy associated with transverse
waves is exactly zero for vanishing shear modulus, and higher-derivative terms of the form (∂2u)2,
neglected in the theory, could play a role [104].
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λ̃∗ µ̃∗ η∗ η∗(order ε4)

P1 0 0 0 0

P2
16π2ε
dc

0 0 0

P3 − 48π2ε
dc+20

96π2ε
dc+20

10ε
dc+20

0.952ε
2 − 0.071ε2

4 − 0.069ε3

8 − 0.075ε4

16

P4 − 32π2ε
dc+24

96π2ε
dc+24

12ε
dc+24

0.96ε
2 − 0.0461ε2

4 − 0.00267ε3

8 − 0.002ε4

16

Table 2.2: Coordinates of fixed points and corresponding anomalous dimensions at leading
order in the ε-expansion. The last column shows the value of the exponents at four-loop
orders for dc = 1 [21].

Before concluding this section, let us comment on the relation between the fixed
points P1, P2, P3, P4 in the (λ̃, µ̃) plane and the fixed points in the (b, µ) plane
derived in Sec. 2.4. The infrared-stable fixed point P4, which has a nonzero shear
and bulk modulus, is equivalent to the fixed point P ′4 in the (b, µ) plane of the
effective theory (2.15), discussed in Sec. 2.4. Similarly, the fixed points P3 and P ′3
can be viewed as equivalent representations of the same theory: the model of a
membrane with zero bulk modulus and finite shear modulus.

The fixed points P2, instead, has no counterpart in the effective field theory (2.15).
It only appears in a model describing both in-plane and out-of-plane fields ex-
plicitly [19]. Indeed, P2 lives on the line µ = 0, which is mapped to an effective
theory in which both b and µ are equal to zero. Conversely, the fixed point P ′2
which emerged in the analysis of Sec. 2.4 has no analogue in the space of elasticity
theories, and only exists in the space of effective theories.
In the physical dimension D = 2, however, the theories P ′2 and P4 become

identically equivalent and, thus, P ′2 can be used as an alternative dimensional
continuation providing the basis of an ε-expansion (see chapter 3).

2.6 large-d expansion

In full analogy with the large-N expansion in the theory of phase transitions [15, 16,
105], the exponents of crystalline membranes can be computed systematically in the
limit in which the fluctuating fields have a large number of components, that is, when
the dimension d of the embedding space tends to infinity [9, 11, 22, 23, 25, 41, 96]. It
is usually assumed that the expansion parameter playing the role of 1/N in the usual
large-N expansion is 1/dc, since dc = d−D is the number of components of the h

field. The value of η∗ within the large-dc theory for the physical internal dimension
D = 2 has been determined at first order already in the early investigations on
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crystalline membranes [9, 12], and has been extended to second order in a recent
analysis [22], which lead to η∗ = 2/dc + (78− 68ζ(3))/(27d2

c) ≈ 2/dc − 0.32/d2
c .

Differently from the ε-expansion, which starts from a quasi-harmonic theory, the
large-dc expansion has as a starting point a zero-order theory in which interactions
are already screened by fluctuations via diagrams of the form

After screening, the coupling constants become momentum-dependent and behave
as

bR(q) =
b0

1 + c1(D)b0qD−4
, µR(q) =

µ0

1 + c2(D)µ0qD−4
, (2.38)

where c1(D) and c2(D) are positive constants dependent on the dimension [12,
22, 25, 41]. For q → 0, or equivalently for infinite elastic constants, the screened
interactions become independent on parameters and scale-invariant with exponent
q4−D. As a result, in analogy with other applications of large-N techniques [15, 105],
the 1/dc expansion becomes free of infrared divergences and renormalizable in any
dimension, including the physical dimensionality D = 2. In this renormalization,
the finite value of the coupling constants plays the role of an ultraviolet cutoff,
which sets the starting point of the renormalization group [41].

Besides providing a tool for the computation of η∗, the large-dc expansion has
been used in Refs. [17, 22, 41] to describe mechanical nonlinearities induced by
fluctuations, the anomalous Hooke’s law, and the response to anisotropic external
stress.
In Ref. [9], a first-order large-d technique has been used to investigate the

theory of membranes in a formalism which does not involve the small-undulation
approximation30. By considering the limit of infinitely large elastic constants, in
analogy with the nonlinear sigma model, the authors derived a RG flow exhibiting
for large κ the divergence κR(q) ≈ q−η∗ characteristic of the flat phase, and for a
critical value κ = κc a fixed point corresponding to the crumpling transition.

2.7 self-consistent screening approximation

By adapting a method introduced by Bray in the theory of magnetic transi-
tions [106], Le Doussal and Radzihovsky have proposed an approximate theory
based on a set of truncated Dyson equations in which screened interactions and
self-energy corrections are determined self-consistently [23, 25]. In diagrammatic
language, the "self-consistent screening approximation" (SCSA) consists in the

30 In this case, the expansion parameter was considered to be 1/d and not 1/dc.
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Figure 2.9: Diagrams defining the self-consistent screening approximation.

resummation of Feynman graphs illustrated in Fig. 2.9, which are akin to the GW
diagrams in electronic structure theory. Explicitly, the summation of diagrams
gives (in standard units of measurement and for zero applied tension), the following
set of equations [25]

Gij(q) =
kBTδij
κR(q)q4

, (2.39)

bR(q) =
b

1 + (D + 1)bkBTI(q)
, µR(q) =

µ

1 + 2µkBTI(q)
(2.40)

κR(q) = κ+
2kBT

q4

∫
k

(bR(k) + (D − 2)µR(k))

(D − 1)

(PTαβ(k)qαqβ)2

|k− q|4κR(k− q)
, (2.41)

I(q) =
dc

(D2 − 1)

∫
k

(PTαβ(q)kαkβ)2

k4|k− q|4κR(k)κR(k− q)
. (2.42)

In the long-wavelength limit q→ 0, the zero-order terms become negligible with
respect to the self-energy corrections and Eqs. (2.40), (2.41) can be approximated
as

bR(q) =
1

(D + 1)kBTI(q)
, µR(q) =

1

2kBTI(q)
, (2.43)

κR(q) =
2kBT

q4

∫
k

(bR(k) + (D − 2)µR(k))

(D − 1)

(PTαβ(k)qαqβ)2

|k− q|4κR(k− q)

=
D

(D + 1)q4

∫
k

(PTαβ(k)qαqβ)2

|k− q|4κR(k− q)I(k)

(2.44)

Eqs. (2.42) and (2.44) admit a power-law solution κR(q) = z1q
−η∗ , I(q) =

1/(z2q
4−D−2η∗), where z1 and z2 are constants, and the exponent is fixed by

the relation [25]

dc =
D(D − 1)Γ(2− η∗)Γ(2− η∗/2)Γ(η∗/2)Γ(D + η∗)

Γ(2−D/2− η∗)Γ((D + 4− η∗)/2)Γ(D/2 + η∗)Γ((D + η∗)/2)
. (2.45)
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In dimension D = 2, the equation is exactly solvable and gives a value of the
scaling exponent

η∗(D = 2, dc) =
4

dc +
√

16− 2dc + d2
c

, (2.46)

which reduces, for the physical dimensionality dc = 1, to η∗ = 4/(1 +
√

15) ' 0.821.
If the bare elastic moduli are not generic but, instead, b = 0 or µ = 0, the

equation (2.45) for the exponent acquires a different prefactor and gives different
solutions corresponding the the dimensions of the fixed points P ′2 and P ′3 [25]. The
SCSA equations for the fixed point P ′2 will be discussed in more detail in chapter 3.
In Ref. [24], the SCSA method was been pushed one step further by including

the leading vertex corrections. By a numerical solution of the integral equation, the
value of the exponent for physical dimensionality D = 2, dc = 1 was determined to
be, at the next SCSA order, η∗ ' 0.789.

2.8 nonperturbative rg approaches and numerical simula-
tions

The problem of determining quantitatively the value of the exponent η∗ has also
been addressed by nonperturbative RG techniques [26–28, 42, 50, 107]. In particular,
Ref. [26] analyzed nonperturbatively the renormalization of an elastic membrane
described by a Hamiltonian

H =

∫
dDx

[
Z

2
(∂2r)2 + u(∂αr · ∂βr− ξ2δαβ)2 + v(∂αr · ∂αr−Dξ2)2

]
. (2.47)

Assuming as an approximation that the effective average action remains of the form
at each step of the RG flow (2.47), the theory allowed to describe, within a single
space of coupling constants, the flat phase and the crumpling transition. For the
flat phase and in the physical case D = 2, dc = 1, the resulting exponent was found
to be η∗ ' 0.85. The analysis has been extended by considering more general forms
for the effective average action, including a non-locality of elastic couplings [27,
28]. The flat-phase exponent was found to remain close to η∗ ' 0.85, indicating the
stability of the nonperturbative RG results with respect to the truncation of the
action. However Ref. [35] predicted, by a combination of numerical simulations and
momentum-shell RG, a value of the exponent η∗ ' 0.793, with a small estimated
error bar.
Besides RG methods, another important tool to access scaling behavior is

provided by direct numerical simulations of correlation functions [25, 29–32, 34,
35, 37, 38, 78, 108, 109]. Investigations of fluctuating membranes by computer
simulations have been ongoing for several decades. Several works [29, 30, 108] have
analyzed network models mathematically designed to provide a discretization of
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the continuum theory. In more recent years, the discovery of graphene and other 2D
materials has raised an extensive interest in simulating atomically-thin membranes
within realistic microscopic models [31, 34, 37, 38, 78].

Results of computer methods provide full information on momentum-dependent
correlation functions, and can be used in particular to extract the exponent
η∗ controlling the long-wavelength scaling regime in the flat phase. The values
η∗ ' 0.750 [4], 0.81 [29, 30], 0.85 [31, 34], 0.66 [37], 0.85–0.88 [38] have been
reported by different works in the literature. In Ref. [32] a Fourier Monte Carlo
method lead to the prediction η∗ = 0.795(10).
Within analytical field-theoretical methods, a ’high-precision’ determination

of scaling indices remains an open problem. In the framework of the NPRG, a
systematic derivation could be given by extending the derivative expansion to
higher and higher order [19]31. Calculations within the derivative expansion, are
however, more technically complex than ε-expansion and large-dc computations.
For this reason, it is interesting to get access to values of the exponents at higher
order in the ε-expansion. This direction will be discussed in more details in Chap. 3.

2.9 weak to strong-coupling crossover

It is physically intuitive that lowering the temperatures T has the effect to reduce
the amplitude of thermal fluctuations and, thus, the strength of anharmonic effects.
The scaling phenomenon, however, implies that the low-temperature limit is realized
in a very nontrivial way. As T approaches 0 for fixed material parameters, the bare
theory, initial point of the RG flow, becomes closer and closer to the Gaussian fixed
point. However, even for an infinitesimal T , the flow is eventually repulsive and
drives the system to the strongly-coupled infrared fixed point, which is dominated
by anharmonic effects.
The characteristic wavelength at which the behavior crosses over from weak

to strong coupling can be estimated by calculating the first-order self-energy in
perturbation theory [3, 12, 61]. Using Eq. (2.31) shows that in two dimensions and
in conventional units of measurements, the inverse Green function at first order is:

G−1
ij (q) =

κδijq
4

kBT

[
1 +

3b0
8πq2

]
. (2.48)

For |q| � qG =
√

3b0/8π, the anharmonic correction is much smaller than the
leading-order term, while for |q| � qG, the self-energy correction becomes larger

31 By analogy with other field theory problems, Ref. [19] suggested that the derivative expansion
could give a convergent series for the exponent η∗, as opposed to perturbative series, which are
more likely only asymptotic.
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than the leading term. When the simple first order calculation is replaced with a
full solution of the model, the interacting Green function behaves as

G−1
ij (q) =

{
κδijq

4

kBT
q � qG

cκδijq
4−η∗qη∗G
kBT

q � qG

, (2.49)

where c is a dimensionless coefficient of the order of 1 [3, 17, 41, 51, 85]. The scale
qG thus plays a role analogue to the Ginzburg criterion in critical phenomena [84].
Using the explicit expression for b0 shows that the characteristic crossover scale is

qG =

√
3kBTY

16πκ2
, (2.50)

where Y = 4µ(λ+ µ)/(λ+ 2µ) is the two-dimensional Young modulus [3, 61]. The
fact that qG → 0 as T → 0 reflects the fact that the theory spends a long RG time
near the Gaussian fixed point. In the case of graphene at T = 300 K, the Ginzburg
wavelength λG = 2π/qG is approximately 4 nm [3, 31, 61].

The amplitude z can be approximately estimated by matching the two limiting
behaviors at q ≈ qG.
In presence of a weak external stress, the system exhibits a further crossover

between a tensionless and a tension-dominated regime. In the long-wavelength
stress-dominated region, nonlinearities drive a singular logarithmic renormalization
of the bending rigidity (a much weaker effect than the power-law renormalization
in the tension-free case). The behavior of the Green function becomes [17, 41, 51,
85]

G−1
ij (q) =


κδijq

4

kBT
q � qG

cκδijq
4−η∗qη∗G
kBT

qσ � q � qG

σq2+dκq4(qσ/qG)η∗ ln(qσ/q)
kBT

q � qσ

, (2.51)

where d is a numerical coefficient and qσ is the momentum scale at which σq2
σ ≈

κq4
σ(qσ/qG)η∗ [17].
If the applied tension is sufficiently strong (σ ' κq2

G), propagators become
dominated by stress before the onset of scaling behavior. In this case, the strongly-
anharmonic region is completely suppressed [62, 85, 110]. The anomalous stress-
strain relation is then replaced by a regular, linear Hooke’s law [17, 62].
In the case of graphene, the value of qG at room temperature is of the order of

4 nm [61], implying that the strongly-anharmonic scaling behavior sets in already
at the nanoscale [25, 51].

2.10 anomalous hooke’s law and universal poisson ratio

The anomalous scale invariance of fluctuations translates also in an anomalous
behavior of response functions. The same phenomenon occurs for example in
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second-order magnetic transitions, where the scaling behavior determines power-
law divergences of the field susceptibility [13–15]. In the case of membranes, a
striking manifestation is the anomalous Hooke’s law: for small applied stress σ, the
induced strain ε(σ) is not proportional to σ but, rather, proportional to σα with
α = (D+η∗−2)/(2−η∗). This phenomenon has been analyzed in detail, for example,
in Refs. [11, 17, 18, 52, 85]32. The essence of the derivation can be understood by
combining the explicit formula (2.24) for the projected area and a reasoning on the
Ward identities. The diagrammatic analysis of Ward identities given in Sec. 2.5.2
can be applied without variation also in presence of an external stress: the only
difference is that the bare propagator k−4 becomes replaced by (σ0k

2 + k4)−1. It
remains true, however, that anharmonic interactions contribute only self-energy
terms which vanish as k4. As a result, the tension is unrenormalized: even after
inclusion of perturbative corrections of arbitrary order, the inverse interacting
propagator still vanishes as σ0k

2 with the same prefactor σ0 which appears in the
bare propagator (see Ref. [85] for a more detailed derivation). Due to this property,
we can assume that the unrenormalized Green function behaves as described in
Sec. 2.9. Using this form of the Green function in Eq. (2.24) we get approximately

A‖
A
≈ 1 +

σ

λ+ 2µ/D
− dckBT

2

{∫
|q|<qσ

1

σ
+

∫
qσ<|q|<qG

1

κq2−η∗qη∗G

+

∫
qG<|q|<Λ

1

κq2

}
= 1 +

σ

λ+ 2µ/D
− dckBT

2(4π)D/2Γ(D/2)

[
qDσ
Dσ

+
qD−2+η∗
G − qD−2+η∗

σ

(D − 2 + η∗)κq
η∗
G

]
− dckBT

2

∫
qσ<|q|<qG

1

κq2−η∗qη∗G
,

(2.52)

where Λ is the ultraviolet cutoff (of the order of the inverse lattice spacing). The
last term is independent of stress. It contributes to the average "hidden area" but
not to its variation with an externally-imposed tension. Using σq2

σ ≈ κq4−η∗
σ qη∗G

and assuming that η∗ < 2 (this is the case for physical membranes) shows that
the leading contribution to the strain for small external stress is positive and
proportional to σ(D−2+η∗)/(2−η∗). Physically, this nonlinear positive strain can be
traced to the suppression of out-of-plane fluctuations. The applied stress prevents
long-wavelength modes to fluctuate strongly and "irons" the hidden area, leading
to an increased projected size.
For sufficiently large stress, the anomalous Hooke’s law becomes replaced by

a regular, linear response. In order for the anomalous response to dominate, the

32 Ref. [17] analyzed the anomalous Hooke’s law for a disordered membrane. In this section we
discuss the case of a disorder-free membrane. The effects of tension on a finite-size graphene drum
subject to a transverse pressure has been studied in Ref. [78].
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stress must be sufficiently small to ensure that (i) qσ < qG, and (ii) the amplitude
of the anomalous contribution is larger than the Hookean term σ/(λ+ 2µ/D). The
condition qσ < qG translates approximately into σ < κq2

G, which, in the physical
case D = 2, dc = 1 corresponds to

σ . σG =
3kBTY

16πκ
. (2.53)

Using as parameters characteristic for a graphene membrane λ ' 3.8 eV Å−2, µ '
9.3 eV Å−2 [111], and κ ' 1 eV [31, 112], leads to an estimate33 σG ≈ 0.5 N/m.
When the condition σ . σG is satisfied, it can be checked that the nonlinear response
is larger than the Hookean term: the conditions (i) and (ii) have approximately
the same boundaries of validity, as order of magnitude.

Another striking prediction is that fluctuating membranes present an universal
auxetic effect. Most materials, when subject to uniaxial extension tend to respond
by compressing in the orthogonal directions. However, in presence of out-of-plane
fluctuations, the applied stress has the effect to "flatten" the random distribution
of flexural deformations. This flattening induces in turn an extension in both
longitudinal and transverse directions. For weak applied stress, the resulting
extension dominates over the conventional Hookean behavior and leads to a auxetic
behavior.

Within linear elasticity theory, the response to uniaxial stresses is quantified by
a dimensionless "Poisson ratio" ν, defined as the negative ratio −εy/εx between
the strain εy induced in transverse directions and the strain εx in the direction of
the applied unidirectional forces. The value of ν is simply related to the elastic
Lamé coefficients λ, and µ of the material. In two dimensions, the condition of
vanishing transverse stress σyy = 0 implies in particular that ν = λ/(λ+ 2µ) [3, 83].
Due to the stability conditions µ > 0, λ+ µ > 0, the Poisson ratio in 2D must be
within the range of values −1 < ν < 1. "Normal" response corresponds to positive
values of the Poisson ratio, while auxetic behavior is described by ν < 0.

The auxetic effect due to fluctuations has been investigated from a theoretical
point of view for several decades [1, 2, 22, 25, 26, 52, 85]. Several approaches have
lead to the prediction of an universal negative Poisson ratio ν = −1/3. A detailed
analysis actually shows that the value −1/3 emerges only as a consequence of
a special tensorial symmetry of the leading order bubble diagram [85] (see also
Ref. [20] for a related comment). Vertex corrections lead instead to a value which
differs from −1/3 [22].

In contrast with Hookean elasticity theory, the auxetic response induced by fluc-
tuations is highly nonlinear with respect to the applied stress. As a result, a precise

33 This estimate is valid in order of magnitude, up to a factor of order unity. Ref. [17] has considered
a stress-strain relation proportional to σ/σ∗ + α(σ/σ∗)α with α = 2/(2 − η∗). By a fitting to
numerical simulation data of Ref. [78], the crossover tension σ∗ was estimated to be σ∗ ' 0.1
N/m.
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definition of the Poisson requires a distinction between absolute and differential
Poisson ratios [85]. Furthermore, finite size effects and boundary conditions have
been predicted to play an important role [52].





3

SCAL ING AND RENORMAL IZAT ION : SECOND-ORDER
ε - EXPANS ION

In this chapter we develop a theory of scaling behavior at second order in the ε-
expansion. Generalization of the problem from the physical dimensionality D = 2 to
arbitrary non-integer dimensions, necessary to control the ε-expansion, is achieved
by dimensional continuation of the fixed point P ′2, as opposed to the elasticity
theory fixed point P4. Although the dimensions of the two fixed points coalesce
to a single value in the physical dimension D = 2, the effective theories differ in
general dimensions. Physically, the fixed point P ′2 describes a well-known effective
theory involving out-of-plane fluctuations coupled via a long-range interaction
controlled by the Gaussian curvatures. After a Hubbard-Stratonovich decoupling,
the "Gaussian-curvature interactions" (GCI) model can be reduced to a quasi-local
field theory and can be analyzed by standard field-theoretical renormalization group
methods. The RG functions at two-loop orders and the corresponding fixed point
allow to calculate the scaling index η∗ at order ε2 in the ε = (4−D) expansion. A
direct extrapolation of the O(ε) and O(ε2) results to dimension D = 2 gives η = 0.8

and η ' 0.795, values which are surprisingly close to earlier predictions by the self-
consistent screening approximation (SCSA), the non-perturbative renormalization
group, and other analytical and numerical methods. In addition, it is shown that
the value of η at order ε2 is insensitive to Feynman diagrams involving vertex
corrections. As a consequence, the self-consistent screening approximation for the
GCI model is shown to be exact to O(ε2).

This chapter is based on the article:
Achille Mauri and Mikhail I. Katsnelson, "Scaling behavior of crystalline mem-
branes: an ε-expansion approach", Nucl. Phys. B 956, 115040 (2020); preprint:
arXiv:2003.04043 (2020)
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3.1 introduction

As it was discussed in Chapter 2, the quantitative description of scaling behavior
in flat membranes has been addressed by several approaches, from the large-dc
expansion [9, 11, 12, 41, 96], to the ε-expansion [4, 10, 11, 96], the self-consistent
screening approximation [23–25], the nonperturbative renormalization group [26–28,
35, 42, 50], and numerical simulations [25, 29–32, 34, 35, 37, 38, 78, 108].

In several field-theoretical methods [6, 12, 17, 22–25, 41, 51, 85] the starting point
consists in the elimination of in-plane displacements in favor of an effective theory
describing out-of-plane fluctuations with long-range phonon-mediated interactions.
This step can be performed exactly by a simple Gaussian integration because, after
neglection of nonlinearities which are irrelevant near the upper critical dimension
D = 4 [10], elasticity theory is quadratic with respect to the in-plane displacements.
The mediated long-range interactions are quartic in the out-of-plane displacement
field h and have been discussed in Chap. (2). In short, the effective field theory for
zero external tension reads [6, 10, 23, 25]

Heff =
1

2

∫
q

κq4 +
1

4

∫
k1,k2,k3

[
Rαβ,γδ(q)

× k1αk2βk3γk4δ

(
h(k1) · h(k2)

)(
h(k3) · h(k4)

)]
,

(3.1)

where q = k1 + k2 = −k3 − k4 is the momentum transfer Rαβ,γδ(q) = bNαβ,γδ +

µMαβ,γδ, b = µ(Dλ+ 2µ)/(λ+ 2µ), and

Nαβ,γδ(q) =
1

D − 1
PTαβ(q)PTγδ(q) ,

Mαβ,γδ(q) =
1

2
(PTαγ(q)PTβδ(q) + PTαδ(q)PTβγ(q))−Nαβ,γδ(q) .

(3.2)

In general dimension D 6= 2, a membrane with generic elastic couplings is described
by a theory in which both b and µ are nonzero. Under renormalization, the coupling
constants b and µ flow to the infrared stable fixed point P ′4 described in Sec. 2.4,
which is equivalent, in a different representation, to the fixed point P4 in the space
of renormalized elasticity theories [23, 25]. The special lines, b = 0 and µ = 0,
which lie at the boundary of the stability region of the Hamiltonian (3.1), belong
instead to different universality classes1, and flow to two distinct fixed points P ′2
and P ′3 (see Fig. 2.5). The point P ′3 describes membranes with zero bulk modulus
and nonzero shear modulus. A realization could be provided by twisted kagome
lattices [102].

1 Diagrammatically this can be proven by noticing that, by the orthogonality relations
Nαβ,µνNµν,γδ = Nαβ,γδ, Mαβ,µνNµν,γδ = 0, Mαβ,µνMµν,γδ = Mαβ,γδ, the lines b = 0 and
µ = 0 are preserved under renormalization [25]. A theory which has initially b = 0 or µ = 0
cannot flow to the fixed point P ′4 where both b and µ are nonzero.
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P′1

P′2

P′3

P′4

µ

b

Figure 3.1: RG flow of the coupling constants (b, µ) for physical dimensionality D = 2,
dc = 1. The flow in the figure is calculated using the momentum-shell RG equations (2.22)
for σ = 0.

The fixed point P ′2, instead, has coordinates µ = 0, b 6= 0 and thus has no
counterpart in the space of elasticity theories (the definition b = µ(Dλ+ 2µ)/(λ+

2µ) makes it impossible, among elasticity theories, to have µ = 0 and b 6= 0

simultaneously). Nevertheless, it is still provides a well-defined interacting scale-
invariant model.

In D = 2, the theory simplifies considerably [1, 24, 51, 113], because the tensor
Mαβ,γδ(q) is exactly equal to zero. As a result, the coupling constant µ becomes
redundant. Furthermore, the effective quartic interaction reduces to [1, 3, 6, 23, 24,
41, 51]

b

∫
q

K(q)K(−q)

q4
, (3.3)

where K(q) is the Fourier transform of

K(x) = −1

2
(δαβ∂

2−∂α∂β)(∂αh ·∂βh) =
1

2
[(∂2h ·∂2h)− (∂α∂βh ·∂α∂βh)] . (3.4)

The composite field K(x) is, at leading order for small undulations, the Gaussian
curvature of the membrane [6]. The coupling constant b, in two dimensions becomes
equal to Y/2 where Y = 4µ(λ+ µ)/(λ+ 2µ) is the Young modulus.
This chapter describes a calculation of the scaling index ε based on the dimen-

sional continuation of the "Gaussian curvature interaction" (GCI) model, defined



42 second-order ε-expansion

as the sum of bending energy and the quartic term (3.3). The same model has been
investigated in Refs. [18, 51, 113] using a momentum-shell technique. The analysis
presented here uses instead a field-theoretical perturbative RG, which is technically
more convenient for the calculation of η∗ within a systematic ε-expansion2.
Implementing the dimensional continuation via the GCI model instead of the

elasticity theory is equivalent to considering the fixed point P ′2 instead of P ′4. The
fixed points P ′4 and P ′2 approach different limits as D → 2 (see Fig. 3.1), but the
anomalous dimensions collapse to a single value, since µ becomes redundant in two
dimensions.

3.2 hubbard-stratonovich transformation

The starting point of our analysis is the "GCI model"

Heff =
1

2

∫
q

κ|h(q)|2 +
Y

2

∫ ′
q

|K(q)|2
q4

, (3.5)

in D = 4− ε dimensions3 To analyze the GCI model, it is convenient to decouple
interactions by a Hubbard-Stratonovich transformation:

e−Heff [h(x)]/(kBT ) =

∫
[dχ(x)] e−H[h(x),χ(x)]/(kBT ) , (3.6)

where
∫

[dχ(x)] denotes functional integration over an auxiliary real field χ(x)

coupled to curvature K(x). After the field rescaling h→ h̄ = (
√
κ/(kBT ))h, the

reduced Hamiltonian H = H/(kBT ) reads:

H =

∫
dDx

[1

2
(∂2h̄)2 +

1

2Y0
(∂2χ)2 + iχK̄

]
, (3.7)

2 Momentum-shell techniques and nonperturbative RG techniques organize the theory in a different
way than the perturbative field-theoretical method. In the momentum-shell method, the fixed
point lives inevitably in an infinitely-dimensional space of theories and has infinitely many nonzero
coupling constants [14]. To derive the exact exponent systematically within the ε expansion, it is
necessary to extend the Hamiltonian beyond the truncated form which appears at tree level. The
field theoretical method, instead, extracts the exponent by matching the explicit solution of a
given model with the scaling laws. The universality hypothesis implies that any model, including
one with just a few coupling constants, will "know" the exact value of the exponent η∗.

3 In the integration over in-plane displacement vectors u, zero modes of the strain tensor require
a separate analysis (see Chap. 2 and Refs. [1, 18]). Functional integration involves, besides
finite-wavelength phonon deformations, a sum over macroscopic in-plane deformations of the
crystal. This leads to a prescription on the momentum integral defining the effective Hamiltonian:
the q = 0 contribution must be omitted from integration in Eq. (3.5) (see also Refs. [12, 25]). The
primed integral

∫ ′
q denotes integration with the zero mode q = 0 omitted. The prescription q 6= 0

is non-local. However, it has the only effect to suppress tadpole diagrams (see below). Thus, the
standard methods of local field theories remain valid.
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where Y0 = TY/κ2, and K̄(x) = [(∂2h̄ · ∂2h̄) − (∂α∂βh̄ · ∂α∂βh̄)]/2. The field
χ(x) plays the role of the Airy stress function [1]. The Hubbard-Stratonovich
transformation (3.6) consists in the replacement of the "instantaneous" Airy stress
with an independently-fluctuating quantity.

The perturbative expansion in powers of Y0 is generated by the propagators
and the vertex illustrated in Fig. 3.2. The vertex presents a simple geometric
structure. From the definition of the curvature K̄(x) and momentum conservation,
k1 + k2 + k3 = 0, it can be verified that:

γ̄(k1,k2,k3) = k2
1k

2
2 − (k1 · k2)2 = k2

2k
2
3 − (k2 · k3)2 = k2

3k
2
1 − (k3 · k1)2 . (3.8)

Figure 3.2: Bare propagators and vertex of the model. (a) h-field propagator, (b) χ-field
propagator, (c) interaction vertex.

3.3 renormalization group equations

Representation of the GCI model by Hubbard-Stratonovich transformation gives
access to the methods of perturbative renormalization of local field theories [15,
16, 81]. This section presents a derivation of renormalization group equations for
the theory in the representation expressed by Eq. (3.7).

Power counting shows that the coupling constant Y0 has dimension ε = (4−D).
The GCI theory has therefore the same upper critical dimension Duc = 4 as
the conventional model of D-dimensional elastic membranes [10]. For D < 4 the
perturbative expansion breaks down at sufficiently large order because of infrared
divergences, similarly to the theory of critical behavior [15, 16]. In analogy with
earlier approaches to crystalline membranes [10, 11, 96] and critical phenomena, the
massless perturbation theory is however well-defined within the ε-expansion, since
perturbative corrections modify the propagators and vertices only by logarithmic
functions.

A power counting analysis of one-particle irreducible (1PI) correlation functions
shows that the h̄ and χ field self-energies and the χ one-point function are the
only superficial ultraviolet divergences [15] in four dimensions. The structure of
the vertex, Eq. (3.8), implies that in any diagram two powers of momentum can be
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attached to each external leg and factorized from the loop momentum integration4.
For any 1PI diagram ∆ with L loops, V vertices, I internal and E external lines
(of either solid or wiggly type), the degree of superficial divergence [15] is therefore

δ∆ = DL+ 4V − 4I − 2E , (3.9)

or equivalently, using the topological relations L = 2V −I−E+1 and 2I+E = 3V ,

δ∆ = D − D

2
E − 1

2
(4−D)V . (3.10)

For D = 4 the degree of divergence is independent on the number of vertices and
the model is renormalizable by power counting. The only superficially divergent
1PI functions, characterized by δ∆ > 0, are two-point functions in Fig. 3.3(a)
and 3.3(b), which diverge logarithmically, and 3.3(c), which diverges quadratically.
The three-point vertex function is, instead, convergent and it does not require the
introduction of an independent renormalization constant5.

The one-point function (Fig. 3.3c) vanishes at nonzero momentum. On the other
hand, the field χ was introduced to mediate the non-local interaction of Eq. (3.3),
in which the q = 0 mode is excluded. We thus assume that functional integration
runs only over finite-momentum Fourier components of the χ field. Diagrams for
the one-point function can then be dropped, consistently with the elimination of
tadpole diagrams in earlier approaches to crystalline membranes [1, 12, 25].

Figure 3.3: Superficially divergent 1PI correlation functions.

Ultraviolet divergences are therefore removed by the introduction of two renor-
malization constants, corresponding to the superficial divergences in the two-point

4 This property was suggested in Ref. [23], and reflects the symmetry of the theory under the shifts
h̄(x) → h̄(x) + Aαxα + B and χ(x) → χ(x) + A′αxα + B′, which leave the Hamiltonian (3.7)
invariant up to boundary terms. Shifts of h̄(x) by a first order polynomial in the coordinates
correspond to translations and rotations of the membrane in the d-dimensional embedding space.
Invariance of the theory is therefore related to the Goldstone-mode character of the out-of-plane
fluctuation fields and to Ward identities of embedding space rotational invariance. The analysis is
consistent with Refs. [12, 23, 25].

5 The convergence of the vertex function and the subsequent absence of vertex renormalization in
a Hubbard-Stratonovich representation was recognized in Refs. [23, 25]. It was related to Ward
identities and it was proven to imply the exactness of the self-consistent screening approximation
to O(ε) in the ε-expansion for D-dimensional elastic membranes [23, 25]. Refs. [23, 25], however,
focused mostly on the fixed point P ′4 and did not analyze in detail the field theory after Huubard-
Stratonovich transformation.
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functions [23, 25]. Within dimensional regularization and the minimal subtraction
scheme [15, 81], the renormalized Hamiltonian equipped with necessary countert-
erms reads:

H̃[h̄, χ] =

∫
dDx

[
Z

2
(∂2h̄)2 +

sD
2MεZyy

(∂2χ)2 + iχK̄

]
, (3.11)

where M is an arbitrary wavevector scale and ỹ is a dimensionless renormalized
coupling. For later convenience in explicit calculations, we have redefined the
coupling constant by introducing y0 = sDY0, with

sD =
(D2 − 1)Γ2(D/2)Γ(3−D/2)

4(4π)D/2Γ(D)
, (3.12)

because a geometric factor similar to sD is generated in the one-loop Feynman
diagrams [23, 25]. In the renormalization of the theory, this parametrization con-
verts minimal subtraction into an analogue of the modified minimal subtraction
scheme [15]. The amplitudes Z and Zy are double series in ỹ and 1/ε and, be-
ing dimensionless, do not depend explicitly on M . Comparison of Eq. (3.7) and
Eq. (3.11) gives the following relations between bare and renormalized quantities:

h̄(x) =
√
Z h̃(x) , χ(x) =

1

Z
χ̃(x) ,

y0 =
MεZy
Z2

ỹ , H[h̄(x), χ(x)] = H̃[h̃(x), χ̃(x)] .

(3.13)

The renormalization of 1PI correlation functions with n external h lines and `

external χ lines reads:

Γ
(n,`)
i1..in

(k1, ..,kn;q1, ..,q`; y0) = Z`−
n
2 Γ̃

(n,`)
i1..in

(k1, ..,kn;q1, ..,q`;M, ỹ) . (3.14)

Renormalization group equations follow, in a standard way [15, 81], from the
independence of the bare functions Γ(n,`) on the wavevector scale M . Introducing

β(ỹ) =
∂ỹ

∂ lnM

∣∣∣∣
y0

, η(ỹ) =
∂ lnZ

∂ lnM

∣∣∣∣
y0

, (3.15)

the RG equations for one-particle irreducible correlation functions read:[
M

∂

∂M
+ β(ỹ)

∂

∂ỹ
−
(n

2
− `
)
η(ỹ)

]
Γ̃

(n,`)
i1..in

(k1, ..,kn;q1, ..,q`;M, ỹ) = 0 . (3.16)

As a consequence of dimensional regularization and the minimal subtraction
prescription [15], η(ỹ) does not depend explicitly on ε and β(ỹ) = −εỹ+ b(ỹ) where
b(ỹ) is ε-independent. Being dimensionless, β(ỹ) and η(ỹ) are independent of the
renormalization scale M .
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In the long wavelength limit, the running coupling approaches an infrared-
attractive fixed point ỹ = ỹ∗, determined by the condition β(ỹ∗) = 0 [15, 81]. At
the fixed point, a combination of RG equations and dimensional analysis shows
that correlation functions6 scale according to:

Γ̃
(n,`)
i1..in

(ρk1, .., ρkn; ρq1, .., ρq`;M, ỹ∗)

= ρD+n
2 (4−D−η)+η`Γ̃

(n,`)
i1..in

(k1, ..,kn;q1, ..,q`;M, ỹ∗) ,
(3.17)

where the scaling exponent is η∗ = η(ỹ∗). In particular two-point functions satisfy
the scaling relations:

Γ̃
(2,0)
ij (k) ∝ δij |k|4−η∗ , Γ̃(0,2)(q) ∝ |q|D+2η∗ . (3.18)

We can interpret Eq. (3.18) by recognizing a power law divergence of the effective
bending rigidity κR(q) and a suppression of the effective Young modulus YR(q).
Defining κR(q) and YR(q) by the identifications

Γ
(2,0)
ij (q) = δij

κR(q)q4

κ
, Γ(0,2)(q) =

κ2q4

TYR(q)
, (3.19)

implies, since bare and renormalized correlation functions are proportional, that
κR(q) ∝ q−η∗ and YR(q) ∝ qηu with ηu = 4 −D − 2η∗. The relation between ηu
and η∗ is consistent with the theory of D-dimensional membranes, for which a
well-known analogue exponent identity holds in arbitrary dimension [10, 12, 23–25,
96].

3.4 scaling exponent

This section reports explicit results for the scaling exponent η∗ to order ε2 in
the ε-expansion. As it will be verified, the coupling strength ỹ∗ at the fixed
point is of order ε near dimension four. Determination of η∗ with accuracy ε2,
therefore, requires the knowledge of β(ỹ) and η(ỹ) to order ỹ3 and ỹ2 respectively.
RG functions at this order can be calculated by computing the renormalization
constants Z and Zy at two-loop level.

The bare one-particle irreducible two-point functions are given, in second order
perturbation theory, by the sum of Feynman diagrams in Fig. 3.4.
Perturbative calculations are extensively simplified by the similarity between

h̄- and χ-field propagators, both scaling with momentum k as k−4, and the
permutation-invariance of the vertex function expressed by Eq. (3.8). These prop-
erties imply that, up to a prefactor, the loop integral corresponding to a Feynman

6 In Eq. (3.17), 1PI correlation functions in momentum space are defined after factorization and
cancellation of the momentum-conservation factor (2π)Dδ

(∑
i ki +

∑
j qj

)
.



3.4 scaling exponent 47

Figure 3.4: Feynman diagrams for the one-particle irreducible two-point functions at
order two-loops. The values of diagrams (a), (b) and (c) are denoted as Da(q), Db(q)

and Dc(q) respectively. Diagrams (d), (e), (f) and (g) are proportional to the identity in
dc-dimensional space and, therefore, are denoted as δijDl(q), where l = d, .., g.

diagram does not depend on the type (solid or wavy) of its lines, but only on its
overall connectivity. Denoting as Dl(q) (l = a, .., c) and δijDl(q) (l=d, .. , g) the
values of the l-th Feynman diagram in Fig. 3.4, the following relations hold7:

y0

sD
Da(q) =

dc
2
Dd(q) , De(q) =

y0

2sD
Db(q) =

dc
2
Df(q) ,

y0

sD
Dc(q) =

dc
2
Dg(q) .

(3.20)

Calculation of the seven diagrams thus reduces to the computation of three inde-
pendent integrals. Explicit expressions for diagrams (a), (e) and (c) are:

Da(q) =
dc
2

∫
k

(q2k2 − (q · k)2)2

|k|4|q− k|4 ,

De(q) = −
∫
k

(q2k2 − (q · k)2)2

|q− k|4
[
y0

sDk4
Da(k)

y0

sDk4

]
,

Dc(q) = −dcy0

2sD

∫
k1

∫
k2

γ(q,k1)γ(k1,k2)γ(q,k2)γ(q− k1,q− k2)

|k1|4|k2|4|q− k2|4|q− k1|4|k1 − k2|4
,

(3.21)

7 In Eqs. (3.20) and (3.21), combinatorial factors 1/2 appear in presence of closed solid-line loops
with flip symmetry. An analogue Feynman rule applies to the the Ginzburg-Landau model in a
Hubbard-Stratonovich representation [14].
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where γ(k1,k2) = k2
1k

2
2− (k1 ·k2)2. The diagrams Da and De can be deduced from

the general integral [25]

Π(η, η′, D) =

∫
dDk

(2π)D
(k2 − (q̂ · k)2)2

|k|4−η|k + q̂|4−η′

= (D2 − 1)
Γ(2− η+η′

2 − D
2 )Γ(D2 + η

2 )Γ(D2 + η′

2 )

4(4π)D/2Γ(2− η
2 )Γ(2− η′

2 )Γ(D + η+η′

2 )
,

(3.22)

where q̂ = q/|q| is an unit vector. Using Eq. (3.22) repeatedly gives the expressions
for the diagrams

Da(q) =
dc
2

Π(0, 0, D)q4−ε =
dcsD
ε

q4−ε ,

De(q) = −dc
2

Π(0, 0, D)Π(−ε, 0, D)
y2

0q
4−2ε

s2
D

.
(3.23)

Near D = 4, De(q) has the expansion:

De(q) = −dc
(

1

ε2
− 1

12ε
+ O(1)

)
y2

0q
4−2ε , (3.24)

where O(1) denotes the finite part of De(q) for ε→ 0. The remaining independent
diagram Dc(q) gives, by dimensional analysis:

Dc(q) = −dcsDaD
2

y0q
4−2ε , (3.25)

where aD is a function of internal dimension D. As it is shown in 3.A, aD presents
a first-order pole at D = 4

aD =
A

ε
+ O (1) , (3.26)

with residue A = 121/90, corresponding to the UV divergence of Dc(q) in four
dimensions. The bare two-point functions can therefore be written as:

Γ(0,2)(q) =
sDq

4

y0
+Da(q) +Db(q) +Dc(q)

=
sDq

4

y0

[
1 +

dc
ε

y0

qε
− dc

(
2

ε2
− 1

6ε
+
A

2ε
+ O(1)

)
y2

0

q2ε
+ O

(
y3

0

) ]
,

(3.27)

Γ(2,0)(q) = δij [q
4 +Dd(q) +De(q) +Df(q) +Dg(q)]

= δijq
4

[
1 +

2

ε

y0

qε
−
(

1 +
dc
2

)(
2

ε2
− 1

6ε
+ O(1)

)
y2

0

q2ε

−
(
A

ε
+ O(1)

)
y2

0

q2ε
+ O

(
y3

0

) ]
.

(3.28)
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With the choice of renormalization constants

Zy = 1 +
dcỹ

ε
+ dc(dc + 2)

ỹ2

ε2
+
dc
2

(
1

3
−A

)
ỹ2

ε
+ O

(
ỹ3
)
,

Z = 1− 2ỹ

ε
− (dc + 2)

ỹ2

ε2
−
(
dc + 2

12
−A

)
ỹ2

ε
+ O

(
ỹ3
)
,

(3.29)

the renormalized correlation functions Γ̃(0,2) = Z−2Γ(0,2) and Γ̃(2,0) = ZΓ(2,0)

are finite to order ỹ2 after the coupling renormalization y0 = MεZy ỹ/Z
2. The

corresponding RG functions can be determined from the relations [15]

β(ỹ) =
−εỹ

1 +
∂ ln(Zy/Z2)

∂ ln ỹ

, η(ỹ) = β(ỹ)
∂ lnZ

∂ỹ
, (3.30)

which lead to:

β(ỹ) = −εỹ + (dc + 4)ỹ2 +

(
2

3
(dc + 1)− (dc + 4)A

)
ỹ3 + O

(
ỹ4
)
, (3.31)

η(ỹ) = 2ỹ +

(
dc + 2

6
− 2A

)
ỹ2 + O

(
ỹ3
)
. (3.32)

The β function describes, for ε small, a renormalization group flow from the
Gaussian fixed point ỹ = 0 to a nontrivial infrared stable fixed point ỹ = ỹ∗
corresponding to the coupling strength

ỹ∗ =
ε

dc + 4
−
(

2
3 (dc + 1)− (dc + 4)A

)
(dc + 4)

3 ε2 + O(ε3) . (3.33)

The anomalous dimension controlling the long-wavelength scaling behavior is
therefore

η∗ = η(ỹ∗) =
2ε

dc + 4
− dc(2− dc)

6(dc + 4)3
ε2 + O(ε3) . (3.34)

3.4.1 Exactness of the self-consistent screening approximation to O(ε2).

As Eq. (3.34) shows, the scaling exponent η is insensitive to the value of the residue
A describing the contribution of diagrams (c) and (g) in Fig. 3.4. Only diagrams
(a), (b), (d), (e) and (f), representing propagator corrections contribute to the value
of η∗ to order ε2. This suggests that the self-consistent screening approximation [23,
25] is exact to O(ε2) for the GCI model.

Within the SCSA, scaling exponents are determined by identifying power-law
solutions to truncated Dyson equations for the χ- and h̄- field propagators D(q)

and Ḡij(q). In analogy with the theory of D-dimensional membranes [23, 25]
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(see also Chap. 2), we define the self-consistent screening approximation by the
equations

[
Ḡ−1(q)

]
ij

= δijq
4 +

∫
dDk

(2π)D
(
q2k2 − (q · k)2

)2
Ḡij(k)D(q− k) ,

D−1(q) =
sDq

4

y0
+

1

2

∫
dDk

(2π)D
(
q2k2 − (q · k)2

)2
Ḡij(k)Ḡji(q− k) ,

(3.35)

which correspond to the diagrams in Fig. 3.5.

Figure 3.5: Diagrams corresponding to SCSA equations. D(q) and Ḡij(q) denote the χ-
and h̄-field propagators respectively.

The inverse two-point functions [Ḡ−1
ij (q)] and D−1(q) approximate, within the

SCSA, the interacting 1PI two-point functions Γ
(2,0)
ij (q) and Γ(0,2)(q) respectively.

In the long-wavelength, strong-coupling limit zero-order propagators are negligible
compared to self-energy terms [24]. The SCSA equations admit, in this regime,
scaling solutions of the form [23, 25]:

Ḡij(q) = zδij |q|−4+η′ , D(q) = c(η,D)z−2|q|−4+η′u , (3.36)

where z is a non-universal amplitude. Consistency of the solution with Eq. (3.35)
imposes the exponent relation η′u = 4−D − 2η′ and an equation determining η′:

dc
2

=
Π(η′, η′u, D)

Π(η′, η′, D)
=

Γ(η
′

2 )Γ(2− η′)Γ(D + η′)Γ(2− η′

2 )

Γ(D2 + η′

2 )Γ(2− η′ − D
2 )Γ(D2 + η′)Γ(D2 + 2− η′

2 )
. (3.37)

The power-law behavior and the relation between η′u and η′ agrees with the
scaling form of the effective bending rigidity and Young modulus, Eq. (3.19).
Solving Eq. (3.37) order by order in ε, it can be explicitly verified that the SCSA
exponent η′ agrees with the exact ε-expansion, Eq. (3.34), not only at leading
order but also at order ε2: η′ − η∗ = O(ε3). The exactness of the SCSA at leading
order in ε is a consequence of the structure of renormalization in the theory.
Due to the absence of vertex renormalization, the one-loop RG functions are
determined by diagrams without vertex corrections: the same diagrams included in
the self-consistent screening approximation. An analogue situation occurs in the
theory of D-dimensional crystalline membranes in the conventional dimensional
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continuation scheme for which the SCSA approximation yields the exact exponent
η∗ = ε/(2 + dc/12) [10] at leading order in the ε-expansion [23, 25].
Exactness of the SCSA at order ε2 in the ε-expansion, follows instead from

Eq. (3.20), which relates the amplitude of diagrams for the h̄- and χ-field correlation
functions. These relations can be traced to the permutation invariance of the vertex
function, Eq. (3.8), and the identity (up to a factor y0/sD and an identity matrix
δij) of the h̄- and the χ-field non-interacting propagators.

By construction, the SCSA is also exact at leading order in the 1/dc expansion
for any dimension D [23, 25].

As a final remark, we note that the SCSA equation for the GCI model, Eq. (3.37),
is very similar to the self-consistent screening approximation for a crystalline D-
dimensional membrane in the conventional dimensional continuation scheme, which
is given by Eq. (2.45) [23, 25]. The two equations differ by a simple factorD(D−1)/2,
which reduces to unity in the physical case D = 2. As expected, in two dimensions
the GCI model and the theory of D-dimensional crystalline membranes present
the same exponent η′ = 4/(dc +

√
16− 2dc + d2

c), approximately equal to 0.821 for
dc = 1 [23, 25].

3.4.2 Extrapolation to the physical dimensionality

For the physical codimension dc = 1, the ε-expansion of the scaling exponent,
Eq. (3.34), reduces to:

η∗ =
2ε

5
− ε2

750
+ O(ε3) . (3.38)

Compared to the leading order result, the O(ε2) correction is strongly suppressed
by its small numerical prefactor. Although ε is as large as 2, a direct extrapolation
to the physical internal dimension D = 2 reveals an unexpectedly small deviation
between the first and the second order results, η = 0.8 and η ' 0.795 respectively.
The first and second-order results, moreover, are close to the non-perturbative

RG results η ' 0.85 [26–28], the first and second-order SCSA η ' 0.821 [23,
25], ' 0.789 [24] and to several numerical simulations, reporting approximately
η ' 0.750 [4], 0.81 [29, 30], 0.85 [31, 34], 0.795 [32], 0.793–0.795 [35], 0.66 [37],
0.85–0.88 [38] (see Refs. [25, 29, 30] for results of early simulations). Finally, the
leading-order extrapolation η = 0.8 is in exact agreement with the prediction
of Ref. [51], where the exponent was obtained by a one-loop momentum shell
renormalization group directly in D = 2.

3.4.3 Extensions and higher-order calculations

When our calculations were finished, available results were limited to the first order
in the ε-expansion [10, 11], and the value (3.34) provided the first result beyond
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leading order. Soon after, Coquand, Mouhanna, and Teber [19], extended two-loop
calculations to all fixed points, both in the framework of elasticity theory and within
the effective field theory for flexural fluctuations. In the recent publication [20],
Metayer, Mouhanna, and Teber extended all results to three loops. Finally, in
Ref. [21], Pikelner has derived a four-loop result in the framework of elasticity
theory. The values of exponents determined by these higher-order calculations are
summarized in tables 3.1, 3.2, and 3.3.

η∗ ηSCSA

P ′2
2ε
dc+4 −

dc(2−dc)ε2
6(dc+4)3

2ε
dc+4 −

dc(2−dc)ε2
6(dc+4)3

P3
10ε

20+dc
− dc(37dc+950)ε2

6(20+dc)3
10ε

20+dc
− dc(37dc+890)ε2

6(20+dc)3

P4
12ε

24+dc
− 6dc(dc+29)ε2

(24+dc)3
12ε

24+dc
− 6dc(dc+30)ε2

(24+dc)3

Table 3.1: Anomalous dimensions at order ε2 for all independent interacting fixed
points [19]. P ′2 is the fixed point of the GCI model analyzed in this chapter. P4 describes
the dimensional continuation of elasticity theory. P3 corresponds instead to a medium with
zero bulk modulus and a nonzero shear modulus [19]. The fixed point P2, corresponding
to an elastic medium with zero shear modulus and nonzero bulk modulus is not reported
because it has zero anomalous dimension (see, however, Ref. [104]). The last column
reports the O(ε2) expansion of the SCSA exponents corresponding to the fixed points [19].

η∗

P ′2
0.8ε

2 − 0.0053̄ε2

4 + 0.01104ε3

8

P3
0.952ε

2 − 0.071ε2

4 − 0.069ε3

8 − 0.075ε4

16

P4
0.96ε

2 − 0.0461ε2

4 − 0.00267ε3

8 − 0.002ε4

16

Table 3.2: Anomalous dimensions at order ε4 for P3 and P4 [21] and at order ε3 for
P ′2 [20]. (All results are expressed for the case dc = d−D = 1).

Tab. 3.1 shows that the SCSA is exact at order ε2 only for the GCI model (the
fixed point P ′2). For other fixed points, the SCSA is only exact at first order in
ε [19]. The three-loop result of Ref. [20] showed that at order ε3 there appear
corrections beyond SCSA also for the fixed point P ′2.

Analogy with the theory of critical phenomena [15] suggests that the ε-expansion
could be asymptotic, with zero radius of convergence [20]. In this case a resummation
would be necessary to improve the quantitative accuracy of the results. A rigorous
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1L 2L 3L 4L

P ′2 0.8 0.7946̄ 0.8057 −
P3 0.9524 0.8813 0.8116 0.7368

P4 0.96 0.9139 0.8872 0.8670

Table 3.3: Direct extrapolation of one-, two-, three-, and four-loop anomalous dimensions
to D = 2 and dc = 1 [20, 21].

control over the series and the "error bars" in the ε-expansion calculation remains
an open question.
The explicit values of the exponents at the lowest orders indicate that the ε

expansion based on the fixed point P4 may be less divergent than the expansion
based on P ′2. For example, in the series for η′2 = η∗(P ′2), the three-loop contribution
is larger than the two-loop one when ε = 2, which might be an indication of the
asymptotic nature of the expansion [20]. For η4 = η∗(P4) the relative strength of
two-, three-, and four-loop contributions is instead decreasing. At the same time,
the special permutation symmetry of the vertex and the identical behavior of h̄
and χ propagators implies that the expansion of the GCI model can be extended to
high order by computation of a smaller number of Feynman diagrams. Therefore,
it may be an useful tool in high order computations.
Before concluding this chapter, it is interesting to note that models almost

identical to the GCI theory (3.7) emerge in the context of Galileon theories, which
are relevant in high-energy physics (see, for example, Ref. [114]). A close analogy,
for example, is the absence of vertex renormalization, which is at the basis of
the calculations presented in this chapter and which also emerges in Galileon
models [114]. It would be interesting to investigate in more detail the connections
between the two theories.
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appendix 3

3.a two-loop self-energy diagram

Diagrams (c) and (g) in Fig. 3.4 lead to the two-loop integral:

aD =
1

s2
D

∫
dDk1

(2π)D

∫
dDk2

(2π)D
γ(q̂,k1)γ(k1,k2)γ(q̂,k2)γ(q̂− k1, q̂− k2)

|k1|4|k2|4|q̂− k2|4|q̂− k1|4|k1 − k2|4
, (3.39)

where γ(k1,k2) = k2
1k

2
2−(k1 ·k2)2, q̂ = q/|q| is an unit vector and integration runs

over dimensionless momenta k1 and k2. The diagram presents a logarithmic UV
divergence in four dimensions. Because of the finiteness of the χh2 three-point vertex
function, all subdiagrams are finite. The UV divergence is thus of global type: it is
generated by the region of integration in which k1 and k2 are both simultaneously
large. As any global UV divergence, the divergence in Dc(q) corresponds to a
first order pole in dimensional regularization. Following a standard strategy, it
is possible to extract the singularity by replacing the integrand in Eq. (3.39) by
any simpler expression which presents the same large-momentum behavior. A
convenient choice consists in the replacement aD → āD, with:

āD =
1

s2
D

∫
dDk1

(2π)D

∫
dDk2

(2π)D
γ(q̂,k1)γ(q̂,k2)γ2(k1,k2)

(|k1|4 + σ0k2
1)

2
(|k2|4 + σ0k2

2)
2 |k1 − k2|4

. (3.40)

In this expression σ0 plays the role of an external tension [11, 52, 85], modifying the
h̄ field propagator from 1/k4 to 1/(k4 + σ0k

2). Imposing a finite σ0 in Eq. (3.40)
is necessary in order to avoid infrared divergence of the integral. The dependence
of āD on the external momentum q̂ can now be factorized. The integral takes the
form:

āD = PTαβ(q̂)PTγδ(q̂)

∫
k1

∫
k2

f(k2
1, k

2
2,k1 · k2)k1αk1βk2γk2δ , (3.41)

where PTαβ(q) = δαβ − q̂αq̂β is the transverse projector and
∫
k

=
∫

dDk/(2π)D

denotes momentum integration. It is then convenient to average over angles [25].
By using the relation [15]∫

k2

f(k2
1, k

2
2,k1 · k2)k2γk2δ

=

∫
k2

f(k2
1, k

2
2,k1 · k2)

(D − 1)k2
1

[
γ(k1,k2)δγδ +

(
D(k1 · k2)2 − k2

1k
2
2

) k1γk1δ

k2
1
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and the spherical averages [25]∫
k1

g(k2
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δαβ
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1 ,∫
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1 ,

(3.43)
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we obtain:

āD =
1

D(D + 2)

∫
k1

∫
k2

f(k2
1, k

2
2,k1 · k2)[(D2 − 1)k2

1k
2
2 − 2γ(k1,k2)]

=
1

D(D + 2)s2
D

∫
k1

∫
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γ2(k1,k2)[(D2 − 1)k2
1k

2
2 − 2γ(k1,k2)]

(|k1|4 + σ0k2
1)2(|k2|4 + σ0k2

2)2|k1 − k2|4
.

(3.44)

By introducing integration over five Schwinger-type parameters ti (i = 1, .., 5), the
expression for āD can be represented as

āD =
1

D(D + 2)s2
D

∫ ∞
0

dt1dt2dt3dt4dt5

( 5∏
i=1

ti

)∫
k1

∫
k2

{
γ2(k1,k2)

× [(D2 − 1)k2
1k

2
2 − 2γ(k1,k2)] exp

[
−

2∑
a,b=1

Mab(ka · kb)− (t2 + t4)σ0

]}
,

(3.45)

where M is the 2× 2 matrix:

M =

[
t1 + t2 + t5 −t5
−t5 t3 + t4 + t5

]
(3.46)

and integrals over all five variables ti (i = 1, .., 5) run from 0 to ∞. Momentum
integrals in Eq. (3.45) are determined by moments of a Gaussian distribution. It
is convenient to express moments by differentiation with respects to the matrix
elements Mab. This leads to the representation

āD =
1

D(D + 2)s2
D

∫ ∞
0

dt1dt2dt3dt4dt5

( 5∏
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)∫
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∂2
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e−
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}
,

(3.47)

where M12 = M21 is considered as a single independent variable. By using the
relation[

∂2

∂M11∂M22
− 1

4

∂2

∂M2
12

]
(detM)−ω =

ω(2ω − 1)

2
(detM)−ω−1 (3.48)

after momentum integration, we obtain:

āD =
(D2 − 1)(D + 4)

64(4π)Ds2
D

∫ ∞
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{( 5∏
i=1

ti

)
e−(t2+t4)σ0

(detM)
D+6

2

×
[
(D2 − 1)(D + 6)

M2
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.

(3.49)
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Near D = 4 regular functions of D can be replaced by their four dimensional value.
Using the explicit form of the matrix M , Eq. (3.46), and integrating over t5 gives:

āD ≈ 4

∫ ∞
0

dt1dt2dt3dt4

{( 4∏
i=1

ti

)(
9 +

53

5

s2

(t1 + t2)(t3 + t4)

)
× e−(t2+t4)σ0

s4(t1 + t2)D/2(t3 + t4)D/2

}
,

(3.50)

where s = t1 + t2 + t3 + t4. By the change of variables

t1 = (1− x1)ys , t2 = x1ys ,

t3 = (1− x2)(1− y)s , t4 = x2(1− y)s ,
(3.51)

the integral can be rewritten in a Feynman-type parametrization:

āD ≈ 4

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0
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∫ ∞
0
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(
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)
exp

[
− (x1y + x2(1− y))sσ0

]}
.

(3.52)

Integration over s generates a first order pole at D = 4. The remaining integrals,
being finite, can be calculated by replacing D = 4 in the integrand function. The
result is:

āD ≈ 4Γ(4−D)

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dy

[
x1(1− x1)x2(1− x2)(

9y(1− y) +
53

5

)]
≈ 121

90(4−D)
.

(3.53)

The two-loop integral aD, therefore, behaves near four dimensions as:

aD =
121

90ε
+ O(1) . (3.54)
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SCALE WITHOUT CONFORMAL INVARIANCE

Field theories at renormalization-group fixed points exhibit an emergent symmetry:
the invariance under dilatation of length scales. In several field theories with
rotation and translation symmetries, the appearance of scale invariance triggers the
emergence of an even larger symmetry: conformal invariance. When this symmetry
enhancement occurs, powerful conformal field theory (CFT) methods can often be
used to derive very accurate numerical calculations of universal quantities and, in
several 2D models, even exact solutions. In this chapter, we investigate the relation
between dilatation and conformal symmetries in the statistical mechanics of flexible
crystalline membranes. We argue that, in the elasticity theory representation, the
ultraviolet and the infrared fixed points of the RG flow exhibit scale invariance
but not the conformal symmetry. In the GCI representation, instead, the RG flow
connects a conformal ultraviolet fixed point to a scale-invariant but nonconformal
infrared fixed point. The analysis is based on an inspection of the corresponding
energy-momentum tensors to all order in the ε-expansion.

This chapter is based on the publication:
Achille Mauri and Mikhail I. Katsnelson, "Scale without conformal invariance in
membrane theory", Nucl. Phys. B 969, 115482 (2021); preprint: arXiv:2104.06859
(2021)
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4.1 introduction

Asymptotic scale invariance plays a crucial role in quantum field theory, from
statistical mechanics to models of fundamental interactions. In several cases, the
asymptotically-emergent scaling symmetry is enlarged to full conformal invariance,
which opens the way to powerful techniques such as bootstrap equations [79, 80]
or, in two dimensions, methods based on the infinite Virasoro algebra [115]. These
approaches give access to high-precision non-perturbative calculations and, in
some cases, even to exact solutions. Understanding the conditions under which
conformal symmetry arises is thus of great importance, and has motivated extensive
investigations [116].

Particularly general results were established for two- and four-dimensional field
theories assuming unitarity, or, in Euclidean space, the corresponding property of
reflection positivity [79, 117–119]. In the two-dimensional case, Zamolodchikov and
Polchinski proved that unitary scale-invariant field theories are always conformal
under two mild assumptions: the existence of a well-defined energy-momentum
tensor and the discreteness of the spectrum of operator dimensions [117, 118]. In
four-dimensional space, a similar result is expected to hold [116], as indicated by
perturbative proofs to all orders [120–122] and corroborated by non-perturbative ev-
idences [116, 121, 123–125]. Some analogue derivations were argued to be applicable
to unitary theories in any even dimension D = 2n [126].
These arguments, however, cannot be extended straightforwardly to arbitrary

dimensions (possibly odd or non-integer) or to models lacking unitarity or reflection
positivity. In addition, several derivations break down when the energy-momentum
tensor and its two-point function are not well defined, which can happen in sigma
models relevant for string theories [118, 127, 128]. Models with scale but without
conformal invariance, in fact, exist and have been explicitly identified [103, 116,
118, 127–133], or indirectly conjectured based on holographic analyses [134–136].
Although unphysical in the context of fundamental interactions, models defined in
general dimension D and without unitarity or reflection positivity are recurrent
in statistical mechanics. Analyses of the relation between scale and conformal
invariance in more general classes of theories are thus crucial for several physical
applications (see Refs. [79, 118, 137–142] for some of the results and methods).
If we try to consider, roughly speaking, how likely it is for a scale-invariant

model to exhibit conformal symmetry, we can often run into a dilemma. On the one
hand, dilatation invariance is not a sufficient condition for the extended conformal
invariance and, therefore, a generic scale-invariant theory can be expected to lack
conformal symmetry. On the other hand, there exist arguments suggesting that,
for interacting field theories, scale invariance should imply conformal invariance
generically [79, 130, 132, 142]. A formulation of this reasoning starts from the
structure of the energy-momentum tensor Tαβ and its trace Tαα . In local and scale-
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invariant theories, dilatation symmetry implies that Tαα = ∂αV
α, where V α is a local

field, the "virial current". Conformal invariance arises instead whenever V α = jα +

∂βL
αβ where jα is conserved (∂αjα = 0) and Lαβ is a tensor field [118]. Although

the requirements for conformal symmetry are stronger and not automatically
satisfied a priori, possible candidates for the virial current are constrained, because
V α must have a scaling dimension exactly equal to {V α} = D − 1 in order to
match the dimensions of the energy-momentum tensor {Tαβ} = D [79, 130, 132,
142] 1. All vector currents are usually expected to acquire anomalous dimensions in
presence of interactions, unless they are conserved. Consistent candidates for V α

in a generic theory can thus be expected to be conserved currents, which implies
conformal invariance [79, 130, 132, 142].

A basis from which we can formulate similar arguments is provided by the results
of Refs. [137, 140, 141] which, instead of analyzing the energy-momentum tensor,
used non-perturbative renormalization group techniques. Refs. [140, 141] showed
that, for critical scalar and O(N) models, scale implies conformal invariance if
no vector eigenoperator with scaling dimension −1 exists 2. This vector quantity
plays a role analogue to the space integral of the virial current. Ref. [137], instead,
used a generalization of Wilson’s renormalization group to argue that, for a
general fixed point theory, two- and three-point functions are consistent with the
constraints imposed by conformal invariance provided that (i) there exists no
vector eigenoperator with dimension −1, (ii) interactions are sufficiently local,
(iii) the real parts of operator dimensions are bounded from below, and (iv) some
surface effects are negligible3. With the same logic used for the virial current, the
existence of vectors with dimension tuned to −1 appears to be unlikely in generic

1 More precisely, the change of a symmetric energy-momentum tensor under infinitesimal dilatations
reads i[S, Tαβ ] = xρ∂ρTαβ + DTαβ + ∂σ∂ρYασβρ where Yασβρ = −Yσαβρ = Yβρασ [118, 123].
The first two terms, xρ∂ρTαβ +DTαβ describe the scaling law of an eigenoperator with dimension
D, while the third, inhomogeneous term is generated by renormalization. In scale-invariant
theories, where Tαα = ∂αV α, the scaling law for the virial current must read, therefore, i[S, V α] =
xρ∂ρV α + (D − 1)V α + lα + ∂ρY σασρ, with ∂αlα = 0 (see also Ref. [123]). The inhomogeneous
terms lα + ∂ρY σασρ have precisely the form of the combination of a conserved current and a
total divergence, which are irrelevant to the discussion of scale and conformal invariance. This
justifies considering V α as a scaling operator of dimension D − 1. It is usually possible to choose
an improved energy-momentum tensor in such way that Yασβρ = 0 and the canonical scaling
laws holds (see however Ref. [123] for a more detailed discussion).

2 Redundant operators, whose insertion is equivalent to an infinitesimal change of variables, are
allowed: even if their dimension is exactly equal to −1, they do not destroy conformal invariance
but, rather, modify the transformation of fields under the elements of the conformal group [141].
This is consistent with the fact that the scaling dimension of redundant operators can actually
be chosen at will, by suitable design of the specific renormalization group transformation [143].
The dimensions of non-redundant operators are, instead, intrinsic quantities, invariant under
redefinitions of the RG.

3 In Ref. [137] the vector operator dimension is reported as +1, because length units are used
instead of inverse-length units. Similarly, the lower bound in the real part of operator dimensions
is expressed there as an upper bound.
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interacting field theories, suggesting that scale implies conformal invariance in a
broad class of models. The argument can actually be extended by a reasoning based
on continuity: even if a vector happens by coincidence to have scaling dimension −1

in D-dimensional space, conformal invariance can still be inferred by continuation
from neighbouring dimensions D + δD. A scenario without conformal invariance
thus requires the existence of a vector presenting dilatation eigenvalue exactly
equal to −1 throughout a continuous interval of dimensions in the neighbourhood
of D, which seems even more unlikely [140].

Although genericity arguments hint at a general explanation of conformal invari-
ance, they cannot set a fully definite answer. The same reasonings, for example,
could be read from a different point of view: it might be the case that scale without
conformal invariance is recurrent in several field theories, and vectors with dimen-
sion −1 or currents with dimension D − 1 are not unlikely as a first expectation
suggests. With this reversed perspective, the arguments could be regarded as proofs
that these vectors are common even in interacting theories4.

For given field theories, it is usually not necessary to argue from genericity. For
example, in the Ising and in the O(N) model, the presence of conformal invariance
can be argued by setting bounds on the dilatation spectrum5 [140–142]. Also,
powerful tools are available to analyze perturbative theories explicitly [116, 118,
120, 121, 138, 139, 145].

It is interesting, however, to explore the genericity arguments in more depth.
In this direction, Ref. [132] identified and analyzed an interacting scale invariant
model which is not conformal: the theory of SU(N) gauge fields coupled to massless
fermions at the Banks-Zaks fixed point. As it was shown, the model is conformal
when regarded as a gauge theory, but presents a nontrivial virial current V α when
gauge fixed. The scaling dimension of V α was shown to be exactly equal to {V α} =

D − 1, to all orders in perturbation theory, which was traced to BRST invariance
of the theory. Other scale-invariant but nonconformal theories were identified in
the context of turbulence [133], sigma models [118, 127–129], topologically-twisted
theories [134, 135], Wess-Zumino models with scale-invariant renormalization-group
trajectories [131], or were recognized by holographic analysis [116, 134–136]. Finally,
we note that Ref. [146] recognized the presence of scale-invariance without conformal

4 A critical examination of the genericity argument was given in Ref. [144]. A more detailed
elaboration on this question, in the framework of perturbative renormalization and the ε-expansion,
will be presented in Sec. 4.5.3.

5 Ref. [140] proposed a proof implying that all local vector fields in the critical Ising model have
dimension larger than D − 1 + η, where η is the field anomalous dimension, unless they are
total derivatives. The validity of the proof was later criticized [142] and has been a subject
of debate [141, 142]. The final result that vectors with dimension D − 1 do not exist in the
critical Ising model, is however, corroborated by the complementary analysis of Ref. [142], which
investigated the dimension of scaling operators by Monte Carlo simulations.
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symmetry in an analysis at classical level of symmetric superfluids characterized
by shift-invariant actions.

In this chapter, we analyze the relation between scale and conformal symmetry
in the statistical mechanics of fluctuating crystalline membranes. We verify that, in
the ε-expansion, the theory generates a virial current V α which cannot be reduced
to a combination of a conserved current and a total derivative. Despite being non-
conserved, the V α is shown to have scaling eigenvalue {V α} = D−1 to all orders in
perturbation theory, without anomalous dimensions. This absence of renormaliza-
tion is traced to the fact that V α is not invariant under the spontaneously-broken
embedding-space translations and rotations, which are realized as shifts of the
phonon fields. A similar result is found for the GCI model in dimension D = 4− ε.
Even for this alternative theory, the infrared behavior is shown to be scale invariant
but nonconformal. A consequence of our analysis is that methods of conformal
field theory (CFT), such as the conformal bootstrap, cannot be straightforwardly
applied to the flat phase of crystalline membranes.

The membrane models analyzed in this work can be viewed as a generalization of
the linearized theory of elasticity, a model which was identified by Riva and Cardy
as an example of scale-invariant but non-conformal field theory [103, 130, 147].
The main difference is that the Riva-Cardy model describes an elastic medium
confined in D dimensions, while solid membranes are allowed to fluctuate in an
embedding space with higher dimension d > D. While linearized elasticity is a
Gaussian, non-interacting theory, transverse fluctuations in the additional d−D
space dimensions make membrane theory an anharmonic model, which realizes
scale invariance via an interacting RG fixed point. The presence of interactions
makes membrane theory an interesting platform to test the genericity arguments
on scale and conformal invariance.
By analyzing molecular dynamics simulations of fluctuating graphene, Gior-

danelli et al. [148] reported that the contour lines of equal heigth at the percolation
threshold exhibit properties consistent with Schramm-Loewner evolution (SLE)
curves [149]. The SLE equation is invariant under the infinite-dimensional 2D con-
formal group and thus this finding provided numerical evidence on a manifestation
of conformal symmetry in thermally-fluctuating graphene. The analysis presented
in this chapter is not necessarily in contradiction, because we did not consider the
statistical properties of iso-height lines but rather field correlations as a function
of the internal coordinate. The difference between the results presented here and
the numerical findings of Ref. [148] calls however for a further investigation6.

6 Note also that the analysis presented in this chapter is constructed in the framework of the
ε-expansion. The absence of conformal invariance is proven for D < 4 only in the sense of this
expansion (to all orders in ε). We expect however that the analysis should remain the same in
D = 2. The problem could be revisited directly in two dimensions for example in the framework
of the large-dc expansion. Another possibility consists in defining perturbation theory directly
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4.2 conformal invariance

Conformal transformations can be defined as those changes of coordinates which,
at each point, appear locally like the combination of a translation, a rotation, and
a dilatation. In other words, conformal transformations preserve all angles: if two
curves cross at a point x with a relative angle ∆θ, the image of the two curves
after conformal transformations will cross at the image point x′ with the same
relative angle ∆θ′ = ∆θ.
Mathematically, the properties of conformal transformations can be expressed

by the condition that the transformed metric

h′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
hρσ(x) (4.1)

after the change of coordinate x → x(x′) remains proportional to the non-
transformed metric hµν(x) up to a scalar factor:

h′µν(x′) = eλ(x)hµν(x) . (4.2)

For a space with Euclidean geometry, hµν(x) = δµν , this implies

h′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
δρσ = eλ(x)δµν . (4.3)

For infinitesimal transformations x′µ = xµ + εµ, the conformality conditions reduce
to the "Killing equations"

∂µεν + ∂νεµ =
1

D
(∂ρερ)δµν , (4.4)

where D is the space dimension. For D > 2 the solutions are translations (εµ(x) =

tµ), rotations (εµ(x) = ωµνxν with ωµν = −ωνµ), dilatations (εµ = λxµ) and
special conformal transformations

εµ(x) = 2(b · x)xµ − bµx2 , (4.5)

which together form a group with (D + 1)(D + 2)/2 independent generators [115,
116, 151].

For finite parameters the special conformal transformation reads 7

x′µ =
xµ − bµx2

1 + b2x2 − 2(b · x)
(4.6)

in D = 2 after regularizing divergences via an infrared cutoff (see for example Ref. [16, 150] for
analogue methods in the theory of phase transitions).

7 Eq. (4.6) can be derived by performing a sequence of three steps: an inversion xµ → xµ/x2, a
translation xµ → xµ+bµ, and a subsequent inversion xµ → xµ/x2 [115, 116, 119]. The inversion is
a conformal transformation, but it belongs to a component of the group which is not continuously
connected to the identity. The special conformal transformation instead reduces to the identity
when bµ → 0. This construction also makes it clear that the special conformal transformations
form a D-dimensional commutative subgroup [115].
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Figure 4.1: Image of a square net after a conformal map. The net gets locally rotated
and dilated by inhomogeneous, space-dependent amounts, but the angles between all
lines remains 90◦ and infinitesimal squares are mapped to infinitesimal squares (not to
rectangles).

The effect of this mapping on a square net is illustrated graphically in Fig. 4.1.
All angles between lines are preserved and locally the transformation looks like a
combination of a translation, a rotation, and a dilatation. However, the amount of
rotation and dilatation differs from point to point.
In two dimensional space, the conformal group is, instead, infinite dimensional.

The Killing equation (4.4) can be showed to be equivalent to the Cauchy-Riemann
conditions [115, 151], which have as a solution all holomorphic mappings of the
complex plane. The group of translations, rotations, dilatations, and special confor-
mal transformations of the form (4.6) can be collectively represented in complex
coordinates as mappings of the form

z′ =
az + b

cz + d
, (4.7)

with complex coefficients a, b, c, d satisfying ad− bc 6= 0 [115]. The mappings (4.7)
are known as Möbius transformations and form a subgroup of the holomorphic
functions.

Systems tuned at the critical temperature of a second-order phase transition are
often described by continuum field theories invariant under conformal transforma-
tions [13, 79, 115, 119]. The presence of rotational and translational symmetries
is a consequence of the existence of a continuum limit. At the critical point, the
divergence of the correlation length implies the emergence of fluctuations at arbitry
large wavelengths [13–16, 81, 84], and the discrete nature of the microscopic lattice,
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which breaks continuum space symmetries, becomes irrelevant. The appearance
of scale invariance is a further consequence of the continuum limit, and arises
when the only large length scale in the problem (the correlation length) becomes
strictly infinite. A priori, there is no group theoretical reason why a model in-
variant under rotations, translations, and dilatations should exhibit the extended
conformal symmetry. However, field theories relevant in high energy physics and
in several statistical mechanical problems are local, involving only short range
interactions [14, 15]. In this case, the enhancement to conformal invariance becomes
more likely, since in the neighbourhood of each point, a conformal mapping behaves
approximately as a combination of an isometry and a scale transformation. The
symmetry enhancement, however, is still not guaranteed, because the local values
of the rotation angles and dilatation factors change from point to point. Since field
theories always contain gradient terms, this inhomogeneity can destroy the con-
formal invariance even in a local model symmetric under rigid, space-independent
isometries and dilatations [116, 118]. As discussed in Sec. 4.1, in the case of unitary
or reflection positive theories, it is possible to prove that the conformal invariance
always emerges [117, 118, 152]. In this chapter, we argue that this, instead, does
not happen in the case of thermal ripples in membranes within the ε-expansion:
despite having isometric and dilatation symmetries, the statistical distribution of
ripples is not enhanced to the full conformal symmetry.
Before starting the discussion, it is useful to emphasize the possibility of very

different notions of conformal invariance in the case of membranes. In high-energy
physics and in the statistical mechanics of critical phenomena, the continuum
field theories usually have as degrees of freedom quantized matter fields, gauge
fields, or order parameters (a local magnetization in the case of ferromagnetic
transitions). For membranes, instead, the fluctuating fields h(x) and uα(x) are
themselves spacial coordinates. In addition to coordinate transformations of x,
analogue to transformations in any other field theory, it is thus possible to apply
space transformations to h(x) and uα(x).
Membranes with a vanishing bulk modulus, realized for example by twisted

Kagome lattices, present a form of "embedding-space" conformal invariance [102].
Since they present a finite resistance to shear but not to compression, they can
be deformed without any elastic energy cost provided that at each point in the
medium, the deformation is free of shearing distortions. Shearless deformations
are realized by any configuration of the in-plane displacement fields for which uα
satisfies the conformal Killing equation. In two dimensions, all deformations for
which ux + iuy is a holomorphic function of x+ iy are shear-free and correspond
to states with zero elastic energy [102]. In this form of embedding-space invariance,
the conformal transformations leave x invariant and act on uα.
In this chapter, we analyze instead the existence of "internal-space" confor-

mal invariance: invariance under conformal transformations of the D-dimensional
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coordinate x. This notion mirrors the usual realizations of conformal invariance
in quantum field theory. It represents the group theoretical extension of scale
invariance in the sense of the RG fixed point: the existence of inhomogeneous
ripples at all wavelengths.

4.3 energy-momentum tensor

The response to translations, rotations, scale, and conformal transformations can
be described in an unified language in terms of special structural properties of the
energy-momentum tensor [15, 115, 118, 153].
In any local and translationally invariant field theory, the energy-momentum

tensor Tµν is defined as the conserved Noether current associated with translational
symmetry. In a model involving a collection of fields Φa(x) as degrees of freedom,
Tµν can be calculated by measuring the change of the action S[Φa(x)] under the
change of variables Φa(x) → Φ′a(x) = Φa(x + ε(x)), where ε is an infinitesimal
space-dependent vector field. Due to locality and translational symmetry the
variation of the action must take the form8

δS = S[Φ′a(x)]− S[Φa(x)] =

∫
dDx Tαβ∂αεβ , (4.8)

in such way that it vanishes when εβ is space-independent. Eq. (4.8) defines the
energy-momentum tensor Tαβ . Due to the least action principle, δS is always equal
to zero when Φa(x) are solutions of the equations of motion. Since this is valid
for any εβ this implies that ∂αTαβ = 0: the energy-momentum tensor is locally
conserved [115, 118, 154].

Although Tαβ is designed as a current associated with translations, Eq. (4.8) in
fact encodes the response to any coordinate change, because the space-dependent
translation ε(x) is in fact a general transformation of coordinates [15]. There-
fore, the conserved currents associated with rotations, dilatations, and conformal
transformation can all be related to the energy momentum tensor.
If the action is invariant not only under translations, but also under rotations,

the angular momentum current

Mα,βγ = xγTαβ − xβTαγ + sα,βγ (4.9)

is conserved [115, 153]. In Eq. (4.9), sµ,νρ is a local tensor, antisymmetric for
ν ↔ ρ, which does not depend explicitly on the coordinates. The conservation law
∂µMµ,νρ = 0 implies that

Tαβ − Tβα = −∂γsγ,βα . (4.10)

8 Since in this work we consider Euclidean geometries it is not necessary to distinguish covariant
and contravariant indices. We thus drop upper indices and write all tensors with lower indices
only.
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In this case it is possible to introduce an "improved" energy-momentum tensor [115]

θαβ = Tαβ +
1

2
∂γ (sβ,αγ + sα,βγ − sγ,βα) (4.11)

which has the same divergence of the canonical energy-momentum tensor, ∂αTαβ =

∂αθαβ , and which is symmetric (θαβ = θβα when evaluated for fields Φa(x) which
solve the equations of motion δS/δΦa(x) = 0.
The improved energy-momentum tensor θαβ is not uniquely specified by the

symmetry θαβ = θβα and the conservation law ∂αθαβ , but has a residual "gauge
freedom". All equivalent energy-momentum tensors can be shown to be identical
up to the addition of a symmetric improvement term of the form ∂ρ∂σYασβρ, where
Yασβρ has the symmetries of the Riemann tensor Yασβρ = −Yσαβρ = Yβρασ [118]

It the action is invariant under translations, rotations, and dilatations, the system
presents a conserved dilatation current [115, 116, 118, 153] of the form

Sα = xβθαβ − Vα , (4.12)

where Vα, the "virial current", has no explicit coordinate dependence. Scale in-
variance is equivalent to the current conservation ∂αSα = 0 and thus requires
θαα = ∂αVα. This condition is invariant for any "gauge choice" of the symmetric
energy momentum tensor, because, if θαβ is replaced with θ′αβ = θαβ + ∂ρ∂σYασβρ
then the equation θ′αα = ∂αV

′
α remains valid with V ′α = Vα + ∂ρYµρµα [118].

Group theoretical relations imply that the general form of the special conformal
current is [118, 153]

Cαβ = (2xβxν − x2δβν)θαν − 2xβ(Vα − jα) + 2Lαβ , (4.13)

where jα is a conserved current, satisfying ∂αjα = 0. Conformal invariance requires
∂αCαβ = 0 and, therefore,

θαα = ∂αVα and Vα = jα + ∂βLαβ . (4.14)

Eq. (4.14) is again invariant under the choice of a different improved energy-
momentum tensors, because the redefinition θαβ → θαβ + ∂ρ∂σYσαρβ can be
absorbed by redefining Vα → V ′α and Lαβ → L′αβ = Lαβ + Yµαµβ [118]. If all
conditions for conformal invariance are satisfied, it is possible to choose an improved
energy-momentum tensor which is traceless, by choosing [118]

Yσαρβ =
1

D − 2
(Lαρδσβ + Lσβδαρ − Lσρδαβ − Lαβδσρ)

+
1

(D − 1)(D − 2)
(δσρδαβ − δαρδσβ)Lγγ .

(4.15)

For D = 2, the expression (4.15) is not valid. If Lαβ is proportional to the
identity matrix, Lαβ = Lδαβ , it is possible to recover a traceless improved energy-
momentum tensor by choosing Yσαρβ = −(δσρδαβ − δαρδσβ)L. If this is the case, it
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can be shown that the theory is invariant under the infinite-dimensional group of
holomorphic functions in the complex plane [117, 118, 147]. If, instead, Lαβ cannot
be written as Lδαβ , the energy-momentum tensor cannot be made traceless. In
this case, the model is invariant only under Möbius transformations: despite being
two-dimensional it behaves, from the point of view of the conformal symmetry, as
a higher-dimensional system [118, 147].
The conditions relating symmetries to the structure of the energy-momentum

tensor can be understood more intuitively by returning to the definition (4.8) [15,
79, 151]. The expression for the variation of the action remains valid if we replace
Tαβ with any improved energy-momentum tensor, because after integration by
parts −

∫
dD∂αTαβεβ , the improvement terms drop from ∂αTαβ , even when the

equations of motion are not satisfied. If θαβ is symmetric, the variation of the action
vanishes when ∂αεβ is antisymmetric. This corresponds to rotational invariance.
If θαα = ∂αVα is a total first derivative, then δS = 0 for εα = εxα. This leads to
scale invariance. Conformal invariance requires θαβ to be symmetric and the trace
θαα to be a total second derivative θαα = ∂α∂βLαβ . If this is the case, the action
remains invariant under an infinitesimal transformation with εα = 2xαxβ − x2δαβ ,
as it can be checked by direct calculation.

4.4 scale vs. conformal invariance in linear elasticity the-
ories

Before examining the interacting fixed points of membrane theory, it is interesting
to examine the membrane and the GCI model at the level of a linearized free-
field approximation. For membrane theory, the harmonic approximation to the
Hamiltonian (2.27) reads9:

H(2) =
1

2

∫
dDx

[
(∂2h)2 + (λ0 + µ0)(∂αuα)2 + µ0∂αuβ∂αuβ

]
. (4.16)

Fluctuations of h are thus described by the free bi-harmonic model H(h) =∫
dDx(∂2h)2/2. It can be shown that this model is conformally-invariant in general

dimension10. An explicit calculation, in fact, shows that the theory admits a
symmetric energy-momentum tensor with trace

θ(h)
αα =

1

2
(4−D)(∂2h)2 =

1

2
(4−D)

[
h · ∂2∂2h + ∂α∂βLαβ

]
, (4.17)

and Lαβ = 2(∂αh · ∂βh)− δαβ(∂γh · ∂γh)− δαβ(h · ∂2h). This form is consistent
with that expected for a conformal theory [147]: the trace can be reduced to a

9 In order to simplify the notation, we drop the bar symbols in h̄ and ū. Throughout the exposition,
h and uα denote fields after the rescalings h→

√
T/κh, uα → T/κuα.

10 See Ref. [155] for a detailed analysis of the biharmonic theory in integer dimensions and Ref. [147]
for an application to 2D elasticity theory.
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total second derivative, up to the term h · ∂2∂2h, which vanishes with the equation
of motion ∂2∂2h = 0 and can be identified as the generator of local field rescaling.
Since Lαβ 6= δαβL, the biharmonic theory in dimension D = 2 is invariant under
the global conformal group but not under the infinite Virasoro symmetry [147].
The theory for uα fluctuations,

H(u) =
1

2

∫
dDx[(λ0 + µ0)(∂αuα)2 + µ0∂αuβ∂αuβ ] (4.18)

is the well-known theory of linear isotropic elastic media. As it was shown in
Refs. [103, 130], this model provides a physical realization of a scale-invariant but
nonconformal field theory.

An explicit calculation shows the improved symmetric energy-momentum tensor
θαβ has trace θαα = ∂αVα,

Vα =
1

2
(Dλ0 + (D + 2)µ0)uα∂γuγ −

1

2
(D − 2)µ0uγ∂αuγ − µ0uγ∂γuα , (4.19)

up to terms which vanish when the equation of motion −(λ0 + µ0)∂α∂βuβ −
µ0∂

2uα = 0 is satisfied. For generic λ0 and µ0, the virial current cannot be
reduced to the form Vα = jα + ∂βLαβ , with ∂αjα = 0, implying the absence
of conformal invariance. This lack of symmetry manifests itself in a the form
of correlation functions, which, despite being scale-invariant, violate the more
restrictive conformal selection rules [103, 130].
Conformal symmetry is however recovered when elastic constants are adjusted

to special values. If Dλ0 + (D + 4)µ0 = 0, the virial current reduces to the form
Vα = ∂βLαβ , and the model becomes conformal. The corresponding model is
unphysical as an elasticity theory, being outside of the stability region µ0 ≥ 0,
B0 = λ0 + 2µ0/D ≥ 0, but it is relevant as a gauge-fixed electrodynamics [130].

For λ0 +µ0 = 0 another, "twisted", form of conformal invariance appears. In this
case, the symmetry of the theory is enhanced from O(D) to O(D)×O(D), and we
can choose to regard uα as a set of scalar fields rather than a vector field [103, 132].
The Hamiltonian then describes D copies of a free scalar field, and can be shown to
be conformal in arbitrary dimension11,12. For D = 2, the condition λ0 +µ0 = 0 also
corresponds to a vanishing physical bulk modulus λ0 + 2µ0/D. Thus, the model
exhibits in addition to the twisted invariance, also the embedding-space conformal
invariance discussed in Sec. 4.2.

11 The virial current in Eq. (4.19) is not valid for the twisted model. In fact, Eq. (4.19) was derived
by including improvement terms needed to make θαβ symmetric. If λ0 + µ0 = 0 and uµ is
assumed to transform as a scalar, θαβ is already symmetric and the improvement must not be
performed [103].

12 The possibility to promote uα to a collection of scalars is destroyed in the nonlinear membrane
model since the form of the strain tensor (∂αuβ + ∂βuα + ∂αh · ∂βh)/2 forces the components of
uα to transform as a vector field.
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Figure 4.2: Generalization of a Kadanoff-Wilson spin-block renormalization group to a
nonuniform coordinate transformation. (Figure adapted from Ref. [79].)

Finally, Ref. [147] showed that in two dimensions the elasticity model for any
choice of λ0 and µ0 presents a hidden conformal symmetry which emerges when
displacement fields are represented as gradients of scalar potentials: uα = ∂αφ+

εαβ∂βω, where φ and ω are respectively a scalar and a pseudoscalar field. This
representation maps Eq. (4.18) to two copies of the biharmonic theory, which is
conformal in general dimension. The GCI model analyzed in chapter 3, similarly,
reduces to two decoupled biharmonic theories in the non-interacting limit Y0 → 0.

4.5 scale vs. conformal invariance in nonlinear membrane
theory

The analysis of scale and conformal invariance in interacting quantum field theories
and statistical models is made complex by the very nontrivial way in which these
symmetries are realized. Within a Wilson scaling picture [13, 14, 16], scale invariance
emerges when the process of coarse graining degrees of freedom reaches a fixed point.
An adaptation of the same method to the case of conformal invariance consists in
a generalization of the Kadanoff block method to a nonuniform renormalization
group transformation [79, 119]. Considering the example of the Ising model at the
critical point, a non-uniform RG scaling can be visualized similarly to Fig. 4.2 [79,
119]. The procedure of considering groups of spins forming collective block variables
is generalized to blocks of nonequal size, following the coordinate transformation
encoded in a conformal map.
Direct implementations of nonuniform RG transformations have been studied

extensively using nonperturbative techniques [137, 140, 156], although usually via
methods which employ a smooth cutoff instead of a block scaling approach. Nonuni-
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form renormalization group equations have also been explored in perturbative
settings [157], by analyzing field theories with space-dependent coupling constants.

In this work we use, in analogy with other quantum field theory and statistical
mechanics problems [138, 139, 145], a method based on the analysis of Ward
identities in perturbation theory, which has the technical advantage of acting
directly in a continuum space.

4.5.1 Energy-momentum tensor and bare Ward identities

The improved energy-momentum tensor, calculated directly from the Hamilto-
nian (2.27) reads13,14

θαβ =− 1

2
δαβ

[
(∂2h)2 + λ0(uγγ)2 + 2µ0uγδuγδ

]
+ 2∂α∂βh · ∂2h− ∂αh · ∂β∂2h− ∂βh · ∂α∂2h

+
1

D − 1

[
δαβ∂γh · ∂γ∂2h + δαβ∂γ∂δh · ∂γ∂δh

+ (D − 2)∂γh · ∂α∂β∂γh−D∂α∂γh · ∂β∂γh
]

+ 2λ0uγγuαβ + 4µ0uαγuβγ −
1

2
(Eαuβ + Eβuα)

+ λ0∂γ [(δαβuγ − δβγuα − δαγuβ)uδδ]

+ 2µ0∂γ [uγuαβ − uαuβγ − uβuαγ ] .

(4.20)

It is symmetric and locally conserved reflecting the rotational and translational
invariance of the continuum medium. The conservation law for θαβ reads

∂αθαβ = −E · ∂βh− Eα∂βuα −
1

2
∂α(Eβuα − Eαuβ) (4.21)

13 In order to obtain an improved energy-momentum tensor which is symmetric for any values of
the fields, also off-shell (without the use of equations of motion), we define θαβ as the response of
the Hamiltonian to the infinitesimal transformation h(x) → h′(x) = h(x′), uα(x) → u′α(x) =(
δαβ + (∂αεβ − ∂βεα)/2

)
uβ(x′), xα → x′α = xα+ εα, including a local rotation of uα in reaction

to the antisymmetric part of ∂αεβ . For this reason the conservation law, Eq. (4.21), includes
the term −∂α(Eβuα − Eαuβ)/2, an operator which, inserted in correlation functions, acts as a
generator for local rotations of the uα field (see Eqs. (4.27), (4.28)).

14 The Hamiltonian H plays in the statistical mechanical problem the role of the action in quantum
field theory. The energy-momentum tensor of quantum field theory becomes the generator of
local translations with respect to the internal coordinate x. Using a standard terminology, we
refer to θαβ as the "energy-momentum tensor" although it does not describe the densities and
current of mechanical energy and momentum in the membrane but, rather, the conserved current
associated with the symmetry under translations x→ x + a in the internal space.
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where

E =
δH
δh

= ∂2∂2h− ∂α(λ0uββ∂αh + 2µ0uαβ∂βh) ,

Eα =
δH
δuα

= −λ0∂αuββ − 2µ0∂βuαβ ,
(4.22)

are the equations of motion of the h and the uα field. (Using a terminology of
quantum field theory we refer to the functional derivatives E and Eα as "equations
of motion" meaning that E = 0 and Eα = 0 would be the equations of motion in a
classical setting, governed by the principle of least action. In this case E = 0 and
Eα = 0 are the mechanical Föppl-von Karman equations giving the conditions of
energy minimization).

At finite temperature, due to statistical fluctuations, E and Eα cannot be set to
zero, because the system explores the entire phase space, not only the minimum
energy state. The operators E = δH/δh and Eα = δH/δuα however become
promoted to differential operators generating the Dyson-Schwinger equations of
motion15 [15] [

J(x)− δH
δh(x)

(
δ

δJ
,
δ

δjα

)]
Z[J(x), jα(x)] = 0 , (4.23)

[
jα(x)− δH

δuα(x)

(
δ

δJ
,
δ

δjα

)]
Z[J(x), jα(x)] = 0 , (4.24)

for the generalized partition function

Z[J(x), jα(x)] =

∫
[dh(x)][duα(x)] exp

[
−H+

∫
dD
(
J · h + jαuα

)]
, (4.25)

which generates correlation functions

〈hi1(x1)..hin(xn)uα1
(x′1)..uα`(x

′
`)〉

=
δ

δJi1(x1)
..

δ

δJi1(xn)

δ

δjα1
(x′1)

..
δ

δjα`(x
′
`)
Z[J(x), jα(x)]

∣∣∣∣
J=0,jα=0

.
(4.26)

15 As a remark, note that the expressions (4.23)–(4.31) are only formal, because the correlation
functions of h(x) and uα(x) in real space does not exist for D < 4. However, the expressions
become defined if we consider correlation functions of gradients ∂αh and ∂αuβ .
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Adapting standard field theoretical methods [15, 138, 139] it can then be shown
that the connected correlation functions with insertions of the composite operators
E · ∂βh, Eα∂βuα, Eβuα, and E · h are respectively given by16

GE(x)·∂βh(x) = 〈〈hi1(x1)...hin(xn)uα1(x′1)...uα2(x′`)E(x) · ∂βh(x)〉〉 =

=

n∑
a=1

δ(x− xa)
∂

∂xaβ
〈〈hi1(x1)...hin(xn)uα1

(x′1)...uα2
(x′`)〉〉 ,

GEα(x)∂βuα(x) = 〈〈hi1(x1)...hin(xn)uα1
(x′1)...uα2

(x′`)Eα(x)∂βuα(x)〉〉 =

=
∑̀
b=1

δ(x− x′b)
∂

∂x′bβ
〈〈hi1(x1)...hin(xn)uα1

(x′1)...uα2
(x′`)〉〉 ,

(4.27)

GEβ(x)uα(x)i1..inα1..α`(x1..xnx
′
1..x

′
`)

=
∑̀
b=1

δ(x− x′b)δβαbGi1..inα1..αb−1ααb+1..α`(x1..xnx
′
1..x

′
`) ,

(4.28)

GE(x)·h(x)i1..inα1..α`(x1..xnx
′
1..x

′
`)

=

n∑
a=1

δ(x− xa)Gi1..inα1..α`(x1..xnx
′
1..x

′
`) .

(4.29)

Using these relations, the conservation laws of the energy-momentum tensor ∂αθαβ
and of the angular momentum current Mα,βγ = xγθαβ − xβθαγ become Ward
identities expressing the translational and rotational invariance of all correlation
functions.

The dilatation Ward identity [138] can be expressed by inserting the divergence
∂αSα of the scale current Sα = xβθαβ − Vα in correlation functions and by
integrating over all space. Dropping boundary terms and using Eqs. (4.27) gives

0 =

∫
dDx G∂αSα(x)i1..inα1..α`(x1..xnx

′
1..x

′
`)

=

∫
dDx Gθαα(x)i1..inα1..α`(x1..xnx

′
1..x

′
`)

−
[

n∑
a=1

xaβ
∂

∂xaβ
+
∑̀
b=1

xbβ
∂

∂xbβ

]
Gi1..inα1..α`(x1..xnx

′
1..x

′
`) .

(4.30)

16 To shorten the notation, we introduced the connected Green function
Gi1..inα1...α`(x1..xn,x′1..x

′
`) = 〈〈hi1(x1)..hin(xn)uα1(x′1)..uα`(x

′
`)〉〉. The Green func-

tions with operator insertions GO(x)i1..inα1..α`
(x1..xnx′1..x

′
`) are written shortly as GO

suppressing the index and coordinate dependences.
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A similar identity can be derived using the space part C ′αβ = (2xβxν − x2δβν)θαν
of the conformal current Cαβ . Inserting ∂αC ′αβ in correlation functions, dropping
boundary terms, and using Eqs. (4.27) gives∫

dDx 2xβGθαα(x)i1..inα1..α`(x1..xnx
′
1..x

′
`)

−
[ n∑
a=1

(2xaνxaβ − δνβx2
a)

∂

∂xaν

+
∑̀
b=1

(2xbνxbβ − δνβx2
b)

∂

∂xbν

]
Gi1..inα1..α`(x1..xnx

′
1..x

′
`) = 0 ,

(4.31)

relation which describes the response to a conformal change of coordinates [138,
139]. If the terms Gθαα and Gxβθαα vanish up to equations of motion, the Ward
identities (4.30) and (4.31) express scale and conformal invariance respectively.
The terms proportional to equations of motion then act as generators specifying
the way in which fields transform under conformal transformations17.

4.5.2 Renormalization

The model for finite values of the coupling constants λ0 and µ0 cannot be neither
conformal nor scale invariant. The reason is that the coupling constants are
dimensionful, with dimension {λ0} = {µ0} = ε and thus introduce a characteristic
length in the problem. This length is the Ginzburg scale discussed in Sec. 2.9. For
q � qG ≈ µ1/ε

0 the correlation functions are approximately given by the harmonic
approximation. For q � qG, instead, the anomalous power-law behaviors emerge.
Exact scale invariance thus emerges in the limit q → 0 or equivalently in the limit
of infinitely large elastic constants18. This creates difficulties in interpreting the
Ward identities order by order in an expansion which uses λ0 and µ0 as small
coupling constants.

A further difficulty is that the perturbative expansion in powers of λ0 and µ0 is
infrared divergent and thus is only defined in an infinitesimal neighbourhood of

17 In scalar field theory, for example, θαα contains a term proportional to ηφδS/δφ which acts as the
generator of a field rescaling [138]. This term shows that the field transforms with an anomalous
dimension under scale and conformal transformations.

18 In presence of an ultraviolet cutoff Λ we expect, in analogy with critical phenomena [14, 15,
101, 105, 158], that scale invariance emerges when λ0 and µ0 are of order Λε, with numerical
prefactors of order ε fine-tuned in such way to cancel the leading corrections to scaling. Since we
consider a theory without a cutoff, scale invariance requires instead λ0, µ0 →∞. This limiting
procedure (working without a cutoff and taking the infinite coupling limit) corresponds to a
model with λ1/ε

0 , µ
1/ε
0 � Λ, observed at scales |k| � λ

1/ε
0 , µ

1/ε
0 much smaller than the Ginzburg

wavevector. For discussions on this limit in the massive scalar field theory and its relation to the
critical Ginzburg-Landau theory see for example Refs. [15, 16, 150].
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D = 4. The IR divergences disappear in the ε-expansion, where they are replaced
by logarithmic corrections [15]. However, the limit D → 4 generates ultraviolet
divergences which appear as poles in 1/ε [15, 81].

The energy-momentum tensor θαβ is almost free of ultraviolet infinities because
its divergence ∂αθαβ , Eq. (4.21), is proportional to the equations of motion and can
be shown to remain finite also as D → 4. The only counterterm needed to make θαβ
finite takes the form of a symmetric improvement term ∂ρ∂ρYασβρ, which has an
identically zero derivative [15, 118, 123, 159]. This term does not affect conservation
laws and Ward identities, and thus is unimportant for the analysis of scale and
conformal invariance. However, although the expression (4.20) is a priori finite,
its building blocks are unrenormalized coupling constants and unrenormalized
operators, both of which are divergent for ε→ 0.
Following Refs. [120, 121, 138, 139], we thus re-express the energy-momentum

tensor (4.20) in terms of renormalized composite fields defined by subtracting ultra-
violet divergences (poles in ε). Since we are interested only in scale and conformal
invariance, which are encoded in the trace θαα, it is sufficient to renormalize scalar
composite fields. The renormalization procedure results in an expansion of θαα in
a basis of renormalized operators, [(uαα)2], [uαβuαβ ], [uαuββ ], and [uβuαβ ].
As shown in appendices 4.A and 4.B the relation between the bare fields uαβ ,

uαα, (∂2h)2, uαuββ , uβuαβ and the corresponding renormalized operators is almost
completely determined by the RG functions βλ, βµ, η, and by amplitude and
coupling renormalizations (Z, gλ and gµ) which can be calculated from correlation
functions without operator insertions19.

In particular, we can obtain relations for two distinct types of operators. A first
type is the group of composite fields O1 = (∂2h)2/2 + λ0(uαα)2 + 2µ0uαβuαβ ,
O2 = λ0(uαα)2/2, O3 = µ0uαβuαβ , O4 = ∂2uαα, O5 = ∂α∂βuαβ , O6 = uαα, which
are invariant under all symmetries of the Hamiltonian. For these operators, the
analysis is closely analogue to derivations in Ref. [138] (see appendix 4.A) and
shows that the bulk part of the trace θαα is proportional to the RG beta functions.
A second type is constituted by the operators uαuββ and uβuαβ , which break

the shift symmetry uα → uα + Bα and the invariance under the approximate
embedding-space rotations defined in Eq. (2.29). As shown in appendix 4.B, their
explicit renormalization relation reads (in a non-minimal scheme):

uαuββ =
Mε(Dλ̃+ 2µ̃)

Dλ0 + 2µ0
[uαuββ ]

+ b1∂α[∂βh · ∂βh] + b2∂β [∂αh · ∂βh] + b3∂
2[uα] + b4∂α∂β [uβ ] ,

(4.32)

19 These renormalizations have been discussed in Sec. 2.5.3.
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uβuαβ −
1

D
uαuββ =

Mεµ̃

µ0

{
[uβuαβ ]− 1

D
[uαuββ ]

}
+ b′1∂α[∂βh · ∂βh] + b′2∂β [∂αh · ∂βh] + b′3∂

2[uα] + b′4∂α∂β [uβ ] .

(4.33)

where bk and b′k, k = 1, .., 4 are ultraviolet divergent coefficients. These relations
can be interpreted as ’non-renormalizations’, in the sense that the product of bare
couplings with bare operators is equal to the product of renormalized couplings
and renormalized operators. Eqs. (4.32) and (4.33) are much simpler than the
general relations expected by symmetry and power counting: counterterms with the
schematic form u3 are absent and mixing of operators of the type u(∂h · ∂h) and
u∂u is exactly determined in terms of the elementary renormalization constants Z,
gλ, and gµ. Although appendix 4.B presents a more complete proof, the particular
simplicity of the renormalization relations can be directly understood from the
structure of Feynman rules: in almost any diagram, we can factorize a power of the
momentum of each external line. Diagrammatic corrections, therefore, tend to be
shift-symmetric even if the inserted operators uαuββ and uβuαβ are not. This, in
particular, protects the ’diagonal’ renormalization (the generation of counterterms
proportional to the inserted composite fields uαuββ and uβuαβ) and implies the
simple normalization formulas (4.32) and (4.33). A similar non-renormalization
property associated with shift invariance occurs in Galileon theories [114].
For the following analysis, it is also useful to note that the composite operator

Eαh
2 is not renormalized: [Eαh

2] = Eαh
2. In fact, power counting shows that the

product (h(x) · h(x)) at coincident points does not generate UV divergences. As
a result [h2] = h̃ · h̃ = Z−1h2, where Z is the field-amplitude renormalization.
On the other hand, Eα(x′)h2(x′) is a redundant operator which vanishes with
equations of motion and acts as the infinitesimal generator of the field redefinition
uβ(x) → uβ(x) − εδαβδ(x − x′)h2(x). Since uα renormalizes as ũα = Z−1uα,
insertion of Eα(x′)h2(x′) can be equivalently represented as the generator of the
infinitesimal transformation ũα(x)→ ũα(x)− εδαβδ(x− x′)[h2(x)], which is finite
and, thus, does not require subtractions.
Collecting results, we obtain the following equivalent expressions for the trace

θαα:

θαα = (ε− η)

(
1

2
(∂2h)2 + λ0(uαα)2 + µ0uαβuαβ

)
− Eαuα

+
1

2
βλM

ε
[
(uαα)2

]
+ βµM

ε[uαβuαβ ] + ((D − 2)λ0 + 2µ0)∂α(uαuββ)

− 4µ0∂α(uβuαβ) + a1∂
2uαα + a2∂α∂βuαβ

= − (η − ε)
2

E · h− (1 + η − ε)Eαuα

+
1

2
βλM

ε[(uαα)2] + βµM
ε[uαβuαβ ] + ∂αVα ,

(4.34)



76 scale without conformal invariance

with

Vα = −1

4
(η − ε)Eαh2 + ((2− η)λ0 + 2µ0)uαuββ − 2(2 + η − ε)µ0uβuαβ

+
1

2
(ε− η)∂β

(
−δαβ(h · ∂2h) +

λ0

2
δαβh

2uγγ + µ0h
2uαβ

)
+ a1∂αuββ + a2∂βuαβ

(4.35)

or, after expansion in the basis of renormalized operators [uαuββ ], [uβuαβ ],

Vα = −1

4
(η − ε)Eαh2 + ((2− η)λ̃+ 2µ̃)Mε[uαuββ ]

− 2(2 + η − ε)µ̃Mε[uβuαβ ] + ∂βLαβ ,

Lαβ =
1

2
(ε− η)

[
−δαβh · ∂2h +

1

2
λ0δαβh

2uγγ + µ0h
2uαβ

]
+ b1δαβ(∂γuγ) + b2(∂αuβ + ∂βuα) + b3δαβ(∂γh · ∂γh)

+ b4(∂αh · ∂βh) .

(4.36)

In Eqs. (4.34), (4.35), and (4.36), a1, a2, and bi, (i = 1, .., 4) are UV-divergent
coefficients generated by renormalization20.
When λ0 and µ0 tend to infinity, the renormalized couplings λ̃ and µ̃ remain

finite and approach the infrared stable fixed point P4 (see Sec. 2.5.3). Assuming
that in this limit the insertions of renormalized operators remain finite, the terms
βλ[(uαα)2] and βµ[uαβuαβ ] disappear because the RG flow velocities are equal to
zero at the fixed point (βλ = βµ = 0).
In this case, the scaling symmetry of the theory, known from RG arguments,

becomes manifest and the trace θαα becomes a total derivative up to equations
of motion. In particular, the dilatation current Sα = xβθαβ − Vα [118] becomes
locally conserved, with a conservation law

∂αSα = −xβ (E · ∂βh + Eα∂βuα)− (η∗ − ε)
2

E · h− (1 + η∗ − ε)Eαuα , (4.37)

consistent with the form expected for fields of dimension21 ∆h = (η∗ − ε)/2 and
∆u = 1 + η∗− ε. More generally it is possible to show that, for general λ̃ and µ̃, the

20 As expected, all renormalization coefficients in Eqs. (4.34) and (4.36) are finite a part from those
appearing in Lαβ . The reason is that the conservation of the energy-momentum tensor imposes
its finiteness up to symmetric improvement terms. These improvement terms are total second
derivatives and can be absorbed in Lαβ .

21 The dimensionality of a field ϕ(x) is defined as the exponent ∆ governing the power-law dependence
of the two-point function 〈ϕ(x)ϕ(x′)〉 ∝ |x|−2∆. If the two-point function in Fourier space behaves
as 〈ϕ(k)ϕ(−k)〉 ∝ k−σ, the dimension is ∆ = (D − σ)/2. The renormalization of the bending
rigidity κ → κr(k) ∝ |k|−η∗ and of the elastic constants λ, µ → λr(k), µr(k) ∝ |k|4−D−2η∗

imply that the the two-point functions of h and uα scale in Fourier space with σh = 4− η∗ and
σu = 6−D−2η∗. Thus ∆h = (η∗−ε)/2 and ∆u = 1+η∗−ε. Note that h has negative dimension
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Ward identity generated by the dilatation current is equivalent to the RG equation
(see appendix 4.A), similarly to the case of other field theories [138, 145].

The vanishing of β functions, however, is not sufficient to imply the conformal
invariance of the model due to the presence of the non-zero virial current Vα. An
algebraic analysis of terms in Eq. (4.35) shows that Vα cannot be written as the
total derivative Vα = ∂βlαβ of a local operator lαβ . This remains true even in the
scale-invariant limit because, as Eq. (4.36) shows, contributions proportional to
[uαuββ ], [uβuαβ ] do not vanish as λ̃ and µ̃ approach their fixed point value. It is also
impossible to reduce Vα to the form jα + ∂βlαβ where jα is a conserved current. If
Vα = jα+∂βlαβ was true, the total derivative ∂αVα should reduce to a combination
Ored +∂α∂βlαβ , where Ored is a redundant operator, removable by field redefinition.
Working within dimensional regularization, we can assume that the Ored has the
form Eαχα + E · F, where χα and F are local functionals of the field, and we can
neglect contributions arising from the Jacobian of the transformation. The only
candidates for Ored with power-counting dimension 4 near D = 4 are then linear
combinations of the form f1(h2)E · h + f2(h2)Eαuα + f3(h2)Eα(h · ∂αh), where
f1(h2), f2(h2), f3(h2) are functions of h2. We checked by explicit calculation that
∂αVα cannot be reduced to such a combination up to a total second derivative
∂α∂βlαβ . It follows that it is impossible to construct a conserved conformal current.

We can thus conclude that the form of the virial current is inconsistent with the
structure expected in a conformal theory. Therefore, the theory must exhibit only
scale invariance and not the enhanced conformal symmetry.

Before concluding the discussion, let us comment on the role of renormalization
in the analysis. Within the framework considered here (the perturbative expansion
without ultraviolet and infrared cutoffs), the subtraction of dimensional poles 1/εk

is a mathematical necessity. Without renormalization, the ε-expansion cannot be
defined due to the divergences as D → 4. However, from a physical point of view,
the system of interest has a finite ε > 0. The divergences are, rather, generated by
the fact that the coupling constants are infinite in the scaling limit. The difference
between the two limits ε→ 0 and λ0, µ0 →∞ could be made more explicit defining
the perturbative expansion directly at finite ε, after adding mass terms to regularize
infrared divergences. In critical phenomena, it is usually assumed that the same
structure of counterterms which remove divergences for D → 4 also makes finite

for D < 4. The dimension of u also becomes negative when ε − η∗ > 1. For example in two
dimensions, the value of the exponent η∗ ' 0.8 implies a negative dimensionality for both fields.
For negative dimension the Fourier transform from momentum to real space

∫
k k
−σ exp(ik · x)

becomes infrared divergent. The derivatives of the fields ∂αh and ∂αuβ however have positive
dimensions for any D > 2− η∗(D). This ensures that correlation functions of ∂αh and ∂αuβ are
finite in real space. For D ≤ 2−η∗(D) the flat phase cannot exist. The equality Dlc = 2−η∗(Dlc)
defines the lower critical dimension of the flat phase [12].
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correlation functions at D < 4 in the limit of infinite coupling constants22 [15, 16,
150]. In the ε-expansion considered here, we assume that, similarly, the subtraction
of dimensional poles 1/εk will at the same time make correlation functions finite
for ε > 0 and infinite coupling strength23. This is confirmed by the fact that the
dimensionless renormalized couplings λ̃, µ̃ remain finite when the bare couplings di-
verge. This finiteness assumption implicitly underlies all applications of dimensional
regularization and minimal subtraction methods to critical behavior. We assume
that finiteness in the critical limit applies not only to correlation functions but also
to renormalized operators. We thus assume that the renormalized expression (4.34)
evaluated at the fixed point can be used to directly read the behavior of the model
in the scaling limit in which the bare couplings are divergent.

This assumption seems implicit in the analysis of scalar field theory in Ref. [138],
and more generally, in all analyses of the energy momentum tensor in critical
theories24.

4.5.3 Genericity argument

The group theoretical relations between dilatations and translations imply that the
symmetric energy momentum tensor θαβ must transform under an infinitesimal
rescaling of coordinates x→ (1 + ε)x as θαβ → θαβ + ε∆θαβ , where

∆θαβ = xγ∂γθαβ +Dθαβ + ∂ρ∂σ∆Yσαρβ , (4.38)

and ∆Y is an infinitesimal improvement term (with the symmetry properties
∆Yσαρβ = −∆Yασρβ = ∆Yρβσα) [118, 123]. This transformation law shows that, up
to a total second derivative, the energy-momentum tensor must behave as a field
with dimension exactly equal to D. In turn, the virial current must have dimension
D − 1 [79].

This fact has suggested a general argument to link scale and conformal invariance.
The argument is based on the concept that it is unlikely to have fields with an exact
dimension D − 1 in an interacting field theory. This indicates that generically the
virial current is zero and scale invariance is extended to conformal invariance25 [79,
130].

Having found a violation of conformal invariance, let us comment on the natu-
ralness of having vector operators with dimension exactly equal to D − 1. In the

22 The specific values of the counterterms depend on the renormalization scheme, but the number
of subtractions and the type of counterterms are the same.

23 Qualitatively, the renormalization procedure makes correlation functions insensitive to the large-
momentum region q � qG where the behavior crosses over from critical to Gaussian.

24 In scalar field theory, an analysis of the finiteness of integrated operator insertions
∫

dDxGθαα(x)

and
∫

dDxxαGθαα(x) at the fixed point was given in Ref. [139].
25 See also Ref. [140] for a similar genericity argument in the framework of the exact renormalization

group. For tests of the genericity argument, see for example Ref. [132].
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membrane model considered here, the non-renormalization relations (4.32), (4.33)
can be used to show that the fields uαuββ and uβuαβ scale at the fixed point
with a dimension exactly equal to D − 1 (up to total derivatives). This dimension
can also be interpreted as the sum of the dimensions of uα, which is 1 + η∗ − ε,
and uαβ which, as shown in appendix 4.A has dimension 2− η∗. The existence of
non-conserved currents with dimension exactly D − 1 can thus be traced to the
shift symmetry of the theory, which protects the terms in the virial current from
getting nontrivial renormalizations.
We note, however, that the existence of an unrenormalized virial current could

be guessed more quickly even without an explicit analysis of the individual opera-
tors (4.32) and (4.33). The reason is that, due to its conservation law, θαβ must
be finite for ε→ 0 a priori (up to improvement terms) [118, 159]. The trace of the
energy-momentum tensor, expressed in terms of bare quantities, reads

θαα = −Eαuα +
ε

2
((∂2h)2 + λ0(uαα)2 + 2µ0uαβuαβ) + ∂αVα . (4.39)

The part ε((∂2h)2 +λ0(uαα)2 + 2µ0uαβuαβ)/2 is nontrivially renormalized because
the factor ε in front of the expression leaves room for the presence of counterterms
diverging as first-order poles in ε. The explicit counterterms in particular are
proportional to η/ε, βλ/ε and βµ/ε and introduce the RG functions into the
expression of the energy momentum tensor (see 4.A).

The current Vα, instead, contains terms which are not suppressed by factors of ε.
In other words, the model in dimension D = 4 is scale invariant but not conformal
at the classical level (without loop corrections)26. Since Vα must be finite (up to
total derivatives) and there is no compensating factor of ε, Feynman diagrams with
insertion of Vα must be directly convergent, after coupling and amplitude renormal-
izations. Therefore we see that, even without a detailed calculation, we could have
expected a non-renormalization relation and the existence of an unrenormalized
vector field having dimension exactly equal to D − 1.

This reasoning can be applied to any model which is scale-invariant but non-
conformal at the classical level in dimension 4 (or, more generally, at the upper
critical dimension). For these models, unrenormalized vector fields must always
exist and thus the genericity argument breaks down.

4.5.4 Comment on reflection positivity

In two-dimensions, scale-invariant models which present unitarity (in spacetime)
or reflection positivity (in Euclidean space) can be proven to be always conformal,
if some additional technical conditions are satisfied [117, 118].

26 At the classical level, conformal invariance can be analyzed by setting h = 0, condition which is
preserved by equations of motion. The model then reduces to the Riva-Cardy theory, which is
not conformal in four dimensions [103, 130].



80 scale without conformal invariance

Although we could not develop a detailed derivation, we expect that the mem-
brane model discussed in this section is not reflection-positive. In the ultraviolet
limit, where interactions can be neglected, the theory reduces to

HUV =
1

2

∫
dDx

[
(∂2h)2 + (λ0 + µ0)(∂αuα)2 + µ0∂αuβ∂αuβ

]
, (4.40)

the combination of dc copies of a higher-derivative scalar theory and a Gaussian
vector model. These non-interacting theories were analyzed in Refs. [103, 130, 160]
and were shown to lack reflection positivity or, equivalently, unitarity in Minkowski
space. It seems likely, therefore, that the also the full interacting model is not
reflection-positive.

4.6 gci model

Differently from elasticity theory, the GCI model is exactly conformal in the
Gaussian approximation, and therefore, in the ultraviolet region. In fact, the
Hamiltonian (3.7) reduces in the weak-coupling limit Y0 → 0 to two copies of the
biharmonic theory, which is exactly scale and conformal invariant [147, 155]. In
this section we show that, instead, conformal symmetry is broken in the infrared
region: the IR fixed point theory is only dilatation-invariant.
With calculations illustrated in appendix 4.C and some further algebraic steps,

it can be shown that the model admits a symmetric energy-momentum tensor θαβ
with trace

θαα = − (η − ε)
2

E · h + ηEχ− β(Y )

2Y 2
M−ε[(∂2χ)2] + ∂αVα (4.41)

where

E = ∂2∂2h + i(∂2χ∂2h− ∂α∂βχ∂α∂βh) , E =
1

Y0
∂2∂2χ+ iK (4.42)

are, respectively, the equations of motion of the h and the χ field, and [(∂2χ)2]

denotes the renormalized insertion of (∂2χ)2. The expression for θαα includes a
non-zero ’virial current’

Vα = − i
2

{
(D − 3 + 2η)∂αχ(∂βh · ∂βh) + 2(1− η)∂βχ(∂βh · ∂αh)

}
+ ∂βLαβ ,

(4.43)

where Lαβ is a local tensor field.
At the IR fixed point Y = Y∗, assuming that the renormalized operator [(∂2χ)2]

remains finite, the term −β(Y )M−ε[(∂2χ)2]/(2Y 2) becomes zero due to the van-
ishing of the β-function β(Y∗) = 0. We can thus introduce a dilatation current
Sα = xβθαβ − Vα which is locally conserved:

∂αSα = −xβ(E · ∂βh + E∂βχ)− (η∗ − ε)
2

E · h + η∗Eχ . (4.44)
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Whether the scaling symmetry is enhanced to the full conformal invariance
depends on the structure of the virial current. It is useful, therefore, to examine
insertions of the composite field Pµ,αβ = ∂µχ(∂αh · ∂βh), an elementary building
block from which the nontrivial terms in Eq. (4.43) can be constructed. The
renormalization of Pµ,αβ has a particularly simple form. In fact, let us consider
an arbitrary diagram γ for a 1PI correlation function with n external h lines, `
external χ lines, and one insertion of Pµ,αβ . The diagram can be of one of the
three types illustrated in Fig. 4.3: in diagrams of the groups (a) and (b) one of
the elementary fields contained in the composite operator is directly connected
with external lines, while in diagrams of type (c) all inserted lines enter as loop
propagators.

Figure 4.3: Examples of 1PI diagrams of type (a), (b), and (c).

The Feynman rules of the theory imply that the degree of superficial divergence [15]
is

δ(γ) = 3 +DL− 4Ih − 4Iχ + 4v − 2n− 2`+ aγ , (4.45)

where Ih and Iχ denote the number of internal h and χ propagators, v the number
of vertices, and L the number of loops. The coefficient aγ is aγ = 1 for diagrams
of type (a) and (b) and aγ = 0 for type (c). Using the topological relations
L = 3 + 2v − Ih − Iχ − n− `, 2Ih + n = 2v + 2, and 2Iχ + ` = v + 1, we see that
the degree of divergence in the ε expansion is

δ(γ) = 3− 2n− 2`+ aγ . (4.46)

It follows that the only counterterms needed for the renormalization of Pµ,αβ have
the schematic form ∂3χ, ∂χ∂2χ, ∂h · ∂2h. These composite operators can always
be represented as total derivatives (see Eq. (4.87)).
We can conclude that insertions of the composite fields ∂αχ(∂βh · ∂βh) and

∂βχ(∂αh · ∂βh), which contribute to the virial current, are finite up to total-
derivative counterterms. Therefore, the “bulk” of the virial current is unrenormalized:
we can set ∂αχβ(∂βh · ∂βh) = [∂αχβ(∂βh · ∂βh)] and ∂βχ(∂αh · ∂βh) = [∂βχ(∂αh ·
∂βh)], up to gradients of the form ∂βlαβ which do not affect the relation between
scale and conformal invariance [118].
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Let us check that Vα cannot be reduced completely to the combination Vα =

jα + ∂βL
′
αβ of a conserved current jα and a total derivative. If this was the case,

∂αVα should reduce to the combination Ored + ∂α∂βlαβ of a redundant operator
Ored and a total second derivative. Within dimensional regularization, candidates
for Ored can be taken as linear combinations of operators proportional to the
equations of motion E and E and, in order to match the power-counting dimension
of ∂αVα, must have the form f1(h2, χ)(E · h) + f2(h2, χ)E, where f1 and f2 are
functions. We checked from the explicit expression Vα that it is impossible to
rewrite ∂αVα as a combination of this type up to a total second derivative ∂α∂βlαβ .
Since contributions to Vα do not renormalize, we expect that this result remains
robust at the IR fixed point. We are lead to the conclusion that the GCI model
exhibits scale without conformal invariance.
Let us, then, investigate the scaling properties of the operators composing Vα.

Since Pµ,αβ is not renormalized, it does not acquire anomalous exponents. Therefore
the naive dimension {Pµ,αβ} = 3+2{h}+{χ} = 3+2(D−4)/2+0 = D−1 remains
valid at the IR fixed point. This scaling relation can also be understood in terms
of the infrared dimensions of fields. The renormalization relations discussed in
chapter 3, h =

√
Zh, χ = Z−1χ̃, imply that h and χ scale in the long-wavelength

limit with dimensionalities {h} = (D − 4 + η)/2 and {χ} = −η. The absence
of divergences in the insertion of Pµ,αβ implies that the naive relation {Vα} =

3 + 2{h} + {χ} remains valid in the IR and, in fact, it can be seen that the
anomalous exponent η cancels out leaving an exact canonical dimension.

4.7 two tests on the absence of conformal invariance

Conformal invariance implies a set of constraints and selection rules for correlation
functions [79, 115, 119, 137, 151]. Two of the simplest rules are the following27:
· The two-point function 〈ϕi(x1)ϕj(x2)〉 of two fields (primary or descendant) must
be zero if the difference ∆i −∆j of their scaling dimensions is noninteger.
· The two-point function of a quasi-primary vector field yα(x) must have the form

〈yα(x1)yβ(x2)〉 =
A(δαβx

2 − 2xαxβ)

|x|2∆+2
, (4.47)

with x = x1 − x2. After Fourier transformation, this correspond to a two-point
function in momentum space of the form [132]

〈yα(k)yβ(−k)〉 =
A′

k2+D−2∆

[
(∆− 1)k2δαβ + (D − 2∆)kαkβ

]
. (4.48)

27 See Refs. [79, 115, 133, 151] for more general constraints on tensorial operators and on n-point
correlation functions.
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These rules are valid generally in any model with linearly realized conformal
symmetry28.

To directly test the absence of conformal symmetry, let us compare the two-point
function Dαβ(k) = 〈uα(k)uβ(−k)〉 with the form expected for a quasi-primary
field29. To compute Dαβ(k) we can choose a renormalization scale M ' |k|.
The renormalized propagator D̃αβ(k) = Z−2Dαβ(k) can then be calculated by
renormalized perturbation theory and, for ε small, can be approximated by the
corresponding tree-level contribution. After calculation at scales |k| ' M , the
result can be rescaled to any wavelength via scaling relations. Thus the correlation
function at an arbitrary k in the long-wavelength region takes approximately the
form

D̃αβ(k) ' 1

M2η∗k6−D−2η∗

[
PLαβ(k)

λ̃∗ + 2µ̃∗
+
PTαβ(k)

µ̃∗

]
. (4.49)

Near D = 4, the scaling dimension of uα is ∆u = (1 + η∗ − ε) ' 1. Eq. (4.48)
shows that if uα was primary, its two-point function should be almost purely
longitudinal. In contrast, the O(ε) values of the couplings at the fixed point
P4, µ̃∗ = 96π2ε/(dc + 24), λ̃∗ = −µ̃∗/3, show that longitudinal and transverse
components of D̃αβ(k) have the same order of magnitude. This simple calculation
already shows that the model cannot be conformal, at least in a form in which uα
is a vector primary field (The calculation does not rule out the possibility that uα
is a descendant.)

A drawback in the analysis of Dαβ is that its Fourier transform to real space is
only defined when the dimension of uα, ∆u = 1 + η∗− ε, is positive. This condition
is valid near four dimensions, but breaks down in the physical case D = 2, where
ε = 2 and η∗ ' 0.8.

Although the analysis given here is restricted to the ε-expansion, and thus to D
close to four, it is interesting to consider a correlation function which has a direct
interpretation in the physical case. As a second test, we can thus consider the
two-point function C(x1 − x2) = 〈∂αuβ(x1)uγγ(x2)〉, which is alwas well defined
in real space when the flat phase exists30. An explicit calculation of the leading
order diagram gives

=
Γ(D/2)

2πD/2(λ0 + 2µ0)|x|D+2
(δαβx

2 −Dxαxβ)
(4.50)

28 See for example Ref. [161] for a discussion of nonlinearly realized conformal symmetry.
29 Testing conformal invariance via selection rules of two-point functions is a well-known method.

See for example Refs. [133, 139].
30 The correlation function is translationally-symmetric and thus only requires the self-consistency

of rotational symmetry breaking, which is verified in the flat phase. See also footnote 21.
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where x = x1 − x2. Using the zero-order renormalization λ0 = Mελ̃, µ0 = Mεµ̃

and setting renormalized couplings to their fixed point values µ̃∗ = 96π2ε/(dc+24),
λ̃∗ = −µ̃∗/3, we see that the correlation function is nonzero. Higher order diagrams
cannot change this conclusion near four dimensions because after renormalization
their contribution is suppressed by powers of ε.
The fact that Cαβ(x) does not vanish is a violation of conformal invariance,

because ∂αuβ has dimension ∆1 = 2 + η∗ − ε while uγδ is a scaling field with
dimension ∆2 = 2 − η∗, as shown in appendix 4.A. Since the difference of their
dimension, ∆1 −∆2 = 2η∗ − ε is noninteger, the conformal selection rule would
have required that the two-point function vanishes31 for any x 6= 0. Instead, we get
a correlation function, which is nonzero and decreasing as |x|−(∆1+∆2) = |x|−D.
It is natural to assume that this test applies also directly in two dimensions.

4.8 group theoretical interpretation

Another way to understand the absence of conformal invariance can be derived by
analyzing how conformal transformations interact with translations and rotations
in the embedding space.

The embedding-space translations and rotations (see Eq. (2.29)) are symmetries
of the model for any values of the coupling constant, and can be represented by
the infinitesimal generators

ti =

∫
dDx

δ

δhi
, tα =

∫
dDx

δ

δuα
, (4.51)

Rαi =

∫
dDx

[
xα

δ

δhi
− hi

δ

δuα

]
,

Rαβ =

∫
dDx

[
xα

δ

δuβ
− xβ

δ

δuα

]
,

Rij =

∫
dDx

[
hi

δ

δhj
− hj

δ

δhi

]
.

(4.52)

The commutators are similar to the Euclidean algebra, but are simpler due to the
linearized form of rotations. All commutators are zero a part from [ti, Rαj ] = −δijtα,
[Rαi, Rβj ] = −δijRαβ , [ti, Rjk] = δijtk − δiktj , [Rαi, Rjk] = δijRαk − δikRαj ,
[Rij , Rkl] = −(δikRjl + δjlRik − δilRjk − δjkRil).

31 We note however that the trace Cαα(x) is zero to all orders in the ε-expansion: rotational
symmetry and the power-law behavior Cαβ ≈ |x|−D imply that Cαβ(x) must be proportional to
∂α(xβ/|x|D) = (δαβx

2 −Dxαxβ)|x|−D−2. In other words, the correlation function at the fixed
point remains, to all orders, proportional to the tree-level result (4.50). The trace Cαα(x) in
particular is always zero. The conformal selection rule nevertheless is violated by the full tensorial
correlation function Cαβ(x)
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Translations and rotations of the internal coordinate x are also exact symmetries
for any values of the coupling constants and are represented by the generators

Pα =

∫
dDx

[
∂αh ·

δ

δh
+ ∂αuβ

δ

δuβ

]
, (4.53)

Jαβ = −
∫

dDx

[
(xα∂βh− xβ∂αh) · δ

δh

+ (xα∂βuγ − xβ∂αuγ)
δ

δuγ
+ uβ

δ

δuα
− uα

δ

δuβ

]
,

(4.54)

which satisfy the standard commutation relations of the Euclidean algebra:

[Pα, Pβ ] = 0 , [Pγ , Jαβ ] = δαγPβ − δβγPα ,
[Jαβ , Jγδ] = −(δαγJβδ + δβδJαγ − δαδJβγ − δβγJαδ) .

The mixed commutators between embedding-space and internal space symmetries
are all zero except: [tα, Jβγ ] = δαβtγ − δαγtβ , [Rαi, Pβ ] = δαβti, [Rαi, Jβγ ] =

δαβRγi − δαγRβi, [Rαβ , Pγ ] = δαγtβ − δβγtα, [Rαβ , Jγδ] = −(δαγRβδ + δβδRαγ −
δαδRβγ − δβγRαδ).
At the fixed point, the emergent scaling symmetry is described by a further

dilatation operator. The RG equations (2.36) imply that h and uα transform
linearly under scale transformations: the quantities h and uα behave as scaling
fields with dimensions ∆h = (η∗−ε)/2 and ∆u = 1+η∗−ε. The dilatation operator
is thus represented by a generator

TD =

∫
dDx

[
xα∂αh ·

δ

δh
+ xα∂αuγ

δ

δuγ
+ ∆hh ·

δ

δh
+ ∆uuα

δ

δuα

]
. (4.55)

It can be checked that the algebra remains closed: the commutators of all generators
ti, tα, Riα, Rαβ , Rij , Pα, Jαβ , and TD can be expressed as linear combinations of
the same generators.

It is interesting to note that the closure of the algebra is only verified when ∆h

and ∆u are related by 1 + ∆h = ∆u −∆h. If this relation was not satisfied, the
commutator

[TD, Rαi] = −
∫

dDx

[
(1 + ∆h)xα

δ

δhi
− (∆u −∆h)hi

δ

δuα

]
(4.56)

would generate a symmetry operation which does not belong to the group. This
would mean that the emergence of scale invariance would necessarily trigger the
appearance of additional symmetries.

The relation 1+∆h = ∆u−∆h is satisfied by the physical values ∆h = (η∗−ε)/2
and ∆u = 1 + η∗ − ε, which are not independent, but rather related to the same
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anomalous dimension η∗. This can be traced to the Ward identities associated with
rotational invariance, which forces the fields to renormalize as h→

√
Zh, uα → Zuα

in order to preserve the structure of the strain tensor (∂αuβ+∂βuα+∂αh·∂βh)/2 [10–
12] (see also Refs. [24, 113] and Sec. 2.5.3). Reversing the point of view, we can
however consider Eq. (4.56) as an alternative proof of the Ward identity. Even
without a renormalization group calculation, we could have deduced the relation
between scaling exponents from closure of the symmetry group.

Let us now consider conformal transformations. By definition, special conformal
transformations of the internal x coordinate must be represented by new generators
Kα with the prescribed commutation rules32 [115]:

[Kα,Kβ ] = 0 , [TD,Kα] = −Kα , [Kγ , Jαβ ] = δαγKβ − δβγKα , (4.57)

[Kα, Pβ ] = 2δαβTD − 2Jαβ . (4.58)

To study the structure of the extended group, it is useful to analyze Jacobi identities.
The relation

[[Kα, tβ ], Pγ ] + [[tβ , Pγ ],Kα] + [[Pγ ,Kα], tβ ] = 0 , (4.59)

in particular leads after an explicit calculation to

[[Kα, tβ ], Pγ ] = [[Kα, Pγ ], tβ ] = −2∆uδαγtβ + 2δαβtγ − 2δβγtα . (4.60)

If the algebra was closed, [Kα, tβ ] should be expressible as a linear combination of
Rαβ , Jαβ , and δαβTD. However, it can be seen that there is no linear combination
which, commuted with Pγ , gives the right hand side of Eq. (4.60). This shows that
any extension to conformal symmetry must inevitably contain new symmetries,
one of which described by the generator [Kα, tβ ].
The general solution of Eq. (4.60) takes the form

[Kα, tβ ] = 2Rαβ +

∫
dDx

[
2δαβxγ

δ

δuγ
− 2(1 + ∆u)xα

δ

δuβ

]
+ Iαβ , (4.61)

where Iαβ commutes with translations: [Iαβ , Pγ ] = 0. Physically, we do not expect
that a symmetry of the form (4.61) can appear. The most natural assumption is
thus that conformal invariance breaks down.
The derivation requires a separate analysis in the case of the GCI model. The

model, in fact, does exhibit conformal symmetry at the harmonic level. For both
theories, the direct calculation of the energy-momentum tensor however provides a
general derivation on the absence of conformal invariance.

32 Here, we use a normalization of generators which differs from Ref. [115].
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appendix 4

4.a invariant composite operators in membrane theory

This appendix illustrates the renormalization of operators entering the expansion
of the trace of the energy-momentum tensor. Let us start by analyzing the set of
composite fields

O1 =
1

2
(∂2h)2 + λ0(uαα)2 + 2µ0uαβuαβ , O2 =

1

2
λ0(uαα)2 ,

O3 = µ0uαβuαβ , O4 = ∂2uαα , O5 = ∂α∂βuαβ , O6 = uαα ,
(4.62)

which are invariant under all symmetries of the theory, including translations in
the embedding space h → h + B, uα → uα + Bα, and the linearized rotations
in Eq. (2.29). According to general renormalization theory [15], the insertion of
invariant operators of power-counting dimension ∆ is renormalized by a linear
combination of operators with the same symmetries and with dimension equal or
lower to ∆. From the scaling of h and uα tree-level propagator, it follows that the
power-counting dimension of a general operator of the schematic form ∂khnu` is
k+n(D−4)/2+ `(D−2)/2, which reduces to k+ ` in the ε-expansion at D = 4−ε.
The composite fields in Eq. (4.62) are a basis for the most general invariant operator
with dimension ≤ 4 and are, therefore, closed under renormalization. It is possible
to find a matrix Zij of divergent coefficients such that bare and finite, renormalized
operators, are related as Oi(x) = Zij [Oj(x)].

In analogy with derivations in Ref. [138], it is possible to set strong constraints
on renormalization by forming combinations which are a priori known to be finite
and free of UV divergences.

The renormalization of O1 can be fixed by the following argument. The expression
for a general correlation function G(n,`) in terms of a functional integral over uα
and h,

G
(n,`)
i1..inα1..α`

(x1, ..,xn;x′1, ..,x
′
`) =∫

[dh][duα]
{

e−Hhi1(x1)..hin(xn)uα1
(x′1)..uα`(x

′
`)
}
,

(4.63)

must be invariant under change of variables. If we choose a field redefinition
h → (1 + ε/2)h, uα → (1 + ε)uα the Hamiltonian H changes to first order by
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ε
∫

dDxO1(x) while the string of fields in the correlator varies by an overall factor
(n/2 + `)ε. Invariance of the functional integral then implies∫

dDxG
(n,`)
O1(x),i1..inα1..α`

(x1, ..,xn;x′1, ..,x
′
`) =(n

2
+ `
)
G

(n,`)
i1..inα1..α`

(x1, ..,xn;x′1, ..,x
′
`) ,

(4.64)

where

G
(n,`)
O1(x),i1..inα1..α`

(x1, ..,xn;x′1, ..,x
′
`) =∫

[dh][duα]
{

e−HO1(x)hi1(x1)..hin(xn)uα1(x′1)..uα`(x
′
`)
} (4.65)

denotes correlation functions with O1(x) insertion. From Eq. (4.64), we see that∫
dDxG

(n,`)
O1(x) is already finite after the renormalization of elementary fields, h =√

Zh̃, uα = Zũα, without the need of a new operator renormalization. The only
divergences in O1 must be total derivatives, which vanish after space integration.
We thus conclude that O1 can be renormalized as

O1 = [O1] + a1∂
2[uαα] + b1∂α∂β [uαβ ] , (4.66)

where a1 and b1 are divergent coefficients.
We can deduce additional constraints from the fact that derivatives of renor-

malized correlation functions with respect to λ̃ and µ̃ are finite [138]. Denoting as
G(n,`) and G̃(n,`) bare and renormalized correlation functions with n external h
fields and ` external uα fields, we find, using Eq. (2.34),

∂G̃(n,`)

∂λ̃
=

∂

∂λ̃

(
Z−

n
2−`G(n,`)

)
= −

(n
2

+ `
) ∂ lnZ

∂λ̃
G̃(n,`)

+ Z−
n
2−`

[
∂ lnλ0

∂λ̃

∣∣∣
M,µ̃

∂

∂ lnλ0
+
∂ lnµ0

∂λ̃

∣∣∣
M,µ̃

∂

∂ lnµ0

]
G(n,`)

= finite .

(4.67)

The derivatives ∂/∂ lnλ0 and ∂/∂ lnµ0 generate, respectively, insertions of the
integrated operators −

∫
dDxO2(x) and −

∫
dDxO3(x). Moreover, as shown above,

the counting factor n/2 + ` can be written via the insertion of
∫

dDxO1.
As a result, Eq. (4.67) is equivalent to∫

dDx

[
∂ lnZ

∂λ̃
G̃

(n,`)
O1(x) +

∂ lnλ0

∂λ̃

∣∣∣
M,µ̃

G̃
(n,`)
O2(x) +

∂ lnµ0

∂λ̃

∣∣∣
M,µ̃

G̃
(n,`)
O3(x)

]
= finite ,

(4.68)
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where G̃(n,`)
O(x) denotes correlation functions of renormalized fields with an insertion

of the bare operator O(x):

G̃
(n,`)
O(x) = 〈O(x)h̃i1(x1)..h̃in(xn)ũα1(x′1)..ũα`(x

′
`)〉 . (4.69)

Isolating operators from correlation functions and removing space integration, we
can re-express Eq. (4.68) as the statement that the combination

∂ lnZ

∂λ̃

∣∣∣
M,µ̃
O1(x) +

∂ lnλ0

∂λ̃

∣∣∣
M,µ̃
O2(x) +

∂ lnµ0

∂λ̃

∣∣∣
M,µ̃
O3(x) (4.70)

is finite up to total derivatives. Assuming that amplitude, coupling, and operator
renormalizations are all defined within the minimal subtraction scheme [15, 138],
this implies

∂ lnZ

∂λ̃

∣∣∣
M,µ̃
O1(x) +

∂ lnλ0

∂λ̃

∣∣∣
M,µ̃
O2(x) +

∂ lnµ0

∂λ̃

∣∣∣
M,µ̃
O3(x)

=
1

λ̃
[O2(x)] + aλ∂

2[uαα] + bλ∂α∂β [uαβ ] ,

(4.71)

so that, up to the total-derivative terms, the right-hand side is equal to the tree-level
contribution of the left hand side. A consequence of Eq. (4.71) is that

∂G̃(n,`)

∂ ln λ̃

∣∣∣
M,µ̃

= −
∫

dDxG̃
(n,`)
[O2(x)] , (4.72)

where G̃(n,`)
[O2(x)] is the correlation function of renormalized fields with insertion of

the renormalized operator [O2(x)]. An analogue relation was derived for scalar
field theory in Ref. [138].

Identical arguments can be used to deduce that

∂ lnZ

∂µ̃

∣∣∣
M,λ̃
O1(x) +

∂ lnλ0

∂µ̃

∣∣∣
M,λ̃
O2(x) +

∂ lnµ0

∂µ̃

∣∣∣
M,λ̃
O3(x)

=
1

µ̃
[O3(x)] + aµ∂

2[uαα] + bµ∂α∂β [uαβ ] ,

(4.73)

a relation which follows from the finiteness of ∂G̃(n,`)/∂µ̃. A relation similar to
Eq. (4.72) holds:

∂G̃(n,`)

∂ ln µ̃

∣∣∣
M,λ̃

= −
∫

dDxG̃
(n,`)
[O3(x)] . (4.74)

As a particular case of Eqs. (4.71) and (4.73), let us take the linear combination
βλ×(4.71)+βµ×(4.73), where βλ and βµ are the RG β-functions. Using that [11]

βλ
∂ lnZ

∂λ̃

∣∣∣
M,µ̃

+ βµ
∂ lnZ

∂µ̃

∣∣∣
M,λ̃

=
∂ lnZ

∂ lnM

∣∣∣
λ0,µ0

= η , (4.75)



90 scale without conformal invariance

βλ
∂ lnλ0

∂λ̃

∣∣∣
M,µ̃

+ βµ
∂ lnλ0

∂µ̃

∣∣∣
M,λ̃

=
∂ ln(λ0/M

ε)

∂ lnM

∣∣∣
λ0,µ0

= −ε , (4.76)

and

βλ
∂ lnµ0

∂λ̃

∣∣∣
M,µ̃

+ βµ
∂ lnµ0

∂µ̃

∣∣∣
M,λ̃

=
∂ ln(µ0/M

ε)

∂ lnM

∣∣∣
λ0,µ0

= −ε , (4.77)

we find

εO2 + εO3 = ηO1 − βλ/λ̃[O2]− βµ/µ̃[O3] + a∂2[uαα] + b∂α∂β [uαα] (4.78)

with divergent coefficients a and b. This relation can be rewritten in a more explicit
notation by setting [O2] = Mελ̃[(uαα)2]/2, [O3] = Mεµ̃[uαβuαβ ]. In this basis,
Eq. (4.78) becomes

ε

2

(
λ0(uαα)2 + 2µ0uαβuαβ

)
= ηO1 −

1

2
βλM

ε[(uαα)2]− βµMε[uαβuαβ ]

+ a∂2[uαα] + b∂α∂β [uαα] .
(4.79)

As a final remark, we note that Eqs. (4.66), (4.71), and (4.73) imply that the
operator O6 = uαα does not enter the renormalization of O1, O2, and O3. This is
due to the use of dimensional regularization, implicit in the derivations above. This
regularization scheme automatically removes ultraviolet divergences of power-law
type, implying that operators of dimension 4 do not mix under renormalization
with operators of dimension 2.

With results derived above, it is possible to show that the Ward identity for
broken dilatation invariance is equivalent to the RG equations (2.36). (An analogue
result was derived for scalar field theory in Ref. [138, 139]). Away from fixed points,
the dilatation current Sα = xβθαβ − Vα is not conserved: the RG flow functions βλ
and βµ act as sources for the violation of the conservation law of Sα

∂αSα =
βλ
2
Mε[(uαα)2] + βµM

ε[uαβuαβ ]− xβ (E · ∂βh + Eα∂βuα)

− (η − ε)
2

E · h− (1 + η − ε)Eαuα .
(4.80)

Renormalized correlation functions with insertions of ∂αSα(x), which are relevant
for the Ward identity, can be expressed more explicitly by using that the operators
E · ∂βh, Eα∂βuα, E · h, Eαuα, proportional to equations of motion, generate
contact terms [138, 139, 141] derived in Eqs. (4.27), (4.28), (4.29). Using Eqs. (4.72)
and (4.74), and integrating over space, we obtain∫

dDx ∂αG̃
(n,`)
Sα(x) =

[ ∂

∂ ln ρ
+ βλ

∂

∂λ̃

∣∣∣
M,µ̃

+ βµ
∂

∂µ̃

∣∣∣
M,λ̃

+
n

2
(η − ε)

+ `(1 + η − ε)
]
G̃(n,`)(ρx1, .., ρxn; ρx′1, .., ρx

′
`) = 0

(4.81)



4.B renormalization of non-invariant currents 91

a relation equivalent to the RG flow equation (2.36).
For completeness, we also discuss the composite field uαβ . By symmetries and

power counting its renormalization has the form

uαβ = Z2[uαβ ] +
1

D
(Z ′2 − Z2)δαβ [uγγ ] , (4.82)

where Z2 and Z ′2 are divergent coefficients. The factors Z2 and Z ′2, moreover,are
determined to all orders by the following argument. Let us consider the stress
field σαβ = λ0δαβuγγ + 2µ0uαβ . This composite operator can be viewed as the
conserved current associated with the shift symmetry uα → uα +Bα and it has a
conservation law ∂βσαβ = −Eα which is identical, up to a sign, to the equations of
motion of the uα field. By a general property, the renormalization of the equation
of motion operator is dual to that of the corresponding field: since uα renormalizes
as uα = Zũα, then ZEα is a finite operator. It follows, as a result, that Z(∂βσαβ)

is finite. However, this also implies that Zσαβ is finite by itself, because any
divergence in Zσαβ would inevitably appear in the derivative. To see this more
precisely, note that the infinite part Zσdiv

αβ of Zσαβ , if any, should be a linear
combination of uαβ and δαβuγγ satisfying the equation ∂α(Zσdiv

αβ ) = 0 identically.
It can be checked that the only possibility is Zσdiv

αβ = 0 and, therefore, that the full
tensor Zσαβ is finite. Using Eq. (4.82) and Eq. (2.34), we see that the combinations
of renormalization constants

gµZ2

Z
,

(gλ + 2gµ/D)

Z
Z ′2 (4.83)

are free of poles in ε. This implies that we can choose

Z2 =
Zµ̃

gµ
, Z ′2 =

Z(Dλ̃+ 2µ̃)

Dgλ + 2gµ
. (4.84)

The scaling dimensions of the scalar and traceless components of uαβ are then
D − 2 + η′2 and D − 2 + η2, respectively, where

η′2 = ∂ lnZ ′2/∂ lnM |λ0,µ0 , η2 = ∂ lnZ2/∂ lnM |λ0,µ0 . (4.85)

At the fixed point P4 all components of uαβ scale with the same dimension
∆uαβ = 2− η∗.

4.b renormalization of non-invariant currents

Besides invariant operators, expansion of the trace θαα includes the vector fields
uαuββ and uβuαβ , which break the shift symmetry uα → uα+Bα and the linearized
embedding-space rotational symmetry. This appendix shows that these vectors are
non-renormalized, up to total derivatives.
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As a first step, it is convenient to analyze the tensor Jγ,αβ = uγσαβ , where
σαβ = λ0δαβuδδ + 2µ0uαβ is the stress field, which is also the conserved current
associated with the symmetry under uα → uα +Bα. A priori, the renormalization
of uγσαβ involves the mixing of all composite fields of dimension 3 symmetric
under α ↔ β and invariant under h → h + B. (In dimensional regularization
there is no mixing with operators of lower dimension). Renormalization is however
simplified by the following considerations. Taking the derivative ∂αJγ,αβ = −Eβuγ+

∂αuγσαβ gives the sum of two simple terms. The first, −Eβ(x)uγ(x), vanishes
with equations of motion and acts, when inserted in a correlation function, as the
generator of the infinitesimal field redefinition uα(x′)→ uα(x′)+εδαβδ(x−x′)uγ(x).
This transformation, being linear, can be equivalently represented in terms of
renormalized fields as ũα(x′)→ ũα(x′) + εδαβδ(x−x′)ũγ(x′), a change of variables
which preserves the finiteness of correlation functions. It follows that insertions of
−Eβuγ in renormalized functions is finite, and does not require renormalization. It is,
in fact, a general property that operators of the form Eφφ are not renormalized [138].
The second term in ∂αJγ,αβ , ∂αuγσαβ , requires subtractions but, being invariant
under shifts of the uα field, it can only mix with composite fields which are
symmetric under both h→ h + B and uα → uα +Bα.

We can thus conclude that the UV-divergent part Jdiv
γ,αβ of Jγ,αβ must have the

property that ∂αJdiv
γ,αβ is invariant under shifts of all fields. This, however, implies

in turn that Jdiv
γ,αβ must be shift-invariant by itself. To derive this result, let us

denote as εJdiv
µ,γ,αβ the variation of Jdiv

γ,αβ under an infinitesimal uniform translation
uα → uα+εδαµ. By power counting it must be a field of dimension 2 and, therefore,
must have the form

Jdiv
µ,γ,αβ = a

(1)
ρσ,µ,γ,αβM

εuρuσ + a
(2)
ρ,σ,µ,γ,αβ∂ρuσ +

1

2
a

(3)
ρσ,µ,γ,αβ(∂ρh · ∂σh) , (4.86)

where a(1), a(2), and a(3) are invariant tensors (linear combinations of products of
Kronecker symbols). At the same time, by the arguments above, it must satisfy
the equation ∂αJdiv

µ,γ,αβ = 0 identically. It can be checked that the only possibility
is Jdiv

µ,γ,αβ = 0, which implies that Jdiv
γ,αβ is invariant under shifts.

The conclusion of this argument is that any counterterm entering the renor-
malization of Jγ,αβ must be a tensor of dimension 3 invariant under translations
of both the h and the uα fields. These tensors have the schematic form ∂∂u and
∂h · ∂∂h and, since

∂µ∂νh · ∂ρh =
1

2
[∂ν(∂µh · ∂ρh) + ∂µ(∂νh · ∂ρh)− ∂ρ(∂µh · ∂νh)] , (4.87)

they can always be represented as total derivatives. Therefore, general counterterms
needed for the renormalization of Jγ,αβ have the form

1

2
Bρ,µν,γ,αβ∂ρ(∂µh · ∂νh) + Cρσ,µ,γ,αβ∂ρ∂σuµ , (4.88)
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where Bρ,µν,γ,αβ and Cρσ,µ,γ,αβ are invariant tensors with divergent coefficients.
The renormalization of Jγ,αβ in minimal subtraction can thus be written in the
form

[Jγ,αβ ] = Jγ,αβ +
1

2
Bρ,µν,γ,αβ∂ρ(∂µh · ∂νh) + Cρσ,µ,γ,αβ∂ρ∂σuµ . (4.89)

The final result for the renormalization of Jγ,αβ has the following diagrammatic
interpretation. Among 1PI correlation functions with insertion of Jγ,αβ = uγσαβ ,
there are two types of divergent Feynman diagrams: the undifferentiated uγ field
can be either connected to external legs or joined to loop lines (see Fig. 4.4). In
all diagrams of the second type, like (c), (d), and (e) of Fig. 4.4, it is possible to
factorize one power of the momentum of each external solid and wiggly line, as it
follows directly from the structure of the interaction vertices. The corresponding
divergences contribute to shift-invariant counterterms of the type ∂∂u and ∂(∂h·∂h)

in Eq. (4.89), but cannot generate renormalizations proportional to Jγ,αβ .

Figure 4.4: Some of the first divergent 1PI diagrams with insertion of Jγ,αβ . Dotted lines
denote the operator insertion. In diagrams (a) and (b), the undifferentiated field uγ is
connected directly to external lines. In diagrams (c), (d), and (e), instead, it enters as a
loop line.

Counterterms of the same form of Jγ,αβ can only arise from diagrams of the first
type, like (a) and (b) in Fig. 4.4, which contribute to correlations which are not
shift-invariant. Since the undifferentiated uγ field is contracted with external lines,
the loop part in this class of diagrams is entirely determined by the insertion of
σαβ , whose renormalization was studied in appendix 4.A. The arguments above
show that the UV divergences of λ0 and µ0 are precisely cancelled to all orders by
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these loop contributions, so that Jγ,αβ is finite (up to counterterms introduced in
Eq. (4.89)).
Taking two independent traces over the components of Jγ,αβ we finally obtain

relations for the renormalization of the vector fields uαuββ and uβuαβ . With a
non-minimal renormalization choice, we can set

uαuββ =
Mε(Dλ̃+ 2µ̃)

Dλ0 + 2µ0
[uαuββ ]

+ b1∂α[∂βh · ∂βh] + b2∂β [∂αh · ∂βh] + b3∂
2[uα] + b4∂α∂β [uβ ] ,

(4.90)

uβuαβ −
1

D
uαuββ =

Mεµ̃

µ0

{
[uβuαβ ]− 1

D
[uαuββ ]

}
+ b′1∂α[∂βh · ∂βh] + b′2∂β [∂αh · ∂βh] + b′3∂

2[uα] + b′4∂α∂β [uβ ] .

(4.91)

4.c energy-momentum tensor and operator renormalization
in the gci model

Starting from the explicit expression of its Hamiltonian, Eq. (3.7), it can be shown
that the GCI model admits the following symmetric energy-momentum tensor

θαβ = −1

2
δαβ(∂2h)2 + 2∂α∂βh · ∂2h− ∂αh · ∂β∂2h− ∂βh · ∂α∂2h

+
1

D − 1

[
δαβ∂γh · ∂γ∂2h + δαβ∂γ∂δh · ∂γ∂δh

+ (D − 2)∂γh · ∂α∂β∂γh−D∂α∂γh · ∂β∂γh
]

− 1

2Y0
δαβ(∂2χ)2 +

1

Y0

[
2∂α∂βχ∂

2χ− ∂αχ∂β∂2χ− ∂βχ∂α∂2χ
]

+
1

(D − 1)Y0

[
δαβ∂γχ∂γ∂

2χ+ δαβ∂γ∂δχ∂γ∂δχ

+ (D − 2)∂γχ∂α∂β∂γχ−D∂α∂γχ∂β∂γχ
]

− i

2
δαβ
[
(∂γh · ∂δh)∂γ∂δχ− (∂γh · ∂γh)∂2χ

]
+ i
[
(∂βh · ∂γh)∂α∂γχ

+ (∂αh · ∂γh)∂β∂γχ− (∂αh · ∂βh)∂2χ− (∂γh · ∂γh)∂α∂βχ
]

+
i

2
∂γ
[
(∂αh · ∂βh)∂γχ− (∂αh · ∂γh)∂βχ− (∂βh · ∂γh)∂αχ

+ (δαγ∂βχ+ δβγ∂αχ− δαβ∂γχ)(∂δh · ∂δh)
]
,

(4.92)

The identity for the trace, Eq. (4.41), can be derived from Eq. (4.92) by some
algebraic steps and by the following results for the renormalization of the invariant
operators (∂2h)2 and (∂2χ)2/Y0.
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Within dimensional regularization, symmetries and power counting imply that
the set of composite operators

O1 =
1

2
(∂2h)2 − 1

Y0
(∂2χ)2 , O2 =

1

2Y0
(∂2χ)2 ,

O3 =
1

2Y0
((∂2χ)2 − (∂α∂βχ∂α∂βχ))

=
1

2Y0
∂α∂β(∂αχ∂βχ− δαβ∂γχ∂γχ) ,

O4 =
1

Y0
∂2∂2χ ,

O5 = E =
1

Y0
∂2∂2χ+

i

2
((∂2h)2 − (∂α∂βh · ∂α∂βh))

(4.93)

is closed under renormalization. The set (4.93), in fact, is a complete basis for all
composite fields which are invariant under the symmetries of the GCI Hamiltonian
(including the shifts h→ A+Bαxα, χ→ χ+A+Bαxα) and which have operator
dimension 4 in the ε-expansion. A residual mixing with the softer field O6 = ∂2χ,
which has dimension 2, is removed by dimensional regularization.

The operator O4 is directly related to the elementary field χ and, therefore, has
a simple multiplicative renormalization O4 = ZZ−1

Y [O4]. Similarly O5, which is
equal to the equation of motion of the χ field, renormalizes in a multiplicative way
as O5 = Z[O5]. We also note that the last three operators in the set (4.93), O3,
O4, and O5, are expressible as exact second derivatives of lower-dimensional fields.
In particular, this implies that [O3] is a linear combination of O3, O4, and O5,
without a mixing with O1 and O2.

To study the renormalization of O1 we note that, when integrated over all space,
it is equivalent to the variation of the Hamiltonian under the infinitesimal rescaling
h → (1 + ε/2)h, χ → (1 − ε)χ. Therefore insertions of O1 at zero momentum
have the only effect to generate a factor (n/2− `) in front of correlation functions,
where n is the number of external h fields and ` is the number of χ lines. An
immediate consequence is that O1 is finite up to total-derivative operators which
vanish at zero momentum. Since the only total-derivative fields which can enter as
counterterms are O3, O4, and O5, we conclude that O1 can be renormalized to all
orders as O1 = [O1] + a1[O3] + b1[O4] + c1[O5], where a1, b1, and c1 are divergent
coefficients.
The renormalization of O2 is constrained by the fact that the derivative of

renormalized correlation functions with respect to Y is finite. Since, by Eq. (3.13),
bare and renormalized correlation functions with n external h lines and ` external
χ lines are related as G(n,`) = Zn/2−`G̃(n,`), we obtain that

−
(n

2
− `
) ∂ lnZ

∂Y

∣∣∣
M
G̃(n,`) + Z`−n/2

∂ lnY0

∂Y

∣∣∣
M

∂G(n,`)

∂ lnY0
= finite . (4.94)
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The action of ∂/∂ lnY0 on bare correlation functions generates insertion of O2

at zero momentum. The factor (n/2 + `), moreover, can be represented via the
zero-momentum insertion of O1.

Using the relations

∂ lnZ

∂Y

∣∣∣
M

=
η(Y )

β(Y )
,

∂ lnY0

∂Y

∣∣∣
M

= − ε

β(Y )
, (4.95)

we obtain that
η(Y )

β(Y )
O1 +

ε

β(Y )
O2 (4.96)

is finite up to total derivatives. It follows that the renormalization of O2 has the
form (in the minimal subtraction scheme)

O2 = −1

ε
η(Y )[O1]− β(Y )

εY
[O2] + a2[O3] + b2[O4] + b3[O5] , (4.97)

where a2, b2, and c2 are new divergent coefficients. Since in minimal subtraction
[O2] = [(∂2χ)2]/(2MεY ), we can rewrite this renormalization relation as

ε

2Y0
(∂2χ)2 = −η(Y )[O1]− β(Y )

2Y 2
M−ε[(∂2χ)2]

+ εa2[O3] + εb2[O4] + εb3[O5] .

(4.98)

As a further consequence, we note that

∂G̃(n,`)

∂ lnY

∣∣∣
M

=
1

2MεY

∫
dDx G̃

(n,`)
[(∂2χ(x))2] . (4.99)

This relation can be used to prove the equivalence between dilatation Ward identities
and the RG equations (3.16), in analogy with Ref. [138] and appendix 4.A.



5

QUANTUM MECHANICAL EFFECTS

We analyze the statistical mechanics of a free-standing quantum crystalline mem-
brane within the framework of a systematic perturbative renormalization group
(RG). A power-counting analysis shows that the leading singularities of correlation
functions can be analyzed within an effective renormalizable model in which the
kinetic energy of in-plane phonons and subleading geometrical nonlinearities in the
expansion of the strain tensor are neglected. For membranes at zero temperature,
governed by zero-point motion, the RG equations of the effective model provide a
systematic derivation of logarithmic corrections to the bending rigidity and to the
elastic Young modulus derived in earlier investigations. In the limit of a weakly
applied external tension, the stress-strain relation at T = 0 is anomalous: the linear
Hooke’s law is replaced with a singular law exhibiting logarithmic corrections. For
small, but finite temperatures, we use techniques of finite-size scaling to derive
general relations between the zero-temperature RG flow and scaling laws of ther-
modynamic quantities such as the thermal expansion coefficient α, the entropy S,
and the specific heat C. A combination of the scaling relations with an analysis of
thermal fluctuations shows that, for small temperatures, the thermal expansion
coefficient α is negative and logarithmically dependent on T , as predicted in an
earlier work. Although the requirement limT→0 α = 0, expected from the third
law of thermodynamics is formally satisfied, α is predicted to exhibit such a slow
variation to remain practically constant down to unaccessibly small temperatures.

This chapter has been published as:
Achille Mauri and Mikhail I. Katsnelson, "Perturbative renormalization and ther-
modynamics of quantum crystalline membranes", Phys. Rev. B 105, 195434 (2022)
(Editors’ Suggestion); preprint: arXiv:2202.12842 (2022)
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5.1 introduction

The statistical mechanics of fluctuating elastic membranes has been investigated
extensively over the last decades, in connection with a broad variety of physical sys-
tems, from biological layers to graphene and other atomically-thin two-dimensional
materials. As it has long been realized, models of flexible surfaces subject to vanish-
ing or small external tension exhibit a rich and striking physical behavior, controlled
by an interplay between fluctuations and mechanical nonlinearities [1, 3, 6, 9–12,
17–21, 25, 26, 43, 44, 51, 62, 78]. A crucial prediction, in particular, is that for
homogeneous free-standing membranes without an imposed stress, anharmonicities
inherent in the geometrical definition of the elastic strain tensor are responsible
for the stabilization of a macroscopically flat phase at finite temperatures [1, 6, 9,
10], and for a dramatic power-law renormalization of the effective scale-dependent
bending rigidity and elastic constants. The presence of a quenched disorder, besides
thermal fluctuations, has been predicted to induce an even richer physical behav-
ior [1, 17, 25, 43, 44]. Renormalizations of elastic and thermodynamic properties
by ripples have also been analyzed in experiments on graphene membranes [70, 72,
74, 75].

Over the last years, aiming at a more complete theory of fluctuations in graphene,
several authors have revisited and extended the analysis by considering the effects
of quantization [91, 162–164] and of the coupling between membrane phonons and
Dirac electrons [54, 55, 165, 166]. The interaction between flexural and electronic
degrees of freedom, in particular, has been predicted to generate mechanical
instabilities leading to a spontaneous rippling of the membrane.

Despite the progress in investigations of the coupled membrane-electron problem,
the theory of purely mechanical degrees of freedom in a flexible surface subject
to both thermal and quantum fluctuations is already highly non-trivial. By a
combination of elasticity theory and a one-loop momentum-shell renormalization
group, Ref. [162, 163] showed that, for a homogeneous and unstressed membrane at
absolute zero, mechanical nonlinearities give rise to logarithmic renormalizations
of the wavevector-dependent bending stiffness and elastic constants, in sharp
contrast with the much stronger power-law renormalizations induced by thermal
fluctuations.
In Ref. [164], the theory of quantum flexible membranes was reanalyzed, and

extended to the finite temperature case, within the framework of non-perturbative
renormalization group (NPRG) techniques. For zero temperature, the weak coupling
limit of the NPRG recovers results consistent with the momentum-shell predictions
of Ref. [162, 163]. At non-zero temperature, the NPRG analysis allowed to smoothly
interpolate a crossover between a short wavelength region of zero-point character,
and a long-wavelength region, determined by thermal fluctuations. In more detail,
the results of Ref. [164] predicted a RG flow exhibiting a first quantum region in
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which anharmonicities are marginally irrelevant, followed, after a smooth crossover,
by a classical region in which nonlinearities are relevant, destabilize the weak
coupling approximation, and drive the system to the universal interacting fixed
point describing classical thermally-fluctuating membranes [1, 10–12, 26, 51]. The
corresponding correlation functions, in particular, behave in the long-wavelength
limit according to the anomalous scaling law characteristic of classical membranes:
in the limit of vanishing wavevector k→ 0, the effective bending rigidity diverges
as κ(k) ≈ k−η∗ and the elastic Lamé constant vanish as λ(k), µ(k) ≈ k2−2η∗ .
A similar picture was derived in Ref. [91], by combining a one-loop RG with
a physical approximation: the replacement of the full anharmonic free energy
with a Bose-Einstein function with renormalized phonon dispersions. Other field-
theoretical analyses on quantum flexible membranes, such as the expansion for large
embedding-space dimension and a generalization of the classical self-consistent
screening approximation, were developed in Ref. [54], as a part of a wider analysis
including the coupling between phonons and Dirac electrons. We finally note that,
by different approaches, Refs. [167, 168], have predicted a dynamical behavior
qualitatively in contrast with Refs. [91, 162–164]: that flexural phonon modes
acquire a non-zero sound velocity and a linear dispersion relation ω(k) ∝ |k|.

In parallel with analytical approaches, fluctuations of a quantum graphene sheet
have also been studied by numerical path-integral simulations based on realistic
empirical potentials for interatomic interactions in carbon (see, for example, Ref. [36,
38]).

The objective of this work is to analyze the anharmonic effects in quantum
membranes by systematic perturbative renormalization group methods. By a
power-counting analysis, we construct an effective renormalizable model which we
expect to capture the dominant singularities of physical quantities in the limit
of low energies, momenta, temperatures and tensions. At T = 0, the model is
renormalizable in the sense of power counting, although it exhibits anisotropic
scaling between space and time, in analogy with other theories with "weighted
power counting" [15, 100, 169–172]. The corresponding RG equations recover in a
systematic framework the earlier results derived in Refs. [91, 162–164]. We also note
that the model is mathematically equivalent to a theory of the decoupled lamellar
phase of a three-dimensional stack of classical crystalline membranes analyzed in
Ref. [11].

For finite temperatures, we use techniques well-known in the theory of finite size
scaling and other finite-temperature field theories [15, 173]. In particular, we use
the general property that ultraviolet divergences are temperature-independent and
can be renormalized by T -independent counterterms [15, 173] to derive scaling
laws for various thermodynamic quantities: the thermal expansion coefficient α̃,
the entropy S̃, and the specific heat C̃. By combining the scaling relations with
an analysis of thermal fluctuations, we recover the result that, for a membrane
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subject to zero external tension, α̃ is negative and tends to zero in the limit T → 0

as a logarithmic function of T , as predicted in Ref. [91].
The effective model and the method used to derive scaling equations are intrinsi-

cally focused on the behavior of thermodynamic quantities in the limit of small
temperatures. Therefore, the theory developed here cannot capture the detailed T
dependence of the thermal expansion coefficient at moderately high temperatures.
In particular, the question whether α̃ changes sign at a certain temperature [36,
168, 174, 175], is beyond the scope of this work. We note, however, that the behav-
ior of out-of-plane fluctuations analyzed here contrasts with the prediction of a
linear dispersion relation for flexural phonons, which was used in the analyses of
Refs. [167, 168].

The coefficient of in-plane thermal expansion of graphene has been estimated by
a number of experimental techniques, both for suspended samples and for samples
bound to a substrate (see, for example, Refs. [74, 176–179] and references therein).
Experimental results indicate usually a negative thermal expansion at not too large
temperatures, although a positive expansion has been identified in Ref. [180] in
the case of graphene on a Ir(111) substrate down to liquid helium temperatures.

It would be interesting to test experimentally the prediction of that α̃ is nearly
temperature-independent (the logarithmic functions of T change very slowly over
broad temperature scales). This prediction applies only to membranes without
a supporting substrate and without stress. For a nonzero applied tension, the
low-temperature behavior of the thermal expansion coefficient was predicted to
vanish in a faster way as T → 0 in Ref. [91].

5.2 model

To study fluctuations of a quantum membrane, we analyze throughout this work
an effective low-energy model defined by the path integral

Z =

∫
[dh(x, τ)duα(x, τ)]e−S/~ (5.1)

and the imaginary-time action

S[h(x, τ), uα(x, τ)] =

∫ ~/(kBT̃ )

0

dτ

∫
d2x

{
ρ̃

2
ḣ2 +

κ̃

2
(∂2h)2

+
λ̃

2
(uαα)2 + µ̃uαβuαβ − σ̃∂αuα

}
.

(5.2)

The degrees of freedom uα(x, τ) and h(x, τ) represent, respectively, in-plane and
out-of-plane displacements of the mass points in the layer. The second line of the
action represents the standard elastic energy [1, 6, 18] of a medium with bending
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rigidity κ̃ and Lamé coefficients λ̃ and µ̃, and is defined in terms of the strain tensor
uαβ = (∂αuβ + ∂βuα + ∂αh · ∂βh)/2. The term −σ̃∂αuα describes an externally
applied isotropic in-plane tension [18]. A positive σ̃ > 0 drives a stretching of the
membrane, while σ̃ < 0 corresponds to a compressive stress, which tends to buckle
the system out of plane. The first term in the action, ρ̃ḣ2/2, describes instead the
kinetic energy of out-of-plane fluctuations, and is proportional to the areal mass
density ρ̃ and to the square of the out-of-plane velocity ḣ = ∂h(x, τ)/∂τ . Although
physically h is a scalar quantity, we consider in general h to be a vector with dc
components (dc = 1 for physical membranes embedded in three-dimensional space).
To regularize ultraviolet divergences we implicitly assume a large-momentum

cutoff Λ of the order of the inverse lattice spacing.

5.2.1 Rescaled units

By the change of variables τ → (ρ̃/κ̃)1/2τ , h→ ~1/2/(ρ̃κ̃)1/4h, uα → ~/(ρ̃κ̃)1/2uα,
the reduced action S = S/~ can be recast as

S =

∫ 1/T

0

dτ

∫
d2x

{
ḣ2

2
+

1

2
(∂2h)2 +

λ

2
(uαα)2 + µuαβuαβ − σ∂αuα

}
, (5.3)

where uαβ = (∂αuβ + ∂βuα + ∂αh · ∂βh)/2, λ = ~λ̃/(ρ̃κ̃3)1/2, µ = ~µ̃/(ρ̃κ̃3)1/2,
T = (ρ̃/κ̃)1/2kBT̃ /~, and σ = σ̃/κ̃. After these rescalings, all quantities have a
dimension in units of wavevector. The elastic parameters λ and µ, which play the
role of coupling constants, are dimensionless, while the temperature T and the
tension σ have the dimension of a wavevector squared.

Throughout the rest of this paper, we always use rescaled units, unless explicitly
mentioned. Quantities in standard units of measurements are marked with tilde sym-
bols. The in-plane strain ṽ, the Gibbs free energy per unit area G̃ = −kBT̃A

−1 lnZ,
the entropy density S̃ = −∂G̃/∂T̃ , the specific heat C̃ = T̃dS̃/dT̃ , and the thermal
expansion coefficient α̃ = 2dṽ/dT̃ , expressed in conventional units, are related
to the corresponding rescaled quantities v, G̃ = −TA−1 lnZ, S = −∂G̃/∂T ,
C = TdS/dT , α = 2dv/dT as

ṽ =
~v

(ρ̃κ̃)1/2
, G̃ =

~κ̃1/2

ρ̃1/2
G̃ , S̃ = kBS

C̃ = kBC , α̃ = kBα/κ̃ .

(5.4)

5.2.2 Derivation of the effective model

The effective action (5.2) can be derived from a more complete theory by a power
counting argument. Focusing on the case of a vanishing external tension σ = 0, a
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more complete model, which includes the kinetic energy of in-plane modes is given
by the manifestly rotationally-invariant action [22, 85, 91, 164]

S[r(x, τ)] =
1

2

∫ ~
kBT̃

0

dτ

∫
d2x

{
ρ̃ṙ2 + κ̃(∂2r)2 + λ̃(Uαα)2 + 2µ̃UαβUαβ

}
, (5.5)

where r ∈ Rd denotes fluctuating coordinates in the d-dimensional ambient space
and Uαβ = (∂αr · ∂βr − δαβ)/2. This fully rotationally-invariant theory can be
analyzed by parametrizing r(x, τ) = (ξx + u(x, τ),h(x, τ)), where u and h are
in-plane and out-of-plane displacement fields, while ξ encodes the tendency of the
membrane to shrink due to fluctuations [11, 18, 85, 91, 164]. At zero temperature,
a loop expansion (formally an expansion in powers of ~ [15]) can be given by
calculating order by order correlation functions and ξ = 1 + c1~ + c2~2 + ... The
non-interacting propagators of in-plane and out-of-plane modes, defining the basic
elements in the corresponding diagrammating expansion, are, respectively

D̄
(0)
αβ (ω,k) =

~kαkβ
(ρ̃ω2 + (λ̃+ 2µ̃)|k|2 + κ̃|k|4)k2

+
~(k2δαβ − kαkβ)

(ρ̃ω2 + µ̃|k|2 + κ̃|k|4)k2
,

Ḡ
(0)
ij (ω,k) =

~δij
ρ̃ω2 + κ̃|k|4 .

(5.6)

For small k, D̄(0)
αβ (ω,k) has a pole for ω ∼ |k| reflecting the linear dispersion

of acoustic phonons while Ḡ(0)
αβ(ω,k) has a pole for ω ∼ k2, corresponding to

the ultrasoft dispersion of flexural fluctuations at zero external tension. Due to
the softer infrared behavior of flexural phonons, we can assume that poles of
Ḡ(0) generate the leading singularities at long wavelengths. In the region ω ∼ k2,
interactions can be analyzed within power counting by assigning dimension [x] = −1

to the spacial coordinates and [τ ] = −z = −2 to the time coordinate [164] (see
Refs. [100, 169–172] for discussions of of various field theories which lack Lorentz
and Euclidean invariance and which exhibit "weigthed power counting", with
different weigth for space and time coordinates). The behavior of propagators
for k → 0, ω → 0, ω ∼ k2 implies that the canonical dimensions of fields are,
respectively, [h] = (2 + z − 4)/2 = 0 and [uα] = (2 + z − 2)/2 = 1. An analysis
of dimensions of operators then shows that the elastic parameters λ and µ are
marginal, whereas the term κ̃(∂2uα)2/2, the nonlinear contribution ∂αuγ∂βuγ to
the strain tensor Uαβ = ((ξ2− 1)δαβ + ξ∂αuβ + ξ∂βuα + ∂αh · ∂βh+ ∂αuγ∂βuγ)/2,
and the in-plane kinetic energy ρ̃u̇2

α/2 are all irrelevant in the sense of power
counting. By dropping all power-counting irrelevant interactions, we arrive, after a
change of variables uα → uα/ξ − (ξ2 − 1)xα/(2ξ), to the effective model (5.2) with
σ = 0.
Clearly, the effective model cannot describe the dynamics of in-plane phonons,

which occurs at scales ω ∼ |k|. Power counting indicates however that it should
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capture in an exact way the leading singularities at long wavelengths of static
correlation functions (diagrams with all external frequencies ω = 0), and more
generally, singularities of diagrams with external legs in the region ω ∼ k2, relevant
for the behavior of flexural phonons1.
For simplicity, we will use the effective model (5.2) also to calculate thermody-

namical properties of the membrane, such as the entropy and the average projected
area, at finite temperature T and nonzero tension σ. We expect that the theory
describes the leading singular behavior of thermodynamic quantities for small T
and σ.

5.2.3 Symmetries

In full analogy with the theory of classical membranes, it can be checked that,
when σ = 0, S is invariant under the "linearized rotations" [10, 11, 169]

h→ h + Aαxα ,

uα → uα − (Aα · h)− 1

2
(Aα ·Aβ)xβ ,

(5.7)

where Aα is any fixed vector. This symmetry represents a linearized form of the
original SO(d) invariance of the full theory, and reflects the fact that the layer
is located in an isotropic ambient space (without external forces and with no
externally-imposed in-plane tension). The associated Ward identities [10, 11, 169]
play a crucial role in the dynamics and the renormalization of the model.
As a remark, we note that the linearized invariance (5.7) only emerges when

all irrelevant terms are dropped from the action at the same time. If, instead, we
had neglected the nonlinear contribution ∂αuγ∂βuγ/2 to the strain tensor but we
had kept the kinetic energy of in-plane phonons ρ̃u̇2

α/2, we would have arrived at
a theory which lacks both the full rotational SO(d) symmetry and the linearized,
effective rotational symmetry (5.7). In this case, renormalization would generate
generic anisotropic interactions, including anisotropies which are relevant in the
sense of power counting. This would then result in an artificial modification of
the qualitative behavior of fluctuations. Although the crucial role of symmetries
has been appreciated, several approaches in the earlier literature used actions or
approximations which, in some steps of derivations, violate both the exact and the
linearized SO(d) symmetries.
In particular, we note that the prediction of a contribution Σ(0,k) ∝ k2 to the

self-energy of flexural phonons at zero frequency, derived in Ref. [167], started from

1 We assume that the general power-counting principles for the effects of irrelevant interactions [15],
which are usually derived in the framework of Euclidean-invariant theories, remain valid in the
nonrelativistic model considered here. Specifically, we assume that the only effects of neglected
irrelevant interactions at leading order for long wavelengths and low frequency is a renormalization
of the value of the parameters ρ̃, κ̃, λ̃, and µ̃, which become phenomenological quantities.
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an action in which the nonlinear contribution to the strain tensor was neglected but
the kinetic energy of in-plane phonons was retained. An explicit calculation using
a full rotationally-invariant action [91] showed instead that self-energy corrections
proportional to k2 vanish in absence of external stress, consistently with the Ward
identities [85]. The emergence of the linearized symmetry (5.7) ensures that the
cancellation of terms proportional to k2 is consistently captured by the effective
model (5.3), as we verify below (see Sec. 5.6.1).

5.2.4 Analogy with a model of lamellar phases

After identification of the imaginary time τ with an additional space dimension z,
the quantum action S turns out to be almost identical to the effective Hamiltonian

H =

∫
dz

∫
d2x

{
B0

2
(∂zuz)

2 +
K0

2
(∂2
⊥uz)

2

+
µ⊥⊥0

4
(∂αuβ + ∂βuα + ∂αuz∂βuz)

2

+
λ⊥⊥0

8
(2∂αuα + ∂αuz∂αuz)

2+

+
1

2
λ⊥z0 (∂zuz)(2∂αuα + ∂αuz∂αuz)

}
,

(5.8)

which was analyzed by Guitter [169] as a model for a three-dimensional shearless
stack of classical crystalline membranes. The identity between the two theories
only emerges after irrelevant interactions are neglected in both models and under
the assumption λ⊥z0 = 0.
The theory of shearless stacks of membranes has been a subject of debate and

some authors [181, 182] have proposed models which differ from Eq. (5.8) and thus
contrast with the results of Ref. [169]. Establishing a detailed relation between
lamellar phases and quantum membranes is beyond the scope of our work. We will
verify, however, that the RG equations for the quantum membrane action recovers
long-wavelength singularities identical to those predicted in Ref. [169].

5.3 integration over in-plane modes

Since S is quadratic in uα, the in-plane modes can be integrated out explicitly. To
integrate out uα it is essential to separate the strain tensor uαβ into uniform modes
(with zero spacial momentum k = 0) and non-uniform components (with spacial
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Fourier components k 6= 0). Integration over in-plane phonon modes uk6=0
α (x, τ)

with k 6= 0 gives rise to an effective four-point vertex [54]

Sk 6=0
int =

Y

8

∫ 1/T

0

dτ
∑
k6=0

PTαβ(k)PTγδ(k)fαβ(k, τ)fγδ(−k, τ) , (5.9)

where fαβ(k, τ) is the spacial Fourier transform of the composite field fαβ(x, τ) =

(∂αh(x, τ) · ∂βh(x, τ)), PTαβ(k) = δαβ − kαkβ/k2 is the projector transversal to the
momentum transfer k, and Y = 4µ(λ+ µ)/(λ+ 2µ) is the (dimensionless) Young
modulus. The interaction (5.9) represents physically an instantaneous long-range
coupling between local Gaussian curvatures in the membrane, and is a direct
quantum generalization of the usual effective interaction which emerges in classical
theories [1, 6, 10, 18, 25, 85].
The analysis of zero modes differs depending on the ensemble considered (see

Ref. [18] for an analysis of isometric and isotensional ensemble in the theory
of classical membranes). Here, we find it convenient to use a fixed-stress, or
"isotensional" ensemble [18], in which the external in-plane stress σ is kept fixed
and the projected area is allowed to fluctuate. In this setting, we parametrize
uα(x, τ) = vαβxβ + uk 6=0

α (x, τ) and integrate over all values of both uk 6=0
α (x, τ) and

vαβ . After integration, we are lead to a contribution to the effective action∫ 1/T

0

dτ

∫
d2x

[
σ

2
(∂αh · ∂αh)− σ2

2(λ+ µ)

]
+ Sk=0

int , (5.10)

where

Sk=0
int = A

∫ 1/T

0

dτ

[
λ

8
(f0
αα(τ)− f̄0

αα)2

+
µ

4
(f0
αβ(τ)− f̄0

αβ)(f0
αβ(τ)− f̄0

αβ)

]
,

(5.11)

f0
αβ(τ) = A−1

∫
d2x(∂αh(x, τ) · ∂βh(x, τ)), and f̄0

αβ = T
∫ 1/T

0
dτf0

αβ(τ). The
average strain of the membrane in this ensemble is 〈vαβ〉 = vδαβ , with v =

σ/(2(λ+ µ))− 〈∂αh · ∂αh〉/4 [17, 18, 85]. It is the sum of a Hookean contribution
σ/(2(λ+µ)), controlled by the bulk modulus B = λ+µ, and a negative fluctuation
term, proportional to 〈∂αh · ∂αh〉, which is nonvanishing also for σ = 0, and which
represents the tendency of the projected in-plane area to contract due to statistical
fluctuations of the layer in the out-of-plane direction.
The infinite-range interaction Sk=0

int is scaled by an overall factor A−1 and, by
its definition, it vanishes when the Matsubara-frequency transfer between the
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composite operators f0
αβ(τ) is zero. These two facts together imply that, in the

thermodynamic limit A→∞, Sk=0
int only contributes via diagrams of the type

(5.12)

which (a) become disconnected when any zero-mode interaction line (represented
by dashed lines) is cut and (b) have non-zero frequency transfer through all dashed
lines. (The interaction Sk6=0

int , denoted by wiggly lines can enter, instead, in arbitrary
topology without suppressing the graphs). The diagrams (5.12), however, are only
relevant for zero-mode correlation functions at finite frequency transfer and never
enter as subgraphs of other correlation functions. For subsequent calculations in
this work, we can thus safely neglect Sk=0

int .
As a result, we can thus consider an effective theory for h fluctuations of the

form:

Seff =

∫ 1/T

0

dτ

∫
d2x

{
ḣ2

2
+

1

2
(∂2h)2 +

σ

2
(∂αh)2 − σ2

2B

}
+ Sk6=0

int . (5.13)

By a Hubbard-Stratonovich decoupling of the long-range interaction [183], the
model can be expressed equivalently via the local action

Seff =

∫ 1/T

0

dτ

∫
d2x

{
ḣ2

2
+

1

2
(∂2h)2 +

σ

2
(∂αh)2

+
1

2Y
(∂2χ)2 + iχK − σ2

2B

}
,

(5.14)

where χ(x, τ) is a mediator field and K(x, τ) = (∂2h · ∂2h − ∂α∂βh · ∂α∂βh)/2

is, for small fluctuations, the local Gaussian curvature. The term −σ2/(2B) is a
constant independent of the fluctuating fields h, χ, and does not contribute to
statistical averages. The only coupling constant in the model is thus the Young
modulus Y .

By construction, the interaction-mediating field χ must be considered as a field
with Fourier components only at nonzero momentum k 6= 0. This implies that the
tadpole graphs

(5.15)

must be removed from the perturbative expansion, as in the theory of classical
membranes [12].
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5.4 renormalization and rg equations at zero temperature

5.4.1 RG for correlation functions

At T = 0 the model is infinite in both spacial and temporal dimensions, and its
renormalization can proceed in analogy with other bulk theories with weighted
power counting [15, 100, 169–172]. In the representation (5.14), the basic elements
defining diagrams in perturbation theory are the bare propagators of h and χ,

(5.16)

and the vertex

γ(k1,k2,k3) = k2
1k

2
2 − (k1 · k2)2 = k2

2k
2
3 − (k2 · k3)2

= k2
3k

2
1 − (k3 · k1)2 .

(5.17)

The behavior of Feynman integrals under the rescaling k→ λk, ω → λzω = λ2ω

shows that the weighted power-counting dimension [170] of a one-particle irreducible
(1PI) diagram with I internal lines, V vertices, and L loops is (2 + z)L − 4I +

4V = 4(L− I + V ) = 4, independently of the order of perturbation theory. This
ensures that the model is power-counting renormalizable. A potential danger for
renormalizability [171] is that the propagator F (0)(ω,k), being ω-independent,
is not suppressed in the limit ω → ∞ at k fixed. However, this does not create
difficulties, because it can be checked that in any diagram, all frequency integrals
can be performed first and are convergent 2.
To complete the proof of renormalizability, it would be necessary to derive a

generalization of the Weinberg theorem [184, 185], ensuring the equivalence between
power-counting convergence and true convergence in multiloop diagrams. We will
assume that this property remains valid in the model considered in this work.

2 A power-counting analysis restricted to the frequency-only part of the integrals shows that the ω
integrations are all superficially convergent. An application of the Weinberg theorem ensures the
finiteness of integrations [172].
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The ultraviolet divergences of correlation functions can be removed by introducing
an arbitrary subtraction scale M , a renormalized coupling YR, and a renormalized
action

S(R)
eff =

∫
dτ

∫
d2x

{
ḣ2

2
+
Z

2
(∂2h)2 +

σ

2
(∂αh)2

+
1

2KY
(∂2χ)2 + iχK − σ2

2B

}
,

(5.18)

equipped with two logarithmically divergent counterterms Z and KY . This partic-
ularly simple form, with only two independent divergences, follows from the fact
that the terms ḣ2/2, σ(∂αh)2/2, and the interaction iχK are not renormalized.
Indeed, due to the structure of the vertex (5.17), it is possible to factorize, from any
1PI diagram, two powers of the spacial momentum of each external leg. Therefore,
the perturbative corrections to the self-energy of flexural fields cannot generate
divergences proportional to ω2 or to k2, but only proportional to k4, which con-
tribute to the renormalization of Z. The possibility to factorize two powers of each
external momentum also implies that loop corrections to the three-field vertex
are superficially convergent, and thus the interaction iχK does not require an
independent counterterm. An identical mechanism occurs in the ε-expansion of
classical membranes in dimension D = 4− ε [25, 183]. In principle, the one-point
function 〈∂2χ〉 constitutes a further independent divergence, but since χ is a field
with components only at nonzero momentum k 6= 0, this divergence is unphysical
and has no effect on correlation functions.

Eq. (5.18) implies the following relations between bare and renormalized quanti-
ties

Seff [h, χ, Y, σ] = S(R)
eff [hR, χR, YR, σR] + constant ,

h(x, τ) = Z1/4hR(x, τR) , χ(x, τ) = Z−1χR(x, τR) ,

τ = Z1/2τR , σ = Z−1σR , Y = Z−3/2KY

(5.19)

and, according to standard techniques [15], the following RG equations for 1PI
correlation functions in momentum space[

Λ
∂

∂Λ
+ β(Y )

∂

∂Y
− 1

2
(n− 4`+ 2)η + η

n∑
i=1

ωi
∂

∂ωi

+ η
∑̀
j=1

ω′j
∂

∂ω′j
+ 2ησ

∂

∂σ

]
Γ

(n,`)
i1..in

(ωi,ki;ω
′
j ,k
′
j) = 0 .

(5.20)

In Eq. (5.20), Λ is the microscopic ultraviolet momentum cutoff and Γ(n,`) denotes
the bare (unrenormalized) 1PI correlation function with n external h legs and `
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external χ legs. The RG flow function β = Λ∂Y/∂Λ and the anomalous dimension
η = − 1

2Λ∂ lnZ/∂Λ depend only on the bare dimensionless coupling Y .
By an explicit computation of the one-loop divergences in the self-energies of χ

and of h for σ = 0 we find [54, 91, 162]

(5.21)

where dc = (d − 2) is the number of components of the h field. Applying the
RG equations to G−1

ij (ω,k) = Γ
(2,0)
ij (ω,k) = ω2 + k4 + σk2 + Σ(h)(ω,k) and

F−1(0,k) = Γ(0,2)(0,k) = k4/Y + Σ(χ)(0,k) shows that, at leading order,

β(Y ) = 3η(Y )Y +
3dc

128π
Y 2 , η(Y ) =

3

64π
Y . (5.22)

These RG functions imply that Y is marginally irrelevant: the theory is attracted
to weak coupling at large length scales. Eqs. (5.22) are consistent, in a different
scheme, with the earlier perturbative results of Refs. [91, 162] and also with the
weak-coupling limit of the nonperturbative RG equations derived in Ref. [164].

5.4.2 Gibbs free energy

The Gibbs free energy per unit area at zero temperature, G̃0 = −A−1 limT→0(T lnZ),
requires the introduction of additional counterterms to the field-independent part
of the action. Since σ has power-counting dimension [σ] = 2, the required coun-
terterms in the Lagrangian are a polynomial a0 + a1σ + a2σ

2/2, where a0 diverges
as Λ4, a1 as Λ2, and a2 diverges logarithmically. By working within a massless
scheme [15, 170], a0, a1, and a2 can be chosen to be independent of the tension σ.
Taking into account these additional renormalizations, the renormalized action

reads

S(R)
eff =

∫
dτ

∫
d2x

{
ḣ2

2
+
Z

2
(∂2h)2 +

σ

2
(∂αh)2

+
1

2KY
(∂2χ)2 + iχK + a0 + a1σ +

1

2
(a2 − 1/B)σ2

}
.

(5.23)

To discuss RG equations it is convenient to separate G̃0 = Vel + ∆G̃0, where
Vel = −σ2/(2B) is the elastic Hookean contribution and ∆G̃0 is the fluctuation
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part. The advantage of this separation is that ∆G̃0 depends only on the Young
modulus Y and not on the bulk modulus B.
The fluctuation free energy ∆G̃

(R)
0 , calculated using the action (5.23), is finite

for Λ→∞ at fixed YR and M . The physical free energy ∆G̃0, computed from the
bare action (5.14) is related to ∆G̃

(R)
0 by

Z1/2∆G̃0(Y, Z−1σ,Λ) = ∆G̃
(R)
0 (YR, σ,M)− a′0 − a1σ −

a2

2
σ2 . (5.24)

(a′0 differs from a0 because it receives contributions from the path-integral measure
during the change of variables h → hR, χ → χR). The relation (5.24) and the
finiteness of ∆G̃

(R)
0 imply an inhomogeneous RG equation for the physical Gibbs

free energy[
Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
− η
]
∆G̃0(Y, σ,Λ) = b0 + b1σ +

b2
2
σ2 . (5.25)

The constants b0, b1, and b2 are independent of σ in the massless scheme and
cannot depend on the arbitrary subtraction scale M . Thus they have the form
b0 = b̄0(Y )Λ4, b1 = b̄1(Y )Λ2, and b2 = b̄2(Y ).

5.5 rg for low-temperature thermodynamic quantities

At finite temperatures, the continuum frequency ω is replaced by discrete bosonic
Matsubara frequencies ωn = 2πTn. As a result, even for an infinitesimal T , the
perturbative expansion at zero tension σ = 0 breaks down due to infrared (IR)
divergences. The IR problems arise from the ωn = 0 component of the flexural
propagator G(0)

ij = δij/(ω
2
n + k4), which induces singularities when integrated over

the two-dimensional spacial momenta. The physical origin of these divergences is
the following: in the limit k→ 0, the system behaves as a classical membrane [164].
For classical thermal fluctuations, anharmonic effects do not induce logarithmic
corrections but, rather, power-law renormalizations [1, 6, 10–12, 22, 25]. The
dramatic power-law singularities of the classical theory cannot be captured by a
simple perturbative treatment, but require more detailed solutions, for example
within the framework of the self-consistent screening approximation [25], the non-
perturbative RG [26, 164], the large-d expansion [9, 22], or the ε-expansion [10,
19–21, 183].

Similar difficulties emerge in finite-size scaling problems and in other finite-
temperature quantum field theories. A standard strategy to bypass the problem of
IR singularities consists in integrating out modes with n 6= 0 and in deriving an
effective field theory for modes with n = 0, to be solved by more exact methods [15].

The same strategy can be applied to the membrane action (5.14), with, however, a
difference compared to the standard case: since the χ propagator F (0)(ω,k) = Y/k4
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does not depend on the frequency ω, it is singular at small k not only at ωn = 0

but, in fact, for all Matsubara frequencies ωn 6= 0. As a result, subtracting the
modes ωn = 0 does not introduce an IR cutoff to Feynman diagrams. This property
is a consequence of the neglection of the kinetic energy of in-plane phonons. The
singularity of F (0)(ω,k), however, is neutralized by the factors k2 attached to the
vertices (5.17) and, therefore, the IR finiteness is still valid.

We can thus proceed as follows: we separate h(x, τ) = h′(x, τ) + H(x), where
H(x) = T

∫ 1/T

0
h(x, τ) is the mode with zero Matsubara frequency and h′(x, τ)

the sum of all other modes with ωn 6= 0. We then integrate out h′(x, τ) and all
degrees of freedom of χ(x, τ) (including the ωn = 0 mode of χ). This integration
can be performed perturbatively without encountering IR divergences because in
all h′ propagators the finite frequency ωn 6= 0 provides an IR cutoff and in all χ
propagators the singularity Y/k4 of the propagator is compensated by a power
k4 coming from the vertex (5.17). Although the singularity of F (0)(ω,k) does not
introduce divergences, it still manifests itself in the fact that the effective theory
for H(x) is highly non-local.
In order to disentangle modes which generate IR singularities from degrees of

freedom which generate UV divergences, it is also convenient to separate H(x) =

H1(x) + H2(x) into a slowly-varying field H1(x), with momenta |k| < Λ1 and a
fast field H2(x) with momenta in the shell Λ1 < |k| < Λ, where Λ1 is an arbitrary
wavevector scale much smaller than Λ. Integrating out h′, χ, and H2 can be done
perturbatively and leaves us with an effective classical Hamiltonian

H[H1(x);Y, σ, T,Λ,Λ1] = −T ln

∫
[dh′dH2dχ]e−S[H1+H2+h′,χ] . (5.26)

involving only slowly-varying long-wavelength modes.
A crucial observation in the theory of finite-size scaling and other finite-temperature

field theories is that the counterterms which make the theory finite at T = 0 will
also formally remove all ultraviolet divergences from observables at nonzero T [15,
173]. It is natural to assume that the same property remains valid for the membrane
action. We can thus conclude that if we started from the action

S(R)
eff =

∫ 1/T

0

dτ

∫
d2x

{
ḣ2

2
+
Z

2
(∂2h)2 +

σ

2
(∂αh)2

+
1

2KY
(∂2χ)2 + iχK + a0 + a1σ +

1

2
(a2 − 1/B)σ2

}
,

(5.27)

equipped with the same zero-temperature counterterms Z, KY , a0, a1, and a2

which appear in Eq. (5.23), after a perturbative integration over h′, χ, and H2,
and a final non-perturbative integration over H1 we would arrive at a renormalized
Gibbs free energy per unit area G̃(R) = −A−1T lnZ which remains finite for
Λ→∞.



112 quantum mechanical effects

After separation of G̃ = Vel + ∆G̃ into the Hookean part −σ2/(2B) and the
fluctuation part ∆G̃, the physical fluctuation free energy ∆G̃, computed from the
bare action (5.14) is related to the renormalized ∆G̃(R) by the equation

∆G̃(R)(YR, σ, T,M) = Z1/2∆G̃(Y,Z−1σ, Z−1/2T,Λ)

+ a′0 + a1σ +
a2

2
σ2 .

(5.28)

From Eq. (5.28) follows an inhomogeneous RG equation for the bare Gibbs free
energy: [

Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T
− η
]
∆G̃(Y, σ, T,Λ)

= b0 + b1σ +
b2
2
σ2 .

(5.29)

In Eq. (5.29), β(Y ), η(Y ), and the coefficients of the inhomogeneous part b0 =

b̄0(Y )Λ4, b1 = b̄1(Y )Λ2, and b2 = b̄2(Y ) are the same RG coefficients which
appear in the zero-temperature equation (5.25) and, in particular, are temperature-
independent.

As a remark, we note that the RG equations discussed above, as in any renormal-
izable theory [15], keep track of all terms which either diverge or remain finite when
Λ→∞. Terms which vanish for large cutoff (for example a correction σ/Λ2) are
instead neglected. As a result, relations such as Eq. (5.29) are valid asymptotically
when the cutoff Λ is much larger than other scales in the problem: Λ � σ1/2,
Λ� T 1/2. In standard units of measurement the condition Λ� T 1/2 implies that
the temperature T̃ must be much smaller than the Debye temperature of flexural
phonons T̃D = ~κ̃1/2Λ2/(ρ̃1/2kB).

5.5.1 RG equation for the effective classical Hamiltonian

More generally, the effective classical Hamiltonian (5.26) must, by itself, satisfy a
renormalization group equation[

Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T
− η

2

∫
d2x H1(x) · δ

δH1(x)

+ η

]
∆H = A

(
b0 + b1σ +

b2
2
σ2

)
,

(5.30)

where ∆H = H+Aσ2/(2B) is the fluctuation energy, with the Hookean contribution
AVel = −Aσ2/(2B) subtracted. Eq (5.30) expresses that the cutoff dependence of
H is entirely carried by the zero-temperature counterterms Z, KY , a0, a1, a2.
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For the direct validity of Eq. (5.30), it is essential that all high-energy modes are
integrated out, as in Eq. (5.26). If, for example, we did not integrate out the large-
momentum modes H2(x) with zero Matsubara frequency, we would have moved
some of the UV infinities from the integrated modes to the degrees of freedom yet
to be integrated. In this case, H would have included additional counterterms [173].

5.6 results

In this section, we derive explicit consequences of the RG relations for various
statistical and thermodynamic quantities.

5.6.1 Two-point correlation functions at T = 0, σ = 0, ω = 0

The interacting Green functions Gij(ω,k) of the flexural field is the inverse of the
1PI function Γ

(2,0)
ij (ω,k). For T = 0, σ = 0, and ω = 0, Gij(0,k) = [Γ

(2,0)
ij (0,k)]−1

satisfies, as a particular case of Eq. (5.20), the RG equation[
Λ
∂

∂Λ
+ β(Y )

∂

∂Y
− 2η

]
G−1
ij (0,k;Y,Λ) = 0 . (5.31)

The renormalization group equations can be solved, in an usual way [15], by
introducing a running coupling y(Λ′) and an amplitude renormalization z(Λ′)
which, starting from the initial values y(Λ) = Y , z(Λ) = 1, evolve with the floating
cutoff scale Λ′ according to the flow equations

Λ′
dy(Λ′)

dΛ′
= β(y(Λ′)) ,

Λ′
d ln z(Λ′)

dΛ′
= −2η(y(Λ′)) .

(5.32)

The one-loop RG flow gives

y(Λ′) =
Y

1 + 3(dc+6)Y
128π ln Λ

Λ′

,

z(Λ′) =

[
1 +

3(dc + 6)Y

128π
ln

Λ

Λ′

]θ
=

(
Y

y(Λ′)

)θ
,

(5.33)

where θ = 4/(dc + 6) is the quantum exponent.
To calculate Gij(0,k), we can integrate the RG flow down to a scale Λ′ ≈ k. Since

y(Λ′) flows to small values as Λ′ is reduced (it is marginally irrelevant), we can use
perturbation theory and take the zero-order approximation G−1

ij (0,k; y(Λ′),Λ′) =

k4. The scaling relation (5.31) then implies Gij(0,k;Y,Λ) ≈ δij/(z(k)k4). By
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similar arguments, we find that the two point function F (0,k) = 〈χ(0,k)χ(0,−k)〉
of the auxiliary field χ scales as F (0,k) ≈ z3/2(k)y(k)/k4.
The scaling of Gij(0,k) shows that z(k) plays the role of a bending-rigidity

renormalization and z3/2(k)y(k) the role of an effective screened Young modulus.
Returning to standard units, these results can thus be interpreted as a renormal-
ization of the bending rigidity

κ̃→ κ̃r(k) =

[
1 + g0 ln

Λ

k

]θ
κ̃ (5.34)

and of the elastic Young modulus Ỹ = 4µ̃(λ̃+ µ̃)/(λ̃+ 2µ̃)

Ỹ → Ỹr(k) =

[
1 + g0 ln

Λ

k

]3θ/2−1

Ỹ (5.35)

where

g0 =
3(dc + 6)Y

128π
=

3(dc + 6)~Ỹ
128π(ρ̃κ̃3)1/2

(5.36)

is the "quantum coupling constant" [91]. The bending rigidity gets stiffened by
interactions and scales for k → 0 as [ln(Λ/k)]θ. The Young modulus Yr(k), in-
stead, is softened by fluctuations and behaves in the long-wavelength limit as
[ln(Λ/k)]3θ/2−1 = [ln(Λ/k)]−dc/(6+dc).

The same behavior has been predicted for quantum membranes in Refs. [91, 164].
An identical logarithmic singularity has also been found, for dc = 1, by Ref. [169]
in the context of lamellar stacks of membranes.

5.6.1.1 Ultrasoft scaling of G−1(0,k)

From the result G−1
ij (0,k) ≈ k4[ln(Λ/k)]θ it follows, in particular, that the ultra-

soft behavior limk→0G
−1
ij (0,k)/k2 = 0 characteristic of unstressed membranes is

preserved by anharmonic effects. This result is consistent with the general Ward
identity limk→0G

−1
ij (0,k)/k2 = σ, which is a consequence of rotational invari-

ance [85] and which, here, can be traced to the linearized rotational symmetry (5.7)
of the effective model (5.2).
We note, instead, that this limiting behavior contrasts with the derivations in

Refs. [167, 168], which proposed that, even in an unstressed membrane, flexural
phonons exhibit a finite acoustic sound velocity v and a linear dispersion relation
ω = v|k| for k→ 0. Within the local elasticity model (without long-range interac-
tions) the linear dispersion relation can only emerge when an external source, such
as an in-plane stress, breaks the rotational symmetry explicitly. In the harmonic
approximation, this follows from the fact that in a rotationally-invariant, unstressed
membrane, a Lagrangian term proportional to (∂αh)2/2 cannot appear individually,
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but only together with in-plane terms in an overall coupling σAUαα to the strain
tensor Uαα = (∂αr · ∂αr− 2)/2. The contribution σAUαα represents a coupling to
the change of the total area, rather than the in-plane area [186], and thus it is
allowed without breaking the symmetry. However, Uαα contains a term linear in
∂αuα and, thus, shifts the equilibrium configuration at which the energy must be
expanded. After expansion at the true energy minimum, the sound velocity term
must disappear. Indeed, a term linear in σAUαα can always be fully removed from
the action by a change of variables r→ ζr [12], which is allowed for a membrane
with free boundaries. After ζ is chosen in such way that terms linear in ∂αuα
disappear, the entire operator Uαα drops from the action, showing that the inverse
Green function behaves as G(0)−1

ij (0,k) ∝ k4. Beyond the harmonic approximation,
the perturbative corrections can be assembled in the effective potential Γ, gener-
ating functional of one-particle irreducible correlation functions, which, by Ward
identities, has the same symmetry of the action [15]. Because phonon excitations
are gapless, the interacting Green function G−1

ij (0,k) can vanish slower than k4

as a result of singular diagrammatic contributions which generate a non-analytic
dependence on k. However, the rotational symmetry forbids terms regular in k

and proportional to k2. For example, the first-order perturbative correction for
classical membranes in two dimensions [3, 6] consists in a diagram suppressed
by an overall factor k4 but multiplied by a singular term 1/k2 arising from the
loop integration. Although formally the contribution vanishes as k2, its origin
is different from a regular contribution directly proportional to k2. Furthermore,
the singular first-order term proportional to k2 is, in fact, the first contribution
to an infrared-divergent series which requires a resummation for example by the
self-consistent screening approximation [24, 25], or the ε-expansion [10, 20, 183].
After resummation, the interacting correlation function for classical membranes can
be shown to behave as k4−η∗ where η∗ is an universal exponent [10, 24, 25]. The
value of η∗ has been computed by several complementary techniques [10, 19–22,
24–26, 164, 183] (see also references in [183]) and, despite some scatter between
different methods, is usually found to be approximately η∗ ' 0.8. As a result, the
full interacting Green function G−1 vanishes faster than k2.

The same conclusions hold in presence of the linearized rotational invariance (5.7),
which forces the action to depend on (∂αh)2 only via the linearized strain tensor
uαβ . (See Refs. [10, 11, 169] for a discussion of Ward identities). Terms linear in
uαα can be fully removed by a change of variables uα → uα + εxα, a shift which
is automatically performed when integrating over zero modes in the fixed-stress
ensemble (see Sec. 5.3).
The prediction of a self-energy correction Σ(k) ≈ k2Λ2, derived in Ref. [167],

resulted from a theory in which the in-plane kinetic energy was kept but the strain
tensor was approximated. This approximation breaks explicitly both the full and
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the linearized rotational symmetry, leading to a result inconsistent with the Ward
identities.
The quantum-mechanical average 〈ĥ(k)ĥ(−k)〉 is given by the integral over

all frequencies
∫

dω/(2π)G(ω,k). The scaling relations (5.20) and the one-loop
approximation imply that 〈ĥ(k)ĥ(−k)〉 ≈ 1/(z1/2(k)k2).

5.6.2 Anomalous Hooke’s law at T = 0

The average strain of the membrane 〈∂αuβ〉 = vδαβ can be computed from the
thermodynamic relation v = − 1

2 (∂G̃/∂σ). Thus, it is the sum v = σ/(2B) + ∆v of
the Hookean term and the fluctuation part ∆v = − 1

2 (∂∆G̃/∂σ) = −〈(∂αh)2〉/4.
The RG equation (5.29) for the Gibbs free energy implies that, at zero temperature[

Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ η

]
∆v = −1

2
(b̄1(Y )Λ2 + b̄2(Y )σ) . (5.37)

The inhomogeneous coefficients b̄1(Y ) and b̄2(Y ) are non-zero already in the non-
interacting model, because the Gibbs free energy at T = 0 (equivalent to the
zero-point ground state energy) of free flexural phonons is

∆G̃0 =
dc
2

∫
d2k

(2π)2

√
k4 + σk2

= C0 +
dc

16π
σΛ2 − dc

32π
σ2 ln Λ + finite ,

(5.38)

and already contains divergences for Λ → ∞. Matching Eq. (5.38) with the RG
equation (5.25), we deduce b̄1(Y ) = dc/(8π)+O(Y ) and b̄2(Y ) = −dc/(16π)+O(Y ).
Taking into account that the expansion of β and η start, respectively, at orders Y 2

and at order Y , it can be checked that the general solution of the RG equation (5.37)
order by order in Y has the general structure

v = v0 +
σ

2B
+

∞∑
k=0

k+1∑
`=0

ak`σY
k
(
ln(Λ2/σ)

)`
. (5.39)

The first term, v0, represents the average strain at zero imposed stress, and the
second two terms describe the response to external tension.

By solving the RG equation (5.37) in the leading-logarithm approximation [15]
(keeping only the most singular terms, with ` = k + 1), we find

v − v0 =
σ

2B
+

4σ

3Y

[
(z(σ

1
2 ))

dc
4 − 1

]
, (5.40)

where z(σ1/2) is the running amplitude defined in Eq. (5.33), evaluated at scale
Λ′ = σ1/2.
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Eq. (5.40) is consistent, at the leading logarithm level, with results obtained
by other methods in Ref. [91, 169], and shows that, even at T = 0, the stress-
strain relation is anomalous. Due to quantum fluctuations of flexural degrees of
freedom, the macroscopic bulk modulus Beff = 1

2∂σ/∂v is not a constant, but a
slowly-varying function of the applied tension:

1

Beff(σ)
≈ 1

B
+

8

3Y

[(
1 +

3(dc + 6)Y

256π
ln

Λ2

σ

) dc
dc+6

− 1

]
. (5.41)

(In Eq. (5.41) we neglected a contribution from the derivative of z(σ1/2), which
does not contribute to the leading-logarithmic singularities). In the limit of zero
tension σ → 0, the bulk modulus vanishes as Beff(σ) ≈ [ln(Λ2/σ)]−dc/(dc+6).

The physical origin of this singularity is the same which gives rise to the anoma-
lous Hooke response in classical thermally-fluctuating membranes [11, 17, 72, 85]:
for small σ the dominant effect of the applied tension is not a stretching of the
interatomic distance, but rather a "flattening" of the distribution of out-of-plane
flexural fluctuations. For parameters characteristic of two-dimensional materials,
however, the singular behavior dominates over the regular one only at unphysically
small values of the imposed tension (see Sec. 5.7). The singularity, in particular, is
much weaker than the power-law-divergent anomalous Hooke’s law characteristic
of classical thermal fluctuations, derived in Refs. [11, 17, 85].

5.6.3 Consequences of renormalizability on low-temperature thermodynamics

Differentiating Eq. (5.29) with respect to the temperature T , annihilates the
inhomogeneous terms b0 + b1σ + b2σ

2/2, which are temperature-independent. As a
result we find a homogeneous renormalization group equation for the entropy per
unit area S = −∂G̃/∂T |σ:[

Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T

]
S = 0 , (5.42)

valid in the limit of small tension σ � Λ2 and small temperature T � Λ2. By
further differentiation with respect to T and to σ we find RG equations for the
specific heat at constant tension C = T∂S/∂T |σ and for the thermal expansion
coefficient α = 2∂v/∂T |σ = ∂S/∂σ|T :[

Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T

]
C = 0 , (5.43)

[
Λ
∂

∂Λ
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T
+ 2η

]
α = 0 . (5.44)
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By using the standard method of characteristics [15], the solutions can be written
as

S(Y, σ, T,Λ) = S(y(Λ′), z−1σ, z−1/2T,Λ′)

C(Y, σ, T,Λ) = C(y(Λ′), z−1σ, z−1/2T,Λ′)

α(Y, σ, T,Λ) = z−1α(y(Λ′), z−1σ, z−1/2T,Λ′) ,

(5.45)

where y(Λ′) and z = z(Λ′) are the zero-temperature running couplings introduced
in Sec. 5.6.1.

Some general consequences of the RG equations, however, become more manifest
if the solutions are expressed in another well-known form [187]. By rewriting the
definitions (5.32) of the flow of running couplings in the integral form

ln
Λ′

Λ
= ϕ(y(Λ′))− ϕ(Y ) , z(Λ′) =

ef(y(Λ′))

ef(Y )
, (5.46)

ϕ(x) =

∫ x du

β(u)
, f(x) = −2

∫ x

du
η(u)

β(u)
. (5.47)

it can be checked that the dimensionless quantities

x1 = ln
Λ2

T
− 1

2
f(Y )− 2ϕ(Y ) ,

x2 =
σ

T
e

1
2 f(Y ) ,

(5.48)

are RG-invariant (they do not change under the replacements Λ→ Λ′, Y → y(Λ′),
T → z−1/2(Λ′)T , σ → z−1(Λ′)σ).

Taking into account that α is dimensionless, while S and C have the dimension
of an inverse area, the scaling relations can then be written in the form, equivalent
to Eq. (5.45),

S(Y, σ, T,Λ) = T e
1
2 f(Y )L(x1, x2) ,

C(Y, σ, T,Λ) = T e
1
2 f(Y )M(x1, x2) ,

α(Y, σ, T,Λ) = ef(Y )N(x1, x2) ,

(5.49)

where L, M , and N are fixed functions of two parameters. The thermodynamic
relations between S, C, and α imply

M(x1, x2) =

[
1− ∂

∂x1
− x2

∂

∂x2

]
L(x1, x2) ,

N(x1, x2) =
∂L(x1, x2)

∂x2
.

(5.50)
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The detailed form of the functions L, M , and N is not fixed by the scaling
relations, but requires a full solution of the problem, including an analysis of the
long-wavelength degrees of freedom dominated by classical thermal fluctuations.
However Eqs. (5.49), which are general consequences of the renormalizability of
the zero-temperature theory, already have a predictive content, even without a
full solution of the problem. They imply that, in the region σ � Λ2, T � Λ2

thermodynamic quantities depend on the microscopic material parameters Λ and
Y only via overall scale factors independent of σ and T .
For example, the form of the thermal expansion coefficient at zero tension

α = ef(Y )N(ln(Λ2/T )− f(Y )/2− 2ϕ(Y ), 0) (5.51)

implies that, in a logarithmic plot of lnα vs. lnT , curves corresponding to different
materials must have the same shape and differ only by rigid shifts along horizontal
and vertical Cartesian axes.

These universality properties express, in the thermodynamical behavior, a stan-
dard consequence of renormalizability [187].

5.6.4 Finite-temperature thermodynamics of an unstressed membrane: thermal
expansion coefficient

A more detailed prediction of the temperature dependence of thermodynamic quan-
tities requires a complete theory of all degrees of freedom, from short-wavelength
modes, frozen by quantization, to long-wavelength modes, controlled by thermal
fluctuations.

To derive explicit expressions we use a combination of the scaling relations (5.45)
with approximations analogue to those described in Ref. [91].

The theories of Refs. [91, 164] indicate that, for temperatures much smaller than
the Debye temperature T̃D, correlation functions exhibit a double crossover between
different regimes. For large momenta |k| � qT flexural modes have fluctuations of
zero-point character. In an intermediate window of length scales qG � |k| � qT
the system is expected to exhibit weakly-coupled harmonic fluctuations and a
classical statistical distribution. Finally in the long-wavelength region |k| � qG,
fluctuations become strongly anharmonic and are controlled by the interacting
fixed point characteristic of classical membranes [1, 10, 12, 18, 25, 26].
The crossover scale qT separating zero-point from thermally activated regimes,

can be estimated [91], as the wavelength at which the zero-temperature inverse
Green function G−1

ij (0,k) ≈ z(k)k4 becomes of the order of T 2:

z(qT )q4
T ' T 2 . (5.52)

For a fully classical membrane with bending rigidity κ̃1, Young modulus Ỹ1, and
temperature T̃1, the Ginzburg momentum qG at which harmonic fluctuations
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cross over to strongly-coupled nonlinear fluctuations is [1, 12, 18, 25, 85] qG '
(3kBT̃1Ỹ1/(16πκ̃2

1))1/2. In the quantum problem it can be assumed that the same
crossover criterion remains valid, with T̃1 = T̃ and that κ̃1 = κ̃r(qT ), Ỹ1 =

Ỹr(qT ) are the renormalized parameters (5.34), (5.35), corrected by zero-point
anharmonic effects, evaluated at the renormalization scale qT [91]. In rescaled units,
the corresponding crossover scale is

q2
G '

3Ty(qT )

16π(z(qT ))1/2
. (5.53)

With characteristic parameters of graphene (see Sec. 5.7), it can be verified that
(qG/qT )2 = 3y(qT )/16π is small, confirming the consistency of a region qG � |k| �
qT .
By using Eq. (5.45), we can estimate the thermal expansion of the quantum

membrane as

α(Y, T,Λ) = (z(qT ))−1α(y(qT ), z(qT )−1/2T, qT ) . (5.54)

In principle, the zero-temperature RG flow remains valid only as far as Λ′ �
z−1/2(Λ′)T , but, in a first approximation, it is justified to set directly Λ′ = qT =

z−1/2(qT )T .
After the cutoff has been reduced from the microscopic scale to the thermal

scale qT , we can estimate α by neglecting quantum thermal effects and by identify-
ing α(y(qT ), z−1/2(qT )T, qT ) with the thermal expansion coefficient of a classical
membrane with the standard Hamiltonian [1, 6, 12, 91, 164]

Hcl[H1(x)] =

∫
d2x

[
κcl

2
(∂2H1)2 +

Ycl

8
(PTαβ(−∂2)(∂αH1 · ∂βH1))2

]
. (5.55)

In terms of the discussion of Sec. 5.5, this corresponds to approximating H[H1],
the Hamiltonian for modes with zero Matsubara frequency, with Eq. (5.55), which
is its tree-level approximation (without loop corrections).
In particular, we must consider a classical membrane with Young modulus

Ycl = y(qT ), temperature Tcl = z−1/2(qT )T , bending rigidity κcl = 1, and a
large-momentum cutoff Λcl = qT .
Thermal fluctuations in classical statistical mechanics have been investigated

extensively [1, 6, 12, 18, 19, 22, 25, 85, 183]. The momentum-dependent correlation
function G(cl)

ij (k) = 〈hi(k)hj(−k)〉 is predicted to behave as

G
(cl)
ij (k) = δij

{
Tcl

κclk4
, for qG � |k| � Λcl

Tcl

κclk4−η∗q
η∗
G

for |k| � qG ,
(5.56)

where η∗ is an universal exponent and qG = (3TclYcl/(16πκ2
cl))

1/2.
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Calculating directly the extension factor via the relation

〈vcl〉 = −1

4
〈(∂αh)2〉 = −1

4

∫
d2k

(2π)2
Gii(k)

' − dcTcl

8πκcl

[ ∫ qG

0

dk

qη∗G k1−η∗ +

∫ Λcl

qG

dk

k

]
= − dcTcl

8πκcl

[
1

η∗
+ ln

Λcl

qG

] (5.57)

and differentiating with respect to Tcl at Λcl, Ycl and κcl fixed we find the expression
for the thermal expansion coefficient [188]

αcl = 2
∂〈vcl〉
∂Tcl

= − dc
4πκcl

[
1

η∗
− 1

2
+ ln

Λcl

qG

]
. (5.58)

Identifying, in rescaled units, α = (z(qT ))−1αcl, and setting the effective classical
parameters to the renormalized values we then find an expression for the thermal
expansion coefficient of quantum membranes

α = − dc
4πz(qT )

[
1

η∗
− 1

2
+

1

2
ln

(
16π

3y(qT )

)]
. (5.59)

This expression, when z(qT ) and y(qT ) are replaced with the one-loop running
couplings

y(qT ) =
Y

1 + 3(dc+6)Y
128π ln Λ

qT

, z(qT ) =

(
Y

y(qT )

)θ
, (5.60)

coincides with the result derived in Ref. [91], up to a numerical factor.
The temperature dependence of α is entirely driven by the renormalization

factors y(qT ) and z(qT ). As a result, the thermal expansion coefficient is a slow,
logarithmic function of T . In the limit T → 0, α tends to zero as

αT ≈ −
dc
8π

ln(ln(Λ2/T ))

[(g0/2) ln(Λ2/T )]θ
. (5.61)

As a remark, we note that, despite being approximate, the solution (5.59) is
automatically consistent with the general form (5.51), as it is true for any expression
of the type α = (z(qT ))−1F (y(qT )), constructed via running couplings.
The approximations which lead to Eq. (5.59) are very natural. We expect that

the prediction of a nearly constant α at low temperature is exact and that Eq. (5.61)
captures, up to a numerical factor, the correct behavior in the limit T → 0.

5.6.5 Renormalization and third law of thermodynamics

The fact that α vanishes in the zero-temperature limit is formally consistent with
the requirement limT→0 α(T ) = 0, which is expected in view of the Maxwell relation

α =

(
∂V

∂T

)
p

= −
(
∂S

∂p

)
T

, (5.62)
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and the third law of thermodynamics limT→0 S(T, p) = 0 [36, 84, 167]. The
logarithmic way in which the low temperature limit is realized at zero tension is,
however, very unconventional [91]. In fact, the existence of an anomalous behavior
can be already anticipated by dimensional analysis. The rescalings described in
Sec. 5.2.1 show that, for σ = 0, the only dimensionful parameters in the theory (5.3)
are the temperature T and the UV cutoff Λ. If there were no ultraviolet divergences,
the fact that α is dimensionless would have implied that α = φ(Y ), a temperature-
independent result which is manifestly inconsistent with the limit limT→0 α(T ) = 0.
It is only the logarithmic correction due to UV divergences which introduces an
explicit dependence on the UV cutoff scale Λ and allows for a variation of α at
low temperatures. In presence of a nonzero tension σ, Ref. [91] predicted that the
thermal expansion coefficient vanishes in a faster way for T → 0.

5.7 application to graphene

To illustrate the results, we consider the case of a monolayer graphene, using
parameters ρ̃ ' 7.6 kg m−2, λ̃ ' 3.4 eV Å−2, µ̃ ' 9.3 eV Å−2, B̃ ' 12.7 eVÅ−2,
Ỹ ' 21.4 eV Å−2 [78], κ ' 1.4 eV [189]. Setting the codimension dc to the physical
value dc = 1, we find that the bare value of the quantum coupling constant is small:
g0 ' 0.02. As a consequence, the one-loop approximations to the RG functions
β and η are justified at all length scales of physical interest. The smallness of g0

is related physically to the fact that the mass of nuclei is much larger than the
mass of electrons [162, 163], and, thus, we expect it to be a general feature of most
two-dimensional materials.

The ultraviolet cutoff Λ is of the order of the inverse interatomic distance a ' 1.42

Å. We choose to identify Λ with the "Debye radius" Λ = (4π2/3)1/4a−1, defined by
the condition that the phase space area πΛ2 contains the same number of degrees
of freedom of the hexagonal Brillouin zone of graphene. With this estimate, the
Debye temperature is approximately TD = ~(κ̃/ρ̃)1/2Λ2/kB ' 750 K.

The predictions discussed in Sec. 5.6 are illustrated in figures 5.1, 5.2, and 5.3. In
all cases, the renormalizations induced by quantum-mechanical fluctuations induce
a slow, logarithmic behavior of statistical and thermodynamic quantities.

In particular, we find that the thermal expansion coefficient α̃ at low temperatures
is nearly constant over broad ranges of low temperature, with an order of magnitude
α̃ ≈ −kB/(4πκ̃) ≈ −5 × 10−6 K−1 up to a numerical factor of order unity, in
agreement with a simple classical estimate [188]. The limit limT→0 α = 0 is only
approached logarithmically.

The prediction of a nearly constant α̃ depends essentially on the fact that flexural
phonon modes fluctuate in absence of an imposed stress and without binding forces
(see Ref. [91] for an analysis on the role of tension and Refs. [179, 188] for discussions
on the effects of a supporting substrate).
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Figure 5.1: Effective wavevector-dependent bending rigidity (red solid line) and Young
modulus (blue dashed line) as a function of wavelength l = 2π/k for a graphene membrane
at T = 0, as described by Eqs. (5.34) and (5.35). In the infinite-wavelength limit κ̃r(l)

slowly diverges as (ln l)4/7 and Ỹr(l) slowly vanishes as (ln l)−1/7.
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Figure 5.2: Anomalous Hooke’s law for a graphene membrane at T = 0. The red
solid line represents the macroscopic bulk modulus B̃eff = 1

2
∂σ̃/∂ṽ as a function of

the applied tension σ̃, as described by Eq. (5.41). The red dotted line is constant as a
function of the applied stress and identifies the microscopic bulk modulus B̃ ' 12.7 eV
Å−2 controlling the normal Hooke’s law for a membrane constrained in two dimension
(without quantum-mechanical out-of-plane fluctuations). The strain induced by tension is
represented by blue dashed lines. The effective bulk modulus vanishes in the limit σ → 0

as B̃eff(σ) ≈ (ln(1/σ))−1/7. The singularity, however, is very slow.
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Figure 5.3: Negative thermal expansion coefficient for an unstressed graphene membrane
as a function of temperature (red solid line). In the limit T → 0, α̃→ 0 as expected from
the third law of thermodynamics, but the approach to zero is only logarithmic with T̃ .

To conclude, we note that a more complete understanding of the thermodynamics
of graphene samples requires a further analysis of the coupling between membrane
fluctuations and Dirac electrons, which have been proposed to be at the origin of
mechanical instabilities such as a spontaneous rippling [24, 54]. The role of electron
fluctuations, however, is suppressed in insulating 2D materials such as hexagonal
boron nitride.

5.8 summary and conclusions

To summarize, we have analyzed the theory of a fluctuating quantum mechanical
membrane within the framework of perturbative renormalization group techniques.
At zero temperature, the perturbative RG provides a systematic derivation of
logarithmic singularities analyzed in earlier investigations by momentum-shell and
by nonperturbative renormalization group techniques. In the limit of a weakly
applied external tension σ̃, we recover the result that the stress-strain relation at
T = 0 is singular: for σ̃ → 0, the strain behaves as σ̃[ln(1/σ̃)]−1/7.

In the case of a small, but nonzero temperature, techniques of finite-size quantum
field theory provide general scaling relations for thermodynamic quantities such
as the entropy S, the specific heat C, and the thermal expansion coefficient α at
vanishing or small external tension. By an approximate solution of the theory, we
derive that the negative thermal expansion coefficient of an unstressed crystalline
membrane vanishes for T → 0 as a logarithmic function of the temperature.
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6

B ILAYER GRAPHENE

We study thermal fluctuations of a free-standing bilayer graphene subject to van-
ishing external tension. Within a phenomenological theory, the system is described
as a stack of two continuum crystalline membranes, characterized by finite elastic
moduli and a nonzero bending rigidity. A nonlinear rotationally-invariant model
guided by elasticity theory is developed to describe interlayer interactions. After
neglection of in-plane phonon nonlinearities and anharmonic interactions involving
interlayer shear and compression modes, an effective theory for soft flexural fluctu-
ations of the bilayer is constructed. The resulting model, neglecting anisotropic
interactions, has the same form of a well-known effective theory for out-of-plane
fluctuations in a single-layer membrane, but with a strongly wave-vector dependent
bare bending rigidity. Focusing on AB-stacked bilayer graphene, parameters govern-
ing interlayer interactions in the theory are derived by first-principles calculations.
Statistical-mechanical properties of interacting flexural fluctuations are then cal-
culated by a numerical iterative solution of field-theory integral equations within
the self-consistent screening approximation (SCSA). The bare bending rigidity
in the considered model exhibits a crossover between a long-wavelength regime
governed by in-plane elastic stress and a short wavelength region controlled by
monolayer curvature stiffness. Interactions between flexural fluctuations drive a fur-
ther crossover between a harmonic and a strong-coupling regime, characterized by
anomalous scale invariance. The overlap and interplay between these two crossover
behaviors is analyzed at varying temperatures.

The main text of this chapter has been published as:
Achille Mauri, David Soriano, and Mikhail I. Katsnelson, "Thermal ripples in
bilayer graphene", Phys. Rev. B 102, 165421 (2020); preprint: arXiv:2007.00552
(2020)
The supplemental material to the publication has been synthesized and converted
into an appendix (App. 6.B).
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The statistical properties of thermally-fluctuating two-dimensional (2D) mem-
branes have been the subject of extensive investigations [1, 3, 4]. Crystalline layers,
characterized by fixed connectivity between constituent atoms and a subsequent
elastic resistance to compression and shear, exhibit a particularly rich thermody-
namical behavior, both in clean and disordered realizations [1, 3, 4, 6, 9–12, 23,
25, 26, 41, 42, 44, 51, 85]. In absence of substrates and without the action of an
externally applied tension, fluctuations are only suppressed by elasticity and the
bending rigidity of the layer. Although a naive application of the Mermin-Wagner
theorem suggests the destruction of spontaneous order at any finite temperature, it
has long been recognized that these freely-fluctuating elastic membranes exhibit an
orientationally-ordered flat phase at low temperatures [6, 9]. As a result of strong
nonlinear coupling between bending and shear deformations, thermal fluctuations
in the flat phase present anomalous scale invariance characterized by universal
non-integer exponents. In the long-wavelength limit, the scale-dependent effective
compression and shear moduli are driven to zero as power laws of the wavevector
q, while the effective bending rigidity diverges as κ(q) ≈ q−η [10–12, 19, 25, 26,
183]. This anomalous infrared behavior sets in at a characteristic ’Ginzburg scale’
q∗ ≈

√
3TY/(16πκ2), where κ, Y and T are, respectively, the bare bending rigidity,

Young modulus and temperature [3, 61]. For shorter wavelengths, q > q∗, within a
membrane model based on continuum elasticity theory, fluctuation effects become
negligible and the effective elastic moduli approach their bare values.
The first theoretical developments in the statistical mechanics of elastic mem-

branes were driven by the physics of biological layers, polymerized membranes
and other surfaces [1, 4, 56]. After the isolation of atomically-thin two-dimensional
materials, the relevance of statistical mechanical predictions for these extreme
membrane realizations has raised vast interest, in both theory [3, 25, 31, 41, 51,
61, 112] and experiments [69, 70, 72, 76, 190] (see also Refs. [65, 71, 73, 191, 192]).

In the case of atomically-thin 2D membranes, numerical simulations with realistic
atomic interactions are accessible [31, 37, 38, 61, 112, 193, 194], which allows
material-specific predictions of the fluctuation behavior. Furthermore, the physics
of graphene and other 2D materials stimulated new questions as compared to
previously considered membrane realizations.

By exfoliation of graphite, it is possible to controllably extract multilayer mem-
branes composed of N stacked graphene sheets. As in the parent graphite structure,
covalently-bonded carbon layers are tied by weaker van der Waals interactions.
The large difference between the strengths of covalent and interlayer binding forces
generates an intriguing mechanical and statistical behavior, which is attracting
vast research interest [188, 195–199].

The properties of defect-free multilayers subject to small fluctuations, in the
harmonic approximation, are already non-trivial. Mechanical properties are crucially
determined by the coupling between interlayer shear deformation and out-of-plane,
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bending, fluctuations. If layers are free to slide relative to each other at zero energy
cost, we expect that the bending rigidity of the stack is controlled by the curvature
stiffness of individual layers. We can thus assume that the bending rigidity is
approximately Nκ, where N is the number of layers and κ is the monolayer bare
bending stiffness [188, 197–199]. By contrast, the presence of a nonzero interlayer
shear modulus forces layers to compress or dilate in response to curvature. Assuming
rigid binding between layers, the bending stiffness is then controlled by in-plane
elastic moduli and it grows proportionally to N(N2 − 1) for N ≥ 2 [200]. For large
N , the limiting N3 scaling of the bending stiffness [188, 197–200] is consistent
with the continuum theory of thin elastic plates [3, 83, 188, 200]. In the case of
graphene bilayer, the corresponding contribution to the bending rigidity can be
written as (B + µ)l2/2, where B and µ are compression and shear moduli, and l is
the interlayer distance [188].
A theory interpolating between these extreme regimes was developed, within

a harmonic approximation, in Ref. [188]. As a modeling framework, the system
was described as a stack of continuum two-dimensional elastic media. The energy
functional describing coupling between layers was constructed by discretizing
the continuum theory of a three-dimensional uniaxial solid. Within this model,
coupled and decoupled fluctuation regimes are recovered as limiting cases for long
and short wavelengths, connected by a crossover: coupling between flexural and
interlayer shear deformations sets in for wave vectors smaller than characteristic
scales determined by elastic stiffnesses and interlayer interactions [188].
Recent experimental measurements of the bending rigidity [195, 197, 199, 201,

202] present a large scatter and indicate smaller values compared to the theoretical
prediction for the long-wavelength, rigidly coupled case. In the case of bilayer
graphene, different experimental techniques lead to κ = 35.5+20.0

−15.0 eV [201] and
3.35± 0.43 eV [202], significantly smaller than the elastic contribution (B + µ)l2/2,
which corresponds to a rigidity of the order of 100 eV (theoretical predictions in
Ref. [200] lead to κ ' 160 eV). For few-layer membranes with N ≥ 2, Ref. [201]
reported evidence that the overall bending rigidity scales as N2. More recently, by
analyzing pressurized bubbles in multilayer graphene, MoS2, and hexhagonal BN,
Ref. [197] reported values of κ intermediate between the uncoupled limit Nκ and
the rigidly-coupled case, and interpreted the observed behavior as the result of
interlayer slippage between atomic planes. Finally, Ref. [199] observed multilayer
graphene membranes under varying bending angles. Values of the bending stiffness
close to Nκ were observed for large angles, which was interpreted by a dislocation
model of interlayer slippage.
Reported results for the interlayer shear modulus in multilayer graphene also

exhibit a large dispersion, see e.g [195].
At finite temperatures, statistical properties of fluctuating stacks of crystalline

membranes have been long investigated. A rich physics was predicted in early studies
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motivated by lamellar phases of polymerized membranes. In particular, Ref. [203]
predicted a sharp phase transition between a coupled state and a decoupled phase,
in which algebraic decay of crystalline translational order makes interlayer shear
coupling irrelevant. Ref. [169] elaborated on the properties of the decoupled state,
within a nonlinear three-dimensional continuum theory and determined logarithmic
renormalizations due to thermal fluctuations1.

In the context of crystalline bilayer and multilayer graphene membranes, finite-
temperature anharmonic lattice fluctuations were extensively addressed by numeri-
cal simulations (see, e.g. [193, 194, 204]).

In this work we study thermal fluctuations of ideal, defect-free bilayer graphene
within a phenomenological, elasticity-like model. The theory of Ref. [188] is assumed
as a starting point and generalized to include crucial nonlinearities which control
anomalous scaling behavior. An interesting aspect introduced by finite temperatures
stems from the interplay of different wavevector scales: characteristic scales marking
the onset of coupling between flexural and interlayer shear, and Ginzburg scales
q∗ controlling the transition from harmonic to strongly nonlinear fluctuations. In
order to obtain a global picture of correlation functions at arbitrary wavevector
q, we derive a numerical solution of Dyson equations within the self-consistent
screening approximation (SCSA) [23–25]. In the long wavelength limit, the universal
power-law behavior predicted by membrane theory is recovered and the SCSA
scaling exponent η = 4/(1 +

√
15) is reproduced with high accuracy. The finite-

wavelength solution, furthermore, gives access to crossovers in correlation functions
and to non-universal properties specific to bilayer graphene. In order to develop
material-specific predictions, we develop an ab-initio prediction of model parameters
focusing on the case of AB-stacked bilayer graphene. The paper is organized as
follows: in Sec. 6.1, after a brief discussion of theories for single-layer membranes,
we introduce a phenomenological model which extends the theory of Ref. [188]
with the inclusion of nonlinearities required by rotational invariance. Subsequently,
the model is simplified by neglecting all nonlinearities but interactions of the
collective out-of-plane displacement field. In 6.1.3, we derive an effective model for
flexural fluctuations by successively integrating out all other fields. After neglection
of anisotropic interactions, this model takes the form of a standard theory for
crystalline membranes, with a strongly q-dependent bare bending rigidity. In
Sec. 6.2 we discuss model parameters for AB-stacked bilayer graphene and describe
first-principle calculations of the interlayer coupling moduli. In Sec. 6.3 correlation
functions of the resulting model are calculated at arbitrary wavevector within the
SCSA [23–25]; an iterative algorithm is used to determine numerical solutions of
SCSA equations. Results are illustrated in Sec. 6.4. Finally, Sec. 6.5 discusses an
extension to the theory in which nonlinearities in flexural fields of both layers are
taken into account. Sec. 6.6 summarizes and concludes the paper.

1 See also Ref. [181].
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6.1 model

6.1.1 Single layer

This section briefly introduces existing models for two-dimensional crystalline
membranes, extensively discussed in [1, 3, 4, 6, 9–12, 25, 41].
In a long-wavelength continuum limit, membrane configurations are specified

by the coordinates r(x) in three-dimensional space of mass points in the 2D
crystal, identified by an internal two-dimensional coordinate x. After specification
of an energy functional H[r(x)], the statistics of fluctuating configurations at a
temperature T is governed by the Gibbs probability distribution

P [r(x)] =
1

Z
e−H0[r(x)]/T , (6.1)

where
Z =

∫
[dr(x)]e−H0[r(x)]/T (6.2)

is the partition function, and
∫

[dr(x)] denotes functional integration over the field
r(x).
In the spirit of elasticity theory, a model for membranes with nonzero stiffness

to curvature and strain is defined by the configuration energy [9, 11, 12]

H0 =

∫
d2x

[
κ

2

(
∂2r
)2

+
λ

2
(Uαα)

2
+ µUαβUαβ

]
, (6.3)

where κ, λ, and µ are, respectively, the bending rigidity and Lamé elastic coeffi-
cients. The notation ∂α = ∂/∂xα indicates differentiation with respect to internal
coordinates, and Uαβ = 1

2 (∂αr · ∂βr− δαβ) is the strain tensor, proportional to
the local deformation of the metric gαβ = ∂αr · ∂βr from the Euclidean metric δαβ .
In Eq. (6.3), mass points are labeled via their coordinates in a configuration of
mechanical equilibrium: reference coordinates x1, x2 are chosen in such way that
states of minimum energy are r(x) = xαvα + t = x1v1 + x2v2 + t, where v1, v2 is
any given pair of mutually orthogonal unit vectors and t is an arbitrary constant
vector.

The energy functional (6.3) has been extensively discussed as a Landau-Ginzburg
model for critical phenomena at the crumpling transition and also as a starting
point to discuss scaling properties of the flat phase [1, 4, 9, 11, 26].

In the flat phase, it is convenient to parametrize r(x) = (xα +uα(x))vα +h(x)n,
where n = v1 × v2 denotes the normal to the membrane plane. Assuming that
displacement fields and their gradients are small, such that |∂2u| � |∂u| and
|∂u| � 1, Eq. (6.3) can be reduced by the replacements Uαβ → uαβ = (∂αuβ +
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∂βuα + ∂αh∂βh)/2, (∂2r)2 → (∂2h)2, which leads to the standard approximate
form2 [1, 6, 10, 41]

H̃0 =

∫
d2x

[
κ

2
(∂2h)2 +

λ

2
u2
αα + µu2

αβ

]
. (6.4)

The neglected terms are expected to be unnecessary for an exact calculation of
universal quantities such as scaling exponents. This is supported by a power-
counting argument in the framework of a field-theoretic ε-expansion method [10]:
after extension of the problem to D-dimensional membranes in a d-dimensional
embedding space, neglected terms are irrelevant by power counting at the upper
critical dimension D = 4. Eq. (6.4) thus plays the role of an effective theory [10, 11]
suitable for calculation of scaling indices to all orders in an ε = (4−D)-expansion.

In the transition from Eq. (6.3) to Eq. (6.4), neglected nonlinearities lead to an
explicit breaking of rotational symmetry. However, as it is well known [4, 11], the
underlying invariance is preserved in a deformed form: H̃0 is invariant under the
transformations

h(x)→ h(x) +Aαxα +B ,

uα(x)→ uα(x)−Aαh(x)− 1

2
AαAβxβ +B′α ,

(6.5)

for arbitrary coordinate-independent Aα, B, and B′α. This deformed symmetry
and the subsequent Ward identities are crucial in the renormalization of the
theory of membranes, and, most importantly, in the protection of the softness of
flexural modes, which ensures the criticality of the theory without fine-tuning of
parameters [4, 10, 11, 23, 25].

It is useful to compare Eqs. (6.3) and (6.4) with the Canham-Helfrich model for
fluid membranes [1] and with the model for crystalline membranes developed in
Ref. [10]. In Ref. [10], bending rigidity of the layer was introduced via an energy
contribution of the form

κ

2

∫
d2x(∂αN)2 =

κ

2

∫
d2xKα

β ·Kαβ , (6.6)

where N is the local normal to the surface, Kαβ is the curvature tensor, and
Kα
β = gαγKβγ . Using that Kαβ = N(N · ∂α∂βr) for two-dimensional surfaces (see

e.g. Chap. 7 of Ref. [1]), Eq. (6.6) can be written as

κ

2

∫
d2xgβγ(N · ∂α∂βr)(N · ∂α∂γr) . (6.7)

2 As discussed in Ref. [41], the comparison between curvature and elastic energies becomes nontrivial
if the problem is analyzed in a large d-limit at fixed internal dimension D = 2.
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Here gαβ denotes the inverse matrix of the metric tensor gαβ = ∂αr ·∂βr. For small
fluctuations, such that gαβ ' δαβ and N ' n, the curvature energy reduces, at
leading order, to

κ

2

∫
d2x∂α∂βh∂α∂βh =

κ

2

∫
d2x

[
(∂2h)2 + (δαβ∂

2 − ∂α∂β)(∂αh∂βh)

]
, (6.8)

which, up to boundary terms, is equivalent to

κ

2

∫
d2x(∂2h)2 , (6.9)

the curvature term in Eq. (6.4).
In the Canham-Helfrich model [1], the curvature stiffness for a fluid membrane

with vanishing spontaneous curvature reads∫
d2x
√
g
[
2κbH

2 + κGK
]
, (6.10)

where H and K are the mean and the Gaussian curvature, and g = det[gαβ ].
For 2D surfaces [1],

H =
1

2
Kα
α and K =

1

2

[
(Kα

α )2 −Kα
βK

β
α

]
, (6.11)

where Kαβ = N · ∂α∂βr, Kα
β = gαγKβγ . The Canham-Helfrich energy func-

tional (6.10) is reparametrization-invariant, expressing that the configuration en-
ergy is only sensitive to the geometrical shape of the surface in three-dimensional
space and not on its internal coordinate system. As it was discussed in Ref. [10], in
crystalline layers the crystal lattice singles out a natural parametrization of the
membrane, and reparametrization-invariance is not a necessary requirement (see
also Ref. [11] for a more general discussion in presence of non-flat internal metric).

For small fluctuations about a flat configuration, the mean and Gaussian curva-
tures reduce to

H ' 1

2
(∂2h) (6.12)

and

K ' 1

2

[
(∂2h)2 − (∂α∂βh)(∂α∂βh)

]
= −1

2
(δαβ∂

2 − ∂α∂β)(∂αh∂βh) , (6.13)

while √g ' 1. Integration over K then leads to a boundary term and a curvature
energy density proportional to (∂2h)2 is recovered. More generally, the Gauss-
Bonnet theorem implies that the integral

∫
d2x
√
gK is topological invariant for

closed surfaces, and the sum of boundary terms and a topological invariant for
open surfaces.
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In this work, curvature energy is considered to a leading order in the limit of
small fluctuations about a flat configuration, and boundary terms arising from
the surface integration of the leading-order Gaussian curvature, Eq. (6.13), are
neglected.

We note, however, that the Gaussian curvature energy plays an important role in
processes which involve a change of membrane topology [1] or finite-size membranes
with a boundary. For example, a recent analysis of thermal fluctuations within the
harmonic approximation [205], indicated an important role of Gaussian curvature
energy in the statistics of fluctuating membranes with a free edge. Finally, we note
that models with higher-order powers of curvature were considered in Ref. [206,
207], in relation with the problem of bolaamphiphilic vesicles.

As a concluding remark, we notice that the models discussed above assume
locality of the configuration energy, and, therefore, do not include infinite-range
forces such as van der Waals [208], dipole interactions [209] or the coupling with
gapless electrons, discussed in connection with graphene in Refs. [54, 165].

6.1.2 Bilayer

We will model bilayer graphene as a stack of two coupled elastic membranes [188].
The corresponding energy functional can thus be written as

H =

2∑
i=1

Hi +Hc , (6.14)

where
Hi =

∫
d2x

[
κ

2

(
∂2ri

)2
+
λ

2
U2
iαα + µU2

iαβ

]
(6.15)

are single-layer energies, and Hc represents coupling between membranes3. In
Eq. (6.15), ri and Uiαβ denote the coordinates and the local deformation tensor of
the i-th layer in the stack. As a model for interlayer interactions we assume a local
coupling4 truncated at the leading order in a gradient expansion. This corresponds
to an energy functional of the form

Hc =

∫
d2xHc(x) (6.16)

with an energy density Hc(x) depending only on r1(x) and r2(x) and their leading-
order gradients at x. After introduction of sum and difference coordinates r =

3 As in Sec. 6.1.1, the contributions of in-plane modes (∂2uα)2 to (∂2r)2 will eventually be neglected.
The chosen curvature energy is thus equivalent, to leading order, to alternative expressions such
as Eq. (6.6).

4 As discussed above, local interactions do not exhaust all possibilities due to the presence of
infinite-range van der Waals interactions [208] and coupling with gapless electrons. Effects of
non-local interactions are beyond the scope of this work, and will be neglected.
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Figure 6.1: (a) Lattice structure of bilayer graphene in the Bernal (AB) stacking. (b)
Top view of AB-stacked bilayer graphene.

1
2 (r1 + r2), s = r1 − r2, invariance under translations in the three-dimensional
ambient space implies that Hc cannot depend on r, but only on its derivatives.
In the leading order of a gradient expansion, we will thus assume that Hc(x)

depends only on the local separation vector s and on the tangent vectors ∂αr,
neglecting dependence on higher derivatives such as ∂αs or ∂2r. This level of
approximation is analogous to the approach in Ref. [188], where the coupling
energy is derived by discretization of a continuum three-dimensional elasticity
theory. In the following, we will assume the developed elasticity-like theory as a
model to describe finite-wavelength phenomena.
The most general form of Hc depending on s and ∂αr and consistent with

rotational and inversion symmetries of the three-dimensional ambient space is a
generic function of the scalar products

∂αr · ∂βr , s · ∂αr , s2 . (6.17)

In the configuration of mechanical equilibrium, neglecting a small uniform strain
induced by interlayer coupling, r(x) = xαvα and the relative displacement between
layers is s(x) = ln, where l is the interlayer distance and n = v1 × v2. For small
fluctuations, the coupling energy can thus be expanded in powers of the strain
tensor Uαβ = 1

2 (∂αr · ∂βr− δαβ), the field s · ∂αr, which measures interlayer shear,
and s2 − l2, which describes local dilations of the layer-to-layer distance.

Consistency with the dihedral D3d symmetry of the AB-stacked bilayer graphene
[210] (see Figs. 6.1a and 6.1b) selects, among general combinations of these terms,
a subset of allowed invariant functions. Symmetry-consistent terms can be directly
constructed by group theory arguments, or, equivalently, by adapting invariants
from theory of three-dimensional elastic media. Identification of s/l = (r1 − r2)/l

with a discrete version of ∂zr in a corresponding three-dimensional theory, indicates
that s · ∂αr/l and (s2 − l2)/l2 have the same transformation properties of strain
tensor components Uαz = ∂αr · ∂zr and Uzz = ∂zr · ∂zr − 1, respectively. The
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general elastic free-energy of uniaxial media with D3d point group subject to
uniform deformation reads5 [83]

F =
1

2
C̄1(Uαα)2 + C̄2UαβUαβ +

1

2
C1U

2
zz +

1

2
C2U

2
αz + C3UααUzz

+ C4

[
(Uxx − Uyy)Uxz − 2UxyUyz

]
,

(6.18)

where Greek indices run over x and y components, and C̄i and Ci are constants.
In Eq. (6.18) and in the following, reference-space coordinates are interchangeably
denoted as (x1, x2) or (x, y). Returning to the bilayer case, by drawing from
analogous invariants in Eq. (6.18), we can write the functional Hc as

Hc =

∫
d2x

[
g1

8l4
(s2 − l2)2 +

g2

2l2
(s · ∂αr)2 +

g3

4l2
(s2 − l2)Uαα

+
g4

2l

(
(s · ∂xr)(Uxx − Uyy)− 2(s · ∂yr)Uxy

)]
,

(6.19)

up to terms of quadratic order in the strains. Among functions of s and ∂αr,
other terms could be added to Eq. (6.19). One is an isotropic tension, σ

∫
d2xUαα,

reflecting uniform strain due to a small difference in lattice constants between
monolayer and bilayer graphene. This tension can be eliminated by modifying the
reference state about which strain is defined (see Refs. [12, 85, 91] for a discussion on
thermally-induced uniform stretching). Such redefinition of the point of expansion
implies a small shift in the elastic moduli. In addition, symmetry does not rule out
a coupling of the form

λ′

2
(Uαα)2 + µ′UαβUαβ (6.20)

which contributes to the stretching elasticity of the bilayer as a whole. Due to the
large difference in scale between covalent carbon-carbon interactions and interlayer
van der Waals interactions, it is expected that λ′ and µ′ are much smaller than
the monolayer Lamé moduli λ and µ. Similarly, it is expected that corrections to
λ, µ and κ due to uniform strain are small. These effects are thus neglected in
Eq. (6.19).

Collecting terms in Eq. (6.14), the model Hamiltonian for graphene bilayer thus
reduces to:

H = H1 +H2 +

∫
d2x

[
g1

8l4
(
s2 − l2

)2
+
g2

2l2
(s · ∂αr)2

+
g3

4l2
(
s2 − l2

)
Uαα +

g4

2l

(
(s · ∂xr)(Uxx − Uyy)− 2(s · ∂yr)Uxy

)]
.

(6.21)

5 In the case of ABA-stacked graphite, the symmetry group includes symmetry for z → −z and
c16 = 0.
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Within the harmonic approximation, after neglection of the anisotropic term in
the last line, Eq. (6.21) reduces to the functional derived in Ref. [188].
In analogy with the standard crystalline membrane theory, it is convenient to

parametrize the coordinate vectors r(x) and s(x) by separating in-plane and out-
of-plane displacement fields: r(x) = (xα + uα)vα + hn and s(x) = ūαvα + (l+ h̄)n,
where u, ū ∈ R2, h, h̄ ∈ R. Fluctuations of relative coordinate h̄ and the shear
mode ūα + l∂αh are bounded by the couplings g1 and g2. For simplicity, similarly
to the approach of Ref. [188], fluctuations of h̄ and ūα will thus be treated within
a harmonic approximation. Furthermore, repeating standard approximations for
single membranes [1, 6] we neglect the contribution κ(∂2uα)2/2 to the energy
density and terms nonlinear in uα in the strain tensor

Uαβ =
1

2
(∂αr · ∂βr− δαβ) =

1

2
(∂αuβ + ∂βuα + ∂αh∂βh+ ∂αuγ∂βuγ) , (6.22)

which is thus replaced with the approximate form uαβ = 1
2 (∂αuβ +∂βuα+∂αh∂βh).

After expansion of Eq. (6.21), these approximations lead to

H̃ =

∫
d2x

[
κ(∂2h)2 + λ(uαα)2 + 2µuαβuαβ

+
κ

4
(∂2h̄)2 +

λ

4
(∂αūα)2 +

µ

8
(∂β ūα + ∂αūβ)2

+
g1

2l2
h̄2 +

g2

2l2
(ūα + l∂αh)2 +

g3

2l
h̄uαα

+
g4

2l

(
(ūx + l∂xh)(uxx − uyy)− 2(ūy + l∂yh)uxy

)]
,

(6.23)

which will be used as a starting point in Sec. 6.1.3.
Similarly to the standard theory of crystalline membranes [4, 11] (see Eq. (6.5)),

this configuration energy possesses a continuous symmetry, which reflects the
underlying invariance under rotations and translations in the embedding space:
the Hamiltonian (6.23) is invariant under

h(x)→ h(x) +Aαxα +B ,

uα(x)→ uα(x)−Aαh(x)− 1

2
AαAβxβ +B′α ,

h̄(x)→ h̄(x) , ūα → ūα − lAα ,

(6.24)

for arbitrary Aα, B, B′α. As in Eq. (6.5), transformations with Aα 6= 0 represent
linearized versions of rotations in three-dimensional space.
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6.1.3 Effective theory for flexural fluctuations

Starting from the Gibbs probability distribution

P [h(x), uα(x), h̄(x), ūα(x)] =
1

Z
e−H̃/T (6.25)

for fluctuations of the displacement fields h(x), uα(x), h̄(x), ūα(x), we proceed to
construct an effective theory describing the statistical properties of the flexural
fluctuations h(x) only, by systematically integrating out the remaining degrees
of freedom. In Eq. (6.25), the Hamiltonian H̃ is assumed to be the approximate
configuration energy of Eq. (6.23) and the normalization Z is given by the partition
function

Z =

∫
[dhduαdh̄dūα]e−H̃[h,uα,h̄,ūα]/T . (6.26)

By explicit integration over relative fluctuations h̄ and ūα, the effective Hamiltonian
for fluctuations of uα and h fields,

H̃ ′eff [h(x), uα(x)] = −T ln

{∫
[dh̄dūα]e−H̃[h,uα,h̄,ūα]/T

}
, (6.27)

is calculated as

H̃ ′eff =

∫
q

[1

2
κ0(q)q4|h(q)|2 +

1

2
λ0(q)|uαα(q)|2

+ µ0(q)|uαβ(q)|2 +
g2

4l
2

16g2
2

(λ+ µ)dL(q)dT (q)|A(q)|2

− g4l
2

4g2
(λ+ 2µ)dL(q)q2h(q)A∗(q)

]
.

(6.28)

Details of the calculation are presented in appendix 6.A. In Eq. (6.28), h(q) and
uαβ(q) are Fourier components of h(x) and uαβ(x), A(q) is the Fourier transform
of the anisotropic D3d-invariant field

A(x) = ∂xuxx − ∂xuyy − 2∂yuxy , (6.29)∫
q

=
∫

d2q/(2π)2 denotes momentum integration, and |uαβ(q)|2 = uαβ(q)u∗αβ(q).
Furthermore, we introduced the dimensionless functions

dL(q) =

[
1 +

(λ+ 2µ)l2q2

2g2

]−1

, dT (q) =

[
1 +

µl2q2

2g2

]−1

,

d̄(q) =

[
1 +

κl2q4

2g1

]−1

,

(6.30)
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and defined

κ0(q) = 2κ+
(λ+ 2µ)l2

2
dL(q) , µ0(q) = 2µ− g2

4

4g2
dT (q) ,

λ0(q) = 2λ− g2
3

4g1
d̄(q) +

g2
4

4g2
dT (q) .

(6.31)

In the first three terms of Eq. (6.28) we recognize a Hamiltonian identical in form
to the standard effective theory of crystalline membranes, Eq. (6.4), but with a
q-dependent bending rigidity κ0(q) and Lamé coefficients λ0(q) and µ0(q). The
additional interaction involving |A(q)|2 is a quadratic functional of the strain
tensor and represents an anisotropic stiffness associated with gradients of the strain.
Finally, the term proportional to q2h(q)A∗(q) introduces a coupling between the
component A(x) of the gradient of strain and the local curvature ∂2h(x). In the
following these last two interactions are neglected for simplicity.
The neglection of the first of these two terms is related to the assumption that

the response of the bilayer to space-dependent strain is dominated by the sum of
the stiffnesses of the two isolated layers at the scales of interest. With the same
assumption, we approximate

λ0(q) ' λ0 = 2λ , µ0(q) ' µ0 = 2µ , (6.32)

neglecting the q-dependent contributions in Eq. (6.31). An estimate from the
identification g3 = 2c13l, the experimental value c13 = (0±3)GPa for graphite [211,
212], and the parameters l ' 3.25Å, g1 ' 0.8 eVÅ−2 (see Sec. 6.2) shows that
the correction −g2

3/(4g1)d̄(q) is much smaller than 2λ and 2µ for any wavevector,
which supports this approximation6. We assume that also terms g2

4/(4g2)dT (q)

play a minor role.
With these approximations, we are lead to consider the effective Hamiltonian

H̃ ′′eff =
1

2

∫
q

[
κ0(q)q4|h(q)|2 + λ0|uαα(q)|2 + 2µ0|uαβ(q)|2

]
, (6.33)

which is identical in form to the standard effective theory of crystalline membranes,
Eq. (6.4), although the bending rigidity κ is replaced by the q-dependent κ0(q).
The remaining integration over in-plane fields, therefore, proceeds in an usual
way [1, 6, 12, 23, 25, 85] (see appendix 6.A). The resulting effective Hamiltonian
for the flexural field h(x) reads

H̃eff =
1

2

∫
q

κ0(q)q4|h(q)|2 +
1

2

∫ ′
q

Y0

∣∣∣∣K(q)

q2

∣∣∣∣2 , (6.34)

6 We note, however, that in Ref. [169] a perturbation analogue to a finite g3 was identified as
potentially important within the framework of three-dimensional continuum theories of stacks of
membranes.
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where
Y0 =

4µ0(λ0 + µ0)

λ0 + 2µ0
(6.35)

and K(q) is the Fourier transform of the composite field

K(x) = −1

2
(δαβ∂

2 − ∂α∂β)(∂αh∂βh) =
1

2

[
(∂2h)2 − (∂α∂βh)(∂α∂βh)

]
, (6.36)

and the primed integral
∫ ′
q
is meant to run over the non-zero wavevector components,

with the q = 0 contribution excluded [1, 12].
At leading order for small deformations, K(x) coincides with the Gaussian cur-

vature, Eq. (6.13), and Eq. (6.34) thus expresses a long-range curvature-curvature
interaction. Physically, this nonlinearity encodes a frustration of out-of-plane
fluctuations due to the elastic stiffness of the layer [1, 6]. Given an out-of-plane
displacement field h(x), it is not possible, in general, to choose the two displacement
fields ux(x) and uy(x) in such way that the three components of the strain tensor
uxx(x), uyy(x), uxy(x) vanish at all points. As Eq. (6.34) shows, regions with a
finite Gaussian curvature inevitably induce a strain of order O(h2) in the lattice,
and involve an energy cost controlled by the elastic moduli [1, 6].
To conclude, we briefly discuss the neglected term proportional to∫

q

dL(q)q2h(q)A∗(q) . (6.37)

After integration over in-plane fields, this term generates an anisotropic contribution
to the q-dependent rigidity κ0(q) of the form

δκ0(q) = − g
2
4l

4

32g2
2

(λ+ 2µ)2

µ
d2
L(q)

[
1− λ+ µ

λ+ 2µ
cos2(3θ)

]
q2 , (6.38)

where cos θ = qx/|q|. This contribution vanishes for q → 0 and it is maximal for
q2 ≈ 2g2/((λ + 2µ)l2), where it is of the order of g2

4l
2/(32g2). In addition, the

term (6.37) generates a non-local interaction

i
(λ+ µ)g4l

2

2g2

∫ ′
q

dL(q)qx(q2
x − 3q2

y)h(q)
K∗(q)

q2
, (6.39)

which couples the curvature tensor ∂α∂βh to the approximate Gaussian curvature
K(x). Considerations of these effects is beyond the scope of this work. It is expected
that the term (6.37) does not modify the exponent of the scaling behavior.

6.2 model parameters for ab-stacked bilayer graphene

As discussed above, the bending rigidity κ and the Lamé coefficients λ and µ are
approximated by their values for monolayer graphene, which is justified by the
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weakness of van der Waals interactions in comparison with in-plane bonding. In
the case of the in-plane Young modulus Y this approximation is consistent with
experimental values illustrated in Ref. [195], which indicate for bilayer graphene a
value of Y approximately equal to twice the corresponding monolayer modulus.

The elastic moduli and the bending stiffness of a monolayer graphene have been
investigated extensively (see e.g. [195, 200, 213, 214]). Theoretical predictions and
estimates of κ lead to values between 0.69 eV and approximately 2.4 eV [213–215].
By comparing results of atomistic Monte Carlo simulations and continuum

membrane theory, the bare bending rigidity κ was predicted to present a significant
temperature dependence [61]. This was attributed to anharmonic interactions
between acoustic modes and other phonon branches, or, more generally, with
degrees of freedom not captured by the membrane model. In Ref. [193], a similar
result was obtained for bilayer graphene. In addition, by a similar fitting method
Ref. [193] determined temperature-dependences of the interlayer compression
modulus, analogue to g1 in Eq. (6.23).

In the following, we neglect these temperature dependences and, similarly, effects
of thermal expansion on the lattice constant a and the interlayer distance l. In
further calculations, we adopt the values λ ' 3.8 eV Å−2 and µ ' 9.3 eV Å−2,
which we deduced from the first-principle results of Ref. [111], and assume κ = 1

eV [31, 112].
To determine interlayer coupling parameters g1 and g2, we have performed

density functional theory (DFT) calculations on AB-stacked bilayer graphene (see
Figs. 6.1a and 6.1b). We use the plane-wave based code PWscf as implemented in
the Quantum-Espresso ab-initio package [216]. A vacuum layer of more than 15

Å has been added in order to avoid perpendicular interaction between neighbouring
cells. The quasi-Newton algorithm for ion relaxation is applied until the components
of all forces are smaller than 10−5 Ry/bohr. The interlayer distance l and the lattice
parameter a obtained after relaxation are shown in Table 6.1. For the self consistent
calculations, we use a 36 × 36 × 1 grid. The kinetic energy cutoff is set to 100

Ry. Projector augmented wave (PAW) pseudopotentials within the Perdew-Burke-
Ernzerhoff (PBE) approximation [217] for the exchange-correlation functional are
used for the C atoms. Van der Waals dipolar corrections are introduced during
relaxation through the Grimme-D2 model [218].
To calculate the interlayer shear modulus g2 and the out-of-plane compression

modulus g1, we apply deformations as shown in Fig. 6.2(a) and 6.2(b) respectively
to the bilayer graphene unit cell. For simplicity, a frozen-ion approximation is
assumed: during deformation, all atoms are displaced rigidly without allowing for a
relaxation of the internal structure of the unit cell. After application of a sequence
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a l g1 g2 c33 c44

Bilayer 2.46 3.2515 0.80 0.11 - -
Graphite 2.45 3.42±0.01 0.62(0.90) 0.096(0.10) 29(42) 4.5(4.8)

Table 6.1: Parameters for bilayer graphene obtained from first-principle calculations,
compared with the elastic constants of AB-stacking graphite reported in Ref. [211]. In
the elastic moduli of graphite, results in brackets were calculated considering van der
Waals corrections [211]. The lattice constant a and interlayer distance l are expressed
in Å, the couplings g1 and g2 in eV Å−2, and the elastic moduli c33, c44 in GPa. In the
case of graphite, the values of g1 and g2 in the table are defined by the identifications
g1 ≡ c33l, g2 ≡ c44l, where l is the graphite interlayer distance.

Figure 6.2: Scheme of (a) shear and (b) out-of-plane strains.

of relative shifts δx between carbon layers and variations δl of the layer-to-layer
distance, the total energy per unit area E/A is fitted as:

E

A
=

E0

A
+
g1

2

δl2

l2
, (6.40)

E

A
=

E0

A
+
g2

2

δx2

l2
. (6.41)

The resulting values for g1 and g2 are illustrated in Table 6.1.
It is natural to compare the values of g1 and g2 with corresponding three-

dimensional elastic moduli in graphite. A stack of membranes with interactions
of the form (6.23) between nearest-neighbouring layers and vanishing interactions
between non-neighbouring layers exhibits three-dimensional elastic moduli c33 =

g1/l and c44 = g2/l, where c33 and c44 are defined according to the Voigt notation:

E

V
=

1

2

∑
i,j

cijεiεj ,

uαβ =

uxx uxy uxz
uyx uyy uyz
uzx uzy uzz

 =

ε1 ε6
2

ε5
2

ε6
2 ε2

ε4
2

ε5
2

ε4
2 ε3

 ,

(6.42)

where E/V is the energy density of the three-dimensional solid under uniform
strain. In Table 6.1, our results for bilayer graphene are compared with ab-initio
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Figure 6.3: Graphical representation of the self-consistent screening approximation.

calculations for ideal AB-stacking graphite reported in Ref. [211]. The comparison
indicates that values of g1 and g2 calculated in this work are of the same order of
the corresponding graphite stiffnesses. We note, however, that the exact value of the
shear modulus in multilayer graphene is still far from being understood. Reported
values for the interlayer shear modulus exhibit a large dispersion (see e.g. [195,
202]). Raman measurements give values of the order of 4-5 GPa, while direct
measurements using mechanical approaches give values of 0.36-0.49 GPa, increasing
with the number of layers. This big discrepancy calls for a better understanding
of interlayer dipolar or van der Waals interactions in layered materials, which is
beyond the scope of this work. Experimental values of the interlayer shear modulus
in graphite also exhibit a large scatter [195].

6.3 self-consistent screening approximation

Equilibrium correlation functions of the flexural field h(x) at a temperature T
can be calculated by functional integration from the effective Hamiltonian H̃eff ,
Eq. (6.34). In this work, the two-point correlation function G(q) = 〈|h(q)|2〉 is
calculated within the self-consistent screening approximation [23–25].
In the considered model for bilayer graphene, the problem differs from con-

ventional membrane theory only by the q-dependence of κ0(q). Therefore, SCSA
equations can be written in a standard way [25], by adapting the conventional
equations with the replacements κ→ κ0(q), Y → Y0.
The SCSA is defined diagrammatically in Fig. 6.3: by neglection of vertex

corrections, Dyson equations are truncated to a closed set of integral equations for
G(q) and a screened-interaction propagator D(q). For physical two-dimensional
membranes in three-dimensional space, SCSA equations read [25]:

G−1(q) = G−1
0 (q) + Σ(q) , b̃−1(q) = b−1

0 (q) + 3I(q) , (6.43)
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where the self-energy Σ(q) and the polarization bubble I(q) are, respectively:

Σ(q) = 2

∫
k

[
q2k2 − (q · k)2

]2 b̃(k)

k4
G(q− k) (6.44)

and
I(q) =

1

3q4

∫
k

[
q2k2 − (q · k)2

]2
G(q− k)G(k) . (6.45)

For membranes described by Eq. (6.4), the zero-order propagators are

G−1
0 (q) =

κq4

T
, b0(q) =

Y

2T
. (6.46)

For bilayer graphene, after the approximations λ0(q) ' 2λ and µ0(q) ' 2µ (see
Sec. 6.1.3), the zero-order flexural-field and interaction propagators for bilayer
graphene read

G−1
0 (q) =

κ0(q)q4

T
, b0(q) =

Y0

2T
, (6.47)

where, as in Eq. (6.31),

κ0(q) = 2κ+
(λ+ 2µ)l2

2

[
1 +

(λ+ 2µ)l2q2

2g2

]−1

. (6.48)

In the long-wavelength limit, identification of power-law solutions of SCSA
equations within the strong-coupling assumption Σ(q)� G−1

0 (q), I(q)� b−1
0 (q)

yields analytical equations for the universal exponent η. After generalization
to a theory of D-dimensional membranes embedded in a (D + dc)-dimensional
ambient space, the SCSA exponent η(D, dc) is exact to first order in ε = 4−D,
to leading order in a 1/dc-expansion and for dc = 0 [23, 25]. For the physical
case D = 2, dc = 1, the SCSA exponent η = 4/(1 +

√
15) ' 0.821, shows a good

agreement with complementary approaches such as numerical simulations and the
nonperturbative renormalization group [26]. As compared with the SCSA, a second-
order generalization which includes dressed diagrams with the topology of O(1/d2

c)
graphs in a large-dc expansion, leads to quantitatively small corrections to universal
quantities for D = 2, dc = 1 [24], which supports the accuracy of the method.
Recently, SCSA predictions have been compared with exact analytical calculations
of η in second-order large-dc [22] and ε-expansions [19, 183]. In Ref. [183], it
was shown that the SCSA equations are exact at O(ε2) within a non-standard
dimensional continuation of the theory to arbitrary D. A more general two-loop
theory was developed in Ref. [19], where a larger space of theories was considered.
For models equivalent to the conventional dimensionally-continued membrane
theory, the O(ε2) was shown to deviate from the SCSA prediction.
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In order to determine correlation functions at an arbitrary wavevector q, we
solve SCSA equations numerically by an iterative algorithm. Starting from non-
interacting propagatorsG(q) = G0(q), b̃(q) = b0(q), Eqs. (6.45) and (6.43) are used
to determine the zero-order polarization bubble I(q) and the first approximation
to the screened interaction b̃1(q). The self-energy diagram in Fig. 6.3b is then
calculated as a loop integral of b̃1(q) and G0(q), leading to a dressed Green’s
function G1(q). Iteration of the process generates a sequence of screened functions
and dressed propagators

G−1
n+1(q) = G−1

0 (q) + Σn(q) ,

b̃−1
n+1(q) = b−1

0 (q) + 3In(q) ,

Σn(q) = 2

∫
k

[
q2k2 − (q · k)2

]2 b̃n+1(k)

k4
Gn(q− k) ,

In(q) =
1

3q4

∫
k

[
q2k2 − (q · k)2

]2
Gn(q− k)Gn(k) ,

(6.49)

which, after convergence, approach solutions to the SCSA equations. At each
step in the iteration process, correlation functions are calculated on a grid of 50
wavevector points, evenly spaced in logarithmic scale and ranging between 10−7Å−1

and 110Å−1. Calculations with grids of 26 and 29 points are also performed to
estimate the numerical accuracy (see appendix 6.B).
Twenty-five steps of the iteration algorithm are illustrated in Fig. 6.4. In order

to calculate loop integrals, at each iteration G(q) and b̃(q) are interpolated by
cubic splines7 in logarithmic scale: G(q) and b̃(q) are interpolated as Gn(q) =

A1 exp[f1(ln(q/B))], b̃n(q) = A2 exp[f2(ln(q/B))], where f1 and f2 are cubic splines
and A1, A2, B are constants. In the region q < 10−7Å−1, which is not covered by
the wavevector grid, functions are extrapolated as pure power laws, Gn ∝ q−η(n)

and b̃n ∝ qηu(n) with exponents and amplitudes matching the first two points in
the grid.
In the calculation of integrals, we split two-dimensional wavevector integration

into a sequence of one-dimensional integrals over ky and kx, the components of
k respectively transverse and longitudinal to the external wavevector q. In the
computation, we use an adaptive algorithm for single-variable integration8, and
include ky-integration in the function called by the outer kx integral. Inner and
outer integrals are evaluated within a relative accuracy 1.49 × 10−8 and 10−7

respectively.

7 Numerical interpolations were performed by the functions scipy.interpolate.PchipInterpolator,
which implements a piecewise-cubic Hermite interpolating polynomial algorithm. For numerical
integration we used the adaptive integration method implemented in scipy.integrate.quad. Both
functions are distributed in the Scipy library (version 0.19.1).

8 See footnote 7.
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Figure 6.4: Sequence of correlation functions (red solid lines) and screened interactions
(blue dashed lines) obtained by 25 iterations of the convergence algorithm. Data in the
graph refer to a bilayer membrane with the parameters λ = 3.8 eV Å−2, µ = 9.3 eV
Å−2, κ = 1 eV, l = 3.2515 Å, g2 = 0.11 eV Å−2 and T = 300 K. Correlation functions
evaluated at the last iteration on the 50-point grid are shown by dots.
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Although the self-energy and polarization bubble are convergent, a hard ul-
traviolet cutoff Λ = 100Å−1 is imposed in explicit calculations. To estimate the
numerical error due to the finite UV cutoff, we compared data sets calculated with
Λ = 100Å−1 and Λ = 1000Å−1, which were obtained by calculating numerical
solutions on wavevector grids consisting of 26 and 29 points respectively. Upon
this change in UV cutoff, data sets for G(q) and b̃(q) deviate by less than 10−5

(see appendix 6.B).
In the numerical calculations, difficulties stem from the rapid variation of func-

tions in regions of much smaller size than the integration domain and from the
slow decay of integration tails at large k. To address these problems, integrals
are performed piecewise. Specifically, the ky integration domain is splitted into
contiguous intervals with extrema {0, 10−1q1, q1, 10q1, q2, 10q2, 102q2, 103q2}, where
q1 =

√
q|q− k| and q2 = max[q, |q − k|]. For any q and kx and at any steps

in the iteration process, characteristic scales q1 and q2 define roughly the width
in ky integration which contributes mostly to the integral value. The piecewise
calculation defined above is then able to capture a small-scale peak in the integrand
function and a long tail for ky � q2. In the subsequent kx integrations, similarly,
subintervals are chosen as {..,−10q,−q, 0, q, 10q, 102q..}.

After 25 iteration of the algorithm, the values of Gn(q) and b̃n(q) at the grid of
sampled wavevector points converge within a relative deviation smaller than 10−10.
The final results (see Sec. 6.4) reproduce the analytically-known SCSA exponent
and amplitude ratio [23–25] closely: an estimate of the exponents η, ηu and the
amplitudes z1, z2 of the scaling behavior

G−1(q) = z1q
4−η , b̃(q) = z2q

ηu , (6.50)

from the first two points of the wavevector grid gives values in the range η =

0.8208515÷ 0.8208524, ηu = 0.35829478÷ 0.35829524, and z2
1/z2 = 0.1781321÷

0.1781381 for considered data sets for monolayer graphene at T = 300 K and bilayer
graphene at different temperatures between 10 and 1500 K. These results are in
close agreement with the analytical predictions η = 4/(1 +

√
15) ' 0.82085238,

ηu = 2− 2η ' 0.35829523, and [24, 25]

z2
1

z2
=

3

16π

Γ2(1 + η/2)Γ(1− η)

Γ2(2− η/2)Γ(2 + η)
' 0.17813212... (6.51)

The individual amplitudes z1 and z2 and the crosssover behaviors at finite q are
more sensitive to numerical error. A limitation to numerical accuracy derives from
the need to interpolate G(q) and b̃(q) from a discrete set of data points. To estimate
the order of the corresponding error, the numerical solution of SCSA equations
was repeated after reduction to a broder grid, consisting of 26 wavevector points.
Compared to data evaluated with the 50 q-point grid, interpolating functions
exhibit a maximum relative deviation of the order of 2% in all considered sets of
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data (see appendix 6.B for a more detailed analysis). The amplitudes z1 and z2 of
the long-wavelength scaling regime exhibit a smaller discrepancy, of the order of
10−3, upon change from the finer to the broader wavevector grid.

Numerical results indicate that the numerical values of the exponent and the
amplitude ratio z2

1/z2 are much more accurate than the numerical precision in
calculations of non-universal properties such as the amplitude and finite-wavelength
dependences of G(q) and b̃(q). Qualitatively, universal properties are only sensitive
to the region of small momenta, where G(q) and b̃(q) approach pure powers and
the precision of numerical interpolation improves significantly.

6.4 results

The numerical algorithm described in Sec. 6.3 was used to determine solutions to
the SCSA equations for graphene monolayer and bilayers at temperatures T = 10,
300, and 1500 K. Results are illustrated in Figs. 6.5, 6.6, 6.7, and 6.8, while
numerical data are reported in appendix 6.B.
All reported results are derived within the framework of continuum models

discussed in Sec. 6.1, which do not capture the effects of discreteness of the lattice.
Figs. 6.5–6.8 illustrate correlation functions in the full wavevector range employed
for the numerical calculation of the continuum-limit solution, 10−7Å−1 < q <

102Å−1, although, on the lattice, only degrees of freedom with q . 1Å−1 are
physical.
The renormalized bending rigidity κ̃(q) ≡ TG−1(q)/q4, and the renormalized

elastic modulus b̃(q) [23, 25] for single-layer graphene at room temperature are
illustrated by blue dashed lines in Fig. 6.5. As it is completely general within the
framework of the elasticity model, Eq. (6.4), interaction effects are weak for q & q∗,
where q∗ =

√
3TY/(16πκ2) [25, 61]. In the limit q � q∗, b̃(q) and κ̃(q) approach

their bare values Y/(2T ) and κ, with negligible renormalizations. In constrast, for
q . q∗ a strong coupling regime sets in. For q � q∗ the self-energy Σ(q) and the
polarization function I(q) are much larger than the harmonic propagators G−1

0 (q)

and b−1
0 (q); correlation functions scale as power laws [23–25]:

G−1(q) = z1q
4−η , b̃(q) = z2q

ηu . (6.52)

As mentioned above, numerical results are in close agreement with the scaling
relation ηu = 2 − 2η, and the predictions, exact within SCSA, η = 4/(1 +

√
15)

and z2
1/z2 ' 0.17813212 [23–25].

By a simple rescaling, the numerical solution obtained for monolayer graphene
can be adapted to any membrane described by the elasticity model, Eq. (6.4). For
any such membrane, the statistics of out-of-plane fluctuations is governed by a
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Figure 6.5: Renormalized bending rigidity κ̃(q) = TG−1(q)/q4 and renormalized elastic
coefficient b̃(q) for continuum models of monolayer (blue dashed lines) and bilayer graphene
(red solid lines) at T = 300 K. For q → 0, κ̃(q) diverges for both curves as q−η and b̃(q)
approaches 0 as q2−2η.

Hamiltonian of the form (6.34) with a wavevector-independent rigidity κ0(q) = κ

and Young modulus Y0(q) = Y . A scaling analysis then shows that

G(q) =
T

κq4
g

(
q

q∗

)
(6.53)

and
b̃(q) = b0f

(
q

q∗

)
=

Y

2T
f

(
q

q∗

)
, (6.54)

where g(x) and f(x) are independent of temperature and elastic parameters. In
particular, the coefficient z1 governing the amplitude of the scaling behavior has
the form [219]

z1 = z̄1
κqη∗
T

, (6.55)

where z̄1 is independent of T , κ, and Y . An estimate from the amplitude of G in
monolayer graphene gives z̄1 ' 1.177 within SCSA. In the following, the scaling-
analysis relations (6.53) and (6.54) are used to convert numerical data collected
for monolayer graphene at T = 300 K to single membranes with arbitrary elastic
parameters and temperature.
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Figure 6.6: (a) Renormalized bending rigidity and (b) renormalized elastic modulus for
bilayer graphene at T = 10 K (thick blue lines), 300 K (intermediate red lines), and 1500
K (thin green lines). Dashed lines illustrate the corresponding functions in the harmonic
approximation.

As Figs. 6.5, 6.6 and 6.7 show, correlation functions in bilayer graphene exhibit
a more intricate crossover behavior which extends from microscopic to mesoscopic
scales. In contrast with the monolayer elasticity theory, the behavior of a bilayer
is controlled by several length scales. The effective bare bending rigidity κ0(q),
Eq. (6.48), approaches limiting values 2κ and κ̄0 = 2κ+ (λ+ 2µ)l2/2 for q & q1c

and for q . q2c respectively, where

q1c =

√
g2

2κ
' 0.2Å−1 (6.56)

and

q2c =
1

l

√
2g2

λ+ 2µ
' 3× 10−2Å−1

. (6.57)

A crossover in the mechanical behavior [188] takes place between these two
scales: q2c < q < q1c. The strong q-dependence of κ0(q) has a crucial impact on
the harmonic correlation functions. The effective rigidity κ̃(q) = TG−1(q)/q4 and
elastic coefficient b̃(q) = b0 in the harmonic approximation, which coincide with
their bare value κ0(q) and b0(q) = b0, are illustrated by dashed lines in Fig. 6.6
and by grey dotted lines in Fig. 6.7.
At finite temperatures, for a single membrane, crossover from weak to strong

coupling is marked by the Ginzburg scale q∗ =
√

3TY/(16πκ2). In the case of
bilayer graphene, two scales analogue to q∗ can be anticipated:

q1∗ =

√
3T

16π

(2Y )

(2κ)2
=

q∗√
2

(6.58)
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and

q2∗ =

√
3T

16π

(2Y )

κ̄2
0

. (6.59)

While q1∗ is close to the Ginzburg scale for a monolayer graphene, q2∗ is smaller
by two orders of magnitude due to the strong enhancement of κ̄0 � 2κ.
The inverse lattice spacing 1/a ' 1Å−1 defines a further scale for fluctuations

of the atomic crystal, which marks a limit of validity for the continuum model
employed here.
In order to study the interplay and overlap between these crossover effects, we

analyzed fluctuations in bilayer graphene at temperatures T = 10, 300, and 1500 K.
For small temperatures, the mechanical and the weak-strong coupling crossovers
are disentangled. At T = 10 K both q2∗ ' 4× 10−4Å−1 and q1∗ ' 2× 10−2Å−1 are
smaller than q1c, and furthermore q2∗ � q2c. As it is confirmed by the numerical
results, throughout the region q2c < q < q1c thermal effects are negligible. Strong
coupling behavior sets in only at q < q2∗ < q2c, a region where κ0(q) has already
converged to its limiting value κ̄0. A more detailed analysis of the collected numerical
data shows that for q > 4×10−3Å−1, κ̃(q) = TG−1(q)/q4 and b̃(q) differ from their
harmonic aproximations κ0(q) and b0(q) by less than 3%. For q < 4× 10−3Å−1,
instead, numerical data agree within 3% with correlation functions of a single
membrane with Young modulus 2Y and rigidity κ̄0, which was obtained by rescaling
monolayer graphene results via Eqs. (6.53) and (6.54). In particular, in the scaling
region q � q2∗, the amplitude z′1 of the power-law behavior G−1(q) = z′1q

4−η

differs from the corresponding single-membrane value

z1 = z̄1
κ̄0q

η
2∗

T
' 1.177

κ̄0q
η
2∗

T
(6.60)

only by a deviation of the order of 10−3.
Fig. 6.7 illustrates an explicit comparison between full correlation functions for

bilayer graphene at T = 10 K, their harmonic approximation, and the corresponding
functions for single membranes having Young modulus 2Y and bending rigidity 2κ

and κ̄0. Ratios between corresponding functions are presented in Fig. 6.8.
At room temperature, the mechanical and the weak-strong coupling crossovers

have a more sizeable overlap: the characteristic scale q1∗ ' 0.13Å−1 is of the same
order of q1c. As it can be seen in Fig. 6.8(b), the renormalized bending rigidity
κ̃(q) exhibits a larger deviation from the harmonic approximation at scales of the
order of 10−1Å−1. However, the effect is relatively small. For q & 10−2Å−1, κ̃(q)

and b̃(q) differ from the corresponding functions in the harmonic approximation by
less than 10%. In the long wavelength region q . 10−2Å−1, instead, κ̃(q) and b̃(q)
agree within 9% with the renormalized rigidity κ̃1(q) and elastic modulus b̃1(q)

of a single membrane with bare bending stiffness κ̄0 and Young modulus 2Y . In
particular, comparing amplitudes of the leading scaling behavior in the limit q → 0
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Figure 6.7: Renormalized bending rigidity and renormalized elastic modulus for bilayer
graphene at T =10 K (top panel) and T = 300 K (bottom panel). Thick solid grey
lines represent κ̃(q)/T and b̃(q) obtained by numerical solution of SCSA equations for
bilayer graphene. The corresponding functions in the harmonic approximation κ0(q) and
b0(q) = b0 = Y0/(2T ) are illustrated as black dotted lines. The blue dashed curves show
the SCSA correlation functions for a single membrane with Young modulus 2Y and
bending rigidity 2κ, i.e., twice as large than in monolayer graphene. The correlation
functions of a single membrane with Young modulus 2Y and the much larger bending
rigidity 2κ+ (λ+ 2µ)l2/2 is illustrated by red dash-dotted lines.
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Figure 6.8: Ratio between the renormalized bending rigidity κ̃(q) and the bare effective
rigidity κ0(q) (grey dotted lines), the renormalized rigidity κ̃1(q) of a single-layer membrane
with parameters 2Y and 2κ (blue dashed line), and the analogue function κ̃2(q) for
parameters 2Y and κ̄0 (red solid line). Panels (a), (b), and (c) refer to data at T =10,
300, and 1500 K respectively. A horizontal line at 1 is drawn as guide to the eye.

shows that κ̃(q) and b̃(q) deviate from κ̃1(q) and b̃1(q) by approximately 3% and
6%, respectively9. An explicit comparison is illustrated graphically in Fig. 6.7.
The effects of thermal renormalizations are more pronounced at T = 1500 K,

as Fig. 6.8(c) shows. Within the considered model, the amplitude of the long-
wavelength power-law behavior κ̃(q) = Tz′′1 q

−η differs from the scaling limit of
κ̃1(q), κ̃1(q) = z̄1κ̄0(q2∗/q)η, by approximately 10%.
In correspondence with crossover regions for κ̃(q), the renormalized elastic

coefficient b̃(q) exhibits a flection (see Fig. 6.7). Since b0(q) is assumed to be
wavevector-independent, this behavior reflects corresponding crossovers in the
polarization function I(q).

9 As discussed in Sec. 6.3, both for monolayer and bilayer graphene the ratio z2
1/z2 between

amplitudes controlling the power-law behaviors G−1(q) = z1q4−η and b̃(q) = z2qηu is consistent

with the universal value z2
1/z2 = 3

16π
Γ2(1+η/2)Γ(1−η)

Γ2(2−η/2)Γ(2+η)
' 0.17813212...
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As a final remark, it should be noted that features in the reported results with
q of the order of 1Å−1 and their contribution to the renormalization of the long-
wavelength behavior can be sensitive to microscopic effects not captured by the
continuum approximation employed here. Renormalizations beyond the continuum
model are expected to grow with increasing temperature and to become important
when strong nonlinear effects occur at microscopic scales.

6.5 inclusion of interlayer flexural nonlinearities

In the model considered in this work, nonlinearities in h̄ = h1 − h2 and ūα have
been neglected. As a result of the harmonic approximation, however, Eq. (6.23)
fails to recover the theory of two independent nonlinearly-fluctuating layers in the
complementary limit g1, g2, g3, g4 → 0. A minimal extension of the theory necessary
to connect this limiting regime can be constructed by including nonlinearities in the
interlayer flexural field h̄, while neglecting anharmonicity in in-plane displacement
fields. With this extension, an analogue of Eq. (6.23) reads:

H̃ =
1

2

∫
d2x

{
κ(∂2h1)2 + λ(u1αα)2 + 2µ(u1αβ)2

+ κ(∂2h2)2 + λ(u2αα)2 + 2µ(u2αβ)2

+
g1

l2
h̄2 +

g2

l2
(ūα + (l + h̄)∂αh)2 +

g3

2l
(u1αα + u2αα)

+
g4

l
[(ūx + (l + h̄)∂xh)(uxx − uyy)− 2(ūy + (l + h̄)∂yh)uxy]

}
,

(6.61)

where uiαβ = 1
2 (∂αuiβ + ∂βuiα + ∂αhi∂βhi) are approximate strain tensors of the

i-th layer. For g1, g2, g3, g4 = 0, Eq. (6.61) reduces to two copies of the well-known
nonlinear effective theory for monolayer membranes [6, 10, 11, 41].

Developing a general theory for weakly coupled membranes with large interlayer-
distance fluctuations is a complex problem. If the field h̄ is regarded as critical,
with a propagator scaling as q−4, power counting indicates an infinite number
of relevant and marginal perturbations (see e.g. [220] for a related analysis).
Eq. (6.61), therefore, is not a general Hamiltonian but rather, a minimal extension
which connects the harmonic theory to a nonlinear decoupled regime of the two
membranes.
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The theory defined by Eq. (6.4) is invariant under the transformations (see [4,
11])

h1(x)→ h1(x) +Aαxα +B

h2(x)→ h2(x) +Aαxα +B

u1α(x)→ u1α(x)−Aα
(
l

2
+ h1(x)

)
− 1

2
AαAβxβ +B′α

u2α(x)→ u2α(x) +Aα

(
l

2
− h2(x)

)
− 1

2
AαAβxβ +B′α ,

(6.62)

which represent deformed versions of rotations in the embedding space, adapted to
match the neglection of in-plane nonlinearities.

Qualitatively, in the case of bilayer graphene, anharmonic terms in h̄ are expected
to play a minor role.

6.6 summary and conclusions

In summary, this work analyzed the statistical mechanics of equilibrium thermal
ripples in a tensionless sheet of suspended bilayer graphene. The individual graphene
membranes forming the bilayer were described as continuum two-dimensional
media with finite bending rigidity and elastic moduli. For the description of
interlayer interactions a phenomenological model in the spirit of elasticity theory
was constructed. Although the fluctuation energy is expanded to leading order
for small deformations, anharmonicities emerge as a necessary consequence of
rotational invariance, which forces the energy to be expressed in terms of nonlinear
scalar strains.
For explicit calculations, the model was simplified by neglecting nonlinearities

in the interlayer shear and compression modes, and by dropping anharmonic
interactions of collective in-plane displacements. An effective theory describing the
statistics of soft flexural fluctuations was then derived by Gaussian integration.
The resulting model is controlled by bending rigidity and a long-range interactions
between local Gaussian curvatures and it is identical in form to the analogue theory
for a monolayer membrane. However, the bare bending rigidity κ0(q) exhibits a
strong wavevector dependence at mesoscopic scales. Relevant phenomenological
parameters governing the strength of interlayer interactions were derived in the
case of AB-stacked bilayer graphene through ab-initio density functional theory
calculations, by combining an exchange-correlation functional within the Perdew-
Burke-Ernzerhoff approximation and van der Waals corrections in the Grimme-D2
model.
Due to the formal equivalence to a corresponding single-membrane theory, the

statistical mechanics of fluctuations can be addressed by well-developed approaches.
In this work, the field theory integral equations of motion were solved within the
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self-consistent screening approximation. In order to access correlation functions at
arbitrary wavevector q, SCSA equations were solved numerically by an iterative
algorithm.

The numerical solutions recover with good accuracy analytical SCSA predictions
for universal properties in the long-wavelength scaling behavior. At mesoscopic
lengths, the calculated correlation functions exhibit a rich crossover behavior,
driven by the harmonic coupling between bending and interlayer shear and by
renormalizations due to nonlinear interactions.
In the final part of the paper, a minimal extension of the theory, including

nonlinearities in the flexural fields of both layers was briefly discussed.
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appendix 6

6.a derivation of the effective theory for flexural fluctu-
ations

The statistical distribution for fluctuations of h(x) and uα(x) is obtained from the
complete Gibbs distribution of the problem by integration over h̄(x) and ūα(x):

P [h(x), uα(x)] =
1

Z

∫
[dh̄dūα]e−H̃/T . (6.63)

This leads to an effective Hamiltonian

H̃ ′eff = −T ln
{∫

[dh̄dūα]e−H̃/T
}
. (6.64)

Since H̃, Eq. (6.23), is quadratic in ūα(x) and h̄(x) functional integrations over
h̄(x), ūα(x), take the form of general Gaussian integrals

z[Ja] =

∫
[dϕa] exp

{
−
[

1

2

∫
x

∫
x′
Bab(x,x

′)ϕa(x)ϕb(x
′)

+

∫
x

Ja(x)ϕa(x)
]}

,

(6.65)
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where Ja(x) is a space-dependent source and Bab(x,x′) = Bba(x′,x) is a symmetric,
positive definite operator independent of Ja(x). By explicit calculation, the Gaussian
integral reads

z[Ja(x)] = Z exp

[
1

2

∫
x

∫
x′

∆ab(x,x
′)Ja(x)Jb(x

′)

]
, (6.66)

where the propagator ∆ab(x,x
′) is the inverse of Bab(x,x′):∫

d2x′′Bac(x,x
′′)∆cb(x

′′,x′) = δabδ(x− x′) . (6.67)

and the normalization Z, formally given by

Z =

∫
[dϕa]e−

1
2

∫
d2x

∫
d2x′Bab(x,x

′)ϕa(x)ϕb(x
′) , (6.68)

is independent of the source Ja(x).
To integrate over ūα, it is convenient to shift variables by the replacement

ūα → ūα − l∂αh. With these shifted variables Eq. (6.23) reads, up to boundary
terms,

H̃ =

∫
d2x
[
κ(∂2h)2 + λ(uαα)2 + 2µuαβuαβ

+
κ

4
(∂2h̄)2 +

λ

4
(∂αūα)2 +

µ

8
(∂αūβ + ∂βūα)2

+
(λ+ 2µ)l2

4
(∂2h)2 − (λ+ 2µ)l

2
(∂αūα)∂2h

+
g1

2l2
h̄2 +

g2

2l2
ū2
α +

g3

2l
h̄uαα +

g4

2l
ūαAα

]
,

(6.69)

where Ax = uxx − uyy and Ay = −2uxy. From the ūα-dependent terms, we read
the inverse propagator

Bαβ(x,x′) =
1

T

{
− 1

2

[
(λ+ µ)∂α∂β + µδαβ∂

2
]

+
g2

l2
δαβ

}
δ(x− x′) , (6.70)

and the source
Jα(x) =

1

T

[ (λ+ 2µ)l

2
∂α∂

2h+
g4

2l
Aα(x)

]
. (6.71)

The propagator ∆αβ , inverse of Bαβ , is then

∆αβ(x,x′) = T

∫
q

{[ PLαβ(q)

g2/l2 + (λ+ 2µ)q2/2
+

PTαβ(q)

g2/l2 + µq2/2

]
eiq·(x−x

′)
}

=
T

g2/l2

∫
q

{[
dL(q)PLαβ(q) + dT (q)PTαβ(q)

]
eiq·(x−x

′)
}
,

(6.72)
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where PLαβ(q) = qαqβ/q
2 and PTαβ(q) = δαβ − qαqβ/q

2 are longitudinal and
transverse projectors and dL(q) and dT (q) are dimensionless functions defined
in Eq. (6.30). Using Eq. (6.66) we obtain, up to an unimportant normalization
factor,∫

[dūα]e−H̃/T = exp

{
T

2g2/l2

∫
q

[(
dL(q)PLαβ(q)dT (q)PTαβ(q)

)
Jα(q)J∗β(q)

]
− 1

T

∫
d2x
[
κ(∂2h)2 + λ(uαα)2 + 2µuαβuαβ

+
(λ+ 2µ)l2

4
(∂2h)2 +

g1

2l2
h̄2 +

g3

2l
h̄uαα

]}
,

(6.73)

where Jα(q) is the Fourier transform of Jα(x),

Jα(q) =
1

T

[
− i (λ+ 2µ)l

2
qαq

2h(q) +
g4

2l
Aα(q)

]
, (6.74)

being h(q) and Aα(q) the Fourier transforms of h(x) and Aα(x) respectively.
After introduction of A(x) = ∂αAα and the corresponding Fourier components
A(q) = iqαAα(q), an explicit calculation of Eq. (6.73) gives:∫

[dūα]e−H̃/T = exp

{
− 1

T

[ ∫
q

(1

2
κ0(q)|h(q)|2 + µ0(q)|uαβ(q)|2

+
g2

4

8g2
dT (q)|uαα(q)|2 − g4l

2

4g2
(λ+ 2µ)dL(q)q2h(q)A∗(q)

+
g2

4l
2

16g2
2

(λ+ µ)dL(q)dT (q)|A(q)|2
)

+

∫
d2x
(
λ(uαα)2 +

κ

4
(∂2h̄)2 +

g1

2l2
h̄2 +

g3

2l
h̄uαα

)]}
,

(6.75)

where κ0(q) and µ0(q) are the q-dependent bending rigidity and shear modulus
introduced in Eq. (6.31). In the derivation, it is useful to take advantage of the
identity

Aα(q)A∗α(q) = 2|uαβ(q)|2 − |uαα(q)|2 . (6.76)

As a next step, we can integrate out the h̄ field. This generates an effective
interaction between the sources g3uαα(x)/(2T l), mediated by the propagator

∆(x,x′) = T

∫
q

eiq·(x−x
′)

g1/l2 + κq4/2
=

T

g1/l2

∫
q

d̄(q)eiq·(x−x
′) , (6.77)

the inverse of
B(x,x′) =

1

T

[κ
2
∂4 +

g1

l2

]
δ(x− x′) . (6.78)
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Using Eq. (6.66), we then obtain∫
[dūαdh̄]e−H̃/T = exp

{
− 1

T

[ ∫
q

(1

2
κ0(q)|h(q)|2 + µ0(q)|uαβ(q)|2

+ λ|uαα(q)|2 +
g2

4

8g2
dT (q)|uαα(q)|2 − g2

3

8g1
d̄(q)|uαα(q)|2

− g4l
2

4g2
(λ+ 2µ)dL(q)q2h(q)A∗(q)

+
g2

4l
2

16g2
2

(λ+ µ)dL(q)dT (q)|A(q)|2
)]}

,

(6.79)

from which we recognize the effective Hamiltonian H̃ ′eff [h(x), uα(x)], Eq. (6.28) in
the main text.

We finally wish to eliminate the in-plane displacement fields uα(x). Neglecting,
as in the main text, the interactions

∫
q
|A(q)|2 and

∫
q
q2h(q)A∗(q), we are lead to

the calculation of

H̃eff [h(x)] = −T ln
{∫

[duα] exp
[
− H̃ ′′eff/T

]}
, (6.80)

with

H̃ ′′eff =
1

2

∫
q

[
κ0(q)q4|h(q)|2 + λ0(q)|uαα(q)|2 + 2µ0(q)|uαβ(q)|2

]
. (6.81)

Although, eventually, we will assume q-independent Lamé coefficients λ0(q) and
µ0(q), it is not difficult to keep general q-dependent couplings in the course of the
derivation.
Eq. (6.81) is identical in form with the standard configuration energy of a

crystalline membrane, but with elastic and bending parameters replaced by the
q-dependent functions defined in Eq. (6.31). Integration over uα then proceeds in
an usual way (see Chap. 6 of Ref. [1] and Refs. [12, 23, 25, 85]).
As a first step, it is important to separate the q = 0 component of the strain

tensor uαβ(x) [1] (see also Ref. [85] for an analysis of zero-modes in presence of
external tension):

uαβ(x) = u0
αβ + c0αβ +

1

2

∫ ′
q

(iqαuβ(q) + iqβuα(q) + cαβ(q))eiq·x . (6.82)

Here
cαβ(q) =

∫
d2xe−iq·x∂αh(x)∂βh(x) (6.83)

is the Fourier transform of the field cαβ = ∂αh∂βh, c0αβ is its q = 0 component,
and u0

αβ is the uniform component of (∂αuβ + ∂βuα)/2. The primed integral,
∫ ′
q
,

is intended to run over all nonzero wavevectors, with the q = 0 term excluded.
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In the functional integral, we can consider separate integrations over uniform and
finite-wavelength components. After the translation of variables u0

αβ → u0
αβ − c0αβ ,

the integral over uniform components factorizes and gives an irrelevant normaliza-
tion constant, independent on the h(x) field.

In order to perform the remaining integral over the q 6= 0 components of uα, it
is convenient to decompose cαβ(q) in the form [1]

cαβ(q) = iqαφβ(q) + iqβφα(q) + PTαβ(q)ω(q) , (6.84)

where φα(q) is a two-component vector and

ω(q) = PTαβ(q)cαβ(q) . (6.85)

This decomposition is possible for any two-dimensional symmetric matrix. After
the shift of integration variables uα(x)→ uα(x)− φα(x), the Fourier components
of the strain tensor become independent of φα(q). An explicit calculation then
leads to the effective Hamiltonian

Heff =
1

2

∫
q

κ0(q)q4|h(q)|2 +

∫ ′
q

Y0(q)

8
|ω(q)|2 , (6.86)

with
Y0(q) =

4µ0(q)(λ0(q) + µ0(q))

λ0(q) + 2µ0(q)
. (6.87)

Inspecting Eq. (6.85), we recognize that ω(q) = 2K(q)/q2, where K(q) is the
Fourier transform of the approximate Gaussian curvature, Eq. (6.13). With the
approximation λ0(q) ' 2λ, µ0(q) ' 2µ, Y0(q) = 4µ0(λ0 + µ0)/(λ0 + 2µ0), we thus
obtain Eq. (6.34) of the main text.

6.b numerical solution of scsa equations

As discussed in the main text, a logarithmic wavevector grid consisting of 50
wavevector points ranging between 10−7 and 110Å−1 is used and integrations are
performed by introducing a hard UV cutoff Λ = 100Å−1. Data for bilayer graphene
are calculated with an identical set of wavevector points, and by imposing the same
cutoff Λ = 100Å−1 in momentum integrations.

In order to estimate the numerical error due to discretization of the wavevector
grid and the subsequent interpolation, correlation functions were recalculated using
a broader wavevector grid consisting of 26 points10. To facilitate comparison, the
q grid was chosen in such way that the first 25 points coincide with a subset of

10 All data sets have been made available as supplemental materials to the publication "Thermal
ripples in bilayer graphene", Phys. Rev. B 102, 165421 (2020). For more information on the
numerical accuracy of the data, we refer the reader to the published article.

https://doi.org/10.1103/PhysRevB.102.165421
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wavevector points used in the finer grid. A graphical comparison between data
obtained with denser and broader grids is illustrated in Fig. 6.9.
Overall, the maximum relative deviation between data points (at the common

q vectors) is of the order of 10−3. The continuous interpolating functions have a
larger discrepancy, but remain within a maximum overall deviation of the order
of 2%. Fig. 6.10 compares data calculated with two different ultraviolet cutoffs
Λ1 = 100 Å−1 and Λ2 = 1000 Å−1. As the figure shows, results are stable with
good accuracy.
The fact that all curves in Figs. (6.9) and (6.10) tend to constants for q →

0 reflects that the leading numerical error for q → 0 is a constant amplitude
renormalization. This renormalization is accumulated at all length scales and
thus is sensitive to numerical inaccuracies in the large-momentum region. The
universal quantities (the exponents η, ηu, and the amplitude ratio z2

1/z2) are instead
insensitive to the short-wavelength details, and depend only on the scaling region,
where correlation functions are linear in logarithmic scale and interpolation error
becomes negligible10. For example, the exponent η extracted from the numerical
solutions for monolayer graphene remains stable within 3× 10−11.
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Figure 6.9: Comparison between data sets calculated with 50-point and 26-point wavevec-
tor grids for monolayer graphene at T = 300 K (1) and bilayer graphene at T = 10 K (2a),
T = 300 K (2b), and T = 1500 K (2c). Top and bottom panels illustrate, respectively, the
ratios ∆G/G = |G1−G2|/|G1| and ∆b̃/b̃ = |b̃1− b̃2|/|b̃1|, where G1 and b̃1 are calculated
with a 50-point wavevector grid, while G2 and b̃2 are obtained with a broader 26-point
grid. Dots illustrate the values of ∆G/G and ∆b̃/b̃ at the points of the broader wavevector
grid, which, by construction, coincide with a subset of q-points of the finer grid. The
deviation between interpolating functions in the two data sets is illustrated by continuous
lines.
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Figure 6.10: Comparison between data sets calculated with different UV cutoff Λ1 = 100

and Λ2 = 1000 Å−1. Red and blue lines represent, respectively, the relative deviations
∆G/G = |G1 − G2|/G1 and ∆b̃/b̃ = |b̃1 − b̃2|/b1 where G1 and b̃1 are computed with
cutoff Λ1 = 100Å−1 and G2, b̃2 with cutoff Λ2 = 1000 Å−1. The four panels show data for
monolayer graphene at T = 300 K (1) and bilayer graphene at T = 10 K (2a), T = 300 K
(2b), and T = 1500 K (2c).
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SUMMARY

This thesis analyzes the effects of thermal fluctuations on the elasticity and the
thermodynamic behavior of two-dimensional solids. The main focus is on 2D solids
which are free-standing (not supported by a substrate) and which are subject to
vanishing or small external tension.

The interplay between thermal fluctuations and nonlinear interactions in free
standing layers has been the subject of vast investigations, from biological systems
to 2D materials such as graphene. As it has long been realized, it leads to a
complex problem, at the boundary between elasticity theory, geometry and critical
phenomena. Similarly to a system at the critical temperature of a second-order phase
transition, the phonon modes of a membrane subject to zero tension is predicted
to be governed by a scale-invariant field theory, described by an interacting fixed
point of the renormalization group. The corresponding anomalous scale invariance
implies striking power-law renormalizations of elastic parameters and non-Hookean
elastic properties, dominated by the response of statistical fluctuations.
The research contributions derived during this work are presented in the last

four chapters of this thesis (Chap. 3-6). The analyses in Chap. 3 and Chap. 4 focus
on the problem of a continuum elastic medium subject to thermal fluctuations, in
the framework of classical statistical mechanics. Chapter 3 illustrates a calculation
of scaling indices up to order ε2 within an ε-expansion, based on a systematic
field-theoretical renormalization group method and a non-conventional continuation
of the elasticity theory from the physical dimensionality D = 2 to general D = 4−ε.
Chapter 4 studies whether the scale invariance of phonon fluctuations extends to a
larger conformal invariance. By an analysis of the energy-momentum tensor to all
orders in the ε-expansion it is argued that the model is only scale invariant and
not conformal. The same conclusion holds for elasticity theory in D = 4− ε and
for the non-conventional continuation of the theory introduced in chapter 3. The
two continuations lead to two different fixed points which are both scale invariant
but nonconformal. This result can be useful in the search for general connections
between scale and conformal symmetries, a subject of recent investigations in
quantum field theory and statistical mechanics.
Chapter 5 explores the low-temperature behavior of free standing membranes,

where quantum mechanical effects are important. A method based on perturbative
renormalization group equations and finite-size scaling techniques is used in order to
revisit some predictions derived in earlier investigations. In particular, the method
provides a new derivation of the striking logarithmic temperature dependence of
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the thermal expansion coefficient, which was deduced in the earlier analysis of
Ref. [91] by a different method.

Chapter 6 develops a theory of thermal fluctuations and anharmonic effects in a
fluctuating bilayer graphene. The theory is combined with numerical calculations
in order to derive a prediction of fluctuation amplitudes at various temperatures.
The thesis starts with two opening chapters (Chap. 1 and Chap. 2), which

introduce the subject and make the reading self-contained.



SAMENVATTING

In deze thesis bekijken we het effect van thermische fluctuaties op de elasticiteit en
op het thermodynamische gedrag van twee dimensionale (2D) vaste stoffen. De focus
ligt hierbij op vrijstaande 2D materialen (niet ondersteund door een substraat) waar
geen, of hele kleine externe spanningen op staan. Het samenspel tussen thermische
fluctuaties en niet-lineaire interacties in vrijstaande 2D lagen is het onderwerp van
uitgebreid onderzoek, van zowel biologische systemen tot 2D materialen als grafeen.
Zoals al lang bekend, leidt het tot een complexe problemen op de grens tussen
elasticiteitstheorie, geometrie en kritische fenomenen. Net als bij een systeem met
een tweede-orde faseovergang op de kritieke temperatuur, is het voorspelt dat
fononen in een membraan, zonder mechanische spanning, beheerst worden door
een schaalinvariante veldentheorie, beschreven door een interactief dekpunt van de
renormalisatie groep. De overeenkomstige afwijkende schaalinvariantie impliceert
een opvallende renormalisatie van machtsfunctie van de elastische parameter en
niet-Hookeaanse elastische eigenschappen, gedomineerd door de reactie van statis-
tische fluctuaties. De resultaten van dit onderzoek staan beschreven in de laatste
vier hoofdstukken van deze thesis (Hfst. 3-6). De analyse in Hfst. 3 en Hfst. 4 focust
op het probleem van continue elastische media onderhevig aan thermische fluctu-
aties, op de manier van klassieke statistische mechanica. Hoofdstuk 3 beschrijft de
berekening van het schalen van indices tot de tweede orde ε2, binnen een ε expansie,
gebaseerd op een systematische veldentheoretische renormalisatie groep methode en
een onconventionele voortzetting van de elasticiteitsleer van fysische dimensies in
D = 2 naar D = 4− ε. Hoofdstuk 4 bestudeert of de schaalinvariantie van fonoon-
fluctuaties uitgebreid kan worden naar een bredere conformistische invariantie. Uit
een analyse van de energie-impuls tensor tot alle orders in de ε expansie, kan er
geconcludeerd worden dat het model alleen schaal invariant is en niet conformistisch.
Dezelfde conclusie kan worden getrokken voor de elasticiteitsleer in D = 4− ε en
voor de onconventionele voortzetting van de theorie geïntroduceerd in Hfst. 3. De
twee voortzettingen leiden tot twee verschillende dekpunten welke schaalinvariant
zijn maar niet conformistisch. Deze resultaten kunnen nuttig zijn in de zoektocht
naar generieke overeenkomsten tussen schaal en conformistische symmetrieën,
welke het onderwerp zijn van verschillende onderzoeken in kwantumveldentheorie
en statistische mechanica. Hoofdstuk 5 onderzoekt het lage temperatuur gedrag van
vrijstaande membranen, waarbij de kwantummechanische effecten belangrijk zijn.
Er wordt gebruik gemaakt van een methode gebaseerd op een storingsrekening van
renormalisatie groep vergelijkingen en eindige schaal technieken, om hiermee terug
te kijken op voorspellingen gemaakt in eerdere analyses. De methode geeft vooral
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een nieuwe afleiding van de opvallende logaritmische temperatuur afhankelijkheid
van de thermische expansie coëfficiënt, welke ook op een andere manier gevonden
is in eerder onderzoek door Ref. [91]. In Hfst 6 wordt een theorie ontwikkeld voor
de thermische fluctuaties van niet harmonische effecten in fluctuerend dubbellaags
grafeen. De theorie wordt gecombineerd met numerieke berekeningen, om een
voorspelling te doen van de fluctuatie-amplitude voor verschillende temperaturen.
De eerste twee hoofdstukken van deze thesis worden gewijd aan het geven van een
introductie en om het onderwerp op zichzelf staande te maken.
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