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Abstract. Spherically symmetric solutions in general relativity are the most fundamental
solutions to the Einstein field equation. The first exact solution of the Einstein field equation
is the spherically symmetric solution given by the Schwarzschild metric, as easily found in any
standard textbook on general relativity. The FLRW (Friedmann-Lemaitre-Robertson-Walkers)
metric is another spherically symmetric solution of Einstein’s equation describing the standard
model in Cosmology. The standard approach to solving Einstein’s equations is by considering
the metric. However, we can also adopt a tetrad-based method or tetrad formalism. We review
these two solutions by the tetrad formalism as an alternative approach. In addition, we give
some more cases, including the cosmological constant and the Taub-NUT metric.

1. Introduction
General relativity theory provides the physical framework for studying gravitation and the nature
of spacetime. Einstein’s Theory of General Relativity describes gravity as a result of a mass
warping spacetime, not distances or masses. It provides a more comprehensive understanding
of gravity, especially in extreme conditions close to ultra-compact objects and black holes. This
theory successfully enlarged the scope of Newtonian gravity elegantly. However, finding the
Einstein field equations solutions is a painful task since the equations are non-linear partial
differential equations that may depend on the energy-momentum tensor of the matter fields.

The first solution to Einstein’s equations is the spacetime metric of the Schwarzschild
distribution. This solution applies to the vacuum region outside the region of static symmetric
matter because the mass does not have an electric charge or angular momentum and no
cosmological constant. The spherically symmetric condition was chosen because it is the simplest
solution and accurately describes natural astrophysical bodies.

Indeed, there are many approaches to finding the spherically symmetric solutions. As well
as the standard metric formalism, tetrad formalism gives an alternative. Tetrad or vierbeins
are a set of four linearly free vector fields. Tetrad method could directly accommodate non-
uniform stress, has an unambiguous gauge, and is expressed in physical (non-comoving) radial
coordinate, resulting in clear and intuitive physical interpretation. Tetrad formalism also has
no limitations on its use [1]. In this article, we review the spherically symmetric solutions for
Schwarzschild, FLRW, Schwarzschild-de Sitter, and Taub-NUT spacetimes in tetrad formalism.
For Schwarzschild, FLRW, and Schwarzschild-de Sitter spacetimes represent static spacetime,
as well as the Taub-NUT spacetime which represents non-static spacetime.
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2. Tetrad formalism
2.1. Tetrad field
In Riemannian geometry, every event occurring at every point in space-time is described by a
set of xµ-coordinates (global coordinate) with a set of basis vectors eµ. Therefore, the metric
tensor is given by

gµν = eµ · eν . (1)

Moreover, at every point in the manifold, the Lorentz frames are defined by a set of orthogonal
basis vectors êa for the tangent space. Those orthogonal basis vector are connected to the
Minkowski metric and are independent from any coordinate system,

ηµν = êa · êb . (2)

The relation between the two sets of basis vectors (global basis vector and local basis vector) is
described by a bundle of linearly free vector fields called tetrad or vierbeins eµa and its inverse
eaµ. Taking into account the invariance of the line elements (which have the same value locally
and globally), we have the relation

ds2global = ds2local

g = η

gµν = eaµe
b
νηab ,

(3)

and the inverse relation
ηab = eµae

ν
bgµν . (4)

Finally, it is clear that tetrad are square root of metric [1][2].

2.2. Spin connection
Analogous to the concept of parallel transport, to compare different vectors in cotangent space
introduced another parallel transport which determined by the spin connection. In differential
geometry that is not dependent on any coordinate, affine connection coefficient Γα

βγ is replaced

by spin connection coefficient ωa
µb, but those two are just the same in principle [3][4].

∇µX
a = ∂µX

a + ωa
µbX

b . (5)

The relation between affine connection and spin connection is given by

ωa
µb = eaνe

λ
bΓ

ν
µλ − eλb ∂µe

a
λ . (6)

2.3. Riemann tensor in tetrad formalism
In the context of Rimannian geometry, the curvature of space-time is described by Riemann
curvature or the Riemann tensor. This tensor is built from second order covariant derivative
from a vector. In calculus, second order derivative tells the curvature of the given function. In
the same sense, Riemann tensor also tells the curvature of the given manifold and often said as
the ”curvature tensor”.

Rµ
νρσ =

∂Γµ
νσ

∂xρ
− ∂Γµ

νρ

∂xσ
+ Γλ

νσΓ
µ
ρλ − Γλ

νρΓ
µ
σλ . (7)

The Riemann tensor could also be expressed in the covariant form by contraction with the metric
tensor,

Rµνρσ = gµλR
λ
νρσ (8)

and if written in the dorm of tetrad terms becomes

Rµνρσ = eaµe
b
νe

c
ρe

d
σRabcd ↔ Rabcd = eµae

ν
b e

ρ
ce

σ
dRµνρσ . (9)
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2.4. Einstein’s field equation in tetrad formalism
The Ricci tensor combined with the metric tensor can explain the relationship between the
curvature of spacetime and the distribution of matter and energy [5].

Rµν −
1

2
gµνR = κTµν (10)

In tetrad terms, the Einstein field equation can be written as follows.

eaµe
b
νRab −

1

2
eaµe

b
νηabR = κeaµe

b
νTab

Rab −
1

2
ηabR = κTab

(11)

2.5. Mathematical framework of the tetrad formalism
A spherically symmetric system was chosen by four vector field (tetrad) that was defined in terms
of arbitrary functions f1(r, t) , f2(r, t) , g1(r, t) dan g2(r, t). From these fucntions, components
of the tetrad expressed as follows [2],

e00 = f1, e01 = f2,

e10 = g2, e11 = g1,

e22 = 1/r, e33 = 1/(r sin θ).

(12)

As such, line element of a spherically symmetric system composed of these tetrad components
above has been acquired in this form,

ds2 =
(g1)

2 − (g2)
2

(f1)2(g1)2
dt2 +

2g2
f1(g1)2

dt dr − 1

(g1)2
dr2 − r2dΩ2 (13)

with dΩ is a solid angle element, and this system assumes a physical non-moving coordinate for
a proper surface, which is a sphere with radius r and surface area 4πr2.

By the assumption of matter regarded as perfect fluid, the 4-velocity can be constructed from
fluid particle (or an observer comoving with the fluid) that has components [v̂a] = [1, 0, 0, 0] in
tetrad frame. Using the fact that v̂aêa = vµeµ = v0e0 + v1e1 + v2e2 + v3e3, so, the 4-velocity

in basis coordinate becomes [v̂a] = [f1, g2, 0, 0] or written in another form [vµ] =
[
ṫ, ṙ, θ̇, ϕ̇

]
=

[f1, g2, 0, 0]. Next, two linear differential operators is given by,

Lt ≡ f1∂t + g2∂r , Lr ≡ g1∂r. (14)

Then, arbitrary functions F (r, t), G(r, t) and M(r, t) are defined by

Ltg1 ≡ Gg2 , Lrg2 ≡ Fg1, (15)

M ≡ 1

2
r

(
(g2)

2 − (g1)
2 + 1− 1

3
Λr2

)
, (16)

with Λ as a constant. From the assumption of perfect fluid with density ρ(r, t) and pressure
p(r, t), the Einstein field equation and Bianchi identities are used to find the relations among
above arbitrary functions [6]

Lrf1 = −Gf1, −→ f1 = exp

[
−
∫

G

g1
dr

]
(17)

Lrg1 = Fg2 +
M

r2
− 1

3
Λr − 4πrρ, Ltg2 = Gg1 −

M

r2
− 1

3
Λr − 4πrρ (18)

LtM = −4πg2r
2p, LrM = 4πg1r

2p (19)

Ltρ = −
(
2g2
r

+ F

)
(ρ+ p), Lrp = −G(ρ+ p). (20)
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From the equation 19, it is clear that the function M(r, t) plays a huge role as intrinsic mass
(or energy) and in equation 20 shows that the function G(r, t) can be interpreted as radial
acceleration, and Λ is the cosmological constant indeed. F and G can also be defined as spin
connection coefficients.

Furthermore, by combining the expressions LtM and the definition of M in 15, we have the
following expression as Euler equation in Newtonian fluid dynamics g2 ≡ ṙ.

(∂t + g2∂r)g2 = −M

r2
+

1

3
Λ (21)

Finally, setting the constant Λ = 0, the definition ofM can be rearranged to acquire the infamous
Bernoulli equation in zero pressure.

1

2
(g2)

2 − M

r
=

1

2

(
(g1)

2 − 1
)

(22)

3. The spherically symmetric spacetimes via tetrad formalism
3.1. Schwarzschild space-time
In this case, a static matter source (M = constant) was given in a concentrated point r = 0 and
the cosmological constant is not taken into account (Λ = 0). The solution for this case has zero
pressure and density ρ = p = 0 everywhere except the centre. By the definition of M in (25), g1
seemed to correspond to the total energy per unit rest mass of the free falling particle and the
gauge condition g1 = 1 could be adopted for particle released from spatial infinity. Finally, the
tetrad components are expressed as follows

f1 = 1, g1 = 1, g2 = −
√

2M

r
, (23)

and spin connection coefficients,

F =
M

r2

(
2M

r

)−1/2

, G = 0. (24)

This condition (G = 0) is consistant with the geodesics of test particle. Next, by subtituting
equation (23) to the metric ansatz (13), we found the solution to the field equation for static
spherically symmetric or Schwarzschild spacetime in Painleve-Gullstrand coordinate,

ds2 = dt2 −

(
dr +

√
2M

r
dt

)2

− r2dΩ2, (25)

or in standard coordinate,

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2. (26)

3.2. FLRW spacetime
FLRW spacetime is homogeneous and isotropic. This makes ρ and p a function of t only, so that
M(r, t) = 4

3πr
3ρ. Therefore, the non-zero tetrad component is given by

f1 = 1 , g1
2 = 1− kr2 exp

[
−2

∫
H(t′)dt′

]
, g2 = rH(t) (27)
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where k is an arbitrary constant of integration and the spin connection coefficients F and G
become

F = H(t) G = 0. (28)

The condition G = 0 explains the geodesic motion of the fluid particles because there is no

pressure gradient. Using the Hubble parameter equationH2(t) ≡
(
∂tS(t)
S(t)

)2
, so thatH(t) ≡ ∂tS(t)

S(t)

and g1
2 = 1−k r2

S2(t)
, the line element (4.6) corresponding to the tetrad component (20) becomes

ds2 = dt2 −
[
1− kr2

S2(t)

]−1

(dr − rH(t)dt)2 − r2dΩ2 (29)

By redefining the radial coordinates r̃ ≡ r
S(t) , the metric (41) will be the general form of the

FLRW metric in standard coordinates [7].

ds2 = dt2 − S2(t)

[
dr̃2

1− kr̃2
+ r̃2dΩ2

]
(30)

3.3. Schwarzschild-de Sitter spacetime
Schwarzschild-de Sitter spacetime is an extension of Schwarzschild spacetime that includes a
positive cosmological constant (Λ). The existence of the cosmological constant (Λ) represents
the expanding universe. In general, Schwarzschild-de Sitter spacetime has similar properties
to Schwarzschild spacetime, except that, in addition to the mass (M), the geometry of
Schwarzschild-de Sitter spacetime is also affected by the presence of the cosmological constant
(Λ). Therefore, the procedure for finding the following spherically symmetric solution of
Schwarzschild-de Sitter spacetime will be the same as that of Schwarzschild spacetime, but
by maintaining the existence of the cosmological constant [8] [9] [10].

The following is the result of the non-zero tetrad component

f1 = 1, g1 = 1, g2 = −
√

2M

r
+

1

3
Λr2, (31)

and spin connection coefficients

F =

(
2M

r
+

1

3
Λr2

)− 1
2
(
M

r2
− 1

3
Λr

)
, G = 0. (32)

Thus, we obtained the Schwarzschild-de Sitter spacetime metric expressed in Painleve-Gullstrand
coordinates [11] [12].

ds2 = dt2 −

(
dr +

√
2M

r
+

1

3
Λr2dt

)2

− r2dΩ2 (33)

Thus, the standard form of the Schwarzschild-de Sitter metric is as follows.

ds2 =

(
1− 2M

r
− 1

3
Λr2

)
dt2 −

(
1− 2M

r
− 1

3
Λr2

)−1

dr2 − r2dΩ2 (34)



3rd International Symposium on Physics and Applications 2023 (ISPA 2023)
Journal of Physics: Conference Series 2780 (2024) 012029

IOP Publishing
doi:10.1088/1742-6596/2780/1/012029

6

3.4. Taub-NUT spacetime
In 1951, Taub proposed a homogeneous, non-isotropic, expanding, empty model of the universe
solution later called as Taub space. Amongst homogenous cosmological models, Taub-NUT
metric yields the most complex anisotropic behaviour, and belongs to the Bianchi type IX
spatial geometry group [13] [14] [15]. This metric can be constructed by determining the tetrad
coefficient g2 = 0, then we have,

f1 =

(
1 +

t2

4

)−1

, g1 =

(
1 +

t2

4

)
, (35)

and the spin connection coefficients

F = 0, G =

(
1 +

t2

4

)−1
4M

t2
. (36)

After following the same formalism as previous metrics, we have the Taub metric in spherical
coordinate,

ds2 =

(
1 +

t2

4

)−2

(dt2 − dx2)− t2

4
(dθ2 + sin2 θdϕ2). (37)

4. Conclusion
From the work of this article, the metric solutions of spherically symmetric spacetime can
be obtained through the review of tetrad formalism. The method provides more intuitive
interpretation and less complicated calculations than the standard formalism. By determining
the properties of the spacetime to be solved and choosing the appropriate ’gauge’ condition, the
tetrad formalism can directly construct the metric corresponding to the spacetime.
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