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1. INTRODUCTION

One of the main parameters that determines the next generation of high energy
accelerators is the acceleration gradient. Recently there has been interest in the
use of plasma density waves for obtaining high acceleration gradients. The Plasma
Beat-Wave scheme of Tajima and Dawson uses two beating lasers to excite the
plasma at its resonant frequency.! The driven plasma provides an accelerating
field that in principle can be of the order of several GeV/m.>> This scheme has
also been modified in the Surfatron,®® although the basic principle is similar.

One of the complications of the Plasma Beat-Wave scheme is the need for
high-power, high-quality lasers. Recently it has been suggested that the driving
lasers could be replaced by a driving electron beam.®'° In the simplest case, a
single driving electron bunch enters a plasma and excites a plasma-density wave; a
second beam trailing the driving beam is then accelerated provided that it is at the
correct phase on the plasma wave. It is also possible to have several appropriately
spaced bunches in the driving beam.

This idea is similar to various wake field accelerator schemes'! with the plasma
playing the role of the cavity or accelerator structure. In this paper we analyze the
idea suggested in Refs. 9 and 10 in more detail and point out the similarities with
wake field schemes suggested in Refs. 11-15. After we review some basic results
of wake fields, we calculate the wake field in a plasma and show that the plasma
wake obeys the general rules of all wake fields. We then address various other
accelerator physics issues associated with acceleration in a plasma density wave.
Lastly, we give some numerical design examples.

2. ENERGY TRANSFER IN CO-LINEAR WAKE FIELD
ACCELERATORS

In this section, we discuss a general property of energy transfer in wake field
accelerators, which is valid whether the source of the wake field is a metallic
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cavity or a plasma. The definition of wake field accelerators used in this paper
includes only those accelerators in which the stored energy is zero before the
driving beam arrives. Although the analysis below can be extended to a more
general case, we will specialize to the co-linear case: the driving beam and the
trailing beam take the same straight-line path through the wake field medium. We
will then show that one basic limitation of co-linear wake field schemes is that the
energy gained by a particle in the accelerated beam is severely limited by the
energy per particle of the driving bunch.

Consider first a relativistic bunch of electrons entering a structure with a wake
field function W(y). W(y) is a characteristic function of the structure independent
of the beam and is defined as the longitudinal decelerating field induced by a unit
charge at a distance y behind it. The energy change of the bunch due to its own
wake per unit distance traveled is given by

d(N:Ey) _

dz —Nie*W(0), 1)

where N, is the number of particles in the bunch and E; is the energy per particle.
Here we have regarded the bunch as a rigid collection of particles which has zero
length. As we will see later in this section and in Section 4G, these restrictions can
be removed.

If a second bunch is injected at a distance y behind the first bunch, it will
experience the wake field left by the first bunch as well as its own wake field.
Using linear superposition, the energy change of the trailing bunch is given by

d(N,E;) _

dz —N%eZW(O)—NlNzeZW(y), ()

where N, and E, are the number of particles and energy per particle of the
trailing bunch. The second term is the contribution from the wake field of the first
bunch. Due to energy conservation, the total energy of the system of two beams
must not increase, i.e.

(NT+N2)W(0)+ N;N,W(y)=0. (3)

Since this must hold for all N, and N,, the accelerating wake field due to the first
bunch at the second bunch [—W(y)] must satisfy

[-W(y)]=2W(0). 4

Therefore the acceleration gradient seen by a single particle in the trailing bunch
must satisfy
dE
G Ed—;s(ZNl—Nz)e2W(0). (5)
To calculate the maximum total energy gain by the trailing bunch, let us assume
that the leading bunch can transfer all of its energy to the wake field. In this case,
the leading bunch stops in a distance L given by

E,

L=—2t .
N,e>W(0)

(6)
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Note that L is inversely proportional to N;. An intense driving bunch produces a
high accelerating gradient for the trailing bunch, but the acceleration lasts only for
a short distance.

Using Eqgs. (5) and (6), the energy gain for a particle in the trailing bunch
satisfies

AE,=GL SEl(Z—ﬁg). 7
N,
Thus we obtain the well known result: in a co-linear wake field accelerator, the
total energy gain per particle of the trailing bunch is less than twice the initial
energy per particle of the driving bunch. This is a severe limit on co-linear wake
field accelerators. Notice that the only assumptions necessary to derive this result
are conservation of energy, linear superposition and a rigid point bunch. The
above results also hold for a plasma provided we are in the linear regime.

The inequality (Eq. 7) can be made an equality for a single-mode lossless
medium in which the wake field oscillates with a single frequency behind the
driving bunch. In this case, the energy-transfer efficiency from the driving bunch
to the trailing bunch is given by

Mzﬂ(z—&)-

8
N.E, N\ N; ®

nE

In such a case, the maximum efficiency is achieved by choosing N, = N;. The
energy of the leading bunch is then completely transferred to the trailing bunch
and no wake field is left after the trailing bunch.

One might ask if the situation would improve if there were multiple driving
bunches preceding the bunch to be accelerated. Naively one might expect that if
the bunches were spaced by the wavelength of the wake field, the field would
grow linearly with the number of bunches. However, the situation is again
modified because a bunch sees not only is own retarding wake, but also the wake
of all preceding bunches. If the bunches are spaced by one wavelength of the
wake field oscillation, the second bunch comes to a stop in 1/3 the distance
travelled by the first bunch, the third bunch stops in 1/5 that distance, etc. For the
case of M bunches spaced by one wavelength, the energy gain of the trailing
bunch to be accelerated is limited by

‘ v 2 N
AEZSEllekﬂ Nl]’

)
where N, is the number of particles per driving bunch. Thus the total energy gain
increases logarithmically with M, in spite of the fact that the longitudinal electric
field at the very beginning of the device grows linearly with M.

Actually, there is a better method to extract energy from the M bunches for a
single-frequency system. The object here is to prevent the deceleration of a
driving bunch by the field left by the preceding bunches. For example, for M =2
this can be done provided the second bunch follows the first by 1/4 of the
wavelength of the wake field. In this case the fields add such that the maximum
amplitude increases to v2 times the field induced by one bunch, and the phase of
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the field is shifted by 45 degrees. In addition, both bunches lose all their energy in
the same distance L. Generalizing this to M bunches, one must inject the Mth
driving bunch at a phase 6,, relative to the first bunch given by

< 1
0= 2t _1(—>, M=2. 10
W= 2 e\ 7= (10

This yields a resultant phase of the field relative to the field of the first bunch

Bpera = :2:2 tan—l(ﬁ) (11)

After M bunches of energy E; have filled the device, the maximum energy gain
for a trailing bunch is

AE,= E1<2W—%>. (12)

The energy gain in Eq. 12 is much more favorable than Eq. (9), but it is far from
being linear in M.

So far we have assumed rigid driving bunches of zero length. For the case of
finite length bunches, we must consider the fact that particles at different
longitudinal positions within a given driving bunch experience different decelerat-
ing fields. Some of the previous equations must be modified to take this fact into
account. To do so, we will divide a bunch into series of slices representing
different longitudinal positions. The leading slice sees no induced wake field and
hence never comes to a stop. The middle slice comes to a stop in the distance L
given by Eq. (6). The slice at the tail of the driving bunch sees twice the average
induced wake field and stops in a distance L/2. In this distance the maximum
energy gain for a particle in the middle of the trailing bunch is one-half that given
by Eq. (7), and the efficiency is one-half that given by Eq. (8).

If we assume that by some means the particles in the driving bunch are
removed from the plasma just as they come to a halt, then the maximum energy
per particle that can be gained by a trailing test particle in distance z;=L/2 is

AE2=E1<1+ln %) (13)

Thus, for non-rigid bunches, the factor of 2 is replaced by [1+In(2z/L)].
Although this appears to be better for large z,, in practice the logarithm increases
too slowly to be of use.

If the number of particles in the accelerated bunch is comparable to that in the
driving bunch, then the induced field from the accelerated bunch must be
subtracted from AE, in Eq. (13) to obtain the net acceleration. The effect of the
finite bunch length will also lead to an energy spread within the accelerated
bunch. In analogy to the case of a bunch being accelerated by an rf wave in a
conventional accelerator, this beam-loading energy spread can be compensated to
some extent by adjusting the position of the bunch with respect to the crest of the
plasma wave.
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3. THE PLASMA WAKE FIELD

To understand the basic mechanism, we analyze explicitly in this section the
response of a cold plasma to a driving bunch by calculating the wake field for
three cases: a one-dimensional nonrelativistic plasma, a three-dimensional non-
relativistic plasma, and a one-dimensional relativistic plasma. In all three cases,
the plasma is a single-frequency medium and Eq. (7) with an equal sign applies.

Case 1. One-Dimensional Nonrelativistic Plasma

The nonrelativistic fluid equations are

an

at+V- (nv)=0

(14)
N vV =5 (&+v xB).
ot m

These together with Maxwell’s equations form the system of equations to be
solved.

Consider a plasma with density n,, an injected bunch with density n,, and a
density perturbation n,. To linearize we assume

n; < ng (15)

and that the quantities v, &, and A are all first-order perturbations. Keeping only
linear terms in Eq. (14), we have

on,

—+ny(V-v)=0

at (16)
ov_et
a m’

We see that only the electric field appears in first order, and only one of
Maxwell’s equations is necessary

V- &=4me(n,+ny). 17)
Combining Egs. (16) and (17) yields the equation for the density perturbation,

*n,
at>

+ wf,nl = —wf,n,,, (18)

where w,, the plasma frequency, is given by

2
_[471'6 n0]1/2
wp = .

m

So far we have not restricted the system to be one-dimensional.



176 R. D. RUTH ET AL.

For the one-dimensional case, consider an external beam given by
ny, = ad(z —vpt) (19)

where o is a uniform surface number density and 8(x) is the Dirac delta function.
The beam is moving with velocity v,. Although the plasma has been assumed
nonrelativistic (v« ¢), we have not assumed that v, « c. Changing variables to

y= vbt -z, (20)
Eq. (18) becomes
62
ay”;+ k2n, = —k2a8(y) 1)
where
k==2,
Vp
Integrating over y =0, we find
0+
LY RS (22)
ay lo-

At all other values of y, the density perturbation obeys the homogeneous
equation of motion. Thus the density perturbation induced by the injected beam
is
{— ko sin ky y>0
n,=

2
0 y <0. (23)

There is no plasma wave ahead of the driving beam. This is due to the fact that
the plasma wave has zero group velocity; it does not propagate in space and
therefore does not overtake the driving beam even if the driving beam moves
nonrelativistically. Mathematically, this is manifested by the absence of spatial
derivatives in Eq. (18).

From Eq. (17), the electric field is

—41eo cos ky y>0
€={—2mec y=0 (24)
0 y <0.

€ is zero in front of the driving beam because the net charge in the plasma
obtained by integrating n, is equal to —eo. Thus ahead of the beam the field from
the perturbed plasma charge density exactly cancels the surface-charge field of
the driving bunch.

Notice also that in Eq. (24) the electric field at y =0 is 1/2 of the peak value.
This factor can be checked by energy conservation as follows. The energy
deposited per unit length by the exciting bunch can be calculated from the peak
electric field in the wake,

%*(peak)

ry—— 2me’o’. (25)
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On the other hand, the energy lost by the driving beam is
—AE,=—%(0)ec =2me’0>. (26)

Thus energy conservation is satisfied. Note that this factor of 1/2 is simply the
inverse of the factor of 2 discussed in the first section. In addition, note that the
energy deposited by the driving beam in the plasma depends only on the surface
density of the driving beam, o and is independent of the plasma density. This
does not mean that the plasma density is arbitrary. It must be large enough to
satisfy the linearity condition in Eq. (15). This can be conveniently rewritten as

&> k
Inomoi> *(8pea_) = Inomv?(peak). 27)
™

The peak plasma electron velocity produced by the field must be much smaller
than the beam velocity.

Case 2. Three-Dimensional Nonrelativistic Plasma

We now consider a cylindrically symmetric leading bunch with density given by
ng, = (T(r)S(Z - Ubt). (28)

Equation (18) can be solved just as in the one dimensional case; the perturbed
density is
—ka(r) sin ky y>0

na(r) = {o y <0.

(29)
Note that the r dependence of n, is equal to that of the driving beam. This is
again a consequence of zero group velocity. Introducing the electrostatic potential
¢, we must solve
19
r or

(r20) 28 e, (30)

"or az?
The electric field of the plasma wave is then given by
&=-Vo. (31)

Effects due to the magnetic field are second order and again are ignored as in the
one dimensional case.
To be specific, we will use a parabolic distribution for the surface charge density
of the beam;
2N
— (1-r*/a?) r<a
o(r)=qma
0 r>a.

(32)

It is then straightforward to show that the potential behind the bunch is given by
¢ = R(r) sin (kz — w,t)
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FIGURE 1 The longitudinal and radial electric fields in the plasma wave. The relative size of the two
fields depends upon the radial position, r.

with
16eN [Kotka) Iother) + 12— <
a r TS T TS, r a
ka 2 0 2 (ka)* 2a* (33)

I(ka)K(kr), r>a,
which yields the electric fields
€,=—kR(r) cos (kz —w,t), r<a

—16eN
8 = Tf" {Kz(ka)Il(kr) - kTrﬂ} sin (kz—w,t), r<a, (34)

R(r)=

where I, and K, are modified Bessel functions. Notice that there are both
longitudinal (accelerating or decelerating) and radial (focusing or defocusing)
electric field components. Figure 1 shows that over 1/4 of the plasma oscillation,
the field is both accelerating and focusing.

It is interesting and useful to calculate the fields for ka » 1 and for r« a. Since
the modified Bessel function K, is exponentially small in this case, we find

_ 2
é, = iiN (1 —25> cos (kz — w,t)

16eN( r \ .
é, Z—az—‘ <m> sin (kz — wpt).

(35)

In this case, the longitudinal field at r =0 is identical to the one-dimensional
calculation and the radial field is linear in r. It is important to note that if a = A,
the plasma wavelength, then ka = 2w, and Egs. (35) are a good approximation to
Egs. (34) for small values of r.

Case 3. The Nonlinear One-Dimensional Relativistic Plasma

It has been shown in Refs. 16 and 17 that it is possible to find one-dimensional
analytical solutions to describe a nonlinear free plasma oscillation using the
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relativistic fluid equations and Maxwell’s equations. Since the exciting beam is a
delta function, it is also possible to find analytical solutions for the wake function.
From Ref. 17 the equations governing a free nonlinear plasma oscillation in one
dimension are

= oY
Vo=V
ﬁ[ cZ— v ]_ v (36)
dy? lV1-v2/c?] vy—v
where
vy is the wave phase velocity
is the velocity of the plasma electrons
n is the density of the plasma electrons 37

no is the ion density.

For the case of an exciting beam, the phase velocity v, is equal to the velocity of
the driving beam v,. Furthermore, Eq. (36) becomes

d? [ cZ— v ] 2[ v nb]
— | ——]= —+—1. 38
dy? IV1—v?/c? “p v~V R (38)
If we substitute Eq. (19) for the beam density and integrate over y =0, we find
i[ c>— v,V ] " wlo (39)
dy vV ]. - 02/62 0— no )

On the other hand, for the homogeneous equation there is an invariant v,
which satisfies

S {i [ﬂ]} (40)
Ym = =07 202 ldy Levi—v2/c2l)
Ym is the maximum energy of the plasma electrons in units of the rest mass.
Initially there is no plasma wave and vy,, = 1. At y =0+ we can calculate the
invariant using Eqgs. (39) and (40); we obtain
wlo?
2n3c?’

The electric field behind the exciting bunch written in terms of v and v, is, from
Refs. 16 and 17

Ym =1+ (41)

Maw,c 1 12
800 = +2 2 o~ i @

Thus the maximum electric field is given by (v =0)

E =2 m%"c [y — 112 = 4rec. (43)
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Comparing this result with that obtained for the one-dimensional linear case we
see that the peak electric field is unchanged! This is true even though the
oscillation is nonlinear, and the plasma oscillation frequency depends on v,,.

To understand this result, first note that both the electric field and the kinetic
energy of the plasma electrons are zero in front of the driving bunch. As for the
linear case, this follows from the fact that

r(n —ng) dy = —o. (44)
0

Immediately behind the driving beam, the plasma kinetic energy has not changed,
but the electric field has changed discontinuously to its maximum value —41reo.
The shape of the longitudinal wave and its frequency are determined by the
plasma dynamics; however, the energy density in the plasma wave is completely
determined by the field immediately after the exciting bunch. Since this nonlinear
plasma wave is periodic, the electric field reaches its maximum periodically.

The result for the maximum electric field in Eq. (43) does not mean that the
plasma density is arbitrary. Equations (36) are for wave solutions with phase
velocity v,. However, there are singularities in Eqgs. (36) if the plasma electron
velocity v is equal to v,. This indicates that the wave assumption breaks down at
this point. If we restrict v to be less than v,, and write the condition in terms of
energy density in the wave, we find that the plasma density must satisfy

&Z(peak)

] 1), 45)

no(yo —1)> [
Note that this is just the relativistic generalization of Eq. (27) for the nonrelativis-
tic plasma.

4. OTHER ACCELERATOR PHYSICS ISSUES

In this section, we discuss some other accelerator physics issues that are relevant
to the plasma wake field accelerator. We will assume that the accelerator is made
up of many stages. The energy gain of each stage is assumed to be small compared
with the total gain in the entire accelerator. Each stage is driven by one driving
bunch. For simplicity we will assume that all the driving bunches are identical in
energy, number of particles and transverse size. We will not consider cases in
which these quantities vary from stage to stage, although this might be desirable
for the optimization of some parameters. Note however that the accelerated-
bunch energy changes from stage to stage, and thus its transverse size is adiabati-
cally damped. (See Section B below).

A. Focusing

Due to the radial field given in Eq. (34) there is focusing (or defocusing) in the
transverse dimensions. The magnitude and sign depend upon the phase at which
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the accelerated bunch resides in the plasma wave. In cases of interest, the
accelerated bunch and the phase velocity of the plasma wave (equal to the
velocity of the driving bunch) are so close to ¢ that the phase slippage is
acceptable (see Section 4D). Therefore, one can select the desired focusing by the
position of the bunch on the wave. Of course, there is a trade off between the
accelerating field and the focusing field. It is useful to calculate the ‘beta function’
of this focusing system, defined in this case to be the wavelength/27 of the
transverse oscillation.
The differential equation governing the transverse oscillations of a highly
relativistic particle is
d’x  eé

4z yme? (46)

where &, is the electric field in the transverse dimension x, and z is the length
along the linac. The energy is assumed to be constant or varying adiabatically. If
we consider small-amplitude oscillations, then from Eq. (35) we find

d*x [16e2N sin d)]
AR et S il 4
dz? ka*ymc? x=0, @7
where ¢ is the phase along the plasma wave. Identifying the coefficient of x above

with 872 yields
a2[ vk ]1/2
F=7 rr.Nsin¢l ° (48)

The beta function therefore scales as y? if a, k, N, and ¢ are held constant
during acceleration.

B. The Maximum Efficiency

It is useful to neglect the effect of the finite bunch length of the trailing bunch and
consider it rigid to calculate the maximum possible efficiency. From the equation
for the longitudinal accelerating field (Eq. (35)), it is obvious that the trailing
bunch should have a size somewhat smaller than the leading bunch. On the other
hand, this size does not stay constant during acceleration. If we assume that the
initial beam size of the trailing beam is some fraction a of the leading beam, then
the beam size at other points along the accelerator is given by

b =aa<$>m. (49)

This is true because the beam size is given by v - emittance, while

B = y'?
and the emittance

€ x —, (50)
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The energy gain per stage of the trailing beam is

Nz/b2>
N,/a?

N y\2
.
! a2N1 Yi

Integrating this over the accelerator length L,.,, we obtain

2" (- Fevive)
AE, =1 2 1+es)d
2T, N, )

AE2 = E1<2_

where L is the length of each stage and

l=1+gs.

Yi

Integrating the above expression yields (vy; > v;)

E L [ N, 2 <Yf>1/2]
AE,= 2— —-\— .
2 L a’N; 3 \y,

The energy-transfer efficiency, which is given by

_N:AE, L
""N E Lo

is maximum when
N2_3 2f Yi 12
v3e)

and
N3 ()

nmax—-I\Tl—Ea ‘Y_f .

(51)

(52)

(53)

(54)

(55)

(56)

(57)

Note that this efficiency might be improved by decreasing the transverse size of
the leading bunch from stage to stage. This is not considered here for simplicity

and also because it may cause other problems.

C. Radiation

The radiation due to linear acceleration is very small; however, since the focusing
fields in the plasma can be large, one must also include the radiation due to the
local bending of the focusing fields. The formula for the energy loss per unit

length due to a local bending radius p is

dE_2 e?y?

dz 3 p*>

(58)
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For motion in a focusing system, this is replaced by
1 b2
0’ 2p°
where b is the rms radius of the accelerated bunch. This energy loss should be
small compared to the acceleration gradient. It is interesting to note that if the

integrated loss is greater than the injection energy, the beam will damp trans-
versely.

(59)

D. Phase Slippage

Phase slippage can occur in two ways in a plasma wake field accelerator.

1. The driving bunch and the accelerated bunch have different energies and
hence slightly different velocities.

2. The transverse motion of the accelerated bunch leads to a path-length
change. This effect cannot be compensated at each stage because different
particles in the bunch travel on different paths.

In the first case, the relative slip along the plasma wave is given by
1 L
AL=— j [v1(s) —va(s)] ds, (60)
0

where L is the length of one acceleration stage, and subscripts 1 and 2 refer to
the driving and accelerated bunches respectively. Integrating for velocities close to

c yields
AL 1 1
aLif1 1) o
Y1iY1ir  Y2iVof

where subscripts f and i refer to final and initial respectively. To avoid phase slip
over a stage of length L, we need AL much less than the plasma wavelength A,

i.e.,
ﬁ>1[ LE— ] (62)
L 2 Y1iYir  Y2iV2r

In practice, the first term in Eq. (62) dominates. This yields a restriction of the
final energy of the driving beam given by

Yir > 5 (63)

2 'Yli)\p '

In the second case, the change in path length due to the transverse oscillations
is given by

Lto(
AL = J V1+x2 ds, (64)
0
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where x' = dx/ds is the local slope. Note that we must consider the change in path
length over the total length, since its effect can not be compensated for all
particles at each stage. Using Eq. (47) to find x' and expanding the square root for
small x' yields a path-length change

Ltot 2B 12’Yf ’
where (; is the beta-function at injection and Bi is the peak transverse-oscillation
amplitude at injection. The factors of v; and y; come once again from the

transverse damping of the accelerated beam. To avoid phase slip, this path length
change should also be small compared with a plasma wavelength, i.e.

(65)

2
lb_z« Ay
27f Bi Ltot

If conditions (62) and (66) are satisfied, one can neglect phase slippage between
the accelerated beam and the plasma wave.

(66)

E. Transverse Variation of the Accelerating Field

From Eq. (35) it is evident that for a driving bunch with finite transverse size, the
longitudinal field varies transversely. This means that particles performing large
oscillations in the focusing field see on the average a lower accelerating gradient
than those on axis. This leads to a decrease in the average energy gained by the
trailing beam and to a spread in energy. If we average the acceleration gradient
over the transverse beam distribution (assumed parabolic) and integrate over the
accelerator length, we find a shift in average energy for a trailing beam of
maximum initial radius b;,

pree(1-2 (Y (2))

and a spread in energy given by
N2/~ \1/2
(E).~5 6" ©
E /ims 3 \a Y

F. The Transverse Emittance

Assuming that the injected beam is matched to the focusing properties of the
plasma wake, the transverse emittance of the accelerated beam at injection is
given by

(69)

? 4 2[reNsin d)]l/z
ei =—=4 _—

Yik
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while at the end of acceleration, the emittance is

€ =€ Y (70)
Yr
The emittance should be kept small enough that it can be focused to a sufficiently
small spot size by the final focus system of the high-energy collider.

G. Beam Loading

As we have shown previously, a plane of charge moving through a plasma leaves
behind a wake field which varies as 4meo cos ky, while ahead of the charge the
field vanishes. This is similar to the case for a velocity-of-light point charge
moving through an accelerating structure with metallic walls. The beam-induced
longitudinal wake field vanishes ahead of the charge because of the causality
condition, while behind the charge the field varies as cos k,y for the nth mode. In
this case, if a longitudinal charge distribution is considered rather than a point
charge, a convolution of the wake field for a point bunch with the charge density
distribution is required to obtain the wake field. For the case of an electron sheet
with density distribution o(y) moving through a plasma, the analogous beam-
induced field is

&, (y)= 47reJ1y dy'o(y") cos k(y—y"). (71)

As an example, consider the case of a rectangular charge distribution that has a
length small compared with the plasma wavelength and let o, be the total number
of particles per unit area in the distribution. The beam-induced field rises linearly
from zero at the head of the bunch and reaches 4meo, at the tail. The beam
loading as described by Eq. (71) has two effects. First, different particles in the
driving bunch experience different rates of energy transfer to the plasma and
therefore travel different distances before they come to a stop. The tail particles
are stopped earliest while the head particles do not stop at all. This effect was
discussed in Section 2.

Another beam-loading effect occurs when the driving bunch length is compara-
ble to or longer than the plasma wavelength. Then the convolution (71) yields a
peak wake field that is much reduced as compared with the wake produced by a
short bunch of equal intensity. For a rectangular distribution of total length 21, the
reduction factor for the maximum amplitude reached by the wake behind the
bunch is sin (kl)/kl. However, the ratio of the maximum accelerating wake behind
the bunch to the maximum accelerating wake within the bunch (the transformer
ratio) is always less than or equal to 2. This limit on the transformer ratio is valid
for any symmetric bunch distribution.

For an asymmetric bunch distribution in which the bunch current rises gradually
from the front of the bunch toward the peak and then falls off more sharply
behind the peak, the transformer ratio as defined above can be larger than 2.
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However, for a given intensity the peak wake field is again much reduced as
compared to the case of a short bunch. This effect could be exploited by incressing
the number of particles in the bunch while using longer asymmetric bunches. In
this way it should be possible to decrease the energy of the driving bunch while
maintaining the same energy gain for the trailing bunch. We will not, however,
exploit this possibility in the following section.

In addition to the longitudinal beam-loading effects, there are also transverse
effects. The head of the driving bunch experiences no transverse focusing or
defocusing fields, while the tail of the bunch sees the transverse focusing wake
fields left by all the preceding particles. The beta function describing this focusing
action is given by Eq. (48), where for a rectangular bunch with a bunch length 21,
the factor sin¢ is replaced by (sin kl)?/kl. In order to have similar trans-
verse behavior for the head and tail of the driving bunch, we again need to have a
bunch length much shorter than the plasma wavelength.

5. A NUMERICAL CONCEPTUAL DESIGN

It is an interesting exercise to imagine a 1 TeV accelerator 1 kilometer long which
uses a plasma wake field to generate the longitudinal fields for acceleration. In
this case, the acceleration gradient necessary is

G =1GeV/m. (72)

From the discussions in the previous sections, it is clear that if the driving
bunches all go through the same plasma, the maximum energy gain of the
accelerated particles increases only as the square root of the number of bunches.
If, however, each driving bunch excites a separate accelerating section, then the
energy gain for the accelerated particle is proportional to the number of driving
bunches. With this in mind, we consider an accelerator made up of sections of
length L with one short driving bunch for each section. If we elect not to use the
slow logarithmic increase in the energy gain shown in Eq. (13), then each driving
bunch must have an energy

E,>GL. (73)
To be specific we let
L=5m. (74)
Thus we require 200 driving beams of energy
E,>5GeV. (75)

In addition we would like the driving beam to lose 5 GeV in the 5 meters to yield
the required acceleration gradient. If we use bunches with

N,=5x10", (76)
then from Eq. (35) with r=0,
8e?N 8r,N
G=2"= e, (17)

a a
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Thus, we require a beam radius of
a=0.76 mm. (78)

To obtain an approximately one-dimensional plasma it is necessary to restrict the
plasma wavelength to

A, <0.76 mm (79)
which implies that
no=1.9x10%/cm?. (80)

One could produce a train of driving bunches with only one linac, and then
bend the bunches onto the straight line of the wake field accelerator with proper
path lengths to give the correct timing. In this regard, it is interesting to note that
the necessary precision for bunch placement is much less than a plasma
wavelength.

To set the size of the accelerated bunch we restrict the rms spread in energy to
1%. This yields a bunch radius of

Yi 1/4 1/4
b= 0.46a<;‘) =0.35 mm(;’) . (81)

The beta function of the transverse focusing from Eq. (48) is

(/v ]2

B=15m (sin 6] (82)
The radiation from the focusing fields is then
dE .
5 5.7 MeV/m[y/v;]*’* sin* ¢. (83)
The phase slip in Eq. (65) can now be calculated, yielding
AL =0.03 mm[sin ¢ ]. (84)

Using Eq. (69) the normalized emittance is given by
€normatized = YD?/ B
=8.2x 10" mvy,y; sin ¢ (85)
~1.6x 1072 mvsin ¢,

where we have taken 10 GeV to be the injection energy and 1 TeV to be the final
energy. For reference, the normalized emittance for the SLAC Linear Collider is

€grc™ 3X 10_5 m. (86)

Since for colliding beams we need to keep the beam emittance small enough
for the beam to be focused to sub-micron size, we should restrict the phase ¢ on
the plasma wave;

sinp< 1. (87)
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In order to have the same emittance as the SLC, for instance, we need to choose
sin ¢ =3.5x 1076, (88)

Such an accurate phase requirement would indeed be difficult. The bunch would
have to have a microscopic length. However, we do not think a discussion of
detailed optimization is appropriate here; the question of the transverse emittance
should be addressed more completely when the design becomes more sophisti-
cated.

Finally we can calculate the maximum efficiency using Eq. (57); we find

v\
Nemax = 0.21 (—') =0.021. (89)
Yt
This is a rather low value, but again improvements may be possible with a more

sophisticated design.

6. CONCLUSION

In the previous sections, we have addressed many accelerator physics issues
associated with the plasma wake field accelerator. There were several key points.

The plasma wake field is subject to the same limitations as the wake field in a
metallic structure. In all practical cases with short driving bunches, this limits the
energy gain of a trailing particle to about twice the energy of a particle in the
leading bunch. This limitation led us to consider a multistage design with one
driving bunch per stage. Note that in the wake field accelerator, the leading bunch
is used to obtain a high field; if there is already a field in the plasma or structure
and the bunch is used to sustain that high field, then the results would be quite
different. This case will be treated in a future paper.

The plasma wake field was calculated for several interesting cases. It is clear
from these calculations that, in order to keep radial fields low and longitudinal
fields high, it is necessary that the radius of the exciting beam be the order of or
greater than the plasma wavelength. In addition, the bunch length of both the
driving bunch and the trailing bunch must be much less than the plasma
wavelength. Finally, the nonlinear relativistic plasma wake field calculation indi-
cates that for a given driving bunch, the peak longitudinal electric field obtained is
not improved by nonlinear oscillations.

The finite transverse size of the exciting bunch led to a transverse variation of
the longitudinal accelerating field and, more importantly, to radial transverse
focusing. With these transverse fields in hand, it was possible to address many
issues: synchrotron radiation, phase slippage, energy-transfer efficiency, beam
loading and transverse emittance.

Finally, a numerical conceptual design was given. The accelerating fields
obtained are impressive, the order of 1 GeV/m, and the driving bunches to obtain
these are similar to the SLC bunches in transverse size and number of particles,
although the bunch length must be a good deal less. There are also potential
difficulties; the bunch length must be very short and the efficiency is rather low.
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However, the design given here is certainly not optimum and these problems
might have solutions.

The comparison of the plasma wakefield accelerator with the Plasma Beat-
Wave scheme should now be quite straightforward. Many of the issues addressed
here are independent of the method used to obtain the plasma density wave. At
first glance, a comparison of the results here with those obtained in Ref. 3
indicates that the plasma wake field accelerator is at least as interesting as the
Plasma Beat-Wave scheme and may have decided advantages.
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