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In the main article [CQG 38 (2021) 055003], a new “canonical” form for the Lewis metrics
of the Weyl class has been obtained, depending only on three parameters — Komar mass
and angular momentum per unit length, plus the angle deficit — corresponding to a
coordinate system fixed to the “distant stars” and an everywhere timelike Killing vector
field. Such form evinces the local but non-global static character of the spacetime, and
striking parallelisms with the electromagnetic analogue. We discuss here its generality,
main physical features and important limits (the Levi-Civita static cylinder, and spinning
cosmic strings). We contrast it on geometric and physical grounds with the Kerr
spacetime — as an example of a metric which is locally non-static.
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1. Introduction

The general stationary solution of the vacuum Einstein field equations with

cylindrical symmetry are the Lewis metrics!™
2
ds? = — f(dt* + Cdyp)* + T("2_1)/2(dr2 +d2?) + %d(pg ; (1)
2,.n+1 n+1
1— c’r cr
f=ar™" ——5— wap TP (2)

usually interpreted as describing the exterior gravitational field produced by
infinitely long rotating cylinders. They divide into two classes: (i) the Weyl class,
when all the constants n, a, b, and ¢ are real; (ii) the Lewis class, for n imaginary
[implying in turn c real and @ and b complex, in order for the line element (1) to be

real®4].
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In the main article, Ref. 5, we have shown that the Weyl class metrics can be
written in the “canonical” form

an, . 2
ds? = *TT (dt - quﬁ) 4@ =1 (2 4 422) 4 qr21-2Am) g2 |
depending only on three parameters with a clear physical significance: the Komar
mass (Ay) and angular momentum (j) per unit z-length, plus the parameter «
governing the angle deficit. This form allows for a transparent comparison with the
Levi-Civita non-rotating cylinder — archetype of the contrast between local and
global staticity — which Ref. 5 discusses in detail both on physical and geometrical
grounds. Therein its matching to the van Stockum® cylinder in star fixed coordinates
is also shown. Here we revise some main features of the solution, focusing on
its generality [and redundancies of the more usual form (1)-(2)], notable limits,
and physical properties, with special attention to those less developed in Ref. 5.
Addressing the question posed to us in the discussion following the presentation of
this work at MG16,” we focus here on its comparison with a non-static (globally

and locally) stationary solution, exemplified by the Kerr spacetime.

2. Stationary spacetimes and levels of gravitomagnetism

The line element ds? = gagdxadxﬁ of a stationary spacetime can generically be
written as

ds? = —e?®(dt — Aidx")? + hyjda'dx? | (3)

where €2 = —ggo, ® = ®(29), A; = Ai(27) = —goi/go0, and h;; = hyj(zF) =
gij + €*® A; Aj. Observers of 4-velocity u® = e~?92 = e~®§¢, whose worldlines are
tangent to the timelike Killing vector field d;, are at rest in the coordinate system
of (3). They are dubbed “static” or “laboratory” observers. The quotient of the
spacetime by their worldlines yields a 3-D Riemannian manifold ¥ with metric
hij (called the “spatial metric”), which measures the spatial distances between
neighboring laboratory observers.® It is identified in spacetime with the space
projector with respect to u®, hag = uqug + gop. Let UY = dz®/dr be the 4-
velocity of a test point particle in geodesic motion. The space components of the
geodesic equation DU /dr = 0 yield®® 1!

29

D(j = — — — ~ — ~ —
d—T:'y[vG—&—UxH}; G=-Vd: H=eVxA, (4)

where v = —U%u, is the Lorentz factor between U% and u®, V denotes covariant
differentiation with respect to the spatial metric h;; (i.e., the Levi-Civita connection
of ¥, V; X' = X'+ F(h);ka, for some spatial vector X), D/dr = U'V;, so that
DU /d7 describes the acceleration of the 3-D curve obtained by projecting the time-
like geodesic onto the space manifold X, being U its tangent vector. The latter is
identified in spacetime with the projection of U onto : (U)* = hU B [so its space
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components equal those of U®, (I)! = Uf]. The spatial vectors G and H (living
on X)) are dubbed, respectively, “gravitoelectric” and “gravitomagnetic” fields [or,
jointly, “gravitoelectromagnetic” (GEM) fields]. These play in Eq. (4) roles analogous
to those of the electric (E) and magnetic (B) fields in the Lorentz force equation,
DU /dr = (q/ m)['yE" +U x E]i, and are identified in spacetime, respectively, with
minus the acceleration and twice the vorticity of the laboratory observers:

G = —=Vyu® = —uo‘;ﬁuﬁ ; H® = Py, gus . (5)

They motivate also dubbing the scalar ® and the vector A gravitoelectric and
gravitomagnetic potentials, respectively.

Other realizations of the analogy arise in the equations of motion for a
“gyroscope” (i.e., a spinning pole-dipole particle) in a gravitational field and a
magnetic dipole in a electromagnetic field. According to the Mathisson-Papapetrou
equations,'? 13
a gyroscope of 4-velocity U® is Fermi-Walker transported along its center of mass
worldline, DS®/dr = S*a,U®, where a® = DU®/dr. If the gyroscope’s center of
mass is at rest in the coordinate system of (3) (U® = u®) the space part of this

under the Mathisson-Pirani spin condition,'* the spin vector S¢ of

equation yields®
SxH, (6)

which is analogous to the precession of a magnetic dipole in a magnetic field,
DS /dT = [ix B. When the electromagnetic field is non-homogeneous, a force is also
exerted on the magnetic dipole, covariantly described by DP®/dr = Bﬁayﬁ,l‘l’ 15
where i is the magnetic dipole moment 4-vector, and Bag = *Fuu.gU* (F of =
Faraday tensor, *x = Hodge dual) is the “magnetic tidal tensor” as measured by the
particle. A covariant force is likewise exerted on a gyroscope in a gravitational field
(the “spin-curvature” force!? %), which can be written in the remarkably similar

form™

DP*
dr

1
= —HP*Sg; Hop = *Rapup, UPUY = §ew”RMBl,U“U”. (7)

Here H, 3 is the “gravitomagnetic tidal tensor” (or “magnetic part” of the Riemann
tensor) as measured by the particle, playing a role analogous to that of B,g in
electromagnetism. For a particle at rest in a stationary field in the form (3), it is

related to the gravitomagnetic field H by the expression!!

1= -

H;; = —3 V;H; + (G- H)h;j —2G;H;| . (8)
In the linear regime, H;; ~ H; ;, and so one can say that (comparing to H ) Hyp is
essentially a quantity one order higher in differentiation of A.
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2.1. Sagnac effect

By contrast with classical electromagnetism (where only the curl of the magnetic
vector potential, V x A=8 , manifests physically), and more like in quantum theory
(where A manifests itself in the so-called Aharonov-Bohm effect!6), in General
Relativity there are also gravitational effects governed by the gravitomagnetic vector
potential A (or 1-form .A). One of them is the Sagnac effect, consisting of the
difference in arrival times of light-beams propagating around a spatially closed path
in opposite directions. In flat spacetime, where the concept was first introduced (see
e.g. Refs. 17, 18), the time difference is originated by the rotation of the apparatus
with respect to global inertial frames (thus to the “distant stars”), see Fig. 1 in
Ref. 5. In a gravitational field, however, it arises also in apparatuses which are
fixed relative to the distant stars (i.e., to asymptotically inertial frames), Fig. 1(a)
below, signaling frame-dragging.? 822 In both cases the effect can be read off from
the spacetime metric (3), encompassing the flat Minkowski metric written in a
rotating coordinate system, as well as arbitrary stationary gravitational fields. Along
a photon worldline, ds? = 0; by (3), this yields two solutions, the future-oriented one
being dt = A;dz® + e~ ®dl, where dl = \/h;;dz'dzJ is the spatial distance element.
Consider photons constrained to move within a closed loop C in the space manifold
3; for instance, an optical fiber loop, as depicted in Fig. 1 (a). Using the + (-) sign
to denote the anti-clockwise (clockwise) directions, the coordinate time it takes for
a full loop is, respectively, t+ = ¢, . dt = §, e~ Pdl+§, A;da’; therefore, the Sagnac
coordinate time delay Atg (At in the notation of Ref. 5) is

Atszt+—t,:2§£¢4idxi:2§£,4, (9)
C C

translating, in the observer’s proper time, to Arg = e®Atg. We can thus cast
gravitomagnetism into the three distinct levels in Table 1, corresponding to different
orders of differentiation of A (the first one being A itself).

2.2. Synchronization gap

Another physical process where A manifests is in the synchronization of the clocks
carried by the “laboratory observers” (i.e., tangent to the Killing vector field
0¢). Consider a curve z%(\) of tangent dz®/dA which is spatially closed (i.e., its
projection onto ¥ yields a closed curve C, so that after each loop it re-intersects
the worldline of the original observer). Along z%*()), the synchronization through
Einstein’s light signaling procedure® 2! amounts to the condition that the curve be
orthogonal (at every point) to 95, that is, gopdr’/d\ = 0 & dt = A;dz’. This
curve will thus re-intersect the worldline of the original observer at a coordinate
time ¢t = t; + Atsync, where®

Atgyne :55 Aidz’ = 55 A (= Atg)2) . (10)
C C
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The observer will then find that his clock is not synchronized with his preceding
neighbor’s by a time gap (as measured in his proper time) Argyne = echtSync,
corresponding, in coordinate time, to an interval Atgyn. [which is one half the Sagnac
time delay Atg along such loop, Eq. (9)]. Only when Atgyn. = 0 the observers are
able to fully synchronize their clocks along a closed loop.

2.3. Gravitomagnetic clock effect

As is well known, in the field of a spinning body the periods of co- and
counter-rotating circular geodesics differ; such an effect has been dubbed?3 26
gravitomagnetic “clock effect”. The corresponding angular velocities read (see e.g.
Sec. 3.1 of Ref. 5)

—904,r £ \/géw — 96,7900,
Gop,r

(11)

Qgeo:ﬁ: =
and thus the difference between their periods, Atge, = 271'((2%_.910 L+ Qg_e{%) =
—4mgog.r/goo,r, 18727

*HT¢
G,e®’

Atgeo = Atg + Atg; Atg = 47TA¢; Aty = —27 (12)

where xHj, = €;jpH® is the 2-form dual to the gravitomagnetic field H , such
that «H,.s = vhH? in cylindrical coordinates, and «H,, = —VhH? in spherical
coordinates. Here h is the determinant of the space metric h;; in (3). Hence, the
effect consists of the sum of two contributions of different origin, corresponding to
two distinct levels of gravitomagnetism in Table (1): the Sagnac time delay Atg
around the circular loop, governed by A, cf. Eq. (9), plus the term Aty due to
the gravitomagnetic force 'yU_: x H in Eq. (4) (which has a direct electromagnetic
counterpart, see Sec. 3.1 in Ref. 5; cf. also Ref. 26).

The delay (12) corresponds to orbital periods (in coordinate time) as seen by
the “laboratory” observers, at rest in the coordinates of (3). Other observers (e.g.
rotating with respect to the former) will measure different periods since, from their
point of view, the closing of the orbits occurs at different points. An observer-
independent akin effect?®2® can however be derived, based on the proper times (7
and 7_) measured by each orbiting particle between the events where they meet,
see Fig. 1 (b). Set a starting meeting point at ¢4 = ¢_ = 0, t = 0; the next meeting
point is defined by ¢ = 27 + ¢_. Since ¢+ = geo+t, the meeting point occurs at
a coordinate time ¢t = 27/(Qgeot — Qgeo— ). Hence,

t 2r(UY)~1
Ti:—:—ﬂ-( z) ; Ar=7L —7_ =21

)~ - )
U:(l): QgeoJr - Qgeof '

Qgeo«# - Qgeof

(13)
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3. Artificial features of the usual form of the Weyl class metric

In the case of the static Levi-Civita cylinder, which follows from (1)-(2), with n and
a real, by making® b = 0 = ¢, we have® ® = 2\, In(r) + const., G = =2\, /rdr,
A = 0 = H, where \,, = (1 —n)/4. This exactly matches the electromagnetic
counterparts for an infinite static charged cylinder, if ones identifies Ay, with minus
the charge per unit z-length. (A, being actually the Komar mass per unit z- length,
as we shall see in Sec. 4.3). However, in the general case b # 0 # ¢, we have

e ®, A and G complicated [Egs. (43) of Ref. 5], and very different from the
electromagnetic counterparts for a infinitely long spinning charged cylinder
(in the inertial rest frame);

e H and H,s both non-zero [and complicated, Egs. (43) and (45) of Ref. 5],
at odds with the electromagnetic analogue.

These features are somewhat unexpected given the similarities with the
electromagnetic analogue in the static case, and given that this metric is known
to be locally static. The situation resembles more the electromagnetic analogue as
seen from a rotating frame. Moreover,

2n

e O, ceases to be time-like for r*® > a?n?/c?> = no observers at rest are

possible past this radius

which is, again, reminiscent of a rigidly rotating frame in flat spacetime where, past
a certain value of r, the observers would be superluminal. The question then arises,
can the metric, in the usual form (1)-(2) given in the literature, be actually written
in some trivially rotating coordinate system? We will next show this to be the case.

4. The “canonical” form of the Weyl class metric
4.1. “Star-fixed” coordinates: the metric with only three parameters

An analysis of the curvature invariants [cubic and quadratic, Eqs. (39)-(41) and
(50) of Ref. 5] reveals that the Weyl class metric (i.e., with n real) is a “purely
electric” Petrov type I spacetime.? 2930 This means that, at each point, there is an
(unique) observer for which the gravitomagnetic tidal tensor vanishes, Hyg = 0.
These observers have 4-velocity of the form U* = U (0 + Qa;;), with constant
angular velocity €2 given by

Q:n—cbc or Q:—%, (14)
the first (second) value yielding a time-like U® if @ > 0 (a < 0). Thus, by performing
a coordinate rotation at constant angular velocity

o= -0, (15)

aWe shall see that the condition ¢ = 0 is actually not necessary, cf. Egs. (16)-(18).
PTaking a > 0, so that ¢ is the temporal coordinate.
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one switches to a coordinate system where these observers are at rest, and the metric
takes the form
1-s
r
ds? = —

—(dt + Cdg)? + P02 (dr? 4 d2%) 4+ ar'Tdg? (16)
with, for Q = ¢/(n — be),

C? ~ n — be s —be
=n; = — C=b =b 17
s=n Sy be_prtle a7)
and, for Q = —1/b,
~ — b — b
s=—-n; a=—ab®; C=—pt— 2 _p2= (18)
n s

Equation (16) shows that the metric depends only on three effective parameters:
@, s, and C, manifesting a redundancy in the original four parameters [different
values of (n,a,b,c) yielding the same values of (s,a,C) correspond to the same
physical solution]. The two values (14) for the angular velocity 2 are two equivalent
paths of reaching (16), and manifest a particular case of the redundancy: two sets
of parameters (a1,b1,c1,n1) and (asg, by, c2, n2), with a3 > 0 and as < 0, such that
the values of (s, ,C) are the same. There is one special case excluded from each
of the transformations (14)-(15); namely, bc = n for the first value of Q, and b =0
for the second; they are however redundant, as both lead to the Levi-Civita line-
element® (26).

Observe that the Killing vector field 0 is, in (16), everywhere time-like (goo <
0 for all 7). Therefore, observers of 4-velocity u® = (—gog)*/20¢, at rest in the
coordinates of (16), exist everywhere (even for arbitrarily large r). As we shall see
in Sec. (4.4) below, 9; is actually tangent to inertial observers at infinity, hence
the reference frame associated to the coordinate system in (16) is asymptotically
inertial, and thus fixed to the “distant stars”.

4.2. Symmetry under swap of time and angular coordinates

In the transformation (15) one assumes, as is usual practice, that ¢ is an angular
coordinate, ranging [0, 2], and ¢ the time coordinate [which in turn implies a > 0
and thus @ > 0 in case (17), and @ < 0 in case (18)]. Such assumption is however
not necessary to reach (16). Indeed, swapping ¢ <> ¢ in (1), again leads to (16),
as we shall now show. Substituting, in (1), ¢ — ¢/, t — ¢, the time-like observers
measuring vanishing gravitomagnetic tidal tensor have now angular velocity Q' =
1/, where Q is given by (14), and Q" = (n—bc)/c yields a time-like U% if a > 0, and
likewise Q' = —b for a < 0. Applying the transformation ¢’ = ¢’ — Q't' = ¢’ — ' /Q
to such line element leads to a primed version of (16),
1-s

ds? = " (dt' + Cdg)? + vV (dr? 4 d2%) + ar'Todg? (19)

(07

¢That it is so for b = 0 can be immediately seen by substituting in (16)-(17), yielding (26); likewise,
that it is so for n = bc can be seen by substituting n — bc in the expression for C in (18).
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with, for Q' = (n — be) /e, the identifications s = n, a = ¢?/(an?), C' = ¢/n; and, for
) = —b, the identifications s = —n, a = —a, C = —c/n. This is a natural result.
Equations (1)-(2) are just a general solution of the vacuum Einstein field equations
with three commuting Killing vector fields, one time-like and two spacelike,® 3!
having no information on global aspects of the coordinates; it is thus natural that
one be free to choose the angular coordinate rendering the axial symmetry.

One must note, however, that the metric in star fixed coordinates (16) does
not preserve such symmetry. The coordinate rotation (15), with the identification
© = p + 27, breaks that symmetry by implicitly choosing ¢ (and ¢) as a periodic
coordinate, and ¢t non-periodic. Indeed, substituting in (16) ¢ — ', t — ¢', leads to
(19) with ¢’ <> ' swapped:

rl—s

ds® = —

(Cdt’ +d¢')? + (V2 (ar? + d2?) + arttoat™ ; (20)

forcing now on it the identification (¢',¢') = (t',¢' + 27) (i.e, taking ¢’ to be
periodic), makes it become the Levi-Civita metric in a rotating coordinate system,
immediately diagonalizable through the coordinate rotation ¢ = ¢’ 4+ Ct. This
occurs because, by overriding the original identifications (¢, ¢) = (t,¢ + 27), the
geometry was globally (albeit not locally) changed. Indeed such transformation (with
such identifications) is not a global diffeomorphism, as can be seen e.g. from the fact
the ordered pairs P;: (t,¢) and Pa: (¢, ¢ + 27), which represented the same event
in the original metric (16), are mapped into the two different events P;: (¢, ¢') and
Ph: (' + 2w, ¢") in the metric (20). The transformation (¢, ¢’) = (¢,t), followed by
¢" = ¢’ +Ct, actually amounts to (76) of Ref. 5 which, as shown therein, corresponds
to the “famous”®* transformation that takes the Weyl class metric into the static
Levi-Civita one.

4.3. The metric in terms of physical parameters — “canonical”
form

The fact that in Eq. (16) the Killing vector field £¢ = 9§ is everywhere time-
like, tangent to inertial observers at infinity, and appropriately normalized,® allows
for defining a corresponding Komar integral on simply connected tubes V of unit z-
length parallel to the z-axis, having a physical interpretation of “active” gravitational
mass per unit z-length, as discussed in Secs. 5.2.1 and 2.4 of Ref. 5 (cf. also Refs.
32-35). It is given by

1
_87T oV

1—s

1
Am *d¢ = S—W/S(*df)qud(édz: T

where 0V = SU B; U Bs is the tube’s boundary, S its lateral surface, parameterized
by {¢,z}, and B; and By its bases, lying on the planes orthogonal to the z-axis
and parameterized by {r, ¢}, and in the second and third equalities we noticed that
(xd€)ry = 0 and (xd§)g. = 1 — s. Likewise, the Komar integral associated with the
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axial symmetry Killing vector field (* = 8(‘; has the interpretation of the spacetime’s
angular momentum per unit z-length,
sC

(*d()¢zd¢dz =

j=-

167

*d¢ =
oV 167

where we in the second equality we noticed that (x¢),, = 0. It follows that (16) can
be re-written as

4Am ; 2
—— (dt——)\ji1/4d¢> +rAm@An =D (g2 4 42%) 4 a2 gg?

(21)

4.4. Physical properties; gravitomagnetism

For a > 0 [so that ¢ in Eq. (21) is a temporal coordinate], the metric can be put in
the form (3), with

4
20 _ T
= D =2)\,1 K = 22
e ” = Am In(r) + K ; A 174)\ ———d¢; (22)
hijda'dz? = rPmCra=D (dr? 4 422) 4 ar?(1-2w)gp? (23)

[with K = —In(«)/2]. The gravitoelectric and gravitomagnetic 1-forms/fields read,
cf. Egs. (4),
2AIIl

G=-""4r; H=H=0. (24)
T

Thus ¢, G and H = 0 match their electromagnetic counterparts for a spinning
charged cylinder (as viewed from the inertial rest frame, see e.g. Sec. 4 in Ref. 5)
identifying the Komar mass with minus the charge, A\, <> —\; the gravitomagnetic
potential 1-form A = A,d¢ also resembles the magnetic potential 1-form A = md¢.
The cylinder’s rotation does not manifest in the inertial forces (nor in the tidal
forces, as shown in Sec. 5.2.3 of Ref. 5); the only inertial force acting on test
particles is the gravitoelectric (Newtonian-like) force mG@, independent of j- Thus,
particles dropped from rest or in initial radial motion move along radial straight
lines, cf. Eq. (4); and circular geodesics have a constant speed given by vge, =
V Am/(1/2 — Am), being thus possible when 0 < A\, < 1/4 (it is when Ay, > 0 that
G is attractive, and they become null for Ay, = 1/4). The vanishing of H means also
that gyroscopes at rest in the coordinates of (21) do not precess the components
of their spin vector S remaining constant, cf. Eq. (6). Since G "=s° 0, it follows
moreover that the reference frame associated to the coordinate system in (21) is
asymptotically inertial, thus one can take it as the rest frame of the “distant stars”
(“star-fixed” frame).

The only surviving gravitomagnetic object is thus the gravitomagnetic 1-form A,
corresponding to the first level in Table 1. One of its physical manifestations is the
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Distant star

@, Atg=0
%

Fig. 1. (a) Sagnac effect around spinning cylinders: a flashlight sends light beams propagating
in opposite directions along optical fiber loops fixed with respect to the “distant stars” (i.e., to
the asymptotic inertial frame at infinity). In each loop C, the difference in beam arrival times is
Atg = 2 ¢ A; since A is a closed form (d.A = 0), the effect vanishes for all loops not enclosing
the cylinder, and has the same value (25) for all loops enclosing it (the co-rotating beam arriving
first). (b) Frame independent gravitomagnetic clock effect: a pair of clocks in oppositely rotating
circular geodesics around a cylinder; when the cylinder spins (j # 0) the clocks measure different
proper times between the events where they meet, 74 > 7_.

Sagnac effect: consider, as depicted in Fig. 1(a) optical fiber loops fixed with respect
to the distant stars, i.e., at rest in the coordinate system of (21). The difference in
arrival times for light beams propagating in opposite directions along any of such
loops is given by the circulation of A along the loop, c.f. Eq. (9). Observe that .4
is a closed form, d A = 0 (since A, is constant), defined in a space manifold £
homeomorphic to R3\{r = 0}. By the Stokes theorem, this means® that the effect
vanishes along any loop which does not enclose the central cylinder (or the axis
r = 0), such as the small loop in Fig. 1 (a), and has the same nonzero value
47y

S 1/4— A

along any loop enclosing the cylinder, regardless of its shape; for instance, the large
circular loop depicted in Fig. 1(a). It is worth noticing that this mirrors the situation
for the Aharonov-Bohm effect around spinning charged cylinders, which is likewise
independent of the shape of the paths; the two effects are actually described by
formally analogous equations?.

The apparatus above makes use of a star-fixed reference frame, which is
physically realized by aiming telescopes at the distant stars.36:37 It is possible,
however (still based on the Sagnac effect) to detect the cylinder’s rotation in a more
local way, without the need for setting up a specific frame; only not with a single
loop, as along a single loop the effect can always be made to vanish by spinning it
with some angular velocity. In particular, for a concentric circular loop, the effect

Atg = 47T.A¢ = (25)

dRe-writing (9) in terms of the half-loop phase delay Ay = (E/h)Atg/2 = (2rE/h)As and
identifying {E, A4} <+ {q, Ay}, where E = photon’s energy, see Sec. 4.1 in Ref. 5.
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vanishes if it has zero angular momentum, i.e., if it comoves with the zero angular
momentum observers (ZAMOs) of the same radius. The angular velocity of such
observers, Eq. (69) of Ref. 5, is however r-dependent; hence, considering instead a
“coil” of optical loops, as depicted in Fig. 4 of Ref. 5, provides a frame-independent
(thought) experiment to detect the cylinder’s rotation, since it is impossible to make
the effect vanish simultaneously in every loop when j # 0 < A # 0.

4.4.1. Observer-independent gravitomagnetic clock effect

Another consequence of the vanishing of H is that the gravitomagnetic clock effect
in Eq. (12) reduces to the Sagnac time delay, Atg, = Atg = 4mAy; hence, all
that was said above about beams in optical loops around the cylinder, applies as
well to pairs of particles in oppositely rotating circular geodesics (the co-rotating
geodesics having thus shorter periods). It is however actually possible to detect the
cylinder’s rotation using only one pair of particles (i.e., a pair of clocks), through
the difference in the proper times (74 and 7_) measured by each of them between
the events where they meet, see Fig. 1 (b). From Egs. (13) and (11), with U} =

(=900 — 2Qge0+ 90 — Qgeoigw)_lm, we have

81 2 m
AT=14 —7_ = o7 (>0)
Va(l —dhg) (1 = 2Xy) + 8\ 2r8im—2a-1(1/4 — \py) !

(this result is mentioned in main paper,® though without presenting it explicitly).
Hence, when j # 0, the proper times measured by each clock differ when they meet,
the co-rotating clock measuring a longer time.

4.5. Important limits: Levi-Civita static cylinder and cosmic
strings

It is immediate to obtain important limits from the canonical form (21). Taking the
limit j — 0 yields the Levi-Civita metric?*

4Am
ds® = =T —dt? + 1P D (@2 4 @22) 4 ar20-2m) g2 | (26)
(0%

The inertial fields G and H = 0, as well as the spatial metric h;;, remain the same
as in (21) (the same applying to the tidal fields/forces, see Sec. 5.2.3 in Ref. 5).
They differ only in the gravitomagnetic potential 1-form A = —45/(1 — 4\,)dg,
governing global physical effects such as the Sagnac effect and synchronization gap
(10) in loops around the cylinder, and the gravitomagnetic clock effect, which are
all zero for the static metric (26), see Figs. 1-2.

The limit A\, — 0 yields

1
ds? = — = [dt + 4jd¢)” + dr? + dz* + ar?d¢? (27)
@
which is the metric of a spinning cosmic string® 38 3% of Komar angular momentum

per unit length j and angle deficit 27(1 — '/2) = 276. In this case the spacetime
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is locally flat (Rapys = 0) for 7 # 0. All the GEM inertial fields vanish, G = H = 0
(and the same for the tidal fields), thus there are no gravitational forces of any
kind. Global gravitational effects however subsist, governed by A = —4jd¢ and «.
The non-vanishing gravitomagnetic potential 1-form A means that a Sagnac effect
remains, thus the apparatuses manifesting the source’s rotation discussed in Sec. 4.4
apply here as well. The same applies to the synchronization of clocks: observers
at rest in the coordinates of (27) (which are in this case inertial observers) can
synchronize their clocks along closed loops not enclosing the string (i.e., the axis
r = 0), but are unable to do so for loops enclosing it. As for the gravitomagnetic
clock effect, it does not apply here, as circular geodesics do not exist (since there is no
gravitational attraction, G = 0). The angle deficit generates double images of objects
located behind the string,*%4! and a holonomy*!4? along closed (in spacetime or
only spatially) loops around the string. Namely, vectors parallel transported along
such loops turn out rotated by an angle —2mra!/? (i.e, 2m0) about the z-axis when
they return to the initial position — an effect which is independent of the shape of
the loop and of j; see Sec. 5.2.4 of Ref. 5. One thus can say that the metric (27)
possesses two holonomies: a spatial holonomy governed by «, which is the same
for spinning or non-spinning strings, plus a synchronization holonomy (Sec. 5.3.3 of
Ref. 5) that arises in the spinning case.

4.6. Summary of “canonical” features

We argue Eq. (21) to be the most natural, or canonical, form for the metric of a
Weyl class rotating cylinder for the following reasons:

e the Killing vector field 9; is (for a > 0) everywhere time-like (i.e., goo < 0
for all r), therefore physical observers u® = (—ggo)~ /202, at rest in the
coordinates of (21), exist everywhere.

e The associated reference frame is asymptotically inertial, and thus fixed
with respect to the “distant stars” (Sec. 4.4).

e A conserved Komar mass per unit length (\y,) can be defined from 9; which
matches its expected value from the gravitational field G and potential ®
in Sec. 4.4 (see also Sec. 5.2.1 of Ref. 5), and also that of the Levi-Civita
static cylinder (26).

e It is irreducibly given in terms of three parameters with a clear physical
interpretation: the Komar mass (A, ) and angular momentum (j) per unit
length, plus the parameter o governing the angle deficit of the spatial metric
hij-

e The GEM fields are strikingly similar to the electromagnetic analogues —
the electromagnetic fields of a rotating cylinder as measured in the inertial
rest frame (namely A = A,d¢; Ay =constant, H = Hyp = 0, and ® and
G ; match the electromagnetic counterparts identifying the Komar mass per
unit length A, with the minus charge per unit length A, cf. Sec. 4 of Ref. 5).
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e It is immediate from it to obtain the two important limits: spinning cosmic
string (A, = 0), and Levi-Civita static solution (evincing that j = 0 is the
necessary and sufficient condition).

e The GEM inertial fields and tidal tensors are the same as those of the
Levi-Civita static cylinder (just like the electromagnetic forces produced
by a charged spinning cylinder are the same as by a static one).

e It is obtained from a simple rigid rotation of coordinates, Eq. (15), which
is a well-defined global coordinate transformation (Sec. 4.1).

e It makes immediately transparent the locally static but globally stationary
nature of the metric (see Sec. 5 below).

e It has a smooth matching to the van Stockum interior solution
(corresponding to a cylinder of rigidly rotating dust) written in star-fized
coordinates (Sec. 5.4.2 of Ref. 5).

We conclude that the Lewis metric in its usual form (1)-(2) indeed possesses a
trivial coordinate rotation [of angular velocity —{2, equivalently given by either of
Egs. (14)], which has apparently gone unnoticed in the literature, and causes the
artificial features listed in Sec. 3. As shown in Sec. 5.4 of Ref. 5, such rotation has
a simple interpretation when the solution is matched to the van Stockum interior
solution (corresponding to a rigidly rotating cylinder of dust): the coordinate system
in (1)-(2) is rigidly comoving with the cylinder.

5. Contrast with a locally (and globally) non-static solution — the
Kerr spacetime

Question by O. Semerdk: you were comparing the results for the (rotating) Weyl
class Lewis metric with the static case; how about the comparison with Kerr, which
is different because there the vorticity should contribute to the gravitomagnetic field?

The contrast with the Kerr spacetime is indeed instructive. In what pertains to
gravitomagnetism, it fundamentally differs from the Weyl class cylindrical metrics
(rotating or non-rotating) in two mains aspects: it is not locally static, and its
Riemann tensor is not (except at the equatorial plane) “purely electric”.?9

Staticity.— a spacetime is static*® within some region iff a time-like Killing
vector field €% exists which is proportional to the gradient of some (single-valued)
function ¥, £, = nd,¥. Locally, this condition is equivalent to the integral lines
of &% having no vorticity, i.e., being hypersurface orthogonal (globally, however,
the vorticity-free condition is not sufficient*®44). One can show (Proposition 5.1 in
Ref. 5) that, in the GEM framework, local staticity amounts to the existence of a
coordinate system where the metric takes the stationary form (3) with A closed
(d A = 0); and global staticity to A being moreover an ezact form (in a globally
well defined coordinate system).

The Weyl class Lewis metric (21) is locally static since d. A = 0; but, unless
Jj = 0= A =0 (Levi-Civita static cylinder), not globally static, since A = Agd¢
is not an exact form. This means that the Killing vector field d; is hypersurface
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orthogonal but (unless j = 0) such hypersurfaces are not of global simultaneity, see
Fig. 2 (a)-(b). In the case of the Kerr spacetime, d.A # 0, so it is not globally static;
no hypersurface orthogonal time-like Killing vector field exists, the only Killing
vector field which is time-like at infinity being d; in Boyer-Lindquist coordinates,
whose integral lines are well known to have vorticity. Geometrically, this means
that the distribution of hyperplanes orthogonal to 9; (i.e., the hyperplanes of local
simultaneity,?! or local rest spaces of the “laboratory” observers) is not integrable,
see Fig. 2 (c). On top of this, outside the equatorial plane, R,gys is not purely
electric (see Sec. V.C of Ref. 29), thus no observers exist measuring a vanishing
gravitomagnetic tidal tensor Hg.

(@) Static cylinder (b) Rotating cylinder (Weyl class) (©) Kerr

Fig. 2. (a)-(b): In the Weyl class Lewis metrics (21) the Killing vector field 8; is hypersurface
orthogonal; such hypersurface is of global simultaneity (a plane, in a ¢, r, ¢ plot) for a non-spinning
(Levi-Civita) cylinder, and of local but non-global simultaneity (the helicoid t — Ag¢ = const.) in
the spinning case. (c) In the Kerr spacetime 0; is not hypersurface orthogonal, i.e., the distribution
of hyperplanes orthogonal to 8; (hyperplanes of local simultaneity) is not integrable. In (a)
observers of worldlines tangent to 9; (“laboratory observers”) are able to globally synchronize their
clocks. In (b) they are unable to synchronize their clocks around the cylinder: each 27 turn along
the helicoid leads to a different event in time, the jump between turns being the synchronization
gap Atsyne = 2mAg. In (c) the laboratory observers are (generically) unable to synchronize their
clocks along any spatially closed loop, Atsync = ¢.A # 0.

Physically, this means that whereas for the Weyl class spinning cylinder (21)
only the first level of gravitomagnetism in Table 1 is non-zero, in the Kerr spacetime
all the three levels are non-zero. Therein it is thus possible to detect the source’s
rotation in a more local way (i.e., not needing experiments on loops around
the source): in a reference frame fixed to the distant stars, due to the non-zero
gravitomagnetic field H , test particles in geodesic motion will appear to be deflected
by a gravitomagnetic (or Coriolis) force AU x H, cf. Eq. (4), causing e.g. their
orbits to precess (Lense-Thirring precession®®), and gyroscopes will as well be seen
to precess, cf. Eq. (6). The non-vanishing H,s means moreover that gyroscopes at
rest (or generically moving) will be acted by a force (7).
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Table 1. Gravitomagnetic effects present in the Weyl class Lewis metrics and in the
Kerr spacetime, as measured in star-fixed reference frames (canonical and Boyer-Lindquist
coordinate systems, respectively), split by levels of gravitomagnetism, corresponding to orders
of differentiation of A.

Level of Gravitomagnetism .
Lewis-Weyl Kerr
Governing object |Physical effect
A e Sagnac effect \/ /
(gravitomagnetic | ¢ Synchronizati
vector potential) ynchronization gap (global effects) (global and local)
e gravitomagnetic force
ﬁ m’yl_j x H
(gravitomagnetic | ® gyroscope Precgssion ‘/
field = eV x A) dS/dr =8 x H/2 X
e local Sagnac effect in
light gyroscope
i n ./f e Gravitomagnetic e co-rotating geodesic | e co-rotating geodesic
“clock” effect has shorter period has longer period
Heap
(gravitomag. tidal | ® F]‘;;jg o8 Byroseere. X v
tensor ~ 8;0;Ay,) [dT = — B

Even in what pertains to the first level of gravitomagnetism (governed by .A),
present in both, they substantially differ. The fact that d.A = 0 in the Lewis-Weyl
metric means that a Sagnac effect (9) arises only on loops enclosing the cylinder (as
discussed in Sec. 4.4), and is independent of the shape of the loop; and similarly for
the synchronization of clocks: the laboratory observers are able to synchronize their
clocks along spatially closed loops that do not enclose the cylinder [in other words,
closed in spacetime synchronization curves exist along the helicoid of Fig. 2 (b)]; it
is only on loops around the cylinder that a synchronization gap (10) arises, see Fig.
2 (b). In the Kerr spacetime, by contrast, since d.A # 0, the Sagnac effect depends
on the shape of the loop, and is generically non-zero (regardless of the loop enclosing
or not the axis). The laboratory observers are likewise unable to synchronize their
clocks around generic closed loops.

Another interesting contrast is in the gravitomagnetic clock effect (12). Around
the spinning cylinder (21), since H = 0, it reduces to the Sagnac time-delay (25),
and thus the co-rotating geodesic has a shorter period. In the case of the Kerr
spacetime, by contrast, the term Aty of (12) is not zero,

8mwJ 4 Jr

J
Atgeo = AtS+AtH = 47TM, Ats = _m (< 0), AtH = m (

> 0),
and is actually dominant,?” so it is the other way around: the co-rotating orbit has
a longer period, Atge, = 4wJ/M > 0. The physical interpretation of Aty > 0 is
that the gravitomagnetic force yU x H in Eq. (4) is repulsive (attractive) for co-
(counter-) rotating geodesics, see Fig. 1(b) of Ref. 27.
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