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In the main article [CQG 38 (2021) 055003], a new“canonical” form for the Lewis metrics

of the Weyl class has been obtained, depending only on three parameters — Komar mass
and angular momentum per unit length, plus the angle deficit — corresponding to a

coordinate system fixed to the “distant stars” and an everywhere timelike Killing vector

field. Such form evinces the local but non-global static character of the spacetime, and
striking parallelisms with the electromagnetic analogue. We discuss here its generality,

main physical features and important limits (the Levi-Civita static cylinder, and spinning

cosmic strings). We contrast it on geometric and physical grounds with the Kerr
spacetime — as an example of a metric which is locally non-static.
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1. Introduction

The general stationary solution of the vacuum Einstein field equations with

cylindrical symmetry are the Lewis metrics1–4

ds2 = −f(dt2 + Cdϕ)2 + r(n2−1)/2(dr2 + dz2) +
r2

f
dϕ2 ; (1)

f = ar1−n − c2rn+1

n2a
; C =

crn+1

naf
+ b , (2)

usually interpreted as describing the exterior gravitational field produced by

infinitely long rotating cylinders. They divide into two classes: (i) the Weyl class,

when all the constants n, a, b, and c are real; (ii) the Lewis class, for n imaginary

[implying in turn c real and a and b complex, in order for the line element (1) to be

real3,4].
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In the main article, Ref. 5, we have shown that the Weyl class metrics can be

written in the “canonical” form

ds2 = −r
4λm

α

(
dt− j

λm − 1/4
dφ

)2

+ r4λm(2λm−1)(dr2 + dz2) + αr2(1−2λm)dφ2 ,

depending only on three parameters with a clear physical significance: the Komar

mass (λm) and angular momentum (j) per unit z-length, plus the parameter α

governing the angle deficit. This form allows for a transparent comparison with the

Levi-Civita non-rotating cylinder — archetype of the contrast between local and

global staticity — which Ref. 5 discusses in detail both on physical and geometrical

grounds. Therein its matching to the van Stockum6 cylinder in star fixed coordinates

is also shown. Here we revise some main features of the solution, focusing on

its generality [and redundancies of the more usual form (1)-(2)], notable limits,

and physical properties, with special attention to those less developed in Ref. 5.

Addressing the question posed to us in the discussion following the presentation of

this work at MG16,7 we focus here on its comparison with a non-static (globally

and locally) stationary solution, exemplified by the Kerr spacetime.

2. Stationary spacetimes and levels of gravitomagnetism

The line element ds2 = gαβdx
αdxβ of a stationary spacetime can generically be

written as

ds2 = −e2Φ(dt−Aidxi)2 + hijdx
idxj , (3)

where e2Φ = −g00, Φ ≡ Φ(xj), Ai ≡ Ai(xj) = −g0i/g00, and hij ≡ hij(x
k) =

gij + e2ΦAiAj . Observers of 4-velocity uα = e−Φ∂αt ≡ e−Φδα0 , whose worldlines are

tangent to the timelike Killing vector field ∂t, are at rest in the coordinate system

of (3). They are dubbed “static” or “laboratory” observers. The quotient of the

spacetime by their worldlines yields a 3-D Riemannian manifold Σ with metric

hij (called the “spatial metric”), which measures the spatial distances between

neighboring laboratory observers.8 It is identified in spacetime with the space

projector with respect to uα, hαβ ≡ uαuβ + gαβ . Let Uα = dxα/dτ be the 4-

velocity of a test point particle in geodesic motion. The space components of the

geodesic equation DUα/dτ = 0 yield5,8–11

D̃~U

dτ
= γ

[
γ ~G+ ~U × ~H

]
; ~G = −∇̃Φ ; ~H = eΦ∇̃ × ~A , (4)

where γ = −Uαuα is the Lorentz factor between Uα and uα, ∇̃ denotes covariant

differentiation with respect to the spatial metric hij (i.e., the Levi-Civita connection

of Σ, ∇̃jXi = Xi
,j + Γ(h)ijkX

k, for some spatial vector ~X), D̃/dτ ≡ U i∇̃i, so that

D̃~U/dτ describes the acceleration of the 3-D curve obtained by projecting the time-

like geodesic onto the space manifold Σ, being ~U its tangent vector. The latter is

identified in spacetime with the projection of Uα onto Σ: (~U)α = hαβU
β [so its space
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components equal those of Uα, (~U)i = U i]. The spatial vectors ~G and ~H (living

on Σ) are dubbed, respectively, “gravitoelectric” and “gravitomagnetic” fields [or,

jointly,“gravitoelectromagnetic”(GEM) fields]. These play in Eq. (4) roles analogous

to those of the electric ( ~E) and magnetic ( ~B) fields in the Lorentz force equation,

DU i/dτ = (q/m)[γ ~E + ~U × ~B]i, and are identified in spacetime, respectively, with

minus the acceleration and twice the vorticity of the laboratory observers:

Gα = −∇uu
α ≡ −uα;βuβ ; Hα = εαβγδuγ;βuδ . (5)

They motivate also dubbing the scalar Φ and the vector ~A gravitoelectric and

gravitomagnetic potentials, respectively.

Other realizations of the analogy arise in the equations of motion for a

“gyroscope” (i.e., a spinning pole-dipole particle) in a gravitational field and a

magnetic dipole in a electromagnetic field. According to the Mathisson-Papapetrou

equations,12,13 under the Mathisson-Pirani spin condition,14 the spin vector Sα of

a gyroscope of 4-velocity Uα is Fermi-Walker transported along its center of mass

worldline, DSα/dτ = SµaµU
α, where aα ≡ DUα/dτ . If the gyroscope’s center of

mass is at rest in the coordinate system of (3) (Uα = uα) the space part of this

equation yields5

d~S

dτ
=

1

2
~S × ~H , (6)

which is analogous to the precession of a magnetic dipole in a magnetic field,

D~S/dτ = ~µ× ~B. When the electromagnetic field is non-homogeneous, a force is also

exerted on the magnetic dipole, covariantly described by DPα/dτ = Bβαµβ ,14,15

where µβ is the magnetic dipole moment 4-vector, and Bαβ = ?Fαµ;βU
µ (Fαβ ≡

Faraday tensor, ? ≡ Hodge dual) is the “magnetic tidal tensor” as measured by the

particle. A covariant force is likewise exerted on a gyroscope in a gravitational field

(the “spin-curvature” force12–15), which can be written in the remarkably similar

form14

DPα

dτ
= −HβαSβ ; Hαβ ≡ ?RαµβνUµUν =

1

2
ε λτ
αµ RλτβνU

µUν . (7)

Here Hαβ is the “gravitomagnetic tidal tensor” (or “magnetic part” of the Riemann

tensor) as measured by the particle, playing a role analogous to that of Bαβ in

electromagnetism. For a particle at rest in a stationary field in the form (3), it is

related to the gravitomagnetic field ~H by the expression11

Hij = −1

2

[
∇̃jHi + (~G · ~H)hij − 2GjHi

]
. (8)

In the linear regime, Hij ≈ Hi,j , and so one can say that (comparing to ~H ) Hαβ is

essentially a quantity one order higher in differentiation of ~A.
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2.1. Sagnac effect

By contrast with classical electromagnetism (where only the curl of the magnetic

vector potential, ∇× ~A = ~B, manifests physically), and more like in quantum theory

(where ~A manifests itself in the so-called Aharonov-Bohm effect16), in General

Relativity there are also gravitational effects governed by the gravitomagnetic vector

potential ~A (or 1-form A). One of them is the Sagnac effect, consisting of the

difference in arrival times of light-beams propagating around a spatially closed path

in opposite directions. In flat spacetime, where the concept was first introduced (see

e.g. Refs. 17, 18), the time difference is originated by the rotation of the apparatus

with respect to global inertial frames (thus to the “distant stars”), see Fig. 1 in

Ref. 5. In a gravitational field, however, it arises also in apparatuses which are

fixed relative to the distant stars (i.e., to asymptotically inertial frames), Fig. 1(a)

below, signaling frame-dragging.5,18–22 In both cases the effect can be read off from

the spacetime metric (3), encompassing the flat Minkowski metric written in a

rotating coordinate system, as well as arbitrary stationary gravitational fields. Along

a photon worldline, ds2 = 0; by (3), this yields two solutions, the future-oriented one

being dt = Aidxi + e−Φdl, where dl =
√
hijdxidxj is the spatial distance element.

Consider photons constrained to move within a closed loop C in the space manifold

Σ; for instance, an optical fiber loop, as depicted in Fig. 1 (a). Using the + (-) sign

to denote the anti-clockwise (clockwise) directions, the coordinate time it takes for

a full loop is, respectively, t± =
¸
±C dt =

¸
C
e−Φdl±

¸
C
Aidxi; therefore, the Sagnac

coordinate time delay ∆tS (∆t in the notation of Ref. 5) is

∆tS ≡ t+ − t− = 2

˛
C

Aidxi = 2

˛
C

A , (9)

translating, in the observer’s proper time, to ∆τS = eΦ∆tS. We can thus cast

gravitomagnetism into the three distinct levels in Table 1, corresponding to different

orders of differentiation of A (the first one being A itself).

2.2. Synchronization gap

Another physical process where A manifests is in the synchronization of the clocks

carried by the “laboratory observers” (i.e., tangent to the Killing vector field

∂t). Consider a curve xα(λ) of tangent dxα/dλ which is spatially closed (i.e., its

projection onto Σ yields a closed curve C, so that after each loop it re-intersects

the worldline of the original observer). Along xα(λ), the synchronization through

Einstein’s light signaling procedure8,21 amounts to the condition that the curve be

orthogonal (at every point) to ∂αt , that is, g0βdx
β/dλ = 0 ⇔ dt = Aidxi. This

curve will thus re-intersect the worldline of the original observer at a coordinate

time tf = ti + ∆tsync, where8

∆tsync =

˛
C

Aidxi =

˛
C

A (= ∆tS/2) . (10)
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The observer will then find that his clock is not synchronized with his preceding

neighbor’s by a time gap (as measured in his proper time) ∆τsync = eΦ∆tsync,

corresponding, in coordinate time, to an interval ∆tsync [which is one half the Sagnac

time delay ∆tS along such loop, Eq. (9)]. Only when ∆tsync = 0 the observers are

able to fully synchronize their clocks along a closed loop.

2.3. Gravitomagnetic clock effect

As is well known, in the field of a spinning body the periods of co- and

counter-rotating circular geodesics differ; such an effect has been dubbed23–26

gravitomagnetic “clock effect”. The corresponding angular velocities read (see e.g.

Sec. 3.1 of Ref. 5)

Ωgeo± =
−g0φ,r ±

√
g2

0φ,r − gφφ,rg00,r

gφφ,r
(11)

and thus the difference between their periods, ∆tgeo = 2π(Ω−1
geo+ + Ω−1

geo−) =

−4πg0φ,r/g00,r, is5,27

∆tgeo = ∆tS + ∆tH ; ∆tS = 4πAφ; ∆tH = −2π
?Hrφ

GreΦ
, (12)

where ?Hjk ≡ εijkH
i is the 2-form dual to the gravitomagnetic field ~H, such

that ?Hrφ =
√
hHz in cylindrical coordinates, and ?Hrφ = −

√
hHθ in spherical

coordinates. Here h is the determinant of the space metric hij in (3). Hence, the

effect consists of the sum of two contributions of different origin, corresponding to

two distinct levels of gravitomagnetism in Table (1): the Sagnac time delay ∆tS
around the circular loop, governed by A, cf. Eq. (9), plus the term ∆tH due to

the gravitomagnetic force γ~U × ~H in Eq. (4) (which has a direct electromagnetic

counterpart, see Sec. 3.1 in Ref. 5; cf. also Ref. 26).

The delay (12) corresponds to orbital periods (in coordinate time) as seen by

the “laboratory” observers, at rest in the coordinates of (3). Other observers (e.g.

rotating with respect to the former) will measure different periods since, from their

point of view, the closing of the orbits occurs at different points. An observer-

independent akin effect25,28 can however be derived, based on the proper times (τ+
and τ−) measured by each orbiting particle between the events where they meet,

see Fig. 1 (b). Set a starting meeting point at φ+ = φ− = 0, t = 0; the next meeting

point is defined by φ+ = 2π + φ−. Since φ± = Ωgeo±t, the meeting point occurs at

a coordinate time t = 2π/(Ωgeo+ − Ωgeo−). Hence,

τ± =
t

U0
±

=
2π(U0

±)−1

Ωgeo+ − Ωgeo−
; ∆τ ≡ τ+ − τ− = 2π

(U0
+)−1 − (U0

−)−1

Ωgeo+ − Ωgeo−
. (13)
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3. Artificial features of the usual form of the Weyl class metric

In the case of the static Levi-Civita cylinder, which follows from (1)-(2), with n and

a real, by makinga b = 0 = c, we haveb Φ = 2λm ln(r) + const., G = −2λm/rdr,

A = 0 = ~H, where λm = (1 − n)/4. This exactly matches the electromagnetic

counterparts for an infinite static charged cylinder, if ones identifies λm with minus

the charge per unit z-length. (λm being actually the Komar mass per unit z- length,

as we shall see in Sec. 4.3). However, in the general case b 6= 0 6= c, we have

• Φ, A, and ~G complicated [Eqs. (43) of Ref. 5], and very different from the

electromagnetic counterparts for a infinitely long spinning charged cylinder

(in the inertial rest frame);

• ~H and Hαβ both non-zero [and complicated, Eqs. (43) and (45) of Ref. 5],

at odds with the electromagnetic analogue.

These features are somewhat unexpected given the similarities with the

electromagnetic analogue in the static case, and given that this metric is known

to be locally static. The situation resembles more the electromagnetic analogue as

seen from a rotating frame. Moreover,

• ∂t ceases to be time-like for r2n > a2n2/c2 ⇒ no observers at rest are

possible past this radius

which is, again, reminiscent of a rigidly rotating frame in flat spacetime where, past

a certain value of r, the observers would be superluminal. The question then arises,

can the metric, in the usual form (1)-(2) given in the literature, be actually written

in some trivially rotating coordinate system? We will next show this to be the case.

4. The “canonical” form of the Weyl class metric

4.1. “Star-fixed” coordinates: the metric with only three parameters

An analysis of the curvature invariants [cubic and quadratic, Eqs. (39)-(41) and

(50) of Ref. 5] reveals that the Weyl class metric (i.e., with n real) is a “purely

electric” Petrov type I spacetime.5,29,30 This means that, at each point, there is an

(unique) observer for which the gravitomagnetic tidal tensor vanishes, Hαβ = 0.

These observers have 4-velocity of the form Uα = U t(∂αt + Ω∂αφ ), with constant

angular velocity Ω given by

Ω =
c

n− bc
or Ω = −1

b
, (14)

the first (second) value yielding a time-like Uα if a > 0 (a < 0). Thus, by performing

a coordinate rotation at constant angular velocity

φ = ϕ− Ωt , (15)

aWe shall see that the condition c = 0 is actually not necessary, cf. Eqs. (16)-(18).
bTaking a > 0, so that t is the temporal coordinate.
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one switches to a coordinate system where these observers are at rest, and the metric

takes the form

ds2 = −r
1−s

α
(dt+ C̄dφ)2 + r(s2−1)/2(dr2 + dz2) + αr1+sdφ2 , (16)

with, for Ω = c/(n− bc),

s = n ; α =
C̄2

ab2
; C̄ = b

n− bc
n

= b
s− bc
s

, (17)

and, for Ω = −1/b,

s = −n ; α = −ab2 ; C̄ = −bn− bc
n

= b
s− bc
s

(18)

Equation (16) shows that the metric depends only on three effective parameters:

α, s, and C̄, manifesting a redundancy in the original four parameters [different

values of (n, a, b, c) yielding the same values of (s, α, C̄) correspond to the same

physical solution]. The two values (14) for the angular velocity Ω are two equivalent

paths of reaching (16), and manifest a particular case of the redundancy: two sets

of parameters (a1, b1, c1, n1) and (a2, b2, c2, n2), with a1 > 0 and a2 < 0, such that

the values of (s, α, C̄) are the same. There is one special case excluded from each

of the transformations (14)-(15); namely, bc = n for the first value of Ω, and b = 0

for the second; they are however redundant, as both lead to the Levi-Civita line-

elementc (26).

Observe that the Killing vector field ∂t is, in (16), everywhere time-like (g00 <

0 for all r). Therefore, observers of 4-velocity uα = (−g00)1/2∂αt , at rest in the

coordinates of (16), exist everywhere (even for arbitrarily large r). As we shall see

in Sec. (4.4) below, ∂t is actually tangent to inertial observers at infinity, hence

the reference frame associated to the coordinate system in (16) is asymptotically

inertial, and thus fixed to the “distant stars”.

4.2. Symmetry under swap of time and angular coordinates

In the transformation (15) one assumes, as is usual practice, that ϕ is an angular

coordinate, ranging [0, 2π], and t the time coordinate [which in turn implies α > 0

and thus a > 0 in case (17), and a < 0 in case (18)]. Such assumption is however

not necessary to reach (16). Indeed, swapping t ↔ ϕ in (1), again leads to (16),

as we shall now show. Substituting, in (1), ϕ → t′, t → ϕ′, the time-like observers

measuring vanishing gravitomagnetic tidal tensor have now angular velocity Ω′ =

1/Ω, where Ω is given by (14), and Ω′ = (n−bc)/c yields a time-like Uα if a > 0, and

likewise Ω′ = −b for a < 0. Applying the transformation φ′ = ϕ′ −Ω′t′ = ϕ′ − t′/Ω
to such line element leads to a primed version of (16),

ds2 = −r
1−s

α
(dt′ + C̄dφ′)2 + r(s2−1)/2(dr2 + dz2) + αr1+sdφ′2 (19)

cThat it is so for b = 0 can be immediately seen by substituting in (16)-(17), yielding (26); likewise,

that it is so for n = bc can be seen by substituting n→ bc in the expression for C̄ in (18).
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with, for Ω′ = (n− bc)/c, the identifications s = n, α = c2/(an2), C̄ = c/n; and, for

Ω′ = −b, the identifications s = −n, α = −a, C̄ = −c/n. This is a natural result.

Equations (1)-(2) are just a general solution of the vacuum Einstein field equations

with three commuting Killing vector fields, one time-like and two spacelike,4,31

having no information on global aspects of the coordinates; it is thus natural that

one be free to choose the angular coordinate rendering the axial symmetry.

One must note, however, that the metric in star fixed coordinates (16) does

not preserve such symmetry. The coordinate rotation (15), with the identification

ϕ = ϕ + 2π, breaks that symmetry by implicitly choosing φ (and ϕ) as a periodic

coordinate, and t non-periodic. Indeed, substituting in (16) φ→ t′, t→ φ′, leads to

(19) with φ′ ↔ t′ swapped:

ds2 = −r
1−s

α
(C̄dt′ + dφ′)2 + r(s2−1)/2(dr2 + dz2) + αr1+sdt′2 ; (20)

forcing now on it the identification (t′, φ′) = (t′, φ′ + 2π) (i.e, taking φ′ to be

periodic), makes it become the Levi-Civita metric in a rotating coordinate system,

immediately diagonalizable through the coordinate rotation φ′′ = φ′ + C̄t. This

occurs because, by overriding the original identifications (t, φ) = (t, φ + 2π), the

geometry was globally (albeit not locally) changed. Indeed such transformation (with

such identifications) is not a global diffeomorphism, as can be seen e.g. from the fact

the ordered pairs P1: (t, φ) and P2: (t, φ + 2π), which represented the same event

in the original metric (16), are mapped into the two different events P ′1: (t′, φ′) and

P ′2: (t′ + 2π, φ′) in the metric (20). The transformation (t′, φ′) = (φ, t), followed by

φ′′ = φ′+C̄t, actually amounts to (76) of Ref. 5 which, as shown therein, corresponds

to the “famous”2,4 transformation that takes the Weyl class metric into the static

Levi-Civita one.

4.3. The metric in terms of physical parameters — “canonical”

form

The fact that in Eq. (16) the Killing vector field ξα = ∂αt is everywhere time-

like, tangent to inertial observers at infinity, and appropriately normalized,5 allows

for defining a corresponding Komar integral on simply connected tubes V of unit z-

length parallel to the z-axis, having a physical interpretation of“active”gravitational

mass per unit z-length, as discussed in Secs. 5.2.1 and 2.4 of Ref. 5 (cf. also Refs.

32–35). It is given by

λm =
1

8π

ˆ
∂V
?dξ =

1

8π

ˆ
S

(?dξ)φzdφdz =
1− s

4
,

where ∂V = S ∪B1 ∪B2 is the tube’s boundary, S its lateral surface, parameterized

by {φ, z}, and B1 and B2 its bases, lying on the planes orthogonal to the z-axis

and parameterized by {r, φ}, and in the second and third equalities we noticed that

(?dξ)rφ = 0 and (?dξ)φz = 1− s. Likewise, the Komar integral associated with the
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axial symmetry Killing vector field ζα = ∂αφ has the interpretation of the spacetime’s

angular momentum per unit z-length,

j = − 1

16π

ˆ
∂V
?dζ = − 1

16π

ˆ
S

(?dζ)φzdφdz =
sC̄

4

where we in the second equality we noticed that (?ζ)rφ = 0. It follows that (16) can

be re-written as

ds2 = −r
4λm

α

(
dt− j

λm − 1/4
dφ

)2

+ r4λm(2λm−1)(dr2 + dz2) + αr2(1−2λm)dφ2 .

(21)

4.4. Physical properties; gravitomagnetism

For α > 0 [so that t in Eq. (21) is a temporal coordinate], the metric can be put in

the form (3), with

e2Φ =
r4λm

α
⇒ Φ = 2λm ln(r) +K ; A = − 4j

1− 4λm
dφ ; (22)

hijdx
idxj = r4λm(2λm−1)(dr2 + dz2) + αr2(1−2λm)dφ2 (23)

[with K ≡ − ln(α)/2]. The gravitoelectric and gravitomagnetic 1-forms/fields read,

cf. Eqs. (4),

G = −2λm

r
dr ; ~H = H = 0 . (24)

Thus Φ, G and H = 0 match their electromagnetic counterparts for a spinning

charged cylinder (as viewed from the inertial rest frame, see e.g. Sec. 4 in Ref. 5)

identifying the Komar mass with minus the charge, λm ↔ −λ; the gravitomagnetic

potential 1-form A = Aφdφ also resembles the magnetic potential 1-form A = mdφ.

The cylinder’s rotation does not manifest in the inertial forces (nor in the tidal

forces, as shown in Sec. 5.2.3 of Ref. 5); the only inertial force acting on test

particles is the gravitoelectric (Newtonian-like) force m~G, independent of j. Thus,

particles dropped from rest or in initial radial motion move along radial straight

lines, cf. Eq. (4); and circular geodesics have a constant speed given by vgeo =√
λm/(1/2− λm), being thus possible when 0 ≤ λm < 1/4 (it is when λm > 0 that

~G is attractive, and they become null for λm = 1/4). The vanishing of ~H means also

that gyroscopes at rest in the coordinates of (21) do not precess, the components

of their spin vector ~S remaining constant, cf. Eq. (6). Since ~G
r→∞→ ~0, it follows

moreover that the reference frame associated to the coordinate system in (21) is

asymptotically inertial, thus one can take it as the rest frame of the “distant stars”

(“star-fixed” frame).

The only surviving gravitomagnetic object is thus the gravitomagnetic 1-form A,

corresponding to the first level in Table 1. One of its physical manifestations is the
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Distant star

A

(b)

τ  = τ  = 0+ −

τ  = τ+ −

(a)

∆t  = 0S

∆t  = 4πAS φ

Fig. 1. (a) Sagnac effect around spinning cylinders: a flashlight sends light beams propagating

in opposite directions along optical fiber loops fixed with respect to the “distant stars” (i.e., to

the asymptotic inertial frame at infinity). In each loop C, the difference in beam arrival times is
∆tS = 2

¸
C A; since A is a closed form (dA = 0), the effect vanishes for all loops not enclosing

the cylinder, and has the same value (25) for all loops enclosing it (the co-rotating beam arriving

first). (b) Frame independent gravitomagnetic clock effect: a pair of clocks in oppositely rotating
circular geodesics around a cylinder; when the cylinder spins (j 6= 0) the clocks measure different

proper times between the events where they meet, τ+ > τ−.

Sagnac effect: consider, as depicted in Fig. 1(a) optical fiber loops fixed with respect

to the distant stars, i.e., at rest in the coordinate system of (21). The difference in

arrival times for light beams propagating in opposite directions along any of such

loops is given by the circulation of A along the loop, c.f. Eq. (9). Observe that A
is a closed form, dA = 0 (since Aφ is constant), defined in a space manifold Σ

homeomorphic to R3\{r = 0}. By the Stokes theorem, this means5 that the effect

vanishes along any loop which does not enclose the central cylinder (or the axis

r = 0), such as the small loop in Fig. 1 (a), and has the same nonzero value

∆tS = 4πAφ = − 4πj

1/4− λm
(25)

along any loop enclosing the cylinder, regardless of its shape; for instance, the large

circular loop depicted in Fig. 1(a). It is worth noticing that this mirrors the situation

for the Aharonov-Bohm effect around spinning charged cylinders, which is likewise

independent of the shape of the paths; the two effects are actually described by

formally analogous equationsd.

The apparatus above makes use of a star-fixed reference frame, which is

physically realized by aiming telescopes at the distant stars.36,37 It is possible,

however (still based on the Sagnac effect) to detect the cylinder’s rotation in a more

local way, without the need for setting up a specific frame; only not with a single

loop, as along a single loop the effect can always be made to vanish by spinning it

with some angular velocity. In particular, for a concentric circular loop, the effect

dRe-writing (9) in terms of the half-loop phase delay ∆ϕ = (E/~)∆tS/2 = (2πE/~)Aφ and

identifying {E,Aφ} ↔ {q,Aφ}, where E ≡ photon’s energy, see Sec. 4.1 in Ref. 5.
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vanishes if it has zero angular momentum, i.e., if it comoves with the zero angular

momentum observers (ZAMOs) of the same radius. The angular velocity of such

observers, Eq. (69) of Ref. 5, is however r-dependent; hence, considering instead a

“coil” of optical loops, as depicted in Fig. 4 of Ref. 5, provides a frame-independent

(thought) experiment to detect the cylinder’s rotation, since it is impossible to make

the effect vanish simultaneously in every loop when j 6= 0⇔ A 6= 0.

4.4.1. Observer-independent gravitomagnetic clock effect

Another consequence of the vanishing of ~H is that the gravitomagnetic clock effect

in Eq. (12) reduces to the Sagnac time delay, ∆tgeo = ∆tS = 4πAφ; hence, all

that was said above about beams in optical loops around the cylinder, applies as

well to pairs of particles in oppositely rotating circular geodesics (the co-rotating

geodesics having thus shorter periods). It is however actually possible to detect the

cylinder’s rotation using only one pair of particles (i.e., a pair of clocks), through

the difference in the proper times (τ+ and τ−) measured by each of them between

the events where they meet, see Fig. 1 (b). From Eqs. (13) and (11), with U0
± =

(−g00 − 2Ωgeo±g0φ − Ω2
geo±gφφ)−1/2, we have

∆τ ≡ τ+ − τ− =
8πjr2λm√

α(1− 4λm)(1− 2λm) + 8λmj2r8λm−2α−1(1/4− λm)−1
(> 0)

(this result is mentioned in main paper,5 though without presenting it explicitly).

Hence, when j 6= 0, the proper times measured by each clock differ when they meet,

the co-rotating clock measuring a longer time.

4.5. Important limits: Levi-Civita static cylinder and cosmic

strings

It is immediate to obtain important limits from the canonical form (21). Taking the

limit j → 0 yields the Levi-Civita metric2–4

ds2 = −r
4λm

α
dt2 + r4λm(2λm−1)(dr2 + dz2) + αr2(1−2λm)dφ2 . (26)

The inertial fields ~G and ~H = 0, as well as the spatial metric hij , remain the same

as in (21) (the same applying to the tidal fields/forces, see Sec. 5.2.3 in Ref. 5).

They differ only in the gravitomagnetic potential 1-form A = −4j/(1 − 4λm)dφ,

governing global physical effects such as the Sagnac effect and synchronization gap

(10) in loops around the cylinder, and the gravitomagnetic clock effect, which are

all zero for the static metric (26), see Figs. 1-2.

The limit λm → 0 yields

ds2 = − 1

α
[dt+ 4jdφ]

2
+ dr2 + dz2 + αr2dφ2 (27)

which is the metric of a spinning cosmic string2,38,39 of Komar angular momentum

per unit length j and angle deficit 2π(1 − α1/2) ≡ 2πδ. In this case the spacetime
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is locally flat (Rαβγδ = 0) for r 6= 0. All the GEM inertial fields vanish, ~G = ~H = 0

(and the same for the tidal fields), thus there are no gravitational forces of any

kind. Global gravitational effects however subsist, governed by A = −4jdφ and α.

The non-vanishing gravitomagnetic potential 1-form A means that a Sagnac effect

remains, thus the apparatuses manifesting the source’s rotation discussed in Sec. 4.4

apply here as well. The same applies to the synchronization of clocks: observers

at rest in the coordinates of (27) (which are in this case inertial observers) can

synchronize their clocks along closed loops not enclosing the string (i.e., the axis

r = 0), but are unable to do so for loops enclosing it. As for the gravitomagnetic

clock effect, it does not apply here, as circular geodesics do not exist (since there is no

gravitational attraction, ~G = 0). The angle deficit generates double images of objects

located behind the string,40,41 and a holonomy41,42 along closed (in spacetime or

only spatially) loops around the string. Namely, vectors parallel transported along

such loops turn out rotated by an angle −2πα1/2 (i.e, 2πδ) about the z-axis when

they return to the initial position — an effect which is independent of the shape of

the loop and of j; see Sec. 5.2.4 of Ref. 5. One thus can say that the metric (27)

possesses two holonomies: a spatial holonomy governed by α, which is the same

for spinning or non-spinning strings, plus a synchronization holonomy (Sec. 5.3.3 of

Ref. 5) that arises in the spinning case.

4.6. Summary of “canonical” features

We argue Eq. (21) to be the most natural, or canonical, form for the metric of a

Weyl class rotating cylinder for the following reasons:

• the Killing vector field ∂t is (for α > 0) everywhere time-like (i.e., g00 < 0

for all r), therefore physical observers uα = (−g00)−1/2∂αt , at rest in the

coordinates of (21), exist everywhere.

• The associated reference frame is asymptotically inertial, and thus fixed

with respect to the “distant stars” (Sec. 4.4).

• A conserved Komar mass per unit length (λm) can be defined from ∂t which

matches its expected value from the gravitational field ~G and potential Φ

in Sec. 4.4 (see also Sec. 5.2.1 of Ref. 5), and also that of the Levi-Civita

static cylinder (26).

• It is irreducibly given in terms of three parameters with a clear physical

interpretation: the Komar mass (λm) and angular momentum (j) per unit

length, plus the parameter α governing the angle deficit of the spatial metric

hij .

• The GEM fields are strikingly similar to the electromagnetic analogues —

the electromagnetic fields of a rotating cylinder as measured in the inertial

rest frame (namely A = Aφdφ; Aφ ≡constant, ~H = Hαβ = 0, and Φ and

G,i match the electromagnetic counterparts identifying the Komar mass per

unit length λm with the minus charge per unit length λ, cf. Sec. 4 of Ref. 5).
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• It is immediate from it to obtain the two important limits: spinning cosmic

string (λm = 0), and Levi-Civita static solution (evincing that j = 0 is the

necessary and sufficient condition).

• The GEM inertial fields and tidal tensors are the same as those of the

Levi-Civita static cylinder (just like the electromagnetic forces produced

by a charged spinning cylinder are the same as by a static one).

• It is obtained from a simple rigid rotation of coordinates, Eq. (15), which

is a well-defined global coordinate transformation (Sec. 4.1).

• It makes immediately transparent the locally static but globally stationary

nature of the metric (see Sec. 5 below).

• It has a smooth matching to the van Stockum interior solution

(corresponding to a cylinder of rigidly rotating dust) written in star-fixed

coordinates (Sec. 5.4.2 of Ref. 5).

We conclude that the Lewis metric in its usual form (1)-(2) indeed possesses a

trivial coordinate rotation [of angular velocity −Ω, equivalently given by either of

Eqs. (14)], which has apparently gone unnoticed in the literature, and causes the

artificial features listed in Sec. 3. As shown in Sec. 5.4 of Ref. 5, such rotation has

a simple interpretation when the solution is matched to the van Stockum interior

solution (corresponding to a rigidly rotating cylinder of dust): the coordinate system

in (1)-(2) is rigidly comoving with the cylinder.

5. Contrast with a locally (and globally) non-static solution — the

Kerr spacetime

Question by O. Semerák: you were comparing the results for the (rotating) Weyl

class Lewis metric with the static case; how about the comparison with Kerr, which

is different because there the vorticity should contribute to the gravitomagnetic field?

The contrast with the Kerr spacetime is indeed instructive. In what pertains to

gravitomagnetism, it fundamentally differs from the Weyl class cylindrical metrics

(rotating or non-rotating) in two mains aspects: it is not locally static, and its

Riemann tensor is not (except at the equatorial plane) “purely electric”.29

Staticity.— a spacetime is static43 within some region iff a time-like Killing

vector field ξα exists which is proportional to the gradient of some (single-valued)

function ψ, ξα = η∂αψ. Locally, this condition is equivalent to the integral lines

of ξα having no vorticity, i.e., being hypersurface orthogonal (globally, however,

the vorticity-free condition is not sufficient43,44). One can show (Proposition 5.1 in

Ref. 5) that, in the GEM framework, local staticity amounts to the existence of a

coordinate system where the metric takes the stationary form (3) with A closed

(dA = 0); and global staticity to A being moreover an exact form (in a globally

well defined coordinate system).

The Weyl class Lewis metric (21) is locally static since dA = 0; but, unless

j = 0 ⇒ A = 0 (Levi-Civita static cylinder), not globally static, since A = Aφdφ
is not an exact form. This means that the Killing vector field ∂t is hypersurface
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orthogonal but (unless j = 0) such hypersurfaces are not of global simultaneity, see

Fig. 2 (a)-(b). In the case of the Kerr spacetime, dA 6= 0, so it is not globally static;

no hypersurface orthogonal time-like Killing vector field exists, the only Killing

vector field which is time-like at infinity being ∂t in Boyer-Lindquist coordinates,

whose integral lines are well known to have vorticity. Geometrically, this means

that the distribution of hyperplanes orthogonal to ∂t (i.e., the hyperplanes of local

simultaneity,21 or local rest spaces of the “laboratory” observers) is not integrable,

see Fig. 2 (c). On top of this, outside the equatorial plane, Rαβγδ is not purely

electric (see Sec. V.C of Ref. 29), thus no observers exist measuring a vanishing

gravitomagnetic tidal tensor Hαβ .

∂t
∂t

(a) (b)

2π
A

φ

Static cylinder Rotating cylinder (Weyl class)

φ
r

t t
(c)                      Kerr

∂t

Fig. 2. (a)-(b): In the Weyl class Lewis metrics (21) the Killing vector field ∂t is hypersurface

orthogonal; such hypersurface is of global simultaneity (a plane, in a t, r, φ plot) for a non-spinning

(Levi-Civita) cylinder, and of local but non-global simultaneity (the helicoid t−Aφφ = const.) in
the spinning case. (c) In the Kerr spacetime ∂t is not hypersurface orthogonal, i.e., the distribution

of hyperplanes orthogonal to ∂t (hyperplanes of local simultaneity) is not integrable. In (a)

observers of worldlines tangent to ∂t (“laboratory observers”) are able to globally synchronize their
clocks. In (b) they are unable to synchronize their clocks around the cylinder: each 2π turn along

the helicoid leads to a different event in time, the jump between turns being the synchronization

gap ∆tsync = 2πAφ. In (c) the laboratory observers are (generically) unable to synchronize their
clocks along any spatially closed loop, ∆tsync =

¸
A 6= 0.

Physically, this means that whereas for the Weyl class spinning cylinder (21)

only the first level of gravitomagnetism in Table 1 is non-zero, in the Kerr spacetime

all the three levels are non-zero. Therein it is thus possible to detect the source’s

rotation in a more local way (i.e., not needing experiments on loops around

the source): in a reference frame fixed to the distant stars, due to the non-zero

gravitomagnetic field ~H, test particles in geodesic motion will appear to be deflected

by a gravitomagnetic (or Coriolis) force γ~U × ~H, cf. Eq. (4), causing e.g. their

orbits to precess (Lense-Thirring precession36), and gyroscopes will as well be seen

to precess, cf. Eq. (6). The non-vanishing Hαβ means moreover that gyroscopes at

rest (or generically moving) will be acted by a force (7).
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Table 1. Gravitomagnetic effects present in the Weyl class Lewis metrics and in the
Kerr spacetime, as measured in star-fixed reference frames (canonical and Boyer-Lindquist

coordinate systems, respectively), split by levels of gravitomagnetism, corresponding to orders

of differentiation of A.

Level of Gravitomagnetism
Lewis-Weyl Kerr

Governing object Physical effect

~A
(gravitomagnetic
vector potential)

• Sagnac effect

• Synchronization gap
X

(global effects)
X

(global and local)

~H
(gravitomagnetic

field = eφ∇× ~A)

• gravitomagnetic force

mγ~U × ~H

• gyroscope precession

d~S/dτ = ~S × ~H/2

• local Sagnac effect in
light gyroscope

× X

~H + ~A • Gravitomagnetic
“clock” effect

• co-rotating geodesic
has shorter period

• co-rotating geodesic
has longer period

Hαβ
(gravitomag. tidal
tensor ∼ ∂i∂jAk)

• Force on gyroscope

DPα/dτ = −HβαSβ
× X

Even in what pertains to the first level of gravitomagnetism (governed by A),

present in both, they substantially differ. The fact that dA = 0 in the Lewis-Weyl

metric means that a Sagnac effect (9) arises only on loops enclosing the cylinder (as

discussed in Sec. 4.4), and is independent of the shape of the loop; and similarly for

the synchronization of clocks: the laboratory observers are able to synchronize their

clocks along spatially closed loops that do not enclose the cylinder [in other words,

closed in spacetime synchronization curves exist along the helicoid of Fig. 2 (b)]; it

is only on loops around the cylinder that a synchronization gap (10) arises, see Fig.

2 (b). In the Kerr spacetime, by contrast, since dA 6= 0, the Sagnac effect depends

on the shape of the loop, and is generically non-zero (regardless of the loop enclosing

or not the axis). The laboratory observers are likewise unable to synchronize their

clocks around generic closed loops.

Another interesting contrast is in the gravitomagnetic clock effect (12). Around

the spinning cylinder (21), since ~H = 0, it reduces to the Sagnac time-delay (25),

and thus the co-rotating geodesic has a shorter period. In the case of the Kerr

spacetime, by contrast, the term ∆tH of (12) is not zero,

∆tgeo = ∆tS+∆tH = 4π
J

M
; ∆tS = − 8πJ

r − 2M
(< 0); ∆tH =

4πJr

M(r − 2M)
(> 0),

and is actually dominant,27 so it is the other way around: the co-rotating orbit has

a longer period, ∆tgeo = 4πJ/M > 0. The physical interpretation of ∆tH > 0 is

that the gravitomagnetic force γ~U × ~H in Eq. (4) is repulsive (attractive) for co-

(counter-) rotating geodesics, see Fig. 1(b) of Ref. 27.
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