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Abstract

Modern theoretical physics has benefited from a rapid growth in mathematical
technology. In particular, technology developed in one field can be quickly
adapted for use in another. Two key techniques developed for simplifying
calculations of Feynman diagrams are spinor-helicity and the double copy. This

thesis will discuss how they can be applied to general relativity.

Spinor-helicity is used in particle physics to simplify expressions. In D > 4 this is
done by observing that the residual symmetry of the little group is non-trivial. We
adapt this technology to classify higher-dimensional spacetimes in the style of the
D = 4 Petrov classification. Focusing on D = 5, our scheme naturally reproduces
the full structure previously seen in both the CMPP and de Smet classifications,

and resolves long-standing questions concerning their relationship.

We review the exact classical double copy introduced for stationary Kerr-Schild
spacetimes.  We consider a time-dependent generalisation: the accelerating,
radiating point particle. This Kerr-Schild solution has a non-trivial stress-
energy tensor which we interpret as the radiative part of the field and find the
corresponding single copy. Using Bremsstrahlung as an example, we determine
a scattering amplitude describing the radiation which is consistent with the
quantum double copy. This indicates a profound connection between exact

classical solutions and the double copy.

The double copy relates YM and gravity amplitudes through the observation
that numerators of Feynman diagrams can be made to obey a Jacobi relation
mirroring the colour charges. This additional structure can be adapted for use in
classical perturbative calculations. The double copy maps to N' = 0 supergravity
requiring careful treatment of the dilaton. Using the Janis-Newman-Winicour
family of naked singularities as an example we demonstrate how to construct

spacetime metrics through a systematic perturbative expansion.



Lay Summary

This thesis will make steps towards answering two interesting questions about
general relativity. Firstly, what kind of solutions to the Einstein equations exist
in five dimensions? And secondly, how can we manifest quantum structures in

general relativity?

General relativity only has one parameter: the number of dimensions. We
experience life in four dimensions — three space and one time — but it is interesting
to vary this number to try and understand the theory better. To go higher than
four dimensions is difficult because the number of parameters to solve for becomes
very high. This thesis develops some mathematical technology to help deal with

this using five dimensions as an example.

Normally, distances are calculated so that the distance between two opposite
corners of a square is found by adding the distance along each side squared. An
alternative is spinor space, defined by the property that the “length” between two
points is always zero. Calculations done in spinor space can be made equivalent
to normal space and are sometimes more convenient. In particular, when general
relativistic calculations are done in spinor space it is possible to classify solutions

to the Einstein equations in four dimensions in an intuitive way.

This thesis develops equivalent technology for five dimensions by considering what
symmetries remain once a direction is fixed in place. Making this symmetry

explicit has the effect of simplifying many expressions.

The second half of the thesis deals with a structure in general relativity called the
double copy. In particle physics, it is often necessary to calculate the likelihood
that two particles will interact if they are nearby. We will consider particles
which have a special kind of charge called colour charge. If all the information
that relates to the colour of the particle is replaced with a second copy of the

information about its motion, the resulting expression can describe the likelihood

1



that gravity particles will interact. This is called the double copy.

Gravity particles are a quantum phenomenon, but if we take the classical limit
of these calculations, we find that the double copy structure is also present in
general relativity. To demonstrate this we will consider a massive accelerating
particle. We will find that this can be written as two copies of a charged particle
undergoing the same motion, and the radiation from the particles also obeys a

double copy relationship.

In the final section of the thesis, we introduce a “transformation function” to
explicitly demonstrate how we can move between a quantum-like double copy

language and general relativistic expressions.
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Chapter 1

Introduction

We know a lot about general relativity. The Einstein equations have been studied
in huge detail and many exact solutions have been found, filling hundreds of
books and articles. The regions, Killing vectors and horizons of these exact
solutions have been examined. We understand that they obey the laws of black
hole thermodynamics and that they undergo Hawking radiation. We can calculate
the trajectories of particles scattering off the background of an exact solution
to make astronomical predictions. Still, there are limits to our understanding.
The highly non-linear nature of the theory means that it is difficult to gain an
intuition for what a solution will look like. Exact solutions must be found through
complex extensions and solution-generating algorithms while real-world solutions
are found through numerical and perturbative techniques, which is a difficult gap

to bridge.

However, there is structure in the theory that is yet to be explored fully and this
may help to connect the two approaches. In particular, experience from particle
physics has shown that a great deal of perturbative theory can be fixed by proper
consideration of the theory’s structure and symmetries. It can be hoped that this
will be possible for general relativity as well. Using techniques of particle theory
to reveal new structures and symmetries in general relativity will be a key theme
of this thesis.

Why does this matter? We are fortunate to live in a time when experiments
are able to probe gravitational waves to reveal details of black hole binary
inspirals. Current and future gravitational wave detectors will provide a spectrum

of frequencies through which we can see the universe. Precision calculations



may highlight the discrepancies between general relativity and nature - we know
that general relativity is non-renormalizable and therefore must emerge as some
quantum theory’s weak field limit. But precision calculations are difficult and rely
on approximations, or use large amounts of computing power. A useful shortcut
can be exact solutions, which work as analytic, solvable toy models. This is
how black holes were first understood: a mathematical solution to the Einstein
equations indicated that physical realisation was possible. If we can understand
symmetries and structure in the context of the exact solutions we may be able to

improve intuition and calculational ability.

The only parameter that general relativity has is the number of dimensions.
This is therefore a good place to start. It turns out that exact solutions change
dramatically with the dimension. For example, in two dimensions the Einstein
tensor has no algebraically independent degrees of freedom, while in three there
are no gravitational waves or asymptotically Minkowskian black holes [6]. We
know that general relativity in five dimensions also has fascinating properties - the
uniqueness theorem is violated and non-spherical horizon topologies are allowed.
Exact solutions such as the black ring and black Saturn have been found, but
the huge degree of freedom count makes it hard to find others. In successive
dimensions this degree of freedom count gets larger, increasing the complexity of
the situation. Therefore this is an important barrier to overcome to understand

how general relativity varies with dimensionality.

Many discoveries of exact solutions in four dimensions were made using spinors
to reduce the number of components. The removal of redundant gauge degrees
of freedom makes it possible to rewrite the equations of general relativity as a
much more tractable list of scalar coupled differential equations. This is referred
to as the Newman-Penrose formalism. This would be extremely useful in higher
dimensions, since there are even more redundant degrees of freedom, but despite
several attempts [7, [§] no equivalent formalism was found. However, the particle
physics version of this technique, the spinor-helicity formalism, was extended to
higher dimensions in [9]. The key observation made was to preserve the residual
spacetime symmetry left when a null direction is fixed. This symmetry is called
the little group. In the first half of this thesis we will use this observation to extend
the Newman-Penrose formalism to five dimensions and sketch the procedure to

extend it to an arbitrary number of dimensions.

There is another structure in general relativity called the double copy. More

precisely, this is a perturbative duality between supersymmetric Yang-Mills



theory and supergravity which was found in [10]. The question of how to relate
the double copy to general relativity and to exact solutions will be the second
theme of this thesis. In the duality, gauge transformations are used to find a set
of kinematic factors in the numerators for Yang-Mills Feynman diagrams which
satisfy a Jacobi identity matching the colour factors. This has been proven to be
true for arbitrary number of legs at tree level and is a conjecture for loop level.
Since it is true at tree level, it is also true classically in most situations (see for

example [I1]), and therefore the structure must be present in general relativity.

Applying this relationship to exact solutions was first proposed in [12] for
stationary Kerr-Schild exact solutions. Using only the degrees of freedom found in
the gauge theory, exact solutions satisfying the stationary vacuum gravitational
field equations can be constructed. This thesis will demonstrate how this can be
extended to non-stationary solutions by considering an accelerating particle. The

resulting Bremsstrahlung radiation can be related to the normal quantum double

copy.

The Kerr-Schild class of solutions are a choice of coordinates where the graviton is
traceless and symmetric. In general, the double copy of an N' = 0 gauge theory is
N = 0 supergravity where N is the number of supercharges present in the theory.
N = 0 supergravity is composed of a spin-2 graviton, a scalar dilaton field and
an antisymmetric axion field, while general relativity only contains the graviton.
If the double copy is taken in such a way that the resulting field is symmetric
and trace-free (such as in the Kerr-Schild case) then there is an automatic map
to general relativity. However, in general it is necessary to remove the axion
and dilaton to understand the double copy structure hidden in general relativity.
In the final chapter of this thesis, we consider this issue and develop a scheme

involving projectors to solve the problem perturbatively.

To fix notation and conventions, we will now introduce some of the concepts that

we will use later in this thesis.

1.1 Scattering amplitudes

The methodology of modern scattering amplitudes is based on removing redun-
dancy from the expressions. In the traditional Feynman approach there is a

very clear physical interpretation but it is necessary to sum over many different



terms. Through a combination of colour-ordering, spinor-helicity and little group
symmetry, we can eradicate the vast majority of these terms, often fixing physical
information directly. Over the next few paragraphs, we will elaborate on what
this terminology mean and show how this is done using the example of the Yang-

Mills 3-vertex. For more detail, the review [13] is excellent.

1.1.1 Colour-ordering

Yang-Mills theory is a spin-1 theory with a gauge group which we choose to be
SU(N). It has a Lagrangian

1 v a a
Lyy =~ T ELF",  Fu,=D,A, ~ DA, A, =AT (1.1)

where the covariant derivative acts on the gauge field in the adjoint representation
as
D, =10, —igT*Aj,. (1.2)

The space-time index is given by greek indices p,v = 0,1,..,D — 1 in D
dimensions, while the gauge group index is a,b,c = 1,2,..., N? — 1. Without
even extracting the Feynman rules, we can see that any expressions we derive
will be composed of two different types of data, firstly the SU(N) colour
factors constructed from the generators 7', and secondly the space-time-dependent
data which we will write in momentum space as functions of momenta p!' and
polarisation vectors ! where 7 indicates a particle number. The generators are

normalised according to [I3] and obey
[T, T% = ifebeTe,  TeT°T" = 6 (1.3)
for antisymmetric structure constants f“bc.

Let us consider a n-leg tree amplitude A%*. We can always write an amplitude

solely in terms of the trace of the generators attached to the n external legs:

Aree = g" 2 N Anlo(1,2, )| Te (T T 7)), (1.4)

perms o

where A,[1,2,...,n] is some function of the kinematics that we will refer to as
the colour-ordered amplitude. This can be shown as follows [I4]. We proceed

diagrammatically by using that the 3-vertex from the gauge fixed Feynman rules



is proportional to f¢, while a propagator has colour factor §%°. Therefore since

we can write the structure constants as
if®e = Te(TTT°) — Te(TPTT*) (1.5)
we can always use the Fierz identity
a\ j ay ls g 1 sl
(T%);7 (%), = 60w’ — N(Sijék (1.6)

to hook together any repeated colour indices until eventually only traces of
generators are left. The colour-ordered amplitudes have a number of nice
simplifying properties (it turns out that there are actually only (n — 3)!

independent ones) but most importantly they are gauge invariant.

1.1.2 Helicities and polarisation vectors

It is now possible to disregard the colour information and focus only on the colour-
ordered amplitudes. We stated earlier that they were constructed from momenta
p; and polarisation vectors €/, which we will define more concretely now. The

)

electromagnetic field strength tensor F),, is invariant under the gauge transform
A, — A, + 0, (1.7)

so it is possible to fix the gauge, for example by the requirement that 0 - A =
0. There is still some residual gauge freedom when A solves the wave equation

9?)\ = 0. Transforming into momentum space as

A(p) = /d43:eip'x)\(;1:), (1.8)

we fix this by introducing a second reference vector ¢* satisfying p - ¢ # 0. Now,
choosing ¢- A = 0, we have fully fixed the gauge freedom. Since p-q # 0, we have
two remaining independent directions, namely the two polarisation directions.
We write these in terms of the two helicities of a circularly polarized wave &
where h = +/— such that they complete the basis

y W Pt P!
h



Since p- A =¢q-A =0, we can write the gauge boson as
AM(x) = elep(z). (1.10)

So despite initially appearing as a spacetime 4-vector, the gauge boson only
contains two physical degrees of freedom. This is because the state that we

are describing is a unitary representation of the Poincaré group [15] [16].

1.1.3 Spinor-helicity formalism

A helpful alternative to this is to use spinors. There is an isomorphism between
SO(3,1) 2 SL(2,C)/Zy in four dimensions which allows us to write 4-vectors as

two component spinors. To do this, we will need the standard Pauli matrices

10 01 0 —1 1 0
oV = , ol = , oot= " ! N (1.11)
01 10 v 0 0 -1

to form ¢, = (0% 0',0% 0) and conjugate basis 544 = (0, —o!, —0?% —0?).
The spacetime spinor indices are «, § = 1,2 and, for the conjugate basis, &, 6 =
1,2. We move into spin space by constructing the object pas = p,oh, where p,

is null:
Do = pO +p3 pl - in (1 12)
prrip? 0 — P B

Since this has vanishing determinant, it must linearly factorize: p.s = AaAg. We

will use the conventions

s = sy, 5% = edﬁsﬁa (1.13)

to raise and lower spinor indices, and for convenience we will introduce the

notation (ij) and [ij] to represent
(i) = A Njar  [ig] = N Nja (1.14)
where ¢ and j indicate the th and jth particle in a Yang-Mills theory.

There is now no need to solve for the on-shell condition p? = 0, since

it = <agdA;1X?) <0W~Aiﬂﬂf) — —2(ii)]ii] = 0, (1.15)



and in fact it turns out that amplitudes can often be expressed with manifest

gauge invariance when spinors are used. A good example of this is the Parke-

Taylor formula for the n-gluon tree amplitude which depends only on the n

particles” momenta. If the gluons ¢ and j have negative helicity while the

remaining n — 2 gluons have positive helicity then the formula is given by
(ig)"

(12)(23)...(n1)

A1t i .nT] = (1.16)
which is explicitly independent of the gauge. Since there is no obvious downside,
spinors have been wholeheartedly adopted for use both in scattering amplitudes
and as we will see in section [2} in general relativity. Using spinors in this way
is called the spinor-helicity formalism in the amplitudes community, and the

Newman-Penrose formalism by relativistic communities.

1.1.4 Little group symmetry

Now that we have focused on the colour-ordered amplitude and are using spinors,
it turns out that calculating scattering amplitudes is a lot less involved than one
might anticipate. A big part of the reason for this is the Lorentz transforms that
the spinors undergo. When p* and ¢* are fixed, there is still an SO(D — 2) group
of residual Lorentz freedoms. This is often understood by visualising a null vector

oriented with the 2”~! axis such that it is given byf]

pM: (p707 "'707p)’ (1'18)
———
D—2
. (D—2)(D-3) . . . . . ) .
leaving == possible rotations still available without changing p or ¢q. This

SO(D — 2) group is called the little group and as we shall see, preserving its

covariance in Lorentz transforms turns out to be a very powerful tool.

Let us consider what that means for our 2-component spinors in four dimensions.

In fact, the situation is slightly more subtle - the freedom left if you keep the null vector p
invariant is the group SO(D — 2) x Tp_s where T, is the n-dimensional group of translations.
It is only when you also fix the gauge vector ¢, for example by the choice

" = (q,0,...,0,—q) (1.17)

that only the rotations SO(D — 2) are left.



We complete the spinor basis with the orthogonal spinors u® and i such that
Aaft® = Agfi® = 1. (1.19)

It is then natural to define ¢* = o u®a®, since this satisfies p - ¢ # 0. The two
polarisation vectors can be given by

e =gl o\, e PSR (1.20)
The only Lorentz transform that leaves p*, ¢* and the spinor basis definition

(M) = [Au] = 1 invariant is
A=\, A—=e N, p—e P - en, (1.21)

where 6 parametrises the single rotation available in the residual SO(2) Lorentz
symmetries. Under this transformation, we find that the positive helicity

polarisation transforms as & — e 2/, while the negative helicity polarisation
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transforms as " — e

Surprising as it may seem, even this tiny amount of technology is enough to fix
amplitudes. Consider a 3-point amplitude of particles i = 1,2, 3, each with some
helicity h; = +1 for positive helicity particles and h; = —1 for negative. As we saw
above, the polarisation vectors transform with a scaling factor of e 2", The only
non-zero scalars we can use to build the (scalar) amplitude are contractions of the
three spinors A and 5\?, we do not expect the gauge spinor pf to appear in the
final expression because ¢* is an arbitrary reference vector. One final observation:

conservation of momentum for three particles tells us p} + ph + p4 = 0. So

P2 =(p1+p2)®=2p1 - po = (12)[12] = 0. (1.22)

By repeatedly using momentum conservation, we can show that if (12) vanishes,
then all other angle bracket products also vanish. Conversely, if [12] vanishes, the

other square bracket products vanish.

Putting this all together, since the amplitude must transform with the same

—2ih;0

factors of e as its external particles we can use an angle bracket ansatz

As(1M12h2303) = (12)*12(23)723(31)"s1 (1.23)



and perform a little group rotation on each particle to find
T12 = h3 — hl — hQ, To3 = hl — hg — hg, T31 — hg — h3 — hl. (].24)

For example, let us consider the 3-gluon amplitude with two negative helicity
and one positive helicity polarisations A3(17273%). Implementing this formula,

we find
Az(17273%) = (12)° (1.25)
’ ~(23)(31) '
Note that we chose a hypothesis with angle brackets because the kinematics
requires square brackets to vanish. We can see this easily: a square bracket

ansatz obtains :L’fjl = —x;; such that the 3-point amplitude would look like

23](31]
[12)2

(1.26)

This has a negative mass dimension and therefore cannot come from our local
theory. Recursively using the little group symmetry and locality is enough to

specify every single tree amplitude in some theories [13].

1.2 General relativity

In contrast, general relativity initially seems very different. The traditional
formulation of general relativity is to begin with the spacetime interval ds®> =
guvdxtdx”, to specify the metric. We can then define the Riemann tensor in the

standard way as
Rpa;w = 8,urpua - aurpuo + Fp,u)\r)\ua - FPVAFAMU (127)

where the Christoffel symbol I'" 5 Is given by

1 174
Lo = 59" (00900 + 0s9up — 0u9po) (1.28)
and V, is a covariant derivative given by

102.... _ 102.... 1 vp2.... 2 1V....
v/.LTp r 0102.... _a,LLTp p 01092.... + Fp ,ul/T p 0102... + FP ,LLVTP 0102... +

v P12 v P12
-T T vog... — L T L. — e

Mot po2..

(1.29)



for arbitrary tensor T'. Despite this rather dry definition, the Riemann tensor is

of essential importance since it encodes the curvature of the spacetime:
V.,V -V, Vv = R%,0° (1.30)

for arbitrary vector v”. The trace of the Riemann tensor is defined to be the Ricci
tensor IR, = R*,q,. This encodes the matter present in the spacetime through

the Einstein equations

1
where R is the Ricci scalar R = g"”R,,, and T}, is the stress-energy tensor. The

tracefree part of the Riemann tensor, the Weyl tensor

2

2
C,U,l/pd ]E,U,II — g R v — gl/ R

D—1)(D-2)

Rgu[pga]u (1'32)

encodes non-local matter.

In this formulation, general relativity seems to have very little in common with
particle physics. Nevertheless, in this thesis we will show how the two theories
can be formulated more similarly and how techniques from amplitudes can be

used in general relativity.

The structure of this thesis is as follows. In part [, we will consider the use of
spinor helicity techniques in general relativity: in chapter [2] we will review the
Newman-Penrose formalism in four dimensions and in chapter |3| we will extend
this formalism to five dimensions with a focus on how this naturally implies a
Petrov-like classification for all vacuum spacetimes of five dimensions. Then in
part [T, we will consider how the double copy can be used classically in general
relativity. In chapter 4| we will review the details of the quantum double copy,
before extending the Kerr-Schild double copy to the accelerating particle case
in chapter [5 Finally, we will show a methodology for removing the dilaton to
apply the double copy to general relativity in chapter [6 before presenting our
conclusions in m Chapters 2| and |3| were published in [I], while chapter |5 and
chapter [6] were published in [2] and [3] respectively.

We will use the mostly plus metric convention (—,+,...,+) for the bulk of the
thesis with the exception of chapter [5| which is written in the mostly minus metric

convention (4, —, ..., —).
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Part 1

Spinorial techniques in GR
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Chapter 2

Exact solutions and spinorial

techniques in four dimensions

As we described in chapter using spinors to remove redundant degrees of
freedom can be very convenient. In this chapter we will review this process in four
dimensions in preparation for the five dimensional formalism developed in chapter
Bl We then review the Petrov classification for four-dimensional spacetimes. This
classification can be understood from a variety of perspectives; we emphasise the
Newman-Penrose (NP) approach [17, 18] because it is closest in spirit to our

approach in five dimensions.

This chapter is based on work published in collaboration with Ricardo Monteiro
and Donal O’Connell in [I].

2.1 Spinors in four dimensions

In flat Minkowski space, the Clifford algebra is

0 06 0 4 0¥ 0 7P = 2 1,7 (2.1)

12



where 7, is the Minkowski metric.ﬂ To be explicit, we choose a basis of o*

matrices given by

10 01 0 — 1 0
o , o= , ot = ' N . (2.2)
01 10 0 0 -1

while the o* matrices are
50 10 5l _ 0 1 52 _ 0 —1 53— _ 1 0 ‘
0 1)’ 1 0/’ i 0]’ 0 —1

For any non-vanishing null vector V', the matrices V' - 0 and V - ¢ have rank 1.

Hence we may construct solutions of the (massless) Dirac equations:

V- Oaa AY =0, (2.4)
V.59 )\, = 0. (2.5)
These spinors can be normalised so that V - 0,4 = ) /\a:\a- We may raise and

lower the indices o and ¢ on these spinors with the help of the two-dimensional
Levi-Civita tensor. We choose conventions such that €2 = 1, ¢ = —1 and

5% = 9 55 while §¢ = ¢4 4.
In the curved space case, we simply introduce a frame e*);, such that
g = ety e’ N MY, (2.6)

On the tangent space at each point, the Clifford algebra can be written as before,

UMad &Ndﬁ + UNad &Mdﬁ = _277MN ﬂaﬁ7 (27)
whereas
0 i 778 4 0 0y 518 = —2¢g" 1,7, (2.8)

M and a similar definition for . We use the explicit Clifford

bases of equations (2.2) and ({2.3]) in the tangent space.

with o = ety 0

It may be worth commenting briefly on reality conditions in four dimensions,

since the reality conditions in five dimensions will play a more significant role

"'We work in the mostly-plus signature.
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later. The Lorentz group in real Minkowski space is isomorphic to SL(2,C)/Zs.
It is consistent to choose a basis of Hermitian ¢ matrices — and indeed we have
chosen such a basis in equations and (2.3). Then, given a real null vector
V', we may choose our spinors A and X such that AT = \. This is consistent with
the choice that V - 04y = —V/2 Aaj\d-

2.2 The four-dimensional Newman-Penrose tetrad

In four dimensions, the NP formalism [17, [I8] exploits the correspondence between
the Lie algebras so(4) and su(2) x su(2). A key element of the method is the
spinorial construction of a particular basis set of vectors, known as the NP tetrad.
We begin by choosing two null vectors k* and n* which satisfy k- n # 0, and

constructing an associated basis of spinors {04, 2, } by solving the equations
k-040a0°=0, n-d4,1" =0. (2.9)

Since k - n # 0, we may normalise the vectors so that £k -n = —1, and also

normalise our spinors so that 0%, = 1.

Similarly, we construct a conjugate basis by solving the equations
k-0aa0°=0, n-0,1* =0, (2.10)

to find the dual spinors {04, %4}, which we also normalise so that 675, = 1. For

real k and n, we may take 6 = of and 7 = 4 as discussed in section [2.1]

Let us now complete the construction of the NP tetrad of vectors using our spinor
basis. The tetrad includes the vectors k£ and n, so we must find two more. Since
the spinor basis is complete, we can construct the last two elements of the NP

tetrad, m and m, from
mt = —= o, 1> " mt = — ok, 0”7 (2.11)

Of course, when k£ and n are real, m is the conjugate of m. It is then a
straightforward exercise to show that all four vectors in the NP tetrad are null,
and satisfy —k-n = m-m = 1 with all other dot products vanishing. Furthermore,

by use of these properties the spinorial completeness relation transmutes into the

14



NP metric,

g = —kFn” — KV n* + m*m” + m” m*. (2.12)

Thus we can fully describe the spacetime in terms of spinors.

2.3 The Petrov classification for 2-forms and the

Weyl spinor

These four-dimensional spinors make it possible to rewrite the field strength 2-
form and the Weyl tensor in a convenient form. For an arbitrary 2-form F),,, we

can build a complex symmetric spinor
Qo5 = F 0 op, (2.13)

where 0,5 = 1(0%456"75— 0%4;5"5). The symmetric two-dimensional

matrix ®,p4 is parametrised by three complex scalars,
ho = Do 0”0, 1 = Bopo™i?, By = Bopi®e’. (2.14)

Similarly, we can build a symmetric 4-spinor, known as the Weyl spinor, from

the Weyl tensor C), )0
\Iloaﬁ'y(S = Ouupa Uuua,@’ O—pa'yé- (2 15)

The Weyl spinor can be decomposed into 5 complex scalars defined by:

B B

o § (e’ é (e é
% :\I/aﬂ'yé 0% 0%0%0 ) wl = \I]aﬁ'yé 0% 0”071 ) 2/}2 = \Paﬁyéo OIB 1" )

= o, B, ,0 - a . B.v.6 (216)
77Z)3— afys 0 111, ¢4— apyst VL.

The Petrov classification [19] is a way of categorizing Weyl and field strength
spinors depending on how “algebraically special” they are. It is well known that
a symmetric SU(2) n-spinor will always factorise into the symmetrisation of n
basic spinors. The idea of the Petrov classification is that the more of these
individual spinors that are the same (up to scale), the more special the original
n-spinor is. For example, a field strength spinor ®,3 = () is algebraically
special if and only if 8 o a. This also has an interpretation in terms of the

complex scalars ¢; (and 1; for the Weyl tensor): it is possible to find a tetrad
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where some of these scalars vanish, depending on how algebraically special the
n-spinor is. A summary of the classification for the field strength tensor is given
in table and for the Weyl tensor in table The Petrov scalars have the
interesting property that it is always possible to choose a tetrad where ¢y vanishes.
This turns out to not always be true for higher dimensions, as originally found

by CMPP in [7].

Type  Spinor Alignment Scalars
Type I 11 b0 =0
Type 11 11 o =¢1=0

Table 2.1 Table showing the Petrov classes of a 2-form. There are two possible
classes, only one of which is algebraically special. We denote spinor
alignment, i.e., when two spinors are the same (up to scale), by
underlining them. Note that the scalars only vanish in certain tetrads.

Type  Spinor Alignment Scalars

Type 1 1111 Uy =0

Type II 1111 Yo =11 =0

Type D 1111 Yo=1v1 =193 =1=0
Type 11 1111 Yo=11 =1 =0
Type N 1111 Yo=1P1 =1 =1Y3=0

Table 2.2 Table showing the Petrov classes of a Weyl tensor. There are four
different algebraically special classes. The spinor alignment indicates
when two or more spinors are the same by underlining them, for
example 11 11 refers to two different pairs of identical spinors. Note
that the scalars only vanish in certain tetrads.

As we mentioned above, the Weyl spinor is a totally symmetric rank-4 spinor and

therefore can always be decomposed in terms of four rank-1 spinors as

Wapys = AalBp7y0s) - (2.17)

This decomposition allows for an alternative viewpoint on the Petrov classifi-
cation. The distinct algebraic classes are given by the alignment of the rank-1
spinors, i.e., the equivalence of the rank-1 spinors up to scale. We have represented
the aligned spinors in tables and [2.2] by underlining them.

The reduction of the four-dimensional formalism reviewed in this section to three

dimensions is discussed in [20].
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2.4 Field equations

In this chapter, we have reviewed the four dimensional Newman-Penrose formal-
ism and the Petrov classification in preparation for the introduction of a higher
dimensional formalism in chapter [3] We have not discussed why this is useful
in general relativity further than the insight that the Petrov classification gives.
However, they give very concrete computational advantages as well which we will

very briefly sketch now.

The final step of the Newman-Penrose process is to introduce the spin connection
and rewrite the field equations in terms of four scalar total derivatives and sixteen
complex scalars. For example, we might be interested in whether k* is geodetic.
We would need to study DEkH:

DE* = (e + é)k! — Rmt — kit (2.18)
where D is one of the four scalar derivatives defined by

D = oaégva/;, A = MBVQB, 0= OQZBVOCB’ 0= Zaagva,@"’ vaﬁ - UZBa“
(2.19)

and where x and € are two of the 16 complex scalars defined by
k= 0"Do,, €=0"Di,. (2.20)

We see that k is a measure of whether or not k* is geodetic while a vanishing e

indicates affine parametrisation of the geodesic.

The Bianchi identity, Ricci identity and Maxwell equations are then all rewritten
in terms of these quantities. The Maxwell equations, for example, are rewritten

as four scalar equations, of which the first is

Doy — b = (1 — 20) g + 2pp1 — Ko (2.21)

The use of the spinor formalism means that each scalar corresponds to a physical
degree of freedom and makes analytic results easy to find. For example, we can
see that if we have a type II Maxwell field as described in table [2.1| then a frame
can be found where ¢g = ¢ = 0. From equation (2.21)) we can immediately read
off that in this frame, x must vanish and therefore k* must be geodetic. This

kind of insight would be much harder to find without the use of the Newman-
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Penrose formalism. As such, we hope that the development of the five dimensional

formalism in chapter [3| will lead to similar insight in five dimensions.
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Chapter 3

Spinorial techniques in higher

dimensions

3.1 Introduction

Representations of the Lorentz group play a prominent role in particle physics.
Particle states are famously classified according to irreducible representations,
and the requirement of Lorentz invariance strongly constrains their interactions.
This constraint is particularly powerful when dealing with massless particles. As
we discussed in chapter 2] the isomorphism SO(3,1) = SL(2,C)/Z; allows us to
write any massless momentum as a product of two spinors, k, — Ao in four
spacetime dimensions [I5]. For the scattering of massless particles, an S-matrix
element is a function of these spinors only, and the helicities h; of each particle
fix the relative homogeneity weight of the function for each type of spinor. This
is known as the spinor-helicity formalism, and it has become a major tool in
high-energy physics. See for example [I3] for a recent review of this formalism

and its applications.

As outlined in the previous chapter, general relativity has also seen fruitful
applications of this type of idea, starting with Penrose’s spinorial approach
[21] and its development into the Newman-Penrose formalism [I8]. The basic
principles are to define a frame ¢e”,, that takes us from coordinate space to
the tangent space, nuy = g€y €y, and then to explore the isomorphism
SO(3,1) = SL(2,C)/Zy for the tangent space Lorentz transformations. For
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instance, the Weyl tensor C),,,, is described in tangent space by a rank 4 spinor
Yapys and its complex conjugate. The algebraic classification of this rank 4 spinor
elegantly reproduces the Petrov classification of four-dimensional spacetimes [22],
which had a profound impact in the development of general relativity; see for
example refs. [23, 24]. In particular, the Kerr solution, which represents a vacuum
asymptotically flat stationary black hole, and is perhaps the most important
exact solution of astrophysical interest, was originally discovered by imposing a

condition of algebraic speciality [25].

There are a variety of motivations for extending these constructions to higher
spacetime dimensions. In the case of general relativity, extra dimensions are
naturally motivated by string theory, and also by the fact that the number of
spacetime dimensions is the natural parameter of the vacuum Einstein equations.
Indeed, the catalogue of higher-dimensional vacuum asymptotically flat black hole
solutions is incredibly rich, in contrast with the four-dimensional case, where the

unique solution is the Kerr black hole; see for example [26-29] for reviews.

In the case of particle physics, analogous motivations apply to developing the
spinor-helicity formalism in various dimensions. There is also a more practical
application to the computation of S-matrix elements in dimensional regulari-
sation, where the loop momenta cannot be restricted to four dimensions. An
elegant extension of the spinor-helicity formalism approach to higher dimensions
was presented in [9], where the main focus was on six dimensions. The method
was extended to general dimensions in [30} [31]. In this chapter, we will apply this

extension to the algebraic classification of solutions in general relativity.

As we mentioned, the space of solutions to the vacuum Einstein equations in
higher dimensions is much richer than that in four dimensions, and the question
of extending the Petrov classification naturally arose in the past. In fact, different
approaches have been taken. Coley, Milson, Pravda and Pravdova (CMPP)
defined a classification [7, [32] that has been investigated over many years, for
example in [33H40]; see [41] for a review. In analogy to the four-dimensional story,
the classification is based on the grouping of Weyl tensor components according to
boost weight. Subgroups within the groups of boost-weighted components were
found by Coley and Hervik in [37], and in [39] these sub-types were investigated
in five dimensions. The CMPP classification has not been studied from a purely

spinorial approach.

A different classification had been previously constructed by de Smet [4] for
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five-dimensional spacetimes, based on the factorisation properties of the Weyl
spinor. This spinorial approach can also be considered a natural extension of
the four-dimensional story, and yet it takes a very different form to the CMPP
construction. An in-depth comparison by Godazgar [5] showed that there was
poor agreement in what was considered algebraically special by the de Smet
classification versus the CMPP classification. None of two appeared to be the
‘finest’ classification, since a solution could be special in one classification and

general in another.

There are two main goals to this chapter. The first is to apply the higher-
dimensional spinor-helicity formalism of ref. [9] to the algebraic classification of
solutions of the Einstein equations, in the spirit of the spinorial approach of
Penrose. The second is to show the versatility of this spinorial approach, which
exhibits manifestly the two relevant types of spinor spaces, by clarifying the
relation between the CMPP and the de Smet classifications, and the question
of the ‘finest’ algebraic classification. We will be mostly interested in five-
dimensional solutions, where the spinorial formalism is based on the isomorphism
SO(4,1) = Sp*(1,1)/Zs, but we will also briefly discuss the six-dimensional
case in order to demonstrate generic features. We will be careful to describe
when we consider reality conditions in our spinorial formalism, so that it can be
applied both to real spacetimes and to potentially interesting cases of complexified

spacetimes.

In addition to the classification of the Weyl tensor, we will study — for
illustration and as customary in this context — the classification of its analogue in
electromagnetism, the Maxwell field strength. There is a modern motivation
to include this. A relation between gravity and gauge theory known as the
‘double copy’ has emerged from the study of scattering amplitudes in quantum
field theories [10} 42]. This relation, which applies in any number of spacetime
dimensions, has a counterpart in terms of solutions to the field equations. It can
be expressed most clearly for certain algebraically special solutions, namely Kerr-
Schild spacetimes [2], 12, 43-46], which we will elaborate on in chapter , but it
should apply more generally [3, 47-65] as we will demonstrate in chapter |§| It is
clear from these developments that there is a close relation between the algebraic
properties of spacetimes and those of gauge field configurations. Indeed, it will
be obvious from our results that an analogy exists. We hope to address elsewhere
how this analogy can be turned into a precise double-copy relationship; progress

towards this goal has been begun in [66].
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This chapter is organised as follows. Following the review of the four-dimensional
spinorial approach to the Petrov classification in the previous chapter, we will
introduce the five-dimensional spinorial formalism in section [3.2] The five-
dimensional algebraic classification is described in section|3.3|for the field strength
tensor, for illustration, and then in section for the Weyl tensor. The extension
of this spinorial approach to higher dimensions is discussed in section [3.5]
We conclude with a discussion of the results and possible future directions in
section The chapter is based on work done in collaboration with Ricardo
Monteiro and Donal O’Connell in [IJ.

3.2 A Newman-Penrose basis in five dimensions

In the study of scattering amplitudes, it is important to construct a basis of
vectors associated with a given particle. As we described in chapter [I] physically,
these vectors are the momenta of a particle, a choice of gauge, and a basis of
polarisation vectors. A method to construct this basis, known as the spinor-
helicity method, is known in any dimension [9, B0, B1]. The method builds on

foundational work on amplitudes in four dimensions [67-71].

In four dimensions, the spinor-helicity construction is reminiscent of the Newman-
Penrose tetrad, suggesting that the spinor-helicity method can be adapted to craft
a higher-dimensional Newman-Penrose basis. We will see below that this turns
out to be the case, focusing on five dimensions for concreteness. Apart from some
comments on six dimensions in section [3.5, we leave higher dimensions for future

work.

We begin with five-dimensional flat space. We will generalise to curved space in

section B.4.11.

3.2.1 Spinors in five dimensions

Our five-dimensional setup is based on the six-dimensional conventions of [9],
taking into account simplifications which occur in odd dimensions [31]. Even
dimensions always have the property that one can choose a chiral basis of ~

matrices, leading to the Clifford algebral] But in odd dimensions no such chiral

In even dimensions, there is always a matrix 7, with the property that {7*,v.} = 0. In
four dimensions, this v, is usually denoted 5. With the help of ., one can define projectors
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choice exists. We therefore work with a basis of five 7 matrices. One can
always raise and lower indices of v matrices; see e.g. [72] for a useful review.
In five dimensions, we may also exploit the accidental isomorphism between
s0(5) and sp(2) to choose our v basis so that the matrices with lower indices are
antisymmetric. Since it is convenient to understand the dimensional reduction to

four dimensions, we found it useful to pick an explicit basis given by

A 0 oo,
’}/MAB = ( 7 ﬁ) ) ,a = 07 172737 (31)

—hp 0

where the matrices o0 and ¢ are nothing but the four-dimensional Clifford bases
given in equations ([2.2)) and (12.3)) with their spinor indices appropriately raised

or lowered. The final component of the basis, ¥4 45, is chosen to be

e 0
Yap = —i ( ) . (3.2)
0 €5

This choice of basis is for convenience. The results we derive are independent of

basis and hold generally. These results are summarised in section [3.2.5

With this choice of basis, we may build on our understanding of the four-
dimensional NP tetrad to lay the foundations of a five-dimensional formalism. To
do so, we pick null vectors k and n satisfying k£ - n # 0, and choose a coordinate

system in which k* and n* take the form
k' = (K% k' K2 K%,0), nt = (n° n'n? n0). (3.3)

Without loss of generality, we may choose k-n = —1. Our first task is to construct
a basis of the space of spinors in five dimensions. As in the four-dimensional case
described in section we will find this basis by solving the massless Dirac

equations for the null vectors k& and n.

Let us take k* as an example. We must find the null space of the matrix

k-vyap = ( o Uaﬁ') . (3.4)

—k-54° 0

Since k - 0 and k - ¢ have rank one, the matrix &k - v has rank two and the null

Py = (1+£7.)/2. Spinors which are eigenstates of these projectors are called chiral. The Clifford
algebra o#6" +o¥6H* = —2n*" can be obtained from the usual Dirac gamma algebra by defining
ot = Pyy*P_ and 6" = P_~+"P,.
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space is two-dimensional. We conclude that the null space of k - 745 is spanned

K, = (;) I <0> , (3.5)

which are evidently linearly independent and lie in the null space by virtue of
the definitions, equations (2.9) and (2.10), of 0 and 6. It is very convenient to

package these spinors up using a Roman two-dimensional index a:

4 [0 oa
on (29 o

We will see below that the spinors k#; and k?5 transform into one another under

by the spinors

the action of a particular group.

To get a feel for k4,, it is helpful to understand its relationship with the vector
k*. The simplest way we can construct a spacetime vector is to hook up the
indices as k, o v o k*, where we use o to denote the contraction of SO(4,1)
spinor indices, and have defined k* = €*k;. This turns out to be correct: for the

first four components g = 0, 1,2, 3, we find

0 o 0 o\ [os o.
0q O —5hB 0 0 —d°

B

k, 0 v* 0 k® =Tr

(3.7)

N N BT R
=0",30 0 +0"40 0

= 2V/2 k",

while for the final component we find

0\ (e 0 [os 0\|_
()@ ) e

Thus, using only the four-dimensional definitions, we have recovered k* = (k. 0).

koovtok®= —iTr

The complete formula is therefore:

1

k=
2v2

k, o y* o k%, (3.9)

It is worth commenting further on this formula. The spinors k, for a = 1,2 are
a basis of solutions of the equation k - y45 k®, = 0. We may, of course, perform
a complex linear change of basis in this space of solutions. The normalisation

condition k* = ﬁé k, o v* o k® restricts this change of basis to be an element of
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SL(2,C), so we can think of the null space as a two-dimensional representation of
SL(2,C). In fact, we will see below in section that if we choose a real vector
k*, and impose both our normalisation condition and a reality condition on the
spinors k,, we must further restrict this group to SU(2). The physical role of
this group is simply the three-dimensional rotations on the spacetime dimensions

orthogonal to both k£ and n.

Now we construct the other half of the spinor basis n?,. In view of the
normalisation condition k - n = —1 satisfied by the vectors, we can choose
the spinors k?, and n?, to satisfy k, ony, = kA, Qupn®, = e, where the

raising/lowering matrix Q4p is, explicitly,

af 0
Oup = (6 > . (3.10)
0 —€4p

Incidentally, for notational simplicity we define
kAa = QAB kBa, Npgq, = QAB IlBa. (3.11)

Following the recipe described above we find a basis of spinors in the null space
of n - o4p. However, a naive application of the method leads to a basis which
does not satisfy our normalisation condition k, o n, = €. To correct this, we

simply perform a change of basis, finding

W 0
nA = (Zo —ad> . (3.12)

The spacetime vector n* can be reconstructed from the spinors as before:

1
n* = ——=mn, oy* on”. (3.13)

2v2

The other two contractions are k, o k, = n, on, = 0, which follows from the

antisymmetry of Q4p.

3.2.2 Polarisation vectors

The spinors k4, and n?, are a complete basis of spinors. As in the four-
dimensional case, we can use the spinorial basis to construct vectors which,

accompanied by £* and n*, form a complete basis of vectors in five dimensions —
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a pentad. Recall that the vectors k* and n* are given by
/{;“:Lkaov“ok“ n“zinaoy“on“. (3.14)
2v/2 ’ 2v/2
We define the remaining independent contraction to be

el =k,ov" ony = —nyoy* ok, (3.15)

where it can be shown that e*,, = ", by use of gamma matrix algebra. To
interpret this object *,,, we can break it down in terms of its four-dimensional

components. Firstly, we will consider 1 = 0, 1,2, 3. For these values of fi, "y, is

s [0 & 0 o\ (15 0
T Now 0) \=672 0 0 —i

Fh 50,8 0
_ [Tt y (3.16)
0 o“agoazﬁ

given by:

Thus we can see that as long as fi = 0, 1, 2, 3, the diagonal components of e#,;, are
precisely the vectors m” and m#” which appeared in the Newman-Penrose tetrad

in four dimensions. The final value of u, u = 4, is given by

54ab =k, 074 oIy

. 0 5d Eo‘ﬁ 0 (2] 0
= —1 :
00 0 0 e4) \0 —° (3.17)

We therefore find

ety = \/5 (mﬂ70)
elge = V2 (mﬂ; 0) (3.18)
et = eflgy = (O;O)0707i>°

Finally, we can establish the useful property
8Mab Epcd = €ac €bd + €ad €be (319)
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by explicit computation. The spinorial completeness relations imply that
v v v 1 ac _cd v
" = — kt*n” — kE'nt + gee e b €% cd- (3.20)

These properties are characteristic of polarisation vectors, which in part accounts

for the utility of this formalism in scattering amplitudes.

3.2.3 Reality conditions

Our v basis satisfies
(%) = —H oy o HT (3.21)

where the matrices v* have lower indices and

0 e
H= ‘). (3.22)
—€ap 0

For a real null vector V' in five-dimensional Minkowski space, we may impose
a reality condition on the associated basis of spinors A4,. Regarding A as a

four-by-two matrix, reality of V' implies
V-yoA=0=V-yoH o\ =0. (3.23)

Thus the spinors H” o \* are linear combinations of the two basis spinors \,, so

we may write HT o \* = AX, where X is a two-by-two matrix.

Recall from section that the two-dimensional space of A, furnishes a
representation of SL(2,C). The reality condition H' o \* = AX is not covariant
under the full SL(2, C), because the left-hand side transforms under the conjugate
representation of the right-hand side. Thus the group is broken to SU(2), which
has the well-known property that the conjugate representation is equivalent to
the fundamental representation. Requiring that the reality condition is covariant
under this SU(2) determines X o< e. Thus, in our conventions, we arrive at the

reality condition in the form [73]
HT o \* = —)e. (3.24)

Using index notation, we may write this as follows. First we define Ma = (A%
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then the reality condition is

Mag A = )4, (3.25)

Our main focus will be on real spacetimes with Minkowski signature. Therefore we
will pick real vectors k* and n* and impose the reality condition, equation (3.25)),

on the spinors k4, and n?,.

We must now investigate what this means for our pentad, in particular for the
“polarisations” e*,,. They are defined by *,, = k, o y* ony; we define the

conjugate of these vectors to be g% = (g#,,)*. Using the reality condition we
find

(3.26)
= (1) 07" o ()
— €2 6bd Euc
€,uab
In short, e#® = (et 4;)". So ety = (et92)*, while 1y = —(e#12)*. This is exactly

as we found in section [3.2.2} e#; and eVqy relate to m* and m* respectively while

et is given by iety, which is indeed imaginary.

3.2.4 Lorentz transformations and the little group

To build some intuition into the objects k4, and n?,, it is worth pausing
our development to understand how these spinors transform under symmetries,
especially (local) Lorentz transformations. Recall that the index A takes values
from 1 to 4, spanning the four dimensions of the spinorial representation of
SO(4,1), while the index a takes values 1 and 2 and spans the two-dimensional
solutions space of, for example, the equation k,vzk? = 0. We will see that the
SU(2) acting on the two-dimensional solution space is the subgroup of Lorentz
transformations which preserve the vector k*. This subgroup is the little group

of the null vector k*.
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Boosts and spins

We have defined the spinors k*, and n“, to be solutions of the Dirac equations
k-~vapkB =0 =mn-~y4pnP, subject to the normalisation condition k, - n, = €,

and obeying a reality condition for real spacetimes. Obviously the rescaling

1
k4, = bk?,,  nt, — : n?, (3.27)

will preserve the definitions, provided that the factor b is real for real spacetimes.

We may therefore investigate how this rescaling acts on the pentad we have

constructed from the spinors, equations (3.14) and (3.15)). It is easy to see that

the action is

1
L = (3.28)

This simple transformation is nothing but a Lorentz boost in the two-dimensional

space spanned by k* and n*, leaving the remaining three dimensions invariant.

We may also consider a more non-trivial change of basis of the solution space of

the Dirac equations:
k4, = K4, = M,Pk4,, ot =0, = N,Snd,. (3.29)

This change of basis automatically preserves the conditions that k, o k, = 0 and
n, on, = 0. We have already seen that M and N are elements of SL(2,C). The

normalisation condition is that
M Ny € cq = €an,s (3.30)

which implies that N = M.

We may now investigate the action of this group of transformations on our
spacetime pentad. A straightforward calculation shows that the transformation
is

Kkt — kX, nt — n#, el — M Myt ety (3.31)

This is a Lorentz transformation preserving k£ and n.

In the real case, we have already seen that the transformation M is an element

of SU(2). This makes sense: in the real case, the subgroup of the Lorentz group
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which preserves k* and n* is evidently SO(3). We can see this more concretely
by introducing a vectorial basis of the three-dimensional representation of SU(2),
which is also the fundamental representation of SO(3). As usual, the symmetric
Pauli matrices <%, i = 1,2, 3 provide a convenient mapping from the 2®2 tensor
product of SU(2) representations to the 3. In view of the reality condition, we

find it convenient to take

1(2 O 1(1 0 1/0 —
- 7 — = , == 3.32
S1 2<0 z) 2 2(() 1) S3 2( ; O) ( )

Notice, for example, that this choice of basis has the property that (¢;)* = ¢%2;,
consistent with our reality condition. They relate to the usual Pauli matrices as

1
O; = 36 " €.

We may then define
ety = et s, (3.33)

and

m; = May ™. (3.34)

The antisymmetric degree of freedom in M is defined to be M, = €*®M,,. In this
language, the condition that M has unit determinant becomes thf +m-m =1,

and the polarisation vector transformation is
L.
e = (—memt+  My” ) e+ 2 (m- ") m o+ Mo (mx £). (3.35)

We can compare this with the standard formula for a rotation by angle 6 around

an axis n in three-dimensional Euclidean space,
x—cosfx+(1—cosl) (n-z)n+sinf (nxx), (3.36)

to see that the transformation M rotates the polarisation vectors by an angle
sinf = M;,|m| around the axis m in the Euclidean 3-space of the little group,

leaving k* and n* invariant.

The null rotations

The boost and spin transformations comprise four of the ten Lorentz transforma-
tions available in a five-dimensional spacetime. It is interesting to understand the

remaining six. To do so, we look to the null rotations of the four-dimensional NP
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tetrad for inspiration, and construct the ansatz k*, — k%, +7,°n4;, n4, — n4,.

To preserve k, - ny, we require that the matrix 7" is symmetric:

K, -k = (ko + T.°n.) - (ky + 71" ng)
= T,° (ne - ky) + T (ko - ng) (3.37)
= Lagb — Tba =0.

Similarly the transformation k4, — k4,, n4, — n?,+5,°k%4, is valid as long as S
is symmetric. The symmetric matrices S and T comprise three degrees of freedom
each, so combined with the boost and spin, this is a complete parametrisation of

the Lorentz group. The action of these transformations on our pentad is:

e Null rotation about n: k%, — k%, + T,’n4,, n?, — n?,,

k= kT ety — det Tk, n — nt, ely — ela + Ty, (3.38)

e Null rotation about k: k4, = k%,, n?, — n?, +5,°k4,,

k' — kM nk =t SP ety —det SKH, ety — ey + Sap k. (3.39)

3.2.5 Summary

We can now summarise the key results. The pentad is constructed from null

orthogonal vectors
k> =n*=0, k,nt = —1, (3.40)

with the symmetric polarisation vector *,, satisfying
k - Eab = MN - Egp = 07 Euab gucd = €qc €bd T €ad Ebe- (341)
This pentad spans the spacetime as
wy wo v v, oW 1 ac _cd _p v
" = —k'n” — E'nf + = €*e“ et ¥ . (3.42)
We choose spinors k?,, n?,, where A = 1,....4 is a spacetime spinor index and
a = 1,2 is a little group spinor index, to satisfy
ky, ok, =n,ony =0, ky, o0y = €, (3.43)
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where “z o4 indicates a contraction on the spacetime spinor index, i.e., x4 y*.

The pentad can be defined in terms of the spinors:

1
kt' = —— k, oy o k°, nt = ——=n, oy" on?, ety = kg 09" oy,

1
2v/2 2v/2
(3.44)

in order to automatically satisfy the properties given above. To restrict to real
Minkowski space, the spinors must satisfy reality conditions. In particular, any
real objects which transform under the little group indices must obey

(3.45)

Om *

by....b * ai...a
(Xa1...an ! m) - X ! nbl... b

Finally, we note that the ten transformations of the standard five-dimensional
Lorentz group can be parametrised as a boost b, three spins M,;, where det M =
1, and two three-dimensional null transformations T,, and S,, which are both

symmetric:

Boost: ks* — bkAa, ng* — %nA“

Spin: kAa — MabkAb, np® — MabnAb

Null rotation about n: k4, — k4, + T,° nAb, nt, — n4,

Null rotation about k: k4, — k%,, n4, = n?, + S,bk4, .

3.3 The field strength tensor

Although our main goal is to apply the results of section to gravity, it is
helpful to apply them to the simpler field strength tensor F),, first.

3.3.1 Set up and classifications
To begin, we contract F),, with the rotation generator

" ap == (Vacy" B =1 2c7"“B) (3.46)

(NN
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to find a symmetric bi-spinor,
(I)AB :ijU‘UVAB. (347)

This is analogous to the four-dimensional Newman-Penrose formalism, as de-
scribed in section [2 Now, however, upon contraction with our basis spinors, we

do not obtain scalars but little group bi-spinors:
o — @5k, K5, @) =d,5k% 0", o0 —d, 50t 0P, (348)

where the bracketed numbers label the little group bi-spinors according to the
number of n*, spinors they are contracted with. To begin with, we will consider

complex-valued F},,, and restrict to the real case later on.

uvs

In four dimensions, the Petrov classification based on the scalars defined in ([2.14))
had two classes, type [ and type 11, the latter of which was considered algebraically
special. Type II was defined by the existence of a tetrad where both of the
four-dimensional Petrov scalars ¢p and ¢; vanished; see table 2.1l Since the
scalars from equation (2.14) and the spinors from are clearly analogous,
this motivates a Petrov-like classification for five dimensions, which is shown in
table [3.1. The guaranteed existence of a tetrad where ¢y vanishes is a special
feature of four dimensions, and so we also require an additional “general” class
for 2-forms in five dimensions. As we will show in section [3.3.3] this is exactly
the original CMPP classification for the 2-form.

Type Little group spinor characteristic
Type G PO L0V

Type I PO =0

Type 11 PO =M =0

Table 3.1 Table showing a proposed Petrov-like classification for a 2-form.
There are mow three possible classes, two of which are analogous
to four dimensions and one of which, Type G, is new to higher
dimensions.

The bi-spinors defined in ([3.48|) are reducible, and therefore we will refer to this
classification as a “coarse” classification. A more fine-grained classification is
available if we break the bi-spinors down into their irreducible representations,
namely the symmetric bi-spinor and the scalar. To do this, we will use the
notation that ¢® refers to the symmetrisation of ®@ such that gbffb) = (IDEZ)I)).
Since P45 = P4, we can see that & and & are already symmetric, so
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»0 = & and ¢? = @, The bi-spinor @) is not symmetric in general, but it
is always possible to write a two-component bi-spinor as the sum of a symmetric
bi-spinor and a trace term proportional to the Levi-Civita tensorﬂ We will refer
to this trace as ®1,% = &1 such that:

L) = ol + % 0 €. (3.49)
This is simply the statement that a 4 decomposes as 4 = 3 + 1 where the
symmetric bi-spinor 3 and the scalar 1 are both irreducible representations. The
10 degrees of freedom in the five-dimensional field strength tensor have therefore
been split up into 3 symmetric bi-spinors and a single scalar. We can write
this as in table [3.2] where the terms have been organised by the dimension of
their irreducible representation along the horizontal axis and by the bracketed
number in the vertical direction. This fine-grained classification is sensitive to
the vanishing of the columns as well as the rows. For example, a 2-form with
vanishing qﬁg,) or qﬁgrl ) is considered more special than one where both are non-zero.

We will give some examples in section [3.3.2]

Reducible representation 3 1
(0) (0)
(I)ab ¢ab
Py = | ¢ @
2 2
P,y O

Table 3.2 The three little group spinors of the 2-form can be broken up into three
symmetric bi-spinors, 3, and a scalar 1. This fine-grained structure
is able to provide more detail on the nature of the 2-form than the
coarse classification. For example, a type I solution with vanishing

(1)

@Ei) is more special than one where both ®;. and ¢V are non-zero.

In the real case, these objects are subject to the conditions gzﬁfjb) = (gzﬁ(i) ab)*. We

can easily recast them into real vectors acted on by SO(3) using the Pauli matrices

2Since a two-dimensional index has only two possible values,
€a[b€cd] = 0 = €qp €cd + €ac €db + €ad Ebe-

cd

Contracting this with an arbitrary bi-spinor s°*, we obtain

c
Sab — Sba = €ab Sc -
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Spinor notation Vector notation
0

bu %

o o | e | e ol

b ¢2

Table 3.3 The little group irreps can be written in terms of spinors or vectors
by standard use of the Pauli matrices.

(¢0)" = o) <", (3.50)

where ¢ = 1,2,3 is an SO(3) index, and of course @8) remains a scalar. The
little group irreps therefore change into a combination of 3-vectors and scalars as
shown in table Vector notation will be useful when making contact with the

existing literature.

Finally, it is always possible to factorise a symmetric bi-spinor into two

symmetrised spinors
¢ab = Q(q ﬁb) (351)

It is natural to ask if there exists some sub-classification where a@ = [ as is the
case in four dimensions. From the vectorial perspective it is easy to see that this
will not be the case if we restrict ourselves to real Minkowski space. If we consider

an arbitrary symmetric bi-spinor

(?)Z = ab 6" = g B, (3.52)

we can see that the modulus of this vector is given by

1
6] = 5 laal; (3.53)

using ¢t ¢icd = (eaebd 4 e2debe) /4. Therefore, there is no non-vanishing real
vector ¢ such that a = 3, and the irreps that we describe in table cannot
be broken down further. In contrast, in the complex case they can, leading to a
Russian doll-like structure of nested classifications where each bi-spinor ¢ can
itself be type I (a # ) or type II (o = ).
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3.3.2 Examples

To be more concrete, we will discuss some simple examples: the plane wave, an
electric field and a magnetic field. This will illuminate some details of the fine

structure.

A plane wave

The simplest solution is a plane wave which has a field strength tensor of the
form
F = ke ™ Poy €™, (3.54)

where the symmetric P, corresponds to an arbitrary choice of polarisation.
It is natural to choose k, and £, to be elements of our pentad. Using the

normalisations in equation ([3.44]) we have

CI)AB - FMVO-MVAB
= k‘[ugu]ab’yuAC’/yyoBPab eik~az (355)
= — 2V2k(4"kp) Py e,

and comparison with equation (3.48)) tells us that we have
o =W =0, o) = —2V2P,e*". (3.56)

A plane wave is therefore a type II solution under the coarse classification. Since
¢? is symmetric, it is an irreducible representation of SU(2). However, it
is possible that P, = a,q; in the complex case, which describes a circularly

polarised electromagnetic field.

A constant electric field

Our second example is a constant electric field £ in the x direction. Then the

Maxwell spinor has the form

Dyp = 2|E|0" 45. (3.57)
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We choose k = \/Lﬁ(@t +0,) and n = \/Li(@t — 0,). Taking contractions with k4,

and n4,, we find
00 =g =@ =0, @) =4|E]. (3.58)
Hence the electric field has a coarse type I classification, but the fine structure is

able to pinpoint that this is more special than a general type I.

A constant magnetic field

Finally, we consider a simple magnetic field B which is trivial in the z direction
such that F*¥ = BY. We use the same pentad as the previous section, so k =

\%(&5 +0,) and n = \/iﬁ(@t — 0;). The Maxwell spinor is
dup = B0 5. (3.59)

Taking contractions again and using the Pauli matrices ¢’y to recast ¢V as a

vector, we find
60 =6 =al) =0, (o) =B (3.0

Therefore, although this magnetic field and the electric field have the same coarse

classification, type I, they can be differentiated by their fine structure.

3.3.3 Relations to the literature: CMPP and de Smet

As we have mentioned earlier, there exist previously proposed classifications for
five-dimensional spacetimes. Two of these are the classification derived by CMPP
in 2004 [7, B2] and the de Smet classification proposed in 2002 [4]. We will

understand both in terms of the spinorial formalism.

The CMPP classification

In their papers [7, 32], CMPP observe that each component of the Weyl tensor in
D dimensions has a boost weight when the pentad is rescaled by {k, n, m®} —
{pk, p~'n, m®} for some scalar p, where i = 2, ..., D — 1, and m® is any of the

remaining space-like directions. This boost weight is simply the power of p by
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which the component of the 2-form transforms. The independent components of

the 2-form have the following boost weights:

Boost weight | 1 0 —1

(3.61)

Component || Fo; | Foi, Fij | Fui

where the index 0 indicates a contraction with k, the index 1 indicates a
contraction with n, and a Roman index ¢ corresponds to the space-like direction
m®. The CMPP k and n have an identical role to our own usage, so we will use
the same symbols. The relevant choices of k£ are made by demanding that Fy; is
set to zero if possible, in which case a choice of n is made to also send Fj; and
F;; to zero if possible. Next, the boost weights are organised into a Petrov-like

classification as shown in table 3.4

Type Components CMPP special?
Type G Foi #0 No
Type I F()Z' =0 No
Type II FOi = F01 = Fli =0 Yes

Table 3.4 Table showing the CMPP classes of a 2-form according to which
components can be found to vanish. There are three possible classes,
only one of which is considered special. The pentad is chosen so that
the 2-form is as special as possible.

In order to compare our formalism with CMPP, we can simply rewrite our little

group field strength tensors in terms of F),,. Doing this, we find the simple

relationships
Lo F L r 1 (1) L@
0 22 ¢ 0Ly ™t 2 Py ! 2v/2 ¢ ( )

Since each boost weight component is exactly identifiable as one of our little group
irreps, the coarse classification that we introduced in section is exactly the
CMPP classification as introduced in [7]. Furthermore, the bracketed number (7)
of a little group spinor ®® relates directly to its boost weight, as it would in four

dimensions.

The de Smet classification

The de Smet classification [4] has a very different set up to the CMPP
classification. It uses a gamma basis such as in equations (3.1)) and (3.2)) to
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create a symmetric field strength 2-spinor ® 45, and considers its factorisation
properties to create a classification. There are two cases: in de Smet notation, if
the 2-form does not factorise it is a 2, and if it does it either a 11 or a 11, with
the two factors being equal in the latter case. Let us examine this in more detail.

The symmetric 2-spinor is constructed using the rotation generator as usual,
(I)AB :F#,,O'/WAB. (363)

Now, the field strength polynomial F is constructed by contracting in an arbitrary
spinor &4, such that
F=dup8"¢". (3.64)

If the original bi-spinor had the structure ®4p = o4 fp), the polynomial will
factorise. Our formalism is based on irreducible representations of SU(2), namely
symmetric SU(2) spinors. These have the useful property that they always totally
factorise. Therefore, each little group irrep will have its own de Smet structure.

We can compute this by studying each of them in turn.

The field strength spinor can be expanded in terms of our little group irreps as
Dap =00 14" 15" + 200 04 ke’ + 6 04" kpya + 6 kakpgt.  (3.65)

As an example, let us consider a case where only ¢ is non-zero, such as the
plane wave example given in section Now, the field strength polynomial is
given by

F = ¢£3)) kAa ka fA gB
= a(a By (ko &) (ko &)’ (3.66)
= [, kog][B,kog],

where we have defined the factorisation of ¢ to be gzﬁfli) = Q(q fp), and “o”
indicates a contraction on a spacetime spinor index, while “[ - | - |” is a little

group spinor contraction. Clearly, this is of de Smet type 11.

The ¢ spinor has the same structure as ¢, and therefore a 2-form for which
only ¢(©) was non-zero would also be a 11. However, the k and n structure of the
#M) component means that its field strength polynomial behaves differently. Let

us consider a 2-form where only ¢(!) is non-zero, for example the magnetic field
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from section [3.3.2l This would have a field strength polynomial of the form

F =260 na"kpl et e?

(3.67)
= [a,no][B,ko&]+[a,kof][B,nof],

and thus it is of de Smet type 2.

For a solution like the electric field in section , only the @S) term is non-zero.
So the field strength polynomial is

F =0 eynskp’ et e?

3.68
= o) (jo,no€] ko€l —[o, ko€l [nogl), 309

where we have used the property €., = 0, % — 1, 0, for some basis spinors o and

1, normalised as 0®1, = 1. Therefore this is also a de Smet type 2.

If we organise the little group irreps according to boost weight along the vertical
direction and according to irrep dimension along the horizontal direction, we
see that each irrep corresponds to a de Smet class, as shown in table Any

combination of little group irreps will result in a 2.

Little group spinors de Smet class
¢ 11

P o2 2
b 11

Table 3.5 Fach little group spinor has a predefined de Smet class.

As we discussed in section |3.3.1] in the case of complex field strength, there is a
Russian doll-like secondary layer of structure, where each ¢ can itself be either
type I or type II corresponding to o # 8 or a = 3, respectively. It is simple to
read off from equation that these have distinct de Smet types 11 and 11
respectively, in the cases of (9 or ¢?), while we can see from equation (3.67)) that
#M will be 2 and 11 respectively. However, when we restrict to real spacetimes,
only the possibilities shown in table[3.5|are possible, since the repeated case a« = 3

is not permitted [5].
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3.4 General relativity and the Weyl tensor

3.4.1 Spinors in curved space

So far, our analysis has been based on flat spacetime. To generalise our results
to curved space, we introduce coordinate indices u, v and tangent space indices
M, N. We can then pick an arbitrary frame e*;; satisfying g = e#p; e’ nM¥V.

Both ¢* and 7™ can be expressed in terms of an NP pentad,

g = —ktn” — kK nt 4 €% et e

(3.69)
_ 6“]\/[ eVN (—]{fM nN o k,N ,,,LM + eac Ebd EMab chd) ’

so we can read off that the curved pentad {k*, n*, e#,} is obtained from our flat
pentad {kM nM &M 1 by contraction with e#);. Similarly, the gamma basis
becomes

Yap =€y 'YMAB7 (3-70)

such that the Clifford algebra is still satisfied, exactly as for the Newman-Penrose
construction in four dimensions. Notice that the index p of previous sections
should now be seen as the index M, and p is henceforth a curved spacetime

index.

The results we derived in section still apply for the tangent space at each

spacetime point. Thus it is possible to choose spinors of the form

0 o4 o 0
o 0 0 —1

where o and ¢ are now curved space spinors of SU(2) x SU(2). Using the curved
space gamma basis, we can construct the same relationships between the spinors

and the pentad,

kt = ——=k, 0" ok®, nt= ﬁnaoy“ona, ety =kso"omn,,  (3.72)
using the properties of the four-dimensional spinors. Similarly, the contraction
relation k, o n, = €, is upheld, as are the spinor transformations. The reality
conditions are also unaffected. We can therefore proceed and use these results

for curved spacetime.
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3.4.2 The little group spinors

In order to construct the Weyl spinor ¥ 45cp, we simply contract the Weyl tensor

Clwpe with the curved space gamma basis to obtain

Vapep = Cuvpe 0" a0 cp (3.73)

as in section |3.3.1} The rotation generator c*” 45 is constructed from the curved
space y’s now but is otherwise defined as in equation (3.46|). Given the symmetries
of the Weyl tensor, it is easy to show that the Weyl spinor is totally symmetric,

and thus comprises the 35 degrees of freedom in the five-dimensional Weyl tensor.

As in section [3.3.1) we would like to break up these 35 degrees of freedom
according to their boost weight by contracting in our spinor basis. The little
group objects \Ifé?cd are defined by

0O — Wapep kK kP KO kP,

o) = Wypep kA, K5,k 0P,

U2 — W apep kK k2,0 0P, (3.74)

abe
@(3) — kA 1B, 1nC . nP
abed — YABCD K o1 pI1" 11 g

4) A B _C D
Vorea = Yapep n™yn pn.cn"y,

where the bracketed superscript number (i) indicates the number of n“, spinors
in the contraction. These definitions are analogous to the field strength objects
<I>fj§ in equation (3.48) and to the four-dimensional definitions (2.16)). ¥ 45cp can

equivalently be expressed as the sum of the little group objects:

*nenp —|—4\Ilab)cd n* ng’ne kD)

Vapcp = ‘I’g%)cd ns“ng
+65), n(a” ng" ko kp)! (3.75)

+409 kg ket ko + U ka kg ke kp.

We observe from the definitions of the little group objects W that they possess
different symmetries. The totally symmetric ones, \Ilgz)cd and \I/gbcd, have 5 degrees
of freedom, while \Ilt(ltld = \Ifgaic) , and \Il((li)cd = \I!SEZC d) each contain 8. \Ilﬁ)cd =
\Ilgz)b)(c 4) comprises the final 9 degrees of freedom to reach 35. It is sensible to
break these 4-spinors into irreducible representations of SU(2). We will use the

notation that a lower case ¥ indicates a totally symmetric object, i.e. wabcd
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¢Ei)bc " for any value of 4, and we also introduce Y to indicate a symmetric bi-
spinor. Clearly U(© and W™ are already irreducible, since they sit in the totally
symmetric representation 5, so U(® = () and ¥@ = @ ¥® and U@ contain

a bi-spinor trace that can be removed to decompose them as 8 = 5 + 3:
1
1 1 1 1
\I’c(zb)cd = wz(zb)cd 1 <€aXm()c) + epax(y) + €ch£Lb)>

1
3 3 3 3 3
\I/gb)cd = 77Z)c(zb)cd - Z <€abxgd) + 6acXI(yd) + EaXm()c)> )

(3.76)

while W®) splits into a symmetric rank 4 spinor, a symmetric rank 2 spinor and

ascalar: 9=5+3+1 as

1 1
\I’ﬁld = zbfﬁ)id 1 (Each()(Qj) + Gadxl(,i) + ebcxfd) + EbdXé?) + 6 (€ac€vd + €ad€a) ‘I’g)
(3.77)
This is summarised in table 3.6
Reducible little group spinor 5 3 1 Total dof
0 _ g (0)
\I]abcd - ‘P(abcd) wabcd 5
(1) 1) (1) 1)
\Ijabcd = \Il(abc)d Qbabcd Xab 8
2 2 2 2 2
\Ijéb)cd = ‘Ilgai)(cd) = %(Lbz:d ng) 28 9
@ _g® (3) (3)
Wibea = ‘Ija(bcd) Vabed Xab 8
4) (4) 4)
\I}((zbcd = \Il(abcd) Qb((zbcd d

Table 3.6 The table shows how each little group 4-spinor is decomposed into
irreducible representations. 5 is a totally symmetric 4-spinor, 3 is a
symmetric bi-spinor, and 1 is a scalar. We write “dof” as a short-
hand for degrees of freedom.

We will also use vectorial language for the little group irreps, translating between

the two using the Pauli matrices ¢’ as usual such that, for example,
0 a C 0
77Z)1(]') =i b§j dqu)((zbld' (3.78)

Table [3.7] summarises the notation. This is a simple matter of representation,
and makes it easier to compare our results with the vectorial techniques used in
the literature. In this notation, imposing the reality conditions is equivalent to

the requirement that the objects are real.
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4-spinor 2-spinor scalar 3-matrix 3-vector scalar
o2, o0
W WO
Yo X W e | e x@ e
Vaed  Xat vp X
Vaed vy

Table 3.7 The idrreducible representations of the Weyl spinor can be easily
moved between spinor space on the left and vector space on the right
by use of the Pauli matrices ¢'y,. We will use the two notations
interchangeably. Note that all spinors are totally symmetric, and that
all 3-matrices are symmetric and tracefree.

Coarse and finely grained classifications

This construction naturally highlights two levels of classification, one coarse-
grained which depends only on the little group spinors, and one which is more
finely grained which also depends on the irreducible representation. The coarse
classification arises due to the similarities in construction between the little group
Spinors

vl =14, (3.79)

defined in equation ([3.74]), and the complex scalars from four dimensions
v, i=1,..,4, (3.80)

defined in equation (2.16). Thus the ¥ will obey a classification which is
analogous to the four-dimensional Petrov one shown in table 2.2|F] This coarse
classification is proposed in table 3.8 and as we will show in section [3.4.4] it turns
out to be equivalent to the CMPP classification [7, [32].

The fine grained classification notes that the coarse types in table referred
only to the rows of table[3.6| The columns spreading out into different irreducible
representations of the little group shows that a greater level of detail is possible.
For example, imagine two type D solutions: then a pentad can be found for each

where only ¥® is non-zero. Suppose further that when the fine structure is

3There is one caveat, which is that in four dimensions it is always possible to find a tetrad
where 19 vanishes. This is not the case in general so we require the additional type G to account
for such spacetimes; see [7].
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Type Little group spinor characteristic
Type G WO £

Typel 0O =9

Type II  ¥O =y =9

Type D ¥O =y® = g6 =gy =0
Type III ¥ =¥ = y® =0

Type N 0O =00 = ¢@ = g =

Table 3.8 Table showing the coarse grained, Petrov-like classification of a five-
dimensional Weyl tensor built in analogy with the four-dimensional
Petrov formalism. The classification refers to the vanishing of the
reducible little group spinors U@ which is equivalent to the vanishing

of a whole row in table .

analysed, it is seen that x® and 1 vanish for the first spacetime but only x(®
vanishes for the second, indicating that the first example is more special. This is
exactly the case for the Tangherlini-Schwarzschild black hole and the black string

respectively - the details of this example are given in the following section.

We can delve deeper into the irreps themselves to ask whether they also have
sub-classifications. First we will consider a complex spacetime. In this case,
the structure of the irreducible representations ¥ and x®, namely complex
symmetric spinors with two-dimensional indices, is exactly that of the four-
dimensional Weyl and field strength spinors respectively. Like a Russian doll,
hiding inside the Weyl tensor are additional lower-dimensional Weyl tensors.
These also have a classification, which can be found in the usual way for four
dimensions. For example, a 4-spinor Yapea = (ap¥:0q) could have any of four

different specialisations:

e Type II: Two repeated spinors with the other two spinors distinct
wabcd = a(aabf}/c(sd)
e Type D: Two pairs of repeated spinors ¥upeq = (aYeVa)

e Type III: Three repeated spinors ¥gpea = (@ Qcda)

e Type N: Four repeated spinors ¥upeq = QqpicQig,

whereas for a 2-spinor X, = oo/ there is only one specialisation
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e Type II: Two repeated spinors x.,, = @,y .

In contrast, when we restrict to a real spacetime we find that much of this second
layer of hidden lower-dimensional Weyl tensor classification is forbidden. We
already know from our analysis of the field strength tensor in section that a
bi-spinor x* which obeys the reality conditions y = X cannot be written as the
outer product of a single spinor, . # a,qp. A similar analysis can be applied
to real symmetric 4-spinor objects ¥apeq Which satisfy ¢ = . This will restrict

the number of subclasses available, as we will now show.

It is well known from four dimensions (see for example [74]) that if we define
I = ¢ )eq and J = g et Ve, then the requirements for each class

are:

Type 1I: I3 = 6.J2

Type D: wpqr(a wbcpq Z/)Tdef) =0

Typelll: I =J =0

Type N: ¢(abef ¢cd)ef = 0.

Since our 1’s obey the reality condition, they can be rewritten as symmetric
tracefree matrices with real entries. In contrast, if we had chosen to consider
complex space, or a different signature, the entries would be complex. A real

symmetric matrix may always be diagonalised to obtain

A1 0 0
D=10 —(\+X) 0], (3.81)
0 0 A2

and so we can rewrite the conditions in terms of the eigenvalues as
e Type III: A2 + A\ )Xo + A3 = 0 and A\ Aa(Ap + Ag) =0

e Type N: M = A2 and \? + 4\ My + A3 = 0.
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The type II condition has reduced to the more specialised type D condition and
is solved only when two of the eigenvalues are equal (or trivially when all the
eigenvalues vanish). In contrast, there are no non-trivial solutions for type N
and type III, that is, we must have Ay = Ay = 0. This tells us that under our
reality conditions, only type D-like lower-dimensional Weyl tensors are possiblef]
We note that interesting behaviour relating to dimensional reduction also occurs
when a single eigenvalue vanishes, which is not reflected by this classification. We

hope to explore this property further in future work.

To summarise, we have found three layers of structure naturally embedded in
our formalism. The first is a Petrov-like coarse layer in the little group spinors.
The second is more fine-grained, breaking the little group spinors into irreducible
representations. Finally, the third looks at the irreps themselves and uses their
similarity to four-dimensional objects to classify them in a Petrov-like way. This
has two possibilities depending on whether or not reality conditions have been

imposed as summarised in table [3.9]

Complex : I, II, D, III, N
x: L II
Real v: 1, D
x: 1

Table 3.9 The classification of the lower-dimensional objects hidden within the
Weyl tensor depends on whether or not reality conditions have been
imposed.

3.4.3 Examples
To illustrate a few key features of the formalism, we shall give a few very simple

examples: the plane wave, a Tangherlini-Schwarzschild black hole and a black

string.

A pp-wave

The metric for a pp-wave can be expressed in Brinkmann coordinates

ds* = —H(u,x,y, z)du® — 2du dv + dz* + dy* + d2?, (3.82)

4We note that this argument is invalidated when complex entries occur because in general
complex symmetric matrices cannot be diagonalised.
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such that if we choose the pentad

1 Oy + 10, 10
kza'ua :au__H y 4y Yo a’ua ab — ; Y : ) 3.83
" g Hw 2y 2)00 - can ( i0. 0, — z'ay> (3:83)

then the Weyl tensor is given by
Civpe = 20;0;H(u, x,y, 2) ny, a,i,] np ei], (3.84)

where the index i = 1,2,3 runs over the three polarisation directions {x,y, z}
as usual as in the definition (3.33)). Recasting this as a spinor using the curved

space gamma basis we find

Vapep = Cuvped™ apc™ ¢
PO e ABTER (3.85)
=4 aza]H(ua z,Y, Z) glab gjcd kAa ka kCC de-
Therefore the pp-wave is a type N solution with %(;1) =40,0;H(u,x,y,z). If we
were to specify the function H(u,x,y, z) we could classify ¢¢(;11;)cd further since it

has all of the properties of a four dimensional Weyl tensor.

The Tangherlini-Schwarzschild black hole

Another simple example is a five-dimensional Schwarzschild black hole, with

metric
ds* = =A(r)du® — 2dudr + r* (d6* + sin® 6 (d¢* + sin® 6dx?)) , (3.86)

where A(r) =1 — :—z . We choose the pentad

/fz—au—l-lA(T)@T, n=0, 5ab=1 ?9+icscﬁa¢ icsc@lcscqbax ’
2 r \icsclcscpd, Oy —icsclOy

(3.87)
such that the Weyl tensor is
wopo = T3 (1€ Mp Eq] T 2N[u €y Klp € [ ) Kl o] — €[4 €], 07 ) -
3

U(] 88)
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The Weyl spinor is

v o
\I[ABCD = C,ul/poo-u ABUp CD

487*? (3.89)
= - (6ac€bd =+ €ad€bc) k(A“ ka nc¢ nD)d,
r

and so we can read off that the only non-zero little group irrep for the Tangherlini-
Schwarzschild black hole is the scalar \I/g) = 4§T Therefore, it is a very special

type D solution, since it only has a single non-zero irrep.

The black string

It is interesting to contrast this with another type D solution, the black string.
This is a four-dimensional Schwarzschild black hole trivially extended along the

x* = 2z direction with the metric

ds* = —T(r)du® — 2dudr + r* (d6* + sin® 6d¢*) + dz° (3.90)

where I'(r) = 1—"=. We choose a pentad which is similar to the previous example:

- |
k=0, n=0,-3T0)0, eaﬁ%(aﬁmc oo ) (3.91)

0, Og —icsc Oy

to find that the Weyl tensor is

Chvpo = 2T (2 cﬁed (k[u €1 M 501 + nyy 5fj] ki aff]) — 2kp, ny) kip ngl

ik k 1
+ 5red 6red 6 [ V]g[p 60})

(3.92)

where the reduced identity matrix d,eq is trivial in the 2 direction, 67, = 6% —elel.
Note the similarity to equation (3.88]) if d,cq is replaced by d. As usual, we recast

as a spinor to find

96rs i
Vapcp = 5 rid§ab§ cd Ka” kg’ ne’ nD) (3.93)

This time there is more than one little group irrep present. The reducible little

group spinor ¥ is given by

g — _Hagii (3.94)
3 re
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which decomposes into a trace term and a traceless symmetric 5:

g dr, (1 _.. o 16r
2)ij __ s ) ) (2 _ s
w()y__r3 (gdj_ezei)’ U = — o (3.95)
Therefore the black string is still a type D solution but it has a very different fine
structure to the Tangherlini-Schwarzschild black hole.

Finally, we can consider the structure of ) itself: since it has two equal

_4rs
3r3

eigenvalues (A, = A\, = ), the irrep is itself type D.

3.4.4 Relations to the literature: CMPP and de Smet

As we have previously mentioned, there exist previously proposed classifications
for five dimensions, notably the CMPP and de Smet classifications [7, 32], [4],
which were shown in [5] to disagree on their definition of specialness, since some

spacetimes are algebraically special in CMPP but not in de Smet, and vice versa.

The CMPP classification

In the CMPP classification, each component of the Weyl tensor in D di-
mensions has a boost weight when the pentad is rescaled by {k, n, m®} —
{pk, p~'n, m®} for some scalar p, where i = 2, ..., D — 2, and m®¥ is any of the
remaining space-like directions. This boost weight is the power of p by which the
component of the Weyl tensor transforms. The independent components of the

Weyl tensor have the following boost weights:

Boost weight 2 1 0 —1 -2

Component COin COlOiaCOijk 001017001@,002‘1]',0%1 COlliaCh‘jk ij
(3.96)

where the index 0 indicates a contraction with k, the index 1 indicates a

contraction with n, and a Roman index ¢ corresponds to the space-like direction
m®. Our usage of k and n is identical, while the CMPP polarisation directions

m® can be chosen to correspond to our e*; as

mtD = iaber (3.97)
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The Weyl tensor components, combined by boost weight, are then organised into

a classification which is shown in table [3.10, This is valid in any dimension, and

of course reduces to the Petrov classification in four dimensions.

Type Characteristic
Type G Coio; # 0
Type 1 Coioj =0
Type Il Coioj = Coi0i = Coiji = 0
Type D OOz'Oj = Cor0i = COz‘jk = Co11; = Clz’jk = ij =0
Type 111 Comj = Co10i = COijk = Coi01 = Couj = COilj =Cijum=0
Type N COin = Cor0i = OOijk = Coi01 = COlij = COilj = Uijkt
= Co11i = Crr = 0
Table 3.10 The CMPP classification considers the vanishing of the components

of the Weyl tensor in some pentad in order to specify a type. The
more special the classification, the more components, grouped by

boost weight, must vanish.

The boost transformation is clearly identical to the boost that we have previously

defined through spinor space as ky® — ck%, ny® — % ns®. Asshown in equation
(3.28)), the effect on the pentad is identical when we identify p = . We therefore

expect to see a correlation between the components of the Weyl tensor and the

little group 4-spinors. This turns out to be exactly the case. We can easily use

the equations (3.73]), (3.14]) and ([3.15)), which express the Weyl tensor, k, n and

et 4 in terms of spinors, to show that the CMPP components correspond directly

to little group irreps:

Coioj = 3 g')) Cori = —ﬁXEU
Coio1 = Tlf;‘ljg) Cowij = _é EiijI(cQ)
Chiry = é S’D Coit; = ﬁng@

Cign = % (S vf) -

Coijk = 55 (2 ey — Xfil)@]k)
2 2 2
Conj = —3 (%(j) + Lerxl + %‘I’gr)%‘)

3 3
Chijk = —ﬁg <2€ijl¢l(k) + X[(i)dj]k>

iy + 1Y O 5k1j> :

(3.98)

Using this correspondence, it is clear that the classifications shown in tables

and 3.8 are identical. Thus, the coarse classification inspired by the similarities

of our construction with the four-dimensional Petrov classification is exactly the
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original CMPP classification.

Little group irreps

The irreducible representations 1, y® and \I!g) also make an appearance in the
literature. It was noted in [37] that there are subgroups of the Weyl components
for a given boost weight by noting their grouping under Lorentz transformations.

For example, Coley and Hervik define two subclasses of type I by

e Type I(A) & C%ip =0

° Type I(B) = CijkO Oijko = %Cjijo CkikO

in the Weyl-aligned basis for an arbitrary number of dimensions. As before, we
can cast this into little group space in five dimensions to find that this corresponds

to

e Type I(A) & () =0

e Type [(B) & w((l})id = 0.

The other little group irreps are identified in a similar way. In [39], now joined by
Ortaggio and Wylleman, Coley and Hervik apply their results to five dimensions
and find that the Weyl tensor can be written in terms of 5 symmetric trace-free
matrices, three vectors and a scalar, which produce exactly the fine structure
that we presented based on spinor-helicity considerations. Thus, the spinorial

techniques we have developed are precisely the spinor underpinnings of the refined
CMPP classification.

The de Smet classification

As we previously mentioned, another notable higher-dimensional classification
is that of de Smet [4]. In this work, de Smet constructs the SO(4, 1) 4-spinor
U 4gcp exactly as we have done, and then constructs a classification based on the

factorisation properties of the Weyl polynomial W, defined by

W =W apop 2 €8 €90, (3.99)
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for an arbitrary ¢4. Originally containing 12 classes, further work by Godazgar
[5] found that consideration of the reality conditions brought the total number
of classes down to 8. It was proposed that these can be arranged in order of
“specialness” as shown in figure [3.1 We only consider real spacetimes in this
section. The de Smet labels work as follows. The numbers indicate the rank of
each factorised part of the Weyl polynomial and groups of underlined numbers
signify that these are repeated factors. Thus, a 211 indicates a Weyl polynomial
with one factor quadratic in £ and two factors linear in £. If the spacetime is a

22, then there are two identical quadratic factors.

—

+ . \
4 211 1111

N S

Figure 3.1 The real de Smet classification proposed by [{] and restricted
with reality conditions by [J] contains 8 classes including the flat
spacetime class 0, for which the Weyl tensor vanishes.

‘l—‘
—
=

We can interpret the de Smet construction in terms of our formalism by expanding
equation in terms of its little group irreps. Because our formalism splits the
spacetime into totally symmetric little group irreps, the factorisation properties
can be easily investigated. To take a simple example, let us consider a spacetime
for which only wt(f ) is non-zero (such as the Tangherlini-Schwarzschild solution),
so that

W = 2 (€qe €bd + €aa €5e) (10 ) (n0 &) (ko &)° (ko &)

3.100
=247 (o), (ko &) 0

We have used [-,-] to indicate a contraction on little group spinor indices,

b

distinguishing it from the centre dot “ o ” used to indicate contraction on

spacetime spinor indices. Clearly, this factorises beautifully into a de Smet 22,

which means that the Weyl polynomial factorises into two identical bi-spinors.

Next, consider a type III solution for which only x® is non-zero. The Weyl
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polynomial is

W= = (wxts + eaexti + caaxd?) (0€)" (ko &)’ (kog) (ko)

(3.101)
= —3mo& ko] [ko& 0¥] ko, kP,

where, in the last line, we have used the property that symmetric SU(2) bi-
spinors can always be written as the symmetrisation of two spinors to define

) = 6(a Iil()3) This has de Smet type 211. Using the k <+ n symmetry, we can
see that x( must also be a 211:

W= -3[no& ko( [noﬁ,@m] [nog, li(l)] , (3.102)

where again we have defined X&) = Qg mb) By contrast, when x(? gives the sole

contribution to ¥ pcp, the Weyl polynomial has de Smet class 22:

W=-3no& ko {[nof,@m)} [kog, Ii(2)] + [nof7 H(Z)} [ko§,9(2)]}.
(3.103)

The ¢?’s also have characteristic de Smet types. For example, if only ®
non-zero as for a type N spacetime, then the Weyl spinor is oriented in the k
direction as

Vapep = w,ﬁld ka"kp" ko kpy?. (3.104)

The explicit symmetrisation on the little group indices is not required, and thus

the Weyl polynomial factorises totally to form a de Smet 1111:

W= [kog&,a®] [kog, W] [kog,vW] [kog,o@]. (3.105)

Using the invariance of de Smet classes under the interchange n <> k, we can
see that ¢ is also of this type. However, the remaining 1) do require proper
symmetrisation over the little group indices, leading to sums over the different
permutations which do not factorise at all and are de Smet 4’s. For example, the

Weyl polynomial for 1™ is

W= Y [ko&aD] nog, Y] o, 4] nog 6], (3.106)

Perms {a:ﬁv’WJ}

As usual, 1 can be obtained by k <> n interchange. The expression for ()

very similar, except that it contains 6 terms due to the symmetrisation over two
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k’s and two n’s.

As we can see, the de Smet classification is highly sensitive to the fine structure
of the Weyl tensor. This is summarised in table [3.11] At this point, it is possible
to see that the hierarchy between de Smet classes proposed in [4] and shown in
figure is not actually present. For example, the 211 class does not contain
the full 1111 class. A spacetime formed of more than one irrep will generically
be a de Smet 4. Although some special multi-irrep spacetimes exist, which are
detailed in appendix [A] there are not very many of them and they arise only in
highly specialised circumstances. This explains the disagreement between the de
Smet and CMPP classifications elucidated by Godazgar in [5]. On the one hand,
because the CMPP classification is sensitive to the presence of the reducible
little group spinors, it attributes the same Petrov class to a number of different
possible de Smet classes’l On the other hand, the de Smet classification is most
sensitive to the presence of a single irrep, irrespective of its boost weight. The

two classifications clearly disagree in the notion of algebraic specialness.

Little group irreps de Smet class
Yok 1111
Vi XS 4 211
Yo X W e 4 22 22
Vi XS 4 211
W 1111

Table 3.11 The de Smet class of each little group irrep. The irreps are arranged
by boost weight in the vertical direction and by dimension in the
horizontal direction. Note the reflection symmetry in the central
horizontal line, indicating invariance under the k <> n interchange.

3.4.5 Further refinements

The classification we propose is based on identifying representations of the little
group: the wiz)cd, fori=0,...,4, X((lj(;), for j =1,2,3, and \Ilg) An algebraically
general spacetime has a full set of these objects, none of which are vanishing, and

furthermore satisfying no algebraic relations amongst them.

5Although of course the refined CMPP classification in [37, [39] captures the little group
irreps in full detail.
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Algebraically special cases can occur in a number of ways. We have already
observed that it is possible for some of the little group objects to vanish, and
a more subtle possibility is that one or more of the w((lz)cd’s could be type D. In
terms of spinors, we can always find two-component spinors ay, Sy, V. and d4 such
that ng)cd = (af.0qy for a particular 7. In the type D case, there are really
only two different spinors up to scaling. In group theoretic terms, this particular
¥ is actually a three-dimensional representation rather than a five-dimensional

representation.

It is also possible to have situations in which spinors are shared among different
little group objects. In the complex case, there are many possibilities, but in the
real case we are more limited. It is still possible that x* o yU) for some choices
of i and j. Alternatively, it could happen that a particular ¢ could be composed
of some y: e.g., @Dé}))cd = XEZZXE?) The de Smet classification can be sensitive to

such alignments in particular cases, as we discuss in Appendix [A]

3.5 Higher dimensions

Although we focused on five dimensions in the previous sections, our approach is
quite general. Indeed, our starting point, the spinor-helicity method, is available
in any number of dimensions [9, B0, B1]. In this section we will briefly discuss
the classification in six dimensions. As this is an even number of dimensions, we

choose a chiral basis of spinors, with Clifford algebra
ot apaPCY 4 0¥ 4pa PO = 2 1G. (3.107)

It happens that the Lie algebra of the Lorentz group in six dimensions, s0(6), is
isomorphic to su(4). This is reflected in the facts that the spinor representation
of 50(6) is the four-dimensional fundamental representation of su(4). From the
point of view of su(4), the six-dimensional vector representation of so(6) is the
antisymmetric tensor product of two 4s. Consequently, we can choose ¢* and o*

to be antisymmetric 4 x 4 matrices.

In six dimensions, the little group is SO(4) = SU(2) x SU(2) / Za, so our first
task is to understand how this product group structure is encoded in the spinors.

Let k* be a six-dimensional null vector; then we define spinors associated with
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the vector by
k- oapkP® =0. (3.108)

The index a labels linearly independent solutions of this equation. The matrix
k-0 ap has vanishing determinant and, in fact, has rank 2. Thus the label a takes

values 1 and 2.

How can we reconstruct the null vector k from the spinor k4¢? The observation
that the 6 is an antisymmetric combination of two 4s is helpful. There are
six linearly independent 4 x 4 antisymmetric matrices, so if we expand an
antisymmetric combination of the two spinors k4 (for a = 1,2) on the basis
o" 4p, the result is guaranteed to transform as a vector. Since k" is the only

vector available, we simply have to fix the normalisation. Indeed,

k'u = FkAa O"MAB kBa7 (3109)

k4?: from this perspective, the matrix e, is introduced to

where k4, = €

antisymmetrise the two possible k* spinors.

This expression, equation (3.109)), is manifestly invariant under an SU(2)
transformation k® — U%k®. This is part of the SO(4) little group. The other

SU(2) factor acts on the anti-chiral spinors defined via
k- 54Pkg =0, (3.110)
which implies that we may also write k* as

Kt = 2\/_kAaa“ABkB. (3.111)

To construct the analogue of the NP tetrad in six dimensions we pick a second

null vector n with the property that k-n = —1, and introduce spinors n“¢ and
n4“% Then

nt = 2\/_n a 0" apnP (3.112)

figg 6748 figt. (3.113)

2\/_

The set of spinors k4%, n% k,%, N, spans the spinor spaces, so it is a simple

matter to break the 15 degrees of freedom of the tracefree 2-form spinor F4p
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and the 84 degrees of freedom in the Weyl spinor C4p into little group irreps.
Because this is done in exactly the same way as we did for five dimensions (subject
to the details of the spinor spaces), we are guaranteed that the connection to
CMPP will continue to be expressed. The representations of the little group
spinors are now labelled by two numbers in six dimensions, (4, 7), and the boost
weight is given by their average. The CMPP classification is simply the statement
that each row of tables and for the 2-form and Weyl tensor, respectively,

vanishes appropriately.

The appearance of a second number in the little group representation labels is
due to a second symmetry in the irreps, that of an interchange between the
two SU(2) parts of the little group. This corresponds to an interchange i <> j
and dotted to undotted indices a <> a, and manifests itself as a vertical line
of symmetry through the centre of tables and [3.13] This also explains the
shape of the tables: previously, in five dimensions, where there was only a single
SU(2) little group, these decompositions had the shape of arrowheads which
when reflected through the vertical axis form the characteristic rhombi of six
dimensions. The dimensions of the irreps are not as regular as five dimensions,
but have the pleasing distribution shown in figure for the case of the Weyl

spinor, laid next to their five-dimensional equivalent for comparison.

Reducible spinors Irreducible spinors Irrep dimensionality
(0,0) (0,0)
C . 2 % 2
Py o0 |l = || gl0? ol ¢2Y sl 1x3 1x1 3x1
CI)(%Q) Q%’Z) 2x2

Table 3.12 The siz-dimensional 2-form contains 4 reducible little group
representations, which can be broken into 5 irreps. The rows
are organised by boost weight, equal to the average of the
bracketed superscripts. The columns are arranged such that the
representations respect the SU(2) interchange symmetry through the
central vertical axis, hence the scalar @Ei’l) = ¢ (132%’2) = ¢tb @%’0)

sits at the centre of the array. ¢
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(0,2)
\Ij(ab) cd
(0,4)
\Ij(ab) (cd)
(2,4)
Wi (e

Reducible 6D little group spinors Irreducible 6D little group spinors
L Ui
Vo Vo X Vored
g Vb | 7 Y a0 WY G v
L Vid  Xar Vo
¥ e Ui

Table 3.13 Connections between the traces of the reducible sixz-dimensional

_ 4x2

7
- -
5x1 3x1
~ ~

little group spinors allow us to break down the components into
irreps. The indices of the reducible spinors (left) are organised in
symmetrised pairs such that two like indices, for example ab or éd
comprise 3 degrees of freedom each, while pairs such as ab and ¢d
have no symmetrisation and constitute 4 degrees of freedom. For the
table of irreducible representations on the right, all indices of the
same SU(2) type (i.e. dotted or undotted) are totally symmetric.
The boost weight of each representation (i,j) is given by (i + j)/2.

- — — m+4n=2
o 3x3 5 - — - d=1
~ - — — m+n=4
~ - — - d=3
— — — m+n=6
5 _
P 2x2 N 2x4 N 3 5 d=5
~ ~ ~
~ ~ ~
~
1x1 1x3 1x5 1 3 5
Ve Ve Ve
Ve Ve e
~ Ve s -
2x2 2x4 3 5

(2]

3Ix3

(a) D=6 (b) D=5

Figure 3.2 The irreps of the sixz-dimensional Weyl spinor m X n form a kite-

like pattern , while the the irreps of the five-dimensional Weyl
spinor can be arranged in an arrowhead with concentric arrows of
wrrep dimension d . As usual, rows correspond to boost weight.
Each concentric rhombus corresponds to a different value of m+ n.

3.6 Discussion

We have demonstrated that higher-dimensional spinors provide a convenient

formalism for the algebraic classification of spacetimes, extending Penrose’s
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spinorial approach to the Petrov classification in four dimensions. The crucial
element of the higher-dimensional spinorial construction, first proposed in [9] in
the context of particle physics, is the explicit consideration of the little group. We
have shown that the formalism not only leads naturally to the CMPP classification
and its refinements, but it also allows for a natural connection with the de Smet
classification. In particular, we have demonstrated that the de Smet classes
mostly correspond to spacetimes where a single little group irrep is present, except
for interesting cases where algebraic relations exist between distinct irreps. This

analysis completes the work begun by [5].

In this work, we have set up a basic framework but there is much to be done.
We have not described in detail the choice of vector basis (pentad in five
dimensions) that makes manifest the algebraic properties of a spacetime. We
have also only considered a few very simple examples of solutions to the Einstein
equations. Further work should provide us with invaluable intuition for the
interpretation of the various algebraic classes. Moreover, we have not discussed
here the higher-dimensional extension of the Newman-Penrose formalism for the
Einstein equations, which has been the subject of much previous work concerning,
for instance, problems of existence and stability of solutions [75-85]. Another
interesting problem to investigate with our formalism is the use of curvature (and
Cartan) invariants to characterise spacetimes; see [86] for a brief introduction and

[87-90] for recent work on this topic.

To the obvious possible directions mentioned above, we add one further direction
that we already alluded to in the introduction. This is the ‘double copy’ between
gauge theory and gravity, which appeared in the context of scattering amplitudes,
and whose application to classical solutions is now under study. The existence
of an analogy is, of course, natural from discussions such as the one in this
chapter, when comparing the classifications of the field strength tensor and the
Weyl tensor. The point is, however, that there is a precise formulation of the
double copy in this context. This is the subject of the paper [66], and it was an
important motivation for us to revisit the classification problem in this chapter.
In the second half of the thesis we will discuss more to do with the double copy

and its relations with exact solutions.
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Part 11

The double copy in GR
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Chapter 4

BCJ duality and the double copy

Our most refined understanding of nature is founded on two major theoretical
frameworks: general relativity and Yang-Mills theory. There is much in common
between these two: local symmetries play an important role in their structure;
there are simple action principles for both theories; the geometry of fibre bundles
is common to the physical interpretation of the theories. But at the perturbative
level, general relativity seems to be a vastly different creature to Yang-Mills
theory. Indeed, the Einstein-Hilbert Lagrangian, when expanded in deviations of
the spacetime metric from some reference metric (such as the Minkowski metric)
contains terms with arbitrarily many powers of the deviations. This is in stark
contrast to the Yang-Mills Lagrangian, which contains at most fourth order terms
in perturbation theory. Nevertheless, a powerful correspondence between the two
exists called the double copy. In this chapter, we will review the double copy
and take its classical limit. The chapter references work done in collaboration
with Andrés Luna, Ricardo Monteiro, Alexander Ochirov, Donal O’Connell, Chris
White and Niklas Westerberg in [2, 3].

4.1 GR and perturbation theory

In the first half of this thesis, we focused on exact solutions to the Einstein
equations. However, only very limited solutions to general relativity’s field
equations can be understood in this framework, and for the remainder we must use

perturbative field theory techniques. The Einstein-Hilbert action in D dimensions
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is given by

2
Sgy = = /dD:U\/—gR (4.1)

where k is the gravitational constant x? = 327Gy which couples the gravitational
field to matter. We can expand around a flat Minkowski background in terms of
K:

G = Nuv + Kl (4.2)

to find the perturbations of the gravitational field h,, around the flat background.
However, expanding Einstein-Hilbert action this way will create an expression
containing infinitely many terms, since the inverse metric g which enters the

definition R multiple times, can only satisfy ¢.,g* = d,” as an infinite series:
g =" — kW 4+ KRG — KPR hagh + (4.3)

where indices on hj, are raised and lowered using the Minkowski metric. There
is also an infinite series of terms from /—g. Schematically, the Einstein-Hilbert

action will look like
Spr = /d% (hO°h + kB*0*h + K*R*0*h + ... + K"R"TIO’h + ), (4.4)

where each term indicates a group of terms with some complicated index
structure. There are some gauge fixings and field redefinitions that can be done
to simplify matters, such as the field redefinition b,, = /99, — 1, Which in the

de Donder gauge d,h*" = 0 simplifies the 3-graviton vertex to

— 2 symPsf — 4 Do T K - K
5h,ulyl (kl)éhMQVZ(k2)5hu3y3(k3) 8 Sym 6{ TIIJ?:HQ?? 2#17] 31 V2 3

4.5
+ 277#21/277#3#17]1/31/1 kQ : k3 — NuavaNusvs ka k3l/1 ( )

+ 27]#3#2 Nvavs kQul k3l/1 + 477#2#1 Mgy k2u3 k3u2 } :

Here “sym” indicates a symmetrization on each index pair «;, 8;,7 = 1,2, 3 while
Ps indicates a summation over the six permutations of the particle number 7.
The 60 terms in this expression when expanded out are merely the beginning of
the problem, as each of the infinitely many more n-graviton vertex expressions
contain even more terms. A review of the progress made in perturbative gravity

calculations is given in [91].
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4.2 Squaring relations in amplitudes

Of course, if we wished to calculate the 3-point graviton amplitude M3 we would
actually fix it using little group symmetry and locality as described in section
and therefore bypass these complicated expressions. This gives a remarkable
result, namely that the 3-point graviton amplitude is the square of the Yang-Mills
3-gluon amplitude found in equation (|1.25):

<12>3 2_ ——a+1)2
>) = (A3(17273%))". (4.6)

Ms(17273%) = (W

This fact is part of a much larger equivalence called the KLT relations [92]. These
remarkable relations link gravity to gauge theory by considering open and closed
strings: a closed string can be expressed as the product of one left-moving open
string and one right-moving open string. When the field theory limit is taken,
closed string vertex operators become gravity amplitudes while open ones turn

into gauge theory amplitudes, giving the relation:

Me(1,2,...,n) =i(—1)""! [Ajjee(l,lwn) Z f(ll,...li)f(rl,...,rj)
perms (47)
x Atree(ly, ., L, 1,n— 1,7, ...,15, n)] +P(2,...,n—2)

where the notation of [93] has been used. The sum over the permutations refers to
the permutations of {ly, ...,;} and also {ry, ..., 7;}, while the notation P(2,...,n—
2) indicates an additional sum over all permutations of the legs {2,...,n—2}. The
functions f and f are products of Mandelstam invariants given explicitly in the
appendix of [93]. Therefore the KLT relations and the Yang-Mills Lagrangian

together can be used to reconstruct the Lagrangian of general relativity [94].

4.2.1 BCJ duality

A more convenient expression of this fact was found in [10, 42, ©95]. Tt requires
us to express the full Yang-Mills amplitude, including colour factors, in terms of
cubic vertices by breaking up quartic interaction terms. Then an m-point tree-

level amplitude in non-abelian gauge theory may be written in the general form
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n; C;
Apree — gr2 3™ G (4.8)
2107

where ¢ is the coupling constant, and the sum is over the set of cubic graphs I'.
The denominator arises from propagators associated with each internal line, and
¢; is a colour factor obtained by dressing each vertex with structure constants.
Finally, n; is a kinematic numerator, composed of momenta and polarisation
vectors, where ¢ runs over the diagrams. The form is not unique, however, owing
to the fact that the numerators {n;} can be modified by gauge transformations
and field redefinitions, neither of which affect the amplitude. A compact way to
summarise this is that one is free to modify each individual numerator according

to the generalised gauge transformation

Ajc
n; — n; + A, Z I T 0, (4.9)
alpal

where the latter condition expresses the invariance of the amplitude.

As we showed in section [I, the colour factors of the diagrams ¢; can always
be expressed in terms of traces of the generators T* and therefore obey Jacobi
relations of the form ¢; + ¢; + ¢, = 0 for some ¢, j, k running over the list of
diagrams. Other pairs of diagrams are simply related by ¢; = —c¢;. It turns out
that it is always possible to find numerators such that the n; obey identical
relationships. For example in a five-point amplitude there are 15 different
diagrams, of which only 6 have independent colour factors. The remainder
can be expressed using expressions of the form ¢; +¢; +¢; = 0, or ¢; = —¢;.
Colour-kinematics duality tells us that it is possible to make a choice of kinematic
numerators such that the relations obeyed by the n; are identical. The validity
of the BCJ double copy and the existence of colour-dual numerators has been
proven at tree-level [47, 95-102] (where it is equivalent to the KLT relations [92]).
One very exciting feature of the BCJ procedure is that it admits a simple
extension to loop diagrams in the quantum theory [42]. This extension remains
conjectural, but it has been verified in highly non-trivial examples at multi-loop
level [42] 03, 103-123]. All-order evidence can be obtained in special kinematic
regimes [48] [105], 124H126], but a full proof of the correspondence has to date

been missing (see, however, refs. [I27-141] for related studies).
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The BCJ choice of numerators is not unique. Consider the 4-point amplitude
which has three diagrams corresponding to the s, ¢t and v channels. The expression

can be written as

Atree - CsTg + Cey + Cy Ty,
4 =

. - (4.10)

for some choice of n; which obeys colour-kinematics duality. If we make the

transformation
ne — ng + SN, ng — ng +tA,  n, — n, +ul (4.11)

for some arbitrary function of the momenta and polarisations A, then the Jacobi

identity cs + ¢; + ¢, = 0 ensures that the amplitude is invariant:
AT — AT + (s + ¢ + cu) A = AV (4.12)

The duality hints at an intriguing correspondence between colour and kinematic
degrees of freedom that is still not fully understood, although progress has
been made in the self-dual sector of the theory [47]. More generally, the field-
theory limit of superstring theory has been very fruitful for understanding colour-
kinematics duality [101, 140, 142] and there has been recent progress on more
formal aspects of the duality [I43H145].

4.2.2 The double copy

Now the magic of the BCJ basis is that when the gauge theory numerators
n; are given in this form, performing the replacement ¢; — n; obtains gravity

amplitudes:

tree __ 11
Mtree = Z ot (4.13)
As we will see in chapter [6] this gravity theory depends on which gauge theory
the kinematic numerators are taken from and is often used in the context of
supergravity. The new kinematic numerators n; do not need to be in a form that
respects colour-kinematics duality: as long as they are a valid representation of
the same Yang-Mills amplitude as the n; then as in equation , the difference

A; = n; — n; must satisfy

Cz’Az’
; 2 = 0. (4.14)
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This argument holds despite knowing nothing about the colour factors except
that they come from a non-abelian group whose structure constants obey the

Jacobi identities. This is true by design for the kinematic numerators n; as well,

3 i (4.15)

Me,p2,

SO

i

is also true, and therefore

tree nin; (n,)*
Mbree = Z T Z T (4.16)
We will not use the quantum form of the double copy much in the following
sections. Instead, we will take the classical limit and consider only general
relativity. Since colour-kinematics duality has been proven to hold for all n-point
tree level diagrams, it is also true classically in most situations, see for example
[11]. In order to relate the double copy to general relativity, we need to consider
the vacuum expectation value of a field rather than its amplitude - namely LSZ
reduction from n-point functions to amplitudes. The process of extracting the
metric from Feynman diagrams is demonstrated in [146] for the Schwarzschild
solution. Then it is clear that we expect the double copy to live in the metric

perturbation as we will demonstrate in the next two chapters.
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Chapter 5

Bremsstrahlung and an exact

double copy

5.1 Introduction

In the previous section, we reviewed the incredible way that BCJ duality and
the double copy relates general relativity and Yang-Mills theory. Motivated by
this, a double copy for classical field solutions (which we will refer to as the
classical double copy) was proposed [12]. This classical double copy is similar
in structure to the BCJ double copy for scattering amplitudes: in both cases,
the tensor structure of gravity is constructed from two copies of the vector
structure of gauge theory. In addition, scalar propagators are present in both
cases; these scalars are exactly the same in gauge and gravitational processes.
However, the classical double copy [12] was previously only understood for the
special class of Kerr-Schild solutions in general relativity. This reflects the
particularly simple structure of Kerr-Schild metrics: the Kerr-Schild ansatz has
the remarkable property that the Einstein equations exactly linearise. Therefore
we can anticipate that any Yang-Mills solution related to a Kerr-Schild spacetime
must be particularly simple. Indeed, the authors of [12] showed that any
stationary Kerr-Schild solution has a well-defined single copy that satisfies the
Yang-Mills equations, which also take the linearised form. While the structure of
the classical double copy is very reminiscent of the BCJ double copy, so far no
precise link has been made between the two. One aim of the present chapter is

to provide such a link.
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Although the classical double copy is only understood for a restricted class of
solutions, many of these are familiar. For example, the Schwarzschild and Kerr
black holes are members of this class; in higher dimensions, the Myers-Perry black
holes are included [12]. The relationship between classical solutions holds for all
stationary Kerr-Schild solutions, but other Kerr-Schild solutions are known to
have appropriate single copies. A particularly striking example is the shockwave
in gravity and gauge theory; the double copy of this pair of solutions was pointed
out by Saotome and Akhoury [48]. In further work, the classical double copy
has been extended [43] to the Taub-NUT solution [147, [148], which has a double

Kerr-Schild form and whose single copy is a dyon in gauge theory.

Despite this success, Kerr-Schild solutions are very special and do not easily
describe physical systems which seem very natural from the point of view of the
double copy for scattering amplitudes. For example, there is no two-form field or
dilaton on the gravity side; there are no non-abelian features on the gauge theory
side; the status of the sources must be better understood. In cases where the
sources are point particle-like, the classical double copy relates the gauge theory
current density to the gravity energy-momentum tensor in a natural way [12], [43].
For extended sources, extra pressure terms on the gravity side are needed to
stabilise the matter distribution. Furthermore, reference [44] pointed out that in
certain gravity solutions the energy-momentum tensor does not satisfy the weak

and/or strong energy conditions of general relativity.

In this chapter, we will extend the classical double copy of [12], [43] by considering
one of the simplest situations involving explicit time dependence, namely that of
an arbitrarily accelerating, radiating point source. We will see that this situation
can indeed be interpreted in the Kerr-Schild language, subject to the introduction
of additional source terms for which we provide a clear interpretation. One
important fact which will emerge is that these sources themselves have a
double copy structure. We will demonstrate that the sources can be related
directly to scattering amplitudes, maintaining the double copy throughout. This
provides a direct link between the classical double copy and the BCJ procedure
for amplitudes, strongly bolstering the argument that these double copies are
the same. The gravitational solution of interest to us is a time-dependent
generalisation of the Schwarzschild solution; we will see that this gravitational

system is a precise double copy of an accelerating point particle. Since there is
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a double copy of the sources, and these describe the radiation fields, we learn
that the gravitational radiation emitted by a black hole which undergoes a short

period of acceleration is a precise double copy of electromagnetic Bremsstrahlung.

The structure of the chapter is as follows. In section [5.2] we briefly review
the Kerr-Schild double copy. In section we present a known Kerr-Schild
solution for an accelerating particle, before examining its single copy. We will
find that additional source terms appear in the gauge and gravity field equations,
and in section we relate these to scattering amplitudes describing radiation,
by considering the example of Bremsstrahlung. In section [5.5, we examine the
well-known energy conditions of GR for the solutions under study. Finally, we
discuss our results and conclude in section [5.6l Technical details are contained
in appendix [B] The chapter is based on work done in collaboration with Andrés
Luna, Ricardo Monteiro, Donal O’Connell and Chris White in [2].

5.2 Review of the Kerr-Schild double copy

Let us begin with a brief review of the Kerr-Schild double copy, originally
proposed in [12], 43]. We define the graviton field as in chapter 4| via

g,ul/ - g/.tl/ + K/h/,ula R = \/ 327TGN (51)

where Gy is Newton’s constant, and g,, is a background metric, which, for the
purposes of the present paper, we will take to be the Minkowski metric.E] There
is a special class of Kerr-Schild solutions of the Einstein equations, in which the

graviton has the form
huy = _g¢kukm (52)

consisting of a scalar function ¢ multiplying the outer product of a vector k,, with
itself. We have inserted a negative sign in this definition for later convenience.

The vector k, must be null and geodesic with respect to the background:
Guwk'k" =0, (k-D)k=0, (5.3)

where D" is the covariant derivative with respect to the background metric.
It follows that k, is also null and geodesic with respect to the metric g,,.

These solutions have the remarkable property that the Ricci tensor with mixed

"'We continue to work with a negative signature metric n = diag(1, —1, -1, —1).
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upstairs/downstairs indices is linear in the graviton. More specifically, one has

_ 1
R, =R\, —k |W R, — QD/J (D, h** + D*RP, — DPR* )|, (5.4)
where RW is the Ricci tensor associated with g,,,, and we have used the fact that
h*, = 0. It follows that the Einstein equations themselves linearise. Furthermore,
it was shown in [I2] that for every stationary Kerr-Schild solution (i.e. where
neither ¢ nor k* has explicit time dependence), the gauge field

Al = ok, (5.5)
for a constant colour vector ¢%, solves the Yang-Mills equations. Analogously to
the gravitational case, these equations take a linearised form due to the trivial
colour dependence of the solution. We then refer to such a gauge field as the

single copy of the graviton h,,,, since it involves only one factor of the Kerr-Schild

s
vector k, rather than two. Note that the scalar field ¢ is left untouched by this
procedure. This was motivated in [12] by taking the zeroth copy of equation
(i.e. stripping off the remaining k* factor), which leaves the scalar field itself.
The zeroth copy of a Yang-Mills theory is a biadjoint scalar field theory, and
the field equation linearises for the scalar field obtained from equation ([5.5)).
The scalar function ¢ then corresponds to a propagator, and is analogous to the
untouched denominators (themselves scalar propagators) in the BCJ double copy

for scattering amplitudes.

Source terms for the biadjoint, gauge and gravity theories also match up in
a natural way in the Kerr-Schild double copy. Point-like sources in a gauge
theory map to point particles in gravity, where electric and (monopole) magnetic
charge are replaced by mass and NUT charge respectively [43]. Extended source
distributions (such as that for the Kerr black hole considered in [12]) lead to
additional pressure terms in the gravity theory, which are needed to stabilise the
source distribution so as to be consistent with a stationary solution. Conceptual
questions relating to extended source distributions have been further considered
in [44], regarding the well-known energy conditions of general relativity. In this
work, we will consider point-like objects throughout, and therefore issues relating
to extended source distributions will not trouble us. Nevertheless we will discuss
the energy conditions in section below.
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Let us emphasise that the Kerr-Schild double copy cannot be the most general
relationship between solutions in gauge and gravity theories. Indeed, the field one
obtains upon taking the outer product of k* with itself is manifestly symmetric.
Moreover, the null condition on k* means that the trace of the field vanishes.
Hence, the Kerr-Schild double copy is unable to describe situations in which a two-
form and/or dilaton are active in the gravity theory. This contrasts sharply with
the double copy procedure for scattering amplitudes, which easily incorporates
these fields. We will demonstrate how these fields can be incorporated in chapter
6l Furthermore, Yang-Mills amplitudes only obey the double copy when written
in BCJ dual form, meaning that certain Jacobi relations are satisfied by the
kinematic numerator functions [10] [42], [95]. It is not known what the analogue of
this property is in the classical double copy procedure. All of these considerations
suggest that the Kerr-Schild story forms part of a larger picture, and in order
to explore this it is instructive to seek well-defined generalisations of the results
of [12, 43].

5.3 Kerr-Schild description of an accelerating

point particle

In this chapter, we will go beyond previous work on the Kerr-Schild double
copy [12, [43] by considering an accelerating point particle. This is a particularly
attractive case, because an accelerating point particle must radiate, so we may
hope to make direct contact between the double copy for scattering amplitudes
and for Kerr-Schild backgrounds. We first describe a well-known Kerr-Schild
spacetime containing an accelerating point particle, before constructing the
associated single-copy gauge theoretic solution. We find that the physics of
the single copy is particularly clear, allowing a refined understanding of the
gravitational system. We will build on this understanding in section to
construct a double copy pair of scattering amplitudes from our pair of Kerr-Schild
solutions in gauge theory and gravity in a manner that preserves the double copy

throughout.
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Figure 5.1 Geometric interpretation of the Kerr-Schild solution for an
accelerated particle.

5.3.1 Gravity solution

Consider a particle of mass M following an arbitrary timelike worldline y(7),
parametrised by its proper time 7 so that the proper velocity of the particle is

the tangent to the curve
_dy”
Codr

An exact Kerr-Schild spacetime containing this massive accelerating particle is

A (5.6)

known, though the spacetime contains an additional stress-energy tensor; we
will understand the physical role of this stress-energy tensor below. A useful
geometric interpretation of the null vector %, appearing in the solution has been
given in [I49HI51] (see [23] for a review), as follows. Given an arbitrary point
y*(7) on the particle worldline, one may draw a light cone as shown in figure .

At all points z* along the light-cone, one may then define the null vector

(. —y(r))"

() =

RN G )] M (5.7)

where the instruction ret indicates that y and A should be evaluated at the
retarded time 7., i.e. the value of 7 at which a past light cone from x* intersects

the worldline. Calculations are facilitated by noting that:

1 .
auku = 81/kp, = ; (nuu - /\uku - kp,)\u - kuku (_1 + k- /\)> ) (58)
Our = My + k(=1 47k N), (5.9)
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where dots denote differentiation with respect to the proper time 7.

The Kerr-Schild metric associated with this particle is

2

5 okuk, (5.10)

Guv = M — 9

where £k, is precisely the vector of equation (5.7 and different functional forms for
¢ lead to different solutions. The scalar function corresponding to an accelerating

particle is given by [152]

M
= —. 5.11
dmr ( )
Plugging this into the Einstein equations, one finds
R K2
GMV = RMV - _6MV - _TKSHV, (512)
2 2
wherd? )
, SMEk-X
TIl(lS - E r2 k?“k . (513)

ret
Thus, the use of Kerr-Schild coordinates for the accelerating particle leads to
the presence of a non-trivial energy-momentum tensor on the right-hand side
of the Einstein equations. We can already see that this extra term vanishes
in the stationary case (A* = 0), consistent with the results of [12]. More
generally, this stress-energy tensor Tis describes a pure radiation field present
in the spacetime. The physical interpretation of this source is particularly clear

in the electromagnetic “single copy” of this system, to which we now turn.

5.3.2 Single copy

Having examined a point particle in arbitrary motion in a Kerr-Schild spacetime,
we may apply the classical single copy of equation (5.5) to construct a
corresponding gauge theoretic solution. This procedure is not guaranteed to
work, given that the single copy of [12) 43] was only shown to apply in the
case of stationary fields. However, we will see that we can indeed make sense

of the single copy in the present context. Indeed, the physical interpretation

2We note what appears to be a typographical error in [23], where the energy-momentum
tensor contains an overall factor of 4 rather than 3. We have explicitly carried out the calculation
leading to equation (5.12)), and found agreement with [T49HI51].
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of the stress-energy tensor Ty we encountered in the gravitational situation is

illuminated by the single copy.

The essence of the Kerr-Schild double-copy is a relationship between gauge
theoretic solutions A* = k*¢ and Kerr-Schild metrics which is simply expressed

as k, — k,k,. Thus, the single-copy of

Mg 1
W = ——— —EHEY .14
2 Adrr (5 )
i X
AF = g—FK* 5.15
g (5.15)

where ¢ is the coupling constantﬁ Inserting this gauge field into the Yang-Mills

equations, one finds that non-linear terms vanish, leaving the Maxwell equations

0"Fy = Jxsvs (5.16)

where

F., =0,A, —0,A, (5.17)

is the usual electromagnetic field strength tensor.

A key result is that the current density appearing in the Maxwell equations is
given by
g k-\

jKSl/ - QE 2

k,| . (5.18)
ret

It is important to note that the current density jxs is related to the energy-

momentum tensor, equation , we encountered in the gravitational case.

Indeed the relationship between these sources is in accordance with the Kerr-

Schild double copy: it involves a single factor of the Kerr-Schild vector k*, with

similar prefactors, up to numerical constants. We will return to this interesting

fact in the following section.

3In principle, one should include an arbitrary colour index on the field strength and current
density. Given that the field equations are Abelian, however, we ignore this. The resulting
solution can be easily embedded in a non-abelian theory, as in [12, [43]. Note that the Abelian
character of this theory also implies that we make the replacement % — g (cf. equation (38)
from [12]).

4The relative sign between huw and A, is necessary in our conventions to ensure that positive
masses yield attractive gravitational fields while positive scalar potentials A° are sources for
electric field lines E = —V A°,
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The role of the Kerr-Schild current density jxs can be understood by examining
our single-copy gauge field, equation ([5.15)), in more detail. Let us compute the
electromagnetic field strength tensor of this system. Using the results and
, it is easy to check that

9
mTr2

F,=0,A, —-0A, = (kudo — A\uky) (5.19)
A first observation about this field strength tensor is that it falls off as 1/r?
and does not depend on the acceleration of the particle. Therefore, it does not
describe the radiation field of the accelerated point particle in empty space, since
the radiation fields must fall off as 1/r and are linear in the acceleration. Secondly,
this tensor is manifestly constructed from Lorentz covariant quantities. In the
instantaneous rest frame of the particle, A* = (1,0,0,0) and k* = (1,7), and in
this frame it is easy to see that the field strength is simply the Coulomb field
of the point charge. Therefore, in a general inertial frame, our field strength
tensor describes precisely the boosted Coulomb field of a point charge, omitting

the radiation field completely.

The absence of radiation in the electromagnetic field strength makes the
interpretation of the current density jys in the Maxwell equation obvious. This
source must describe the radiation field of the point particle. To see this more
concretely, let us compare our Kerr-Schild gauge field to the standard Liénard-
Wiechert solution Afy, = ;2\, which describes a point particle moving in an
arbitrary manner in empty space (see e.g. [I53]). This comparison is facilitated

by defining a “radiative gauge field”

g
An = 9 2
rad Ar ()\ k )7 (5 0)
which satisfies
v __ v v g v v
Frid - aM‘Arad -0 Afad = Ay (k#ﬁ - 6#k ) ) (521)

where (3, = j‘u L LE A. Thus, F" is the radiative field strength of the point
particle: it is linear in the particle acceleration, and falls off as 1/r at large

distances.
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Now, since the Liénard-Wiechert field is a solution of the vacuum Maxwell

equation, we know that 9, (F* + F"") = 0 and, consequently,
0, F1 =~ (522

We interpret jxs as a divergence of the radiative field strength: we have put the
radiation part of the gauge field on the right-hand side on the Maxwell equations,
rather than the left.

Let us now summarise what has happened. By choosing Kerr-Schild coordinates
for the accelerating particle in gravity, an extra energy-momentum tensor Tie
appeared on the right-hand side of the Einstein equations. The single copy
turns an energy density into a charge density (as in [12] 43| [44]). Thus, the
energy-momentum tensor in the gravity theory becomes a charge current jks in
the gauge theory. We have now seen that this current represents the radiation
coming from the accelerating charged particle, and this also allows us to interpret
the corresponding energy-momentum tensor on the gravity side: it represents

gravitational radiation from an accelerating point mass.

Indeed, our use of Kerr-Schild coordinates forced the radiation to appear in this
form. The vector k, which is so crucial for our approach is twist-free: d,k, = 0,k,..
It is known that twist-free, vacuum, Kerr-Schild metrics are of Petrov type D, and
therefore there is no gravitational radiation in the metric; see [23] for a review.

Correspondingly, the radiation is described by the Kerr-Schild sources.

The radiation fields of the accelerating charge in gauge theory, and the acceler-
ating point mass in gravity, are described in Kerr-Schild coordinates by sources
jks and Tks . The structure of these sources reflects the Kerr-Schild double copy
procedure: up to numerical factors, one replaces the vector k, by the symmetric
trace-free tensor k,k, to pass from gauge theory to gravity. This relationship
between the sources, which describe radiation, is highly suggestive. Indeed, it
is a standard fact that scattering amplitudes can be obtained from (amputated)
currents. We may therefore anticipate that the structural relationship between
the Kerr-Schild currents is related to the standard double copy for scattering

amplitudes.

Nevertheless, there are still some puzzles regarding the analysis above. What,
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for example, are we to make of the different numerical factors appearing in the
definitions equations and of the Kerr-Schild stress tensor and current
density? If these sources are related to amplitudes, we expect a double copy
which is local in momentum space. How can our currents be local in position
space? More generally, how can we be sure that the Kerr-Schild double copy is
indeed related to the standard BCJ procedure? The answer to these questions
is addressed in the following section, in which we interpret the radiative sources

directly in terms of scattering amplitudes.

Before proceeding, however, let us comment on the physical interpretation of the
particle in the solutions under study. We considered how the particle affects the
gauge or gravity fields, but we did not consider the cause of the acceleration of
the particle, i.e. its own equation of motion. In the standard Liénard-Wiechert
solution, the acceleration is due to a background field. It is therefore required
that this background field does not interact with the radiation, otherwise the
solution is not valid. This is true in electromagnetism or in its embedding in
Yang-Mills theory. However, in the gravity case, one cannot envisage such a
situation. Therefore, one should think of this particle merely as a boundary
condition, and not as a physical particle subject to forces which would inevitably
affect the Einstein equations. What we are describing here is a mathematical map
between solutions in gauge theory and gravity, a map which exists irrespective of
physical requirements on the solutions. In a similar vein, [44] showed that energy-
momentum tensors obtained through the classical double copy do not necessarily

obey the positivity of energy conditions in general relativity.

5.4 From Kerr-Schild sources to amplitudes

In the previous section, we saw that the Kerr-Schild double copy can indeed
describe radiating particles. The radiation appears as a source term on the right-
hand side of the field equations. In this section, we consider a special case of
this radiation, namely Bremsstrahlung associated with a sudden rapid change in
direction. By Fourier transforming the source terms in the gauge and gravity
theory to momentum space, we will see that they directly yield known scattering
amplitudes which manifestly double copy. Moreover, the manipulations required
to extract the scattering amplitudes in gauge theory and in gravity are precisely
parallel. We will preserve the double copy structure at each step, so that the
double copy property of the scattering amplitudes emerges from the k, — k,k,
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structure of the Kerr-Schild double copy. In this way, we firmly establish a
link between the classical double copy and the BCJ double copy of scattering

amplitudes.

In order to study Bremsstrahlung, we consider a particle which moves with

velocity
MN(T) = u" + f(r)(u™ —ut), (5.23)

where

1, T > €

fr) = { booTee (5.24)

and, in the interval (—¢, €), f(7) is smooth but otherwise arbitrary. This describes
a particle which moves with constant velocity A = u* for 7 < —e, while for 7 > ¢
the particle moves with a different constant velocity A* = u/#. Thus, the particle
undergoes a rapid change of direction around 7 = 0, assuming € to be small. The
form of f(7) acts as a regulator needed to avoid pathologies in the calculation that
follows. However, dependence on this regulator cancels out, so that an explicit
form for f(7) will not be needed. Owing to the constant nature of v and «’, the

acceleration is given by
M= f(r) (W — ). (5.25)

The acceleration vanishes for 7 < —e and 7 > ¢, but is potentially large in the
interval (—e¢, e). Without loss of generality, we may choose the spatial origin to

be the place at which the particle changes direction, so that y*(0) = 0.

5.4.1 Gauge theory

We first consider the gauge theory case, and start by using the definitions of
equations (5.7) to write the current density of equation ([5.18)) as

.VS _ i_i/dT[)\(T) . (l' - y(T)) (ZL‘ _ y(T))V(S(T o Tret)a (526)

* A7) - (@ = y(m)]*
where we have introduced a delta function to impose the retarded time constraint.

Using the identity

(T — Tret)

Nz —y(r) 20(2” —°(7))d ((x — y(1))?) , (5.27)
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one may rewrite equation ((5.26)) as

L g [ M) y(r)
Lﬁ‘4w/d[xﬂ'@—yvm

Any radiation field will be associated with the non-zero acceleration only for

5(@=y(7)"0(2"—y"(7))0 (v — y(7))*) . (5.28)

|7| < €, where y*(7) is small. We may thus neglect this with respect to z* in

equation (5.28). Substituting equation ({5.25)) then gives

L, 49, ‘ bf(r)
Jis = 3% 0(2°)5(z?) /_E dT(a Ty (5.29)
where
a=z-u, b=x-u —z-u (5.30)

The integral is straightforwardly carried out to give

o = =306 | o~ G
_ i—iew)(s(ﬁ) [ ai; (x 1u> N m} | (5.31)

One may now Fourier transform this expression, obtaining a current depending
on a momentum k conjugate to the position z. As our aim is to extract a
scattering amplitude from the Fourier space current, jfés(k;), we consider only
the on-shell limit of the current where k? = 0; we also drop terms in jﬁs(k) which
are proportional to k* as these terms are pure gauge. The technical details are

presented in appendix [B] and the result is

-, . i u?
Jrs(k) = —ig (u, s k> : (5.32)

We may now interpret this as follows. First, we note that the current results from
acting on the radiative gauge field with an inverse propagator, consistent with the
LSZ procedure for truncating Green’s functions. It follows that the contraction
of j;s with a polarisation vector gives the scattering amplitude for emission of a
gluon. Upon doing this, one obtains the standard eikonal scattering amplitude

for Bremsstrahlung (see e.g. [154])

~y . e-u €U
Agange = €,(k)jts = —ig (u o k) . (5.33)
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We thus see directly that the additional current density in the Kerr-Schild
approach corresponds to the radiative part of the gauge field.

5.4.2 Gravity

We now turn to the gravitational case. Our goal is to extract the eikonal scattering
amplitude for gravitational Bremsstrahlung from the Kerr-Schild stress-energy
tensor Trs for a particle of mass M moving along precisely the same trajectory

as our point charge. Thus, the acceleration of the particle is, again,
A= f(7) (u" —ut). (5.34)

The calculation is a precise parallel to the calculation of the Bremsstrahlung
amplitude for the point charge. However, as we will see, the presence of an
additional factor of the Kerr-Schild vector £ in the gravitational case leads to
a slightly different integral which we encounter during the calculation. This
integral cancels the factor of 3 which appears in Tks, restoring the expected
numerical factors in the momentum space current. Let us now turn to the explicit

calculation.

We begin by writing the stress tensor as an integral over a delta function which

enforces the retardation and causality constraints

1% _3M T /\(T y(T))  — u(t)(x — u(T))” .CL’O— 0 T
T = / dr e I (o = ()P = o)~ 4710
)

[A( (5.35)
—y(7)) )

corresponding to equation in the gauge theoretic case. The fourth power in
the denominator in the gravitational case arises as a consequence of the additional
factor of k* = (x — y(7))*/[A(7) - (x — y(7))]. As before, the integral is strongly
peaked around y* = 0, and we may perform the integral in this region to find
that

T = —%x#xve( 0§ (%) [(x ‘1u,>3 @ 1u>3]
- _%e(ggo)d( %) [a(z/ ai; (x1u> (u %U)] (5.36)
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Notice that the factor 3 in the numerator of the stress-energy tensor has cancelled
due to the additional factor of A(7)-(x—y(7)) in the denominator of the integrand

in the gravitational case. The double copy structure is evidently now captured by
0 o 0

’ / ’
oul, Ouy, Ou,

a replacement of one derivative in gauge theory with two derivatives

in gravity.

Our next step is to Fourier transform to momentum space. The calculation is
extremely similar to the gauge theoretic case (again, see appendix . As our
goal is to compute a scattering amplitude, we work in the on-shell limit k2 = 0

and omit pure gauge terms. After a short calculation, we find

w, 1v W, v
v ““) (5.37)

Tﬁg(k):_iM(u’-k: Cu-k

To construct the scattering amplitude, we must contract this Fourier-transformed
stress-energy tensor with a polarisation tensor, which may be written as an outer

product of two gauge theory polarisation vectors:
" (k) = e*(k)e” (k). (5.38)

The scattering amplitude is then given by

P —— (5.39)

Ageay = €, (ke (K)TH (k) = —iM (6 wew cue “) ,
corresponding to the known eikonal amplitude for gravitational Bremsstrahlung [155].
Again we see that the additional source term in the Kerr-Schild approach
corresponds to the radiative part of the field. Furthermore, in this form the
standard double copy for scattering amplitudes is manifest: numerical factors
agree between equations and , such that the mass in the gravity
theory is replaced with the colour charge in the gauge theory, as expected from

the usual operation of the classical single copy [12} 43].

Let us summarise the results of this section. We have examined the particular case
of a particle which undergoes a rapid change in direction, and confirmed that the
additional source terms appearing in the Kerr-Schild description (in both gauge
and gravity theory) are exactly given by known radiative scattering amplitudes.

This directly links the classical double copy to the BCJ procedure for amplitudes.
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It is interesting to compare the BCJ double copy for scattering amplitudes with
the Kerr-Schild double copy, which has been formulated in position space. It is
clear that momentum space is the natural home of the double copy. For scattering
amplitudes, the amplitudes themselves and the double copy procedure are local in
momentum space. In our Bremsstrahlung calculation, the numerical coefficients
in the sources are also more natural after the Fourier transform. On the other
hand, the currents Tke and j¥, are also local in position space. This unusual
situation arises because the scattering amplitudes do not conserve momentum:
in any Bremsstrahlung process, some momentum must be injected in order to
bend the point particle trajectory. Of course, in the case of a static point
particle locality in both position space and momentum space is more natural.
This is reflected by the structure of the Fourier transform in the present case: as
explained in appendix , the factor 1/z - u describing a particle worldline Fourier

transforms to an integrated delta function [~ dm 6*(g—mu) (see equation (B.3)).

5.5 Gravitational energy conditions

In this section, we consider the null, weak and strong energy conditions of general
relativity. These were recently examined in the context of the Kerr-Schild double
copy in [44], where it was shown that extended charge distributions double copy
to matter distributions that cannot simultaneously obey the weak and strong
energy conditions, if there are no spacetime singularities or horizons. Although
the point particle solution of interest to us has both singularities and horizons, it

is still interesting to examine the energy conditions.

The null energy condition on a given energy-momentum tensor can be expressed
by
T,,0"" > 0, (5.40)

where /* is any future-pointing null vector. The weak energy condition is similarly
given by
T,,t"t" > 0, (5.41)

for any future-pointing timelike vector t#. The interpretation of this condition
is that observers see a non-negative matter density. The null energy condition
is implied by the weak energy condition (despite the names, the former is the

weakest condition). One may also stipulate that the trace of the tidal tensor
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Figure 5.2 Physical interpretation of (k - )\), where this denotes the component
of acceleration in the direction n*.

measured by such an observer is non-negative, which leads to the strong energy
condition T
T, t't" > Egu,,t“t”, T=T. (5.42)

Let us now examine whether these conditions are satisfied by the Kerr-Schild
energy-momentum tensor of equation ([5.13f). First, the null property of the vector
k* implies that the trace vanishes, so that the weak and strong energy conditions

are equivalent. We may further unify these with the null energy condition, by
noting that equation (5.13)) implies

(5.43)

TV, = (k- ) {M} ,

4rr?

for any vector V#. The quantity in the square brackets is positive definite, so
that whether or not the energy conditions are satisfied is purely determined by
the sign of k - \. This scalar quantity is easily determined in the instantaneous
rest-frame of the point particle; it is the negative of the component of acceleration
in the direction n* of the observer (at the retarded time), see figure [5.2] Thus
the energy conditions are not satisfied throughout the spacetime. In particular,
any observer which sees the particle accelerating towards (away from) her will

measure a negative (positive) energy density.

We remind the reader that the energy-momentum tensor is, in the case under
study, an effective way of representing the full vacuum solution. The latter

will have no issues with energy conditions. Analogously, the Liénard-Wiechert
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vacuum solution in gauge theory can be represented, as we have shown in
section [5.3] by a boosted Coulomb field, together with a charged current encoding

the radiation.

5.6 Discussion

In this chapter, we have extended the classical double copy of [12,43] to consider
accelerating, radiating point sources. This significantly develops previous results,
which were based on stationary Kerr-Schild solutions, to a situation involving
explicit time dependence. The structure of the double copy we have observed in
the radiating case is precisely as one would expect. Passing from the gauge to
the gravity theory, the overall scalar function ¢ is left intact; indeed it is the well-
known scalar propagator in four dimensions. This is the same as the treatment
of scalar propagators in the original BCJ double copy procedure for amplitudes.
Similarly, the tensor structure of the gravitational field is obtained from the gauge
field by replacing the vector k, by the symmetric, trace-free tensor k,k,. Finally,
our use of Kerr-Schild coordinates in gravity linearised the Einstein tensor (with
mixed indices). Reflecting this linearity, the associated single copy satisfies the

linearised Yang-Mills equations.

It is worth dwelling a little on the physical implication of our work. The classical
double copy is known to relate point sources in gauge theory to point sources in
general relativity, in accordance with intuition arising from scattering amplitudes.
In this chapter, we have simply considered the case where the point sources move
on a specified, arbitrarily accelerated, timelike worldline. On general grounds we
expect radiation to be emitted due to the acceleration. Our use of Kerr-Schild
coordinates organised the radiation into sources appearing on the right-hand side
of the field equations: a current density in gauge theory, and a stress-energy tensor
in gravity. Intriguingly, we found that the expressions for these sources also have
a double copy structure: one passes from the gauge current to the gravitational
stress-energy tensor by replacing k, by k,k, while leaving a scalar factor intact, up
to numerical factors which are canonical in momentum space. Since these sources
encode the complete radiation fields for the accelerating charge and point mass,
there is a double copy between the radiation generated by these two systems.
This double copy is a property of the exact solution of gauge theory and general

relativity.
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We further extracted one simple perturbative scattering amplitude from this
radiation field, namely the Bremsstrahlung scattering amplitude. The double
copy property was maintained as we extracted the scattering amplitude, which
firmly establishes a link between the double copy for amplitudes and the double

copy for classical solutions.

However, we should emphasise one unphysical aspect of our setup. We mandated
a worldline for our point particle in both gauge theory and general relativity.
In gauge theory, this is fine: one can imagine that an external force acts on
the particle causing its worldline to bend. However, in general relativity such
an external force would contribute to the stress-energy tensor in the spacetime.
Since we ignored this component of the stress-energy tensor, our calculation is not
completely physical. Instead, one should regard the point particle in both cases
as a specified boundary condition, rather than as a physical particle. We have
therefore seen that the radiation generated by this boundary condition enjoys a

precise double copy.

There are a number of possible extensions of our results. One may look at
time-dependent extended sources in the Kerr-Schild description, for example,
or particles accelerating in non-Minkowski backgrounds (for preliminary work in
the stationary case, see [43]). It would also be interesting to examine whether
a double copy procedure can be set up in other coordinate systems, such as
the more conventional de Donder gauge. One particularly important issue is
to understand the generalisation of the colour-dual requirement on kinematic
numerators to classical field backgrounds. The Jacobi relations satisfied by colour-
dual numerators hint at the existence of a kinematic algebra [47, [143] underlying
the connection between gauge theory and gravity; revealing the full detail of this
structure would clearly be an important breakthrough. The study of the classical
double copy is in its infancy, and many interesting avenues have yet to be explored.
In the next chapter we will focus on extending our understanding of the classical
double copy to arbitrary gauge. We will use the de Donder gauge, taking into
account that the use of a gauge with trace requires the use of projectors to remove

the dilaton field.
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Chapter 6

Perturbative spacetimes from the
double copy

6.1 Introduction

The existence of the double copy hints at a profound relationship between gauge
and gravity theories, that should transcend perturbative amplitudes. To this end,
the previous chapter discussed work done in [2] 12], 43], [44] which generalised the
notion of the double copy to exact classical solutions. That is, a large family of
gravitational solutions was found that could be meaningfully associated with a
gauge theory solution, such that the relationship between them was consistent
with the BCJ double copy. As we described in chapter [3], these solutions all had
the special property that they linearised the Einstein and Yang-Mills equations,
so that the graviton and gauge field terminate at first order in the coupling
constant, with no higher-order corrections. A special choice of coordinates
(Kerr-Schild coordinates) had to be chosen in the gravity theory, reminiscent
of the fact that the amplitude double copy is not manifest in all gauge choices.
An alternative approach exists in a wide variety of linearised supersymmetric
theories which consists of writing the graviton as a direct convolution of gauge
fields [49, 50, 52, T56-158]. This in principle works for general gauge choices, but
it is not yet clear how to generalise this prescription to include non-linear effects.
One may also consider whether the double copy can be generalised to intrinsically

non-perturbative solutions, and first steps have been taken in [I59].
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As is hopefully clear from the above discussion, it is not yet known how to
formulate the double copy for arbitrary field solutions, and in particular for
those which are non-linear. However, such a procedure would have highly useful
applications. Firstly, the calculation of metric perturbations in classical general
relativity is crucial for a plethora of astrophysical applications, but is often
cumbersome. A mnon-linear double copy would allow one to calculate gauge
fields relatively simply, before porting the results to gravity. Secondly, hints were
provided in [43] that the double copy may work in a non-Minkowski spacetime.
This opens up the possibility to obtain new insights (and possible calculational

techniques) in cosmology.

The aim of this chapter is to demonstrate explicitly how the BCJ double copy
can be used to generate non-linear gravitational solutions order-by-order in
perturbation theoryE], from simpler gauge theory counterparts. This is similar
in spirit to work done in [I60HI62], which extracted both classical and quantum
gravitational corrections from amplitudes obtained from gauge theory ingredients;
and to [146], [163], which used tree-level amplitudes to construct perturbatively the
Schwarzschild spacetime. Recently, the double copy procedure has been studied
in [51] for classical radiation emitted by multiple point charges. Here we take a
more direct approach, namely to calculate the graviton field generated by a given
source, rather than extracting this from a scattering amplitude. Another recent
work proposes applications to cosmological gravitational waves, pointing out a

double copy of radiation memory [164].

As will be explained in detail in what follows, our scheme involves solving
the Yang-Mills equations for a given source order-by-order in the coupling
constant. We then copy this solution by duplicating kinematic numerators,
before identifying a certain product of gauge fields with a two-index field H,,,
motivated by [95]. This field contains degrees of freedom associated with a
together with a scalar field ¢ and two-form field B, .

For convenience, we will refer to H,, as the fat graviton, and the physical field

conventional graviton f,,,
hy. as the skinny graviton. As we will see, the skinny fields h,,, B, and ¢ can

be obtained from knowledge of H,

w, though this extraction requires knowledge

of a certain gauge transformation and field redefinition in general.

IThis is the post-Minkowskian expansion, as opposed to the post-Newtonian expansion where
the non-relativistic limit is also taken.
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The structure of this chapter is as follows. In section [6.1.1] we briefly review the
BCJ double copy. In section 6.2 we work at leading order in perturbation theory,
and outline our procedure for obtaining gravity solutions from Yang-Mills fields.
In section|6.3] we work to first and second subleading order in perturbation theory,
thus explicitly demonstrating how non-linear solutions can be generated in our
approach. Finally, we discuss our results and conclude in section The chapter
is based on work done in collaboration with Andrés Luna, Ricardo Monteiro,
Alexander Ochirov, Donal O’Connell, Chris White and Niklas Westerberg which
was published in [3].

6.1.1 Conventions

As we reviewed in chapter [] given a gauge theory amplitude in BCJ-dual form,
the double copy prescription states that

M., :i(—) Yo (6.1)
2 €l Hai Pa,

is an m-point gravity amplitude, where
Juv = N + /fh;u/ (62)

can be chosen to define the graviton field, and x = /327G is the gravitational
coupling Constant.ﬂ This result is obtained from equation by replacing the
gauge theory coupling constant with its gravitational counterpart, and colour
factors with a second set of kinematic numerators n;. Therefore, the procedure
modifies the numerators of amplitudes term by term, but leaves the denominators
in equations intact. As we discuss in chapter , a similar phenomenon
occurs in the double copy for exact classical solutions of |2, 2] [43], in which

scalar propagators play a crucial role.

The gravity theory associated with the scattering amplitudes depends on
the two gauge theories from which the numerators {n;}, {n;} are taken. In this
chapter, both will be taken from pure Yang-Mills theory, which is mapped by the
double copy to “N = 0 supergravity”. This theory is defined as Einstein gravity

2We work in the mostly plus metric convention.
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coupled to a scalar field ¢ (known as the dilaton) and a two-form B, (known
as the Kalb-Ramond field, which can be replaced by an axion in four spacetime

dimensions). The action for these fields is

1

1
T 0MG0,p — e D2 6.3
2D —2) PP ¢ v (6:3)

2
5= /de\/—_g [;R—

where H),, is the field strength of B,,. In the following, we will study
perturbative solutions of this theory around Minkowski space. The starting point

is to consider linearised fields, for which the equations of motion are

O hyy — 0,0 hy, — 0,0 hpy, + 8,0,h + My [0°0° e — 0°R] = 0,
&*B,, — 0,0°B,, + 0,0"B,, = 0,
9*¢ = 0. (6.4)

Instead of the straightforward graviton field h,, defined by (6.2)), we will often

work with the “gothic” metric perturbation h*” such that

V=99 =" —kh", (6.5)

as it is common in perturbation theory [165]. In terms of this gothic graviton
field, the de Donder gauge condition is simply 9,b*” = 0 to all orders. At the

linear order, the two metric perturbations are simply related:

1

B = Dy — 577Wh, (6.6)

and the linear gauge transformation generated by z# — x#* — k& is

h,uu — h‘/m/ = h/w + a,ugu + a,/£“ - nuua : g (67)

This transformation is more convenient in what follows than the standard gauge
transformation for h,, (where the last term is missing). Finally, the linearised

equation of motion is
82f)w, — 0,0, — 0,0,y + 1,07 0%h 6 = 0. (6.8)

In de Donder gauge, we have simply 9%h,,, = 0.
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6.2 Linear gravitons from Yang-Mills fields

Our goal is to rewrite gravitational perturbation theory in terms of the fat
graviton H,,, rather than more standard perturbative fields such as {h,,,, B, ¢}.
The idea is that the fat graviton is the field whose interactions are directly dictated
by the double copy from gauge theory. In this section, we will discuss in some
detail the mapping between the skinny fields and the fat graviton at the linearised
level. Indeed, we will see that there is an invertible map, so that the fat graviton
may be constructed from skinny fields H,, = H,,,(has, Bas, ¢), but also the skinny
fields can be determined from the fat field, b, = b (Hap), By = B (Hag), ¢ =
&(Hap). We will determine the relations between the fields beginning with the

simplest case: linearised waves.

6.2.1 Linear waves

As a prelude to obtaining non-linear gravitational solutions from Yang-Mills
theory, we first discuss linear solutions of both theories. The simplest possible
solutions are linear waves. These are well-known to double copy between gauge
and gravity theories (see e.g. [166]). This property is crucial for the double copy
description of scattering amplitudes, whose incoming and outgoing states are
plane waves. Here, we use linear waves to motivate a prescribed relationship

between fat and skinny fields, which will be generalised in later sections.

Let us start by considering a gravitational plane wave in the de Donder gauge.
The free equation of motion for the graviton is simply 9%h,, = 0. Plane wave

solutions take the form
B = aue™?, P'ag, =0, p° =0, (6.9)

where a,,, is a constant tensor, and the last condition follows from the equation
of motion. Symmetry of the graviton implies a,, = a,,, and one may also fix a
residual gauge freedom by setting a = af; = 0, so that b, becomes a traceless,
symmetric matrix. It is useful to further characterise the matrix a,, as we did

in chapter [1{ by introducing a set of (D — 2) polarisation vectors SZ satisfying the
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orthogonality conditions
p-e =0, q-e" =0, (6.10)

where ¢* (¢ = 0, p-q # 0) is an auxiliary null vector used to project out physical
degrees of freedom for an on-shell massless vector boson. These polarisation

vectors are a complete set, so they satisfy a completeness relation

i1 p,uQu +p1/qM
ey = My — T (6.11)

Then the equation of motion for bh,,, together with the symmetry and gauge

conditions on a,,, imply that one may write

fzg m w (612)

where fi’; is a traceless symmetric matrix. Thus, the linearised gravitational waves
have polarisation states which can be constructed from outer products of vector

waves, times traceless symmetric matrices.

Similarly, one may consider linear plane wave solutions for a two-form and ¢ field.
Imposing Lorenz gauge 0" B, = 0 for the antisymmetric tensor, its free equation

of motion becomes simply 9*B,,, = 0. Thus plane wave solutions are
flje gl e, (6.13)

where ﬁ»j is a constant antisymmetric matrix. Meanwhile the free equation of

motion for the scalar field is 9?¢ = 0, with plane wave solution

¢ = foe. (6.14)

The double copy associates these skinny waves with a single fat graviton field
H,, satisfying the field equation 9*H,,, = 0,
H,, = fie,ele®?, (6.15)

where now f;; is a general D — 2 matrix and we have chosen a gauge condition
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0"H,, = 0= 0"H,,. One may write this decomposition as

r f i ~J DT
H/w - (fl_i] + fij + 5ijD—i2 €M5]u€p ’ (6'16)

plv + Puly ¢
P 6.17
) D (6.17)

:hu+Bu+<77u_ ;
n 1 m pq 9

which explicitly constructs the fat graviton from skinny fields. Working in

position space for constant ¢, this becomes
Hy(z) = b (z) + Bu(z) + PlLo, (6.18)

where we have defined the projection operator

1 4uOy + 40
PSV:D_2<T]’U'V_ Mqa ﬂ)’ (619)

which will be important throughout this articlef

Our goal in this work is not to construct fat gravitons from skinny fields, but
on the contrary to determine skinny fields using a perturbative expansion based
on the double copy and the fat graviton. Therefore it is important that we can
determine the skinny fields given knowledge of the fat graviton. To that end,
recall that we have been able to choose a gauge so that the trace, h, of the metric
perturbation vanishes. Therefore the trace of the fat graviton determines the
dilaton:

¢»=H",=H. (6.20)

We may now use symmetry to determine the skinny graviton and antisymmetric

tensor from the fat graviton:

B (H, —H,,), (6.21)

jn%

h,uu = (H;w + Huu) - Pg,,H (622)

N =N =

The basic strategy of this construction is simple: we have decomposed the matrix

field H,, into its antisymmetric, traceless symmetric, and trace parts.

3Notice that Pgu = (D - 2)Pgl, is the properly normalised projection operator, such that
PIAPIY = P4V, and P =D — 2.
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It is worth dwelling on the decomposition of the fat graviton into skinny fields
a little further. Having constructed b, from the fat graviton, we are free to

consider a gauge transformation of the skinny graviton:

b;tu = h,uu + aufu + augu - nuya : 5 (623)
1 1 4.0, + 4,0

=5 (Huw + Hy) = 57— (77;“/ - W) H + 0,8y + 008 — 10 - €.

(6.24)

If we choose

_ 1 (4
&="p 3 (q -ﬂa) H, (6.25)

then we find that the expression for the b;w simplifies to

S|
O = 5 (Huw + Hi) (6.26)

Thus, up to a gauge transformation, the skinny graviton is the symmetric part
of the fat graviton. It may be worth emphasising that ¢ and B, also transform
under this gauge transformation, which is, of course, a particular diffeomorphism.
However, the transformation of ¢ and B, is suppressed by a power of x, and so

we may take them to be gauge invariant for diffeomorphisms at this order.

We will see below that the perturbative expansion for fat gravitons is much
simpler than the perturbative expansion for the individual skinny fields. But
before we embark on that story, it is important to expand our understanding of
the relationship between the fat graviton and the skinny fields beyond the sole

case of plane waves.

6.2.2 General linearised vacuum solutions

For plane waves, the fat graviton is given in terms of skinny fields in equa-
tion (6.18), and at first glance this equation is not surprising: one may always
choose to decompose an arbitrary rank two tensor into its symmetric traceless,
antisymmetric and trace parts. However, equation (6.18]) contains non-trivial
physical content, namely that the various terms on the RHS are the genuine
propagating degrees of freedom associated with each of the skinny fields. The

auxiliary vector g, plays a crucial role here: it is associated in the gauge theory
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with the definition of physical polarisation vectors, and thus can be used to
project out physical degrees of freedom in the gravity theory. One may then
ask whether equation generalises for arbitrary solutions of the linearised
equations of motion. There is potentially a problem in that the relationship
becomes ambiguous: the trace of the skinny graviton may be non-zero (as is
indeed the case in general gauges), and one must then resolve how the trace
degree of freedom in H" enters the trace of the skinny graviton, and the scalar
field ¢. Furthermore, it is not immediately clear that equation (derived for
plane waves) will work when non-zero sources are present in the field equations. In
order to use the double copy in physically relevant applications, we must consider

this possibility.

Here we will restrict ourselves to skinny gravitons that are in de Donder gauge.
However, we will relax the traceless condition on the skinny graviton which was

natural in the previous section. To account for the trace, we postulate that
equation ([6.18)) should be replaced by

Hy(x) = b () + Bu(x) + P, (¢ — b). (6.27)

To be useful, this definition of the fat graviton must be invertible. First, note
that the trace of H,, determines ¢ as before, while the antisymmetric part of

H,, determines B,,,. Finally, the traceless symmetric part of the fat graviton is

1

5 (HNV + HVM) - PSVH = hlﬂ’('x) - P;L]l/h = [’J;U/('Z'% (628)
where b7, (z) is a gauge transformation of b, (z). In practice, we find it useful
to work with b, (z) rather than b, (x), because at higher orders the gauge
transformation to b, (x) leads to more cumbersome formulae. It is also worth

noticing that both b, and b, are in de Donder gauge, since

gy p— (ay -

AT N 2T
55 >_ S0 =0 (6.29)

D—2q

Our relationship between skinny and fat fields still holds only for linearised
fields; we will explicitly find corrections to equation at higher orders in
perturbation theory in section (6.3, Before doing so, however, it is instructive to
illustrate the above general discussion with some specific solutions of the linear

field equations, showing how the fat and skinny fields are mutually related.
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6.2.3 The linear fat graviton for Schwarzschild

One aim of our programme is to be able to describe scattering processes involving
black holes. To this end, let us see how to extend the above results in the presence
of point-like masses. It is easy to construct a fat graviton for the linearised
Schwarzschild metric: we begin by noticing that, in the case of Schwarzschild
(D = 4), we have
by (1) = grﬁuuu L O2), Bu(a) =0, 6(x)=0, u,=(1,0,0,0).
(6.30)
The fat graviton depends on an arbitrary constant null vector ¢*. In this section,
for illustration, we will make an explicit choice of ¢ = (1,0,0,1) and evaluate

the action of the projector (6.19)) in position space in full. A computation gives

k M Kk M
H, =22 P22 6.31
a 9 dry 1 + Ly (2 477'7") (6:31)
Kk M 1
= S0 (uuuv + 5(77W = quly, — qylu>> ; (6.32)

where [, = —(0,z,y,r + z)/(r + z), such that ¢ - [ = 1. It is easy to check that
o*H,, =0,9°H,, = 0.

Going in the other direction, it is easy to compute the skinny fields given this fat
graviton. Since H,, is traceless, the dilaton vanishes. Similarly H,,, is symmetric,
and therefore B, = 0. The skinny graviton can therefore be taken to be equal
to the fat graviton. While this result seems to be at odds with , recall that
they differ only by a gauge transformation (which leaves ¢ and B, unaffected
at this order) and that the skinny graviton we recover is traceless, as we would

expect from equation (|6.28|).

It may not seem that we have gained much by passing to equation from
equation . However, it is our contention that it is simpler to compute
perturbative corrections to metrics using the formalism of the fat graviton than
with the traditional approach. We will illustrate this in a specific example later

in this chapter.

96



6.2.4 Solutions with linearised dilatons

The linearised Schwarzschild metric corresponds to a somewhat complicated fat
graviton. Since the fat graviton’s equation of motion is simply 9*H,, = 0, it is

natural to consider the solution
H,, = -—u,u,, with w, = (1,0,0,0), (6.33)

which corresponds to inserting a singularity at the origin. We will see that this
solution has the physical interpretation of a point mass which is also a source for
the scalar dilaton. Indeed, the dilaton contained in the fat graviton is given by
its trace:

= ———. (6.34)

Since the fat graviton is symmetric, B, = 0. Meanwhile the skinny graviton is

k M 1
h;w = (uuuu + E(nuu - Q,ulu - C_Iul,u)) . (635)

T 24mr
Again, a linearised diffeomorphism can give the skinny graviton the same form

as the fat graviton.

It is natural to ask what is the non-perturbative static spherically-symmetric
solution for which we are finding the linearised fields. Exact solutions of the
Einstein equations minimally coupled to a scalar field of this form were discussed
by Janis, Newman and Winicour (JNW) [167] and have been extensively studied
in the literature [I67HI73]. The complete solution is, in fact, a naked singularity,
consistent with the no-hair theorem. The general JNW metric and dilaton can

be expressed as

v -7 1=y
ds? = — (1 - @) dt? + (1 - @) dp® + (1 - @> P, (6.36)
p p p

K Y po
= — | 1-—— )
¢=3 T og( ) (6.37)

where the two parameters pg and v can be given in terms of the mass M and the

scalar coupling Y as

2 I V2 M
po =26V V2 = () varrr s o 2L (6.39)

47
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For Y = 0 and M > 0, we recover the Schwarzschild black hole, with the event
horizon at p = py. For |Y| > 0 and M > 0, the solution also decays for large
p, but there is a naked singularity at p = pg, which now corresponds to zero
radius (since the metric factor in front of dQ2? vanishes) [167]. We can write the
JNW solution in de Donder gauge by applying the coordinate transformation
p = 1+ po/2, where r is the Cartesian radius in the de Donder coordinates.

Expanding in x, the result is

3
B = &, + (3) 8(;((71\42 — Y upu, + (M +Y?)ih,) + O(x°),

2 2 47rr)?
(6.39)
kY 5
_ kY 4
s=-5L Lo, (6.40)

with 7# = (0,x/r). Despite its somewhat esoteric nature, this naked singularity
is a particularly natural object from the point of view of the perturbative double
copy. At large distances from the singularity, both the metric perturbation and
the scalar field fall off as 1/r, and for Y = M this leading part reproduces
the skinny fields obtained above, up to a linearised diffeomorphism in b,,. In
Section [6.3, we will discuss the first two non-linear corrections to the JNW metric
using fat gravitons, and, in the case of the first correction, we will match the
expansion above. We conclude that the JNW solution with Y = M is the exact

solution associated to the linearised fat graviton (6.33)).

We can also ask what fat graviton would be associated to the general JNW family
of solutions, with M and Y generic. Since we are dealing with linearised fields,

we can superpose contributions, and so we arrive at

H, = Y- <M uu, + (M =Y) %(UW —qul, — q,,lﬂ)) . (6.41)
The gauge theory “single copy” associated to this field is simply the Coulomb
solution, which presents an apparent puzzle: it is argued in [12] that the double
copy of the Coulomb solution is a pure Schwarzschild black hole, with no dilaton
field. Above, however, the double copy produces a JNW solution. The latter
was also found in [51], which thus concluded that the Schwarzschild solution is
not obtained by the double copy, but can only be true in certain limits (such as
the limit of an infinite number of dimensions). The resolution of this apparent

contradiction is that one can choose whether or not the dilaton is sourced upon
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taking the double copy. It is well-known in amplitude calculations, for example,
that gluon amplitudes can double copy to arbitrary combinations of amplitudes
for gravitons, dilatons and/or B-fields. A simple example is amplitudes for
linearly polarised gauge bosons: the double copied “amplitude” involves mixed
waves of gravitons and dilatons. Thus, the result in the gravity theory depends
on the linear combinations of the pairs of gluon polarisations involved in the
double copy. Here, we may say that the Schwarzschild solution is a double
copy of the Coulomb potential, as given by the Kerr-Schild double copy [12],
just as one may say that appropriate combinations of amplitudes of gluons
lead to amplitudes of pure gravitons. The analogue of more general gravity
amplitudes with both gravitons and dilatons, obtained via the double copy, is the
JNW solution. Therefore the double copy of the Coulomb solution is somewhat
ambiguous: in fact, it is any member of the JNW family of singularities, including
the Schwarzschild metric. Note that the Kerr-Schild double copy is applicable
only in the Schwarzschild special case since the other members of the JNW family

of spacetimes do not admit Kerr-Schild coordinates.

For the vacuum Kerr-Schild solutions studied in [I2], in particular for the
Schwarzschild black hole, it was possible to give an exact map between the
gauge theory solution and the exact graviton field, making use of Kerr-Schild
coordinates (as opposed to the de Donder gauge used here). For the general JNW
solution, the double copy correspondence was inferred above from the symmetries
of the problem and from the perturbative results. A more general double copy
map would also be able to deal with the exact JNW solution. This remains an

important goal, and is addressed in appendix [C]

6.3 Perturbative Corrections

Now that we have understood how to construct fat gravitons in several cases,
let us finally put them to use. In this section, we will construct non-linear
perturbative correction to spacetime metrics and/or dilatons using the double
copy. Thus, we will map the problem of finding perturbative corrections to a

simple calculation in gauge theory.
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6.3.1 Perturbative metrics from gauge theory

Since the basis of our calculations is the perturbative expansion of gauge theory,

we begin with the vacuum Yang-Mills equation
a abc A b c
OMFL, +gf* " AMF;, =0, (6.42)
where ¢ is the coupling constant, while the field strength tensor is
Fi, = 0,A5 — 0,A% + gf*" AD AS (6.43)

We are interested in a perturbative solution of these equations, so that the gauge

field A}, can be written as a power series in the coupling:
a _ A(0)a Wa 4 2 A@a o,
AL =A7 +gA g AT A (6.44)

In this expansion, the perturbative coefficients A,(f)a are assumed to have no
dependence on the coupling g. We use a similar notation for the perturbation

series for the skinny and fat gravitons:

2
buu _ h(O),uu + gh(l);w + (g) b(z)#’/ +oee, (645)
H* — H(O)MV + gH(l)/LV + <g>2 H(Q)MV e, (646)

We can construct solutions in perturbation theory in a straightforward manner.
To zeroth order in the coupling, the Yang-Mills equation in Lorenz gauge 0" A}, =
0 is simply
2 A(0)a __
0"A,* = 0. (6.47)

For our present purposes, two basic solutions of this equation will be of interest:

wave solutions, and Coulomb-like solutions with isolated singularities.

Given a solution AELO)G of the linearised Yang-Mills equation, it is easy to write
down an expression for the first order correction A,(})a by expanding the Yang-

Mills equation to first order in g:
aQAl(/l)a _ —2fabCA(0)b“auAl(,0)c + fabcA(O)b,uayALO)c' (648)
The double copy is most easily understood in Fourier (momentum) space. To
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simplify our notation, we define

[aoro)= [ S550. =i 6)

Using this notation, we may write the solution for the first perturbative correction

in Fourier space in the familiar form

7
AW (—p)) = Z—IJQbeC/dLDpzdLDpsﬁD(Pl +p2 +ps3)
1

X [(p1 = p2) "% + (p2 — p2)" 0" + (p3 — p1)P] AL (p2) AV (p3).  (6.50)

Notice that the factor in square brackets in this equation obeys the same algebraic
symmetries as the colour factor, f¢ appearing in the equation. This is a
requirement of colour-kinematics duality. Before using the double copy, it is

necessary to ensure that this duality holds.

The power of the double copy is that it is now completely trivial to compute the
perturbative correction H, ,(ﬁ,) to a linearised fat graviton H, fL()V). All we need to do,
following [10, 42}, 95], is to square the numerator in equation , ignore the
colour structure, and assemble fat gravitons by the rule that Aﬁo)a(p)A,(,O)b(p) —

H, ,S(,),) (p). This straightforward procedure leads to

, 1
HOm (—p) = rpz/dedepgﬁD(pl + P2 + p3)
1

X [(pl — p2)" " + (pa — p3)'n” + (p3 — pl)ﬁnw} (6.51)
X [(pl — )" 0"+ (2 — p3)" 0" + (ps — pl)ﬁ'n”'“’] H) (p2)H'Y (p3).

Notice that the basic structure of the perturbative calculation is that of gauge
theory. The double copy upgrades the gauge-theoretic perturbation into a
calculation appropriate for gravity, coupled to a dilaton and an antisymmetric

tensor.

As a simple example of this formalism at work, let us compute the first order
correction to the simple fat graviton equation corresponding to a metric
and scalar field. To begin, we need to write H ﬁ?,) (p) in momentum space; it is
simply

E v ru 0P

HO® (p) = §Mu u”— (6.52)
p
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Inserting this into our expression for H", equation (6.51)), we quickly find

HOm (—py) = <E)2 M /d‘3pﬂ3p384(p1+p2+p3)(p2 —P) e Z )" )
2) 42 P} 13

where p) = 0 = p3, and consequently p! = 0. For future use, we note that
pluH(l)W'(—pl) = 0. Since all of the components of H® in the time direction
vanish, we need only calculate the spatial components HM%. To do so, it is
convenient to Fourier transform back to position space and compute firstly the
Laplacian of V2ZHM¥ (z); we find

. kN2 M2 e~ P2 X o—iP3'X ; :
w2 (Wi — _ (§> T/ﬁde‘?’pngg(pg —p3)' (P2 — P3)’
K 2M2 . . . . 1 1
_(EVME [ s, 53 (x — R v AV v vZ A
(2) 4 / yo (x = y) (Vi = V) (Vi v3')47T|X|47T|}’|
kN2 M? [26Y  A4aiad
= — (= — ) .54
(2) 4(47‘(‘)2( 4 76 ) (659

It is now straightforward to integrate this expression using spherical symmetry
and the known boundary conditions to find

2 M2
HO (g) = <E> T _rp 6.55
iz ('Q:) 2 4(47TT)2TMT I ( )

where 7, = (0,x/7).

It is interesting to pause for a moment to contrast this calculation with its
analogue in Yang-Mills theory. The simplest gauge counterpart of the JNW
linearised fat graviton is

1

51 0
A(O)“(x) = gcauu4— = A(O)“(p) = gcauu—(p )
r

p2

(6.56)

w @

To what extent is the first non-linear correction to the Yang-Mills equation similar
to the equivalent in our double-copy theory? The answer to this question is clear:
they are distinctly different. Indeed, the colour structure of Af}’“ is fabecbet = 0,
so AV® = 0. However, the kinematic numerator of A% identified by colour-
kinematics duality is non-zero, so there is no reason for H,(fy) to vanish. How
the double copy propagates physical information from one theory to the other is
unclear, but as a mathematical statement there is no issue with using the double

copy to simplify gravitational calculations.
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Given our expression, equation ([6.55)), for the fat graviton, it is now straightfor-

ward to extract the trace and the symmetric fields:

- 2 M?

W=nb = (E> — 6.57
¢ 2/ 4A(4mr)?’ ( )
; 1 k\2 M?

1) 1 DY _ N
hiY) = 5 (HY + HY) = - (5) Tam (6.58)

However, we cannot directly deduce that this ¢() is the usual dilaton and
that I‘N)l(}l,) is the first order correction to the metric in some well-known gauge.
The double copy is only guaranteed to compute quantities which are field
redefinitions or gauge transformations of the graviton and dilaton. This suggests
structuring calculations to compute only quantities which are invariant under
field redefinitions and gauge transformations [51, T60-162, 174, 175]. However,
if desired, it is nevertheless possible to determine explicitly the relevant field

redefinitions and gauge transformations. This is the topic of the next section.

6.3.2 Relating fat and skinny fields: gauge transformations

and field redefinitions

In section [6.2] we argued that the relationship between the fat and skinny fields

in linear theory is
0 0 0 0 0
Hi)(x) = ) () + BY)(2) + PL, (6" () — 5 (). (6.59)

Beyond linear theory, we can expect perturbative corrections to this formula, so
that

H,,(x) =b,(x)+ B, (x) + B (6(x) = bh(z)) + O(x). (6.60)

We define a quantity 7, which we call the transformation function to make this

equation exact:

HY)(x) = b (@) + B (2) + B, (61 (2) — bW () + T, (6.61)
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We can require that 77},9 is only constructed from linearised fields, so that 77},}) =
7LV (baﬁ, B(O), ¢(0)). More generally, at the nth order of perturbation theory

H) () =) (@) + BE) (x) + P2, (0™ (x) — b™ () + T,L (055, BU 6™,
(6.62)

where m < n. We can therefore determine 7;(5 ) iteratively in perturbation theory.

Before we compute 7,1(3) explicitly, let us pause for a moment to discuss its
physical significance. Our understanding of 77},7 ) Tests on two facts. Firstly,
the double copy is known to work to all orders in perturbation theory for
tree amplitudes. Secondly, the classical background field which we have been
discussing is a generating function for tree scattering amplitudes. Therefore it
must be the case that scattering amplitudes computed from the classical fat
graviton background fields equal their known expressions. So consider computing
Hfﬁ) via the double copy, and computing hf]?,),Bfﬁ) and ¢™ using a standard
perturbative solution of their coupled equations of motion. Then the difference
7w - — BW(2) — P, (¢ (z) — h™(z)) = 7.5 must vanish upon use
of the LSZ procedure. We conclude that 7, parametrises redundancies of the
physical fields which are irrelevant for computing scattering amplitudes: gauge
transformations and field redefinitions. Indeed, the very definition of 7, requires
choices of gauge: for example, the choice of de Donder gauge for the skinny

graviton.

Since 7, parametrises choices which can be made during a calculation, such as the
choice of gauge, we do not expect a particularly simple form for it. Nevertheless,
to compare explicit skinny gravitons computed via the double copy with standard
metrics, it may be useful to have an explicit form of 72(,}) It is always possible to
compute 77}3 ) directly through its definition, at the expense of perturbatively
solving the coupled Einstein, scalar and antisymmetric tensor equations of
motion. For example, consider the fat graviton Hl(ﬁ,) (x), equation (6.55)), we
computed in the previous section. Since there is no antisymmetric tensor in this
system, we may compute ’Eful) under the simplifying assumption that B,, = 0
so that H,, is symmetric. We find that when 9,h@# = 9, HOm = (), then the
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transformation function is

v 1 a v
T (—py) = /d‘DpchDpzﬁD(pl + P2 +p3)4—pg{H2(g)5H§U) “plipk
1

+ 8ps HiO HYPVpy) + 8py - py HYM H" — 20/ py - py HYY HYO™”
+ A ps Hyo) HY )mp?w + P [2(D — 6)p - ps Hyoy HY

4D — 2 HO, HO ] }
(6.63)

where we have used a convenient short-hand notation

H!" = H" (p;), p“g”) = = (p'q” +p"q"). (6.64)

DN | —

This expression is valid for any symmetric H, ,(f,),), and the extension to general H ;(L?/)

is straightforward.

While the information in the transformation function contains little content of
physical interest, it may be of some interest from the point of view of the
mathematics of colour-kinematics duality. Indeed, in the special case of the
self-dual theory, it is known how to choose an explicit parametrisation of the
metric perturbation so that the double copy is manifest [47]. Choosing these
variables therefore sets 7, = 0 to all orders, for self-dual spacetimes. Once the
relevant variables have been chosen, then the kinematic algebra in the self-dual
case was manifest at the level of the equation of motion of self-dual gravity: the
algebra is one of area-preserving diffeomorphisms. Perhaps it is the case that an
understanding of the transformation function in the general case will open the

way towards a simple understanding of the full kinematic algebra.

6.3.3 The perturbative corrections to the JNW fields

We are now in a position to convert our fat graviton Hﬁ(ﬁ,) (x), equation (/6.55))
into skinny fields. The simple form of the H, ;(L?/)(I) leads to a simplification in the

transformation function, since p - u = 0 for a stationary source. Thus 7MW is
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simply

T(I)W(_pﬂ = <g>2 M / d4p2d4p334(p1 + p2 + p3)4izﬁl <12)8) ’ (Z;%)
P1 D D3 (6.65)
. {8192 - p3ufu’ — pipy + 20" py - p3 + PiY [4ps - ps] }
in D = 4. Performing the Fourier transform, we find
TW(x) = — <E>2 Bty + 27,7 + 2P0 ] L (6.66)
Y 2 HE 4 (4mr)?

Let us now extract the skinny fields in de Donder gauge from our fat graviton,
equation (6.55). The relation between the fat and skinny fields is now given by

bl () + Pl [0V (2) = pV(2)] = H)) () = T (2) (6.67)
kN2 . . M? K\ 2 R M?
== (3) iy + (5) [u + 20 2P ] s

Thus, the dilaton vanishes as anticipated in section [6.2.4] since
oM (z) = HY(2) — TW(z) = 0. (6.68)
Consequently, the negative of the trace of the metric is the only term acted upon
by P}, so we find
50(r) =~ () %L (6.69)

The metric is easily seen to be

M2

2
b () = <E> (Buytty + 7puty) (dmr 2

. (6.70)

consistent with the anticipated trace, and in agreement with the known result for
the JNW metric, equation ((6.39)), when M =Y.

6.3.4 Higher orders

In section [6.3.1] we saw how fat graviton fields can be obtained straightforwardly
from perturbative solutions of the Yang-Mills equations. These can then be trans-
lated to skinny fields, if necessary, after obtaining the relevant transformation

functions 7#”. Now let us briefly describe how this procedure generalises to
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higher orders.

As we explained in section [6.1.1] the validity of the double copy relies on writing
Yang-Mills diagrams such that colour-kinematics duality is satisfied. But, in
general, a perturbative solution of the conventional Yang-Mills equations will not
satisfy this property. So before using the double copy, one must reorganise the
perturbative solution of the theory so that, firstly, only three-point interaction
vertices between fields occur, and secondly, the numerators of these three-point
diagrams satisfy the same algebraic identities (Jacobi relations and antisymmetry
properties) as the colour factors. The Jacobi identities can be enforced by using
an explicit Yang-Mills Lagrangian designed for this purpose [95, 128]. It is known
how to construct this Lagrangian to arbitrary order in perturbation theory. This
Lagrangian is non-local and contains Feynman vertices with an infinite number
of fields. If desired, it is possible to obtain a local Lagrangian containing only
three point vertices at the expense of introducing auxiliary fields. For now, we
will restrict ourselves to four-point order. At this order Bern, Dennen, Huang
and Kiermaier (BDHK) introduced [95] an auxiliary field B?, so as to write a

pp
cubic version of the Yang-Mills Lagrangian,

1
Lopnx = JAMP A, + BBy, — gf " (9,4, — 9 By,) AMA”. (6.71)

pvp puv

Since the role of the field By, , is essentially to be a Lagrange multiplier, it is

understood that no sources for By, , should be introduced.

To illustrate the procedure in a non-trivial example, let us compute the second
order correction to the JNW fat graviton, H,(ﬁ,)(x) In fact, a number of
simplifications make this calculation remarkably straightforward. Firstly, the
momentum space equation of motion for the auxiliary field appearing in the
BDHK Lagrangian, equation , is

;
pIBL) (—p1) ZZf“bC / d*pad™*psd*(p1 + pa + p3)p1y

X [771/677;27 - nuvnpﬁ] A(O)bﬂ(pQ)A(O)w(pii)'

(6.72)

Notice that the term in square brackets is antisymmetric under interchange of
B and 7; imposing this symmetry is a requirement of colour-kinematics duality

because the associated colour structure is antisymmetric under interchange of b
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and c. A consequence of this simple fact is that, in the double copy, the auxiliary
field vanishes in the JNW case (to this order of perturbation theory). In fact,
two auxiliary fields appear in the double copy: one can take two copies of the
field B, or one copy of B times one copy of the gauge boson A. In either case,
the expression for an auxiliary field in the double copy in momentum space will

contain a factor

i [Ny — Moyps) HOP (pa) H

51 Y 51 0 / / (673)
(52) (gS)uBuﬁ uvuv — O,
V% p3

= D Mooy — MorMps)

because of the antisymmetry of the vertex in square brackets, and the factoris-

ability of the tensor structure of the zeroth order JNW expression.

Consequently, the Yang-Mills four-point vertex plays no role in the the double
copy for JNW at second order. Thus the Yang-Mills equation to be solved is
simply

p%A(Q)au(—pﬂ =ifo / d*padpsd* (py + p2 + ps3)

% [(p1 = p2) 0" + (p2 — )"0 + (p3 — p1)P7] AL (p2) AV (p3),  (6.74)

using the symmetry of the expression under interchange of p, and ps. Thus, H®

is the solution of

, 1
p%H@)Pﬂu‘ <_p1) = §/d4p254p364(p1 +p2 +p3)

X [(pl - p2)777”/8 + (p2 — m)”ﬁﬁ7 + (ps — Pl)ﬁﬁw} (6.75)

X [(pl — )" "7+ (p2 — p3)" 0" + (ps — pl)ﬁ'n”'“’] H) (p2) HY (p3).
This expression simplifies dramatically when we recall that H é%), (p2) and H %), (ps3)
both have vanishing components of momentum in the time direction, so that

py =0 = pd = p!. Meanwhile Hé%), (p2) o< ugug. Thus,

P%H;(i)f(—]h) = 2/d4p2d4p354(p1 + D2 +p3)H$L)/(p2)P3HSﬁ) (p3)]9§~ (6.76)

We find it convenient to Fourier transform back to position space, where we must
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solve the simple differential equation
OPHZ) () = 200,000 HY),. (6.77)

Inserting explicit expressions for H(® equation (6.33) and H"), equation ([6.55)),

and bearing in mind that the situation is static, the differential equation simplifies

to
3 M3 wuyuy
QH(Q), — <E> e 6.78
v L (x) 2 (47_‘_7,.)3 r2 ) ( )
with solution 5
(2) _ K
H““/(x) - <§> 6(47?7“)3u”u”,' (6.79)

We could now, if we wished, extract the metric perturbation and scalar field
corresponding to this expression. Indeed, it is always possible to convert fat

gravitons into ordinary metric perturbations in a specified gauge.

It is possible to continue to continue this calculation to higher orders. In
that case, more work is required in order to satisfy the requirement of colour-
kinematics duality. It is possible to supplement the BDHK Lagrangian by higher-
order effective operators involving the gluon field, constructed order-by-order in
perturbation theory, which act to enforce colour-kinematics duality. Furthermore,
one may introduce further auxiliary fields so that only cubic interaction terms
appear in the Lagrangian. This procedure is explained in detail in [95], [128], and
can be carried out to arbitrary perturbative order. The fat graviton equation
of motion is constructed as a term-by-term double copy of the fields in the
colour-kinematics satisfying Yang-Mills Lagrangian. In this way, it is possible
to calculate perturbative fat gravitons to any order using Yang-Mills theory and

the double copy.

6.4 Discussion

In this chapter, we have addressed how classical solutions of gravitational theories
can be obtained by double-copying Yang-Mills solutions. These results go beyond
the classical double copies of [2, 2], 43| [44] 49, 50, 52, T56HI58] in that the
solutions are non-linear. However, the price one pays is that they are no
longer exact, but must be constructed order-by-order in perturbation theory.

We have concentrated on solutions obtained from two copies of pure (non-
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supersymmetric) Yang-Mills theory, for which the corresponding gravity theory
is N/ = 0 supergravity. The double copy then relates the Yang-Mills fields to
a single field H,

w, that we call the fat graviton, and which in principle can be

decomposed into its constituent skinny fields, which we take to be the graviton
b (defined according to equation (6.5))), the dilaton ¢, and the two-form B*".

Our procedure for calculating gravity solutions is as follows:

1. For a given distribution of charges, one may perturbatively solve the Yang-
Mills equations for the gauge field A*®, given in terms of integrals of

interaction vertices and propagators.

2. The solution for the fat graviton is given by double copying the gauge
theory solution expression according to the rules of [10], 42} [95] once colour-
kinematics duality is satisfied. That is, one strips off all colour information,

and duplicates the interaction vertices, leaving propagators intact.

3. The fat graviton can in principle be translated into skinny fields using
the transformation law of equation (6.62)), which iteratively defines the
transformation function T . This function can be obtained from matching
the fat graviton solution to a perturbative solution of the conventional
N = 0 supergravity equations. Once found, however, it can be used for

arbitrary source distributions.

The presence of the transformation function 7" is at first glance surprising. One
may always decompose the fat graviton in terms of its symmetric traceless, anti-
symmetric and trace degrees of freedom. Then one could simply define that these
correspond to the physical graviton, two-form and dilaton. However, one has the
freedom to perform further field redefinitions and gauge transformations of the
skinny fields, in order to put these into a more conventional gauge choice (e.g.
de Donder). The role of 7" is then to perform this redefinition. It follows that
it carries no physical degrees of freedom itself, and indeed is irrelevant for any

physical observable.

We have given explicit examples of fat gravitons, and their relation to de Donder
gauge skinny fields, up to the first subleading order in perturbation theory. We

took a stationary point charge as our source, finding that one can construct either
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the Schwarzschild metric (as in the Kerr-Schild double copy of [12]), or the JNW
solution [I67] for a black hole with non-zero scalar field ¢. Which solution one
obtains on the gravity side amounts to the choice of whether or not to source the
dilaton upon performing the double copy. This mirrors the well-known situation
for amplitudes, namely that the choice of polarisation states in gauge theory
amplitudes determines whether or not a dilaton or two-form is obtained in the
corresponding gravity amplitudes at tree level. This clarifies the apparent puzzle
presented in [51], regarding whether it is possible for the same gauge theory

solution to produce different gravity solutions.

Underlying the simplicity of the double copy is the mystery of the kinematic
algebra. While it is known that one can always find kinematic numerators for
gauge theory diagrams so that colour-kinematics duality is satisfied, it is not
known whether an off-shell algebraic structure exists in the general case which
can compute these numerators. If this algebra exists, it may further simplify the
calculations we have described in this chapter. The kinematic algebra should
allow for a more algebraic computation of the numerators of appropriate gauge-
theoretic diagrams, perhaps without the need for auxiliary fields. Similarly, it
seems possible that a detailed understanding of the kinematic algebra will go
hand-in-hand with deeper insight into the transformation function 7,, which

parametrises the choice of gauge and field redefinition picked out by the double
copy.

Our ultimate aim is to use the procedure outlined in this chapter in astrophysical
applications, namely to calculate gravitational observables for relevant physical
sources (a motivation shared by [51]). To this end, our fat graviton calculations
must be extended to include different sources, and also higher orders in
perturbation theory. In order to translate the fat graviton to more conventional
skinny fields, one would then need to calculate the relevant transformation
functions 7;(5 ). An alternative possibility exists, namely to calculate physical
observables, which must be manifestly invariant under gauge transformations and
field redefinitions, directly from fat graviton fields, without referring to skinny

fields at all. Work on these issues is ongoing.
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Chapter 7

Conclusions and outlook

In this thesis we have discussed a range of mathematical techniques from particle
physics that can be applied to general relativity. In the first half, we began by
discussing the spinor-helicity formalism and how the elimination of redundant
degrees of freedom and preservation of little group covariance could be used to
uplift the Newman-Penrose procedure from four dimensions to five. In the process
of doing this, we focused on the irreducible representations of the Maxwell and
Weyl spinors to find that they had a non-trivial little group structure. This
led to a better understanding of the relation between the CMPP and de Smet
classifications building on [75]. The lack of overlap between the two classifications
is because the de Smet classification is highly sensitive to which irreducible
little group spinors are non-zero while the CMPP classification is sensitive to
boost weight. Our spinorial formalism ascribes physical degrees of freedom to
components directly and as such in the future it is hoped that it will lead to better
understanding of higher dimensional solutions. In particular, the interesting
solutions of five dimensions such as the black ring, which defies the uniqueness

theorem of four dimensions may be understood and extended.

Also in chapter [3, we sketched a six-dimensional outline of the spinorial
formalism and emphasized that our approach can be generalised to any number
of dimensions. The rich geometries which have already been found in five and
six dimensions are an excellent reason to be interested in higher dimensions, but
there are many formal and phenomenological motivations as well. It can further
be hoped that an excellent understanding of general relativity in an arbitrary

dimension may lead to deeper insight into the theory itself and the theory of
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quantum gravity underlying it.

Turning away from higher dimensions for the second half of the thesis, we
discussed how the structure of the double copy originally found in quantum
scattering amplitudes can also be found in general relativity. We began by
outlining the Kerr-Schild double copy, which had previously been used to relate
stationary exact Kerr-Schild spacetimes to electromagnetism. By considering the
Kinnersley photon rocket, a non-vacuum Kerr-Schild particle which describes an
accelerating mass, we extended the Kerr-Schild double copy to include time-
dependent solutions. Having rewritten the Liénard-Wiechert solution to put
the radiation content as a Maxwell current, it was possible to write the gravity
solution in the form of a double copy of the gauge theory solution, namely an
accelerating charged particle. Taking careful account of the factors of the stress-
energy tensor as compared to the Maxwell current, it was possible to express the
radiation part of the respective sources in terms of scattering amplitudes for the
case of Bremsstrahlung. The resulting expressions were explicitly a double and
single copy of each other. This result is interesting because the nature of the
“null fluid” in the Kinnersley photon rocket has been debated numerous times
over the years and this is an excellent example of how particle physics techniques

can help to bring new light to the discussion.

Part of the reason for the Kerr-Schild double copy’s success is that the Kerr-Schild
choice of coordinates ensures a graviton that is both symmetric and trace-free,
meaning that when the double copy is taken, both the axion and the dilaton
are automatically excluded. To obtain general relativity from the double copy
in general it is necessary to introduce projectors to handle the extra degrees of
freedom. This formalism was introduced in chapter [6] and used the example of
linearized waves to motivate the double copy at zeroth order. Using a simple
stationary massive particle as an example, the formalism was used to generate
the JNW solution for a black hole charged under a dilatonic field to third order.

Making the double copy structure hidden in general relativity explicit is important
because of its potential application to gravitational wave physics: the high
precision of calculations needed for comparison with new gravitational wave
experiments will require all computational tools available. However it is also
very interesting to speculate on the geometric implications of the double copy

and considering exact solutions is an intriguing first step towards this.

A next logical step from this work is to draw these two exciting themes together.
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The classical double copy has been extended to all four dimensional type D
vacuum solutions in the Weyl double copy in [66]. This work shows that the
solutions can be expressed in a double copy-like form through their Weyl and

Maxwell spinors:

Vapep = %@(aﬁ@yé) (7.1)
where S is a scalar field which plays the role of the ‘propagator’. This relationship
holds for all vacuum four dimensional spacetimes of the type D form and therefore
to test its applicability further it is necessary to find a slightly but not too
much more complicated test bed. Five dimensions is ideal for this purpose. In
particular, the C-metric is a well known non-stationary exact solution, which it
is found in [66] is the double copy of the Liénard-Weichert solution. This is the
vacuum generalisation of the accelerating Kerr-Schild double copy considered in
chapter [f] However, the five-dimensional analogue of the C-metric is unknown.
Using the double copy to generate new five-dimensional black hole solutions would

be an excellent demonstration of its utility.

114



Appendix A

Multi-irrep spacetimes in the de

Smet classification

In section [3.4.4], it was shown that the de Smet classification is highly sensitive to
the presence of a single little group irrep. What about when more than one irrep
contributes to the Weyl tensor? Generically, this will lead to a 4. For example, it
can be seen from the discussion in section that combining a 22 or a 22 with
a 1111 will always produce a 4. Similarly, while de Smet classes are invariant
under the interchange k <+ n, combining any irrep with its k£ <> n pair creates a
4, if the two irreps are distinct. However, there are two cases when more than

one irrep is present and the spacetime is still special in the de Smet classification:

e Absence of any ¢

The Weyl polynomials of all four irreps of dimension 3 or less contain a
factor [n - &, k - £]. This means that when only irreps of dimension 3 or less
are present in the spacetime, they will in general form a 22. However, if
YU, @ and y® are present and all directly proportional to each other,

they can form into a 211. This works as follows. Let the y(* factorise as
X = X Oy, Xey =Y Oy, Xgp = Z 0k, (A1)
Now the Weyl polynomial is of the form

W= —3nofkof{X nog 0lmog r]+Y nog f]kof, ]

(A.2)
+Y no& kl[ko& 0]+ Z[kok, 0] [kof,/{]},
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which factorizes into a 211 if X Z = Y2

W=-3no& ko] (X no& 0 +Y [kok&,¥0)) ([nof,/i] —i—% [ko{,fi])
(A.3)

In other words, if the three vectors xi, x2 and x3 all point in the same

direction with relative magnitudes satisfying |x1|[xs| = [x2|* then a special

211 composite spacetime is formed.

211 + 1111

If the Weyl tensor contains only non-zero 9® and x® terms (or ¢(® and
x™M), it is possible for these to form a de Smet 31 or 211. Let us define
4 (4) H(4 4 3 3) (3
w((zbld = o )ﬁlg )754) 56(1))7 szb) = Héa) Hz(;))- (A.4)
Now, if one direction is the same, for example #®) x ¥, then the Weyl

polynomial forms a 31,

W = [kof,a(4)] { [ko£,6(4)] [kof,y“ﬂ [kof,é(@}

0 (A.5)

g o &nP]nod kod] }

while if two directions are shared such that 6©) « a® and k® o S* then

the Weyl polynomial remains a 211,

W = [k o, a(4)} [k ¢, 5(4)} { [k o0&, 7(4)} [k o, 5(4)]

03] )]
W[5

(A.6)
mo¢ ko] }

In contrast, if 1) is of the special de Smet form 11 11 and shares a direction
with x), then the spacetime is always a 211: the reality conditions prevent
us from constructing a 31. This is because the reality conditions on a ¢

of the form
Ui = Ca B 0 Bay (A7)

are

o i =t(wfe)", o fet+asfi=TF (v fatafr), (A.8)
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requiring a [ that looks like

—aj/a;

p= ( ! ) B, Bl = :F&—iﬂl- (A.9)
Qs

The reality conditions for y3 of the form ij’) = 0y kay are very similar:

91 K1 = (92 KQ)*, 91 /{2+92 K1 = — (91 K9 +92 Kl)*, (AlO)

with solution

1 0y
— . K= — =Ky A1l
K ( o /9;) K1, K] 0 K1 ( )

Therefore, if 1) and y3 share a direction such that « o 6, then it can be
read off from equations (A.9) and (A.11)) that 8 and k are proportional.

These are the only ways that a de Smet class can be built - every other

combination results in a 4. Figure|3.1]is therefore misleading, since it implies that

each class can be reduced to another wholly contained within it. For example,
figure implies that de Smet 1111s are a subset of 211s. This is not always

the case: a spacetime with only x®) non-zero has no overlap with a spacetime

which has only ¥ non-zero. An attempt to depict this limited specialisation

of de Smet classes more accurately has been made in figure as a contrast to
figure [3.1]

1111

>
o / \ 22/211

211

N

[y

[y
(V)
[\V]

1111

Figure A.1 There are 4 ways that the de Smet classes can become more

specialised. Going clockwise from the top: a type N solution can
become more special when its eigenvalues are equal. A spacetime
containing more than one irrep of dimension 1 or 8 can be a 22
or a 211 if the dimension 3 irreps form a perfect square. A 211
spacetime can also be formed using the irreps dimension 5 irreps,
and a 31 spacetime always is.
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Appendix B

Fourier transform of source terms

In this appendix, we describe how to carry out the Fourier transform of egs. ((5.31}

5.36)), to get the momentum-space expressions of eqs. ((5.32} |5.37)).

One may first consider the transform of (u-x)~!, where we work explicitly in four

spacetime dimensions:

1q-T
.7:{—1 }:/d4xe
u-xr u-x

1 equIO
= — dgxe_iq'x/dm0+. (B.1)

Closing the z° contour in the upper half plane gives a positive frequency solution
0
q° > 0:

_i2n) s <q _ z_zu) | (B.2)

It is possible to regain a covariant form for this expression by introducing a mass

variable m, such that

; 4 0 0
f{ ! } = 2(27(:) / dm (m - q—o) 63 (g — mu)
u-x u 0 u

— i(2n)! /0 " dm 6@ (g — mu), (B.3)
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where the integral is over non-negative values of m only, given that ¢° > 0. Given

that 0(2°)8(2?) is a retarded propagatoil} one may also note the transform

F{0(")5(22)} = —f]—g. (B4)

We then use the convolution theorem to obtain the Fourier transform of the

current from eq. (5.31). The theorem states that the Fourier transform of a

product is equal to the convolution of the transforms of each term. That is,

F{f g} = F{f}*Flg}, (B.5)

where the convolution operation in four dimensions takes the form

1
(27)"

Then, we can compute the Fourier transform of the current

(F+G)(k) = / I'qF(q)G(k — q). (B.6)

7" (k) = F{js(@)}
— i_iai; {]—"{9(3:0)5(952)} *]—"{ ! H —(ued), (BT

T -y

so inserting egs. (B.4) and (B.3), and using the convolution definition eq.
we obtain the expression

O R [ )

— (u ) (B.8)

:—ig/ooodm (ai; Lk_;w,)z} —(u<—>u’)>, (B.9)

where we have carried out the integral over ¢ in the last line. The derivative in

the m integral can be carried out to give

< 2m(k — mu')¥ e 2mu'”
dm——— = — d B.10
/0 " (k —mu’)* /0 m(m2 —2ma’ - k)%’ (B-10)

where, on the right-hand side, we have used the onshellness condition k? = 0, and
also neglected terms ~ k*, which vanish upon contraction of the current with a

physical polarisation vector. The remaining integral over m is easily carried out,

IThe retarded nature of the propagator is implemented by the prescription m,
where ¢ ensures convergence of the integrals in what follows.
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and leads directly to the result of eq. ((5.32]).

Similar steps to those leading to eq. can be used to rewrite eq. ([5.36)) in the

form

W:%/m J 0 1 B ,
TF: > . dm(@ugau,’/ = 2 (uru)|. (B.11)

Carrying out the double derivative gives

o 0 1 B 2m?n N 8m?2(k — mu')*(k — mu')”
Out, oul, [ (k—mu)?] — (m? —2mu’ - k)* (m? —2mu’ - k)3
8mAu' u'”
~ B.12
(m2 —2mu’ - k)3’ (B12)
where in the second line we have again used onshellness (k? = 0), and ignored

terms which vanish when contracted with the graviton polarisation tensor.

Substituting eq. (B.12)) into eq. (B.11]), the m integral is straightforward, and
one obtains the result of eq. (5.37)).
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Appendix C

Obtaining JNW from the fat

graviton machinery

In chapter [0, the JNW solution was obtained for a scalar charge equal to the
black hole mass, M =Y. Using the machinery developed in chapter [0] for the fat
graviton, we can extend this to the full family of solutions for arbitrary dilaton

Y.

We start by evaluating the zeroth order fat graviton from h©O# = M # and

o0 =y

0)uv 0)uv v v
H( )z —h( v _ Pqﬂ b(o) + Pqﬂ ¢(0)

U
Y — M P*" —.
r + )q r

ulut
=M

We will leave explicit computation of HM* and T* for section and move
straight to finding h™* and ¢. We can do this by combining the general

expressions as HMW# — T ag given in chapter @ and then manipulating them as:

¢(1) —gO _ x

2
Z/d4pzd4p35(4)(p1 + p2 + p3) (i> (_—1) (pz-Héo) -p2H§O)>

P 8

(C.2)
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and

fhm p;fl’()(l) — g _ xpr P;V(H(l) - X)

1\?/1 y
= /d4pzd4p35(4)(191 + p2 + p3) <p—) (g) {8172 - psHO" - HY
1

+4HL - HOphpy — SHM ps - HY - pg + 8py - H¥pg - HY
—16py - HY - HOVp) — o HY - H py - py

+An"py - Hy - HY” - ps PiY [ — 8py - HY” - po HY
—2(D — 6)py - p3HY” - HY" +4(D — 2)p, - HY” - HY” - p3] }

(C.3)

As usual we note that since the ¢’ dependence is arbitraryﬂ we can read off:

1\*/1 v
hm —/d“pﬂ‘“psﬁ(“)(pl + p2 + p3) (p—) (—) {8102 - pgHY¥ - Héo)
1

8
+ 47 O plpy — 8HO™ ps -  H - py + 8py - H OV ps - HY

QUWHQ( ). Hg(, )P2 - P3
+dippy - HY - HY 'PS}'

(C.4)

C.1 Evaluating the graviton

When we plug any fat graviton H(©* that has a contribution from the P terms
into this formula, for example

HOm HP quj( P —>0 ¢(0 ) (0-5)

IFurthermore, note that ¢’ need not be the same as our zeroth order gauge parameter g

122



we will get a messy result, containing four times as many terms, three-quarters

of which will contain Py or F;3. We can write this as

1\* /1 ,
= /d4p2d4p35(4)(p1 + p2 + p3) (p—) (g) {8172 'p3H2((1)3)q/i>o ‘ H?(,(I)D)qeo

1
+ 4H§(1)D)qao : H?E(Qqﬁopgpg - 8H§(2;z0p3 : Hé?-)qao " Ps3
+ 8ps - H?EOP)H—>0p3 Héop)q:o — 16p, - Hzg(z)v)qao Héop)qﬁopg)
— PV HY) o Hi opa - ps + 41y Hip o Hyp o ps
+ (Pq27pq3a Pq2pq3) }
(C.6)
where F' is a long expression containing every term with at least one F, in. One

route now might be to expand out the projector terms in F and attempt to

simplify. However, we can gain insight more directly by expressing the h(M# as

the result of a gauge transform, [) fmal hznztzal + 6 The initial frame is the
“GR-like” frame, where

Opv H(U)lﬂ’ Cv

hinitial T T P—00 ( : )

and the final frame is obtained by a gauge transform

1 v
€ ) =55 (O = 9) (C8)

such that f)gclzzf;';, which corresponds to the expression given in equation (C.6)), is

hfmal _hmznal + pMSV + pVé“li ,uva ’ 5

o (PP bimtiar — 0 (C.9)
=Dinitial n p-q D_29 :
—_ O _ puw (0)
Py—0 q ( ¢ )

The corresponding change in hM# can be calculated using

ghMm = O (p @)y —p O (). (C.10)

Naively, this would lead us to say that the gauge transform is simply

ShWH = F (P, Pys, PpaPys) - (C.11)
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However, comparison with equation ((C.6|) shows that if this were true, only terms

containing H "

250 would remain, removing all the dependences on the dilaton field

#© . For the example of JNW it would mean that every possible JNW solution
collapsed to the M = @ case.

C.2 Gauge subtleties

The resolution can be found by carefully studying the origin of the terms in the
general expression for h#* . These come from the graviton 3-vertex and the

dilaton/graviton vertex and look like:

(i /d4pﬂ4p35(4) (p1 +p2 +p3) (p_> (g) {8]92 -psby" - by

+ 450 - 50 phpy — 855 ps - 5 - pg + 8py - B ¥ ps - H”

0)(# V) v (012)
— 16p; - hg Py — 277“ hz ‘hg P2 - D3
+ 40 py - 5 5 - py — 200 phpl + 1 py - b p }
and
(1) (4) 1\* (1 bov (0) ,(0)
ae = [d'pAd*ps6™ (py + pa + p3) . 3 (2055 — " pa - p3) Oy 3.
(C.13)
We used the definitions
30 —F©
(C.14)

h(O)MV — O

to convert these expressions into “fat” fields, and thus the f) g terms cancelled

" However, their gauge transforms do

exactly with the final two terms of hG
not cancel. The projector-filled part of the gauge transform, F (P, Py3, PpPys),

is generated as usual by all the terms of hgl){” " except the last tw, such that the

2If in doubt, compare this with equation (C.4)
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total transform is:

5b(1)uy = gl)%uy(hz('?zztial + 5[)(0 ) + hdzlaton(b@)' jal T 5h(0))

initial

(UW(h(O) )_ (Vpv (h(o) )

GR initial dilaton \")initial
1 1
=F (PqQa Pq3, PqQPqS) + /d4pﬂ4p35(4)(p1 + Do +p3 (p_> (g
1
X (—2pyps +n"'pa - p3) (25h§0) o st + 0000 )

1
=F"(Py, Py3, PpaPy3) /d4pﬂ4p35 (p1 + p2 + p3) ( ) (g) (C.15)
P1

0 0
X (=2p5p5 + 1"z - ps) ( - 2<H2(P)q—>o - ¢2 )HéP)q—>0
0 0 0 0
+ (HYp o — 68V (HSD o — 34))

1\* /1
=F (Py2, Py, Fa Pys) + /d4p2d4p35(4) (p1 +p2 +p3) (p_> (é)
1

v v 0 0 0 0
X (—=2p4yps +n"ps - ps) < Hép) ﬁoHép o+ 086 )>

where we have used the symmetry on 2 <+ 3 and recalled from the previous
section that

05 =b s — i

intial

e oy (C.16)

Py;—0

while bznztml is HI(DZ)—W' It is therefore possible to undo the gauge transform on
h fm‘gz to find

bznztml h;‘lz)nl;ll/ - 66(0)#

1\ /1 v
= /d4p2d4p35(4)(p1 + p2 + p3) (p_) (g) {8]72 'P3H2((1)3)ql:>o ' H?EOP)q—m

1

0 0 0)pv
+4H§P)q—>o'H?EP)—>0 SH(P)M—>0 p3 - Hép)_m b3

0 0)v 0 0
+8pa - Hzgp)gopi% HéP) o — 16p> - H?EP2 -0 Hél:?q(aop?»
—2 #VH2((1)3) —0 H?E )

v 0 0
ByoP * Py + A0 py - HD o H o - ps

v)

— (=2p5p5 + 12 - p3) <—H2(93ﬁoH§?3 IR ) }
(C.17)

This will always return a graviton in the “GR-like” frame, with a trace consistent
with those used in the GR community in de Donder gauge. For example, we shall

see in the next section that the formula produces the exact form of JNW that we
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see in the literature for harmonic coordinates.

C.3 Application to JNW

For JNW, the parts of the fat graviton are:

0) utut
", =M=
) (C.18)
o0 —y L
T

and therefore using that p; - u = 0, we have

h(l)/“/ _

1\ /1
initial —/d4pﬂ4p35(4) (p1 + p2 + p3) (p_) (—) {8192 'psHQ(O)“
1

0)v
] Py—0 " H:EP)q—m
0 0 v v 0 0
+ 4H2(P)q~>0 ’ H?(,P?qaopgp3 - 277# HZ(P)q*)O ’ H?(,P?qaop2 *Ps3

v v 0 0 0 0
- 2t o) (S 0+ 67 |

:/d4pﬂ4p35(4) (p1 + p2 + p3) <1> @5(1’%){

Hnov

2 4DoP3

3 5 5 4AM=u —=
by D3

b1
+4M2u2uuuu_ MVMQ 4 4 _2pgpg 1 n% _M2 Y2
n U U 7 + 277 ( + ) .
1

(C.19)

This is easy to invert back into position space using the identity

3(p3)d(ps) phpy —1 [xi2? 5
/ o ps® (py + P + ps) (Pzg (0§) phps { -
2

2 = | ﬁ} (C.20)

to obtain

r4 72

O 1 o 4 [Ti2? Y y urutu”
B nital _16(47r)2{ — 2M*u [— ——| +8M

N7z %0 i Ny
o2t <$$ 0y

-1 o oy UMY N L
_—16(471)2{(7M -Y?) < + (M +Y?)

which is exactly the JNW solution for arbitrary mass M and dilaton charge Y.

Note that we did not need to undo the gauge transform from the initial to the
final frame when we calculated JNW for M =Y because 6@ ~ M —Y: the two
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frames coincide for this special case.

C.3.1 Dilaton correction

Of course, it will also be necessary to reverse the gauge transform on ¢). By
inputting
HO®W = H"G — P (HE) L, — ¢©) (C.22)

into the formula for ¢ we find that

1\ /-1
¢§3@-3mz = /d4pzd4p35(4)(p1 + ps + ps3) (p_) (@) <p2 : Hg(o) 'P2H2(0)>

1

1\?/-1
[t srsn () () (e ik (€29
_p2 ° Pq3 : p2 (Hé?q_)o - éO)) ¢é0))

where H©® is given by HgZLO + A©.  As before, the second term is easily

interpreted if P} is the gauge transform:

1 ¢ +p"q"
P (p) = "o 24
) = gy (- P (C.21)

and so ¢! transforms as

¢§“1izuzl ¢ (hfznal)
:¢( )(bmztal + 6[) )

1 ( 3P;—0 9253 ) D2 - q
= iar / d*pat*ps8™ (p1 + p2 + ps) <—> 22 )

8 D -2 P3 - q
(C.25)

This fits the standard form

oM 5 M) 4+ 0. 5O (C.26)

127



D—2pq
frame” dilaton is therefore simply

for £4(p) = L (Hg)—m — ¢(0)>_ Since ¢(®) has no gauge transform, the “GR-

1\ /-1
(bgiztial - /dllpﬂllpsﬁ(@@l + p2 + p3) (—> (g) (pQ . Hé(}?qﬁo ‘p2H2(0)> _

b1
(C.27)

This is zero for all cases in JNW, as H](D?Z)i% ~ utu” such that p; - HJ(DZ)—>0 -

vanishes.

C.4 Fat graviton and transformation function

Previously, HMW* and T were not expanded in terms of the projectors P,
and instead were combined to get general expressions for h* and ¢(V). Explicit
expressions for H and T will always contain a mess of P/* terms. This is because

the gauge transform of the fat graviton is given by

0)uv v 0
H](ci’?tl;l =H " (hg%'zmz)
0)uv v 0
:h}i% -y (f)g‘z’)naz — )
=HO (50 + 55

:h(())w/ + 6h(0);w . Péw(h(()) + 56(0) — ¢(0))

intial intial

(C.28)

Recalling that 65(©# for the transform out of the “GR-like” frame is given by

5h(0)uu — _Péw(b(()) ¢(0)), (029)

initial ~
we see that

0)uv 0)uv v 0
SHOm —5pOr — pr op©

(C.30)
=0.

This is exactly as we should expect, since the change from initial to final frame
consists only of playing around with the trace of the zeroth order skinny graviton.
This is a gauge dependent object in GR, but for the fat field it is not, since we must
never be able to gauge away the dilaton. However, this does mean that in general,
HW# and TR are quite ugly objects whose mass of P, terms will laboriously
combine to produce F(Pp, P, PjpPy3). 1t is easier to treat F(Pya, Pys, PpPys)

as an analytic object. Therefore, we bypass a transformation into position space
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and write

g _ H(l)“”(]-]g)_,o) + Fy (P, Pys, P Py3) (C.31)
TOm = 7O (D )+ Fy (P, Pys, PaPys) (C.32)

where F) and F; satsify
Fl (Pq2, Pq37 Pq2pq3> + Fl (Pq27 Pq37 Pq2pq3) = F (Pq2> Pq37 Pq2pq3> . (033)

Note that H“”‘”(Hg)_}()) is simply H](\}):“;, the JNW result when M =Y, and
similarly 70w (HY) ) = Ty
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