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Abstract

Modern theoretical physics has benefited from a rapid growth in mathematical

technology. In particular, technology developed in one field can be quickly

adapted for use in another. Two key techniques developed for simplifying

calculations of Feynman diagrams are spinor-helicity and the double copy. This

thesis will discuss how they can be applied to general relativity.

Spinor-helicity is used in particle physics to simplify expressions. In D > 4 this is

done by observing that the residual symmetry of the little group is non-trivial. We

adapt this technology to classify higher-dimensional spacetimes in the style of the

D = 4 Petrov classification. Focusing on D = 5, our scheme naturally reproduces

the full structure previously seen in both the CMPP and de Smet classifications,

and resolves long-standing questions concerning their relationship.

We review the exact classical double copy introduced for stationary Kerr-Schild

spacetimes. We consider a time-dependent generalisation: the accelerating,

radiating point particle. This Kerr-Schild solution has a non-trivial stress-

energy tensor which we interpret as the radiative part of the field and find the

corresponding single copy. Using Bremsstrahlung as an example, we determine

a scattering amplitude describing the radiation which is consistent with the

quantum double copy. This indicates a profound connection between exact

classical solutions and the double copy.

The double copy relates YM and gravity amplitudes through the observation

that numerators of Feynman diagrams can be made to obey a Jacobi relation

mirroring the colour charges. This additional structure can be adapted for use in

classical perturbative calculations. The double copy maps to N = 0 supergravity

requiring careful treatment of the dilaton. Using the Janis-Newman-Winicour

family of naked singularities as an example we demonstrate how to construct

spacetime metrics through a systematic perturbative expansion.
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Lay Summary

This thesis will make steps towards answering two interesting questions about

general relativity. Firstly, what kind of solutions to the Einstein equations exist

in five dimensions? And secondly, how can we manifest quantum structures in

general relativity?

General relativity only has one parameter: the number of dimensions. We

experience life in four dimensions – three space and one time – but it is interesting

to vary this number to try and understand the theory better. To go higher than

four dimensions is difficult because the number of parameters to solve for becomes

very high. This thesis develops some mathematical technology to help deal with

this using five dimensions as an example.

Normally, distances are calculated so that the distance between two opposite

corners of a square is found by adding the distance along each side squared. An

alternative is spinor space, defined by the property that the “length” between two

points is always zero. Calculations done in spinor space can be made equivalent

to normal space and are sometimes more convenient. In particular, when general

relativistic calculations are done in spinor space it is possible to classify solutions

to the Einstein equations in four dimensions in an intuitive way.

This thesis develops equivalent technology for five dimensions by considering what

symmetries remain once a direction is fixed in place. Making this symmetry

explicit has the effect of simplifying many expressions.

The second half of the thesis deals with a structure in general relativity called the

double copy. In particle physics, it is often necessary to calculate the likelihood

that two particles will interact if they are nearby. We will consider particles

which have a special kind of charge called colour charge. If all the information

that relates to the colour of the particle is replaced with a second copy of the

information about its motion, the resulting expression can describe the likelihood
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that gravity particles will interact. This is called the double copy.

Gravity particles are a quantum phenomenon, but if we take the classical limit

of these calculations, we find that the double copy structure is also present in

general relativity. To demonstrate this we will consider a massive accelerating

particle. We will find that this can be written as two copies of a charged particle

undergoing the same motion, and the radiation from the particles also obeys a

double copy relationship.

In the final section of the thesis, we introduce a “transformation function” to

explicitly demonstrate how we can move between a quantum-like double copy

language and general relativistic expressions.
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Chapter 1

Introduction

We know a lot about general relativity. The Einstein equations have been studied

in huge detail and many exact solutions have been found, filling hundreds of

books and articles. The regions, Killing vectors and horizons of these exact

solutions have been examined. We understand that they obey the laws of black

hole thermodynamics and that they undergo Hawking radiation. We can calculate

the trajectories of particles scattering off the background of an exact solution

to make astronomical predictions. Still, there are limits to our understanding.

The highly non-linear nature of the theory means that it is difficult to gain an

intuition for what a solution will look like. Exact solutions must be found through

complex extensions and solution-generating algorithms while real-world solutions

are found through numerical and perturbative techniques, which is a difficult gap

to bridge.

However, there is structure in the theory that is yet to be explored fully and this

may help to connect the two approaches. In particular, experience from particle

physics has shown that a great deal of perturbative theory can be fixed by proper

consideration of the theory’s structure and symmetries. It can be hoped that this

will be possible for general relativity as well. Using techniques of particle theory

to reveal new structures and symmetries in general relativity will be a key theme

of this thesis.

Why does this matter? We are fortunate to live in a time when experiments

are able to probe gravitational waves to reveal details of black hole binary

inspirals. Current and future gravitational wave detectors will provide a spectrum

of frequencies through which we can see the universe. Precision calculations
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may highlight the discrepancies between general relativity and nature - we know

that general relativity is non-renormalizable and therefore must emerge as some

quantum theory’s weak field limit. But precision calculations are difficult and rely

on approximations, or use large amounts of computing power. A useful shortcut

can be exact solutions, which work as analytic, solvable toy models. This is

how black holes were first understood: a mathematical solution to the Einstein

equations indicated that physical realisation was possible. If we can understand

symmetries and structure in the context of the exact solutions we may be able to

improve intuition and calculational ability.

The only parameter that general relativity has is the number of dimensions.

This is therefore a good place to start. It turns out that exact solutions change

dramatically with the dimension. For example, in two dimensions the Einstein

tensor has no algebraically independent degrees of freedom, while in three there

are no gravitational waves or asymptotically Minkowskian black holes [6]. We

know that general relativity in five dimensions also has fascinating properties - the

uniqueness theorem is violated and non-spherical horizon topologies are allowed.

Exact solutions such as the black ring and black Saturn have been found, but

the huge degree of freedom count makes it hard to find others. In successive

dimensions this degree of freedom count gets larger, increasing the complexity of

the situation. Therefore this is an important barrier to overcome to understand

how general relativity varies with dimensionality.

Many discoveries of exact solutions in four dimensions were made using spinors

to reduce the number of components. The removal of redundant gauge degrees

of freedom makes it possible to rewrite the equations of general relativity as a

much more tractable list of scalar coupled differential equations. This is referred

to as the Newman-Penrose formalism. This would be extremely useful in higher

dimensions, since there are even more redundant degrees of freedom, but despite

several attempts [7, 8] no equivalent formalism was found. However, the particle

physics version of this technique, the spinor-helicity formalism, was extended to

higher dimensions in [9]. The key observation made was to preserve the residual

spacetime symmetry left when a null direction is fixed. This symmetry is called

the little group. In the first half of this thesis we will use this observation to extend

the Newman-Penrose formalism to five dimensions and sketch the procedure to

extend it to an arbitrary number of dimensions.

There is another structure in general relativity called the double copy. More

precisely, this is a perturbative duality between supersymmetric Yang-Mills

2



theory and supergravity which was found in [10]. The question of how to relate

the double copy to general relativity and to exact solutions will be the second

theme of this thesis. In the duality, gauge transformations are used to find a set

of kinematic factors in the numerators for Yang-Mills Feynman diagrams which

satisfy a Jacobi identity matching the colour factors. This has been proven to be

true for arbitrary number of legs at tree level and is a conjecture for loop level.

Since it is true at tree level, it is also true classically in most situations (see for

example [11]), and therefore the structure must be present in general relativity.

Applying this relationship to exact solutions was first proposed in [12] for

stationary Kerr-Schild exact solutions. Using only the degrees of freedom found in

the gauge theory, exact solutions satisfying the stationary vacuum gravitational

field equations can be constructed. This thesis will demonstrate how this can be

extended to non-stationary solutions by considering an accelerating particle. The

resulting Bremsstrahlung radiation can be related to the normal quantum double

copy.

The Kerr-Schild class of solutions are a choice of coordinates where the graviton is

traceless and symmetric. In general, the double copy of an N = 0 gauge theory is

N = 0 supergravity where N is the number of supercharges present in the theory.

N = 0 supergravity is composed of a spin-2 graviton, a scalar dilaton field and

an antisymmetric axion field, while general relativity only contains the graviton.

If the double copy is taken in such a way that the resulting field is symmetric

and trace-free (such as in the Kerr-Schild case) then there is an automatic map

to general relativity. However, in general it is necessary to remove the axion

and dilaton to understand the double copy structure hidden in general relativity.

In the final chapter of this thesis, we consider this issue and develop a scheme

involving projectors to solve the problem perturbatively.

To fix notation and conventions, we will now introduce some of the concepts that

we will use later in this thesis.

1.1 Scattering amplitudes

The methodology of modern scattering amplitudes is based on removing redun-

dancy from the expressions. In the traditional Feynman approach there is a

very clear physical interpretation but it is necessary to sum over many different
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terms. Through a combination of colour-ordering, spinor-helicity and little group

symmetry, we can eradicate the vast majority of these terms, often fixing physical

information directly. Over the next few paragraphs, we will elaborate on what

this terminology mean and show how this is done using the example of the Yang-

Mills 3-vertex. For more detail, the review [13] is excellent.

1.1.1 Colour-ordering

Yang-Mills theory is a spin-1 theory with a gauge group which we choose to be

SU(N). It has a Lagrangian

LYM = −1

4
TrFµνF

µν , Fµν = DµAν −DνAµ, Aµ = AaµT
a (1.1)

where the covariant derivative acts on the gauge field in the adjoint representation

as

Dµ = 1∂µ − igT aAaµ. (1.2)

The space-time index is given by greek indices µ, ν = 0, 1, .., D − 1 in D

dimensions, while the gauge group index is a, b, c = 1, 2, ..., N2 − 1. Without

even extracting the Feynman rules, we can see that any expressions we derive

will be composed of two different types of data, firstly the SU(N) colour

factors constructed from the generators T , and secondly the space-time-dependent

data which we will write in momentum space as functions of momenta pµi and

polarisation vectors εµi where i indicates a particle number. The generators are

normalised according to [13] and obey

[T a, T b] = if̃abcT c, TrT aT b = δab (1.3)

for antisymmetric structure constants f̃abc.

Let us consider a n-leg tree amplitude Atree
n . We can always write an amplitude

solely in terms of the trace of the generators attached to the n external legs:

Atree
n = gn−2

∑
perms σ

An[σ(1, 2, ..., n)]Tr(T σ(a1T a2 ...T an)), (1.4)

where An[1, 2, ..., n] is some function of the kinematics that we will refer to as

the colour-ordered amplitude. This can be shown as follows [14]. We proceed

diagrammatically by using that the 3-vertex from the gauge fixed Feynman rules
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is proportional to fabc, while a propagator has colour factor δab. Therefore since

we can write the structure constants as

if̃abc = Tr(T aT bT c)− Tr(T bT aT c) (1.5)

we can always use the Fierz identity

(T a)i
j (T a)k

l = δi
lδk

j − 1

N
δi
jδk

l (1.6)

to hook together any repeated colour indices until eventually only traces of

generators are left. The colour-ordered amplitudes have a number of nice

simplifying properties (it turns out that there are actually only (n − 3)!

independent ones) but most importantly they are gauge invariant.

1.1.2 Helicities and polarisation vectors

It is now possible to disregard the colour information and focus only on the colour-

ordered amplitudes. We stated earlier that they were constructed from momenta

pi and polarisation vectors εµi , which we will define more concretely now. The

electromagnetic field strength tensor Fµν is invariant under the gauge transform

Aµ → Aµ + ∂µλ, (1.7)

so it is possible to fix the gauge, for example by the requirement that ∂ · A =

0. There is still some residual gauge freedom when λ solves the wave equation

∂2λ = 0. Transforming into momentum space as

λ(p) =

∫
d4xeip·xλ(x), (1.8)

we fix this by introducing a second reference vector qµ satisfying p · q 6= 0. Now,

choosing q ·A = 0, we have fully fixed the gauge freedom. Since p · q 6= 0, we have

two remaining independent directions, namely the two polarisation directions.

We write these in terms of the two helicities of a circularly polarized wave εµh
where h = +/− such that they complete the basis

∑
h

εµhε
ν
h = ηµν − pµqν + pνqµ

p · q . (1.9)

5



Since p · A = q · A = 0, we can write the gauge boson as

Aµ(x) = εµhch(x). (1.10)

So despite initially appearing as a spacetime 4-vector, the gauge boson only

contains two physical degrees of freedom. This is because the state that we

are describing is a unitary representation of the Poincaré group [15, 16].

1.1.3 Spinor-helicity formalism

A helpful alternative to this is to use spinors. There is an isomorphism between

SO(3, 1) ∼= SL(2,C)/Z2 in four dimensions which allows us to write 4-vectors as

two component spinors. To do this, we will need the standard Pauli matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(1.11)

to form σµαα̇ = (σ0, σ1, σ2, σ3) and conjugate basis σ̃µα̇α = (σ0,−σ1,−σ2,−σ3).

The spacetime spinor indices are α, β = 1, 2 and, for the conjugate basis, α̇, β̇ =

1, 2. We move into spin space by constructing the object pαα̇ = pµσ
µ
αα̇ where pµ

is null:

pαα̇ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
αα̇

. (1.12)

Since this has vanishing determinant, it must linearly factorize: pαα̇ = λαλ̃α̇. We

will use the conventions

sα = εαβsβ, sα̇ = εα̇β̇sβ̇ (1.13)

to raise and lower spinor indices, and for convenience we will introduce the

notation 〈ij〉 and [ij] to represent

〈ij〉 = λαi λjα, [ij] = λ̃α̇i λ̃jα̇ (1.14)

where i and j indicate the ith and jth particle in a Yang-Mills theory.

There is now no need to solve for the on-shell condition p2
i = 0, since

piµp
µ
i =

(
σµαα̇λ

α
i λ̃

α̇
i

)(
σµββ̇λ

β
i λ̃

β̇
i

)
= −2〈ii〉[ii] = 0, (1.15)
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and in fact it turns out that amplitudes can often be expressed with manifest

gauge invariance when spinors are used. A good example of this is the Parke-

Taylor formula for the n-gluon tree amplitude which depends only on the n

particles’ momenta. If the gluons i and j have negative helicity while the

remaining n− 2 gluons have positive helicity then the formula is given by

An[1+... i−... j−... n+] =
〈ij〉4

〈12〉〈23〉...〈n1〉 (1.16)

which is explicitly independent of the gauge. Since there is no obvious downside,

spinors have been wholeheartedly adopted for use both in scattering amplitudes

and as we will see in section 2, in general relativity. Using spinors in this way

is called the spinor-helicity formalism in the amplitudes community, and the

Newman-Penrose formalism by relativistic communities.

1.1.4 Little group symmetry

Now that we have focused on the colour-ordered amplitude and are using spinors,

it turns out that calculating scattering amplitudes is a lot less involved than one

might anticipate. A big part of the reason for this is the Lorentz transforms that

the spinors undergo. When pµ and qµ are fixed, there is still an SO(D− 2) group

of residual Lorentz freedoms. This is often understood by visualising a null vector

oriented with the xD−1 axis such that it is given by1

pµ = (p, 0, ..., 0︸ ︷︷ ︸
D−2

, p), (1.18)

leaving (D−2)(D−3)
2

possible rotations still available without changing p or q. This

SO(D − 2) group is called the little group and as we shall see, preserving its

covariance in Lorentz transforms turns out to be a very powerful tool.

Let us consider what that means for our 2-component spinors in four dimensions.

1In fact, the situation is slightly more subtle - the freedom left if you keep the null vector p
invariant is the group SO(D − 2)× TD−2 where Tn is the n-dimensional group of translations.
It is only when you also fix the gauge vector q, for example by the choice

qµ = (q, 0, ..., 0,−q) (1.17)

that only the rotations SO(D − 2) are left.
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We complete the spinor basis with the orthogonal spinors µα and µ̃α̇ such that

λαµ
α = λ̃α̇µ̃

α̇ = 1. (1.19)

It is then natural to define qµ ≡ σµαα̇µ
αµ̃α̇, since this satisfies p · q 6= 0. The two

polarisation vectors can be given by

εµ+ = σµαα̇µ
αλ̃α̇, εµ− = σµαα̇λ

αµ̃α̇. (1.20)

The only Lorentz transform that leaves pµ, qµ and the spinor basis definition

〈λµ〉 = [λµ] = 1 invariant is

λ→ eiθλ, λ̃→ e−iθλ̃, µ→ e−iθµ, µ̃→ eiθµ̃, (1.21)

where θ parametrises the single rotation available in the residual SO(2) Lorentz

symmetries. Under this transformation, we find that the positive helicity

polarisation transforms as εµ+ → e−2iθεµ+ while the negative helicity polarisation

transforms as εµ− → e2iθεµ−.

Surprising as it may seem, even this tiny amount of technology is enough to fix

amplitudes. Consider a 3-point amplitude of particles i = 1, 2, 3, each with some

helicity hi = +1 for positive helicity particles and hi = −1 for negative. As we saw

above, the polarisation vectors transform with a scaling factor of e−2hiθ. The only

non-zero scalars we can use to build the (scalar) amplitude are contractions of the

three spinors λαi and λ̃α̇i ; we do not expect the gauge spinor µαi to appear in the

final expression because qµ is an arbitrary reference vector. One final observation:

conservation of momentum for three particles tells us pµ1 + pµ2 + pµ3 = 0. So

p2
3 = (p1 + p2)2 = 2p1 · p2 = 〈12〉[12] = 0. (1.22)

By repeatedly using momentum conservation, we can show that if 〈12〉 vanishes,

then all other angle bracket products also vanish. Conversely, if [12] vanishes, the

other square bracket products vanish.

Putting this all together, since the amplitude must transform with the same

factors of e−2ihiθ as its external particles we can use an angle bracket ansatz

A3(1h12h23h3) = 〈12〉x12〈23〉x23〈31〉x31 (1.23)
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and perform a little group rotation on each particle to find

x12 = h3 − h1 − h2, x23 = h1 − h2 − h3, x31 = h2 − h3 − h1. (1.24)

For example, let us consider the 3-gluon amplitude with two negative helicity

and one positive helicity polarisations A3(1−2−3+). Implementing this formula,

we find

A3(1−2−3+) =
〈12〉3
〈23〉〈31〉 . (1.25)

Note that we chose a hypothesis with angle brackets because the kinematics

requires square brackets to vanish. We can see this easily: a square bracket

ansatz obtains xsq
ij = −xij such that the 3-point amplitude would look like

[23][31]

[12]3
. (1.26)

This has a negative mass dimension and therefore cannot come from our local

theory. Recursively using the little group symmetry and locality is enough to

specify every single tree amplitude in some theories [13].

1.2 General relativity

In contrast, general relativity initially seems very different. The traditional

formulation of general relativity is to begin with the spacetime interval ds2 =

gµνdx
µdxν , to specify the metric. We can then define the Riemann tensor in the

standard way as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (1.27)

where the Christoffel symbol Γµαβ is given by

Γµρσ =
1

2
gµν (∂ρgνσ + ∂σgνρ − ∂νgρσ) (1.28)

and ∇µ is a covariant derivative given by

∇µT
ρ1ρ2....

σ1σ2.... =∂µT
ρ1ρ2....

σ1σ2.... + Γρ1µνT
νρ2....

σ1σ2... + Γρ2µνT
ρ1ν....

σ1σ2... + ...

− Γνµσ1...T
ρ1ρ2...

νσ2... − Γνµσ2...T
ρ1ρ2...

σ1ν... − ...
(1.29)
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for arbitrary tensor T . Despite this rather dry definition, the Riemann tensor is

of essential importance since it encodes the curvature of the spacetime:

∇µ∇νv
ρ −∇ν∇µv

ρ = Rα
σµνv

σ (1.30)

for arbitrary vector vρ. The trace of the Riemann tensor is defined to be the Ricci

tensor Rµν = Rα
µαν . This encodes the matter present in the spacetime through

the Einstein equations

Rµν +
1

2
gµνR = 8πGNTµν (1.31)

where R is the Ricci scalar R = gµνRµν and Tµν is the stress-energy tensor. The

tracefree part of the Riemann tensor, the Weyl tensor

Cµνρσ = Rµνρσ −
2

D − 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

2

(D − 1)(D − 2)
Rgµ[ρgσ]ν (1.32)

encodes non-local matter.

In this formulation, general relativity seems to have very little in common with

particle physics. Nevertheless, in this thesis we will show how the two theories

can be formulated more similarly and how techniques from amplitudes can be

used in general relativity.

The structure of this thesis is as follows. In part I, we will consider the use of

spinor helicity techniques in general relativity: in chapter 2 we will review the

Newman-Penrose formalism in four dimensions and in chapter 3 we will extend

this formalism to five dimensions with a focus on how this naturally implies a

Petrov-like classification for all vacuum spacetimes of five dimensions. Then in

part II, we will consider how the double copy can be used classically in general

relativity. In chapter 4 we will review the details of the quantum double copy,

before extending the Kerr-Schild double copy to the accelerating particle case

in chapter 5. Finally, we will show a methodology for removing the dilaton to

apply the double copy to general relativity in chapter 6, before presenting our

conclusions in 7. Chapters 2 and 3 were published in [1], while chapter 5 and

chapter 6 were published in [2] and [3] respectively.

We will use the mostly plus metric convention (−,+, ...,+) for the bulk of the

thesis with the exception of chapter 5 which is written in the mostly minus metric

convention (+,−, ...,−).
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Part I

Spinorial techniques in GR
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Chapter 2

Exact solutions and spinorial

techniques in four dimensions

As we described in chapter 1, using spinors to remove redundant degrees of

freedom can be very convenient. In this chapter we will review this process in four

dimensions in preparation for the five dimensional formalism developed in chapter

3. We then review the Petrov classification for four-dimensional spacetimes. This

classification can be understood from a variety of perspectives; we emphasise the

Newman-Penrose (NP) approach [17, 18] because it is closest in spirit to our

approach in five dimensions.

This chapter is based on work published in collaboration with Ricardo Monteiro

and Donal O’Connell in [1].

2.1 Spinors in four dimensions

In flat Minkowski space, the Clifford algebra is

σµαα̇ σ̃
να̇β + σναα̇ σ̃

µα̇β = −2ηµν 1α
β, (2.1)
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where ηµν is the Minkowski metric.1 To be explicit, we choose a basis of σµ

matrices given by

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.2)

while the σ̃µ matrices are

σ̃0 =

(
1 0

0 1

)
, σ̃1 = −

(
0 1

1 0

)
, σ̃2 = −

(
0 −i
i 0

)
, σ̃3 = −

(
1 0

0 −1

)
.

(2.3)

For any non-vanishing null vector V , the matrices V · σ and V · σ̃ have rank 1.

Hence we may construct solutions of the (massless) Dirac equations:

V · σαα̇ λ̃α̇ = 0, (2.4)

V · σ̃α̇α λα = 0. (2.5)

These spinors can be normalised so that V · σαα̇ = −
√

2λαλ̃α̇. We may raise and

lower the indices α and α̇ on these spinors with the help of the two-dimensional

Levi-Civita tensor. We choose conventions such that ε12 = 1, ε12 = −1 and

sα = εαβ sβ while s̃α̇ = εα̇β̇ s̃β̇.

In the curved space case, we simply introduce a frame eµM , such that

gµν = eµM eνN η
MN . (2.6)

On the tangent space at each point, the Clifford algebra can be written as before,

σMαα̇ σ̃
Nα̇β + σNαα̇ σ̃

Mα̇β = −2ηMN
1α

β, (2.7)

whereas

σµαα̇ σ̃
να̇β + σναα̇ σ̃

µα̇β = −2gµν 1α
β, (2.8)

with σµ = eµMσ
M , and a similar definition for σ̃. We use the explicit Clifford

bases of equations (2.2) and (2.3) in the tangent space.

It may be worth commenting briefly on reality conditions in four dimensions,

since the reality conditions in five dimensions will play a more significant role

1We work in the mostly-plus signature.
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later. The Lorentz group in real Minkowski space is isomorphic to SL(2,C)/Z2.

It is consistent to choose a basis of Hermitian σ matrices – and indeed we have

chosen such a basis in equations (2.2) and (2.3). Then, given a real null vector

V , we may choose our spinors λ and λ̃ such that λ† = λ̃. This is consistent with

the choice that V · σαα̇ = −
√

2λαλ̃α̇.

2.2 The four-dimensional Newman-Penrose tetrad

In four dimensions, the NP formalism [17, 18] exploits the correspondence between

the Lie algebras so(4) and su(2) × su(2). A key element of the method is the

spinorial construction of a particular basis set of vectors, known as the NP tetrad.

We begin by choosing two null vectors kµ and nµ which satisfy k · n 6= 0, and

constructing an associated basis of spinors {oα, ıα} by solving the equations

k · σ̃α̇α oα = 0, n · σ̃α̇α ıα = 0. (2.9)

Since k · n 6= 0, we may normalise the vectors so that k · n = −1, and also

normalise our spinors so that oα ıα = 1.

Similarly, we construct a conjugate basis by solving the equations

k · σαα̇ õα̇ = 0, n · σαα̇ ı̃α̇ = 0, (2.10)

to find the dual spinors {õα̇, ı̃α̇}, which we also normalise so that õα̇ı̃α̇ = 1. For

real k and n, we may take õ = o† and ı̃ = ı† as discussed in section 2.1.

Let us now complete the construction of the NP tetrad of vectors using our spinor

basis. The tetrad includes the vectors k and n, so we must find two more. Since

the spinor basis is complete, we can construct the last two elements of the NP

tetrad, m and m̃, from

mµ =
1√
2
σµαα̇ ı

α õα̇, m̃µ =
1√
2
σµαα̇ o

α ı̃α̇. (2.11)

Of course, when k and n are real, m̃ is the conjugate of m. It is then a

straightforward exercise to show that all four vectors in the NP tetrad are null,

and satisfy −k ·n = m·m̃ = 1 with all other dot products vanishing. Furthermore,

by use of these properties the spinorial completeness relation transmutes into the
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NP metric,

gµν = −kµ nν − kν nµ +mµ m̃ν +mν m̃µ. (2.12)

Thus we can fully describe the spacetime in terms of spinors.

2.3 The Petrov classification for 2-forms and the

Weyl spinor

These four-dimensional spinors make it possible to rewrite the field strength 2-

form and the Weyl tensor in a convenient form. For an arbitrary 2-form Fµν , we

can build a complex symmetric spinor

Φαβ = Fµν σ
µν
αβ, (2.13)

where σµναβ = 1
2

(
σµαγ̇ σ̃

νγ̇
β − σναγ̇ σ̃µγ̇β

)
. The symmetric two-dimensional

matrix Φαβ is parametrised by three complex scalars,

φ0 = Φαβ o
α oβ, φ1 = Φαβ o

α ıβ, φ2 = Φαβ ı
α ıβ. (2.14)

Similarly, we can build a symmetric 4-spinor, known as the Weyl spinor, from

the Weyl tensor Cµνρσ

Ψαβγδ = Cµνρσ σ
µν
αβ σ

ρσ
γδ. (2.15)

The Weyl spinor can be decomposed into 5 complex scalars defined by:

ψ0 =Ψαβγδ o
α oβoγoδ, ψ1 = Ψαβγδ o

α oβoγ ıδ, ψ2 = Ψαβγδ o
α oβ ıγ ıδ,

ψ3 =Ψαβγδ o
α ıβ ıγ ıδ, ψ4 = Ψαβγδ ı

α ıβ ıγ ıδ.
(2.16)

The Petrov classification [19] is a way of categorizing Weyl and field strength

spinors depending on how “algebraically special” they are. It is well known that

a symmetric SU(2) n-spinor will always factorise into the symmetrisation of n

basic spinors. The idea of the Petrov classification is that the more of these

individual spinors that are the same (up to scale), the more special the original

n-spinor is. For example, a field strength spinor Φαβ = α(αββ) is algebraically

special if and only if β ∝ α. This also has an interpretation in terms of the

complex scalars φi (and ψi for the Weyl tensor): it is possible to find a tetrad
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where some of these scalars vanish, depending on how algebraically special the

n-spinor is. A summary of the classification for the field strength tensor is given

in table 2.1, and for the Weyl tensor in table 2.2. The Petrov scalars have the

interesting property that it is always possible to choose a tetrad where φ0 vanishes.

This turns out to not always be true for higher dimensions, as originally found

by CMPP in [7].

Type Spinor Alignment Scalars
Type I 11 φ0 = 0
Type II 11 φ0 = φ1 = 0

Table 2.1 Table showing the Petrov classes of a 2-form. There are two possible
classes, only one of which is algebraically special. We denote spinor
alignment, i.e., when two spinors are the same (up to scale), by
underlining them. Note that the scalars only vanish in certain tetrads.

Type Spinor Alignment Scalars
Type I 1111 ψ0 = 0
Type II 11 11 ψ0 = ψ1 = 0
Type D 11 11 ψ0 = ψ1 = ψ3 = ψ4 = 0
Type III 111 1 ψ0 = ψ1 = ψ2 = 0
Type N 1111 ψ0 = ψ1 = ψ2 = ψ3 = 0

Table 2.2 Table showing the Petrov classes of a Weyl tensor. There are four
different algebraically special classes. The spinor alignment indicates
when two or more spinors are the same by underlining them, for
example 11 11 refers to two different pairs of identical spinors. Note
that the scalars only vanish in certain tetrads.

As we mentioned above, the Weyl spinor is a totally symmetric rank-4 spinor and

therefore can always be decomposed in terms of four rank-1 spinors as

Ψαβγδ = α(αββγγδδ) . (2.17)

This decomposition allows for an alternative viewpoint on the Petrov classifi-

cation. The distinct algebraic classes are given by the alignment of the rank-1

spinors, i.e., the equivalence of the rank-1 spinors up to scale. We have represented

the aligned spinors in tables 2.1 and 2.2 by underlining them.

The reduction of the four-dimensional formalism reviewed in this section to three

dimensions is discussed in [20].
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2.4 Field equations

In this chapter, we have reviewed the four dimensional Newman-Penrose formal-

ism and the Petrov classification in preparation for the introduction of a higher

dimensional formalism in chapter 3. We have not discussed why this is useful

in general relativity further than the insight that the Petrov classification gives.

However, they give very concrete computational advantages as well which we will

very briefly sketch now.

The final step of the Newman-Penrose process is to introduce the spin connection

and rewrite the field equations in terms of four scalar total derivatives and sixteen

complex scalars. For example, we might be interested in whether kµ is geodetic.

We would need to study Dkµ:

Dkµ = (ε+ ε̃)kµ − κ̃mµ − κm̃µ (2.18)

where D is one of the four scalar derivatives defined by

D = oαõβ̇∇αβ̇, ∆ = ıαı̃β̇∇αβ̇, δ = oαı̃β̇∇αβ̇, δ̃ = ıαõβ̇∇αβ̇, ∇αβ̇ = σµ
αβ̇
∂µ

(2.19)

and where κ and ε are two of the 16 complex scalars defined by

κ = oαDoα, ε = oαDıα. (2.20)

We see that κ is a measure of whether or not kµ is geodetic while a vanishing ε

indicates affine parametrisation of the geodesic.

The Bianchi identity, Ricci identity and Maxwell equations are then all rewritten

in terms of these quantities. The Maxwell equations, for example, are rewritten

as four scalar equations, of which the first is

Dφ1 − δ̃φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2. (2.21)

The use of the spinor formalism means that each scalar corresponds to a physical

degree of freedom and makes analytic results easy to find. For example, we can

see that if we have a type II Maxwell field as described in table 2.1 then a frame

can be found where φ0 = φ1 = 0. From equation (2.21) we can immediately read

off that in this frame, κ must vanish and therefore kµ must be geodetic. This

kind of insight would be much harder to find without the use of the Newman-
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Penrose formalism. As such, we hope that the development of the five dimensional

formalism in chapter 3 will lead to similar insight in five dimensions.
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Chapter 3

Spinorial techniques in higher

dimensions

3.1 Introduction

Representations of the Lorentz group play a prominent role in particle physics.

Particle states are famously classified according to irreducible representations,

and the requirement of Lorentz invariance strongly constrains their interactions.

This constraint is particularly powerful when dealing with massless particles. As

we discussed in chapter 2, the isomorphism SO(3, 1) ∼= SL(2,C)/Z2 allows us to

write any massless momentum as a product of two spinors, kµ 7→ λαλ̃α̇ in four

spacetime dimensions [15]. For the scattering of massless particles, an S-matrix

element is a function of these spinors only, and the helicities hi of each particle

fix the relative homogeneity weight of the function for each type of spinor. This

is known as the spinor-helicity formalism, and it has become a major tool in

high-energy physics. See for example [13] for a recent review of this formalism

and its applications.

As outlined in the previous chapter, general relativity has also seen fruitful

applications of this type of idea, starting with Penrose’s spinorial approach

[21] and its development into the Newman-Penrose formalism [18]. The basic

principles are to define a frame eµM that takes us from coordinate space to

the tangent space, ηMN = gµν e
µ
M eνN , and then to explore the isomorphism

SO(3, 1) ∼= SL(2,C)/Z2 for the tangent space Lorentz transformations. For
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instance, the Weyl tensor Cµνρσ is described in tangent space by a rank 4 spinor

ψαβγδ and its complex conjugate. The algebraic classification of this rank 4 spinor

elegantly reproduces the Petrov classification of four-dimensional spacetimes [22],

which had a profound impact in the development of general relativity; see for

example refs. [23, 24]. In particular, the Kerr solution, which represents a vacuum

asymptotically flat stationary black hole, and is perhaps the most important

exact solution of astrophysical interest, was originally discovered by imposing a

condition of algebraic speciality [25].

There are a variety of motivations for extending these constructions to higher

spacetime dimensions. In the case of general relativity, extra dimensions are

naturally motivated by string theory, and also by the fact that the number of

spacetime dimensions is the natural parameter of the vacuum Einstein equations.

Indeed, the catalogue of higher-dimensional vacuum asymptotically flat black hole

solutions is incredibly rich, in contrast with the four-dimensional case, where the

unique solution is the Kerr black hole; see for example [26–29] for reviews.

In the case of particle physics, analogous motivations apply to developing the

spinor-helicity formalism in various dimensions. There is also a more practical

application to the computation of S-matrix elements in dimensional regulari-

sation, where the loop momenta cannot be restricted to four dimensions. An

elegant extension of the spinor-helicity formalism approach to higher dimensions

was presented in [9], where the main focus was on six dimensions. The method

was extended to general dimensions in [30, 31]. In this chapter, we will apply this

extension to the algebraic classification of solutions in general relativity.

As we mentioned, the space of solutions to the vacuum Einstein equations in

higher dimensions is much richer than that in four dimensions, and the question

of extending the Petrov classification naturally arose in the past. In fact, different

approaches have been taken. Coley, Milson, Pravda and Pravdová (CMPP)

defined a classification [7, 32] that has been investigated over many years, for

example in [33–40]; see [41] for a review. In analogy to the four-dimensional story,

the classification is based on the grouping of Weyl tensor components according to

boost weight. Subgroups within the groups of boost-weighted components were

found by Coley and Hervik in [37], and in [39] these sub-types were investigated

in five dimensions. The CMPP classification has not been studied from a purely

spinorial approach.

A different classification had been previously constructed by de Smet [4] for

20



five-dimensional spacetimes, based on the factorisation properties of the Weyl

spinor. This spinorial approach can also be considered a natural extension of

the four-dimensional story, and yet it takes a very different form to the CMPP

construction. An in-depth comparison by Godazgar [5] showed that there was

poor agreement in what was considered algebraically special by the de Smet

classification versus the CMPP classification. None of two appeared to be the

‘finest’ classification, since a solution could be special in one classification and

general in another.

There are two main goals to this chapter. The first is to apply the higher-

dimensional spinor-helicity formalism of ref. [9] to the algebraic classification of

solutions of the Einstein equations, in the spirit of the spinorial approach of

Penrose. The second is to show the versatility of this spinorial approach, which

exhibits manifestly the two relevant types of spinor spaces, by clarifying the

relation between the CMPP and the de Smet classifications, and the question

of the ‘finest’ algebraic classification. We will be mostly interested in five-

dimensional solutions, where the spinorial formalism is based on the isomorphism

SO(4, 1) ∼= Sp∗(1, 1)/Z2, but we will also briefly discuss the six-dimensional

case in order to demonstrate generic features. We will be careful to describe

when we consider reality conditions in our spinorial formalism, so that it can be

applied both to real spacetimes and to potentially interesting cases of complexified

spacetimes.

In addition to the classification of the Weyl tensor, we will study – for

illustration and as customary in this context – the classification of its analogue in

electromagnetism, the Maxwell field strength. There is a modern motivation

to include this. A relation between gravity and gauge theory known as the

‘double copy’ has emerged from the study of scattering amplitudes in quantum

field theories [10, 42]. This relation, which applies in any number of spacetime

dimensions, has a counterpart in terms of solutions to the field equations. It can

be expressed most clearly for certain algebraically special solutions, namely Kerr-

Schild spacetimes [2, 12, 43–46], which we will elaborate on in chapter 5, but it

should apply more generally [3, 47–65] as we will demonstrate in chapter 6. It is

clear from these developments that there is a close relation between the algebraic

properties of spacetimes and those of gauge field configurations. Indeed, it will

be obvious from our results that an analogy exists. We hope to address elsewhere

how this analogy can be turned into a precise double-copy relationship; progress

towards this goal has been begun in [66].
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This chapter is organised as follows. Following the review of the four-dimensional

spinorial approach to the Petrov classification in the previous chapter, we will

introduce the five-dimensional spinorial formalism in section 3.2. The five-

dimensional algebraic classification is described in section 3.3 for the field strength

tensor, for illustration, and then in section 3.4 for the Weyl tensor. The extension

of this spinorial approach to higher dimensions is discussed in section 3.5.

We conclude with a discussion of the results and possible future directions in

section 3.6. The chapter is based on work done in collaboration with Ricardo

Monteiro and Donal O’Connell in [1].

3.2 A Newman-Penrose basis in five dimensions

In the study of scattering amplitudes, it is important to construct a basis of

vectors associated with a given particle. As we described in chapter 1, physically,

these vectors are the momenta of a particle, a choice of gauge, and a basis of

polarisation vectors. A method to construct this basis, known as the spinor-

helicity method, is known in any dimension [9, 30, 31]. The method builds on

foundational work on amplitudes in four dimensions [67–71].

In four dimensions, the spinor-helicity construction is reminiscent of the Newman-

Penrose tetrad, suggesting that the spinor-helicity method can be adapted to craft

a higher-dimensional Newman-Penrose basis. We will see below that this turns

out to be the case, focusing on five dimensions for concreteness. Apart from some

comments on six dimensions in section 3.5, we leave higher dimensions for future

work.

We begin with five-dimensional flat space. We will generalise to curved space in

section 3.4.1.

3.2.1 Spinors in five dimensions

Our five-dimensional setup is based on the six-dimensional conventions of [9],

taking into account simplifications which occur in odd dimensions [31]. Even

dimensions always have the property that one can choose a chiral basis of γ

matrices, leading to the Clifford algebra1. But in odd dimensions no such chiral

1In even dimensions, there is always a matrix γ∗ with the property that {γµ, γ∗} = 0. In
four dimensions, this γ∗ is usually denoted γ5. With the help of γ∗, one can define projectors
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choice exists. We therefore work with a basis of five γ matrices. One can

always raise and lower indices of γ matrices; see e.g. [72] for a useful review.

In five dimensions, we may also exploit the accidental isomorphism between

so(5) and sp(2) to choose our γ basis so that the matrices with lower indices are

antisymmetric. Since it is convenient to understand the dimensional reduction to

four dimensions, we found it useful to pick an explicit basis given by

γµ̂AB =

(
0 σµ̂αβ̇

−σ̃µ̂α̇β 0

)
, µ̂ = 0, 1, 2, 3, (3.1)

where the matrices σ and σ̃ are nothing but the four-dimensional Clifford bases

given in equations (2.2) and (2.3) with their spinor indices appropriately raised

or lowered. The final component of the basis, γ4
AB, is chosen to be

γ4
AB = −i

(
εαβ 0

0 εα̇β̇

)
. (3.2)

This choice of basis is for convenience. The results we derive are independent of

basis and hold generally. These results are summarised in section 3.2.5

With this choice of basis, we may build on our understanding of the four-

dimensional NP tetrad to lay the foundations of a five-dimensional formalism. To

do so, we pick null vectors k and n satisfying k · n 6= 0, and choose a coordinate

system in which kµ and nµ take the form

kµ = (k0, k1, k2, k3, 0), nµ = (n0, n1, n2, n3, 0). (3.3)

Without loss of generality, we may choose k ·n = −1. Our first task is to construct

a basis of the space of spinors in five dimensions. As in the four-dimensional case

described in section 2.2, we will find this basis by solving the massless Dirac

equations for the null vectors k and n.

Let us take kµ as an example. We must find the null space of the matrix

k · γAB =

(
0 k · σαβ̇

−k · σ̃ α̇
β 0

)
. (3.4)

Since k · σ and k · σ̃ have rank one, the matrix k · γ has rank two and the null

P± = (1±γ∗)/2. Spinors which are eigenstates of these projectors are called chiral. The Clifford
algebra σµσ̃ν+σν σ̃µ = −2ηµν can be obtained from the usual Dirac gamma algebra by defining
σµ = P+γ

µP− and σ̃µ = P−γ
µP+.
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space is two-dimensional. We conclude that the null space of k · γAB is spanned

by the spinors

kA1 =

(
0

õα̇

)
, kA2 =

(
oα

0

)
, (3.5)

which are evidently linearly independent and lie in the null space by virtue of

the definitions, equations (2.9) and (2.10), of o and õ. It is very convenient to

package these spinors up using a Roman two-dimensional index a:

kAa =

(
0 oα

õα̇ 0

)
. (3.6)

We will see below that the spinors kA1 and kA2 transform into one another under

the action of a particular group.

To get a feel for kAa, it is helpful to understand its relationship with the vector

kµ. The simplest way we can construct a spacetime vector is to hook up the

indices as ka ◦ γµ ◦ ka , where we use ◦ to denote the contraction of SO(4, 1)

spinor indices, and have defined ka = εabkb. This turns out to be correct: for the

first four components µ̂ = 0, 1, 2, 3, we find

ka ◦ γµ̂ ◦ ka =Tr

[(
0 õα̇

oα 0

)(
0 σµ̂αβ̇

−σ̃µ̂α̇β 0

)(
oβ 0

0 −õβ̇

)]
= σµ̂αβ̇ o

α õβ̇ + σ̃µ̂α̇β õ
α̇ oβ

= 2
√

2 kµ̂,

(3.7)

while for the final component we find

ka ◦ γ4 ◦ ka = − iTr

[(
0 õα̇

oα 0

)(
εαβ 0

0 εα̇β̇

)(
oβ 0

0 −õβ̇

)]
= 0. (3.8)

Thus, using only the four-dimensional definitions, we have recovered kµ = (kµ̂, 0).

The complete formula is therefore:

kµ =
1

2
√

2
ka ◦ γµ ◦ ka. (3.9)

It is worth commenting further on this formula. The spinors ka for a = 1, 2 are

a basis of solutions of the equation k · γAB kBa = 0. We may, of course, perform

a complex linear change of basis in this space of solutions. The normalisation

condition kµ = 1
2
√

2
ka ◦ γµ ◦ ka restricts this change of basis to be an element of
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SL(2,C), so we can think of the null space as a two-dimensional representation of

SL(2,C). In fact, we will see below in section 3.2.3 that if we choose a real vector

kµ, and impose both our normalisation condition and a reality condition on the

spinors ka, we must further restrict this group to SU(2). The physical role of

this group is simply the three-dimensional rotations on the spacetime dimensions

orthogonal to both k and n.

Now we construct the other half of the spinor basis nAa. In view of the

normalisation condition k · n = −1 satisfied by the vectors, we can choose

the spinors kAa and nAa to satisfy ka ◦ nb ≡ kAaΩABnBb = εab, where the

raising/lowering matrix ΩAB is, explicitly,

ΩAB =

(
εαβ 0

0 −εα̇β̇

)
. (3.10)

Incidentally, for notational simplicity we define

kAa = ΩAB kBa, nAa = ΩAB nBa. (3.11)

Following the recipe described above we find a basis of spinors in the null space

of n · σAB. However, a naive application of the method leads to a basis which

does not satisfy our normalisation condition ka ◦ nb = εab. To correct this, we

simply perform a change of basis, finding

nAa =

(
ıα 0

0 −ı̃α̇

)
. (3.12)

The spacetime vector nµ can be reconstructed from the spinors as before:

nµ =
1

2
√

2
na ◦ γµ ◦ na. (3.13)

The other two contractions are ka ◦ kb = na ◦ nb = 0, which follows from the

antisymmetry of ΩAB.

3.2.2 Polarisation vectors

The spinors kAa and nAa are a complete basis of spinors. As in the four-

dimensional case, we can use the spinorial basis to construct vectors which,

accompanied by kµ and nµ, form a complete basis of vectors in five dimensions –
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a pentad. Recall that the vectors kµ and nµ are given by

kµ =
1

2
√

2
ka ◦ γµ ◦ ka, nµ =

1

2
√

2
na ◦ γµ ◦ na. (3.14)

We define the remaining independent contraction to be

εµab ≡ ka ◦ γµ ◦ nb = −nb ◦ γµ ◦ ka (3.15)

where it can be shown that εµab = εµba by use of gamma matrix algebra. To

interpret this object εµab, we can break it down in terms of its four-dimensional

components. Firstly, we will consider µ̂ = 0, 1, 2, 3. For these values of µ̂, εµ̂ab is

given by:

εµ̂ab =

(
0 õα̇

oα 0

)(
0 σµ̂αβ̇

−σ̃µ̂α̇β 0

)(
ıβ 0

0 −ı̃β̇

)

=

(
σ̃µ̂α̇β õ

α̇ ıβ 0

0 σµ̂αβ̇ o
α ı̃β̇

)

=
√

2

(
mµ̂ 0

0 m̃µ̂

)
.

(3.16)

Thus we can see that as long as µ̂ = 0, 1, 2, 3, the diagonal components of εµ̂ab are

precisely the vectors mµ̂ and m̃µ̂ which appeared in the Newman-Penrose tetrad

in four dimensions. The final value of µ, µ = 4, is given by

ε4
ab = ka ◦ γ4 ◦ nb

= − i
(

0 õα̇

oα 0

)(
εαβ 0

0 εα̇β̇

)(
ıβ 0

0 −ı̃β̇

)

=

(
0 i

i 0

)
.

(3.17)

We therefore find

εµ11 =
√

2
(
mµ̂, 0

)
εµ22 =

√
2
(
m̃µ̂, 0

)
εµ12 = εµ21 = (0, 0, 0, 0, i) .

(3.18)

Finally, we can establish the useful property

εµab εµ cd = εac εbd + εad εbc (3.19)
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by explicit computation. The spinorial completeness relations imply that

ηµν = − kµnν − kνnµ +
1

2
εac εcd εµab ε

ν
cd. (3.20)

These properties are characteristic of polarisation vectors, which in part accounts

for the utility of this formalism in scattering amplitudes.

3.2.3 Reality conditions

Our γ basis satisfies

(γµ)† = −H ◦ γµ ◦HT (3.21)

where the matrices γµ have lower indices and

H =

(
0 εα̇β̇

−εαβ 0

)
. (3.22)

For a real null vector V in five-dimensional Minkowski space, we may impose

a reality condition on the associated basis of spinors λAa. Regarding λ as a

four-by-two matrix, reality of V implies

V · γ ◦ λ = 0⇒ V · γ ◦HT ◦ λ∗ = 0. (3.23)

Thus the spinors HT ◦ λ∗ are linear combinations of the two basis spinors λa, so

we may write HT ◦ λ∗ = λX, where X is a two-by-two matrix.

Recall from section 3.2.1 that the two-dimensional space of λa furnishes a

representation of SL(2,C). The reality condition HT ◦ λ∗ = λX is not covariant

under the full SL(2,C), because the left-hand side transforms under the conjugate

representation of the right-hand side. Thus the group is broken to SU(2), which

has the well-known property that the conjugate representation is equivalent to

the fundamental representation. Requiring that the reality condition is covariant

under this SU(2) determines X ∝ ε. Thus, in our conventions, we arrive at the

reality condition in the form [73]

HT ◦ λ∗ = −λε. (3.24)

Using index notation, we may write this as follows. First we define λ̄Ȧa ≡ (λAa)
∗;
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then the reality condition is

λ̄ȦaHȦ
A = εabλAb. (3.25)

Our main focus will be on real spacetimes with Minkowski signature. Therefore we

will pick real vectors kµ and nµ and impose the reality condition, equation (3.25),

on the spinors kAa and nAa.

We must now investigate what this means for our pentad, in particular for the

“polarisations” εµab. They are defined by εµab = ka ◦ γµ ◦ nb; we define the

conjugate of these vectors to be εµab ≡ (εµab)
∗. Using the reality condition we

find

ε̄µab = (ka ◦ γµ ◦ nb)
∗

= (ka)
∗ ◦ (γµ)∗ ◦ (nb)

∗

= k̄a ◦ (H ◦ γµ ◦HT ) ◦ n̄b

= (εac kc) ◦ γµ ◦ (εbd nd)

= εac εbd εµcd

= εµab.

(3.26)

In short, εµab = (εµab)
∗. So εµ11 = (εµ22)∗, while εµ12 = −(εµ12)∗. This is exactly

as we found in section 3.2.2: εµ11 and εµ22 relate to mµ and m̃µ respectively while

εµ12 is given by ieµ4, which is indeed imaginary.

3.2.4 Lorentz transformations and the little group

To build some intuition into the objects kAa and nAa, it is worth pausing

our development to understand how these spinors transform under symmetries,

especially (local) Lorentz transformations. Recall that the index A takes values

from 1 to 4, spanning the four dimensions of the spinorial representation of

SO(4, 1), while the index a takes values 1 and 2 and spans the two-dimensional

solutions space of, for example, the equation kµγ
µ
ABkBa = 0. We will see that the

SU(2) acting on the two-dimensional solution space is the subgroup of Lorentz

transformations which preserve the vector kµ. This subgroup is the little group

of the null vector kµ.
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Boosts and spins

We have defined the spinors kAa and nAa to be solutions of the Dirac equations

k · γABkBa = 0 = n · γABnBa , subject to the normalisation condition ka · nb = εab,

and obeying a reality condition for real spacetimes. Obviously the rescaling

kAa → b kAa, nAa →
1

b
nAa (3.27)

will preserve the definitions, provided that the factor b is real for real spacetimes.

We may therefore investigate how this rescaling acts on the pentad we have

constructed from the spinors, equations (3.14) and (3.15). It is easy to see that

the action is

kµ → b2 kµ, nµ → 1

b2
nµ, εµab → εµab. (3.28)

This simple transformation is nothing but a Lorentz boost in the two-dimensional

space spanned by kµ and nµ, leaving the remaining three dimensions invariant.

We may also consider a more non-trivial change of basis of the solution space of

the Dirac equations:

kAa → k′Aa = Ma
b kAb, nAa → n′Aa = Na

bnAb. (3.29)

This change of basis automatically preserves the conditions that ka ◦ kb = 0 and

na ◦ nb = 0. We have already seen that M and N are elements of SL(2,C). The

normalisation condition is that

Ma
cNb

d ε cd = εab, (3.30)

which implies that N = M .

We may now investigate the action of this group of transformations on our

spacetime pentad. A straightforward calculation shows that the transformation

is

kµ → kµ, nµ → nµ, εµab →Ma
cMb

d εµcd. (3.31)

This is a Lorentz transformation preserving k and n.

In the real case, we have already seen that the transformation M is an element

of SU(2). This makes sense: in the real case, the subgroup of the Lorentz group
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which preserves kµ and nµ is evidently SO(3). We can see this more concretely

by introducing a vectorial basis of the three-dimensional representation of SU(2),

which is also the fundamental representation of SO(3). As usual, the symmetric

Pauli matrices ςabi, i = 1, 2, 3 provide a convenient mapping from the 2⊗2 tensor

product of SU(2) representations to the 3. In view of the reality condition, we

find it convenient to take

ς1 =
1

2

(
i 0

0 −i

)
, ς2 =

1

2

(
1 0

0 1

)
, ς3 =

1

2

(
0 −i
−i 0

)
(3.32)

Notice, for example, that this choice of basis has the property that (ς11
i)
∗ = ς22

i,

consistent with our reality condition. They relate to the usual Pauli matrices as

σi = 1
2
ςi · ε.

We may then define

εµi = εµab ς
ab
i, (3.33)

and

mi = Mab ς
ab
i. (3.34)

The antisymmetric degree of freedom in M is defined to be Mtr = εabMab. In this

language, the condition that M has unit determinant becomes 1
4
Mtr

2 +m ·m = 1,

and the polarisation vector transformation is

εµ →
(
−m ·m+

1

4
Mtr

2

)
εµ + 2 (m · εµ)m+Mtr (m× εµ) . (3.35)

We can compare this with the standard formula for a rotation by angle θ around

an axis n in three-dimensional Euclidean space,

x→ cos θ x+ (1− cos θ) (n · x) n+ sin θ (n× x) , (3.36)

to see that the transformation M rotates the polarisation vectors by an angle

sin θ = Mtr|m| around the axis m in the Euclidean 3-space of the little group,

leaving kµ and nµ invariant.

The null rotations

The boost and spin transformations comprise four of the ten Lorentz transforma-

tions available in a five-dimensional spacetime. It is interesting to understand the

remaining six. To do so, we look to the null rotations of the four-dimensional NP
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tetrad for inspiration, and construct the ansatz kAa → kAa+Ta
b nAb, nAa → nAa.

To preserve ka · nb, we require that the matrix T is symmetric:

k′a · k′b = (ka + Ta
c nc) ·

(
kb + Tb

d nd
)

= Ta
c (nc · kb) + Tb

d (ka · nd)
= Tab − Tba = 0.

(3.37)

Similarly the transformation kAa → kAa, nAa → nAa+Sa
b kAb is valid as long as S

is symmetric. The symmetric matrices S and T comprise three degrees of freedom

each, so combined with the boost and spin, this is a complete parametrisation of

the Lorentz group. The action of these transformations on our pentad is:

• Null rotation about n: kAa → kAa + Ta
b nAb, nAa → nAa,

kµ → kµ + T ab εµab − detT nµ, nµ → nµ, εµab → εµab + Tab n
µ. (3.38)

• Null rotation about k: kAa → kAa, nAa → nAa + Sa
b kAb,

kµ → kµ, nµ → nµ + Sab εµab − detS kµ, εµab → εµab + Sab k
µ. (3.39)

3.2.5 Summary

We can now summarise the key results. The pentad is constructed from null

orthogonal vectors

k2 = n2 = 0, kµ n
µ = −1, (3.40)

with the symmetric polarisation vector εµab satisfying

k · εab = n · εab = 0, εµab ε
µ
cd = εac εbd + εad εbc. (3.41)

This pentad spans the spacetime as

ηµν = − kµnν − kνnµ +
1

2
εac εcd εµab ε

ν
cd. (3.42)

We choose spinors kAa, nAa, where A = 1, ..., 4 is a spacetime spinor index and

a = 1, 2 is a little group spinor index, to satisfy

ka ◦ kb = na ◦ nb = 0, ka ◦ nb = εab, (3.43)
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where “x ◦ y” indicates a contraction on the spacetime spinor index, i.e., xA y
A.

The pentad can be defined in terms of the spinors:

kµ =
1

2
√

2
ka ◦ γµ ◦ ka, nµ =

1

2
√

2
na ◦ γµ ◦ na, εµab = ka ◦ γµ ◦ nb,

(3.44)

in order to automatically satisfy the properties given above. To restrict to real

Minkowski space, the spinors must satisfy reality conditions. In particular, any

real objects which transform under the little group indices must obey

(
Xa1...an

b1....bm
) ∗ = Xa1...an

b1....bm . (3.45)

Finally, we note that the ten transformations of the standard five-dimensional

Lorentz group can be parametrised as a boost b, three spins Mab where detM =

1, and two three-dimensional null transformations Tab and Sab which are both

symmetric:

• Boost: kA
a → b kA

a, nA
a → 1

b
nA

a

• Spin: kA
a →Ma

b kA
b, nA

a →Ma
bnA

b

• Null rotation about n: kAa → kAa + Ta
b nAb, nAa → nAa

• Null rotation about k: kAa → kAa, nAa → nAa + Sa
b kAb .

3.3 The field strength tensor

Although our main goal is to apply the results of section 3.2 to gravity, it is

helpful to apply them to the simpler field strength tensor Fµν first.

3.3.1 Set up and classifications

To begin, we contract Fµν with the rotation generator

σµνAB =
1

2

(
γµAC γ

ν C
B − γνAC γµ CB

)
(3.46)
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to find a symmetric bi-spinor,

ΦAB = Fµν σ
µν
AB. (3.47)

This is analogous to the four-dimensional Newman-Penrose formalism, as de-

scribed in section 2. Now, however, upon contraction with our basis spinors, we

do not obtain scalars but little group bi-spinors:

Φ
(0)
ab = ΦAB kAa kBb, Φ

(1)
ab = ΦAB kAa nBb, Φ

(2)
ab = ΦAB nAa nBb, (3.48)

where the bracketed numbers label the little group bi-spinors according to the

number of nAa spinors they are contracted with. To begin with, we will consider

complex-valued Fµν , and restrict to the real case later on.

In four dimensions, the Petrov classification based on the scalars defined in (2.14)

had two classes, type I and type II, the latter of which was considered algebraically

special. Type II was defined by the existence of a tetrad where both of the

four-dimensional Petrov scalars φ0 and φ1 vanished; see table 2.1. Since the

scalars from equation (2.14) and the spinors from (3.48) are clearly analogous,

this motivates a Petrov-like classification for five dimensions, which is shown in

table 3.1. The guaranteed existence of a tetrad where φ0 vanishes is a special

feature of four dimensions, and so we also require an additional “general” class

for 2-forms in five dimensions. As we will show in section 3.3.3, this is exactly

the original CMPP classification for the 2-form.

Type Little group spinor characteristic

Type G Φ(i) 6= 0 ∀ i
Type I Φ(0) = 0
Type II Φ(0) = Φ(1) = 0

Table 3.1 Table showing a proposed Petrov-like classification for a 2-form.
There are now three possible classes, two of which are analogous
to four dimensions and one of which, Type G, is new to higher
dimensions.

The bi-spinors defined in (3.48) are reducible, and therefore we will refer to this

classification as a “coarse” classification. A more fine-grained classification is

available if we break the bi-spinors down into their irreducible representations,

namely the symmetric bi-spinor and the scalar. To do this, we will use the

notation that φ(i) refers to the symmetrisation of Φ(i), such that φ
(i)
ab = Φ

(i)
(ab).

Since ΦAB = ΦBA, we can see that Φ(0) and Φ(2) are already symmetric, so
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φ(0) = Φ(0) and φ(2) = Φ(2). The bi-spinor Φ(1) is not symmetric in general, but it

is always possible to write a two-component bi-spinor as the sum of a symmetric

bi-spinor and a trace term proportional to the Levi-Civita tensor2. We will refer

to this trace as Φ(1)
a
a = Φ

(1)
tr such that:

Φ
(1)
ab = φ

(1)
ab +

1

2
Φ

(1)
tr εab. (3.49)

This is simply the statement that a 4 decomposes as 4 = 3 + 1 where the

symmetric bi-spinor 3 and the scalar 1 are both irreducible representations. The

10 degrees of freedom in the five-dimensional field strength tensor have therefore

been split up into 3 symmetric bi-spinors and a single scalar. We can write

this as in table 3.2, where the terms have been organised by the dimension of

their irreducible representation along the horizontal axis and by the bracketed

number in the vertical direction. This fine-grained classification is sensitive to

the vanishing of the columns as well as the rows. For example, a 2-form with

vanishing φ
(1)
ab or φ

(1)
tr is considered more special than one where both are non-zero.

We will give some examples in section 3.3.2.

Reducible representation 3 1

Φ
(0)
ab φ

(0)
ab

Φ
(1)
ab ⇒ φ

(1)
ab Φ

(1)
tr

Φ
(2)
ab φ

(2)
ab

Table 3.2 The three little group spinors of the 2-form can be broken up into three
symmetric bi-spinors, 3, and a scalar 1. This fine-grained structure
is able to provide more detail on the nature of the 2-form than the
coarse classification. For example, a type I solution with vanishing

Φ
(1)
tr is more special than one where both Φ

(1)
tr and φ(1) are non-zero.

In the real case, these objects are subject to the conditions φ
(i)
ab =

(
φ(i) ab

)∗
. We

can easily recast them into real vectors acted on by SO(3) using the Pauli matrices

2Since a two-dimensional index has only two possible values,

εa[bεcd] = 0 = εab εcd + εac εdb + εad εbc.

Contracting this with an arbitrary bi-spinor scd, we obtain

sab − sba = εab sc
c.

34



Spinor notation Vector notation

φ
(0)
ab φ0

φ
(1)
ab Φ

(1)
tr ↔ φ1 Φ

(1)
tr

φ
(2)
ab φ2

Table 3.3 The little group irreps can be written in terms of spinors or vectors
by standard use of the Pauli matrices.

ς iab: (
φ0

)i
= φ

(0)
ab ς

iab, (3.50)

where i = 1, 2, 3 is an SO(3) index, and of course Φ
(1)
tr remains a scalar. The

little group irreps therefore change into a combination of 3-vectors and scalars as

shown in table 3.3. Vector notation will be useful when making contact with the

existing literature.

Finally, it is always possible to factorise a symmetric bi-spinor into two

symmetrised spinors

φab = α(a βb). (3.51)

It is natural to ask if there exists some sub-classification where α = β as is the

case in four dimensions. From the vectorial perspective it is easy to see that this

will not be the case if we restrict ourselves to real Minkowski space. If we consider

an arbitrary symmetric bi-spinor

(
φ
)i

= φab ς
iab = αa βb ς

iab, (3.52)

we can see that the modulus of this vector is given by

|φ| = 1

2
|αaβa|, (3.53)

using ς i ab ς i cd = (εacεbd + εadεbc)/4. Therefore, there is no non-vanishing real

vector φ such that α = β, and the irreps that we describe in table 3.2 cannot

be broken down further. In contrast, in the complex case they can, leading to a

Russian doll-like structure of nested classifications where each bi-spinor φ(i) can

itself be type I (α 6= β) or type II (α = β).
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3.3.2 Examples

To be more concrete, we will discuss some simple examples: the plane wave, an

electric field and a magnetic field. This will illuminate some details of the fine

structure.

A plane wave

The simplest solution is a plane wave which has a field strength tensor of the

form

Fµν = k[µεν]
abPab e

ik·x, (3.54)

where the symmetric Pab corresponds to an arbitrary choice of polarisation.

It is natural to choose kµ and εµ
ab to be elements of our pentad. Using the

normalisations in equation (3.44) we have

ΦAB = Fµνσ
µν
AB

= k[µεν]
abγµACγ

ν C
BPab e

ik·x

= − 2
√

2 k(A
akB)

bPab e
ik·x,

(3.55)

and comparison with equation (3.48) tells us that we have

φ(0) = Φ(1) = 0, φ
(2)
ab = −2

√
2Pabe

ik·x. (3.56)

A plane wave is therefore a type II solution under the coarse classification. Since

φ(2) is symmetric, it is an irreducible representation of SU(2). However, it

is possible that Pab = αaαb in the complex case, which describes a circularly

polarised electromagnetic field.

A constant electric field

Our second example is a constant electric field E in the x direction. Then the

Maxwell spinor has the form

ΦAB = 2|E|σtxAB. (3.57)
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We choose k = 1√
2
(∂t + ∂x) and n = 1√

2
(∂t − ∂x). Taking contractions with kAa

and nAa, we find

φ(0) = φ(1) = φ(2) = 0, Φ
(1)
tr = 4|E|. (3.58)

Hence the electric field has a coarse type I classification, but the fine structure is

able to pinpoint that this is more special than a general type I.

A constant magnetic field

Finally, we consider a simple magnetic field B which is trivial in the x direction

such that F µν = Bij. We use the same pentad as the previous section, so k =
1√
2
(∂t + ∂x) and n = 1√

2
(∂t − ∂x). The Maxwell spinor is

ΦAB = BijσijAB. (3.59)

Taking contractions again and using the Pauli matrices ς iab to recast φ(1) as a

vector, we find

φ(0) = φ(2) = Φ
(1)
tr = 0,

(
φ1

)i
= εijkBjk. (3.60)

Therefore, although this magnetic field and the electric field have the same coarse

classification, type I, they can be differentiated by their fine structure.

3.3.3 Relations to the literature: CMPP and de Smet

As we have mentioned earlier, there exist previously proposed classifications for

five-dimensional spacetimes. Two of these are the classification derived by CMPP

in 2004 [7, 32] and the de Smet classification proposed in 2002 [4]. We will

understand both in terms of the spinorial formalism.

The CMPP classification

In their papers [7, 32], CMPP observe that each component of the Weyl tensor in

D dimensions has a boost weight when the pentad is rescaled by {k, n, m(i)} →
{ρ k, ρ−1 n, m(i)} for some scalar ρ, where i = 2, ..., D− 1, and m(i) is any of the

remaining space-like directions. This boost weight is simply the power of ρ by
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which the component of the 2-form transforms. The independent components of

the 2-form have the following boost weights:

Boost weight 1 0 −1

Component F0i F01, Fij F1i

(3.61)

where the index 0 indicates a contraction with k, the index 1 indicates a

contraction with n, and a Roman index i corresponds to the space-like direction

m(i). The CMPP k and n have an identical role to our own usage, so we will use

the same symbols. The relevant choices of k are made by demanding that F0i is

set to zero if possible, in which case a choice of n is made to also send F01 and

Fij to zero if possible. Next, the boost weights are organised into a Petrov-like

classification as shown in table 3.4.

Type Components CMPP special?
Type G F0i 6= 0 No
Type I F0i = 0 No
Type II F0i = F01 = F1i = 0 Yes

Table 3.4 Table showing the CMPP classes of a 2-form according to which
components can be found to vanish. There are three possible classes,
only one of which is considered special. The pentad is chosen so that
the 2-form is as special as possible.

In order to compare our formalism with CMPP, we can simply rewrite our little

group field strength tensors in terms of Fµν . Doing this, we find the simple

relationships

F0i =
1

2
√

2
φ

(0)
i , F01 =

1

4
Φ

(1)
tr , Fij =

1

2
εijkφ

(1)
k , F1i = − 1

2
√

2
φ

(2)
i . (3.62)

Since each boost weight component is exactly identifiable as one of our little group

irreps, the coarse classification that we introduced in section 3.3.1 is exactly the

CMPP classification as introduced in [7]. Furthermore, the bracketed number (i)

of a little group spinor Φ(i) relates directly to its boost weight, as it would in four

dimensions.

The de Smet classification

The de Smet classification [4] has a very different set up to the CMPP

classification. It uses a gamma basis such as in equations (3.1) and (3.2) to
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create a symmetric field strength 2-spinor ΦAB, and considers its factorisation

properties to create a classification. There are two cases: in de Smet notation, if

the 2-form does not factorise it is a 2, and if it does it either a 11 or a 11, with

the two factors being equal in the latter case. Let us examine this in more detail.

The symmetric 2-spinor is constructed using the rotation generator as usual,

ΦAB = Fµν σ
µν
AB. (3.63)

Now, the field strength polynomial F is constructed by contracting in an arbitrary

spinor ξA, such that

F = ΦAB ξ
A ξB. (3.64)

If the original bi-spinor had the structure ΦAB = α(A βB), the polynomial will

factorise. Our formalism is based on irreducible representations of SU(2), namely

symmetric SU(2) spinors. These have the useful property that they always totally

factorise. Therefore, each little group irrep will have its own de Smet structure.

We can compute this by studying each of them in turn.

The field strength spinor can be expanded in terms of our little group irreps as

ΦAB = φ
(0)
ab nA

a nB
b + 2φ

(1)
ab n(A

a kB)
b + φ

(1)
tr n(A

a kB)a + φ
(2)
ab kA

a kB
b. (3.65)

As an example, let us consider a case where only φ(2) is non-zero, such as the

plane wave example given in section 3.3.2. Now, the field strength polynomial is

given by

F = φ
(2)
ab kA

a kB
b ξA ξB

= α(a βb) (k ◦ ξ)a (k ◦ ξ)b

= [α, k ◦ ξ] [β, k ◦ ξ] ,
(3.66)

where we have defined the factorisation of φ(2) to be φ
(2)
ab = α(a βb), and “ ◦ ”

indicates a contraction on a spacetime spinor index, while “[ · , · ]” is a little

group spinor contraction. Clearly, this is of de Smet type 11.

The φ(0) spinor has the same structure as φ(2), and therefore a 2-form for which

only φ(0) was non-zero would also be a 11. However, the k and n structure of the

φ(1) component means that its field strength polynomial behaves differently. Let

us consider a 2-form where only φ(1) is non-zero, for example the magnetic field
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from section 3.3.2. This would have a field strength polynomial of the form

F = 2φ
(1)
ab n(A

a kB)
b ξA ξB

= [α, n ◦ ξ] [β, k ◦ ξ] + [α, k ◦ ξ] [β, n ◦ ξ] ,
(3.67)

and thus it is of de Smet type 2.

For a solution like the electric field in section 3.3.2, only the Φ
(1)
tr term is non-zero.

So the field strength polynomial is

F = Φ
(1)
tr εab n(A

a kB)
b ξA ξB

= Φ
(1)
tr ([o, n ◦ ξ] [ı, k ◦ ξ]− [o, k ◦ ξ] [ı, n ◦ ξ]) ,

(3.68)

where we have used the property εab = oa ıb − ıa ob for some basis spinors o and

ı, normalised as oa ıa = 1. Therefore this is also a de Smet type 2.

If we organise the little group irreps according to boost weight along the vertical

direction and according to irrep dimension along the horizontal direction, we

see that each irrep corresponds to a de Smet class, as shown in table 3.5. Any

combination of little group irreps will result in a 2.

Little group spinors de Smet class

φ
(0)
ab 11

φ
(1)
ab Φ

(1)
tr ↔ 2 2

φ
(2)
ab 11

Table 3.5 Each little group spinor has a predefined de Smet class.

As we discussed in section 3.3.1, in the case of complex field strength, there is a

Russian doll-like secondary layer of structure, where each φ(i) can itself be either

type I or type II corresponding to α 6= β or α = β, respectively. It is simple to

read off from equation (3.66) that these have distinct de Smet types 11 and 11

respectively, in the cases of φ(0) or φ(2), while we can see from equation (3.67) that

φ(1) will be 2 and 11 respectively. However, when we restrict to real spacetimes,

only the possibilities shown in table 3.5 are possible, since the repeated case α = β

is not permitted [5].
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3.4 General relativity and the Weyl tensor

3.4.1 Spinors in curved space

So far, our analysis has been based on flat spacetime. To generalise our results

to curved space, we introduce coordinate indices µ, ν and tangent space indices

M,N . We can then pick an arbitrary frame eµM satisfying gµν = eµM eνN η
MN .

Both gµν and ηMN can be expressed in terms of an NP pentad,

gµν = − kµ nν − kν nµ + εac εbd εµab ε
ν
cd

= eµM eνN
(
−kM nN − kN nM + εac εbd εMab ε

N
cd

)
,

(3.69)

so we can read off that the curved pentad {kµ, nµ, εµab} is obtained from our flat

pentad {kM , nM , εMab} by contraction with eµM . Similarly, the gamma basis

becomes

γµAB = eµM γMAB, (3.70)

such that the Clifford algebra is still satisfied, exactly as for the Newman-Penrose

construction in four dimensions. Notice that the index µ of previous sections

should now be seen as the index M , and µ is henceforth a curved spacetime

index.

The results we derived in section 3.2 still apply for the tangent space at each

spacetime point. Thus it is possible to choose spinors of the form

kAa =

(
0 oα

oα̇ 0

)
, nAa =

(
ıα 0

0 −ıα̇

)
, (3.71)

where o and ı are now curved space spinors of SU(2)× SU(2). Using the curved

space gamma basis, we can construct the same relationships between the spinors

and the pentad,

kµ =
1

2
√

2
ka ◦ γµ ◦ ka, nµ =

1

2
√

2
na ◦ γµ ◦ na, εµab = ka ◦ γµ ◦ nb, (3.72)

using the properties of the four-dimensional spinors. Similarly, the contraction

relation ka ◦ nb = εab is upheld, as are the spinor transformations. The reality

conditions are also unaffected. We can therefore proceed and use these results

for curved spacetime.
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3.4.2 The little group spinors

In order to construct the Weyl spinor ΨABCD, we simply contract the Weyl tensor

Cµνρσ with the curved space gamma basis to obtain

ΨABCD = Cµνρσ σ
µν
AB σ

ρσ
CD (3.73)

as in section 3.3.1. The rotation generator σµνAB is constructed from the curved

space γ’s now but is otherwise defined as in equation (3.46). Given the symmetries

of the Weyl tensor, it is easy to show that the Weyl spinor is totally symmetric,

and thus comprises the 35 degrees of freedom in the five-dimensional Weyl tensor.

As in section 3.3.1, we would like to break up these 35 degrees of freedom

according to their boost weight by contracting in our spinor basis. The little

group objects Ψ
(i)
abcd are defined by

Ψ
(0)
abcd = ΨABCD kAa kBb kCc kDd

Ψ
(1)
abcd = ΨABCD kAa kBb kCc nDd

Ψ
(2)
abcd = ΨABCD kAa kBb nCc nDd

Ψ
(3)
abcd = ΨABCD kAa nBb nCc nDd

Ψ
(4)
abcd = ΨABCD nAa nBb nCc nDd,

(3.74)

where the bracketed superscript number (i) indicates the number of nAa spinors

in the contraction. These definitions are analogous to the field strength objects

Φ
(i)
ab in equation (3.48) and to the four-dimensional definitions (2.16). ΨABCD can

equivalently be expressed as the sum of the little group objects:

ΨABCD = Ψ
(0)
abcd nA

a nB
b nC

c nD
d + 4 Ψ

(1)
abcd n(A

a nB
b nC

c kD)
d

+ 6 Ψ
(2)
abcd n(A

a nB
b kC

c kD)
d

+ 4 Ψ
(3)
abcd n(A

a kB
b kC

c kD)
d + Ψ

(4)
abcd kA

a kB
b kC

c kD
d.

(3.75)

We observe from the definitions of the little group objects Ψ(i) that they possess

different symmetries. The totally symmetric ones, Ψ
(0)
abcd and Ψ

(4)
abcd, have 5 degrees

of freedom, while Ψ
(1)
abcd = Ψ

(1)
(abc)d and Ψ

(3)
abcd = Ψ

(3)
a(bcd) each contain 8. Ψ

(2)
abcd =

Ψ
(2)
(ab)(cd) comprises the final 9 degrees of freedom to reach 35. It is sensible to

break these 4-spinors into irreducible representations of SU(2). We will use the

notation that a lower case ψ(i) indicates a totally symmetric object, i.e., ψ
(i)
abcd =
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ψ
(i)
(abcd) for any value of i, and we also introduce χ(i) to indicate a symmetric bi-

spinor. Clearly Ψ(0) and Ψ(4) are already irreducible, since they sit in the totally

symmetric representation 5, so Ψ(0) = ψ(0) and Ψ(4) = ψ(4). Ψ(1) and Ψ(3) contain

a bi-spinor trace that can be removed to decompose them as 8 = 5 + 3:

Ψ
(1)
abcd = ψ

(1)
abcd −

1

4

(
εadχ

(1)
bc + εbdχ

(1)
ac + εcdχ

(1)
ab

)
Ψ

(3)
abcd = ψ

(3)
abcd −

1

4

(
εabχ

(3)
cd + εacχ

(3)
bd + εadχ

(3)
bc

)
,

(3.76)

while Ψ(2) splits into a symmetric rank 4 spinor, a symmetric rank 2 spinor and

a scalar: 9 = 5 + 3 + 1 as

Ψ
(2)
abcd = ψ

(2)
abcd −

1

4

(
εacχ

(2)
bd + εadχ

(2)
bc + εbcχ

(2)
ad + εbdχ

(2)
ac

)
+

1

6
(εacεbd + εadεbd) Ψ

(2)
tr .

(3.77)

This is summarised in table 3.6.

Reducible little group spinor 5 3 1 Total dof

Ψ
(0)
abcd = Ψ

(0)
(abcd) ψ

(0)
abcd 5

Ψ
(1)
abcd = Ψ

(1)
(abc)d ψ

(1)
abcd χ

(1)
ab 8

Ψ
(2)
abcd = Ψ

(2)
(ab)(cd) ⇒ ψ

(2)
abcd χ

(2)
ab Ψ

(2)
tr 9

Ψ
(3)
abcd = Ψ

(3)
a(bcd) ψ

(3)
abcd χ

(3)
ab 8

Ψ
(4)
abcd = Ψ

(4)
(abcd) ψ

(4)
abcd 5

Table 3.6 The table shows how each little group 4-spinor is decomposed into
irreducible representations. 5 is a totally symmetric 4-spinor, 3 is a
symmetric bi-spinor, and 1 is a scalar. We write “dof” as a short-
hand for degrees of freedom.

We will also use vectorial language for the little group irreps, translating between

the two using the Pauli matrices ς iab as usual such that, for example,

ψ
(0)
ij = ςi

ab ςj
cd ψ

(0)
abcd. (3.78)

Table 3.7 summarises the notation. This is a simple matter of representation,

and makes it easier to compare our results with the vectorial techniques used in

the literature. In this notation, imposing the reality conditions is equivalent to

the requirement that the objects are real.
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4-spinor 2-spinor scalar 3-matrix 3-vector scalar

ψ
(0)
abcd ψ

(0)
ij

ψ
(1)
abcd χ

(1)
ab ψ

(1)
ij χ(1)

ψ
(2)
abcd χ

(2)
ab Ψ

(2)
tr ↔ ψ

(2)
ij χ(2) Ψ

(2)
tr

ψ
(3)
abcd χ

(3)
ab ψ

(3)
ij χ(3)

ψ
(4)
abcd ψ

(4)
ij

Table 3.7 The irreducible representations of the Weyl spinor can be easily
moved between spinor space on the left and vector space on the right
by use of the Pauli matrices ς iab. We will use the two notations
interchangeably. Note that all spinors are totally symmetric, and that
all 3-matrices are symmetric and tracefree.

Coarse and finely grained classifications

This construction naturally highlights two levels of classification, one coarse-

grained which depends only on the little group spinors, and one which is more

finely grained which also depends on the irreducible representation. The coarse

classification arises due to the similarities in construction between the little group

spinors

Ψ
(i)
abcd, i = 1, ..., 4, (3.79)

defined in equation (3.74), and the complex scalars from four dimensions

ψi i = 1, ..., 4, (3.80)

defined in equation (2.16). Thus the Ψ(i) will obey a classification which is

analogous to the four-dimensional Petrov one shown in table 2.2 3. This coarse

classification is proposed in table 3.8 and as we will show in section 3.4.4, it turns

out to be equivalent to the CMPP classification [7, 32].

The fine grained classification notes that the coarse types in table 3.8 referred

only to the rows of table 3.6. The columns spreading out into different irreducible

representations of the little group shows that a greater level of detail is possible.

For example, imagine two type D solutions: then a pentad can be found for each

where only Ψ(2) is non-zero. Suppose further that when the fine structure is

3There is one caveat, which is that in four dimensions it is always possible to find a tetrad
where ψ0 vanishes. This is not the case in general so we require the additional type G to account
for such spacetimes; see [7].
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Type Little group spinor characteristic

Type G Ψ(0) 6= 0

Type I Ψ(0) = 0

Type II Ψ(0) = Ψ(1) = 0

Type D Ψ(0) = Ψ(1) = Ψ(3) = Ψ(4) = 0

Type III Ψ(0) = Ψ(1) = Ψ(2) = 0

Type N Ψ(0) = Ψ(1) = Ψ(2) = Ψ(3) = 0

Table 3.8 Table showing the coarse grained, Petrov-like classification of a five-
dimensional Weyl tensor built in analogy with the four-dimensional
Petrov formalism. The classification refers to the vanishing of the
reducible little group spinors Ψ(i), which is equivalent to the vanishing
of a whole row in table 3.6.

analysed, it is seen that χ(2) and ψ(2) vanish for the first spacetime but only χ(2)

vanishes for the second, indicating that the first example is more special. This is

exactly the case for the Tangherlini-Schwarzschild black hole and the black string

respectively - the details of this example are given in the following section.

We can delve deeper into the irreps themselves to ask whether they also have

sub-classifications. First we will consider a complex spacetime. In this case,

the structure of the irreducible representations ψ(i) and χ(i), namely complex

symmetric spinors with two-dimensional indices, is exactly that of the four-

dimensional Weyl and field strength spinors respectively. Like a Russian doll,

hiding inside the Weyl tensor are additional lower-dimensional Weyl tensors.

These also have a classification, which can be found in the usual way for four

dimensions. For example, a 4-spinor ψabcd = α(aβbγcδd) could have any of four

different specialisations:

• Type II: Two repeated spinors with the other two spinors distinct

ψabcd = α(aαbγcδd)

• Type D: Two pairs of repeated spinors ψabcd = α(aαbγcγd)

• Type III: Three repeated spinors ψabcd = α(aαbαcδd)

• Type N: Four repeated spinors ψabcd = αaαbαcαd,

whereas for a 2-spinor χab = α(aβb) there is only one specialisation
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• Type II: Two repeated spinors χab = αaαb .

In contrast, when we restrict to a real spacetime we find that much of this second

layer of hidden lower-dimensional Weyl tensor classification is forbidden. We

already know from our analysis of the field strength tensor in section 3.3.1 that a

bi-spinor χ(i) which obeys the reality conditions χ = χ cannot be written as the

outer product of a single spinor, χab 6= αaαb. A similar analysis can be applied

to real symmetric 4-spinor objects ψabcd which satisfy ψ = ψ. This will restrict

the number of subclasses available, as we will now show.

It is well known from four dimensions (see for example [74]) that if we define

I = ψabcd ψabcd and J = ψab
cd ψcd

ef ψef
ab, then the requirements for each class

are:

• Type II: I3 = 6J2

• Type D: ψpqr(a ψbc
pq ψrdef) = 0

• Type III: I = J = 0

• Type N: ψ(ab
ef ψcd)ef = 0.

Since our ψ’s obey the reality condition, they can be rewritten as symmetric

tracefree matrices with real entries. In contrast, if we had chosen to consider

complex space, or a different signature, the entries would be complex. A real

symmetric matrix may always be diagonalised to obtain

D =

λ1 0 0

0 − (λ1 + λ2) 0

0 0 λ2

 , (3.81)

and so we can rewrite the conditions in terms of the eigenvalues as

• Type II: 2λ3
1 + 3λ2

1λ2 − 3λ1λ
2
2 − 2λ3

2 = 0

• Type D: 2λ3
1 + 3λ2

1λ2 − 3λ1λ
2
2 − 2λ3

2 = 0

• Type III: λ2
1 + λ1λ2 + λ2

2 = 0 and λ1λ2(λ1 + λ2) = 0

• Type N: λ2
1 = λ2

2 and λ2
1 + 4λ1λ2 + λ2

2 = 0.
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The type II condition has reduced to the more specialised type D condition and

is solved only when two of the eigenvalues are equal (or trivially when all the

eigenvalues vanish). In contrast, there are no non-trivial solutions for type N

and type III, that is, we must have λ1 = λ2 = 0. This tells us that under our

reality conditions, only type D-like lower-dimensional Weyl tensors are possible.4

We note that interesting behaviour relating to dimensional reduction also occurs

when a single eigenvalue vanishes, which is not reflected by this classification. We

hope to explore this property further in future work.

To summarise, we have found three layers of structure naturally embedded in

our formalism. The first is a Petrov-like coarse layer in the little group spinors.

The second is more fine-grained, breaking the little group spinors into irreducible

representations. Finally, the third looks at the irreps themselves and uses their

similarity to four-dimensional objects to classify them in a Petrov-like way. This

has two possibilities depending on whether or not reality conditions have been

imposed as summarised in table 3.9.

Complex ψ: I, II, D, III, N
χ: I, II

Real ψ: I, D
χ: I

Table 3.9 The classification of the lower-dimensional objects hidden within the
Weyl tensor depends on whether or not reality conditions have been
imposed.

3.4.3 Examples

To illustrate a few key features of the formalism, we shall give a few very simple

examples: the plane wave, a Tangherlini-Schwarzschild black hole and a black

string.

A pp-wave

The metric for a pp-wave can be expressed in Brinkmann coordinates

ds2 = −H(u, x, y, z)du2 − 2du dv + dx2 + dy2 + dz2, (3.82)

4We note that this argument is invalidated when complex entries occur because in general
complex symmetric matrices cannot be diagonalised.
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such that if we choose the pentad

k = ∂v, n = ∂u −
1

2
H(u, x, y, z)∂v, εab =

(
∂x + i∂y i∂z

i∂z ∂x − i∂y

)
, (3.83)

then the Weyl tensor is given by

Cµνρσ = 2 ∂i∂jH(u, x, y, z)n[µ ε
i
ν] n[ρ ε

j
σ], (3.84)

where the index i = 1, 2, 3 runs over the three polarisation directions {x, y, z}
as usual as in the definition (3.33). Recasting this as a spinor using the curved

space gamma basis we find

ΨABCD = Cµνρσσ
µν
ABσ

ρσ
CD

= 4 ∂i∂jH(u, x, y, z) ς iab ς
j
cd kA

a kB
b kC

c kD
d.

(3.85)

Therefore the pp-wave is a type N solution with ψ
(4)
ij = 4 ∂i∂jH(u, x, y, z). If we

were to specify the function H(u, x, y, z) we could classify ψ
(4)
abcd further since it

has all of the properties of a four dimensional Weyl tensor.

The Tangherlini-Schwarzschild black hole

Another simple example is a five-dimensional Schwarzschild black hole, with

metric

ds2 = −∆(r)du2 − 2 du dr + r2
(
dθ2 + sin2 θ

(
dφ2 + sin2 θdχ2

))
, (3.86)

where ∆(r) = 1− r2s
r2

. We choose the pentad

k = −∂u +
1

2
∆(r) ∂r, n = ∂r, εab =

1

r

(
∂θ + i csc θ ∂φ i csc θ cscφ ∂χ

i csc θ cscφ ∂χ ∂θ − i csc θ ∂φ

)
,

(3.87)

such that the Weyl tensor is

Cµνρσ =
2r2

s

r4

(
2k[µ ε

i
ν] n[ρ ε

i
σ] + 2n[µ ε

i
ν] k[ρ ε

i
σ] − 6k[µ nν] k[ρ nσ] − εi[µ εjν]ε

[i
[ρ ε

j]
σ]

)
.

(3.88)
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The Weyl spinor is

ΨABCD = Cµνρσσ
µν
ABσ

ρσ
CD

= − 48r2
s

r4
(εacεbd + εadεbc) k(A

a kB
b nC

c nD)
d,

(3.89)

and so we can read off that the only non-zero little group irrep for the Tangherlini-

Schwarzschild black hole is the scalar Ψ
(2)
tr = −48r2s

r4
. Therefore, it is a very special

type D solution, since it only has a single non-zero irrep.

The black string

It is interesting to contrast this with another type D solution, the black string.

This is a four-dimensional Schwarzschild black hole trivially extended along the

x4 = z direction with the metric

ds2 = −Γ(r)du2 − 2 du dr + r2
(
dθ2 + sin2 θdφ2

)
+ dz2 (3.90)

where Γ(r) = 1− rs
r

. We choose a pentad which is similar to the previous example:

k = ∂r, n = ∂u−
1

2
Γ(r) ∂r, εab =

1

r

(
∂θ + i csc θ ∂φ i∂z

i∂z ∂θ − i csc θ ∂φ

)
, (3.91)

to find that the Weyl tensor is

Cµνρσ = 2
rs
r3

(
2 δijred

(
k[µ ε

i
ν] n[ρ ε

j
σ] + n[µ ε

i
ν] k[ρ ε

j
σ]

)
− 2k[µ nν] k[ρ nσ]

+ δikred δ
jl
red ε

i
[µ ε

j
ν]ε

[k
[ρ ε

l]
σ]

)
,

(3.92)

where the reduced identity matrix δred is trivial in the z direction, δijred = δij−eizejz.
Note the similarity to equation (3.88) if δred is replaced by δ. As usual, we recast

as a spinor to find

ΨABCD = −96rs
r3

δijred ς
i
ab ς

j
cd k(A

a kB
b nC

c nD)
d. (3.93)

This time there is more than one little group irrep present. The reducible little

group spinor Ψ(2) is given by

Ψ(2)ij = −4rs
r3
δijred, (3.94)
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which decomposes into a trace term and a traceless symmetric 5:

ψ(2)ij = −4rs
r3

(
1

3
δij − eizejz

)
, Ψ

(2)
tr = −16rs

r3
. (3.95)

Therefore the black string is still a type D solution but it has a very different fine

structure to the Tangherlini-Schwarzschild black hole.

Finally, we can consider the structure of ψ(2) itself: since it has two equal

eigenvalues (λx = λy = − 4rs
3r3

), the irrep is itself type D.

3.4.4 Relations to the literature: CMPP and de Smet

As we have previously mentioned, there exist previously proposed classifications

for five dimensions, notably the CMPP and de Smet classifications [7, 32], [4],

which were shown in [5] to disagree on their definition of specialness, since some

spacetimes are algebraically special in CMPP but not in de Smet, and vice versa.

The CMPP classification

In the CMPP classification, each component of the Weyl tensor in D di-

mensions has a boost weight when the pentad is rescaled by {k, n, m(i)} →
{ρ k, ρ−1 n, m(i)} for some scalar ρ, where i = 2, ..., D− 2, and m(i) is any of the

remaining space-like directions. This boost weight is the power of ρ by which the

component of the Weyl tensor transforms. The independent components of the

Weyl tensor have the following boost weights:

Boost weight 2 1 0 −1 −2

Component C0i0j C010i, C0ijk C0101, C01ij, C0i1j, Cijkl C011i, C1ijk C1i1j

(3.96)

where the index 0 indicates a contraction with k, the index 1 indicates a

contraction with n, and a Roman index i corresponds to the space-like direction

m(i). Our usage of k and n is identical, while the CMPP polarisation directions

m(i) can be chosen to correspond to our εµi as

mµ(i) = ς i ab εµab. (3.97)
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The Weyl tensor components, combined by boost weight, are then organised into

a classification which is shown in table 3.10. This is valid in any dimension, and

of course reduces to the Petrov classification in four dimensions.

Type Characteristic

Type G C0i0j 6= 0

Type I C0i0j = 0

Type II C0i0j = C010i = C0ijk = 0

Type D C0i0j = C010i = C0ijk = C011i = C1ijk = C1i1j = 0

Type III C0i0j = C010i = C0ijk = C0101 = C01ij = C0i1j = Cijkl = 0

Type N C0i0j = C010i = C0ijk = C0101 = C01ij = C0i1j = Cijkl

= C011i = C1ijk = 0

Table 3.10 The CMPP classification considers the vanishing of the components
of the Weyl tensor in some pentad in order to specify a type. The
more special the classification, the more components, grouped by
boost weight, must vanish.

The boost transformation is clearly identical to the boost that we have previously

defined through spinor space as kA
a → c kA

a, nA
a → 1

c
nA

a. As shown in equation

(3.28), the effect on the pentad is identical when we identify ρ = c2. We therefore

expect to see a correlation between the components of the Weyl tensor and the

little group 4-spinors. This turns out to be exactly the case. We can easily use

the equations (3.73), (3.14) and (3.15), which express the Weyl tensor, k, n and

εµab in terms of spinors, to show that the CMPP components correspond directly

to little group irreps:

C0i0j = 1
8
ψ

(0)
ij C010i = − 1

8
√

2
χ

(1)
i C0ijk = 1

8
√

2

(
2 εijl ψ

(1)
lk − χ

(1)
[i δj]k

)
C0101 = 1

16
Ψ

(2)
tr C01ij = −1

8
εijkχ

(2)
k C0i1j = −1

8

(
ψ

(2)
ij + 1

2
εijkχ

(2)
k + 1

6
Ψ

(2)
tr δij

)
C1i1j = 1

8
ψ

(4)
ij C011i = 1

8
√

2
χ

(3)
i C1ijk = − 1

8
√

2

(
2εijlψ

(3)
lk + χ

(3)
[i δj]k

)
Cijkl = 1

2

(
δi[l ψ

(2)
k]j − δj[l ψ

(2)
k]i + 1

12
Ψ

(2)
tr δi[l δk]j

)
.

(3.98)

Using this correspondence, it is clear that the classifications shown in tables 3.10

and 3.8 are identical. Thus, the coarse classification inspired by the similarities

of our construction with the four-dimensional Petrov classification is exactly the
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original CMPP classification.

Little group irreps

The irreducible representations ψ(i), χ(i) and Ψ
(2)
tr also make an appearance in the

literature. It was noted in [37] that there are subgroups of the Weyl components

for a given boost weight by noting their grouping under Lorentz transformations.

For example, Coley and Hervik define two subclasses of type I by

• Type I(A) ⇔ Ci
ji0 = 0

• Type I(B) ⇔ Cijk0C
ijk

0 = 1
2
Cji

j0C
k
ik0

in the Weyl-aligned basis for an arbitrary number of dimensions. As before, we

can cast this into little group space in five dimensions to find that this corresponds

to

• Type I(A) ⇔ χ
(1)
ab = 0

• Type I(B) ⇔ ψ
(1)
abcd = 0.

The other little group irreps are identified in a similar way. In [39], now joined by

Ortaggio and Wylleman, Coley and Hervik apply their results to five dimensions

and find that the Weyl tensor can be written in terms of 5 symmetric trace-free

matrices, three vectors and a scalar, which produce exactly the fine structure

that we presented based on spinor-helicity considerations. Thus, the spinorial

techniques we have developed are precisely the spinor underpinnings of the refined

CMPP classification.

The de Smet classification

As we previously mentioned, another notable higher-dimensional classification

is that of de Smet [4]. In this work, de Smet constructs the SO(4, 1) 4-spinor

ΨABCD exactly as we have done, and then constructs a classification based on the

factorisation properties of the Weyl polynomial W , defined by

W ≡ ΨABCD ξ
A ξB ξC ξD, (3.99)
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for an arbitrary ξA. Originally containing 12 classes, further work by Godazgar

[5] found that consideration of the reality conditions brought the total number

of classes down to 8. It was proposed that these can be arranged in order of

“specialness” as shown in figure 3.1. We only consider real spacetimes in this

section. The de Smet labels work as follows. The numbers indicate the rank of

each factorised part of the Weyl polynomial and groups of underlined numbers

signify that these are repeated factors. Thus, a 211 indicates a Weyl polynomial

with one factor quadratic in ξ and two factors linear in ξ. If the spacetime is a

22, then there are two identical quadratic factors.

4

22

31

211 1111 1111

22

0

Figure 3.1 The real de Smet classification proposed by [4] and restricted
with reality conditions by [5] contains 8 classes including the flat
spacetime class 0, for which the Weyl tensor vanishes.

We can interpret the de Smet construction in terms of our formalism by expanding

equation (3.75) in terms of its little group irreps. Because our formalism splits the

spacetime into totally symmetric little group irreps, the factorisation properties

can be easily investigated. To take a simple example, let us consider a spacetime

for which only ψ
(2)
tr is non-zero (such as the Tangherlini-Schwarzschild solution),

so that

W = ψ
(2)
tr (εac εbd + εad εbc) (n ◦ ξ)a (n ◦ ξ)b (k ◦ ξ)c (k ◦ ξ)d

= 2ψ
(2)
tr [(n ◦ ξ), (k ◦ ξ)]2.

(3.100)

We have used [·, ·] to indicate a contraction on little group spinor indices,

distinguishing it from the centre dot “ ◦ ” used to indicate contraction on

spacetime spinor indices. Clearly, this factorises beautifully into a de Smet 22,

which means that the Weyl polynomial factorises into two identical bi-spinors.

Next, consider a type III solution for which only χ(3) is non-zero. The Weyl
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polynomial is

W = −
(
εab χ

(3)
cd + εac χ

(3)
bd + εad χ

(3)
bc

)
(n ◦ ξ)a (k ◦ ξ)b (k ◦ ξ)c (k ◦ ξ)d

= − 3 [n ◦ ξ, k ◦ ξ]
[
k ◦ ξ, θ(3)

] [
k ◦ ξ, κ(3)

]
,

(3.101)

where, in the last line, we have used the property that symmetric SU(2) bi-

spinors can always be written as the symmetrisation of two spinors to define

χ
(3)
ab ≡ θ

(3)
(a κ

(3)
b) . This has de Smet type 211. Using the k↔ n symmetry, we can

see that χ(1) must also be a 211:

W = −3 [n ◦ ξ, k ◦ ξ]
[
n ◦ ξ, θ(1)

] [
n ◦ ξ, κ(1)

]
, (3.102)

where again we have defined χ
(1)
ab ≡ θ

(1)
(a κ

(1)
b) . By contrast, when χ(2) gives the sole

contribution to ΨABCD, the Weyl polynomial has de Smet class 22:

W = −3 [n ◦ ξ, k ◦ ξ]
{[

n ◦ ξ, θ(2)
] [

k ◦ ξ, κ(2)
]

+
[
n ◦ ξ, κ(2)

] [
k ◦ ξ, θ(2)

]}
.

(3.103)

The ψ(i)’s also have characteristic de Smet types. For example, if only ψ(4) is

non-zero as for a type N spacetime, then the Weyl spinor is oriented in the k

direction as

ΨABCD = ψ
(4)
abcd k(A

a kB
b kC

c kD)
d. (3.104)

The explicit symmetrisation on the little group indices is not required, and thus

the Weyl polynomial factorises totally to form a de Smet 1111:

W =
[
k ◦ ξ, α(4)

] [
k ◦ ξ, β(4)

] [
k ◦ ξ, γ(4)

] [
k ◦ ξ, δ(4)

]
. (3.105)

Using the invariance of de Smet classes under the interchange n ↔ k, we can

see that ψ(0) is also of this type. However, the remaining ψ(i) do require proper

symmetrisation over the little group indices, leading to sums over the different

permutations which do not factorise at all and are de Smet 4’s. For example, the

Weyl polynomial for ψ(1) is:

W =
∑

Perms {α,β,γ,δ}

[
k ◦ ξ, α(1)

] [
n ◦ ξ, β(1)

] [
n ◦ ξ, γ(1)

] [
n ◦ ξ, δ(1)

]
. (3.106)

As usual, ψ(3) can be obtained by k ↔ n interchange. The expression for ψ(2) is

very similar, except that it contains 6 terms due to the symmetrisation over two
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k’s and two n’s.

As we can see, the de Smet classification is highly sensitive to the fine structure

of the Weyl tensor. This is summarised in table 3.11. At this point, it is possible

to see that the hierarchy between de Smet classes proposed in [4] and shown in

figure 3.1 is not actually present. For example, the 211 class does not contain

the full 1111 class. A spacetime formed of more than one irrep will generically

be a de Smet 4. Although some special multi-irrep spacetimes exist, which are

detailed in appendix A, there are not very many of them and they arise only in

highly specialised circumstances. This explains the disagreement between the de

Smet and CMPP classifications elucidated by Godazgar in [5]. On the one hand,

because the CMPP classification is sensitive to the presence of the reducible

little group spinors, it attributes the same Petrov class to a number of different

possible de Smet classes5. On the other hand, the de Smet classification is most

sensitive to the presence of a single irrep, irrespective of its boost weight. The

two classifications clearly disagree in the notion of algebraic specialness.

Little group irreps de Smet class

ψ
(0)
abcd 1111

ψ
(1)
abcd χ

(1)
ab 4 211

ψ
(2)
abcd χ

(2)
ab Ψ

(2)
tr ↔ 4 22 22

ψ
(3)
abcd χ

(3)
ab 4 211

ψ
(4)
abcd 1111

Table 3.11 The de Smet class of each little group irrep. The irreps are arranged
by boost weight in the vertical direction and by dimension in the
horizontal direction. Note the reflection symmetry in the central
horizontal line, indicating invariance under the k ↔ n interchange.

3.4.5 Further refinements

The classification we propose is based on identifying representations of the little

group: the ψ
(i)
abcd, for i = 0, . . . , 4, χ

(j)
ab , for j = 1, 2, 3, and Ψ

(2)
tr . An algebraically

general spacetime has a full set of these objects, none of which are vanishing, and

furthermore satisfying no algebraic relations amongst them.

5Although of course the refined CMPP classification in [37, 39] captures the little group
irreps in full detail.
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Algebraically special cases can occur in a number of ways. We have already

observed that it is possible for some of the little group objects to vanish, and

a more subtle possibility is that one or more of the ψ
(i)
abcd’s could be type D. In

terms of spinors, we can always find two-component spinors αa, βb, γc and δd such

that ψ
(i)
abcd = α(aβbγcδd) for a particular i. In the type D case, there are really

only two different spinors up to scaling. In group theoretic terms, this particular

ψ(i) is actually a three-dimensional representation rather than a five-dimensional

representation.

It is also possible to have situations in which spinors are shared among different

little group objects. In the complex case, there are many possibilities, but in the

real case we are more limited. It is still possible that χ(i) ∝ χ(j) for some choices

of i and j. Alternatively, it could happen that a particular ψ could be composed

of some χ: e.g., ψ
(1)
abcd = χ

(2)
(abχ

(2)
cd). The de Smet classification can be sensitive to

such alignments in particular cases, as we discuss in Appendix A.

3.5 Higher dimensions

Although we focused on five dimensions in the previous sections, our approach is

quite general. Indeed, our starting point, the spinor-helicity method, is available

in any number of dimensions [9, 30, 31]. In this section we will briefly discuss

the classification in six dimensions. As this is an even number of dimensions, we

choose a chiral basis of spinors, with Clifford algebra

σµABσ̃
BC ν + σνABσ̃

BC µ = −2ηµν1CA. (3.107)

It happens that the Lie algebra of the Lorentz group in six dimensions, so(6), is

isomorphic to su(4). This is reflected in the facts that the spinor representation

of so(6) is the four-dimensional fundamental representation of su(4). From the

point of view of su(4), the six-dimensional vector representation of so(6) is the

antisymmetric tensor product of two 4s. Consequently, we can choose σµ and σ̃µ

to be antisymmetric 4× 4 matrices.

In six dimensions, the little group is SO(4) ∼= SU(2) × SU(2) /Z2, so our first

task is to understand how this product group structure is encoded in the spinors.

Let kµ be a six-dimensional null vector; then we define spinors associated with
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the vector by

k · σABkBa = 0. (3.108)

The index a labels linearly independent solutions of this equation. The matrix

k ·σAB has vanishing determinant and, in fact, has rank 2. Thus the label a takes

values 1 and 2.

How can we reconstruct the null vector k from the spinor kAa? The observation

that the 6 is an antisymmetric combination of two 4s is helpful. There are

six linearly independent 4 × 4 antisymmetric matrices, so if we expand an

antisymmetric combination of the two spinors kAa (for a = 1, 2) on the basis

σµAB, the result is guaranteed to transform as a vector. Since kµ is the only

vector available, we simply have to fix the normalisation. Indeed,

kµ =
1

2
√

2
kAa σ

µ
AB kBa, (3.109)

where kAa = εabk
Ab; from this perspective, the matrix εab is introduced to

antisymmetrise the two possible ka spinors.

This expression, equation (3.109), is manifestly invariant under an SU(2)

transformation ka → Ua
bk
b. This is part of the SO(4) little group. The other

SU(2) factor acts on the anti-chiral spinors defined via

k · σ̃ABk̃B
ȧ = 0, (3.110)

which implies that we may also write kµ as

kµ =
1

2
√

2
k̃Aȧ σ̃

µAB k̃B
ȧ. (3.111)

To construct the analogue of the NP tetrad in six dimensions we pick a second

null vector n with the property that k · n = −1, and introduce spinors nAȧ and

ñA
a. Then

nµ =
1

2
√

2
nAȧ σ

µ
AB nBȧ (3.112)

=
1

2
√

2
ñAa σ̃

µAB ñB
a. (3.113)

The set of spinors kAa, nAȧ, k̃A
a, ñA

a spans the spinor spaces, so it is a simple

matter to break the 15 degrees of freedom of the tracefree 2-form spinor FA
B

57



and the 84 degrees of freedom in the Weyl spinor CAB
CD into little group irreps.

Because this is done in exactly the same way as we did for five dimensions (subject

to the details of the spinor spaces), we are guaranteed that the connection to

CMPP will continue to be expressed. The representations of the little group

spinors are now labelled by two numbers in six dimensions, (i, j), and the boost

weight is given by their average. The CMPP classification is simply the statement

that each row of tables 3.12 and 3.13 for the 2-form and Weyl tensor, respectively,

vanishes appropriately.

The appearance of a second number in the little group representation labels is

due to a second symmetry in the irreps, that of an interchange between the

two SU(2) parts of the little group. This corresponds to an interchange i ↔ j

and dotted to undotted indices a ↔ ȧ, and manifests itself as a vertical line

of symmetry through the centre of tables 3.12 and 3.13. This also explains the

shape of the tables: previously, in five dimensions, where there was only a single

SU(2) little group, these decompositions had the shape of arrowheads which

when reflected through the vertical axis form the characteristic rhombi of six

dimensions. The dimensions of the irreps are not as regular as five dimensions,

but have the pleasing distribution shown in figure 3.2 for the case of the Weyl

spinor, laid next to their five-dimensional equivalent for comparison.

Reducible spinors Irreducible spinors Irrep dimensionality

Φ
(0,0)

aḃ
φ

(0,0)

aḃ
2× 2

Φ
(0,2)
ab Φ

(2,0)

ȧḃ
⇒ φ

(0,2)
ab Φ

(1,1)
tr φ

(2,0)

ȧḃ
⇔ 1× 3 1× 1 3× 1

Φ
(2,2)
ȧb φ

(2,2)
ȧb 2× 2

Table 3.12 The six-dimensional 2-form contains 4 reducible little group
representations, which can be broken into 5 irreps. The rows
are organised by boost weight, equal to the average of the
bracketed superscripts. The columns are arranged such that the
representations respect the SU(2) interchange symmetry through the

central vertical axis, hence the scalar Φ
(1,1)
tr = εab Φ

(0,2)
ab = εȧḃ Φ

(2,0)

ȧḃ
sits at the centre of the array.
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Reducible 6D little group spinors Irreducible 6D little group spinors

Ψ
(0,0)

(ab) (ċḋ)
ψ

(0,0)

ab ċḋ

Ψ
(0,2)

(ab) cḋ
Ψ

(2,0)

aḃ ċḋ
ψ

(0,2)

abcḋ
χ

(1,1)

aḃ
ψ

(2,0)

aḃċḋ

Ψ
(0,4)
(ab) (cd) Ψ

(2,2)

aḃ cḋ
Ψ

(4,0)

(ȧḃ) (ċḋ)
⇒ ψ

(0,4)
abcd χ

(1,3)
ab Ψ

(2,2)
tr χ

(3,1)

ȧḃ
ψ

(4,0)

ȧḃċḋ

Ψ
(2,4)
ȧb (cd) Ψ

(4,2)

(ȧḃ) ċd
ψ

(2,4)
ȧbcd χ

(3,3)
ȧb ψ

(4,2)

ȧḃċd

Ψ
(4,4)

(ȧḃ) (cd)
ψ

(4,4)

(ȧḃ)cd

Table 3.13 Connections between the traces of the reducible six-dimensional
little group spinors allow us to break down the components into
irreps. The indices of the reducible spinors (left) are organised in
symmetrised pairs such that two like indices, for example ab or ċḋ
comprise 3 degrees of freedom each, while pairs such as aḃ and ċd
have no symmetrisation and constitute 4 degrees of freedom. For the
table of irreducible representations on the right, all indices of the
same SU(2) type (i.e. dotted or undotted) are totally symmetric.
The boost weight of each representation (i, j) is given by (i+ j)/2.

5 × 1 3 × 1 1 × 1 1 × 3 1 × 5

4 × 2 2 × 2 2 × 4

4 × 2 2 × 2 2 × 4

3 × 3

3 × 3

m + n = 6

m + n = 4

m + n = 2

(a) D = 6

5

3

1

3

5

5

3

5

5

d = 1

d = 3

d = 5

(b) D = 5

Figure 3.2 The irreps of the six-dimensional Weyl spinor m × n form a kite-
like pattern (3.2a), while the the irreps of the five-dimensional Weyl
spinor can be arranged in an arrowhead with concentric arrows of
irrep dimension d (3.2b). As usual, rows correspond to boost weight.
Each concentric rhombus corresponds to a different value of m+n.

3.6 Discussion

We have demonstrated that higher-dimensional spinors provide a convenient

formalism for the algebraic classification of spacetimes, extending Penrose’s
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spinorial approach to the Petrov classification in four dimensions. The crucial

element of the higher-dimensional spinorial construction, first proposed in [9] in

the context of particle physics, is the explicit consideration of the little group. We

have shown that the formalism not only leads naturally to the CMPP classification

and its refinements, but it also allows for a natural connection with the de Smet

classification. In particular, we have demonstrated that the de Smet classes

mostly correspond to spacetimes where a single little group irrep is present, except

for interesting cases where algebraic relations exist between distinct irreps. This

analysis completes the work begun by [5].

In this work, we have set up a basic framework but there is much to be done.

We have not described in detail the choice of vector basis (pentad in five

dimensions) that makes manifest the algebraic properties of a spacetime. We

have also only considered a few very simple examples of solutions to the Einstein

equations. Further work should provide us with invaluable intuition for the

interpretation of the various algebraic classes. Moreover, we have not discussed

here the higher-dimensional extension of the Newman-Penrose formalism for the

Einstein equations, which has been the subject of much previous work concerning,

for instance, problems of existence and stability of solutions [75–85]. Another

interesting problem to investigate with our formalism is the use of curvature (and

Cartan) invariants to characterise spacetimes; see [86] for a brief introduction and

[87–90] for recent work on this topic.

To the obvious possible directions mentioned above, we add one further direction

that we already alluded to in the introduction. This is the ‘double copy’ between

gauge theory and gravity, which appeared in the context of scattering amplitudes,

and whose application to classical solutions is now under study. The existence

of an analogy is, of course, natural from discussions such as the one in this

chapter, when comparing the classifications of the field strength tensor and the

Weyl tensor. The point is, however, that there is a precise formulation of the

double copy in this context. This is the subject of the paper [66], and it was an

important motivation for us to revisit the classification problem in this chapter.

In the second half of the thesis we will discuss more to do with the double copy

and its relations with exact solutions.
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Part II

The double copy in GR
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Chapter 4

BCJ duality and the double copy

Our most refined understanding of nature is founded on two major theoretical

frameworks: general relativity and Yang-Mills theory. There is much in common

between these two: local symmetries play an important role in their structure;

there are simple action principles for both theories; the geometry of fibre bundles

is common to the physical interpretation of the theories. But at the perturbative

level, general relativity seems to be a vastly different creature to Yang-Mills

theory. Indeed, the Einstein-Hilbert Lagrangian, when expanded in deviations of

the spacetime metric from some reference metric (such as the Minkowski metric)

contains terms with arbitrarily many powers of the deviations. This is in stark

contrast to the Yang-Mills Lagrangian, which contains at most fourth order terms

in perturbation theory. Nevertheless, a powerful correspondence between the two

exists called the double copy. In this chapter, we will review the double copy

and take its classical limit. The chapter references work done in collaboration

with Andrés Luna, Ricardo Monteiro, Alexander Ochirov, Donal O’Connell, Chris

White and Niklas Westerberg in [2, 3].

4.1 GR and perturbation theory

In the first half of this thesis, we focused on exact solutions to the Einstein

equations. However, only very limited solutions to general relativity’s field

equations can be understood in this framework, and for the remainder we must use

perturbative field theory techniques. The Einstein-Hilbert action in D dimensions

62



is given by

SEH =
2

κ2

∫
dDx
√−gR (4.1)

where κ is the gravitational constant κ2 = 32πGN which couples the gravitational

field to matter. We can expand around a flat Minkowski background in terms of

κ:

gµν = ηµν + κhµν (4.2)

to find the perturbations of the gravitational field hµν around the flat background.

However, expanding Einstein-Hilbert action this way will create an expression

containing infinitely many terms, since the inverse metric gµν which enters the

definition R multiple times, can only satisfy gµαg
αν = δµ

ν as an infinite series:

gµν = ηµν − κhµν + κ2hµαh
αν − κ3hµαhαβh

βν + ... (4.3)

where indices on hµν are raised and lowered using the Minkowski metric. There

is also an infinite series of terms from
√−g. Schematically, the Einstein-Hilbert

action will look like

SEH =

∫
dDx

(
h∂2h+ κh2∂2h+ κ2h3∂2h+ ...+ κnhn+1∂2h+ ...

)
, (4.4)

where each term indicates a group of terms with some complicated index

structure. There are some gauge fixings and field redefinitions that can be done

to simplify matters, such as the field redefinition hµν =
√
ggµν − ηµν which in the

de Donder gauge ∂µh
µν = 0 simplifies the 3-graviton vertex to

δS3EH

δhµ1ν1(k1)δhµ2ν2(k2)δhµ3ν3(k3)
= −1

8
symP6

{
− 4ηµ3µ2ην2µ1ην3ν1k2 · k3

+ 2ηµ2ν2ηµ3µ1ην3ν1k2 · k3 − ηµ2ν2ηµ3ν3k2µ1k3ν1

+ 2ηµ3µ2ην2ν3k2µ1k3ν1 + 4ηµ2µ1ην3ν1k2µ3k3ν2

}
.

(4.5)

Here “sym” indicates a symmetrization on each index pair αi, βi, i = 1, 2, 3 while

P6 indicates a summation over the six permutations of the particle number i.

The 60 terms in this expression when expanded out are merely the beginning of

the problem, as each of the infinitely many more n-graviton vertex expressions

contain even more terms. A review of the progress made in perturbative gravity

calculations is given in [91].
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4.2 Squaring relations in amplitudes

Of course, if we wished to calculate the 3-point graviton amplitude M3 we would

actually fix it using little group symmetry and locality as described in section

1 and therefore bypass these complicated expressions. This gives a remarkable

result, namely that the 3-point graviton amplitude is the square of the Yang-Mills

3-gluon amplitude found in equation (1.25):

M3(1−2−3+) =

( 〈12〉3
〈23〉〈31〉

)2

=
(
A3(1−2−3+)

)2
. (4.6)

This fact is part of a much larger equivalence called the KLT relations [92]. These

remarkable relations link gravity to gauge theory by considering open and closed

strings: a closed string can be expressed as the product of one left-moving open

string and one right-moving open string. When the field theory limit is taken,

closed string vertex operators become gravity amplitudes while open ones turn

into gauge theory amplitudes, giving the relation:

M tree
n (1, 2, ..., n) =i(−1)n+1

[
Atreen (1, 2, ..., n)

∑
perms

f(l1, ...li)f̃(r1, ..., rj)

× Ãtreen (l1, ..., lj, 1, n− 1, r1, ..., rj, n)

]
+ P(2, ..., n− 2)

(4.7)

where the notation of [93] has been used. The sum over the permutations refers to

the permutations of {l1, ..., li} and also {r1, ..., rj}, while the notation P(2, ..., n−
2) indicates an additional sum over all permutations of the legs {2, ..., n−2}. The

functions f and f̃ are products of Mandelstam invariants given explicitly in the

appendix of [93]. Therefore the KLT relations and the Yang-Mills Lagrangian

together can be used to reconstruct the Lagrangian of general relativity [94].

4.2.1 BCJ duality

A more convenient expression of this fact was found in [10, 42, 95]. It requires

us to express the full Yang-Mills amplitude, including colour factors, in terms of

cubic vertices by breaking up quartic interaction terms. Then an m-point tree-

level amplitude in non-abelian gauge theory may be written in the general form
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Atree
m = gm−2

∑
i∈Γ

ni ci∏
αi
p2
αi

, (4.8)

where g is the coupling constant, and the sum is over the set of cubic graphs Γ.

The denominator arises from propagators associated with each internal line, and

ci is a colour factor obtained by dressing each vertex with structure constants.

Finally, ni is a kinematic numerator, composed of momenta and polarisation

vectors, where i runs over the diagrams. The form is not unique, however, owing

to the fact that the numerators {ni} can be modified by gauge transformations

and field redefinitions, neither of which affect the amplitude. A compact way to

summarise this is that one is free to modify each individual numerator according

to the generalised gauge transformation

ni → ni + ∆i,
∑
i

∆ici∏
αi
p2
αi

= 0, (4.9)

where the latter condition expresses the invariance of the amplitude.

As we showed in section 1, the colour factors of the diagrams ci can always

be expressed in terms of traces of the generators T a and therefore obey Jacobi

relations of the form ci + cj + ck = 0 for some i, j, k running over the list of

diagrams. Other pairs of diagrams are simply related by ci = −cj. It turns out

that it is always possible to find numerators such that the ni obey identical

relationships. For example in a five-point amplitude there are 15 different

diagrams, of which only 6 have independent colour factors. The remainder

can be expressed using expressions of the form ci + cj + ck = 0, or ci = −cj.
Colour-kinematics duality tells us that it is possible to make a choice of kinematic

numerators such that the relations obeyed by the ni are identical. The validity

of the BCJ double copy and the existence of colour-dual numerators has been

proven at tree-level [47, 95–102] (where it is equivalent to the KLT relations [92]).

One very exciting feature of the BCJ procedure is that it admits a simple

extension to loop diagrams in the quantum theory [42]. This extension remains

conjectural, but it has been verified in highly non-trivial examples at multi-loop

level [42, 93, 103–123]. All-order evidence can be obtained in special kinematic

regimes [48, 105, 124–126], but a full proof of the correspondence has to date

been missing (see, however, refs. [127–141] for related studies).
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The BCJ choice of numerators is not unique. Consider the 4-point amplitude

which has three diagrams corresponding to the s, t and u channels. The expression

can be written as

Atree
4 =

csns
s

+
ctnt
t

+
cunu
u

(4.10)

for some choice of ni which obeys colour-kinematics duality. If we make the

transformation

ns → ns + s∆, nt → nt + t∆, nu → nu + u∆ (4.11)

for some arbitrary function of the momenta and polarisations ∆, then the Jacobi

identity cs + ct + cu = 0 ensures that the amplitude is invariant:

Atree
4 → Atree

4 + (cs + ct + cu)∆ = Atree
4 . (4.12)

The duality hints at an intriguing correspondence between colour and kinematic

degrees of freedom that is still not fully understood, although progress has

been made in the self-dual sector of the theory [47]. More generally, the field-

theory limit of superstring theory has been very fruitful for understanding colour-

kinematics duality [101, 140, 142] and there has been recent progress on more

formal aspects of the duality [143–145].

4.2.2 The double copy

Now the magic of the BCJ basis is that when the gauge theory numerators

ni are given in this form, performing the replacement ci → ñi obtains gravity

amplitudes:

M tree
n =

∑
i

niñi
Παip

2
αi

. (4.13)

As we will see in chapter 6, this gravity theory depends on which gauge theory

the kinematic numerators are taken from and is often used in the context of

supergravity. The new kinematic numerators ñi do not need to be in a form that

respects colour-kinematics duality: as long as they are a valid representation of

the same Yang-Mills amplitude as the ni then as in equation (4.9), the difference

∆i ≡ ñi − ni must satisfy ∑
i

ci∆i

Παip
2
αi

= 0. (4.14)
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This argument holds despite knowing nothing about the colour factors except

that they come from a non-abelian group whose structure constants obey the

Jacobi identities. This is true by design for the kinematic numerators ni as well,

so ∑
i

ni∆i

Παip
2
αi

= 0 (4.15)

is also true, and therefore

M tree
n =

∑
i

niñi
Παip

2
αi

=
∑
i

(ni)
2

Παip
2
αi

. (4.16)

We will not use the quantum form of the double copy much in the following

sections. Instead, we will take the classical limit and consider only general

relativity. Since colour-kinematics duality has been proven to hold for all n-point

tree level diagrams, it is also true classically in most situations, see for example

[11]. In order to relate the double copy to general relativity, we need to consider

the vacuum expectation value of a field rather than its amplitude - namely LSZ

reduction from n-point functions to amplitudes. The process of extracting the

metric from Feynman diagrams is demonstrated in [146] for the Schwarzschild

solution. Then it is clear that we expect the double copy to live in the metric

perturbation as we will demonstrate in the next two chapters.
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Chapter 5

Bremsstrahlung and an exact

double copy

5.1 Introduction

In the previous section, we reviewed the incredible way that BCJ duality and

the double copy relates general relativity and Yang-Mills theory. Motivated by

this, a double copy for classical field solutions (which we will refer to as the

classical double copy) was proposed [12]. This classical double copy is similar

in structure to the BCJ double copy for scattering amplitudes: in both cases,

the tensor structure of gravity is constructed from two copies of the vector

structure of gauge theory. In addition, scalar propagators are present in both

cases; these scalars are exactly the same in gauge and gravitational processes.

However, the classical double copy [12] was previously only understood for the

special class of Kerr-Schild solutions in general relativity. This reflects the

particularly simple structure of Kerr-Schild metrics: the Kerr-Schild ansatz has

the remarkable property that the Einstein equations exactly linearise. Therefore

we can anticipate that any Yang-Mills solution related to a Kerr-Schild spacetime

must be particularly simple. Indeed, the authors of [12] showed that any

stationary Kerr-Schild solution has a well-defined single copy that satisfies the

Yang-Mills equations, which also take the linearised form. While the structure of

the classical double copy is very reminiscent of the BCJ double copy, so far no

precise link has been made between the two. One aim of the present chapter is

to provide such a link.
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Although the classical double copy is only understood for a restricted class of

solutions, many of these are familiar. For example, the Schwarzschild and Kerr

black holes are members of this class; in higher dimensions, the Myers-Perry black

holes are included [12]. The relationship between classical solutions holds for all

stationary Kerr-Schild solutions, but other Kerr-Schild solutions are known to

have appropriate single copies. A particularly striking example is the shockwave

in gravity and gauge theory; the double copy of this pair of solutions was pointed

out by Saotome and Akhoury [48]. In further work, the classical double copy

has been extended [43] to the Taub-NUT solution [147, 148], which has a double

Kerr-Schild form and whose single copy is a dyon in gauge theory.

Despite this success, Kerr-Schild solutions are very special and do not easily

describe physical systems which seem very natural from the point of view of the

double copy for scattering amplitudes. For example, there is no two-form field or

dilaton on the gravity side; there are no non-abelian features on the gauge theory

side; the status of the sources must be better understood. In cases where the

sources are point particle-like, the classical double copy relates the gauge theory

current density to the gravity energy-momentum tensor in a natural way [12, 43].

For extended sources, extra pressure terms on the gravity side are needed to

stabilise the matter distribution. Furthermore, reference [44] pointed out that in

certain gravity solutions the energy-momentum tensor does not satisfy the weak

and/or strong energy conditions of general relativity.

In this chapter, we will extend the classical double copy of [12, 43] by considering

one of the simplest situations involving explicit time dependence, namely that of

an arbitrarily accelerating, radiating point source. We will see that this situation

can indeed be interpreted in the Kerr-Schild language, subject to the introduction

of additional source terms for which we provide a clear interpretation. One

important fact which will emerge is that these sources themselves have a

double copy structure. We will demonstrate that the sources can be related

directly to scattering amplitudes, maintaining the double copy throughout. This

provides a direct link between the classical double copy and the BCJ procedure

for amplitudes, strongly bolstering the argument that these double copies are

the same. The gravitational solution of interest to us is a time-dependent

generalisation of the Schwarzschild solution; we will see that this gravitational

system is a precise double copy of an accelerating point particle. Since there is
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a double copy of the sources, and these describe the radiation fields, we learn

that the gravitational radiation emitted by a black hole which undergoes a short

period of acceleration is a precise double copy of electromagnetic Bremsstrahlung.

The structure of the chapter is as follows. In section 5.2, we briefly review

the Kerr-Schild double copy. In section 5.3, we present a known Kerr-Schild

solution for an accelerating particle, before examining its single copy. We will

find that additional source terms appear in the gauge and gravity field equations,

and in section 5.4 we relate these to scattering amplitudes describing radiation,

by considering the example of Bremsstrahlung. In section 5.5, we examine the

well-known energy conditions of GR for the solutions under study. Finally, we

discuss our results and conclude in section 5.6. Technical details are contained

in appendix B. The chapter is based on work done in collaboration with Andrés

Luna, Ricardo Monteiro, Donal O’Connell and Chris White in [2].

5.2 Review of the Kerr-Schild double copy

Let us begin with a brief review of the Kerr-Schild double copy, originally

proposed in [12, 43]. We define the graviton field as in chapter 4 via

gµν = ḡµν + κhµν , κ =
√

32πGN (5.1)

where GN is Newton’s constant, and ḡµν is a background metric, which, for the

purposes of the present paper, we will take to be the Minkowski metric.1 There

is a special class of Kerr-Schild solutions of the Einstein equations, in which the

graviton has the form

hµν = −κ
2
φkµkν , (5.2)

consisting of a scalar function φ multiplying the outer product of a vector kµ with

itself. We have inserted a negative sign in this definition for later convenience.

The vector kµ must be null and geodesic with respect to the background:

ḡµν k
µ kν = 0, (k ·D)k = 0, (5.3)

where Dµ is the covariant derivative with respect to the background metric.

It follows that kµ is also null and geodesic with respect to the metric gµν .

These solutions have the remarkable property that the Ricci tensor with mixed

1We continue to work with a negative signature metric η = diag(1,−1,−1,−1).
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upstairs/downstairs indices is linear in the graviton. More specifically, one has

Rµ
ν = R̄µ

ν − κ
[
hµρR̄

ρ
ν −

1

2
Dρ (Dνh

µρ +Dµhρν −Dρhµν)

]
, (5.4)

where R̄µν is the Ricci tensor associated with ḡµν , and we have used the fact that

hµµ = 0. It follows that the Einstein equations themselves linearise. Furthermore,

it was shown in [12] that for every stationary Kerr-Schild solution (i.e. where

neither φ nor kµ has explicit time dependence), the gauge field

Aaµ = caφ kµ, (5.5)

for a constant colour vector ca, solves the Yang-Mills equations. Analogously to

the gravitational case, these equations take a linearised form due to the trivial

colour dependence of the solution. We then refer to such a gauge field as the

single copy of the graviton hµν , since it involves only one factor of the Kerr-Schild

vector kµ rather than two. Note that the scalar field φ is left untouched by this

procedure. This was motivated in [12] by taking the zeroth copy of equation (5.5)

(i.e. stripping off the remaining kµ factor), which leaves the scalar field itself.

The zeroth copy of a Yang-Mills theory is a biadjoint scalar field theory, and

the field equation linearises for the scalar field obtained from equation (5.5).

The scalar function φ then corresponds to a propagator, and is analogous to the

untouched denominators (themselves scalar propagators) in the BCJ double copy

for scattering amplitudes.

Source terms for the biadjoint, gauge and gravity theories also match up in

a natural way in the Kerr-Schild double copy. Point-like sources in a gauge

theory map to point particles in gravity, where electric and (monopole) magnetic

charge are replaced by mass and NUT charge respectively [43]. Extended source

distributions (such as that for the Kerr black hole considered in [12]) lead to

additional pressure terms in the gravity theory, which are needed to stabilise the

source distribution so as to be consistent with a stationary solution. Conceptual

questions relating to extended source distributions have been further considered

in [44], regarding the well-known energy conditions of general relativity. In this

work, we will consider point-like objects throughout, and therefore issues relating

to extended source distributions will not trouble us. Nevertheless we will discuss

the energy conditions in section 5.5 below.
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Let us emphasise that the Kerr-Schild double copy cannot be the most general

relationship between solutions in gauge and gravity theories. Indeed, the field one

obtains upon taking the outer product of kµ with itself is manifestly symmetric.

Moreover, the null condition on kµ means that the trace of the field vanishes.

Hence, the Kerr-Schild double copy is unable to describe situations in which a two-

form and/or dilaton are active in the gravity theory. This contrasts sharply with

the double copy procedure for scattering amplitudes, which easily incorporates

these fields. We will demonstrate how these fields can be incorporated in chapter

6. Furthermore, Yang-Mills amplitudes only obey the double copy when written

in BCJ dual form, meaning that certain Jacobi relations are satisfied by the

kinematic numerator functions [10, 42, 95]. It is not known what the analogue of

this property is in the classical double copy procedure. All of these considerations

suggest that the Kerr-Schild story forms part of a larger picture, and in order

to explore this it is instructive to seek well-defined generalisations of the results

of [12, 43].

5.3 Kerr-Schild description of an accelerating

point particle

In this chapter, we will go beyond previous work on the Kerr-Schild double

copy [12, 43] by considering an accelerating point particle. This is a particularly

attractive case, because an accelerating point particle must radiate, so we may

hope to make direct contact between the double copy for scattering amplitudes

and for Kerr-Schild backgrounds. We first describe a well-known Kerr-Schild

spacetime containing an accelerating point particle, before constructing the

associated single-copy gauge theoretic solution. We find that the physics of

the single copy is particularly clear, allowing a refined understanding of the

gravitational system. We will build on this understanding in section 5.4 to

construct a double copy pair of scattering amplitudes from our pair of Kerr-Schild

solutions in gauge theory and gravity in a manner that preserves the double copy

throughout.
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Figure 5.1 Geometric interpretation of the Kerr-Schild solution for an
accelerated particle.

5.3.1 Gravity solution

Consider a particle of mass M following an arbitrary timelike worldline y(τ),

parametrised by its proper time τ so that the proper velocity of the particle is

the tangent to the curve

λµ =
dyµ

dτ
. (5.6)

An exact Kerr-Schild spacetime containing this massive accelerating particle is

known, though the spacetime contains an additional stress-energy tensor; we

will understand the physical role of this stress-energy tensor below. A useful

geometric interpretation of the null vector kµ appearing in the solution has been

given in [149–151] (see [23] for a review), as follows. Given an arbitrary point

yµ(τ) on the particle worldline, one may draw a light cone as shown in figure 5.1.

At all points xµ along the light-cone, one may then define the null vector

kµ(x) =
(x− y(τ))µ

r

∣∣∣∣
ret

, r = λ · (x− y)|ret , (5.7)

where the instruction ret indicates that y and λ should be evaluated at the

retarded time τret, i.e. the value of τ at which a past light cone from xµ intersects

the worldline. Calculations are facilitated by noting that:

∂µkν = ∂νkµ =
1

r

(
ηµν − λµkν − kµλν − kµkν (−1 + rk · λ̇)

)
, (5.8)

∂µr = λµ + kµ(−1 + rk · λ̇), (5.9)
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where dots denote differentiation with respect to the proper time τ .

The Kerr-Schild metric associated with this particle is

gµν = ηµν −
κ2

2
φkµkν (5.10)

where kµ is precisely the vector of equation (5.7) and different functional forms for

φ lead to different solutions. The scalar function corresponding to an accelerating

particle is given by [152]

φ =
M

4πr
. (5.11)

Plugging this into the Einstein equations, one finds

Gµ
ν ≡ Rµ

ν −
R

2
δµν =

κ2

2
TKS

µ
ν , (5.12)

where2

T µνKS =
3M

4π

k · λ̇
r2

kµkν

∣∣∣∣∣
ret

. (5.13)

Thus, the use of Kerr-Schild coordinates for the accelerating particle leads to

the presence of a non-trivial energy-momentum tensor on the right-hand side

of the Einstein equations. We can already see that this extra term vanishes

in the stationary case (λ̇µ = 0), consistent with the results of [12]. More

generally, this stress-energy tensor T µνKS describes a pure radiation field present

in the spacetime. The physical interpretation of this source is particularly clear

in the electromagnetic “single copy” of this system, to which we now turn.

5.3.2 Single copy

Having examined a point particle in arbitrary motion in a Kerr-Schild spacetime,

we may apply the classical single copy of equation (5.5) to construct a

corresponding gauge theoretic solution. This procedure is not guaranteed to

work, given that the single copy of [12, 43] was only shown to apply in the

case of stationary fields. However, we will see that we can indeed make sense

of the single copy in the present context. Indeed, the physical interpretation

2We note what appears to be a typographical error in [23], where the energy-momentum
tensor contains an overall factor of 4 rather than 3. We have explicitly carried out the calculation
leading to equation (5.12), and found agreement with [149–151].
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of the stress-energy tensor T µνKS we encountered in the gravitational situation is

illuminated by the single copy.

The essence of the Kerr-Schild double-copy is a relationship between gauge

theoretic solutions Aµ = kµφ and Kerr-Schild metrics which is simply expressed

as kµ → kµkν . Thus, the single-copy of

hµν = −Mκ

2

1

4πr
kµkν (5.14)

is3

Aµ = g
1

4πr
kµ, (5.15)

where g is the coupling constant.4 Inserting this gauge field into the Yang-Mills

equations, one finds that non-linear terms vanish, leaving the Maxwell equations

∂µFµν = jKS ν , (5.16)

where

Fµν = ∂µAν − ∂νAµ (5.17)

is the usual electromagnetic field strength tensor.

A key result is that the current density appearing in the Maxwell equations is

given by

jKS ν = 2
g

4π

k · λ̇
r2

kν

∣∣∣∣∣
ret

. (5.18)

It is important to note that the current density jKS is related to the energy-

momentum tensor, equation (5.13), we encountered in the gravitational case.

Indeed the relationship between these sources is in accordance with the Kerr-

Schild double copy: it involves a single factor of the Kerr-Schild vector kµ, with

similar prefactors, up to numerical constants. We will return to this interesting

fact in the following section.

3In principle, one should include an arbitrary colour index on the field strength and current
density. Given that the field equations are Abelian, however, we ignore this. The resulting
solution can be easily embedded in a non-abelian theory, as in [12, 43]. Note that the Abelian
character of this theory also implies that we make the replacement Mκ

2 → g (cf. equation (38)
from [12]).

4The relative sign between hµν and Aµ is necessary in our conventions to ensure that positive
masses yield attractive gravitational fields while positive scalar potentials A0 are sources for
electric field lines E = −∇A0.
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The role of the Kerr-Schild current density jKS can be understood by examining

our single-copy gauge field, equation (5.15), in more detail. Let us compute the

electromagnetic field strength tensor of this system. Using the results (5.8) and

(5.9), it is easy to check that

Fµν = ∂µAν − ∂νAµ =
g

4πr2
(kµλν − λµkν) . (5.19)

A first observation about this field strength tensor is that it falls off as 1/r2

and does not depend on the acceleration of the particle. Therefore, it does not

describe the radiation field of the accelerated point particle in empty space, since

the radiation fields must fall off as 1/r and are linear in the acceleration. Secondly,

this tensor is manifestly constructed from Lorentz covariant quantities. In the

instantaneous rest frame of the particle, λµ = (1, 0, 0, 0) and kµ = (1, r̂), and in

this frame it is easy to see that the field strength is simply the Coulomb field

of the point charge. Therefore, in a general inertial frame, our field strength

tensor describes precisely the boosted Coulomb field of a point charge, omitting

the radiation field completely.

The absence of radiation in the electromagnetic field strength makes the

interpretation of the current density jKS in the Maxwell equation obvious. This

source must describe the radiation field of the point particle. To see this more

concretely, let us compare our Kerr-Schild gauge field to the standard Liénard-

Wiechert solution AµLW = g
4πr
λµ, which describes a point particle moving in an

arbitrary manner in empty space (see e.g. [153]). This comparison is facilitated

by defining a “radiative gauge field”

Aµrad =
g

4πr
(λµ − kµ), (5.20)

which satisfies

F µν
rad ≡ ∂µAνrad − ∂νAµrad =

g

4πr
(kµβν − βµkν) , (5.21)

where βµ = λ̇µ − λµk · λ̇. Thus, F µν
rad is the radiative field strength of the point

particle: it is linear in the particle acceleration, and falls off as 1/r at large

distances.
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Now, since the Liénard-Wiechert field is a solution of the vacuum Maxwell

equation, we know that ∂µ (F µν + F µν
rad) = 0 and, consequently,

∂µF
µν
rad = −jνKS. (5.22)

We interpret jKS as a divergence of the radiative field strength: we have put the

radiation part of the gauge field on the right-hand side on the Maxwell equations,

rather than the left.

Let us now summarise what has happened. By choosing Kerr-Schild coordinates

for the accelerating particle in gravity, an extra energy-momentum tensor T µνKS

appeared on the right-hand side of the Einstein equations. The single copy

turns an energy density into a charge density (as in [12, 43, 44]). Thus, the

energy-momentum tensor in the gravity theory becomes a charge current jµKS in

the gauge theory. We have now seen that this current represents the radiation

coming from the accelerating charged particle, and this also allows us to interpret

the corresponding energy-momentum tensor on the gravity side: it represents

gravitational radiation from an accelerating point mass.

Indeed, our use of Kerr-Schild coordinates forced the radiation to appear in this

form. The vector kµ which is so crucial for our approach is twist-free: ∂µkν = ∂νkµ.

It is known that twist-free, vacuum, Kerr-Schild metrics are of Petrov type D, and

therefore there is no gravitational radiation in the metric; see [23] for a review.

Correspondingly, the radiation is described by the Kerr-Schild sources.

The radiation fields of the accelerating charge in gauge theory, and the acceler-

ating point mass in gravity, are described in Kerr-Schild coordinates by sources

jµKS and T µνKS . The structure of these sources reflects the Kerr-Schild double copy

procedure: up to numerical factors, one replaces the vector kµ by the symmetric

trace-free tensor kµkν to pass from gauge theory to gravity. This relationship

between the sources, which describe radiation, is highly suggestive. Indeed, it

is a standard fact that scattering amplitudes can be obtained from (amputated)

currents. We may therefore anticipate that the structural relationship between

the Kerr-Schild currents is related to the standard double copy for scattering

amplitudes.

Nevertheless, there are still some puzzles regarding the analysis above. What,
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for example, are we to make of the different numerical factors appearing in the

definitions equations (5.13) and (5.18) of the Kerr-Schild stress tensor and current

density? If these sources are related to amplitudes, we expect a double copy

which is local in momentum space. How can our currents be local in position

space? More generally, how can we be sure that the Kerr-Schild double copy is

indeed related to the standard BCJ procedure? The answer to these questions

is addressed in the following section, in which we interpret the radiative sources

directly in terms of scattering amplitudes.

Before proceeding, however, let us comment on the physical interpretation of the

particle in the solutions under study. We considered how the particle affects the

gauge or gravity fields, but we did not consider the cause of the acceleration of

the particle, i.e. its own equation of motion. In the standard Liénard-Wiechert

solution, the acceleration is due to a background field. It is therefore required

that this background field does not interact with the radiation, otherwise the

solution is not valid. This is true in electromagnetism or in its embedding in

Yang-Mills theory. However, in the gravity case, one cannot envisage such a

situation. Therefore, one should think of this particle merely as a boundary

condition, and not as a physical particle subject to forces which would inevitably

affect the Einstein equations. What we are describing here is a mathematical map

between solutions in gauge theory and gravity, a map which exists irrespective of

physical requirements on the solutions. In a similar vein, [44] showed that energy-

momentum tensors obtained through the classical double copy do not necessarily

obey the positivity of energy conditions in general relativity.

5.4 From Kerr-Schild sources to amplitudes

In the previous section, we saw that the Kerr-Schild double copy can indeed

describe radiating particles. The radiation appears as a source term on the right-

hand side of the field equations. In this section, we consider a special case of

this radiation, namely Bremsstrahlung associated with a sudden rapid change in

direction. By Fourier transforming the source terms in the gauge and gravity

theory to momentum space, we will see that they directly yield known scattering

amplitudes which manifestly double copy. Moreover, the manipulations required

to extract the scattering amplitudes in gauge theory and in gravity are precisely

parallel. We will preserve the double copy structure at each step, so that the

double copy property of the scattering amplitudes emerges from the kµ → kµkν
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structure of the Kerr-Schild double copy. In this way, we firmly establish a

link between the classical double copy and the BCJ double copy of scattering

amplitudes.

In order to study Bremsstrahlung, we consider a particle which moves with

velocity

λµ(τ) = uµ + f(τ)(u′
µ − uµ), (5.23)

where

f(τ) =

{
0, τ < −ε
1, τ > ε

(5.24)

and, in the interval (−ε, ε), f(τ) is smooth but otherwise arbitrary. This describes

a particle which moves with constant velocity λµ = uµ for τ < −ε, while for τ > ε

the particle moves with a different constant velocity λµ = u′µ. Thus, the particle

undergoes a rapid change of direction around τ = 0, assuming ε to be small. The

form of f(τ) acts as a regulator needed to avoid pathologies in the calculation that

follows. However, dependence on this regulator cancels out, so that an explicit

form for f(τ) will not be needed. Owing to the constant nature of u and u′, the

acceleration is given by

λ̇µ = ḟ(τ)
(
u′
µ − uµ

)
. (5.25)

The acceleration vanishes for τ < −ε and τ > ε, but is potentially large in the

interval (−ε, ε). Without loss of generality, we may choose the spatial origin to

be the place at which the particle changes direction, so that yµ(0) = 0.

5.4.1 Gauge theory

We first consider the gauge theory case, and start by using the definitions of

equations (5.7) to write the current density of equation (5.18) as

jνKS =
2g

4π

∫
dτ

λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]4
(x− y(τ))νδ(τ − τret), (5.26)

where we have introduced a delta function to impose the retarded time constraint.

Using the identity

δ(τ − τret)

λ · (x− y(τ))
= 2θ(x0 − y0(τ))δ

(
(x− y(τ))2

)
, (5.27)
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one may rewrite equation (5.26) as

jνKS =
4g

4π

∫
dτ

λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]3
(x−y(τ))νθ(x0−y0(τ))δ

(
(x− y(τ))2

)
. (5.28)

Any radiation field will be associated with the non-zero acceleration only for

|τ | < ε, where yµ(τ) is small. We may thus neglect this with respect to xµ in

equation (5.28). Substituting equation (5.25) then gives

jνKS =
4g

4π
xνθ(x0)δ(x2)

∫ ε

−ε
dτ

bḟ(τ)

(a+ bf(τ))3
, (5.29)

where

a = x · u, b = x · u′ − x · u. (5.30)

The integral is straightforwardly carried out to give

jνKS = −2g

4π
xνθ(x0)δ(x2)

[
1

(x · u′)2
− 1

(x · u)2

]
=

2g

4π
θ(x0)δ(x2)

[
∂

∂u′ν

(
1

x · u′
)
− (u′ → u)

]
. (5.31)

One may now Fourier transform this expression, obtaining a current depending

on a momentum k conjugate to the position x. As our aim is to extract a

scattering amplitude from the Fourier space current, j̃µKS(k), we consider only

the on-shell limit of the current where k2 = 0; we also drop terms in j̃µKS(k) which

are proportional to kµ as these terms are pure gauge. The technical details are

presented in appendix B, and the result is

j̃νKS(k) = −ig
(
u′ν

u′ · k −
uν

u · k

)
. (5.32)

We may now interpret this as follows. First, we note that the current results from

acting on the radiative gauge field with an inverse propagator, consistent with the

LSZ procedure for truncating Green’s functions. It follows that the contraction

of j̃νKS with a polarisation vector gives the scattering amplitude for emission of a

gluon. Upon doing this, one obtains the standard eikonal scattering amplitude

for Bremsstrahlung (see e.g. [154])

Agauge ≡ εν(k)j̃νKS = −ig
(
ε · u′
u′ · k −

ε · u
u · k

)
. (5.33)
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We thus see directly that the additional current density in the Kerr-Schild

approach corresponds to the radiative part of the gauge field.

5.4.2 Gravity

We now turn to the gravitational case. Our goal is to extract the eikonal scattering

amplitude for gravitational Bremsstrahlung from the Kerr-Schild stress-energy

tensor T µνKS for a particle of mass M moving along precisely the same trajectory

as our point charge. Thus, the acceleration of the particle is, again,

λ̇µ = ḟ(τ)
(
u′
µ − uµ

)
. (5.34)

The calculation is a precise parallel to the calculation of the Bremsstrahlung

amplitude for the point charge. However, as we will see, the presence of an

additional factor of the Kerr-Schild vector kν in the gravitational case leads to

a slightly different integral which we encounter during the calculation. This

integral cancels the factor of 3 which appears in T µνKS , restoring the expected

numerical factors in the momentum space current. Let us now turn to the explicit

calculation.

We begin by writing the stress tensor as an integral over a delta function which

enforces the retardation and causality constraints

T µνKS =
3M

2π

∫
dτ

λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]4
(x− y(τ))µ(x− y(τ))νθ(x0 − y0(τ))

× δ
(
(x− y(τ))2

)
,

(5.35)

corresponding to equation (5.28) in the gauge theoretic case. The fourth power in

the denominator in the gravitational case arises as a consequence of the additional

factor of kµ = (x− y(τ))µ/[λ(τ) · (x− y(τ))]. As before, the integral is strongly

peaked around yµ = 0, and we may perform the integral in this region to find

that

T µνKS = −2M

4π
xµxνθ(x0)δ(x2)

[
1

(x · u′)3
− 1

(x · u)3

]
= −M

4π
θ(x0)δ(x2)

[
∂

∂u′µ

∂

∂u′ν

(
1

x · u′
)
− (u′ → u)

]
. (5.36)
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Notice that the factor 3 in the numerator of the stress-energy tensor has cancelled

due to the additional factor of λ(τ)·(x−y(τ)) in the denominator of the integrand

in the gravitational case. The double copy structure is evidently now captured by

a replacement of one derivative ∂
∂u′ν

in gauge theory with two derivatives ∂
∂u′µ

∂
∂u′ν

in gravity.

Our next step is to Fourier transform to momentum space. The calculation is

extremely similar to the gauge theoretic case (again, see appendix B). As our

goal is to compute a scattering amplitude, we work in the on-shell limit k2 = 0

and omit pure gauge terms. After a short calculation, we find

T̃ µνKS (k) = −iM
(
u′µu′ν

u′ · k −
uµuν

u · k

)
. (5.37)

To construct the scattering amplitude, we must contract this Fourier-transformed

stress-energy tensor with a polarisation tensor, which may be written as an outer

product of two gauge theory polarisation vectors:

εµν(k) = εµ(k)εν(k). (5.38)

The scattering amplitude is then given by

Agrav ≡ εµ(k)εν(k)T̃ µνKS (k) = −iM
(
ε · u′ ε · u′
u′ · k − ε · u ε · u

u · k

)
, (5.39)

corresponding to the known eikonal amplitude for gravitational Bremsstrahlung [155].

Again we see that the additional source term in the Kerr-Schild approach

corresponds to the radiative part of the field. Furthermore, in this form the

standard double copy for scattering amplitudes is manifest: numerical factors

agree between equations (5.32) and (5.37), such that the mass in the gravity

theory is replaced with the colour charge in the gauge theory, as expected from

the usual operation of the classical single copy [12, 43].

Let us summarise the results of this section. We have examined the particular case

of a particle which undergoes a rapid change in direction, and confirmed that the

additional source terms appearing in the Kerr-Schild description (in both gauge

and gravity theory) are exactly given by known radiative scattering amplitudes.

This directly links the classical double copy to the BCJ procedure for amplitudes.
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It is interesting to compare the BCJ double copy for scattering amplitudes with

the Kerr-Schild double copy, which has been formulated in position space. It is

clear that momentum space is the natural home of the double copy. For scattering

amplitudes, the amplitudes themselves and the double copy procedure are local in

momentum space. In our Bremsstrahlung calculation, the numerical coefficients

in the sources are also more natural after the Fourier transform. On the other

hand, the currents T µνKS and jνKS are also local in position space. This unusual

situation arises because the scattering amplitudes do not conserve momentum:

in any Bremsstrahlung process, some momentum must be injected in order to

bend the point particle trajectory. Of course, in the case of a static point

particle locality in both position space and momentum space is more natural.

This is reflected by the structure of the Fourier transform in the present case: as

explained in appendix B, the factor 1/x ·u describing a particle worldline Fourier

transforms to an integrated delta function
∫∞

0
dm δ4(q−mu) (see equation (B.3)).

5.5 Gravitational energy conditions

In this section, we consider the null, weak and strong energy conditions of general

relativity. These were recently examined in the context of the Kerr-Schild double

copy in [44], where it was shown that extended charge distributions double copy

to matter distributions that cannot simultaneously obey the weak and strong

energy conditions, if there are no spacetime singularities or horizons. Although

the point particle solution of interest to us has both singularities and horizons, it

is still interesting to examine the energy conditions.

The null energy condition on a given energy-momentum tensor can be expressed

by

Tµν`
µ`ν ≥ 0, (5.40)

where `µ is any future-pointing null vector. The weak energy condition is similarly

given by

Tµνt
µtν ≥ 0, (5.41)

for any future-pointing timelike vector tµ. The interpretation of this condition

is that observers see a non-negative matter density. The null energy condition

is implied by the weak energy condition (despite the names, the former is the

weakest condition). One may also stipulate that the trace of the tidal tensor
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n

Figure 5.2 Physical interpretation of (k · λ̇), where this denotes the component
of acceleration in the direction nµ.

measured by such an observer is non-negative, which leads to the strong energy

condition

Tµνt
µtν ≥ T

2
gµνt

µtν , T ≡ Tαα . (5.42)

Let us now examine whether these conditions are satisfied by the Kerr-Schild

energy-momentum tensor of equation (5.13). First, the null property of the vector

kµ implies that the trace vanishes, so that the weak and strong energy conditions

are equivalent. We may further unify these with the null energy condition, by

noting that equation (5.13) implies

T µνKS VµVν = (k · λ̇)

[
3M(k · V )2

4πr2

]
, (5.43)

for any vector V µ. The quantity in the square brackets is positive definite, so

that whether or not the energy conditions are satisfied is purely determined by

the sign of k · λ̇. This scalar quantity is easily determined in the instantaneous

rest-frame of the point particle; it is the negative of the component of acceleration

in the direction nµ of the observer (at the retarded time), see figure 5.2. Thus

the energy conditions are not satisfied throughout the spacetime. In particular,

any observer which sees the particle accelerating towards (away from) her will

measure a negative (positive) energy density.

We remind the reader that the energy-momentum tensor is, in the case under

study, an effective way of representing the full vacuum solution. The latter

will have no issues with energy conditions. Analogously, the Liénard-Wiechert
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vacuum solution in gauge theory can be represented, as we have shown in

section 5.3, by a boosted Coulomb field, together with a charged current encoding

the radiation.

5.6 Discussion

In this chapter, we have extended the classical double copy of [12, 43] to consider

accelerating, radiating point sources. This significantly develops previous results,

which were based on stationary Kerr-Schild solutions, to a situation involving

explicit time dependence. The structure of the double copy we have observed in

the radiating case is precisely as one would expect. Passing from the gauge to

the gravity theory, the overall scalar function φ is left intact; indeed it is the well-

known scalar propagator in four dimensions. This is the same as the treatment

of scalar propagators in the original BCJ double copy procedure for amplitudes.

Similarly, the tensor structure of the gravitational field is obtained from the gauge

field by replacing the vector kµ by the symmetric, trace-free tensor kµkν . Finally,

our use of Kerr-Schild coordinates in gravity linearised the Einstein tensor (with

mixed indices). Reflecting this linearity, the associated single copy satisfies the

linearised Yang-Mills equations.

It is worth dwelling a little on the physical implication of our work. The classical

double copy is known to relate point sources in gauge theory to point sources in

general relativity, in accordance with intuition arising from scattering amplitudes.

In this chapter, we have simply considered the case where the point sources move

on a specified, arbitrarily accelerated, timelike worldline. On general grounds we

expect radiation to be emitted due to the acceleration. Our use of Kerr-Schild

coordinates organised the radiation into sources appearing on the right-hand side

of the field equations: a current density in gauge theory, and a stress-energy tensor

in gravity. Intriguingly, we found that the expressions for these sources also have

a double copy structure: one passes from the gauge current to the gravitational

stress-energy tensor by replacing kµ by kµkν while leaving a scalar factor intact, up

to numerical factors which are canonical in momentum space. Since these sources

encode the complete radiation fields for the accelerating charge and point mass,

there is a double copy between the radiation generated by these two systems.

This double copy is a property of the exact solution of gauge theory and general

relativity.
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We further extracted one simple perturbative scattering amplitude from this

radiation field, namely the Bremsstrahlung scattering amplitude. The double

copy property was maintained as we extracted the scattering amplitude, which

firmly establishes a link between the double copy for amplitudes and the double

copy for classical solutions.

However, we should emphasise one unphysical aspect of our setup. We mandated

a worldline for our point particle in both gauge theory and general relativity.

In gauge theory, this is fine: one can imagine that an external force acts on

the particle causing its worldline to bend. However, in general relativity such

an external force would contribute to the stress-energy tensor in the spacetime.

Since we ignored this component of the stress-energy tensor, our calculation is not

completely physical. Instead, one should regard the point particle in both cases

as a specified boundary condition, rather than as a physical particle. We have

therefore seen that the radiation generated by this boundary condition enjoys a

precise double copy.

There are a number of possible extensions of our results. One may look at

time-dependent extended sources in the Kerr-Schild description, for example,

or particles accelerating in non-Minkowski backgrounds (for preliminary work in

the stationary case, see [43]). It would also be interesting to examine whether

a double copy procedure can be set up in other coordinate systems, such as

the more conventional de Donder gauge. One particularly important issue is

to understand the generalisation of the colour-dual requirement on kinematic

numerators to classical field backgrounds. The Jacobi relations satisfied by colour-

dual numerators hint at the existence of a kinematic algebra [47, 143] underlying

the connection between gauge theory and gravity; revealing the full detail of this

structure would clearly be an important breakthrough. The study of the classical

double copy is in its infancy, and many interesting avenues have yet to be explored.

In the next chapter we will focus on extending our understanding of the classical

double copy to arbitrary gauge. We will use the de Donder gauge, taking into

account that the use of a gauge with trace requires the use of projectors to remove

the dilaton field.
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Chapter 6

Perturbative spacetimes from the

double copy

6.1 Introduction

The existence of the double copy hints at a profound relationship between gauge

and gravity theories, that should transcend perturbative amplitudes. To this end,

the previous chapter discussed work done in [2, 12, 43, 44] which generalised the

notion of the double copy to exact classical solutions. That is, a large family of

gravitational solutions was found that could be meaningfully associated with a

gauge theory solution, such that the relationship between them was consistent

with the BCJ double copy. As we described in chapter 5, these solutions all had

the special property that they linearised the Einstein and Yang-Mills equations,

so that the graviton and gauge field terminate at first order in the coupling

constant, with no higher-order corrections. A special choice of coordinates

(Kerr-Schild coordinates) had to be chosen in the gravity theory, reminiscent

of the fact that the amplitude double copy is not manifest in all gauge choices.

An alternative approach exists in a wide variety of linearised supersymmetric

theories which consists of writing the graviton as a direct convolution of gauge

fields [49, 50, 52, 156–158]. This in principle works for general gauge choices, but

it is not yet clear how to generalise this prescription to include non-linear effects.

One may also consider whether the double copy can be generalised to intrinsically

non-perturbative solutions, and first steps have been taken in [159].
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As is hopefully clear from the above discussion, it is not yet known how to

formulate the double copy for arbitrary field solutions, and in particular for

those which are non-linear. However, such a procedure would have highly useful

applications. Firstly, the calculation of metric perturbations in classical general

relativity is crucial for a plethora of astrophysical applications, but is often

cumbersome. A non-linear double copy would allow one to calculate gauge

fields relatively simply, before porting the results to gravity. Secondly, hints were

provided in [43] that the double copy may work in a non-Minkowski spacetime.

This opens up the possibility to obtain new insights (and possible calculational

techniques) in cosmology.

The aim of this chapter is to demonstrate explicitly how the BCJ double copy

can be used to generate non-linear gravitational solutions order-by-order in

perturbation theory1, from simpler gauge theory counterparts. This is similar

in spirit to work done in [160–162], which extracted both classical and quantum

gravitational corrections from amplitudes obtained from gauge theory ingredients;

and to [146, 163], which used tree-level amplitudes to construct perturbatively the

Schwarzschild spacetime. Recently, the double copy procedure has been studied

in [51] for classical radiation emitted by multiple point charges. Here we take a

more direct approach, namely to calculate the graviton field generated by a given

source, rather than extracting this from a scattering amplitude. Another recent

work proposes applications to cosmological gravitational waves, pointing out a

double copy of radiation memory [164].

As will be explained in detail in what follows, our scheme involves solving

the Yang-Mills equations for a given source order-by-order in the coupling

constant. We then copy this solution by duplicating kinematic numerators,

before identifying a certain product of gauge fields with a two-index field Hµν ,

motivated by [95]. This field contains degrees of freedom associated with a

conventional graviton hµν , together with a scalar field φ and two-form field Bµν .

For convenience, we will refer to Hµν as the fat graviton, and the physical field

hµν as the skinny graviton. As we will see, the skinny fields hµν , Bµν and φ can

be obtained from knowledge of Hµν , though this extraction requires knowledge

of a certain gauge transformation and field redefinition in general.

1This is the post-Minkowskian expansion, as opposed to the post-Newtonian expansion where
the non-relativistic limit is also taken.
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The structure of this chapter is as follows. In section 6.1.1, we briefly review the

BCJ double copy. In section 6.2, we work at leading order in perturbation theory,

and outline our procedure for obtaining gravity solutions from Yang-Mills fields.

In section 6.3, we work to first and second subleading order in perturbation theory,

thus explicitly demonstrating how non-linear solutions can be generated in our

approach. Finally, we discuss our results and conclude in section 6.4. The chapter

is based on work done in collaboration with Andrés Luna, Ricardo Monteiro,

Alexander Ochirov, Donal O’Connell, Chris White and Niklas Westerberg which

was published in [3].

6.1.1 Conventions

As we reviewed in chapter 4, given a gauge theory amplitude in BCJ-dual form,

the double copy prescription states that

Mm = i
(κ

2

)m−2∑
i∈Γ

ni ñi∏
αi
p2
αi

(6.1)

is an m-point gravity amplitude, where

gµν = ηµν + κhµν (6.2)

can be chosen to define the graviton field, and κ =
√

32πG is the gravitational

coupling constant.2 This result is obtained from equation (4.8) by replacing the

gauge theory coupling constant with its gravitational counterpart, and colour

factors with a second set of kinematic numerators ñi. Therefore, the procedure

modifies the numerators of amplitudes term by term, but leaves the denominators

in equations (4.8, 6.1) intact. As we discuss in chapter 5, a similar phenomenon

occurs in the double copy for exact classical solutions of [2, 12, 43], in which

scalar propagators play a crucial role.

The gravity theory associated with the scattering amplitudes (6.1) depends on

the two gauge theories from which the numerators {ni}, {ñi} are taken. In this

chapter, both will be taken from pure Yang-Mills theory, which is mapped by the

double copy to “N = 0 supergravity”. This theory is defined as Einstein gravity

2We work in the mostly plus metric convention.
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coupled to a scalar field φ (known as the dilaton) and a two-form Bµν (known

as the Kalb-Ramond field, which can be replaced by an axion in four spacetime

dimensions). The action for these fields is

S =

∫
dDx
√−g

[
2

κ2
R− 1

2(D − 2)
∂µφ∂µφ−

1

6
e−2κφ/D−2HλµνHλµν

]
, (6.3)

where Hλµν is the field strength of Bµν . In the following, we will study

perturbative solutions of this theory around Minkowski space. The starting point

is to consider linearised fields, for which the equations of motion are

∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ∂µ∂νh+ ηµν
[
∂ρ∂σhρσ − ∂2h

]
= 0,

∂2Bµν − ∂µ∂ρBρν + ∂ν∂
ρBρµ = 0,

∂2φ = 0. (6.4)

Instead of the straightforward graviton field hµν defined by (6.2), we will often

work with the “gothic” metric perturbation hµν such that

√−g gµν = ηµν − κ hµν , (6.5)

as it is common in perturbation theory [165]. In terms of this gothic graviton

field, the de Donder gauge condition is simply ∂µh
µν = 0 to all orders. At the

linear order, the two metric perturbations are simply related:

hµν = hµν −
1

2
ηµνh, (6.6)

and the linear gauge transformation generated by xµ → xµ − κ ξµ is

hµν → h′µν = hµν + ∂µξν + ∂νξµ − ηµν∂ · ξ. (6.7)

This transformation is more convenient in what follows than the standard gauge

transformation for hµν (where the last term is missing). Finally, the linearised

equation of motion is

∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ηµν∂
ρ∂σhρσ = 0. (6.8)

In de Donder gauge, we have simply ∂2hµν = 0.
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6.2 Linear gravitons from Yang-Mills fields

Our goal is to rewrite gravitational perturbation theory in terms of the fat

graviton Hµν , rather than more standard perturbative fields such as {hµν , Bµν , φ}.
The idea is that the fat graviton is the field whose interactions are directly dictated

by the double copy from gauge theory. In this section, we will discuss in some

detail the mapping between the skinny fields and the fat graviton at the linearised

level. Indeed, we will see that there is an invertible map, so that the fat graviton

may be constructed from skinny fieldsHµν = Hµν(hαβ, Bαβ, φ), but also the skinny

fields can be determined from the fat field, hµν = hµν(Hαβ), Bµν = Bµν(Hαβ), φ =

φ(Hαβ). We will determine the relations between the fields beginning with the

simplest case: linearised waves.

6.2.1 Linear waves

As a prelude to obtaining non-linear gravitational solutions from Yang-Mills

theory, we first discuss linear solutions of both theories. The simplest possible

solutions are linear waves. These are well-known to double copy between gauge

and gravity theories (see e.g. [166]). This property is crucial for the double copy

description of scattering amplitudes, whose incoming and outgoing states are

plane waves. Here, we use linear waves to motivate a prescribed relationship

between fat and skinny fields, which will be generalised in later sections.

Let us start by considering a gravitational plane wave in the de Donder gauge.

The free equation of motion for the graviton is simply ∂2hµν = 0. Plane wave

solutions take the form

hµν = aµνe
ip·x, pµaµν = 0, p2 = 0, (6.9)

where aµν is a constant tensor, and the last condition follows from the equation

of motion. Symmetry of the graviton implies aµν = aνµ, and one may also fix a

residual gauge freedom by setting a ≡ aµµ = 0, so that hµν becomes a traceless,

symmetric matrix. It is useful to further characterise the matrix aµν as we did

in chapter 1 by introducing a set of (D− 2) polarisation vectors εiµ satisfying the
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orthogonality conditions

p · εi = 0, q · εi = 0, (6.10)

where qµ (q2 = 0, p ·q 6= 0) is an auxiliary null vector used to project out physical

degrees of freedom for an on-shell massless vector boson. These polarisation

vectors are a complete set, so they satisfy a completeness relation

εiµε
i
ν = ηµν −

pµqν + pνqµ
p · q . (6.11)

Then the equation of motion for hµν , together with the symmetry and gauge

conditions on aµν , imply that one may write

aµν = f
/t
ijε

i
µε

j
ν , (6.12)

where f
/t
ij is a traceless symmetric matrix. Thus, the linearised gravitational waves

have polarisation states which can be constructed from outer products of vector

waves, times traceless symmetric matrices.

Similarly, one may consider linear plane wave solutions for a two-form and φ field.

Imposing Lorenz gauge ∂µBµν = 0 for the antisymmetric tensor, its free equation

of motion becomes simply ∂2Bµν = 0. Thus plane wave solutions are

Bµν = f̃ijε
i
µε

j
νe
ip·x, (6.13)

where f̃ij is a constant antisymmetric matrix. Meanwhile the free equation of

motion for the scalar field is ∂2φ = 0, with plane wave solution

φ = fφe
ip·x. (6.14)

The double copy associates these skinny waves with a single fat graviton field

Hµν satisfying the field equation ∂2Hµν = 0,

Hµν = fijε
i
µε

j
νe
ip·x, (6.15)

where now fij is a general D − 2 matrix and we have chosen a gauge condition
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∂µHµν = 0 = ∂µHνµ. One may write this decomposition as

Hµν =

(
f
/t
ij + f̃ij + δij

fφ
D − 2

)
εiµε

j
νe
ip·x, (6.16)

= hµν +Bµν +

(
ηµν −

pµqν + pνqµ
p · q

)
φ

D − 2
, (6.17)

which explicitly constructs the fat graviton from skinny fields. Working in

position space for constant q, this becomes

Hµν(x) = hµν(x) +Bµν(x) + P q
µνφ, (6.18)

where we have defined the projection operator

P q
µν =

1

D − 2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
, (6.19)

which will be important throughout this article.3

Our goal in this work is not to construct fat gravitons from skinny fields, but

on the contrary to determine skinny fields using a perturbative expansion based

on the double copy and the fat graviton. Therefore it is important that we can

determine the skinny fields given knowledge of the fat graviton. To that end,

recall that we have been able to choose a gauge so that the trace, h, of the metric

perturbation vanishes. Therefore the trace of the fat graviton determines the

dilaton:

φ = Hµ
µ ≡ H. (6.20)

We may now use symmetry to determine the skinny graviton and antisymmetric

tensor from the fat graviton:

Bµν =
1

2
(Hµν −Hνµ) , (6.21)

hµν =
1

2
(Hµν +Hνµ)− P q

µνH. (6.22)

The basic strategy of this construction is simple: we have decomposed the matrix

field Hµν into its antisymmetric, traceless symmetric, and trace parts.

3Notice that P̂ qµν = (D − 2)P qµν is the properly normalised projection operator, such that

P̂ q λµ P̂ q νλ = P̂ q νµ , and P̂ q µµ = D − 2.
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It is worth dwelling on the decomposition of the fat graviton into skinny fields

a little further. Having constructed hµν from the fat graviton, we are free to

consider a gauge transformation of the skinny graviton:

h′µν = hµν + ∂µξν + ∂νξµ − ηµν∂ · ξ (6.23)

=
1

2
(Hµν +Hνµ)− 1

D − 2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
H + ∂µξν + ∂νξµ − ηµν∂ · ξ.

(6.24)

If we choose

ξµ = − 1

D − 2

(
qµ
q · ∂

)
H, (6.25)

then we find that the expression for the h′µν simplifies to

h′µν =
1

2
(Hµν +Hνµ) . (6.26)

Thus, up to a gauge transformation, the skinny graviton is the symmetric part

of the fat graviton. It may be worth emphasising that φ and Bµν also transform

under this gauge transformation, which is, of course, a particular diffeomorphism.

However, the transformation of φ and Bµν is suppressed by a power of κ, and so

we may take them to be gauge invariant for diffeomorphisms at this order.

We will see below that the perturbative expansion for fat gravitons is much

simpler than the perturbative expansion for the individual skinny fields. But

before we embark on that story, it is important to expand our understanding of

the relationship between the fat graviton and the skinny fields beyond the sole

case of plane waves.

6.2.2 General linearised vacuum solutions

For plane waves, the fat graviton is given in terms of skinny fields in equa-

tion (6.18), and at first glance this equation is not surprising: one may always

choose to decompose an arbitrary rank two tensor into its symmetric traceless,

antisymmetric and trace parts. However, equation (6.18) contains non-trivial

physical content, namely that the various terms on the RHS are the genuine

propagating degrees of freedom associated with each of the skinny fields. The

auxiliary vector qµ plays a crucial role here: it is associated in the gauge theory
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with the definition of physical polarisation vectors, and thus can be used to

project out physical degrees of freedom in the gravity theory. One may then

ask whether equation (6.18) generalises for arbitrary solutions of the linearised

equations of motion. There is potentially a problem in that the relationship

becomes ambiguous: the trace of the skinny graviton may be non-zero (as is

indeed the case in general gauges), and one must then resolve how the trace

degree of freedom in Hµν enters the trace of the skinny graviton, and the scalar

field φ. Furthermore, it is not immediately clear that equation (6.18) (derived for

plane waves) will work when non-zero sources are present in the field equations. In

order to use the double copy in physically relevant applications, we must consider

this possibility.

Here we will restrict ourselves to skinny gravitons that are in de Donder gauge.

However, we will relax the traceless condition on the skinny graviton which was

natural in the previous section. To account for the trace, we postulate that

equation (6.18) should be replaced by

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ− h). (6.27)

To be useful, this definition of the fat graviton must be invertible. First, note

that the trace of Hµν determines φ as before, while the antisymmetric part of

Hµν determines Bµν . Finally, the traceless symmetric part of the fat graviton is

1

2
(Hµν +Hνµ)− P q

µνH = hµν(x)− P q
µνh = h′µν(x), (6.28)

where h′µν(x) is a gauge transformation of hµν(x). In practice, we find it useful

to work with hµν(x) rather than h′µν(x), because at higher orders the gauge

transformation to h′µν(x) leads to more cumbersome formulae. It is also worth

noticing that both hµν and h′µν are in de Donder gauge, since

∂µP q
µνh =

1

D − 2

(
∂ν −

qν∂
2 + q · ∂ ∂ν
q · ∂

)
h = − 1

D − 2

qν
q · ∂∂

2h = 0. (6.29)

Our relationship between skinny and fat fields still holds only for linearised

fields; we will explicitly find corrections to equation (6.27) at higher orders in

perturbation theory in section 6.3. Before doing so, however, it is instructive to

illustrate the above general discussion with some specific solutions of the linear

field equations, showing how the fat and skinny fields are mutually related.
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6.2.3 The linear fat graviton for Schwarzschild

One aim of our programme is to be able to describe scattering processes involving

black holes. To this end, let us see how to extend the above results in the presence

of point-like masses. It is easy to construct a fat graviton for the linearised

Schwarzschild metric: we begin by noticing that, in the case of Schwarzschild

(D = 4), we have

hµν(r) =
κ

2

M

4πr
uµuν +O(κ2), Bµν(x) = 0, φ(x) = 0, uµ = (1, 0, 0, 0).

(6.30)

The fat graviton depends on an arbitrary constant null vector qµ. In this section,

for illustration, we will make an explicit choice of qµ = (1, 0, 0, 1) and evaluate

the action of the projector (6.19) in position space in full. A computation gives

Hµν =
κ

2

M

4πr
uµuµ + P q

µν

(
κ

2

M

4πr

)
(6.31)

=
κ

2

M

4πr

(
uµuν +

1

2
(ηµν − qµlν − qνlµ)

)
, (6.32)

where lµ = −(0, x, y, r + z)/(r + z), such that q · l = 1. It is easy to check that

∂µHµν = 0, ∂2Hµν = 0.

Going in the other direction, it is easy to compute the skinny fields given this fat

graviton. Since Hµν is traceless, the dilaton vanishes. Similarly Hµν is symmetric,

and therefore Bµν = 0. The skinny graviton can therefore be taken to be equal

to the fat graviton. While this result seems to be at odds with (6.30), recall that

they differ only by a gauge transformation (which leaves φ and Bµν unaffected

at this order) and that the skinny graviton we recover is traceless, as we would

expect from equation (6.28).

It may not seem that we have gained much by passing to equation (6.32) from

equation (6.30). However, it is our contention that it is simpler to compute

perturbative corrections to metrics using the formalism of the fat graviton than

with the traditional approach. We will illustrate this in a specific example later

in this chapter.
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6.2.4 Solutions with linearised dilatons

The linearised Schwarzschild metric corresponds to a somewhat complicated fat

graviton. Since the fat graviton’s equation of motion is simply ∂2Hµν = 0, it is

natural to consider the solution

Hµν =
κ

2

M

4πr
uµuν , with uµ = (1, 0, 0, 0), (6.33)

which corresponds to inserting a singularity at the origin. We will see that this

solution has the physical interpretation of a point mass which is also a source for

the scalar dilaton. Indeed, the dilaton contained in the fat graviton is given by

its trace:

φ = −κ
2

M

4πr
. (6.34)

Since the fat graviton is symmetric, Bµν = 0. Meanwhile the skinny graviton is

hµν =
κ

2

M

4πr

(
uµuν +

1

2
(ηµν − qµlν − qνlµ)

)
. (6.35)

Again, a linearised diffeomorphism can give the skinny graviton the same form

as the fat graviton.

It is natural to ask what is the non-perturbative static spherically-symmetric

solution for which we are finding the linearised fields. Exact solutions of the

Einstein equations minimally coupled to a scalar field of this form were discussed

by Janis, Newman and Winicour (JNW) [167] and have been extensively studied

in the literature [167–173]. The complete solution is, in fact, a naked singularity,

consistent with the no-hair theorem. The general JNW metric and dilaton can

be expressed as

ds2 = −
(

1− ρ0

ρ

)γ
dt2 +

(
1− ρ0

ρ

)−γ
dρ2 +

(
1− ρ0

ρ

)1−γ

ρ2dΩ2, (6.36)

φ =
κ

2

Y

4πρ0

log

(
1− ρ0

ρ

)
, (6.37)

where the two parameters ρ0 and γ can be given in terms of the mass M and the

scalar coupling Y as

ρ0 = 2G
√
M2 + Y 2 =

(κ
2

)2
√
M2 + Y 2

4π
, γ =

M√
M2 + Y 2

. (6.38)
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For Y = 0 and M > 0, we recover the Schwarzschild black hole, with the event

horizon at ρ = ρ0. For |Y | > 0 and M > 0, the solution also decays for large

ρ, but there is a naked singularity at ρ = ρ0, which now corresponds to zero

radius (since the metric factor in front of dΩ2 vanishes) [167]. We can write the

JNW solution in de Donder gauge by applying the coordinate transformation

ρ = r + ρ0/2, where r is the Cartesian radius in the de Donder coordinates.

Expanding in κ, the result is

hµν =
κ

2

M

4πr
uµuν +

(κ
2

)3 1

8(4πr)2

(
(7M2 − Y 2)uµuν + (M2 + Y 2)r̂µr̂ν

)
+O(κ5),

(6.39)

φ = −κ
2

Y

4πr
+O(κ5), (6.40)

with r̂µ = (0,x/r). Despite its somewhat esoteric nature, this naked singularity

is a particularly natural object from the point of view of the perturbative double

copy. At large distances from the singularity, both the metric perturbation and

the scalar field fall off as 1/r, and for Y = M this leading part reproduces

the skinny fields obtained above, up to a linearised diffeomorphism in hµν . In

Section 6.3, we will discuss the first two non-linear corrections to the JNW metric

using fat gravitons, and, in the case of the first correction, we will match the

expansion above. We conclude that the JNW solution with Y = M is the exact

solution associated to the linearised fat graviton (6.33).

We can also ask what fat graviton would be associated to the general JNW family

of solutions, with M and Y generic. Since we are dealing with linearised fields,

we can superpose contributions, and so we arrive at

Hµν =
κ

2

1

4πr

(
M uµuν + (M − Y )

1

2
(ηµν − qµlν − qνlµ)

)
. (6.41)

The gauge theory “single copy” associated to this field is simply the Coulomb

solution, which presents an apparent puzzle: it is argued in [12] that the double

copy of the Coulomb solution is a pure Schwarzschild black hole, with no dilaton

field. Above, however, the double copy produces a JNW solution. The latter

was also found in [51], which thus concluded that the Schwarzschild solution is

not obtained by the double copy, but can only be true in certain limits (such as

the limit of an infinite number of dimensions). The resolution of this apparent

contradiction is that one can choose whether or not the dilaton is sourced upon
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taking the double copy. It is well-known in amplitude calculations, for example,

that gluon amplitudes can double copy to arbitrary combinations of amplitudes

for gravitons, dilatons and/or B-fields. A simple example is amplitudes for

linearly polarised gauge bosons: the double copied “amplitude” involves mixed

waves of gravitons and dilatons. Thus, the result in the gravity theory depends

on the linear combinations of the pairs of gluon polarisations involved in the

double copy. Here, we may say that the Schwarzschild solution is a double

copy of the Coulomb potential, as given by the Kerr-Schild double copy [12],

just as one may say that appropriate combinations of amplitudes of gluons

lead to amplitudes of pure gravitons. The analogue of more general gravity

amplitudes with both gravitons and dilatons, obtained via the double copy, is the

JNW solution. Therefore the double copy of the Coulomb solution is somewhat

ambiguous: in fact, it is any member of the JNW family of singularities, including

the Schwarzschild metric. Note that the Kerr-Schild double copy is applicable

only in the Schwarzschild special case since the other members of the JNW family

of spacetimes do not admit Kerr-Schild coordinates.

For the vacuum Kerr-Schild solutions studied in [12], in particular for the

Schwarzschild black hole, it was possible to give an exact map between the

gauge theory solution and the exact graviton field, making use of Kerr-Schild

coordinates (as opposed to the de Donder gauge used here). For the general JNW

solution, the double copy correspondence was inferred above from the symmetries

of the problem and from the perturbative results. A more general double copy

map would also be able to deal with the exact JNW solution. This remains an

important goal, and is addressed in appendix C.

6.3 Perturbative Corrections

Now that we have understood how to construct fat gravitons in several cases,

let us finally put them to use. In this section, we will construct non-linear

perturbative correction to spacetime metrics and/or dilatons using the double

copy. Thus, we will map the problem of finding perturbative corrections to a

simple calculation in gauge theory.
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6.3.1 Perturbative metrics from gauge theory

Since the basis of our calculations is the perturbative expansion of gauge theory,

we begin with the vacuum Yang-Mills equation

∂µF a
µν + gfabcAbµF c

µν = 0, (6.42)

where g is the coupling constant, while the field strength tensor is

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (6.43)

We are interested in a perturbative solution of these equations, so that the gauge

field Aaµ can be written as a power series in the coupling:

Aaµ = A(0)a
µ + gA(1)a

µ + g2A(2)a
µ + · · · . (6.44)

In this expansion, the perturbative coefficients A
(i)a
µ are assumed to have no

dependence on the coupling g. We use a similar notation for the perturbation

series for the skinny and fat gravitons:

hµν = h(0)µν +
κ

2
h(1)µν +

(κ
2

)2

h(2)µν + · · · , (6.45)

Hµν = H(0)µν +
κ

2
H(1)µν +

(κ
2

)2

H(2)µν + · · · . (6.46)

We can construct solutions in perturbation theory in a straightforward manner.

To zeroth order in the coupling, the Yang-Mills equation in Lorenz gauge ∂µAaµ =

0 is simply

∂2A(0)a
µ = 0. (6.47)

For our present purposes, two basic solutions of this equation will be of interest:

wave solutions, and Coulomb-like solutions with isolated singularities.

Given a solution A
(0)a
µ of the linearised Yang-Mills equation, it is easy to write

down an expression for the first order correction A
(1)a
µ by expanding the Yang-

Mills equation to first order in g:

∂2A(1)a
ν = −2fabcA(0)bµ∂µA

(0)c
ν + fabcA(0)bµ∂νA

(0)c
µ . (6.48)

The double copy is most easily understood in Fourier (momentum) space. To
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simplify our notation, we define∫
d−DpF (p) ≡

∫
dDp

(2π)D
F (p), δ−D(p) ≡ (2π)Dδ(D)(p). (6.49)

Using this notation, we may write the solution for the first perturbative correction

in Fourier space in the familiar form

A(1)aµ(−p1) =
i

2p2
1

fabc
∫
d−Dp2d

−Dp3δ
−D(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
A

(0)b
β (p2)A(0)c

γ (p3). (6.50)

Notice that the factor in square brackets in this equation obeys the same algebraic

symmetries as the colour factor, fabc, appearing in the equation. This is a

requirement of colour-kinematics duality. Before using the double copy, it is

necessary to ensure that this duality holds.

The power of the double copy is that it is now completely trivial to compute the

perturbative correction H
(1)
µν to a linearised fat graviton H

(0)
µν . All we need to do,

following [10, 42, 95], is to square the numerator in equation (6.50), ignore the

colour structure, and assemble fat gravitons by the rule that A
(0)a
µ (p)A

(0)b
ν (p) →

H
(0)
µν (p). This straightforward procedure leads to

H(1)µµ′(−p1) =
1

4p2
1

∫
d−Dp2d

−Dp3δ
−D(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
(6.51)

×
[
(p1 − p2)γ

′
ηµ

′β′
+ (p2 − p3)µ

′
ηβ

′γ′ + (p3 − p1)β
′
ηγ

′µ′
]
H

(0)
ββ′(p2)H

(0)
γγ′(p3).

Notice that the basic structure of the perturbative calculation is that of gauge

theory. The double copy upgrades the gauge-theoretic perturbation into a

calculation appropriate for gravity, coupled to a dilaton and an antisymmetric

tensor.

As a simple example of this formalism at work, let us compute the first order

correction to the simple fat graviton equation (6.33) corresponding to a metric

and scalar field. To begin, we need to write H
(0)
µν (p) in momentum space; it is

simply

H(0)µν(p) =
κ

2
Muµuν

δ−1(p0)

p2
. (6.52)
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Inserting this into our expression for H(1), equation (6.51), we quickly find

H(1)µµ′(−p1) =
(κ

2

)2 M2

4p2
1

∫
d−3p2d

−3p3δ
−4(p1+p2+p3)

(p2 − p3)µ(p2 − p3)µ
′

p2
2 p

2
3

, (6.53)

where p0
2 = 0 = p0

3, and consequently p0
1 = 0. For future use, we note that

p1µH
(1)µµ′(−p1) = 0. Since all of the components of H(1) in the time direction

vanish, we need only calculate the spatial components H(1)ij. To do so, it is

convenient to Fourier transform back to position space and compute firstly the

Laplacian of ∇2H(1)ij(x); we find

∇2H(1)ij = −
(κ

2

)2 M2

4

∫
d−3p2d

−3p3
e−ip2·xe−ip3·x

p2
2p

2
3

(p2 − p3)i(p2 − p3)j

=
(κ

2

)2 M2

4

∫
d3yδ(3)(x− y)(∇i

x −∇i
y)(∇j

x −∇j
y)

1

4π|x|
1

4π|y|

= −
(κ

2

)2 M2

4(4π)2

(
2δij

r4
− 4xixj

r6

)
. (6.54)

It is now straightforward to integrate this expression using spherical symmetry

and the known boundary conditions to find

H(1)
µν (x) = −

(κ
2

)2 M2

4(4πr)2
r̂µr̂ν , (6.55)

where r̂µ = (0,x/r).

It is interesting to pause for a moment to contrast this calculation with its

analogue in Yang-Mills theory. The simplest gauge counterpart of the JNW

linearised fat graviton is

A(0)a
µ (x) = gcauµ

1

4πr
⇒ A(0)a

µ (p) = gcauµ
δ−1(p0)

p2
. (6.56)

To what extent is the first non-linear correction to the Yang-Mills equation similar

to the equivalent in our double-copy theory? The answer to this question is clear:

they are distinctly different. Indeed, the colour structure of A
(1)a
µ is fabccbcc = 0,

so A
(1)a
µ = 0. However, the kinematic numerator of A

(1)a
µ identified by colour-

kinematics duality is non-zero, so there is no reason for H
(1)
µν to vanish. How

the double copy propagates physical information from one theory to the other is

unclear, but as a mathematical statement there is no issue with using the double

copy to simplify gravitational calculations.
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Given our expression, equation (6.55), for the fat graviton, it is now straightfor-

ward to extract the trace and the symmetric fields:

φ̃(1) ≡ H(1) = −
(κ

2

)2 M2

4(4πr)2
, (6.57)

h̃(1)
µν ≡

1

2

(
H(1)
µν +H(1)

νµ

)
= −

(κ
2

)2 M2

4(4πr)2
r̂µr̂ν . (6.58)

However, we cannot directly deduce that this φ̃(1) is the usual dilaton and

that h̃
(1)
µν is the first order correction to the metric in some well-known gauge.

The double copy is only guaranteed to compute quantities which are field

redefinitions or gauge transformations of the graviton and dilaton. This suggests

structuring calculations to compute only quantities which are invariant under

field redefinitions and gauge transformations [51, 160–162, 174, 175]. However,

if desired, it is nevertheless possible to determine explicitly the relevant field

redefinitions and gauge transformations. This is the topic of the next section.

6.3.2 Relating fat and skinny fields: gauge transformations

and field redefinitions

In section 6.2, we argued that the relationship between the fat and skinny fields

in linear theory is

H(0)
µν (x) = h(0)

µν (x) +B(0)
µν (x) + P q

µν(φ
(0)(x)− h(0)(x)). (6.59)

Beyond linear theory, we can expect perturbative corrections to this formula, so

that

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ(x)− h(x)) +O(κ). (6.60)

We define a quantity Tµν , which we call the transformation function to make this

equation exact:

H(1)
µν (x) = h(1)

µν (x) +B(1)
µν (x) + P q

µν(φ
(1)(x)− h(1)(x)) + T (1)

µν . (6.61)
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We can require that T (1)
µν is only constructed from linearised fields, so that T (1)

µν =

T (1)
µν (h

(0)
αβ , B

(0)
αβ , φ

(0)). More generally, at the nth order of perturbation theory

H(n)
µν (x) = h(n)

µν (x) +B(n)
µν (x) + P q

µν(φ
(n)(x)− h(n)(x)) + T (n)

µν (h
(m)
αβ , B

(m)
αβ , φ

(m)),

(6.62)

where m < n. We can therefore determine T (n)
µν iteratively in perturbation theory.

Before we compute T (1)
µν explicitly, let us pause for a moment to discuss its

physical significance. Our understanding of T (n)
µν rests on two facts. Firstly,

the double copy is known to work to all orders in perturbation theory for

tree amplitudes. Secondly, the classical background field which we have been

discussing is a generating function for tree scattering amplitudes. Therefore it

must be the case that scattering amplitudes computed from the classical fat

graviton background fields equal their known expressions. So consider computing

H
(n)
µν via the double copy, and computing h

(n)
µν , B

(n)
µν and φ(n) using a standard

perturbative solution of their coupled equations of motion. Then the difference

H
(n)
µν − h

(n)
µν − B

(n)
µν (x) − P q

µν(φ
(n)(x) − h(n)(x)) ≡ T (n)

µν must vanish upon use

of the LSZ procedure. We conclude that Tµν parametrises redundancies of the

physical fields which are irrelevant for computing scattering amplitudes: gauge

transformations and field redefinitions. Indeed, the very definition of Tµν requires

choices of gauge: for example, the choice of de Donder gauge for the skinny

graviton.

Since Tµν parametrises choices which can be made during a calculation, such as the

choice of gauge, we do not expect a particularly simple form for it. Nevertheless,

to compare explicit skinny gravitons computed via the double copy with standard

metrics, it may be useful to have an explicit form of T (1)
µν . It is always possible to

compute T (n)
µν directly through its definition, at the expense of perturbatively

solving the coupled Einstein, scalar and antisymmetric tensor equations of

motion. For example, consider the fat graviton H
(1)
µν (x), equation (6.55), we

computed in the previous section. Since there is no antisymmetric tensor in this

system, we may compute T (1)
µν under the simplifying assumption that Bµν = 0

so that Hµν is symmetric. We find that when ∂µh
(0)µν = ∂µH

(0)µν = 0, then the
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transformation function is

T (1)µν(−p1) =

∫
d−Dp2d

−Dp3δ
−D(p1 + p2 + p3)

1

4p2
1

{
H

(0)
2αβH

(0)αβ
3 pµ1p

ν
1

+ 8pα2H
(0)
3αβH

(0)β(µ
2 p

ν)
1 + 8p2 · p3H

(0)µα
2 H

(0)ν
3 α − 2ηµνp2 · p3H

(0)
2αβH

(0)αβ
3

+ 4ηµνpα2H
(0)
3αβH

(0)βγ
2 p3γ + P µν

q

[
2(D − 6)p2 · p3H

(0)
2αβH

(0)αβ
3

− 4(D − 2)pα2H
(0)
3αβH

(0)βγ
2 p3γ

]}
,

(6.63)

where we have used a convenient short-hand notation

Hµν
i ≡ Hµν(pi), p(µqν) ≡ 1

2
(pµqν + pνqµ) . (6.64)

This expression is valid for any symmetric H
(0)
µν , and the extension to general H

(0)
µν

is straightforward.

While the information in the transformation function contains little content of

physical interest, it may be of some interest from the point of view of the

mathematics of colour-kinematics duality. Indeed, in the special case of the

self-dual theory, it is known how to choose an explicit parametrisation of the

metric perturbation so that the double copy is manifest [47]. Choosing these

variables therefore sets Tµν = 0 to all orders, for self-dual spacetimes. Once the

relevant variables have been chosen, then the kinematic algebra in the self-dual

case was manifest at the level of the equation of motion of self-dual gravity: the

algebra is one of area-preserving diffeomorphisms. Perhaps it is the case that an

understanding of the transformation function in the general case will open the

way towards a simple understanding of the full kinematic algebra.

6.3.3 The perturbative corrections to the JNW fields

We are now in a position to convert our fat graviton H
(1)
µν (x), equation (6.55)

into skinny fields. The simple form of the H
(0)
µν (x) leads to a simplification in the

transformation function, since p · u = 0 for a stationary source. Thus T (1)µν is

105



simply

T (1)µν(−p1) =−
(κ

2

)2

M2

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)

1

4p2
1

δ−1(p0
2)

p2
2

δ−1(p0
3)

p2
3

×
{

8p2 · p3u
µuν − pµ1pν1 + 2ηµνp2 · p3 + P µν

q [4p2 · p3]

}
,

(6.65)

in D = 4. Performing the Fourier transform, we find

T (1)
µν (x) = −

(κ
2

)2 [
3uµuν + 2r̂µr̂ν + 2P q

µν

] M2

4(4πr)2
. (6.66)

Let us now extract the skinny fields in de Donder gauge from our fat graviton,

equation (6.55). The relation between the fat and skinny fields is now given by

h(1)
µν (x) + P q

µν

[
φ(1)(x)− h(1)(x)

]
= H(1)

µν (x)− T (1)
µν (x) (6.67)

= −
(κ

2

)2

r̂µr̂ν
M2

4(4πr)2
+
(κ

2

)2 [
3uµuν + 2r̂µr̂ν + 2P q

µν

] M2

4(4πr)2
.

Thus, the dilaton vanishes as anticipated in section 6.2.4, since

φ(1)(x) = H(1)(x)− T (1)(x) = 0. (6.68)

Consequently, the negative of the trace of the metric is the only term acted upon

by P µν
q , so we find

h(1)(x) = −
(κ

2

)2 M2

2(4πr)2
, (6.69)

The metric is easily seen to be

h(1)
µν (x) =

(κ
2

)2

(3uµuν + r̂µr̂ν)
M2

4(4πr)2
, (6.70)

consistent with the anticipated trace, and in agreement with the known result for

the JNW metric, equation (6.39), when M = Y .

6.3.4 Higher orders

In section 6.3.1, we saw how fat graviton fields can be obtained straightforwardly

from perturbative solutions of the Yang-Mills equations. These can then be trans-

lated to skinny fields, if necessary, after obtaining the relevant transformation

functions T µν . Now let us briefly describe how this procedure generalises to
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higher orders.

As we explained in section 6.1.1, the validity of the double copy relies on writing

Yang-Mills diagrams such that colour-kinematics duality is satisfied. But, in

general, a perturbative solution of the conventional Yang-Mills equations will not

satisfy this property. So before using the double copy, one must reorganise the

perturbative solution of the theory so that, firstly, only three-point interaction

vertices between fields occur, and secondly, the numerators of these three-point

diagrams satisfy the same algebraic identities (Jacobi relations and antisymmetry

properties) as the colour factors. The Jacobi identities can be enforced by using

an explicit Yang-Mills Lagrangian designed for this purpose [95, 128]. It is known

how to construct this Lagrangian to arbitrary order in perturbation theory. This

Lagrangian is non-local and contains Feynman vertices with an infinite number

of fields. If desired, it is possible to obtain a local Lagrangian containing only

three point vertices at the expense of introducing auxiliary fields. For now, we

will restrict ourselves to four-point order. At this order Bern, Dennen, Huang

and Kiermaier (BDHK) introduced [95] an auxiliary field Ba
µνρ so as to write a

cubic version of the Yang-Mills Lagrangian,

LBDHK =
1

2
Aaµ∂2Aaµ +Baµνρ∂2Ba

µνρ − gfabc
(
∂µA

a
ν − ∂ρBa

ρµν

)
AbµAcν . (6.71)

Since the role of the field Ba
µνρ is essentially to be a Lagrange multiplier, it is

understood that no sources for Ba
µνρ should be introduced.

To illustrate the procedure in a non-trivial example, let us compute the second

order correction to the JNW fat graviton, H
(2)
µν (x). In fact, a number of

simplifications make this calculation remarkably straightforward. Firstly, the

momentum space equation of motion for the auxiliary field appearing in the

BDHK Lagrangian, equation (6.71), is

p2
1B

(1)a
µνρ (−p1) =

i

4
fabc

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)p1µ

× [ηνβηργ − ηνγηρβ]A(0)bβ(p2)A(0)cγ(p3).

(6.72)

Notice that the term in square brackets is antisymmetric under interchange of

β and γ; imposing this symmetry is a requirement of colour-kinematics duality

because the associated colour structure is antisymmetric under interchange of b
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and c. A consequence of this simple fact is that, in the double copy, the auxiliary

field vanishes in the JNW case (to this order of perturbation theory). In fact,

two auxiliary fields appear in the double copy: one can take two copies of the

field B, or one copy of B times one copy of the gauge boson A. In either case,

the expression for an auxiliary field in the double copy in momentum space will

contain a factor

p1µ [ηνβηργ − ηνγηρβ]H(0)ββ′
(p2)H(0)γγ′(p3)

= p1µ [ηνβηργ − ηνγηρβ]
δ1(p0

2)

p2
2

δ1(p0
3)

p2
3

uβuβ
′
uγuγ

′
= 0,

(6.73)

because of the antisymmetry of the vertex in square brackets, and the factoris-

ability of the tensor structure of the zeroth order JNW expression.

Consequently, the Yang-Mills four-point vertex plays no role in the the double

copy for JNW at second order. Thus the Yang-Mills equation to be solved is

simply

p2
1A

(2)aµ(−p1) = ifabc
∫
d−4p2d

−p3δ
−4(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
A

(0)b
β (p2)A(1)c

γ (p3), (6.74)

using the symmetry of the expression under interchange of p2 and p3. Thus, H(2)

is the solution of

p2
1H

(2)µµ′(−p1) =
1

2

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
(6.75)

×
[
(p1 − p2)γ

′
ηµ

′β′
+ (p2 − p3)µ

′
ηβ

′γ′ + (p3 − p1)β
′
ηγ

′µ′
]
H

(0)
ββ′(p2)H

(1)
γγ′(p3).

This expression simplifies dramatically when we recall that H
(0)
ββ′(p2) and H

(1)
γγ′(p3)

both have vanishing components of momentum in the time direction, so that

p0
2 = 0 = p0

3 = p0
1. Meanwhile H

(0)
ββ′(p2) ∝ uβuβ′ . Thus,

p2
1H

(2)
µµ′(−p1) = 2

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)H

(0)
µµ′(p2) pα2H

(1)
αβ (p3)pβ2 . (6.76)

We find it convenient to Fourier transform back to position space, where we must
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solve the simple differential equation

∂2H
(2)
µµ′(x) = 2H

(1)
αα′∂

α∂α
′
H

(0)
µµ′ . (6.77)

Inserting explicit expressions for H(0), equation (6.33) and H(1), equation (6.55),

and bearing in mind that the situation is static, the differential equation simplifies

to

∇2H
(2)
µµ′(x) = −

(κ
2

)3 M3

(4πr)3

uµuµ′

r2
, (6.78)

with solution

H
(2)
µµ′(x) = −

(κ
2

)3 M3

6(4πr)3
uµuµ′ . (6.79)

We could now, if we wished, extract the metric perturbation and scalar field

corresponding to this expression. Indeed, it is always possible to convert fat

gravitons into ordinary metric perturbations in a specified gauge.

It is possible to continue to continue this calculation to higher orders. In

that case, more work is required in order to satisfy the requirement of colour-

kinematics duality. It is possible to supplement the BDHK Lagrangian by higher-

order effective operators involving the gluon field, constructed order-by-order in

perturbation theory, which act to enforce colour-kinematics duality. Furthermore,

one may introduce further auxiliary fields so that only cubic interaction terms

appear in the Lagrangian. This procedure is explained in detail in [95, 128], and

can be carried out to arbitrary perturbative order. The fat graviton equation

of motion is constructed as a term-by-term double copy of the fields in the

colour-kinematics satisfying Yang-Mills Lagrangian. In this way, it is possible

to calculate perturbative fat gravitons to any order using Yang-Mills theory and

the double copy.

6.4 Discussion

In this chapter, we have addressed how classical solutions of gravitational theories

can be obtained by double-copying Yang-Mills solutions. These results go beyond

the classical double copies of [2, 12, 43, 44, 49, 50, 52, 156–158] in that the

solutions are non-linear. However, the price one pays is that they are no

longer exact, but must be constructed order-by-order in perturbation theory.

We have concentrated on solutions obtained from two copies of pure (non-
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supersymmetric) Yang-Mills theory, for which the corresponding gravity theory

is N = 0 supergravity. The double copy then relates the Yang-Mills fields to

a single field Hµν , that we call the fat graviton, and which in principle can be

decomposed into its constituent skinny fields, which we take to be the graviton

hµν (defined according to equation (6.5)), the dilaton φ, and the two-form Bµν .

Our procedure for calculating gravity solutions is as follows:

1. For a given distribution of charges, one may perturbatively solve the Yang-

Mills equations for the gauge field Aµa, given in terms of integrals of

interaction vertices and propagators.

2. The solution for the fat graviton is given by double copying the gauge

theory solution expression according to the rules of [10, 42, 95] once colour-

kinematics duality is satisfied. That is, one strips off all colour information,

and duplicates the interaction vertices, leaving propagators intact.

3. The fat graviton can in principle be translated into skinny fields using

the transformation law of equation (6.62), which iteratively defines the

transformation function T µν . This function can be obtained from matching

the fat graviton solution to a perturbative solution of the conventional

N = 0 supergravity equations. Once found, however, it can be used for

arbitrary source distributions.

The presence of the transformation function T µν is at first glance surprising. One

may always decompose the fat graviton in terms of its symmetric traceless, anti-

symmetric and trace degrees of freedom. Then one could simply define that these

correspond to the physical graviton, two-form and dilaton. However, one has the

freedom to perform further field redefinitions and gauge transformations of the

skinny fields, in order to put these into a more conventional gauge choice (e.g.

de Donder). The role of T µν is then to perform this redefinition. It follows that

it carries no physical degrees of freedom itself, and indeed is irrelevant for any

physical observable.

We have given explicit examples of fat gravitons, and their relation to de Donder

gauge skinny fields, up to the first subleading order in perturbation theory. We

took a stationary point charge as our source, finding that one can construct either
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the Schwarzschild metric (as in the Kerr-Schild double copy of [12]), or the JNW

solution [167] for a black hole with non-zero scalar field φ. Which solution one

obtains on the gravity side amounts to the choice of whether or not to source the

dilaton upon performing the double copy. This mirrors the well-known situation

for amplitudes, namely that the choice of polarisation states in gauge theory

amplitudes determines whether or not a dilaton or two-form is obtained in the

corresponding gravity amplitudes at tree level. This clarifies the apparent puzzle

presented in [51], regarding whether it is possible for the same gauge theory

solution to produce different gravity solutions.

Underlying the simplicity of the double copy is the mystery of the kinematic

algebra. While it is known that one can always find kinematic numerators for

gauge theory diagrams so that colour-kinematics duality is satisfied, it is not

known whether an off-shell algebraic structure exists in the general case which

can compute these numerators. If this algebra exists, it may further simplify the

calculations we have described in this chapter. The kinematic algebra should

allow for a more algebraic computation of the numerators of appropriate gauge-

theoretic diagrams, perhaps without the need for auxiliary fields. Similarly, it

seems possible that a detailed understanding of the kinematic algebra will go

hand-in-hand with deeper insight into the transformation function Tµν which

parametrises the choice of gauge and field redefinition picked out by the double

copy.

Our ultimate aim is to use the procedure outlined in this chapter in astrophysical

applications, namely to calculate gravitational observables for relevant physical

sources (a motivation shared by [51]). To this end, our fat graviton calculations

must be extended to include different sources, and also higher orders in

perturbation theory. In order to translate the fat graviton to more conventional

skinny fields, one would then need to calculate the relevant transformation

functions T (n)
µν . An alternative possibility exists, namely to calculate physical

observables, which must be manifestly invariant under gauge transformations and

field redefinitions, directly from fat graviton fields, without referring to skinny

fields at all. Work on these issues is ongoing.
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Chapter 7

Conclusions and outlook

In this thesis we have discussed a range of mathematical techniques from particle

physics that can be applied to general relativity. In the first half, we began by

discussing the spinor-helicity formalism and how the elimination of redundant

degrees of freedom and preservation of little group covariance could be used to

uplift the Newman-Penrose procedure from four dimensions to five. In the process

of doing this, we focused on the irreducible representations of the Maxwell and

Weyl spinors to find that they had a non-trivial little group structure. This

led to a better understanding of the relation between the CMPP and de Smet

classifications building on [75]. The lack of overlap between the two classifications

is because the de Smet classification is highly sensitive to which irreducible

little group spinors are non-zero while the CMPP classification is sensitive to

boost weight. Our spinorial formalism ascribes physical degrees of freedom to

components directly and as such in the future it is hoped that it will lead to better

understanding of higher dimensional solutions. In particular, the interesting

solutions of five dimensions such as the black ring, which defies the uniqueness

theorem of four dimensions may be understood and extended.

Also in chapter 3, we sketched a six-dimensional outline of the spinorial

formalism and emphasized that our approach can be generalised to any number

of dimensions. The rich geometries which have already been found in five and

six dimensions are an excellent reason to be interested in higher dimensions, but

there are many formal and phenomenological motivations as well. It can further

be hoped that an excellent understanding of general relativity in an arbitrary

dimension may lead to deeper insight into the theory itself and the theory of
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quantum gravity underlying it.

Turning away from higher dimensions for the second half of the thesis, we

discussed how the structure of the double copy originally found in quantum

scattering amplitudes can also be found in general relativity. We began by

outlining the Kerr-Schild double copy, which had previously been used to relate

stationary exact Kerr-Schild spacetimes to electromagnetism. By considering the

Kinnersley photon rocket, a non-vacuum Kerr-Schild particle which describes an

accelerating mass, we extended the Kerr-Schild double copy to include time-

dependent solutions. Having rewritten the Liénard-Wiechert solution to put

the radiation content as a Maxwell current, it was possible to write the gravity

solution in the form of a double copy of the gauge theory solution, namely an

accelerating charged particle. Taking careful account of the factors of the stress-

energy tensor as compared to the Maxwell current, it was possible to express the

radiation part of the respective sources in terms of scattering amplitudes for the

case of Bremsstrahlung. The resulting expressions were explicitly a double and

single copy of each other. This result is interesting because the nature of the

“null fluid” in the Kinnersley photon rocket has been debated numerous times

over the years and this is an excellent example of how particle physics techniques

can help to bring new light to the discussion.

Part of the reason for the Kerr-Schild double copy’s success is that the Kerr-Schild

choice of coordinates ensures a graviton that is both symmetric and trace-free,

meaning that when the double copy is taken, both the axion and the dilaton

are automatically excluded. To obtain general relativity from the double copy

in general it is necessary to introduce projectors to handle the extra degrees of

freedom. This formalism was introduced in chapter 6 and used the example of

linearized waves to motivate the double copy at zeroth order. Using a simple

stationary massive particle as an example, the formalism was used to generate

the JNW solution for a black hole charged under a dilatonic field to third order.

Making the double copy structure hidden in general relativity explicit is important

because of its potential application to gravitational wave physics: the high

precision of calculations needed for comparison with new gravitational wave

experiments will require all computational tools available. However it is also

very interesting to speculate on the geometric implications of the double copy

and considering exact solutions is an intriguing first step towards this.

A next logical step from this work is to draw these two exciting themes together.
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The classical double copy has been extended to all four dimensional type D

vacuum solutions in the Weyl double copy in [66]. This work shows that the

solutions can be expressed in a double copy-like form through their Weyl and

Maxwell spinors:

ΨABCD =
1

S
Φ(αβΦγδ) (7.1)

where S is a scalar field which plays the role of the ‘propagator’. This relationship

holds for all vacuum four dimensional spacetimes of the type D form and therefore

to test its applicability further it is necessary to find a slightly but not too

much more complicated test bed. Five dimensions is ideal for this purpose. In

particular, the C-metric is a well known non-stationary exact solution, which it

is found in [66] is the double copy of the Liénard-Weichert solution. This is the

vacuum generalisation of the accelerating Kerr-Schild double copy considered in

chapter 5. However, the five-dimensional analogue of the C-metric is unknown.

Using the double copy to generate new five-dimensional black hole solutions would

be an excellent demonstration of its utility.
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Appendix A

Multi-irrep spacetimes in the de

Smet classification

In section 3.4.4, it was shown that the de Smet classification is highly sensitive to

the presence of a single little group irrep. What about when more than one irrep

contributes to the Weyl tensor? Generically, this will lead to a 4. For example, it

can be seen from the discussion in section 3.4.4 that combining a 22 or a 22 with

a 1111 will always produce a 4. Similarly, while de Smet classes are invariant

under the interchange k ↔ n, combining any irrep with its k ↔ n pair creates a

4, if the two irreps are distinct. However, there are two cases when more than

one irrep is present and the spacetime is still special in the de Smet classification:

• Absence of any ψ(i)

The Weyl polynomials of all four irreps of dimension 3 or less contain a

factor [n · ξ, k · ξ]. This means that when only irreps of dimension 3 or less

are present in the spacetime, they will in general form a 22. However, if

χ(1), χ(2) and χ(3) are present and all directly proportional to each other,

they can form into a 211. This works as follows. Let the χ(i) factorise as

χ
(1)
ab = X θ(aκb), χ

(2)
ab = Y θ(aκb), χ

(3)
ab = Z θ(aκb). (A.1)

Now the Weyl polynomial is of the form

W = −3 [n ◦ ξ, k ◦ ξ]
{
X [n ◦ ξ, θ] [n ◦ ξ, κ] + Y [n ◦ ξ, θ] [k ◦ ξ, κ]

+ Y [n ◦ ξ, κ] [k ◦ ξ, θ] + Z [k ◦ ξ, θ] [k ◦ ξ, κ]
}
,

(A.2)
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which factorizes into a 211 if X Z = Y 2:

W = −3 [n ◦ ξ, k ◦ ξ] (X [n ◦ ξ, θ] + Y [k ◦ ξ, θ])
(

[n ◦ ξ, κ] +
Y

X
[k ◦ ξ, κ]

)
.

(A.3)

In other words, if the three vectors χ1, χ2 and χ3 all point in the same

direction with relative magnitudes satisfying |χ1| |χ3| = |χ2|2 then a special

211 composite spacetime is formed.

• 211 + 1111

If the Weyl tensor contains only non-zero ψ(4) and χ(3) terms (or ψ(0) and

χ(1)), it is possible for these to form a de Smet 31 or 211. Let us define

ψ
(4)
abcd = α

(4)
(a β

(4)
b γ(4)

c δ
(4)
d) , χ

(3)
ab = θ

(3)
(a κ

(3)
b) . (A.4)

Now, if one direction is the same, for example θ(3) ∝ α(4), then the Weyl

polynomial forms a 31,

W =
[
k ◦ ξ, α(4)

]{ [
k ◦ ξ, β(4)

] [
k ◦ ξ, γ(4)

] [
k ◦ ξ, δ(4)

]
+
|θ(3)|
|α(4)|

[
k ◦ ξ, κ(3)

]
[n ◦ ξ, k ◦ ξ]

}
,

(A.5)

while if two directions are shared such that θ(3) ∝ α(4) and κ(3) ∝ β(4) then

the Weyl polynomial remains a 211,

W =
[
k ◦ ξ, α(4)

] [
k ◦ ξ, β(4)

]{ [
k ◦ ξ, γ(4)

] [
k ◦ ξ, δ(4)

]
+
|θ(3)|
|α(4)|

|κ(3)|
|β(4)| [n ◦ ξ, k ◦ ξ]

}
.

(A.6)

In contrast, if ψ(4) is of the special de Smet form 11 11 and shares a direction

with χ(3), then the spacetime is always a 211: the reality conditions prevent

us from constructing a 31. This is because the reality conditions on a ψ(4)

of the form

ψ
(4)
abcd = α(a βb αc βd) (A.7)

are

α1 β1 = ±(α2 β2)∗, α1 β2 + α2 β1 = ∓ (α1 β2 + α2 β1)∗ , (A.8)
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requiring a β that looks like

β =

(
1

−α∗1 / α∗2

)
β1, β∗1 = ∓ α2

α∗2
β1. (A.9)

The reality conditions for χ3 of the form χ
(3)
ab = θ(a κd) are very similar:

θ1 κ1 = (θ2 κ2)∗, θ1 κ2 + θ2 κ1 = − (θ1 κ2 + θ2 κ1)∗ , (A.10)

with solution

κ =

(
1

−θ∗1 / θ∗2

)
κ1, κ∗1 = − θ2

θ∗2
κ1. (A.11)

Therefore, if ψ(4) and χ3 share a direction such that α ∝ θ, then it can be

read off from equations (A.9) and (A.11) that β and κ are proportional.

These are the only ways that a de Smet class can be built - every other

combination results in a 4. Figure 3.1 is therefore misleading, since it implies that

each class can be reduced to another wholly contained within it. For example,

figure 3.1 implies that de Smet 1111s are a subset of 211s. This is not always

the case: a spacetime with only χ(3) non-zero has no overlap with a spacetime

which has only ψ(0) non-zero. An attempt to depict this limited specialisation

of de Smet classes more accurately has been made in figure A.1 as a contrast to

figure 3.1.

4

22/211

11 111111

211 211

22
22

31
1111

211

11 11

1111 211

Figure A.1 There are 4 ways that the de Smet classes can become more
specialised. Going clockwise from the top: a type N solution can
become more special when its eigenvalues are equal. A spacetime
containing more than one irrep of dimension 1 or 3 can be a 22
or a 211 if the dimension 3 irreps form a perfect square. A 211
spacetime can also be formed using the irreps dimension 5 irreps,
and a 31 spacetime always is.
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Appendix B

Fourier transform of source terms

In this appendix, we describe how to carry out the Fourier transform of eqs. (5.31,

5.36), to get the momentum-space expressions of eqs. (5.32, 5.37).

One may first consider the transform of (u ·x)−1, where we work explicitly in four

spacetime dimensions:

F
{

1

u · x

}
=

∫
d4x

eiq·x

u · x

=
1

u0

∫
d3xe−iq·x

∫
dx0 eiq

0x0

x0 − x·u
u0

. (B.1)

Closing the x0 contour in the upper half plane gives a positive frequency solution

q0 > 0:

F
{

1

u · x

}
=

2πi

u0

∫
d3x e

−ix·
[
q− q

0

u0
u

]

=
i(2π)4

u0
δ(3)

(
q − q0

u0
u

)
. (B.2)

It is possible to regain a covariant form for this expression by introducing a mass

variable m, such that

F
{

1

u · x

}
=
i(2π)4

u0

∫ ∞
0

dmδ

(
m− q0

u0

)
δ(3)(q −mu)

= i(2π)4

∫ ∞
0

dmδ(4)(q −mu), (B.3)
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where the integral is over non-negative values of m only, given that q0 > 0. Given

that θ(x0)δ(x2) is a retarded propagator1, one may also note the transform

F
{
θ(x0)δ(x2)

}
= −2π

q2
. (B.4)

We then use the convolution theorem to obtain the Fourier transform of the

current from eq. (5.31). The theorem states that the Fourier transform of a

product is equal to the convolution of the transforms of each term. That is,

F{f · g} = F{f} ∗ F{g}, (B.5)

where the convolution operation in four dimensions takes the form

(F ∗G)(k) =
1

(2π)4

∫
d4qF (q)G(k − q). (B.6)

Then, we can compute the Fourier transform of the current

j̃ν(k) = F{jνKS(x)}

=
2g

4π

∂

∂u′ν

[
F{θ(x0)δ(x2)} ∗ F

{
1

x · u′
}]
− (u↔ u′), (B.7)

so inserting eqs. (B.4) and (B.3), and using the convolution definition eq. (B.6)

we obtain the expression

j̃ν(k) =
2g

4π

∂

∂u′ν

[
1

(2π)4

∫
d4q

(
−2π

q2

)(
i(2π)4

∫ ∞
0

dmδ(4)(k − q −mu′)
)]

− (u↔ u′) (B.8)

=− ig
∫ ∞

0

dm

(
∂

∂u′ν

[
1

(k −mu′)2

]
− (u↔ u′)

)
, (B.9)

where we have carried out the integral over q in the last line. The derivative in

the m integral can be carried out to give∫ ∞
0

dm
2m(k −mu′)ν

(k −mu′)4
= −

∫ ∞
0

dm
2m2u′ν

(m2 − 2mu′ · k)2
, (B.10)

where, on the right-hand side, we have used the onshellness condition k2 = 0, and

also neglected terms ∼ kµ, which vanish upon contraction of the current with a

physical polarisation vector. The remaining integral over m is easily carried out,

1The retarded nature of the propagator is implemented by the prescription 1
(p0+iε)2−p2 ,

where ε ensures convergence of the integrals in what follows.
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and leads directly to the result of eq. (5.32).

Similar steps to those leading to eq. (B.9) can be used to rewrite eq. (5.36) in the

form

T µνKS =
iM

2

∫ ∞
0

dm

(
∂

∂u′µ

∂

∂u′ν

[
1

(k −mu′)2

]
− (u↔ u′)

)
. (B.11)

Carrying out the double derivative gives

∂

∂u′µ

∂

∂u′ν

[
1

(k −mu′)2

]
= − 2m2ηµν

(m2 − 2mu′ · k)4
+

8m2(k −mu′)µ(k −mu′)ν
(m2 − 2mu′ · k)3

' 8m4u′µu′ν

(m2 − 2mu′ · k)3
, (B.12)

where in the second line we have again used onshellness (k2 = 0), and ignored

terms which vanish when contracted with the graviton polarisation tensor.

Substituting eq. (B.12) into eq. (B.11), the m integral is straightforward, and

one obtains the result of eq. (5.37).
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Appendix C

Obtaining JNW from the fat

graviton machinery

In chapter 6, the JNW solution was obtained for a scalar charge equal to the

black hole mass, M = Y . Using the machinery developed in chapter 6 for the fat

graviton, we can extend this to the full family of solutions for arbitrary dilaton

Y .

We start by evaluating the zeroth order fat graviton from h(0)µν = M uµuµ

r
and

φ(0) = Y u2

r
:

H(0)µν =h(0)µν − P µν
q h(0) + P µν

q φ(0)

=M
uµuµ

r
+ (Y −M)P µν

q

u2

r
.

(C.1)

We will leave explicit computation of H(1)µν and T µν for section C.4 and move

straight to finding h(1)µν and φ(1). We can do this by combining the general

expressions as H(1)µν−T µν as given in chapter 6 and then manipulating them as:

φ(1) =H(1) −X

=

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(−1

8

)(
p2 ·H(0)

3 · p2H
(0)
2

) (C.2)
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and

h(1)µν − P µν
q′ h

(1) =H(1)µν −Xµν − P µν
q′ (H(1) −X)

=

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

){
8p2 · p3H

(0)µ
2 ·H(0)ν

3

+ 4H
(0)
2 ·H(0)

3 pµ2p
ν
3 − 8H

(0)µν
3 p3 ·H(0)

2 · p3 + 8p2 ·H(0)µ
3 p3 ·H(0)ν

2

− 16p2 ·H(0)
3 ·H(0)(µ

2 p
ν)
3 − 2ηµνH

(0)
2 ·H(0)

3 p2 · p3

+ 4ηµνp2 ·H(0)
3 ·H(0)

2 · p3P
µν
q′

[
− 8p2 ·H(0)

3 · p2H
(0)
2

− 2(D − 6)p2 · p3H
(0)
2 ·H(0)

3 + 4(D − 2)p2 ·H(0)
3 ·H(0)

2 · p3

]}
.

(C.3)

As usual we note that since the q′ dependence is arbitrary1 we can read off:

h(1)µν =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

){
8p2 · p3H

(0)µ
2 ·H(0)ν

3

+ 4H
(0)
2 ·H(0)

3 pµ2p
ν
3 − 8H

(0)µν
3 p3 ·H(0)

2 · p3 + 8p2 ·H(0)µ
3 p3 ·H(0)ν

2

− 16p2 ·H(0)
3 ·H(0)(µ

2 p
ν)
3 − 2ηµνH

(0)
2 ·H(0)

3 p2 · p3

+ 4ηµνp2 ·H(0)
3 ·H(0)

2 · p3

}
.

(C.4)

C.1 Evaluating the graviton

When we plug any fat graviton H(0)µν that has a contribution from the P µν
q terms

into this formula, for example

H(0)µν = H
(0)µν
Pq→0 − P µν

q (H
(0)
Pq→0 − φ(0)), (C.5)

1Furthermore, note that q′ need not be the same as our zeroth order gauge parameter q.
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we will get a messy result, containing four times as many terms, three-quarters

of which will contain Pq2 or Pq3. We can write this as

h(1)µν =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

){
8p2 · p3H

(0)µ
2Pq→0 ·H

(0)ν
3Pq→0

+ 4H
(0)
2Pq→0 ·H

(0)
3Pq→0p

µ
2p

ν
3 − 8H

(0)µν
3Pq→0p3 ·H(0)

2Pq→0 · p3

+ 8p2 ·H(0)µ
3Pq→0p3 ·H(0)ν

2Pq→0 − 16p2 ·H(0)
3Pq→0 ·H

(0)(µ
2Pq→0p

ν)
3

− 2ηµνH
(0)
2Pq→0 ·H

(0)
3Pq→0p2 · p3 + 4ηµνp2 ·H(0)

3Pq→0 ·H
(0)
2Pq→0 · p3

+ F (Pq2, Pq3, Pq2Pq3)

}
(C.6)

where F is a long expression containing every term with at least one Pq in. One

route now might be to expand out the projector terms in F and attempt to

simplify. However, we can gain insight more directly by expressing the h(1)µν as

the result of a gauge transform, h
(1)µν
final = h

(1)µν
initial + δh(1)µν . The initial frame is the

“GR-like” frame, where

h
(0)µν
initial = H

(0)µν
Pq→0, (C.7)

and the final frame is obtained by a gauge transform

ξν(pi) =
1

D − 2

qν

pi · q
(h

(0)
initial − φ(0)) (C.8)

such that h
(1)µν
final , which corresponds to the expression given in equation (C.6), is

h
(0)µν
final =h

(0)µν
initial + pµξν + pνξµ − ηµν∂ · ξ

=h
(0)µν
initial −

(
ηµν − pµqν + pνqµ

p · q

)
h

(0)
initial − φ(0)

D − 2

=H
(0)µν
Pq→0 − P µν

q (H
(0)
Pq→0 − φ(0)).

(C.9)

The corresponding change in h(1)µν can be calculated using

δh(1)µν = h(1)µν(h
(0)
final)− h(1)µν(h

(0)
intial). (C.10)

Naively, this would lead us to say that the gauge transform is simply

δh(1)µν = F (Pq2, Pq3, Pq2Pq3) . (C.11)
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However, comparison with equation (C.6) shows that if this were true, only terms

containing H
(0)µ
Pq→0 would remain, removing all the dependences on the dilaton field

φ(0). For the example of JNW it would mean that every possible JNW solution

collapsed to the M = Q case.

C.2 Gauge subtleties

The resolution can be found by carefully studying the origin of the terms in the

general expression for h(1)µν . These come from the graviton 3-vertex and the

dilaton/graviton vertex and look like:

h
(1)µν
GR =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

){
8p2 · p3h

(0)µ
2 · h(0)ν

3

+ 4h
(0)
2 · h(0)

3 pµ2p
ν
3 − 8h

(0)µν
3 p3 · h(0)

2 · p3 + 8p2 · h(0)µ
3 p3 · h(0)ν

2

− 16p2 · h(0)
3 · h(0)(µ

2 p
ν)
3 − 2ηµνh

(0)
2 · h(0)

3 p2 · p3

+ 4ηµνp2 · h(0)
3 · h(0)

2 · p3 − 2h
(0)
2 h

(0)
3 pµ2p

ν
3 + ηµνp2 · p3h

(0)
2 h

(0)
3

}
,

(C.12)

and

h
(1)µν
dilaton =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

)
(2pµ2p

ν
3 − ηµνp2 · p3)φ

(0)
2 φ

(0)
3 .

(C.13)

We used the definitions

φ(0) =H(0)

h(0)µν =H(0)µν
(C.14)

to convert these expressions into “fat” fields, and thus the h
(1)µν
dilaton terms cancelled

exactly with the final two terms of h
(1)µν
GR . However, their gauge transforms do

not cancel. The projector-filled part of the gauge transform, F (Pq2, Pq3, Pq2Pq3),

is generated as usual by all the terms of h
(1)µν
GR except the last two2, such that the

2If in doubt, compare this with equation (C.4)
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total transform is:

δh(1)µν =h
(1)µν
GR (h

(0)
initial + δh(0)) + h

(1)µν
dilaton(h

(0)
initial + δh(0))

− h
(1)µν
GR (h

(0)
initial)− h

(1)µν
dilaton(h

(0)
initial)

=F (Pq2, Pq3, Pq2Pq3) +

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

)
× (−2pµ2p

ν
3 + ηµνp2 · p3)

(
2δh

(0)
2 h

(0)
3initial + δh

(0)
2 δh

(0)
3

)
=F (Pq2, Pq3, Pq2Pq3) +

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

)
× (−2pµ2p

ν
3 + ηµνp2 · p3)

(
− 2(H

(0)
2Pq→0 − φ

(0)
2 )H

(0)
3Pq→0

+ (H
(0)
2Pq→0 − φ

(0)
2 )(H

(0)
3Pq→0 − φ

(0)
3 )
)

=F (Pq2, Pq3, Pq2Pq3) +

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

)
× (−2pµ2p

ν
3 + ηµνp2 · p3)

(
−H(0)

2Pq→0H
(0)
3Pq→0 + φ

(0)
2 φ

(0)
3

)
,

(C.15)

where we have used the symmetry on 2 ↔ 3 and recalled from the previous

section that

δh(0) =h
(0)
final − h

(0)
intial

=− (H
(0)
Pq→0 − φ(0)),

(C.16)

while h
(0)µν
initial is H

(0)
Pq→0. It is therefore possible to undo the gauge transform on

h
(1)µν
final to find

h
(1)µν
initial =h

(1)µν
final − δh(0)µν

=

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

){
8p2 · p3H

(0)µ
2Pq→0 ·H

(0)ν
3Pq→0

+ 4H
(0)
2Pq→0 ·H

(0)
3Pq→0p

µ
2p

ν
3 − 8H

(0)µν
3Pq→0p3 ·H(0)

2Pq→0 · p3

+ 8p2 ·H(0)µ
3Pq→0p3 ·H(0)ν

2Pq→0 − 16p2 ·H(0)
3Pq→0 ·H

(0)(µ
2Pq→0p

ν)
3

− 2ηµνH
(0)
2Pq→0 ·H

(0)
3Pq→0p2 · p3 + 4ηµνp2 ·H(0)

3Pq→0 ·H
(0)
2Pq→0 · p3

− (−2pµ2p
ν
3 + ηµνp2 · p3)

(
−H(0)

2Pq→0H
(0)
3Pq→0 + φ

(0)
2 φ

(0)
3

)}
.

(C.17)

This will always return a graviton in the “GR-like” frame, with a trace consistent

with those used in the GR community in de Donder gauge. For example, we shall

see in the next section that the formula produces the exact form of JNW that we
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see in the literature for harmonic coordinates.

C.3 Application to JNW

For JNW, the parts of the fat graviton are:

H
(0)µν
Pq→0 =M

uµuµ

r

φ(0) =Y
u2

r
,

(C.18)

and therefore using that pi · u = 0, we have

h
(1)µν
initial =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(
1

8

){
8p2 · p3H

(0)µ
2Pq→0 ·H

(0)ν
3Pq→0

+ 4H
(0)
2Pq→0 ·H

(0)
3Pq→0p

µ
2p

ν
3 − 2ηµνH

(0)
2Pq→0 ·H

(0)
3Pq→0p2 · p3

− (−2pµ2p
ν
3 + ηµνp2 · p3)

(
−H(0)

2Pq→0H
(0)
3Pq→0 + φ

(0)
2 φ

(0)
3

)}
=

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

8

)
δ(p0

2)

p2
2

δ(p0
3)

p2
3

{
4M2u4p

µ
2p

ν
3

p2
1

+ 4M2u2uµuν − ηµνM2u4 − u4

(
−2

pµ2p
ν
3

p2
1

+
1

2
ηµν
)(
−M2 + Y 2

)}
.

(C.19)

This is easy to invert back into position space using the identity∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

δ̄(p0
2)δ̄(p0

3)

p2
2p

2
3

pµ2p
ν
3

p2
1

=
−1

4

[
xixj

r4
− δij

r2

]
(C.20)

to obtain

h
(1)µν
inital =

1

16(4π)2

{
− 2M2u4

[
xixj

r4
− δij

r2

]
+ 8M2u

2uµuν

r2

− 2M2u4η
µν

r2
+ u4

(
xixj

r4
− δij

r2
+
ηµν

r2

)(
M2 − Y 2

)}
=
−1

16(4π)2

{
(7M2 − Y 2)

uµuν

r2
+ (M2 + Y 2)

xixj

r4

} (C.21)

which is exactly the JNW solution for arbitrary mass M and dilaton charge Y .

Note that we did not need to undo the gauge transform from the initial to the

final frame when we calculated JNW for M = Y because δh(0) ∼M −Y : the two

126



frames coincide for this special case.

C.3.1 Dilaton correction

Of course, it will also be necessary to reverse the gauge transform on φ(1). By

inputting

H(0)µν = H
(0)µν
Pq→0 − P µν

q (H
(0)
Pq→0 − φ(0)) (C.22)

into the formula for φ(1) we find that

φ
(1)
final =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(−1

8

)(
p2 ·H(0)

3 · p2H
(0)
2

)
=

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(−1

8

)(
p2 ·H(0)

3Pq→0 · p2φ
(0)
2

− p2 · Pq3 · p2

(
H

(0)
3Pq→0 − φ

(0)
3

)
φ

(0)
2

) (C.23)

where H(0) is given by H
(0)
Pq→0 + ∆(0). As before, the second term is easily

interpreted if P µν
q is the gauge transform:

P µν
q (p) =

1

D − 2

(
ηµν − pµqν + pνqµ

p · q

)
(C.24)

and so φ(1) transforms as

φ
(1)
final =φ(1)(h

(0)
final)

=φ(1)(h
(0)
inital + δh(0))

=φ
(1)
initial +

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

8

)
(
H

(0)
3Pq→0 − φ

(0)
3

)
D − 2

p2 · q
p3 · q

φ
(0)
2

 .

(C.25)

This fits the standard form

φ(1) → φ(1) + ξ(0) · ∂φ(0) (C.26)
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for ξµ(p) = 1
D−2

qµ

p·q

(
H

(0)
Pq→0 − φ(0)

)
. Since φ(0) has no gauge transform, the “GR-

frame” dilaton is therefore simply

φ
(1)
initial =

∫
d̄4p2d̄

4p3δ̄
(4)(p1 + p2 + p3)

(
1

p1

)2(−1

8

)(
p2 ·H(0)

3Pq→0 · p2H
(0)
2

)
.

(C.27)

This is zero for all cases in JNW, as H
(0)µν
Pq→0 ∼ uµuν such that pi · H(0)

Pq→0 · pi
vanishes.

C.4 Fat graviton and transformation function

Previously, H(1)µν and T (1)µν were not expanded in terms of the projectors Pq

and instead were combined to get general expressions for h(1)µν and φ(1). Explicit

expressions for H and T will always contain a mess of P µν
q terms. This is because

the gauge transform of the fat graviton is given by

H
(0)µν
final =H(0)µν(h

(0)
final)

=h
(0)µν
final − P µν

q (h
(0)
final − φ(0))

=H(0)µν(h
(0)
initial + δh(0))

=h
(0)µν
intial + δh(0)µν − P µν

q (h
(0)
intial + δh(0) − φ(0)).

(C.28)

Recalling that δh(0)µν for the transform out of the “GR-like” frame is given by

δh(0)µν = −P µν
q (h

(0)
initial − φ(0)), (C.29)

we see that

δH(0)µν =δh(0)µν − P µν
q δh(0)

=0.
(C.30)

This is exactly as we should expect, since the change from initial to final frame

consists only of playing around with the trace of the zeroth order skinny graviton.

This is a gauge dependent object in GR, but for the fat field it is not, since we must

never be able to gauge away the dilaton. However, this does mean that in general,

H(1)µν and T (1)µν are quite ugly objects whose mass of Pq terms will laboriously

combine to produce F (Pq2, Pq3, Pq2Pq3). It is easier to treat F (Pq2, Pq3, Pq2Pq3)

as an analytic object. Therefore, we bypass a transformation into position space
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and write

H(1)µν = H(1)µν(H
(0)
Pq→0) + F1 (Pq2, Pq3, Pq2Pq3) (C.31)

T (1)µν = T (1)µν(H
(0)
Pq→0) + F2 (Pq2, Pq3, Pq2Pq3) (C.32)

where F1 and F2 satsify

F1 (Pq2, Pq3, Pq2Pq3) + F1 (Pq2, Pq3, Pq2Pq3) = F (Pq2, Pq3, Pq2Pq3) . (C.33)

Note that H(1)µν(H
(0)
Pq→0) is simply H

(1)µν
M=Y , the JNW result when M = Y , and

similarly T (1)µν(H
(0)
Pq→0) = T

(1)µν
M=Y .
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