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Abstract: We re-examine the mathematical properties of the kink and antikink soliton solu-
tions to the Logarithmic Schrödinger Equation (LogSE), a nonlinear logarithmic version of
the Schrödinger Equation incorporating Everett–Hirschman entropy. We devise successive
approximations with increasing accuracy. From the most successful forms, we formulate an
analytical solution that provides a very accurate solution to the LogSE. Finally, we consider
combinations of such solutions to mathematically model kink and antikink bound states,
which can serve as a possible candidate for modeling dilatonic quantum gravity states.

Keywords: logarithmic Schrödinger equation; kink soliton; Everett–Hirschman entropy;
nonlinear differential equations; computer algebra
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1. Introduction

The Logarithmic Schrödinger Equation (LogSE), namely a Schrödinger Equation with
logarithmic nonlinearity, has gained significant interest. It has proven to be instrumental for
modeling diffusion phenomena [1], quantum optics [2], nuclear physics [3,4], Bose–Einstein
Condensates (BECs) [5], superfluids [6–8] fluid mechanics [9,10], classical and quantum
gravity [11,12], and Galaxy Rotation curves [13–16]. The LogSE even has geophysical
applications in magma transport [17].

In particular, the logarithmic model can account for the upside-down Mexican hat shape

of the Higgs potential, and its solution is claimed to be even more stable and energetically
favorable than the model with a quartic (Higgs-like) potential [18–20] used to understand
electroweak symmetry breaking [21].

Bialynicki-Birula et al. established a nonlinear wave mechanics [22] and reported
discrete states for the LogSE much in the way of quantum mechanics (QM) as well as
soliton solutions known as “Gaussons” [23,24]. Shertzer and Scott found precise numerical
solutions for the LogSE in a central Coulomb potential [25,26] and established that a linear
combination of Gaussons could be used as an accurate basis for the wave functions. For QM-
type solutions, square integrability (L2 functions) was required of the wave functions
satisfying the LogSE.

However, for dilatonic gravity, it is when the dilatonic field is constant, i.e., Ψ = 1,
that its Lagrangian reduces to the Einstein–Hilbert metric and thus the limit of (classical)
General Relativity (GRT) [12]. Thus, local departures from GRT require a dilaton field
obeying the LogSE with non-zero far field conditions as constraints. These are not square-
integral conditions. For this reason, we consider the “kink” solitons [27] with far field
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conditions that might provide us with a suitable candidate for modeling dilaton fields with
local departures from GRT. The purpose of this work is to find precise analytical solutions
or rather approximations to the LogSE for “kink” and “antikink” solitons.

We proceed as follows. In Section 2, we identify the differential equation and integral
involved and then provide numerical solutions which serve as a benchmark. In Section 3,
we examine successive approximations to the main differential approximations, solve them
analytically, and compare them. In Section 4, from the most successful of solutions, we
infer an analytical form, which turns out to be more precise than all the previous solutions.
Finally, we consider combinations of these kink and antikink solutions. A discussion of the
results and conclusive comments are made at the end.

2. Logarithmic Scalar Model

The starting point is the (1 + 1) dimensional Lagrangian density for a real scalar field
([27], Equation (1)).

L =
1
2

(
∂ϕ

∂t

)2

− 1
2

(
∂ϕ

∂x

)2

− V0(ϕ) (1)

where the logarithmic potential V0(ϕ) for a wave function ϕ is given by [27] (Equation (3)):

V0(ϕ) =
ϕ2

ℓ2

[

ln(ϕ2/φ2)− 1
]

+
φ2

ℓ2 (2)

The potential in Equation (2) has the proverbial Mexican-hat form, with local minima
at |ϕ| = φ (see the thick black curve in Figure 1a). From the potential in (2), the ordinary
differential equation (ODE) for the time-independent case [27] (Equation (5)) is:

dϕ

dx
= ±

√
2
√

V0(ϕ) = ±
√

2

√

ϕ2

ℓ2 [ln(ϕ
2/φ2)− 1] +

φ2

ℓ2 (3)

The ± is imparted from the fact that ∂ϕ
∂x in (1) is squared. The + (positive) case is found

to correspond to the kink soliton, while the − (negative) case corresponds to the antikink

soliton. The differentiation of both sides of (3) with respect to x yields the following:

−1
2

d2ϕ

dx2 +
1
ℓ2 ln

(
ϕ2

φ2

)

ϕ = 0 (4)

which is a one-dimensional Logarithmic Schrödinger Equation (LogSE) for an eigenvalue
of zero. Notice there is no ± in (4) so both the kink and antikink solitons are solutions to the
same LogSE. Also note that the log term in (4) is the Everett-Hirschman entropy also called
the “Entropic uncertainty” [28–30]. It is defined as the sum of the temporal and spectral
Shannon entropies and Heisenberg’s uncertainty principle can be expressed as a lower
bound on the sum of these entropies.

The constants ℓ and φ can be eliminated by the appropriate choice of units for coordi-
nates and field [27]. Thus, without much loss of generality and for simplicity, we can set
φ = 1 and ℓ = 1. Separation of variables in the ODE of (3) yields:

± 1√
2

∫ 1
√

ϕ2(ln(ϕ2)− 1) + 1
dϕ = x − x0 (5)

where x0 is a constant. The integral diverges as 1/(ϕ − φ) near its singularity ϕ = φ (here,
φ = 1). This limits the radius of convergence of series solutions and their usefulness. The
integral on the left side is [18] (Equation (30)):
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∫ 1
√

ϕ2(ln(ϕ2)− ϵ − 1) + exp(ϵ)
dϕ (6)

when the eigenvalue ϵ = 0. No analytical solutions are known for Equation (5), nor for
its more general form (6). Equation (5), taken as a definite integral over a defined range
ϕ ∈ [ϕ1, ϕ2], which avoids the singularity at ϕ = φ = 1, can be transformed into various
forms, such as the following:

∫ ϕ2

ϕ1

1
√

ϕ2(ln(ϕ2)− 1) + 1
dϕ =

e1/2

2

∫ ln(e/ϕ2
1)

ln(e/ϕ2
2)

e−y/2
√

1 − ye1−y
dy

=
e1/2

2

∫ ϕ2
2
e ln(

ϕ2
2
e )

ϕ2
1
e ln(

ϕ2
1
e )

(√

W(kw, z)

z(ez + 1)

)

dz

(W(kw, z) + 1)
(7)

where W(kw, y) is the Lambert W function and kw is an integer which denotes its choice
of branch [31–35]. Since ye1−y ≤ 1 for y > 0, we can apply a binomial expansion to the
denominator of the middle form and integrate term by term. This leads to the following
series solution.

F(x) = −2
∞

∑
n=0

en(2n)!Γ(n + 1, (n + 1/2)x)

2n(n!)2(2n + 1)n+1 , (8)

where Γ(a, z) represents the incomplete gamma function [36,37]. Thus, we obtain the following:
∫ y e−y/2

√

1 − ye1−y
dy = F(y) + constant (y > 1) (9)

∫ ϕ2

ϕ1

1
√

ϕ2(ln(ϕ2)− 1) + 1
dϕ =

e1/2

2

(

sign(ϕ1)F(ln(e/ϕ2
1))− sign(ϕ2)F(ln(e/ϕ2

2))
)

.

The “switches” sign(xj) ensure the ϕ → −ϕ symmetry of the integral of (5). The third
form of (7) suggests a solution related to a generalized Lambert W function. Note that for
the integration range [ϕ1, ϕ2],

ϕ2 > ϕ1 > 1 ⇒ kw = 0 W(kw, y) = W(0, y) (10)

0 < ϕ1 < ϕ2 < 1 ⇒ kw = −1 W(kw, y) = W(−1, y) . (11)

The case kw = 0 represents the Lambert W function on its principal branch, and it
is found that the case kw = −1 represents the regime of interest for ϕ. In all cases, exact
closed form solutions are not yet possible. Computer algebra systems like Mathematica
or Maple [38] cannot produce closed form solutions either, although Maple was used to
vindicate the series solution of (8) and (9) both numerically and analytically in the range
of interest 0 < ϕ1 < ϕ2 < 1. However, note that the convergence of the series in (9)
slows down and becomes problematic as ϕ2 → 1−. This may require special summation
techniques (as discussed later in Section 3.3). Moreover, we have not obtained a solution of
the integral in (5) using the Risch algorithm in Maple. Finally, it should be noted that we
seek ϕ(x), and (8) is impractical for reversion.
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(a) (b)

Figure 1. (a) Potentials Vk(ϕ), k = 0, 1, 2, 3, 4 in units of φ2/ℓ2 versus ϕ in units of φ, where V0(ϕ) is
the original logarithmic potential of Equation (2) shown with the black curve, and the k > 0 potentials
are successive polynomial approximations to V0(ϕ) of Equations (12) and (14). V1(ϕ) of Equation (12)
is shown in red. V2(ϕ) is shown in blue. V3(ϕ) is shown in gold. V4(ϕ) is shown in green.

(b) Corresponding derivatives ∂Vk(ϕ)
∂ϕ k = 0, 1, 2, 3, 4 vs. ϕ with ℓ = 1 and φ = 1 using the same color

coding as in (a).

Nonetheless, these computer algebra programs give us the means of numerically
solving Equation (3). Figure 2 shows both kink and antikink solutions obtained by Maple’s
numerical ODE solver dsolve. The initial conditions for both solutions were set at ℓ = 1,
φ = 1, ϕ = ±0.999941894 for x = −5 to ensure that ϕ(0) = 0 as much as possible. The so-
lutions of Figure 2 seem to be, at least visually, in agreement with those found in (Ref. [27]
Figure 2a). These numerical solutions serve as a benchmark for the approximations of the
next section.

Figure 2. Profiles of the kink (solid red curve) and antikink (dashed blue curve) soliton solutions
versus x in units of φ obtained by Maple’s numerical ODE solver. ℓ = 1.
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3. Polynomial Approximations of Logarithmic Potential

We consider polynomial approximations of the logarithmic potential, the first be-
ing [27] (Equation (4)):

V1(ϕ) =
λH

4
(ϕ2 − φ2)2 where λH =

2
φ2ℓ2 (12)

where the subscript “H” refers to the Higgs’ quartic ϕ4 potential. This potential is also
shown in Figure 1a in red. Its justification is realized from the Taylor series of the logarithmic
potential V0(ϕ) of Equation (2) about ϕ = φ as follows:

V0(ϕ) =
2
ℓ2 (ϕ − φ)2 +

2
3φℓ2 (ϕ − φ)3 − 1

6φ2ℓ2 (ϕ − φ)4 +
1

15φ3ℓ2 (ϕ − φ)5 . . .

=
2
ℓ2 (ϕ − φ)2 − 4

ℓ2

∞

∑
i=1

(−1/φ)i(ϕ − φ)i+2

i(i + 1)(i + 2)
. (13)

A corresponding Taylor series of V1(ϕ) at ϕ = φ agrees with the Taylor series (13) of
V0 in (13) for the first term, i.e., k = 1.

We now consider an extension of ([27] Figure 1) and introduce additional potentials
Vk(ϕ). These are

V2(ϕ) = − (ϕ2 − φ2)2(ϕ2 − 4φ2)

6ℓ2 φ4

V3(ϕ) =
(ϕ2 − φ2)2(ϕ4 − 4ϕ2 φ2 + 9φ4)

12ℓ2 φ6

V4(ϕ) = − (ϕ2 − φ2)2(3ϕ6 − 14ϕ4 φ2 + 29ϕ2 φ4 − 48φ6)

60ℓ2 φ8 (14)

Like V0(ϕ), all these potentials are symmetric in ϕ, and all are zero at ϕ = ±φ.
These potentials are designed so that a Taylor series of Vk(ϕ) about ϕ = φ agree with
the corresponding Taylor series of V0(ϕ) in (13) for the first k terms. Thus, the potentials
Vk(ϕ) for k > 0 are successive polynomial approximations to the original logarithmic
potential V0(ϕ).

Figure 1a shows the potentials Vk(ϕ), k = 0, 1, 2, 3, 4, respectively, in thick black, red,
blue, gold, and green. As k grows larger, Figure 1 shows that the potentials Vk(ϕ) do
indeed increasingly match the initial logarithmic potential V0(ϕ) (shown in thick black)
near the peaks at ϕ = 0, which makes sense. Figure 1b shows the corresponding gradients
for these potentials, i.e., ∂Vk(ϕ)/∂ϕ, k = 0, 1, 2, 3, 4 using the same color coding.

The potentials Vk(ϕ) have roots beyond ϕ > 1, causing serious departures of these
potentials from V0(ϕ). However, Figure 2 shows us that only the range ϕ ∈ [−1, 1] is of
interest and what matters is whether or not, we achieve real analytic functions for ϕ(x).
Furthermore, the logarithmic potential V0(ϕ) is not Lipschitz continuous [39]. A second
derivative for the logarithmic potential V0(ϕ) of (2), with respect to ϕ, diverges to −∞

as ϕ → 0, which is in contrast to Vk(ϕ) for k > 0 since these polynomial approximations
are infinitely differentiable. These act as “test functions”. This explains how the biggest
discrepancies between V0(ϕ) and Vk(ϕ) (k > 0) are near ϕ → 0. However, we emphasize
that the potentials Vk are not, by any means, designed to replace the canonical logarithmic
V0(ϕ). Rather, they are a means to an end, which is to find useful successive analytical
approximations of the kink and antikink soliton solutions.
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3.1. First-Order Approximation V1 Potential

The ODE to consider is an approximation of (3), namely, the following:

dϕ

dx
= ±

√
2
√

V1(ϕ) (15)

where V1(ϕ) is given in (12). This is readily solved with the Maple system, and the
solution is

ϕ = ± tanh(x − x0) (16)

which, qualitatively, looks very much like the numerical solutions of Figure 2. This solution
for ϕ is plotted in Figure 3 (in red) and is very close to the accurate numerical solution of (3)
(in black). Equation (16) is real and regular for x ∈ (−∞,+∞).

Figure 3. Profiles of the kink solutions versus x for the potentials Vk(ϕ), k = 0, 1, 2 shown in black,
red, blue, respectively, and the ansatz of Equations (22) with (23) is shown in cyan. φ = 1 and ℓ = 1.

3.2. Second-Order Approximation V2 Potential

The ODE to consider is now modified to

dϕ

dx
= ±

√
2
√

V2(ϕ) (17)

where V2(ϕ) is given in (14). Maple’s solution uses separation of variables and gives the
answer in the form of an integral similar to that of (5) i.e., x − x0 = G(ϕ). It should be
appreciated that, quite apart from solving the integral to obtain a solution to an ODE,
the latter requires the inversion of G(ϕ) to obtain ϕ(x − x0). After a series of manipulations,
including the addition law for arctanh functions, we find that the real solutions to (17) are

ϕ = ± exp(2(x − x0))− 1
√

exp(2(x − x0))2 + exp(2(x − x0)) + 1
= ± sinh(x − x0)

√

(cosh(x − x0))2 − 1
4 )

(18)

What is interesting about (18) is that, like the previous case for V2(ϕ), we still have
a relatively simple solution made of elementary functions, yet a bit more precise than
the hyperbolic solution of (16). Equation (18) is also regular since cosh(x) ≥ 1 for
x ∈ (−∞,+∞). This solution for ϕ is also plotted in Figure 3 in blue and is within
the plotting accuracy of the accurate numerical solution of (3).
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3.3. Third-Order Approximation V3 Potential

The ODE to consider is now modified to

dϕ

dx
= ±

√
2
√

V3(ϕ) (19)

where V3(ϕ) is also given in (14). Maple’s solution is

±
√

3
3

(√
5 − i

)

EllipticPi

(

(
√

2 i +
√

10)
6

ϕ, 2 − i
√

5,
2 − i

√
5

3

)

= x − x0 (20)

where i2 = −1 and Maple’s EllipticPi (or Π) is the (3-argument) incomplete elliptic
integral. Though expressed in the complex plane, Equation (20) is real for ϕ ∈ (−1, 1).
Unfortunately, the elliptic function is not easy to invert, especially with complex arguments,
and we have, so far, no means of simplifying (20) to simpler functions. Nonetheless, we
verified that the solution of Equation (20) is closer to in accuracy to the solution of (3) than
Equations (16) or (18).

Maple gives us the means to achieve a series expansion of EllipticPi(z, ν, µ) in its first
argument z, allowing the left side of (20) to be expanded as a real series in powers of ϕ.
Maple also gives us the means to reverse to the latter to obtain ϕ as a power series in x.
Unfortunately, the resulting series in x is divergent and requires high-power summation
techniques such as the Levin and Sidi transformation. The Maple package trans [40] was
instrumental in this case and allowed us to obtain a rational function in x for ϕ within
plotting accuracy for the range x ∈ (−2, 2). This was enough to give us confidence in the
solution. However, unless or until (20) can be considerably simplified, it is not yet practical.

3.4. Fourth-Order Approximation V4 Potential

The ODE to consider is now modified to

dϕ

dx
= ±

√
2
√

V4(ϕ) (21)

where V4(ϕ) is the final function in the list of (14). Maple’s solution is similar to that
of Equation (20). It is also in the complex plane. However, it is far bigger. It not only
involves Maple’s EllipticPi as before but also includes “EllipticF”, which is the incom-
plete elliptic integral of the first kind. Due to limitations in length, we do not present the
solution here. As in (20), it is also of the form x − x0 = G(ϕ) and is even more difficult
to invert to obtain ϕ(x). As such, it is not useful, and there is no point in further itera-
tions. The approximations reached their maximum in usefulness with V2(ϕ), namely
Equation (18).

4. Results

Figure 3 compares the numerical kink solution of Figure 2 with the successive analyti-
cal solutions of Equation (16) (shown in red) and (18) (shown in blue). As we can see, they
are rather good.

4.1. Empirical Model

Given that V2 with its solution for ϕ in (16) and V3 with its solution for ϕ in (18)
provide the simplest and most effective solutions, we consider the following general model:

ϕ = ± sinh(x − x0)
√

(cosh(x − x0))2 − A2)
where |A| < 1 . (22)
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Here, we introduced the parameter A. When A = 0, Equation (22) reduces to the
hyperbolic solution of (16), and when A = 1/2, it becomes (18). Thus, it is a matter
of refining A by obtaining (22) for x ∈ (−5, 5) and comparing the results to the accurate
numerical solution(s) shown in (2). The constraint on A ensures that the denominator of (22)
never becomes zero, so this solution remains real and continuous over x ∈ (−∞,+∞).
From the resulting plot of A = A(x − x0), we find that it best suits the following form:

A = A(x − x0) = a0 + b0 exp(−c|x − x0|) where c > 0 and |a0 + b0| < 1 . (23)

The coefficients a0, b0, and c are obtained by a least squares fit. We empirically found
that a0 = 0.5955, b0 = 0.12462, and c = 1.52225 yield the smallest RMS error in comparison
to all the solutions obtained from Vk for k = 1, 2, 3, 4. The resulting solution (22) with (23)
is shown in cyan in Figure 3. This solution satisfies both sides of the ODE in (3) to about
three digits over the region x ∈ (−5, 5), which is better than plotting accuracy for the full
range shown in Figure 3. Note that A in (23) reaches its maximal value at x = x0, i.e., at
A = a0 + b0 = 0.5955 + 0.12462 = 0.7212, which is below unity. Thus, the denominator of
(22) can never reach zero for x ∈ (−∞,+∞).

In view of (23), it becomes very difficult to invert (22) to obtain x in terms of ϕ which is
used to express an approximate solution of (5). This inversion leads to solving an expression
made of powers in exp(ϕ), and when c is not an integer, some of these powers are not whole
numbers. At any rate, a solution to this expression suggests a yet unknown generalization
of the Lambert W function [41]. Though this is perhaps not conclusive from the point of
view of Pure Mathematics, our efforts, nonetheless, suggest that, if there is a solution for
(5), it is likely in terms of a special function, perhaps a generalized Lambert W function,
with an inverse that is only approximated by (22).

4.2. Products of Wave Functions

As mentioned before, linear combinations of Gaussons can well approximate the solu-
tions of the LogSE for central potentials [25,26]. Moreover, Carles and Ferrière established a
quasi nonlinear property of superposition which has been firmly established for quadratic
potentials [39]. Ref. [27] (Equation (14)) considers linear combinations of kink and antikink
solutions for their own bion model based on the LogSE. Instead, we consider products of
such functions, given the well-known property of logarithms:

ln(Ψ(x)Φ(x)) = ln(Ψ(x)) + ln(Φ(x)) (24)

If Ψ and Φ peak in different locations, the logarithm acts as a separator much like
“Cepstral” analysis used in Audio Engineering to separate functions in different frequency
regimes [42,43]. In such a case, the Laplacian of this product actually separates since in the
far-field, kink and antikink reach constants ±1, as shown in the following:

∂2(Ψ(x)Φ(x))

∂x2 =
∂2Ψ(x)

∂x2 Φ(x) + 2
(

∂Ψ(x)

∂x

)(
∂Φ(x)

∂x

)

︸ ︷︷ ︸

≈0

+Ψ(x)
∂2Φ(x)

∂x2 (25)

Thus, the product of the gradients of Ψ(x) and Φ(x) are nearly zero if their respective
centers are sufficiently far apart. This property, along with (24), allow for a separation of
the LogSE on the product Ψ(x)Φ(x) into individual LogSEs for each of these functions. To
demonstrate the consequences, Figure 4a shows the product of such functions separated
by a distance of 10 units, while Figure 4b shows the product of the gradients, i.e., first
derivatives of Ψ(x) and Φ(x) with respect to x. This is shown for the various analytical
soliton solutions shown so far, i.e., Equations (16) (in red), (18) (in blue), and (22) with (23)
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(in cyan). For Figure 4a, the products of the wave functions ϕ(x − 5) ∗ ϕ(x + 5) are within
plotting accuracy. For Figure 4b, the products of the gradients, ϕ′(x − 5) ∗ ϕ′(x + 5) where
the prime (′) denotes derivative with respect to x are all very small, within the magnitude
of about 10−8 units. It becomes smaller as the analytical soliton solutions become more
accurate. This assures assuring that products of kink and/or antikink solitons are rather
good approximate solutions of the LogSE, and many scenarios of such soliton combinations
can be envisaged. Figure 4a is an example of shows a local departure from a constant field
that obeys the LogSE and resembles one of the solutions ([27] Figure 5).

(a) (b)

Figure 4. (a) Product of wave functions centered at x = ±5 i.e., ϕ(x − 5) ∗ ϕ(x + 5). (b) Product of
derivatives of these same wave functions. ϕ = tanh shown in red, ϕ given by (18) shown in blue,
and ϕ given by (22) and (23) shown in cyan.

5. Discussion and Conclusions

Our analysis has yielded some practical and useful approximate analytical solutions
of the LogSE for kink and antikink soliton solutions. In this regard, the solutions of
Equation (16) and especially the slightly more accurate Equation (18) are dividends of
this study—sufficiently accurate yet relatively simple soliton solutions in terms of elemen-
tary functions.

To reiterate, the solutions from the potentials V1(ϕ) and V2(ϕ) achieved useful prac-
tical results, although V3(ϕ) and V4(ϕ) yielded diminishing returns. However, from the
solutions of V1(ϕ) and V2(ϕ), we inferred a functional form in terms of elementary func-
tions that turned out to be very accurate yet rather simple.

Another dividend, as shown in Section 4.2, is how one can take products of individual
soliton solutions to create more sophisticated departures from constant fields. Figure 4a is
only one example of the various combinations one can make for kink or antikink solutions
while retaining continuity and satisfying the LogSE.

Of course, so far, we have only considered static one-dimensional problems. However,
the logarithmic property of (24) also allows us to separate time-varying 3D problems
in, e.g., their respective Cartesian coordinates. So far, we have not really discussed the
Physics involved in creating kink-antikink combinations. Like many soliton solutions, their
creation is often an issue of imparting the right boundary conditions. Ref. [27] provides
a number of time-dependent simulations, e.g., scattering cases while considering the ebb
and flow of kinetic energy. It is interesting how the Everett–Hirschman entropy (not
being Lipschitz continuous when its argument is zero) imparts élan into the Schrödinger
equation to produce these kink and antikink solitons. The lack of Lipschitz continuity,
i.e., indeterminism at ϕ = 0 in the logarithmic term of the LogSE, may very well explain
the spontaneous symmetry breaking phenomenon [18]. However, our focus has been on
mathematical solutions. In conclusion, our mathematical study provides us with simple
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and effective functional forms to model kink and antikink soliton solutions and their
combination, for a wide range of cases.
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