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ABSTRACT

The quantum field theory in one space + one time dimension described
by the Lagrangian Z =iz qﬁ*‘ég ¢ - (81, <;5*)(8i ®) - ¢ [(1) [4 is studied for
systems with finite temperature and particle density., Using momentum
space techniques previously developed, a graphical procedure is obtained
for calculating inner products of many-particle scattering state wave
functions, The unitarity of the wave operator U(0, -«)is demonstrated as
a pattern of graphical cancellations. An operator formulation of statistical
mechanics is derived in which partition functions are given in terms of
matrix elements having the form of diagonal (forward) inner products.
The importance of non-commutativity of the forward limit and the ie =~ 0
limit is noted and traced to the presence of forward singular graphs in the
inner product. Combining this observation with wave operator unitarity,
we obtain a graphical recipe for calculating N-body partition functions.
The thermodynamics first described by Yang and Yang is obtained by

summation of the fugacity series for the grand partition function.

"E Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration
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I. INTRODUCTION
1,2
This paper is the third in a series ’ = dealing with the guantum field

theory in one space plus one time dimension described by the Lagrangian
L= 310 B, 0-1(8, 6 )8, ) -co & ¢ (1.1)

where ¢(x)is a complex scalar boson field. In this paper we consider only
the repulsive case ¢ > 0, Previous treatments3"8 of this model have

begun with the first-quantized counterpart of (1. 1), which is a set of

N-body (N =1, 2, ...) Schroedinger equations with a two-body &~function
interaction. ? Many-body wave functions of the form first suggested by
Betheio provide the basic dynamical input in these discussions. Our approach
differs essentially from others in that we work directly from the quantum
field theory (1.1), relying primarily on graphical momentum space techniques,
The graphical formalism that emerges is appealing in its simplicity and
clarity of physical interpretation (see Sec. IV of II), It provides a complete
description of the 'zero density” phenomena (scattering theory) associated
with (1.1).

The present paper extends the results of II to deal with many-particle
systems at finite density and temperature. The main result is a graphical
description of the equation of state. The integral equation of Yang and Yang6
follows from an inspection of quasiparticle self-energy graphs. In Sec, II
we review the relevant results from the scattering theory of N-body systems

developed in II. In Sec. III the graphical representation of N-body scattering
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state wave functions is used to study the orthonormality of these functions
or, equivalently, toc investigate the unitarity of the wave operator U(0, -«).
The cancellations among various terms of an inner product, enforced by
wave operator unitarify, are a crucial ingredient in our calculation of
thermodynamic quantities, Sec, [V describes an operator formulation of
statistical mechanics which was developed specifically to treat this model
but may be of more general interest. It is similar in spirit to the work of
Goldberger“ and of Dashen et al,, 12-13 but differs substantially from both
in that the matrix elements which must be computed are not those of a
(formal) phase shift operator, but rather of a (formal) inner product of
wave operators, specifically, matrix elements of QTQ where Q is similar
to the wave operator U(0, -w»), The difference between Q2 and U(0, - o)

lies in the prescription for calculating diagonal (forward) matrix elements,
i.e, the order in which the ie¢ -0 and k'.l -»k.l limits are taken. By considering
the unitarity of the wave'operator U{0, - o), our attention is focussed on
the forward singularities which prevent these limits from being interchanged.
The graphical formalism is very helpful here since the momentum space
singularities of a term in the inner product are a direct reflection of the
structure of the corresponding graph., There emerges from this study a
graphical method for calculating forward matrix elements of QTS'Z'; In

Sec. V this method is used to calculate partition functions. The fugacity

series for the grand partition function is explicitly summed in terms of a

one-particle self-energy function w(k). The graphical expansion for mw(k)
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can be written as an integral equation, This reproduces the thermodynamics

previously derived by a variational method using Bethe's hypothesis. 6

II. REVIEW OF MANY-BODY SCATTERING THEORY
We review here the scattering theory results from I and II which
will be relevant to the discussion of finite density systems. The graphical
description of the thermal equilibrium state presented in Sec. V is an
outgrowth of the '"factorized graph' representation of many body scattering
state: wave functions derived in II. An N-body in-state wave function is

constructed from a free N-particle plane wave lkik . kN> = | k> bya

P
perturbative expansion of the Lippmann-Schwinger equation,

m

(k)> = VO, -o) k> = > [GG,(m.k)v]“ k> (2. 1)

n:

(+)

ey

where G0 is the free particle Green's function operator

_ 1
G,lw) = o -H,tie (2.2)
and @ is the energy of the plane wave,
N
2
W, = z 1{.1 . (2.3)
i=t

The order-by-order calculation of (2.1) can be represented by a set of

4
graphs containing | ¢ | © Feynman vertices, energy denominators, and loop
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integrations. In Il it was shown that, by judicious dissection and recombination
of these graphs, the perturbation theory of the many body wave function (2.1)
can be reduced to an equivalent set of 'factorized" graphs.

A factorized N-body wave function graph consists of N solid vertical
lines with some number of directed wiggly exchange lines passing hetween
them. An example is shown in Fig. {. The solid lines, representing
the particles in the system, proceed from the bottom to the top of the.graph
without direct intersection (in contrast to the original Feynman graphs).

In anticipation of their role in finite density calculations, we will refer to
these solid lines as quasiparticle lines. FEach quasiparticle line can be
separately and unambiguously traced through the graph, and hence, at any
point in the graph a quasiparticle may be identified by the momentum which it
had in the initial state. Here it is important to understand the rather
different roles played by the initial state momentum variables k.1 and the
final state momentum variables P, in the graphs for the in state wave function

<p’ErN(+)

(k)>. The p.l's are Fourier conjugate to the particle positions
at t = 0 and thus reflect the actual momentum content of the interacting
system. The k,l's {(sometimes called the pseudomomentum variables in
the literature on Bethe's hypothesis) serve as labels for the set of in state
wave functions.

A wiggly exchange line which connects quasiparticle lines of -

pseudomomentum k_l and kj’ with ki < kj, represents the product of a

k-dependent "coupling constant' ic/ k, - kj) and a momentum pole (-i)/ (q - i€)
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where q is the momentum carried by the wiggly line. It is interesting that
the forward singularities (poles at zero momenturn transier) represented
by these lines are of the same type as those studied by Landau in the theory
of repulsive Fermi systems. 14 Landau showed that these singularities
could be associated with a collective excitation of quasiparticles known as
"zero sound.' Drawing on this analogy, we will refer to the wiggly lines
in a factorized graph as phonon lines. (We do not attempt to justify this
terminology in the present context but adopt it as a convenience. Discussion
of the physical excitation spectrum for finite density systems described
by (1. 1) will be deferred to a future publication. )

The perturbation theory rules for calculating factorized graphs were
stated in Eq. {2.5)of II. There it was shown that each graph could be
written as a skeleton multiplied by a dressing function which depends only
on the k_l's. By reordering the phonon lines (which leaves the value of the
graph unchanged) and carrying out loop integrations, each skeleton can be
reduced to one of a standard set of ZN(N"“"Z N-body skeletons. %N(p, k; %’}_
Thus, for example, Fig. 2a is reduced to Fig, 2b, Tor a given set of
pseudomomenta ki’ ... k.., a skeleton is completely specified by a set

Nl

I

of pairs &, to be called a "collision set,"” which lists those pairs of
guasiparticles that interacted. For example, Fig. 2 is described by the
collision set { (1, 2), (2, 3)}. If we define a set of N{(N - 1)/ 2 pairs,

&y - {6 nli<jsNy (2.4)
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then % can be any subset of gl\‘l (including, of course, the empty set
and EopN itself), Equivalently, “ e 9P é”N) where P (& N) is the

.
power set (set of all subsets)of & . The full dressing function Y (%)

for a skeleton & ( &) (summed to all orders) contains a factor {assuming k. <k.
i)

_ 2ic L
T(kl_kJ) -k_"k__i.c, '. e (2-5)

b J

for each element (i, j) of the collision set g {c.f. Eq. (4.5) of II).
Following this procedure, we obtain the skeleton expansion for the N-body

wave function

N N
<p|wN(+)(k)> = 2mb Zp - z k) z Ko ki € 26
i=t izt /| Fe P& )
N

where %N(p, k; (g }is & dressed skeleton,

(4 ¥

H o, 5 ) = H o,k B I Tl (2.7)
i.j) e *

In (2.7) and elsewhere we use a double subscript notation for momentum.

differences,

k.. = k, -k, . (2.8}

%(p, k; g ) is computed from rules (2. 5a) and (2. 5¢) of II. Here we

will state the rules for directly computing a dressed skeleton L%/N(p, k; % ).
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The necessity for specifying a particular ordering of the pseudomomentum
variables (c.f. Eq. (2.4) of II) can be eliminated by introducing a symmetrized
"phonon propagator, "

-i
q-ie

(k' - k)

Ala; k - k') k> Kk

i
qtie

T(k - k') k< k' . (2.9)

Note that g(q; k=-k')= zni(-q; k' - k) and thus the sense of q can be defined
in either direction. A dressed skeleton graph j"z/(p, k; € is given by the
following rules:
(a) A propagator z(q; k.l - kj) for a phonon line of momentum q going
from quasiparticle line kj to quasiparticle line ki' (2.10a)
{b) An integration fd.e / 2w for each closed loop. (2.10b)
For any particular ordering of the ki‘s, it is easy to see that (2,10} is
equivalent to the rules (2.5) of II, A detailed discussion of the skeleton
expansion for N-body wave functions, its physical interpretation, and its

connection with Bethe's hypothesis is given in II.
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III. INNER PRODUCTS AND WAVE OPERATOR UNITARITY
The unitarity of the wave operator U(0, -«)in (2.1) allows a formal

demonstration that the N-particle in state wave functions are orthonormal,

() s (+) T - <
<o D[ e > = <k U0, @)U, -@)[k> = <k'[k> . (3.1)

where [k> = lki’ - kN>. Explicit verification of (3.1) in terms of
factorized graphs involves some.intricate cancellations among various
sets of graphs. In this section we will develop a systematic graphical
procedure for evaluating inner products of the form (3.41) and thereby
obtain wave operator unitarity constraints on inner product graphs.
These constraints are a crucial ingredient in the calculation of thermodynamic
quantities described in Secs. IV and V.

The evaluation of the inner product on the left-hand side of (3.1)
is most easily understood by manipulation of graphs. The ket state
[!r(+)(k )> is represented by a set of factorized graphs with the pseudomomentum
of each quasiparticle line determined by the momentum ki at the bottom

+
of the graph, The bra state <!r( )

(k') [ can be envisioned as a similar

set of graphs turned upside down, i.e. with pseudomomentum labels at

the top of the graph, The construction of an upside down bra state graph
entails both a complex conjugation of all quantities and a reversal of the
flow of momentum through all lines, The implied integration over the phase

+ +
space of the intermediate states |[p><p| between <! )(k')l and [ﬁ‘ )(k)>

is accomplished by joining lines from these two sets of graphs, producing
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inner product graphs which have pseudomomentum labels k,l at the bottom
and k‘_1 at the top. This procedure is depicted in Fig. 3. Notice that,

by virtue of the symmetrization of the intermediate state over the momenta
P, the quasiparticle lines from the upper and lower graphs must be joined
together in all N! possible ways. It is convenient to arrange the lower
pseudomomenta ki in a particular order ki’ kz-, . kN’ and classify the
inner product graphs according to a permutation P, where k'Pi.

k'PN is the ordering of the upper pseudomomenta.
Turning to the phonon lines, we note that the skeletal structure of an

inner product graph can, in general, be simplified by using the properties

of factorized graphs, namely: (1) vertex commutativity, and (2) loop integration

by line removal (i,e. Fig, 4). Thus, for example, the skeleton in Fig. 5a

reduces to Fig. 5b. A pair of quasiparticle lines in an inner product

skeleton graph will be connected by a phonon line if a collision took place

in either the bra state or the ket state or both. Thus, in a dressed inner

product graph, a phonon line of momentum g which connects two quasiparticle

and k'P at the top will

lines labelled ki and kj at the bottom and k’P_
1 i

represent the sum of three terms,

LY e
. ] = . + - f
T@k'p p, k) = AlG )+ 8 (ak'p p )
J L]
dg o~ ~ R R
+ f 5 AL kijm (£ -q; Kk P:le) . (3. 2a)
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Explicitly,
Ig; k' Jk) o= T+ T + )T (k! }'i
(a P P iJ) { (kjl) T (kP‘P.) T(kjl)T(k P.P‘) (q - ie)
1] ] 1 ] 1
> ' >
for kij 0, kP,P_ 0 {3.2b)
1]
and
. 1! - -1 + 8 H i
T4; kK'p p » Ky T(kji)(q —ie) Tk P.P.)(q +i€)
i j L]
f >0, k! <0
or kij kb p . (3.2¢)
1]
The other two sign combinations for kij and kP p. can be obtained from the
1]
symmetry relation
.1 - _ete et
I'(a; k Pin’ kij) r(-q; k PjPi’ kji) . (3.3)

An N-particle inner product graph is thus completely specified by a

permutation P ¢ SN and a collision set % € ;@Z( gN)' Such a graph will

be denoted .F_(k'_ , ...kK'_ ;k,, ...k; B )= FA(PK; k; ©). The
N P1 PN 1 N N
value of ]N(Pk'; k; &) is given by the following rules:
{a) Draw N quasiparticle lines with momenta ki’ kz, . kN flowing

in from the bottom of the graphand k'_ , k'_ , ...k flowing out from
Pi P2 PN

the top.

(3. 4a)
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(b) For each pair {i, j) € g, draw a phonon line connecting the
quasiparticle lines which are labelled at the bottom by ki and kj' (3.4b)
(c) For a phonon of momentum g corresponding to {i, j) e g, write

a factor T'(q; k'P P k... {3.4c)

RS
1]
(d) Perform an integration fdﬂ/ 2w over each closed loop. (3.4d)
The left-hand side of (3, 1) is given by the sum of all distinct inner product

graphs,

N N
(+) (+) X \ e G '
<ng (ko-[:QN (ky> = 2w é Zki - zki Z Z jN(Pk', k; &) (3.5)
i=t it / PeSy Be A& )
N

Combining the graphical expansion (3.5) with the constraint (3. 1), we
obtain wave operator unitarity relations among the inner product graphs LfN

The most useful form of these relations is obtained by a cluster decomposition

of the inner product. Let us define the connected part Y of an operator W by

<[ w]1> <1'|Y[1>

|

<er2tiwlaz>t= <t |vlas<2t|y|2> + <t'2'| Y| 4,2>

<1tzryr [ W[123> = <1'|Y[1><2'[Y[2><3%]|Y 3>

+

<1 |v|1><2n3')Y|2,3>

+

<2'|Y|2><1',3"|Y[14,3>
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+ <3t y|3><tr,2' | Y1, 2>
+<1',2,3'| Y[1,2,3>, etc. (3. 6)
Here we use the shorthand

(ko kpee> >[4, 20005

|, K'..> =1, 2n > (3.7)

1 2

It should be noted that the operator Y defined by (3. 6) includes not only
those graphs in which all particles are connected by interactions but

also graphs in which otherwise disconnected clusters are connected by
statistics. For example, the exchange term <1'|W|2><2'| W] 1> would
be included in <1',2'| Y|4, 2>. This definition of connectedness is
appropriate to the discussion of Hilbert space traces, For some purposes
it is desirable to isolate those graphs which are fully connected in the
ordinary sense, i.e. by interactions. This is accomplished by defining

an operator T by
<a'|yf1> = <arlrfa>

<2y i1,2> = <2 Tl4><4'[T[2> + <1t 27T [4,2>

<1',27,3'1Y[1,2,3>= <4'|T[3><3'|T|2><2"|T][1>

+ o<4rr]2><2r|T|3><3"| T]|1>
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+ <4t r]2><2,3t|r]1,3>
+ <t T|3><2,3'[1]1,2>
+ <2t ri1><1,30 1|2, 3>
+ <2t|T[3><1%,3" [T [1,2>
+ <3| T[1><ar, 2t | 2,3>
+ <3t|T]2><1,2'|1]1,3>
+ <1',2',3'"| T]4,2,3>, ete, (3.8)

Matrix elements of T are given by the sum of graphs which are completely

connected by interactions. By letting

W o= U0, )00, -2 (3.9)

we obtain a cluster decomposition of the inner product {3.5). Using (3. 6)

and (3.8), we can write the wave operator unitarity constraint (3,1) as
<1, 2", ...N'[T?]|4, 2, ...N> =0, N>1 . (3. 10)

From (3.5) and (3.9) we have

¢
Z z %(Pk';k;‘?) -0, N>+t (3. 11)
il

€
PSN
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where the primed sum extends over all collision sets describing graphs
which are completely connected by phonon lines,

The two-body system serves as an instructive example of the above
considerations. For N =2 there is only one term in the primed sum
in (3, 11), namely ¢ = {{1, 2}} The sum over permutations gives

the two graphs shown in Fig. 6. These are easily evaluated by the rules

(3.4). Assuming for definiteness that k1 <k2 and 1«;'1 <k'2, we find
. -4c
11 | PR . =
Ak o Kk ki {1, 2))) e, T o) (3.12a)
12
i . 4
F iy, Wik, ks (4, 2)}) = - (3. 12b)

-1 ] :
12 ic )ik 42 +ic)

which confirms the result (3, 11) for N = 2.

The verification of (3,14) for N > 2 involves a considerable amount
of manipulation and regrouping of terms in the sum of inner product
graphs, ©5Since a graphical understanding of the unitarity relations is
essential to our calculation of thermodynamic quantities, we will discuss
these manipulations in some detail, Instead of showing (3.11), we will

discuss the slightly weaker constraint

z = (w - wrk)z' Z fN(Pk'.; k; €) = o (3. 13)

& PeSN

where wp and w'k are defined as in (2. 3), Factorizing energy differences

term by term, we get
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—k' f (Pk'; k: &)

M
M—.
Mz

1}
(=N

PES i

. N
- Z Dty R Mtk ) TP E) . 6. 14)

i
Pt—:SN i=1

The inner product graphs are given by the rules (3. 4), specifically

f &z d!i d£L ‘
(Pk', k; &) = —— ... n Tig, .;k' , k..) (3.15)
N FA 2w (i,)e & ] Pin ij

where L is the number of closed loops and qij is the momentum carried
by the phonon (i, j) defined to flow from line j to line i. The momentum
difference in (3. 14) is equal to the sum of all momenta flowing into

line i, as depicted in Fig. 7,

K -k = z q. - Z a,, (3. 16)

: ji
: (il G, DY~ {2 ], DB

where the notation implies a sum over all phonons connecting to line i.

Inserting (3.15) and (3, 16) into (3, 14), we find

Z* E | Z f T?(kij+krP.P.)qij

PeSy ?ﬂ (i,jle ¥ b

X ]T Ha, k'PJZPm‘ Kom! (3.1
(I,m)e%
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We now separate the (i, j) factor from the product of s, writing

Tl. (g, k! , k) = Tig..; K , k)
(t.m)e? Im’ Pﬂpm Zm ij Pin ij
X " Tig ; kT k ) (3.18)
I P N » .
(£, m)e & m o F Fy, Am

(£, m)#(i,j)
By noting the explicit form of T, Eq. (3.2), it is seen that

;k' > - E ' F . - -
q,le"(q.lj Pin kiJ) Fo(k Pin li) (3.19)

is independent of qij' It is convenient to represent I in (3,419) by a

0
dashed line connecting quasiparticle lines i and j as shown in Fig, 8.
The skeletal structure of an inner product graph containing such a dashed

line is completely analogous to that of the "amplitude graphs' used in II.

Eq. (3.17) can be written

DR z > g * ' p T p o i)

PeSy & (Lj)e¥ b !
(3. 20)
a d g
% "2_1"'2L " Mo, i %¥p p Koy
N T (4,m)e? m
(2, m)#,j)
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The double sum in (3, 20) over (i,j)e % and over % can be thought of

as a sum over all possible connected skeletal structures that can be

built from N quasiparticle lines, one dashed line, and any number of
phonon lines (with no pair of quasiparticle lines being connected more
than once). We can invert the order of this double sum, grouping together

all those graphs which have a particular pair (i, j) connected by the dashed

line, i.e.

Z‘ 2 - z z” (3.21)

% (i,])e¥ (i,j)eéi\T &

where gN is defined in (2. 4), and the double primed sum is over all
those connected collision sets which contain the pair (i, j). With the

regrouping of terms (3. 21), we find

Z B Z Z (k ) (k'P.P.' kij)Fij(Pk"'k) (3.22)

(i,j)e g PeSy b
where
" dﬁi dEL "
] = rre— . 1
F (P!, k) Z — 5 ?r(qu,kp p ok, ). (3.23)
g (8. mle & i m
(2, m)#i,j)

We will now show that the unitarity constraint £ = 0 results from

a pairwise cancellation among the terms in the sum over permutations



-19- FERMILAB-Pub-77/51-THY

PeS,, in (3.22). This is seen by dividing the elements of the permutation

N
group SN into two subsets,
SN = GN(i, il 0 GN(j, i) , (3. 24)
where
ol ) = {P e S|P, < PJ.} . (3. 25)

For each permutation P ¢ GN(i, j) there is a corresponding permutation

Pe opgs 1), where

P = PijP (3. 26)

and Pi' is the permutation which interchanges the ith and jth members
of an N-tupie. On a graph this represents the interchange of pseudomomentum

labels k';P and K A crucial property of the function (3. 23) is its

. P’
1 J

symmetry under this interchange,
F. (Pk', k) = F_(Pk', k) (3. 27)
ij ij

where P and P are related by (3.26). This will be shown explicitly
below but first let us see that it leads directly to the unitarity cancellation,

With (3,27), (3.22)becomes

z i 2 Z {(kij +k‘PiP_):r\O(k'_P;{P1’:k.i.j,)
(i,3)e &)y Peogl,j) ! :

- ’ . (PR, k _
+ (kij + klP‘P.I T,k b kij)}_ iJ( ) (3. 28)

3
i 11
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The result £ = 0 now follows easily, because the quantity in curly
brackets vanishes identically, as can be seen by inspection of {3.2) and
(3.19). This is in fact a revisitation of the unitarity cancellation in the
two-body problems, Eq. (3.12).

The symmetry relation (3, 27) can be understood by considering
the graphical structure of Fij' In changing P to P in (3. 23), we interchange

k'P and k'P . This affects only those factors in the integrand which
i J

correspond to phonons connecting to quasiparticle line. i or j. Another
quasiparticle line m may be connected by phonon(s) to line i or j or both,
In the last case the two phonons form a closed loop. Thus, when the

sum over &'s in {3.23) is carried out. under the integral sign, the factors

in the integrand which are relevant to the proof of (3. 27) take the form

. ] . 1
I'(q; k PiPm’ kim) * g k P.P_’ "jm

2 e K -2k
+f2n_1"(!i,kpipm, kim)r(q f’kP_P s kjm) . (3. 29)

This expression can be shown to be symmetric under the interchange

kp_-e- kP-‘ by simply inserting (3.2a) in (3, 29) and inspecting terms.
1 I
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IV. GRAPHICAIL THEORY OF STATISTICAL MECHANICS
We will review briefly the operator formulation of statistical
mechanics discussed in II. The N-particle partition function can be
written as a contour integral in the complex energy plane with an integrand
involving the trace of the resolvent operator of the hamiltonian H. By

closing the contour around the real energy axis we obtain

@

“BH, LB PR {(GE-i0)-GE+iO)} . 4.1)

Q.. = Tr_ (e oy
0

Here, the 1limit € —0 is understood to be taken at the end of the calculation.
The delicacy of this limit forms the main subject of this section. We

can expand the operators G(E £ ie)in (4.1) as a perturbation series,
G = G, + G, VG, +... (4.2)

In order to evaluate (4. 1) via the graphical scattering theory formalism

already developed, we use the cyclic property of the trace to get

Q - fdEe'BETrN{ax(E.-HO)QT(EHE)Q(EHE)}

0
N
dk dk 2
_ 1 1 N Zk. <k
NT .f'z'%" - exp )P i 1"‘kNlWe[k1"'kN> (4.3)
i=1

where O(E - HOJ is an operator delta function, and
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o)

QE +ie) = z [GO(E +i€)V]n . (4. 4)

n=0
The operator W€ is defined by

g : .
' ’ = <k', ... k' 2" +ie)R 4,
KK W k> k' k[ 20 +ie)2o, +ieak, ky> . (45)

with

_ 2
O.)k: z kl . (4.6)

The subscript € is meant to denote the manner in which the diagonal (forward)
matrix elements of WE are computed, This calculation involves the
following sequence of limits: (referred to below as the "thermodynamic
limit"): (4) k'. ~ k., followed by (2) € = 0. From (4.4) and (4.5) we
find the formal result

W, W (4.7)

e—~0

where W is defined in (3.9 ), However, the forward matrix elements of
W are computed by the prescription (referred to below as the "forward
scattering limit'"): (1)e — 0, followed by (2) k‘i - ki' The € = 0 and
k'.1 - k.1 limits do not commute, and hence We + W (W is in fact unity

whereas We contains all thermodynamic information}.
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These points are well illustrated by the calculation of the second
virial coefficient, 2 which will also serve to introduce the more general
results. The part of the two body partition function which depends on the
interaction is obtained from the thermodynamic limit of two graphs,

Figs. 6a and 6b. Assuming for convenience that k1 < kz and k'1 < k'z,

they are given respectively by

k. -k
~4c 12 12
T (k,=k'; k' . ,k, ) = - — ~ —~ (4. 8a)
e 1 1’7 24" 721 (k21+1c)(k 21 ic) k12 k’liz ie

4¢ 1 4c 1
T k -k';k' k., } = ( — )( — )+( - )( - ) (4. 8b)
e 1 277127 21 l«:12 ic k12+k 12 ie k‘iaﬂc k12+k'liz+1€

In (4. 8b), the ¢ -~ 0 and kli —»ki limits commute, Thus,

lim lim I (k. -k';k' k. ) = lim lim 1T (k -k'_;k" _,k_.)
c »0K -k € 1 2’ 427721 K =k e—p € 1 271427721
1 1 1 1
- 2% 4nsk, ) = 24 (k) (4.9)
2 2 12 Ok 42 ’ )
kiz +c 1o

The forward scattering limit of {(4.8a) is -ZAO(kiz) and just cancels

(4. 9) as required by wave operator unitarity. On the other hand, the
thermodynamic limit of {4, 8a) vanishes,

lim lim T _(k, -k';k',,,k ) =0 . (4.10)
=0k ~k e 4 4T 24 T2
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The non-commutativity of the thermodynamic and forward scattering limits

of (4.8a) results from the fact that the momentum carried by the phonon

in Fig. 6a is forced to vanish when k'i - ki' (A phonon with this property

will be called "infrared".) These results can be understood from a

more general point of view. A momentum pole, represented graphically

by a phonon, can be associated with a semi-infinite integration in configuration
space. This integration is damped by an oscillating factor eiqx where

q is the phonon momentum. Infrared phonons arise from the asymptotic

parts of the wave function where the integration becomes undamped when

k‘.l '*k.l. But potential infrared terms of O(q-i) always vanish (after
non-interacting parts of the inner -product_ar esmbtnacted ff) benpsetthe
phase shifts of the bra and ket states "'match up'' producing a forward

ei(’@-@’) _

zero of the form ( 1), The vanishing of (4.10)

exemplifies this general result, The unitarity cancellation in the forward
gscattering limit occurs between the O(qO) part of the infrared graph
Fig. 6a and the (unambiguous) forward limit of the non-infrared graph,
Fig. éb. The second virial coefficient can therefore be calculated directly
from the forward scattering limit of the infrared graph (See II),

The extension of this analysis to N > 2 follows from the wave operator
unitarity results of Sec, III, The quantity Ao(k) in (4.9) occurs frequently
and will be called a "O®-phonon" propagator. It is depicted in Fig, 9,

By the foregoing discussion, a O:-phonon can be interpreted as the g~ 0

limit of an infrared phonon. We will find that forward matrix elements
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of We can be evaluated by graphs constructed from O0-phonons and
quasiparticle lines, Let us define a phonon tree graph as one which
falls into two disconnected pieces by the removal of any phonon line, We
include both statistical and dynamical connectedness as part of this

designation, e.g. Fig. 6a is a phonon tree, but Fig. 6b is not. Defining

Y from W in precise analogy with Eq. (3,6), we find that
€ €

.,k E{all connected O-phonon tree graphs} (4.11)

>
N

<k ...,kN[YE[ki,..

where each O-phonon incurs a factor

&k, ) = st = 27 8(k, ) . (4,12)
0" 1ij " +o 1}
The demonstration of (4. 11} proceeds by an inductive argument
which will be sketched here. We choose a fixed set of k.l's and study
matrix elements near the forward direction k'_1 —>ki. It is convenient

to define two quantities,

Y(@) = <k; - (N-dl, k, +q, .okt @ Yk, Kye oo, RE> (4013)

where Y is defined by (3.9} and (3, 6), and

k.. > {4, 14)

_ 4 T -
Y (@) = <k, ko1, kg U (0, =2 ) (NQJU(O, =@ ) [k yee K>

N

where je is the charge density operator in momentum space,
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d +
(q) = —Ra a . (4. 15)

These two quantities are depicted in Figs. 10a and 10b respectively.

The resulit (4. 11) is a consequence of the following assertions:

. - <
lim Y _(a) Ko oo Ko [V Ry ooy k> (4. 16)
q=0

Y(q) = 0, g # 0 (4.17)

lim l:Ye(q) - Y(q)] = Z{all connected O-phonon tree graphs } . (4, 18)

q—~0

Eq. (4.16) follows from the cancellation of infrared singularities in the
sum of inner product graphs. As discussed previously, an infrared

phonon pole (q - i€ )_"l will be multiplied by a vanishing phase shift factor

81(6_6'} -1 (4.19)

where ®'=- ® as q -~ 0. But the phase shifts ® and & are Galilean
invariant, i. e, they depend only on momentum differences kij and k'_lj
respectively., Thus, factors like (4.19) are identically zero for both

the left- and right-hand sides of (4.16). The graphs which do contribute
to (4. 16) are entirely non-singular and hence give the same result for
both sides. Eq. {4.17) is just the statement of wave operator unifarity.
Finally, Eq. {(4.18) can be shown inductively by noting that the calculation
of the first term on the left-hand side differs from that of the second

only in the treatment of infrared phonons which connect particle 1 to the
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rest of the graph, For Ye {g), the sum of such infrared graphs is identically
zero due to factors like {4.19). On the other hand, Y(q) is calculated
by retaining the O(qo) terms of the infrared graphs. This is easily
found to give a sum of all possible 0O-phonon insertions connecting
particle 1 to the rest of the graph, with the 0-phonon "propagators”
0

A (kij ) arising as phase shift derivatives. Eq. (4. 18) then follows by

induction.

V. THE EQUATION OF STATE
The equation of state of the system can be obtained from the log

of the grand partition function

Jae)
g &= D 2@y (5. 1)
N=1

Pr

where z = e ' =fugacity, p = chemical potential, p = (kBT)-j. T = temperature,

and QNG« is the connected part of the N-body partition function,
N

-8 k
1

1

QNc = ﬁT. jdkil.'deexp Y lk Lo ko> L (5,2)

[N
i

With the ansatz (4. 11), the only remaining problems involve the counting
and summation of graphs. Let us write the permutation P for each
O=phonon graph in Ye in its cyclic form (e.g. (P) = (2143) is written

(12)(34)), and focus on the £ -cycle which contains particle 1, say
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(iczc3. Ly ). We can collect together all graphs (for all values of N)
for which particle 1 is in a 1-cycle (i.e, P:l =1). Multiplying by

N
'ﬁigikizf and integrating over kz, k,, ...k, we obtain an important

exp 3’ N

one-particle distribution function C(kﬁ), which will be represented

by the shaded blob in Fig. 141. In a similar way, those graphs in which

particle 1 belongs to an £ -cycle can be contracted over all k's except

k

4 kC s s e s kc , giving the product of {'s shown in Fig., 12. This

2 £
product entails a symmetry factor (£!) 1. There are (£ -1)! distinct
t -cycles, and hence the overall symmetry factor for the corresponding

. -1 . .
term in the equation of state is £ =, In this way we find an expression

for the pressure, 6 Fig. 13

1
P = zpoey e €

I
NI
Y e
W
o
o
~ |
[ —
s
oy
(Wt
.

I _
= -3 fdk log [1 é(k)] . (5.3)

The graphical summation involved in the calculation of £(k)can
be reduced to an integral equation. The graphs for L(k) can be classified
according to the number of O-phonons attached to the quasiparticle line
k, as shown in Fig. 14. A graph with n such phonons contains a symmetry

factor (n! )-1 associated with the commutativity of vertices and resulting
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symmetry of the graph under interchange of phonon labels., Thus

t(k)can be written

2 2 n
) = o PE W) S L [-ﬁw(k)]
n=0
2
- expi—ﬁ[k + (k) - p]% . (5. 4)

Here nw(k) is essentially the single phonon graph, Fig., 15, and can be
interpreted as the quasiparticle self -energy due to the interaction,

The end of the phonon line in Fig. 415 which intrudes into the crosshatched
blob attaches to a quasiparticle line of momentum k'. The combinatorics

and attendant symmetry factors for the remainder of the graph are completely
analogous to the derivation of (5.3). The resulting equation6 for wlk) is

depicted in Fig. 16,

T LS —k
nlk) - 3 J‘Zw A, (k== k' Jlog

Notice that as ¢—+ 0, wk)—0, and for ¢ - o,

Z )4
1-e BE" e )y . (5. 5)

2
w) = - 3log {1 I N0 (5.6)

Thus we obtain a well-known result that the pressure

T
G0 - -E%Efdklog 1-e‘3[k rk)-p t (5.7)
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reduces to that of an ideal Bose (Fermi) gas in the limit ¢ =0 (c = =),
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FIGURE CAPTIONS
Example of a factorized wave function graph.
{a) A three-body skeleton graph.
{b) The same graph reduced to standard form by repeated
use of the identity shown in Fig. 4,
Construction of an inner product from two sets of wave
function graphs.
An identity used in the reduction of gskeleton graphs
(c.f. Eq. (2.9) of II).
(a) Contraction of two wave function skeleton graphs to
form an inner product skeleton graph.
(b} Reduction of the inner product skeleton graph,
(a) Two-body inner product graph with P = (12) = identity.
{b) Two-body inner product graph with P = (21).
Illustration of Eq., (3.16) for net momentum transfer to
a quasiparticle line.

Graphical representation of I‘O(k' kij }, Egq. (3.19).

Pin;
Graphical representation of the 0~-phonon propagator,
Eq. (4.12).

(a) The function Y(q), Eq. (4. 13).

(b) The function Ye(q)’ Eq. (4.14).

The distribution function ¢ (k).
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Products of ¢ (k) functions which arise in the calculation

of the pressure, Eq. (5.3).

Summation of "vacuum'' graphs, giving the pressure,

Eq. (5.3)

Classification of graphs for ¢ (k) by the number of 0-phonons
attaching to quasiparticle line k.

The quasiparticle self-energy (k).

Integral equation for the self-energy.
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