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ABSTRACT 

The quantum field theory in one space + one time dimension described 

by the Lagrangian 2 = i/2 6*x 4 - (ai $*)(ai $1 - c 14 I4 is studied for 

systems with finite temperature and particle density. Using momentum 

space techniques previously developed, a graphical procedure is obtained 

for calculating inner products of many-particle scattering state wave 

functions. The unitarity of the wave operator U(0, -ml is demonstrated as 

a pattern of graphical cancellations. An operator formulation of statistical 

mechanics is derived in which partition functions are given in terms of 

matrix elements having the form of diagonal (forward) inner products. 

The importance of non-commutativity of the forward limit and the if - 0 

limit is noted and traced to the presence of forward singular graphs in the 

inner product. Combining this observation with wave operator unitarity, 

we obtain a graphical recipe for calculating N-body partition functions. 

The thermodynamics first described by Yang and Yang is obtained by 

summation of the fugacity series for the grand partition function. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

This paper is the third in a series I,2 dealing with the quantum field 

theory in one space plus one time dimension described by the Lagrangian 

9 = &kX 4 _ (a, $:~)(a1 $) _ c&g$& (1.1) 

where 6(x) is a complex scalar boson field. In this paper we consider only 

the-repulsive case c > 0. Previous treatments 
3-8 

of this model have 

begun with the first-quantized counterpart of (1. 1). which is a set of 

N-body (N = 1, 2, . . . ) Schroedinger equations with a two-body b-function 

interaction. 9 Many-body wave functions of the form first suggested by 

10 
Bethe provide the basic dynamical input in these discussions. Our approach 

differs essentially from others in that we work directly from the quantum 

field theory (1. 1). relying primarily on graphical momentum space techniques. 

The graphical formalism that emerges is appealing in its simplicity and 

clarity of physical interpretation (see Sec. IV of II). It provides a complete 

description of the ‘hero density” phenomena (scattering theory) associated 

with (1. 1). 

The present paper extends the results of II to deal with many-particle 

systems at finite density and temperature. The main result is a graphical 

description of the equation of state. The integral equation of Yang and Yang’ 

follows from an inspection of quasiparticle self-energy graphs. In Sec. II 

we review the relevant results from the scattering theory of N-body systems 

developed in II. In Sec. III the graphical representation of N-body scattering 
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state wave functions is used to study the orthonormality of these functions 

or, equivalently, to investigate the unitarity of the wave operator U(0, -m). 

The cancellations among various terms of an inner product, enforced by 

wave operator unitarity, are a crucial ingredient in our calculation of 

thermodynamic quantities. Sec. IV describes an operator formulation of 

statistical mechanics which was developed specifically to treat this model 

but may be of more general interest. It is similar in spirit to the work of 

Goldberger 
11 

and of Dashen et al. , 
12-13 

but differs substantially from both 

in that the matrix elements which must be computed are not those of a 

(formal) phase shift operator, but rather of a (formal) inner product of 

wave operators, t specifically, matrix elements of R n where D! is similar 

to the wave operator U(0, -m 1. The difference between .Q and U(0, - ml 

lies in the prescription for calculating diagonal (forward) matrix elements, 

i.e. the order in which the ie -0 and ki - ki limits are taken. By considering 

the unitarity of the wave operator U(0, -m), our attention is focussed on 

the forward singularities which prevent these limits from being interchanged. 

The graphical formalism is very helpful here since the momentum space 

singularities of a term in the inner product are a direct reflection of the 

structure of the corresponding graph. There emerges from this study a 

graphical method for calculating forward matrix elements of Q’SE In 

Sec. V this method is used to calculate partition functions. The fugacity 

series for the grand partition function is explicitly summed in terms of a 

one-particle self-energy function v(k). The graphical expansion for rr(k) 
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can be written as an integral equation. This reproduces the thermodynamics 

previously derived by a variational method using Bethe’s hypothesis. 6 

II. REVIEW OF MANY-BODY SCATTERING THEORY 

We review here the scattering theory results from I and II which 

will be relevant to the discussion of finite density systems. The graphical 

description of the thermal equilibrium state presented in Sec. V is an 

outgrowth of the “factorized graph” representation of many body scattering 

state: wave functions derived in II. An N-body in-state wave function is 

constructed from a free N-particle plane wave 1 k4k2. . . kN> - 1 k> by a 

perturbative expansion of the Lippmann-Schwinger equation, 

laN 
(+1(k)> = U(0, -m) jk> = $j [Gobk)V]” Ik> 

n=O 

where Go is the free particle Green’s function operator 

GO(u) = 
1 

w -H,,+ie 

and w k is the energy of the plane wave, 

N 

Wk = k.2 . 1 

(2.1) 

(2.2) 

i=l 

The order-by-order calculation of (2.1) can be represented by a set of 

graphs containing 1 4 1 4 Feyn man vertices, energy denominators, and loop 

(2.3) 
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integrations. In II it was shown that, by judicious dissection and recombination 

of these graphs, the perturbation theory of the many body wave function (2. 1) 

can be reduced to an equivalent set of “factorized” graphs. 

A factorized N-body wave function graph consists of N solid vertical 

lines with some number of directed wiggly exchange lines passing between 

them. An example is shown in Fig. 1. The solid lines, representing 

the particles in the system, proceed from the bottom to the top of the,graph 

without direct intersection (in contrast to the original Feynman graphs). 

In anticipation of their role in finite density calculations, we will refer to 

these solid lines as quasiparticle lines. Each quasiparticle line can be 

separately and unambiguously traced through the graph, and hence, at any 

point in the graph a quasiparticle may be identified by the momentum which it 

had in the initial state. Here it is important to understand the rather 

different roles played by the initial state momentum variables ki and the 

final state momentum variables pi in the graphs for the in state wave function 

‘pIvN 
(+) 

(kP. The pi’s are Fourier conjugate to the particle positions 

at t = 0 and thus reflect the actual momentum content of the interacting 

system. The ki’s (sometimes called the pseudomomentum variables in 

the literature on Bethe’s hypothesis) serve as labels for the set of in state 

wave functions. 

A wiggly exchange line which connects quasiparticle lines of 

pseudomomentum ki and kj, with ki < kj, represents the product of a 

k-dependent “coupling constant” ic/ (ki - kj) and a momentum pole (-i)/ (q - is) 
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where q is the momentum carried by the wiggly line. It is interesting that 

the forward singularities (poles at zero momentum transfer) represented 

by these lines are of the same type as those studied by Landau in the theory 

of repulsive Fermi systems. 
14 

Landau showed that these singularities 

could be associated with a collective excitation of quasiparticles known as 

“zero sound. ” Drawing on this analogy, we will refer to the wiggly lines 

in a factorized graph as phonon lines. (We do not attempt to justify this 

terminology in the present context but adopt it as a convenience. Discussion 

of the physical excitation spectrum for finite density systems described 

by (1. 1) will be deferred to a future publication. ) 

The perturbation theory rules for calculating factorized graphs were 

stated in Eq. (2.5) of II. There it was shown that each graph could be 

written as a skeleton multiplied by a dressing function which depends only 

on the ki’s. By reordering the phonon lines (which leaves the value of the 

graph unchanged) and carrying out loop integrations, each skeleton can be 

reduced to one of a standard set of 2 N(N-1)‘2 N-body skeletons. xN(p, k;%??). 

Thus, for example, Fig. 2a is reduced to Fig. 2b. For a given set of 

pseudomomenta kl, . . . kN, a skeleton is completely specified by a set 

of pairs g to be called a “collision set, ” which lists those pairs of 

quasiparticles that interacted. For example, Fig. 2 is described by the 

collision set { (1, Z), (2, 3)}. If we define a set of N(N - l)/2 pairs, 

gN = {(i, j)li< j s N} , (2.4) 
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then e can be any subset of gN (including, of course, the empty set 

and gN itself). Equivalently, 9 E y( gN) where y( &? N) is, the 

power set (set of all subsets) of gN. The full dressing function 6( $?) 

for a skeleton m e’, (summed to all orders) contains a factor (assuming ki<k, 
J 

T(ki - kj’ = 
2tc 

ki-kj-i,c’ ! (2. 5) 

for each element (i, j) of the collision set g (c.f. Eq. (4. 5) of II). 

Following this procedure, we obtain the skeleton expansion for the N-body 

wave function 

‘pI*N (+)(k)> = (2vld g,(,. k; e) (2.6) 

%?E p( 14.) 

where TN(p, k; %? ) is a dressed skeleton, 

*N(p, k; %? ) = ‘wN(p, k; %) m -dkij) . (2.7) 

(Lj) E g 

In (2.7) and elsewhere we use a double subscript notation for momentum 

differences. 

kij z ki - kj . (2.8) 

x,(p, k; %? ) is computed from rules (2. 5a) and (2. 5~1 of II. Here we 
.x 

will state the rules for directly computing a dressed skeleton xN(p> k g’,. 
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The necessity for specifying a particular ordering of the pseudomomentum 

variables (c. f. Eq. (2.4) of II) can be eliminated by introducing a symmetrized 

“phonon propagator, ” 

z(q; k -k’) = T(k’ -k) -l 
q - ic 

k > k’ 

= T(k-k’) i q +ie k<k’ . 

Note that i(q; k - k’) = 2(-q; k’ - k) and thus the sense of q can be defined 

in either direction. A dressed skeleton graph %(p, k; %?) is given by the 

following rules : 

(a) A propagator z(q; ki - kj) for a phonon line of momentum q going 

from quasiparticle line kj to quasiparticle line k.. (2.10a) 1 

(b) An integration 
/ 

dl/ 2rr for each closed loop. (2. 10b) 

For any particular ordering of the ki’s, it is easy to see that (2.10) is 

equivalent to the rules (2.5) of II. A detailed discussion of the skeleton 

expansion for N-body wave functions, its physical interpretation, and its 

connection with Bethe’s hypothesis is given in II. 
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III. INNER PRODUCTS AND WAVE OPERATOR UNITARITY 

The unitarity of the wave operator U(0, -ml in (2.1) allows a formal 

demonstration that the N-particle in state wave functions are orthonormal, 

<uN(+)(k’ 1 [ eN(+l (k)> = <k’ 1 U+(O, -‘=)U(O, -a) k> = <k’[k> . (3.1) 

where [k> 3 1 kl, . . . kN>. Explicit verification of (3.1) in terms of 

factorized graphs invol<ves:sama-intricate cancellations among various 

sets of graphs. In this section we will develop a systematic graphical 

procedure for evaluating inner products of the form (3.1) and thereby 

obtain wave operator unitarity constraints on inner product graphs. 

These constraints are a crucial ingredient in the calculation of thermodynamic 

quantities described in Sets. IV and V. 

The evaluation of the inner product on the left-hand side of (3.1) 

is most easily understood by manipulation of graphs. The ket state 

(+) & (k)> is represented by a set of factorized graphs with the pseudomomentum 

of each quasiparticle line determined by the momentum ki at the bottom 

of the graph. The bra state <h (+)(k’) [ can be envisioned as a similar 

set of graphs turned upside down, i. e. with pseudomomentum labels at 

the top of the graph. The construction of an upside down bra state graph 

entails both a complex conjugation of all quantities and a reversal of the 

flow of momentum through all lines. The implied integration over the phase 

space of the intermediate states [ p> < pI between <V (+)(,I 1 I and [ U(+)(k)> 

is accomplished by joining lines from these two sets of graphs, producing 
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inner product graphs which have pseudomomentum labels ki at the bottom 

and kVi at the top. This procedure is depicted in Fig. 3. Notice that, 

by virtue of the symmetrization of the intermediate state over the momenta 

pi, the quasiparticle lines from the upper and lower graphs must be joined 

together in all N! possible ways. It is convenient to arrange the lower 

pseudomomenta ki in a particular order ki, k2; . . . kN, and classify the 

inner product graphs according to a permutation P, where k’ Pi, k’ P2’ *** 

k’ 
PN 

is the ordering of the upper pseudomomenta. 

Turning to the phonon lines, we note that the skeletal structure of an 

inner product graph can, in general, be simplified by using the properties 

of factorized graphs, namely: (1) vertex commutativity, and (2) loop integration 

by line removal (i. e. Fig. 4). Thus, for example, the skeleton in Fig. 5a 

reduces to Fig. 5b. A pair of quasiparticle lines in an inner product 

skeleton graph will be connected by a phonon line if a collision took place 

in either the bra state or the ket state or both. Thus, in a dressed inner 

product graph, a phonon line of momentum q which connects two quasiparticle 

lines labelled ki and kj at the bottom and ktp, and klp, at the top will 
1 J 

represent the sum of three terms, 

Q rr * 
r(q; klPiPj’ kij) = Us; kij) + A (-9: ktPipj) 

+ 

/ 
$$(I; kij)x*(I - q; klPig ) . (3.2a) 
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Explicitly, 

k..) = 
i; 

=(q; k’PiPj’ 11 r(kji) + T (k;>,P. 
J 1 

) + T(kjihk’p,p, 
J 1 

for kj > 0, kbipj > 0 

and 

k..) = T(kjil 1J 
:: 

+T (k’ 

for kij > 0, kbipj <o 

The other two sign combinations for kij and kP, p. can be obtained from the 
1 .l 

symmetry relation 

r(q; klPiPjs kij) = d-9; k’p,p,> 
J 1 

kji) . 

An N-particle inner product graph is thus completely specified by a 

permutation P E SN and a collision set g E y( &?‘,). Such a graph will 

be denoted fNW k’ P4’ *** PN’ k4, . . . kN;%) E yN(Pk’; k; $?‘,. The 

value of fN(Pk’: k; $?) is given by the following rules: 

(a) Draw N quasiparticle lines with momenta kl, k2, . ~. kN flowing 

in from the bottom of the graph and kfp , kUp , . . . klp flowing out from 
1 2 N 

the top. 

(3.2bl 

(3.2c) 

(3.31 

(3.4a) 
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(b) For each pair (i, j) E $?“, draw a phonon line connecting the 

quasiparticle lines which are labelled at the bottom by ki and kj. (3.4b) 

(c) For a phonon of momentum q corresponding to (i, j) E 9, write 

a factor T(q; k’PiPj. kij ). (3.4c) 

(d) Perform an integration / d1/ 2ir over each closed loop. (3.4d) 

The left-hand side of (3. 1) is given by the sum of all distinct inner product 

graphs, 

<o.,(+)(kl,( s(+)(k)> = 2d($-~+~, /;,, > <(PW&) (3.5) 

N 

Combining the graphical expansion (3. 5) with the constraint (3. 1), we 

obtain wave operator unitarity relations among the inner product graphs 4-C 

The most useful form of these relations is obtained by a cluster decomposition 

of the inner product. Let us define the connected part Y of an operator W by 

<l’[Wll> = <l’IY[l> 

<l’2’ 1 WI 12, : = <I’ 1 Y Ii><2 1 Y I2> + <1’2’ 1 Y II, 2> 

<I!:2’3’ 1 W 1 123> = <l’IYI1><2’IY12><3!:IY13> 

+<l’lYI1><2V,3’IIY12,3> 

+ <2’[ Y[2><1!,3’.IY[ 1,3> 
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+ 11’,2’, 3’ 1 Y 1 1,2,3>, etc. 

Here we use the shorthand 

[ki, k2.‘.> -11, 2...> 

Ikll, k12.. . > - Ii’, 2’; . . > . 

(3. 6) 

(3.7) 

It should be noted that the operator Y defined by (3.6) includes not only 

those graphs in which all particles are connected by interactions but 

also graphs in which otherwise disconnected clusters are connected by 

statistics. For example, the exchange term <1’ 1 WI 2><2’ [ W I1> would 

be included in <I’, 2’ 1 Y [ 1, 2>. This definition of connectedness is 

appropriate to the discussion of Hilbert space traces. For some purposes 

it is desirable to isolate those graphs which are fully connected in the 

ordinary sense, i. e. by interactions. This is accomplished by defining 

an operator T by 

<i’IYji> = <I’ 1 T./i> 

<1’, 2’ 1.Y pj2> = <2’!1 T 11><1’ 1 T I2> + <I’, 2’ 1 T /1,2> 

+ <1’IT[2><2’[T 13><3’[ TIi> 
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+ <1’lT12><2’,3’ITI1,3> 

+ <1’[T13><2’,3’ITI1,2> 

+ <2’IT11><1’,3’lT12,3> 

+ <2’ITl3><1’,3’IT[1,2> 

+ <3’ITI1><1’,2’lT 12,3> 

+ <3’[T[2><1’,2’lT11,3> 

+ <1’,2’,3’ITI1,2,3>, etc. 

Matrix elements of ‘I are given by the sum of graphs which are completely 

connected by interactions. By letting 

w = u+co, -m)U(O, -m) , 

we obtain a cluster decomposition of the inner product (3. 5). Using (3. 6) 

and (3.8). we can write the wave operator unitarity constraint (3. 1) as 

<i’, 2’ , . . . N’ITIi, 2, . ..N> = 0, N>i . 

From (3.5) and (3.9) we have 

fN,Pkl: k; %?) = 0, N > 1 

5.7 PESN 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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where the primed sum extends over all collision sets describing graphs 

which are completely connected by phonon lines. 

The two-body system serves as an instructive example of the above 

considerations. For N = 2 there is only one term in the primed sum 

in (3. ii), namely $?= {(i, 2) }. The sum over permutations gives 

the two graphs shown in Fig. 6. These are easily evaluated by the rules 

(3.4). Assuming for definiteness that kl < k2 and kli < kt2, we find 

~~I-$ k’i2; ki> k2; {(ia 29 = (k 
12 

_ ;:Gk, 
12 +ic) 

y(k”z, kll; kl, k2; ((1, 2)>) =~ (ki2 
4c 

- ic)(kl12 + ic) 

which confirms the result (3. 11) for N = 2. 

The verification of (3. ii) for N > 2 involves a considerable amount 

of manipulation and regrouping of terms in the sum of inner product 

graphs. Since a graphical understanding of the unitarity relations is 

essential to our calculation of thermodynamic quantities, we will discuss 

these manipulations in some detail. Instead of showing (3. ii), we will 

discuss the slightly weaker constraint 

= - (W k - dk)~’ x fN(Pk!; k; %?‘, = 0 

g PESN 

(3.12a) 

(3.12b) 

(3.13) 

where w k 
and W’ k are defined as in (2. 3). Factorizing energy differences 

term by term, we get 
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(ki2-k’;,) fN(Pk’; k; $?) 

G? PeSN i=l 
I 

= 1 ’ x .$ (ki +klPi)(ki - klpi) ~<U’k’;k;~) . (3. 14) 

%3-’ PeSN i-l 

The inner product graphs are given by the rules (3.4), specifically 

fN(Pk’,k;e) = I dP 
+.. ok..) “(Pij’k’PiPj’ 11 (3.15) 

where L is the number of closed loops and q.. is the momentum carried 
‘J 

by the phonon Ii, j) defined to flow from line j to line i. The momentum 

difference in (3.14) is equal to the sum of all momenta flowing into 

line i, as depicted in Fig. 7, 

k’.P! 1 = - k. qil 
1. 1 

I j/ (j, i)cB 

qji - c 
(1 1 (i, 1 )E~I 

where the notation implies a sum over all phonons connecting to line i. 

Inserting (3. 15) and (3. 16) into (3.14). we find 

(3. 16) 

x = x 1’ 1 l> . . . &kij+“‘pipj)qij 
PESN e (i, j)c $j? 

x 7T r(qpm; klp p > kpm) 
(t,m)EF 

1 m 
(3. 1 1 
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We now separate the (i, j) factor from the product of T’s, writing 

7i 
(P,m)c%+ 

r(q fmr klp p > ke m) = Uqij: kIp p,, kij) 
P m i J 

X 1T r$,; klp p , kpm) . 

(f,mk 59 
(3. 18) 

P m 

By noting the explicit form of F, Eq. (3.2), it is seen that 

k .) 4ijr(9ij’ k’PiPj’ in q 10(k’p,p,, kij) 
1 J 

(3.19) 

is independent of qij. It is convenient to represent F. in (3.19) by a 

dashed line connecting quasiparticle lines i and j as shown in Fig. 8. 

The skeletal structure of an inner product graph containing such a dashed 

line is completely analogous to that of the “amplitude graphs” used in II. 

Eq. (3.17) can be written 

z = 1 x’ 1 kij +k’p,p,)rOWp,p,. kij) PcSN 57 (i,j)Eg 1 3 1 J 

(3. 20) 

dei 
X --iT .** 

2 m I-(q ; k’ ,k ) 2rr 
(f,m)eSF Pm pppm Pm 
(f,m)f(i, jlj 
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The double sum in (3. 201 over (i, j)e gand over %can be thought of 

as a sum over all possible connected skeletal structures that can be 

built from N quasiparticle lines, one dashed line, and any number of 

phonon lines (with no pair of quasiparticle lines being connected more 

than once ). We can invert the order of this double sum, grouping together 

all those graphs which have a particular pair (i, j) connected by the dashed 

line, i.e. 

Z’ 1 z Y 
g (i,j)ee - (i,j)egN g 

where gN is defined in (2.4), and the double primed sum is over all 

those connected collision sets which contain the pair (i, j). With the 

regrouping of terms (3. 21), we find 

1 = 1 1 (kij +k’p.p) rOWp,p,, kij)Fij(PkW 
ti,j)e f$YN PcSN 1 J 1 J 

(3. 21) 

(3. 22) 

where 

Fij(Pk’, k)~ = . . !$ n r(q ; k’ k ) (3 23) 
(l,m)e$? lrn ‘P’rn’ lrn * . 
(1,m)Hi.j) 

We will now show that the unitarity constraint Z = 0 results from 

a pairwise cancellation among the terms in the sum over permutations 
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PESN in (3.22). This is seen by dividing the elements of the permutation 

group SN into two subsets, 

sN = cN,Ci, j) U UN(j, i) , 

uN,Ci, j) = (PESNIPi ‘Pj’ . 

For each permutation P E uN(i, j) there is a corresponding permutation 

p E uNN(j, i), where 

F = PijP 

(3. 24) 

(3. 25) 

(3. 26 ) 

and P. is the permutation which interchanges the ith and jth members 
Ki 

of an N-tuple. On a graph this represents the interchange of pseudomomentum 

labels k’.,p. and k’ pj. A crucial property of the function (3. 23) is its 
1 

symmetry under this interchange, 

Fij(Bk’, k) = Fij(Pk’, k) (3. 27) 

where ij-and P are related by (3.26). This will be shown explicitly 

below$but first let us see that it leads directly to the unitarity cancellation. 

With (3. 271, (3. 22) becomes 

2 = 2 
(i,jkiFN 

1 ifkij + k’P.P.)‘TOtk$P~ ‘kij’ 
PE aNti, j) 1 J 

+ kj .+ k’p,p, 1~ rO(kgp,p 
J 1 

J i, kijijFij(Pk’. k) . (3. 28) 
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The result I: = 0 now follows easily, because the quantity in curly 

brackets vanishes identically, as can be seen by inspection of (3.2) and 

(3. 19). This is in fact a revisitation of the unitarity cancellation in the 

two-body problems, Eq. (3.12). 

The symmetry relation (3. 27) can be understood by considering 

the graphical structure of Fij. Jn changing P to F in (3. 23), we interchange 

k’ p. 
and k’ ‘j ’ 

This affects only those factors in the integrand which 
1 

correspond to phonons connecting to quasiparticle line,i or j. Another 

quasiparticle line m may be connected by phonon(s) to line i or j or both. 

In the last case the two phonons form a closed loop. Thus, when the 

sum over $!?I s m (3. 23) is carried out. under the integral sign, the factors 

in the integrand which are relevant to the proof of (3. 27) take the form 

r(q; k’p,p > 
1 m 

kim) f T(q; klp,P , k, ) 
yjm Jm 

+ +l: k’p,p , kim)r(q - 1 ; k’p.p , kjm) . (3. 29) 
1 m J m 

This expression can be shown to be symmetric under the interchange 

kP.++ kp, by simply inserting (3.2a) in (3.29) and inspecting terms. 
1 J 
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IV. GRAPHICAL THEORY OF STATISTICAL MECHANICS 

We will review briefly the operator formulation of statistical 

mechanics discussed in II. The N-particle partition function can be 

written as a contour integral in the complex energy plane with an integrand 

involving the trace of the resolvent operator of the hamiltonian H. By 

closing the contour around the real energy axis we obtain 

QN 
= TrN(empH) = m$$ e-PETrN(G(E - ie ) - G(E + ie ) } . (4. 1) 

Here, the limit E -0 is understood to be taken at the end of the calculation. 

The delicacy of this limit forms the main subject of this section. We 

can expand the operators G(E * ie) in (4.1) as a perturbation series, 

G = Go + GOVGO + . . . (4.2) 

In order to evaluate (4. 1) via the graphical scattering theory formalism 

already developed, we use the cyclic property of the trace toget 

&N = p dEe -@El-y t&E.- Ho) n+(E + ie )C(E + ie) 1 N 

0 

N 

+ 2 ki2 <kl.. . kN 1 We [ kt.. .kN> 

I 

(4.3) 

i=l 

where b(E - Ho) is an operator delta function, and 
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m 

R(E+ie) = 
2X 

GO(E + i E)V n 
3 

. 

n=O 

(4.4) 

The operator WE is defined by 

<k’ . ..klN[ We[kl...kN> = <k’i...k’NjQt~‘k 
1 

+ie)!J(w 
k 

+ie) k [ l...kN> , (4.5) 

with 

N 
2 

w . 

i =1 

(4.6) 

The subscript E is meant to denote the manner in which the diagonal (forward) 

matrix elements of WE are computed. This calculation involves the 

following sequence of limits: (referred to below as the “thermodynamic 

limit”): (1) k’. - k., 
1 1 followed by (2) E + 0. From (4.4) and (4.5) we 

find the formal result 

w-w 
E 

E-+0 

where W is defined in (3.9 ). However, the forward matrix elements of 

Ware computed by the prescription (referred to below as the “forward 

scattering limit”): (1) e * 0, followed by (2) kli wk.. The E - 0 and 
1 

kli + ki limits do not commute, and hence W E f W (W is in fact unity 

whereas We contains all thermodynamic information). 

(4.7) 
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These points are well illustrated by the calculation of the second 

virial coefficient, 
2 

which will also serve to introduce the more general 

results. The part of the two body partition function which depends on the 

interaction is obtained from the thermodynamic limit of two graphs, 

Figs. ba and 6b. Assuming for convenience that kl < k2 and kll < kt2, 

they are given respectively by 

I-E(kl-k’i;k’21>k21’ = (k -&k, 
21 21 

(4.8a 

retkl-k’2;k’12>k21) = (k,“2”-ic)(k,2+k:i2-ie)’ (kty2+ic)(k,,+l’C,,tie) (4*8b 

In (4. 8b), the E - 0 and k’. -k. limits commute. 1 1 
Thus, 

lim lim lim 
e-Ok’ -k 

Te(ki - k’2;k’12,k21) = lim 

i i 
k’. -+k E +o 

rE(kl-k’2;k’,12,k21) 

1 i 

4c 
2 2 - 4rr @(k 

k 
12 +C 

The forward scattering limit of (4.8a) is -2Ao(k12) and just cancels 

(4.9) as required by wave operator unitarity. On the other hand, the 

thermodynamic limit of (4.8a) vanishes, 

lim 
E-CO 

lim r& 1> 21, k2$’ = 0 . - k’ k’ 

k’. -k 1 i 

(4.9’ 

(4.10’ 
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The non-commutativity of the thermodynamic and forward scattering limits 

of (4.8a) results from the fact that ths momentum carried by the phonon 

in Fig. 6a is forced to vanish when k’. + ki. 
1 

(A phonon with this property 

will be called “infrared”. ) These results can be understood from a 

more genera1 point of view. A momentum pole, represented graphically 

by a phonon, can be associated with a semi-infinite integration in configuration 

space. This integration is damped by an oscillating factor eiqX where 

q is the phonon momentum. Infrared phonons arise from the asymptotic 

parts of the wave function where the integration becomes undamped when 

k’. i. ‘k. 1 But potential infrared terms of Otq-i) always vanish (after 

non-interacting parts of the inner productare;~~~,~f4~e~e 

phase shifts of the bra and ket states “match up” producing a forward 

zero of the form (eiC8’-@) - 1). The vanishing of (4.10,) 

exemplifies this general result. The unitarity cancellation in the forward 

scattering limit occurs between the O(q’) part of the infrared graph 

Fig. 6a and the (unambiguous) forward limit of the non-infrared graph, 

Fig. bb. The second virial coefficient can therefore be calculated directly 

from the forward scattering limit of the infrared graph (See II). 

The extension of this analysis to N > 2 follows from the wave operator 

unitarity results of Sec. III. The quantity Ao(k) in (4. 9) occurs frequently 

and will be called a ” @-phonon” propagator. It is depicted in Fig. 9. 

By the foregoing discussion, a @-phonon can be interpreted as the q’ 0 

limit of an infrared phonon. We will find that forward matrix elements 
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of w 
E 

can be evaluated by graphs constructed from 0-phonons and 

quasiparticle lines. Let us define a phonon tree graph as one which 

falls into two disconnected pieces by the removal of 3 phonon line. We 

include both statistical and dynamical connectedness as part of this 

designation, e.g. Fig. 6a is a phonon tree, but Fig. 6b is not. Defining 

Y from W in precise analogy with Eq. (3. 61, we find that 
E E 

<k 
1 ,..., kNIYeIkl ,..., kN> = Itall connected O-phonon tree graphs 1 (4.11) 

where each 0-phonon incurs a factor 

Ao(kij) = ;” 
kij +c2 - 2a6(kij) ’ 

(4.12) 

The demonstration of (4. 11) proceeds by an inductive argument 

which will be sketched here. We choose a fixed set of ki’s and study 

matrix elements near the forward direction k’. -k.. It is convenient 
1 1 

to define two quantities, 

Y(q) = <ki - (N - 1’9, kZ1+~q, ~...:)~.,“(~[Ylk~.,,ldZg ;..;-I$& (4.13) 

where Y is defined by (3.9) and (3.61, and 

ye (q) = i <ki+q,k2-tq,. . . ,kN+ql B’(O, -m)jO(Nq)B(O. -a’ j kia.. . .kN’com. (4. 14) 

where j, is the charge,density operator~in momentum space. 
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j,(s) = 
I 

Lk+ 
2rraptqap ~ 

These two quantities are depicted in Figs. 10a and 10b respectively. 

The result (4.11) is a consequence of the following assertions: 

iim Y (4’ = <k 
q-*0 l 

1’ -*-’ kN IYe /ki, .o e 3 kN> 

(4.15) 

(4.16) 

Y(q) = 0, 9 + 0 (4.17) 

lim 
C 
Ye(q) - Y(q) {all connected 0-phonon tree graphs } . (4. 18 ’ 

9 -0 

Eq. (4. 16) follows from the cancellation of infrared singularities in the 

sum of inner product graphs. As discussed previously, an infrared 

phonon pole (q - ie ) -1 will be multiplied by a vanishing phase shift factor 

ei(O-Ov) _ 1 

where O’+ 0 as q + 0. But the phase shifts 0 and 0’ are Galilean 

invariant, i. e. they depend only on momentum differences kij and klij 

respectively. Thus, factors like (4. 19) are identically zero for both 

the left- and right-hand sides of (4. 16). The graphs which do contribute 

to (4. 16) are entirely non-singular and hence give the same result for 

both sides. Eq. (4.17) is just the statement of wave operator unitarity. 

Finally, Eq. (4.18) can be shown inductively by noting that the calculation 

of the first term on the left-hand side differs from that of the second 

only in the treatment of infrared phonons which connect particle 1 to the 

(4. 19’ 
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rest of the graph. For Ye(q), the sum of such infrared graphs is identically 

zero due to factors like (4. 19). On the other hand, Y(q) is calculated 

by retaining the O(q”) terms of the infrared graphs. This is easily 

found to give a sum of all possible 0-phonon insertions connecting 

particle 1 to the rest of the graph, with the 0-phonon “propagators” 

A (k.. ) arising as phase shift derivatives. 
0 ‘J 

Eq. (4.18) then follows by 

induction. 

V. THE EQUATION OF STATE 

The equation of state of the system can be obtained from the log 

of the grand partition function 

(5.1) 

where z = epp = fugacity, p = chemical potential, p = (kBT)-‘, T = temperature, 

and QNQ is the connected part of the N-body partition function, 

Q 
1 

NC~ = s dkj. . * dkN exp -p; ki2 <kl...kNIYE jkl...kN> . 

I 
(5. 2) 

i=l 

With the ansatz (4. ii), the only remaining problems involve the counting 

and summation of graphs. Let us write the permutation P for each 

a-phonon graph in Ye in its cyclic form (e.g. (P) = (2143) is written 

(12)(34)), and focus on the P -cycle which contains particle 1, say 
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(1c2c3.. . cp 1. We can collect together all graphs (for all values of N) 

for which particle 1 is in a l-cycle (i.e. Pi = 1). Multiplying by 

exe /-Pizlki2j and integrating over k2, k3, . . . kN, we obtain an important 

one-particle distribution function 5(ki), which will be represented 

by the shaded blob in Fig. 11. In a similar way, those graphs in which 

particle 1 belongs to an P -cycle can be contracted over all k’s except 

k4’ kc23 ..e. kc > giving the product of 5 ‘S shown in Fig. 12. This 
P 

product entails a symmetry factor (a! ) 
-1 

. There are (1 -i)! distinct 

P -cycles, and hence the overall symmetry factor for the corresponding 

term in the equation of state is P -1 
. In this way we find an expression 

for the pressure, 
6 

Fig. 13 

9= 2*&(O) log @ 

= &j-dk i + [c(kllP 

P =1. 

= - & j-dk log [1 - Uk;] . (5.3) 

The graphical summation involved in the calculation of i(k 1 can 

be reduced to an integral equation. The graphs for 5(k) can be classified 

according to the number of Wphonons attached to the quasiparticle line 

k, as shown in Fig. 14. A graph with n such phonons contains a symmetry 

factor (n! 1 
-1 

associated with the commutativity of vertices and resulting 
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symmetry of the graph under interchange of phonon labels. Thus 

L(k) can be written 

L(k) = e-P(kz-P) $ $ [-Pn(k)] n 

n=O 

(5.4) 

Here n(k) is essentially the single phonon graph, Fig. 15, and can be 

interpreted as the quasiparticle self-energy due to the interaction. 

The end of the phonon line in Fig. 15 which intrudes into the crosshatched 

blob attaches to a quasiparticle line of momentum k’. The combinatorics 

and attendant symmetry factors for the remainder of the graph are completely 

analogous to the derivation of (5. 3). The resulting equation6 for r(k) is 

depicted in Fig. 16. 

ii(k) = 2. 
dk’ 

P 
G A, (k-- k’ )log 

Notice that as c- 0, rr(k )-0, andfor c -rm, 

v(k) = -$log i l-e -P[k2-m(k)-p]) . 

1 -e 
-p L 1 2+nw kp 

‘I 
(5.5) 

Thus we obtain a well-known result that the pressure 

P= -++ 
I 

dk log i _ e-p k2hrO-F] 

(5.6) 

(5.7) 
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reduces to that of an ideal Bose (Fermi) gas in the limit c -t 0 (c + m ). 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6:~ 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11:. 

FIGURE CAPTIONS 

Example of a factorized wave function graph. 

(a) A three-body skeleton graph. 

(b) The same graph reduced to standard form by repeated 

use of the identity shown in Fig. 4. 

Construction of an inner product from two sets of wave 

function graphs. 

An identity used in the reduction of skeleton graphs 

(c.f. Eq. (2.9) of II). 

(a) Contraction of two wave function skeleton graphs to 

form an inner product skeleton graph. 

(b) Reduction of the inner product skeleton graph. 

(a) Two-body inner product graph with P = (12) = identity. 

(b) Two-body inner product graph with P = (21). 

Illustration of Eq. (3.16) for net momentum transfer to 

a quasiparticle line. 

Graphical representation of Fo(k’p. p,; kij ), Eq. (3. 19 1. 
1 J 

Graphical representation of the 0-phonon propagator, 

Eq. (4. 12). 

(a) The function Y(q), Eq. (4. 23). 

(b) The function Ye(q), Eq. (4. 14). 

The distribution function 5 (k). 
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Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Fig. 16: 

Products of 5 (k) functions which arise in the calculation 

of the pressure, Eq. (5. 31. 

Summation of “vacuum” graphs, giving the pressure, 

Eq. (5. 3). 

Classification of graphs for & (k) by the number of 0-phonons 

attaching to quasiparticle line k. 

The quasiparticle self -energy n(k 1. 

Integral equation for the self-energy. 
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