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Abstract. In order to better understand the role played by instantons behind nonperturba-
tive dynamics, we investigate the instanton contributions to the gluonic two point correla-
tion functions in the SU(2) YM theory. Pseudoscalar-scalar gluonic correlation functions
are calculated on the lattice at various temperatures and compared with the instanton cal-
culus. We discuss how the instanton effects emerge or disappear with temperature and try
to provide the interpretation behind it.

1 Introduction

θ-vacuum of QCD is the sum of degenerate vacua labeled by the integer winding number which,
through the instanton effect, have transition between each other. In each transition, the difference of
winding numbers in between two states is the topological charge. This superposition allows a phase
parameter θ, which appears only in non-perturbative contributions. In the high temperature above the
critical temperature Tc, the susceptibility in terms of θ, so called the topological susceptibility χt, is
well described by the instanton calculus.

The instanton effect, for instance, is involved in the strong CP problem. In the path integral, the
non-zero θ comes into the CP-violating term of the QCD Lagrangian, θFF̃. From the observation
of the electric dipole moments of nucleon, the vacuum angle θ is bounded by extremely small value.
The fact that there is no reason in the Standard Model to have θ ≃ 0 in nature is a long standing
puzzle, namely the strong CP problem. Two candidates as a solution for this problem are related to
the instanton. One is the Peccei-Quinn (PQ) mechanism [1–3], which introduces the axion field a(x)
to make the QCD vacuum conserve CP symmetry. The smallness of θ parameter is explained as the
coefficients of FF̃ term in SM θ̄ = θ + a(x)/ fa feel the axion potential χt cos θ̄ stemming from by the
instanton effects followed by θ = − ⟨a⟩ / fa with the PQ scale fa much higher than the EW scale. The
other solution is the case of the bare u quark mass mu being zero, then the θ parameter is unphysical.
The case in which the additive mass shift of O(mdms/ΛQCD) to the u quark mass comes from the ’t
Hooft vertex originated from instanton effects. The ambiguity of the non-perturbative u quark mass
still leaves room for the statement mu = 0. [4]

In spite of the importance of the role of the instanton, the understanding of the instanton contribu-
tion from analytic calculation within quantum field theory is quite difficult except for particular situa-
tions. The instanton picture is valid only at high temperature and may not apply to lower temperature,
on a fortiori to zero temperature. Let us briefly introduce the situation of the instanton calculus based
on quantum field theory. Due to the tunneling nature between degenerate classical vacua with distinct
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winding number, the instanton solution is the classical solution of the SU(N) Yang-Mills action with
topological charge Q. This solution is known as the BPST instanton solution at zero temperature, and
HS caloron solution for trivial holonomy and KvBLL caloron solution for non-trivial holonomy at
finite temperature. At zero temperature, the instanton calculus of observables is ill-defined due to the
IR divergence which essentially stems from the asymptotic freedom of QCD. While, at finite tempera-
ture, the temperature effect introduces cutoff for the long range interaction at scale x ∼ 1/T due to the
Debye screening, then all observables are IR finite. Especially, at very high temperature the interaction
between instantons can be neglected and the dilute instanton gas approximation (DIGA) works well.
The temperature dependence of the topological susceptibility χt calculated by DIGA is checked by
the quenched lattice simulation. [5] However, at somewhat lower temperature, the interaction between
instantons cannot be neglected and DIGA becomes invalid.

Our interests on the instanton are following three points. The first point is whether the instanton
picture makes sense in in the local observables such as the correlator as well as a global observable
such as the topological susceptibility. The second point is, in the finite temperature regime, from
which temperature the instanton picture makes sense. Although the instanton picture of the topologi-
cal susceptibility is established at high temperature in pure Yang-Mills theory, there is still ambiguity
about the temperature where the dilute instanton gas approximation starts working. The third point is
that if we consider the observable which has IR finite instanton contribution at zero temperature, such
observable may comply with the instanton picture even at zero temperature.

The SU(2) Yang-Mills theory is interesting in the last context. The gluonic 2-point-correlation
function

⟨
TF2(x)F2(0)

⟩
is IR finite [6] even at zero temperature, due to the higher power of the

instanton size suppression coming from the field strength in the instanton background. There may be
still room for the instanton to play an important role at zero temperature, especially in this class of
observables. However, we don’t know how the instanton effects show up in the correlator calculated
through the lattice simulation even at higher temperature where the instanton picture works in other
global observables.

In this work we firstly investigate the case of finite temperature focusing on the CP-violating
(CPV) gluonic correlator, where we can examine the first and the second point proposed above. In
order to prove the validity of the instanton picture from the lattice simulation, it is easy to consider
the observables which are dominated by the non-perturbative instanton contribution rather than the
perturbative contribution in terms of the order counting of the strong coupling and the operator product
expansion. This is why we choose the CPV gluonic correlator.

2 Instanton calculus

We will briefly introduce the outline of the calculation of the thermal instanton contribution to the
CPV 2pt-gluon correlation function. Due to the self-duality of the instanton solution, FF = FF̃, three
combinations of four dimensional operator FF and FF̃ have same x-dependence. In the following, the
CPV correlator will be denoted as ⟨sq(x)⟩ using the action density s(x) ∝ FF(x) and the topological
charge density q(x) ∝ FF̃(x). At zero temperature, the leading instanton contribution to this function
is derived by Dine et al. [6] as

⟨
TF2(x)F2(0)

⟩
θ
= cΛbx−b+8 sin θ,

where subscript θ denotes the average in the θ-vacuum and b is the beta-function coefficient in SU(2)
Yang-Mills theory, namely b = 22/3.

At finite temperature we first calculated the leading instanton contribution. Since the temperature
generates a cutoff for the interaction at distance x ∼ 1/T , the x-dependence of the correlator undergoes
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At finite temperature we first calculated the leading instanton contribution. Since the temperature
generates a cutoff for the interaction at distance x ∼ 1/T , the x-dependence of the correlator undergoes

a non-trivial change because of the temperature effect. Naively, the leading instanton contribution to
the correlator can be written as

⟨sq(x)⟩θ = cΛbx−γ(x)T−b−γ(x)+8,

where γ(x) should be determined by the direct calculation.
The thermal instanton density in pure Yang-Mills theory with finite temperature is defined through

the partition function of topological charge Q = 0 and 1 sector in the semi-classical approximation.
The quantum (=thermal) fluctuation come into the distribution n(ρ, T ) of the size ρ and the position
z = (⃗z, τ0) of the instanton.

ZQ=1

ZQ=0
=

∫ β
0

dτ0

∫
d3z

dρ
ρ5 n(ρ, T ), n(ρ, T ) ∝ (µρ)β exp

[
−2N

3
(πρT )2

]
,

where N is the number of colors and µ denotes the renormalization scale. We use a 1-loop level result
for the instanton density, so β = 11N/3. The full formulae are shown in our previous paper. [5] Note
that the temperature fluctuation comes into the IR cutoff in terms of the instanton size ρ with cutoff
scale ρcut ∼ 1/πT .

The leading instanton contribution to the gluon 2-pt correlator is calculated using the background
field method with instanton background. In the semi-classical approximation, the gluon correlator in
the instanton background is written using the thermal instanton density as

⟨
TF2(x⃗, τ)F2(0⃗, 0)

⟩
I=1
≈
∫ β

0
dτ0

∫
d3z

dρ
ρ5 n(ρ, T )F2

Inst.(x⃗, τ)F2
Inst.(0⃗, 0),

where FInst.,µν(x) is the field strength tensor constructed from the thermal instanton solution Aµ(x).
Thus, the contribution from one instanton requires the integration of the product of field strength
tensor with instanton density in terms of the instanton size ρ and the instanton position z in the whole
region.

The thermal instanton solution with trivial holonomy is known as HS-caloron

Aµ(x) = iτ−µν∂ν lnΠ(x),

Π(x) = 1 +
2λ2

R
shR

chR − cos R4
≈ 1 +

4λ2

R2 ,

R = 2πT |x⃗ − z⃗|, R4 = 2πT (x4 − z4), R2 = RµRµ, λ = πρT,

where τ±µν =
1
4

(
τ±µτ

∓
ν − τ±ν τ∓µ

)
, {τ±µ } = {τa,±i} (a = 1, 2, 3) and τa is a Pauli matrices. This solution is

in so-called singular gauge, which has a pole at the instanton position, namely R = 0. However, the
calculation of the correlator should be done in the regular gauge. This singularity can be removed by
a periodic singular transformation1,

g =
iτ+µ R̄µ
√

R̄2
, R̄µ = (Ri, sin R4).

After the transformation, we obtain the thermal instanton potential in the regular gauge A′µ(x) =
gAµ(x)g−1+g∂x

µg
−1. The regularity of this function is checked as below. In the vicinity of the instanton

position z, following approximation is valid,

Aµ(x) ≈ f (R2)g−1∂x
µg, g

−1∂x
µg ≈ 2πT

−2τ+µνRν
R2 ,

1This is not an gauge transformation. This transformation changes gauge invariant quantities such as trFµνFµν.
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Figure 1. The x-dependence of the leading instanton contribution to the gluon 2-pt correlator.

-4 -2 2 4
Log 2πT|r|

-20
-15
-10
-5
0

Log <Tr F2(r)F2(0)>/C(2πT)8

SU(2)YM
SU(3)YM
1500(2πT|r|)-6

Table 1. Lattice parameters, physical temperatures, statistics

Lattice β T/Tc Nconf(|Q| = 1)

243 × 6 2.322 0.7215 122
243 × 6 2.468 1.163 87
323 × 8 2.582 1.246 154
323 × 8 2.714 1.857 90

where f (R2) ≡ 4λ2/
(
4λ2 + R2

)
. Thus, the transformed gauge field behaves near the instanton position

as

A′µ(x) ≈ (1 − f (R2))g∂x
µg
−1 =

R2

4λ2 + R2 × 2πT
−2τ+µνRν
R2 = −2πT

2τ+µνRν
4λ2 + R2 .

Substituting the regular instanton solution A′µ(x) into the integrand of Eq. (1), we calculated it
numerically and eventually obtain figure. 1. The horizontal axis denotes log(2πT |x⃗|) and the vertical
axis denotes log

[⟨
TF2(x⃗, τ)F2(0⃗, 0)

⟩
I=1
/C(2πT )8

]
, where C is unimportant constant. The behavior

of gluon correlator is x−6 if 2πT x ≫ 1 and constant if 2πT x ≪ 1. The shape of curve is same in
any temperature because the resulting formula is a function of not x but 2πT x. If we choose the
reference temperature as Tc, namely this plot is shifted by ln(T/Tc) in the horizontal direction. We
will compare this plot with the CP-violating 2pt-gluon correlator calculated by lattice simulation, in
which the region around log(2πT |x⃗|) ∼ 1 will be compared in Sec. 5. In this comparison, we will use
the horizontal axis as ln(2πTcx).

3 Simulation setup

The gauge configurations are generated on two lattices, using the Wilson gauge action with Nc = 2
and Hybrid Monte Carlo algorithm with the Omelyan integrator. The lattice size is 243×6 and 323×8.
The code is implemented by modifying the Bridge++ code set [7] so that SU(2) simulation can be
performed. The physical temperatures, T/Tc, listed in table. 1 are derived by using non-perturbative
beta function given by Engels et al. [8]. In order to reduce the residual statistical correlations of
configurations, each configuration has separations of ten trajectories. The numbers of configuration
listed in table. 1 count out the configurations which have topological charge Q = ±1, because they are
used for the statistical analysis of the CPV gluonic correlator in the fixed topological charge sector.
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Figure 2. The result of the gradient flow with large flow time.
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(c) tflow dependence of Q in 323 × 8 with T/Tc ≃ 1.9
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(d) Histogram of Q in 323 × 8 with T/Tc ≃ 1.9

4 Gradient flow with large flow time

The gradient flow in Yang-Mills theory [9, 10] is an evolution of gauge field in terms of the diffusion
equation along the fictitious time t, so called flow time. In continuum theory the flow equation is

∂Bµ(x, t)
∂t

= − δS YM

δBµ(x, t)
, Bµ(x, t = 0) = Aµ(x),

where Aµ(x) is the gauge field in 4d Euclidean Yang-Mills theory and S YM is the Yang-Mills action.
This procedure makes the field configuration smoothed with smearing radius x ∼

√
8t, which corre-

sponds to the diffusion length. Interestingly, the flow equation above does not modify the classical
configuration especially the instanton, because the force becomes zero for stationary solutions. Then,
the large flow time configuration approaches some classical solutions. In the lattice simulation at very
high temperature, if the configurations generated via HMC algorithm have non-trivial topological
charge, the configurations are considered as classical instanton configuration with quantum fluctua-
tions. The flow extracts the classical instanton configuration without changing the instanton size and
position. Thus even though the quantum fluctuation around the instanton solution is removed by the
large flow, the instanton size distribution of flowed configurations still preserves the information of the
instanton density n(ρ, T ) of the original gauge configurations. Although this reasoning only applies
for very high temperature, we extrapolate this method for lower temperature in order to investigate
from which temperature the instanton picture makes sense.

Figure. 2 shows the transition of the topological charge during the Wilson flow in the region
t/a2 ∈ [20, 160] in the left column, and the distribution of the topological charge in four flow times,
t/a2 = 20, 40, 60, 80 in the right column. The upper row shows results of lower temperature
T/Tc ≃ 0.72 and the lower row shows ones of upper temperature T/Tc ≃ 1.9. Even when the flow
time is above t/a2 = 80, some configuration are not stable in terms of the topological charge. This
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Figure 3. The CP-violating gluonic correlator at fixed topological charge sector with |Q| = 1.
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(d) CPV 2pt-function in 323 × 8 with T/Tc ≃ 1.9

would occur due to the discretization error of the Wilson gauge action used in HMC and the Wilson
flow. In the simulation of 2pt-gluon correlator shown in Sec. 5, we used the flowed configuration with
t/a2 = 80 to measure the topological charge and the CP-violating gluon correlator. The number of
configuration with |Q| = 1 listed in table. 1 is determined by the topological charge at t/a2 = 80 as
well.

5 CP-violating gluonic correlator at fixed topological charge sector

Using the configuration generated as described in Sec. 3 and evolved by the Wilson flow with large
flow time described in Sec. 4, the result of the lattice simulation is compared with the instanton
calculus described in Sec. 2.

In order to pay attention to the fact that the temperature effect introduces suppression for the
long range interaction longer than scale x ∼ 1/T , we choose the horizontal axis as dimension-less
ξc ≡ ln(2πTcx). In this case the horizontal position where cutoff appears differs by temperature with
horizontal shift ln(T/Tc). As a result of numerical integration we have the CPV correlator in one
instanton background as shown in figure. 1 as a function of ξc,

ΠInst.
I=1 (ξc) =

⟨sq(ξc)⟩Inst.
I=1

CInst.(2πTc)8 ,

where CInst. is unimportant constant and subscript I = 1 denotes the one instanton background. In this
function the horizontal axis is shifted from the plot shown in figure. 1 by the relation, ln(2πTcx) =
ln(2πT x) − ln(T/Tc).
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(c) CPV 2pt-function in 243 × 6 with T/Tc ≃ 0.72
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(d) CPV 2pt-function in 323 × 8 with T/Tc ≃ 1.9

would occur due to the discretization error of the Wilson gauge action used in HMC and the Wilson
flow. In the simulation of 2pt-gluon correlator shown in Sec. 5, we used the flowed configuration with
t/a2 = 80 to measure the topological charge and the CP-violating gluon correlator. The number of
configuration with |Q| = 1 listed in table. 1 is determined by the topological charge at t/a2 = 80 as
well.

5 CP-violating gluonic correlator at fixed topological charge sector

Using the configuration generated as described in Sec. 3 and evolved by the Wilson flow with large
flow time described in Sec. 4, the result of the lattice simulation is compared with the instanton
calculus described in Sec. 2.

In order to pay attention to the fact that the temperature effect introduces suppression for the
long range interaction longer than scale x ∼ 1/T , we choose the horizontal axis as dimension-less
ξc ≡ ln(2πTcx). In this case the horizontal position where cutoff appears differs by temperature with
horizontal shift ln(T/Tc). As a result of numerical integration we have the CPV correlator in one
instanton background as shown in figure. 1 as a function of ξc,

ΠInst.
I=1 (ξc) =

⟨sq(ξc)⟩Inst.
I=1

CInst.(2πTc)8 ,

where CInst. is unimportant constant and subscript I = 1 denotes the one instanton background. In this
function the horizontal axis is shifted from the plot shown in figure. 1 by the relation, ln(2πTcx) =
ln(2πT x) − ln(T/Tc).

On the other hand, the CPV correlator calculated via the lattice simulation is denoted as

ΠLat.
|Q|=1(ξc) =

⟨sq(ξc)⟩Lat.
|Q|=1

(2πTc)8 ,

where the ensemble average of the correlator is calculated using configurations with non-trivial topo-
logical charge |Q| = 1. In this average, the sign of the correlator of configurations with Q = −1 is
flipped. Here, the ensemble average of CPV correlator is zero when using all configuration generated
by HMC algorithm or with Q = 0.

Note that the result of the fixed topological charge sector |Q| = 1 which is calculated via the lattice
simulation is not exactly equal to one of the I = 1. The unit topological charge denotes the sum of all
sectors which has n+ instanton and n− instanton satisfying n+−n− = 1. In the finite volume simulation,
it is conceivable that configurations with Q = 1 generated by HMC algorithm contain up to several
number of instanton or anti-instanton due to the limited box size. Below we assume that most of the
configurations with |Q| = 1 contain only one (anti-)instanton in the box and we can approximate the
observables given by the lattice simulation as ⟨O⟩|Q|=1 ≈ ⟨O⟩I=1. We will compare the observables
analytically calculated in the one instanton background, ⟨O⟩I=1, and one with |Q| = 1 numerically
calculated using the lattice simulation, ⟨O⟩|Q|=1.

Then we compared them in two ways. The first one adopts two parameters A and B for the overall
factor and additional constant term, respectively. In our analysis, we are not interested in the overall
factor of the instanton density which depends on the renormalization scale. The constant term B
denotes the contribution from disconnected part of the 2pt-function and the finite volume effect [11],

A
(
ΠInst.
|Q|=1(ξc) + B

)
v.s. ΠLat.

|Q|=1(ξc). (1)

The second fitting introduces three parameters, the overall factor A, the constant term B and the
effective temperature r = T ′/Tc. In addition to the degree of freedom of the first fitting, we adopt the
effective temperature T ′ to somehow understand the correlator calculated by the lattice simulation in
which the cutoff temperature is different from what instanton calculus predicts.

A
(
ΠInst.
|Q|=1(ξc × r) + B

)
v.s. ΠLat.

|Q|=1(ξc). (2)

Figure. 3 denotes the CP-violating gluonic 2pt-function calculated using the lattice simulation
in blue line with 1 σ error and instanton calculus in red dotted line. In figure. 3 (a) and (b) the
lattice result of T/Tc ≃ 0.72 and T/Tc = 1.857 are fitted using Eq. (1), respectively. In the high
temperature range, the correlator is well fit by these two parameters, so the instanton picture is valid
in the high temperature regime as expected. However, in the low temperature the fit is not good.
The correlator given by the lattice simulation shows larger correlation in the large distance than the
instanton prediction. The position where power of x is falling down represents the typical instanton
size in the ensembles. The instanton profile produced by the lattice simulation behaves like one
predicted by the instanton calculus at lower temperature than the input temperature. In figure. 3 (c)
and (d), the lattice result of T/Tc ≃ 0.72 and T/Tc = 1.857 respectively are fitted using Eq. (2).
We obtain r ≃ 0.37 ± 0.021 and 1.827 ± 0.023 for the lattice simulation with T/Tc ≃ 0.72 and
1.9, respectively, where the statistical errors are determined by the jack-knife method. In the low
temperature T/Tc = 0.72, the instanton size distribution calculated by the lattice simulation behaves
as that with effective temperature T/Tc ≃ 0.37.

6 Conclusion and outlook
The instanton effect is involved in the solution of the strong CP problem in the Standard Model.
Existing knowledge about the instanton picture contains the ambiguities both at zero and finite tem-
peratures. We try to clarify the role of the instanton picture behind the non-perturbative dynamics
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via the lattice simulation focusing on the CPV gluon 2pt-function. Since, in very high temperature,
the instanton size distribution of the configurations generated by HMC is unchanged under the gra-
dient flow, the configurations after applying large flow still have information of the instanton size
distribution behind the original configurations. We measure the typical size or cutoff determined by
temperature ∼ 1/T comparing the correlator of analytic result with one of numerical result. In the high
temperature region, we found instanton picture describes the CPV correlator calculated by lattice sim-
ulation. In the low temperature region, we found the large size instantons have larger contribution than
expected, which is equivalent to the case when instantons distribute with lower effective temperature.
As a future work, we will investigate from which temperature the DIGA prediction is valid and how
the CPV correlator behaves in the low temperature region with more points. We will also carry out
the simulation with the Symantzik improved action in the HMC and gradient flow, which reduces the
discretization error included in our current results.
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