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We determine the O(w) correction to the energy spectrum of electrons produced in the decay of muons
bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for
the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and
COMET. The correction suppresses the background by about 15%.
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In matter, muons decay differently from antimuons. Although
the decay rates are very similar [1], negatively charged ©~ can
bind with nuclei. The nucleus exchanges photons with the muon
and the daughter electron, rearranging the energy distribution. In
this paper we find how this rearrangement is affected by the real
radiation and self-interaction on the muon-electron line. We pre-
dict the energy spectrum of the highest-energy electrons, interest-
ing both theoretically and experimentally.

For a theorist, the muon decay is the simplest example with
which to understand the gamut of binding effects, including the
motion in the initial state, interplay of the binding and the self-
interaction, and the recoil of the nucleus. Experimenters have re-
cently studied the bound muon decay (decay in orbit, DIO) [2] with
a precision sufficient to probe radiative corrections, later evaluated
in [3]; however, these studies concern only the lower half of the
spectrum, largely accessible also to a free muon.

Interestingly, the energy range of electrons produced in the DIO
reaches to about twice the maximum possible in a free muon de-
cay. When the muon decays in vacuum, momentum conservation
requires that at least half of the energy be carried away by the
neutrinos. In the DIO, the nucleus can absorb the momentum with-
out taking much energy because it is so heavy.

The high-energy part is important for the upcoming searches
for the ultra-rare neutrinoless muon-electron conversion, COMET
in J-PARC [4] and Mu2e in Fermilab [5]. Designed for a sensitivity
better than one exotic conversion in 10'® ordinary muon decays,
they will collect large samples of events with high-energy elec-
trons. A reliably predicted spectrum is needed to distinguish the
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Nucleus

Furry picture

Fig. 1. Muon decay in orbit (DIO). Dashed lines denote Coulomb photons exchanged
between charged leptons and the nucleus. The right panel shows the same physics
using double lines for charged leptons propagating in the Coulomb field.

exotic signal — an excess of electrons at maximum energy - from
the Standard Model background.

Predicting the DIO spectrum is a challenge because both the de-
caying muon and the daughter electron interact with the Coulomb
field of the nucleus. A numerical calculation with Coulomb-Dirac
wave functions is possible [6] provided that self-interactions (pho-
tons attached to the muon and the electron) are neglected. How
can they be included? In the lower half of the spectrum the muon
and the electron can be treated as nearly free and the binding ef-
fects can be factorized. Then the radiative corrections, known for a
free muon, are convoluted with a shape function that parametrizes
the Coulomb field effect [3,7]. Here we construct an expansion
around the end-point and employ it to find radiative corrections
also to the high-energy part of the spectrum.

Accounting for the external Coulomb field in charged-particle
propagators is called the Furry picture [8]. In this formulation,
and still ignoring radiative corrections, a single diagram, shown in
Fig. 1, describes the DIO. We shall demonstrate that the bound-
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state radiative corrections are easiest to evaluate near the high-
energy end of the spectrum, the most important part for the new
experiments. For now we neglect the nuclear recoil and structure,
and treat the nucleus as an infinitely-heavy point source of the
Coulomb field. We denote the electron energy with E; its maxi-

. 2
mum value is Emax =~ my (1 - @

Z is the atomic number, and o ~ 1/137 is the fine-structure con-
stant. The DIO spectrum near its end-point can be expanded in the

small parameter A = E";;LE
mn

), where m, is muon mass,
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where I'g = 1(;5;2% is the free-muon decay rate and G is the Fermi
constant [9,10]. Powers of 7w Za parameterize photon exchanges
with the nucleus and o/ arises from radiative corrections on the
charged-lepton line and the vacuum polarization. The first non-
vanishing term has i = j =5 and k =0, with Bssg = 2(7)1—2: ~0.21.
Higher order coefficients B may have logarithms of A and Zo.
The latter are a reminder that we are dealing with a decay in a
Coulomb field, although the momentum transfer with the nucleus
is sufficiently large that an expansion in Z« is possible. This is in
contrast with the lower half of the spectrum, accessible with small
momentum transfers, where binding effects cannot be treated per-
turbatively. The spectrum is a smooth function of A near the end-
point, far from resonances.

Corrections to the leading behavior have several sources. The
large momentum transfer to the nucleus probes its interior. The
finite nuclear size, already included in [6], causes the largest cor-
rection. We will comment at the end of this paper on how to
include it in our formalism. The finite nuclear mass introduces a
recoil effect, also evaluated in [6]. It affects the coefficients B only
slightly but it shifts the end-point energy Emax.

We shall exploit a theoretical similarity between the DIO and
the photoelectric effect to control higher-order binding effects.
They generate powers of wZa [11,12] rather than Z«. Indeed, a
numerical evaluation for a point nucleus with Z =13 (as in alu-
minum, the planned target in COMET and Mu2e) finds a —21%
correction, consistent with 137« = 0.3. Logarithmic enhancement
starts with (m Za)” In(Ze). Fortunately, these large effects, slightly
suppressed by the finite nucleus size, are summed up in the nu-
merical evaluation [6].

Finally, the most challenging corrections result from radiative
effects that are the subject of this study. Before delving into the
physics of the end-point, we present our main result. Close to the
end-point, including radiative corrections, the DIO spectrum for
aluminum is
M AL 1 24(3) x 104 x A595, 2)
I'o dE
To illustrate the importance of the new corrections we consider
the last 150 keV of the spectrum (the typical planned resolution
of Mu2e and COMET). Radiative corrections reduce the number of
events in this bin by 15%, a welcome reduction of the background,
comparable in size with higher-order binding effects.

In the remainder we explain the origin of such a large effect.
We begin with the tree-level behavior, appropriately expanding the
lepton wave functions. We find that an exchange of a single, highly
virtual photon gives the electron an energy of the full muon mass.

The asymptotic state of a relativistic electron with four-momen-
tum p is described by a plane wave distorted by the Coulomb
potential V. To the first order in V, in momentum representation
indexed by ¢, it is

)
%

m m

Nucleus

(a) (b)

Fig. 2. Furry diagram expanded in Zu. Crossed circles indicate insertions of the
weak interaction transforming the muon into an electron; the emitted neutrinos
are not shown. These two amplitudes give rise to the highest-energy electrons.

s o S 1
a(p)[63(p—q)+v((p—q)2)q_m } 3

where u(p) is a spinor solution of a free Dirac equation and the
four-potential in momentum space reads

- VAo -
v (kz) = (-—ﬁ ,0) ) (4)
27 2k2
A muon bound to a nucleus with Z « 137 is nonrelativistic. Nev-
ertheless, we will need the first relativistic correction to its wave

function, just like in the classic analysis of the photoelectric ef-
fect [13],

. . q-y
0@ =@ (14 22 )uer) ©
My
where g (4) = % is the nonrelativistic momentum-

space wave function of the 1S ground state with ¥ (0) =

Zamy, /2, . .
( 178 ) ; u(P) is the four-spinor of a muon at rest, P = (m,,, 0).
Higher order corrections to eq. (5) are suppressed by Zo.

We now consider separately the contributions of the two terms
in the electron wave function (3). The delta function term forces
the muon momentum in (5) to be large, ¢ = p ~ m,. Thus we
neglect Zam,, in the denominator of ¥ng and find

v (@)~ 0w Y (a%)ucp). (6)

1
P+d- my
This is visualized in Fig. 2a: the muon, before decaying, transfers
momentum ¢ ~ m,, to the nucleus through a hard space-like pho-
ton. It is here that the relativistic correction to the muon wave
function is important.

The second term in (3) refers to an electron scattered on the
nucleus. Now the muon momentum, not restricted to large values,
has its typical bound-state size ¢ ~ Zam,, negligible in compari-

. - . 8 >
son with p ~m,,. We use limg_,o w%)z = (2m)3s3 (q) to approx-
imate the muon wave function,

¥ (@) ~ )W (0)83 (q) u(P). (7)

This is shown in Fig. 2b, where the hard photon is exchanged after
the decay.

The two diagrams in Fig. 2 add up to the leading contribution
Bssg in (1). In both cases any energy unused by the electron (~ A)
is taken up by the neutrinos and not transferred to the nucleus.
Counting neutrino momenta in the integrated matrix element ex-
plains the leading energy dependence in (1),

3., 437
d—vng(mﬂA—vo—io)...v...ﬁ'vAS. (8)
Vo Vo

Having understood that in the leading order in Zo only two
diagrams describe the end-point behavior, we are now ready to
evaluate order O(%) radiative corrections. In the Furry picture
there are two groups of virtual corrections, shown in Fig. 3, and
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Fig. 3. Virtual corrections to the muon DIO (Furry picture). These two diagrams
represent five possible insertions of the weak decay vertex, symbolized by crossed
circles.
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Fig. 4. Furry diagram for the real radiation correction.

real radiation, Fig. 4. We expand them in Z« just like the tree-level
diagrams, keeping only the leading fifth power, but in addition to
wave functions (3), (5), we need also the Coulomb-Dirac Green’s
function [14],

. e(-r)
—iGY (E; P, p’) ~—— 7
p—m
by (6-p7)
p—m
The expansion (9) reduces radiative corrections in an external field
to a set of loop diagrams that we evaluate analytically [15]. This
approach can be extended to higher-order corrections.

The expansion of the diagram in Fig. 3a results in two types
of contributions. If the momentum flowing through the fermion
loop is small, on the order of m, Za, it generates the Uehling cor-
rection to the potential [16] that affects the muon wave function.
If the momentum is hard, on the order of my, it modifies the
photon propagators in Fig. 2. We call this a VP correction, to dis-
tinguish it from the contribution to the wave function. In the VP
case, the photon, to which we are considering the vacuum polar-
ization correction, is hard; we are dealing with short distances and
the Green’s function can be expanded in Zw, unlike in the case
of the Uehling potential. A similar procedure has been discussed
in [17].

First we calculate the Uehling case of Fig. 3a. In muonic alu-
minum the Uehling potential has a long range, exceeding the Bohr
radius, and requires the Coulomb Green’s function with all orders
in Za. It strengthens the attractive force and increases the muon
wave function at the origin,

(9)

p-m

W(0) — W(0) (1 n %50). (10)

For aluminum we find 8o = 3.27. This correction reflects the run-
ning of the coupling o up to the average muon momentum scale
myZa.

VP corrections to propagators of highly virtual photons are re-
lated to the running of @ up to the hard scale m,. They enhance
the tree-level decay rate by a factor 1+ %&;p, with

4 m, 10
Syp==-In— — —+0.12~6.1, (11)
3 me 9
where the term 0.12 arises from a muon loop.
Another correction comes from the real radiation. Diagrams
represented by Fig. 4 are expanded in the same way as virtual

corrections, using (9). Near the end-point the eikonal approxima-
tion suffices; by energy conservation the real photons must be soft,
0<Ey <myA.

The sum of virtual and real radiation is finite,

B
2l sp - ssInA, (12)

Bss
where the vacuum polarization corrections Syp and §p are included
with hard self-interaction effects in gy =6.31 — % In 2—’: and §g =

2In 2,'71:—” — 2 is a soft correction. The latter can be exponentiated

[18] (;imilarly to the free-muon decay [19]) and vanishes when
A — 0,

o a o
Bsso + —Bss1 — Bsso (A”55+—3H>, (13)
T T

instead of unphysically diverging as In A. It increases the exponent
of A and suppresses DIO events near the end-point. The relative
decrease is inversely correlated with the energy resolution: the
number of electrons in the end-point bin of 1 (0.1) MeV is reduced

by 11% (16%).
The final-state electron is relativistic, E 3> m,, so its structure
function [20,21] is insensitive to Coulomb corrections. A convcilsu-
o

tion with the free-decay spectrum confirms the coefficient — 33~

of In ';—‘: due to collinear photons. Together with the vacuum po-
larization in (11), this explains the logarithmic part of the hard
correction.

That log is largely canceled in the sum with the wave func-
tion correction in (10) and 8y = —2.9 reduces the end-region by
only a fraction of a per cent. We neglect the unknown hard cor-
rections O((a/n)z) in the error estimate. Even terms enhanced
by a square of the large colinear logarithm are likely much smaller
than the error related to the nuclear-size effects, discussed below.

There are now two complementary studies of the end-point
spectrum. Here, we have computed radiative corrections (RC) as-
suming a point nucleus and considering only the one-Coulomb
exchange. Ref. [6] did not have the RC but included the nucleus
structure, recoil, and multiple Coulomb interactions.

In order to combine these results, we observe that the most
important - soft - correction is universal, not sensitive to any in-
teractions with the nucleus. The hard correction is tiny, so treating
it also as universal is well within our final error estimate.

In the discussion of the uncertainty we specialize to aluminum
but the discussion can be applied to other nuclei, so we keep the
Z dependence explicit. We assume a Fermi charge distribution,

Lo

SR L — 14
@ 1+exp% (14)

with ag =0.569 fm and rg = 2.84(5) fm [22].

The finite size affects the nucleus form-factor, defined as a ratio
of Fourier transforms of potentials from the extended (14) and the
point-like (4) charge distributions,

L ve(®) ;
2 2 2
Fp(k®) = —F—=- —> 0.64 for k =mj,. (15)
1% <I<2)
The DIO spectrum for a finite nucleus has an expansion analogous

to (1), but with coefficients that depend on the density p. Its lead-
ing term near the end-point [6] is

~ |
0 2 J_ —17 (M \®

> B [Fo(mh)wza] =898 x 1077 (1) (16)

=5
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This result includes exchanges of many Coulomb photons, in addi-
tion to the single hard exchange to which we have found the radia-
tive correction. We estimate the magnitude of the multi-Coulomb

part as a fraction f=F, (mi) wZa ~0.2 of (16).

Hard radiative corrections to this part are missing. To be con-
servative, we are not assuming that they involve a cancellation that
has suppressed d8y. Corrections on the order of the collinear loga-
rithm translate into a relative error of about % fln "r:.l—’e‘ ~0.7%. In
addition, experimental errors in the charge distribution parameters
(14) introduce a 2% uncertainty [6]." Summing them in quadra-
ture, together with the sensitivity to the scale involved in the
exponentiation of soft effects (we have varied the scale in the ex-
ponentiated term in eq. (13) by a factor of 2), we arrive at an error
around 2.5% in the end-point spectrum.

The result (16), multiplied by the new correction (13), leads to
our prediction for the end-point spectrum, (2).

To summarize, we have determined the correction to the high-
energy tail of the DIO energy distribution and its remaining un-
certainty. Key to this improvement has been the simplicity of the
leading amplitudes that turn out to arise from a small number of
hard-photon exchanges. This line of reasoning can be extended to
higher-order binding effects, at least for a point nucleus. For a re-
alistic charge distribution, a numerical evaluation of loop diagrams
will be necessary. However, the leading radiative correction has
now been established with good precision. Its sizeable negative ef-
fect on the DIO will make any observed event near the end-point
an even more convincing signal of New Physics, a discovery we
eagerly anticipate.
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