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Abstract

The cross-section for the process e

+

e

�

! W

+

W

�

! q�qq�q has been measured

with the data sample taken by DELPHI at an average centre-of-mass energy of 189

GeV, corresponding with an integrated luminosity of 157pb

�1

.

Arti�cial intelligence, in the form of pattern recognition by means of a Feed Forward

Neural Network has been used to select the events.

Based on the 1369 events selected as e

+

e

�

! W

+

W

�

! q�qq�q candidates, the

cross-section has been measured to be 7:63� 0:21(stat)� 0:11(syst) pb.
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1 Introduction

In this paper a result is given for the value of the cross-section for the decay process

of the interaction e

+

e

�

! W

+

W

�

where both W's decay into hadrons (called fully

hadronic �nal states).

The data used was collected by the DELPHI experiment at a centre-of-mass energy

of 188:63 � 0:06GeV during the 1998 data taking period.

The total integrated luminosity corresponds to 157pb

�1

and has been measured by

detecting Bhabha processes, which are described very well theoretically. Its system-

atic error is estimated to be 0:6%.

A detailed description of the DELPHI detector and an overview of its performance

are given in ref. [1, 2].

The cross-section which has been determined refers to the processes described by the

three doubly resonant tree-level diagrams ('CC03 diagrams' [3] ) involving t-channel

� exchange and s-channel 
 and Z exchange.

The selection has been done in 2 steps; a loose preselection based on sequential cuts,

followed by a Neural Network classi�cation.

The selection performance was expressed in e�ciency and purity, selection param-

eters which where determined from Monte Carlo simulation samples for signal and

backgrounds. These were made with the PYTHIA 5.7 [4] event generator followed

by the DELSIM [5] full detector simulation program.

The backgrounds which had to be considered after loose precuts where q�q(
), ZZ

and Ze

+

e

�

events and semileptonic WW events, in which only one W decays hadron-

ically and the other one decays into a lepton and a neutrino

2

.

Although the four-fermion �nal states can also be produced via other diagrams, in-

volving either zero, one or two massive vector bosons, the correction which accounts

for the interference between CC03 diagrams and these additional diagrams are neg-

ligible at this energy for the fully hadronic �nal state [6].

The CC03 Standard Model cross-section calculated by the program GENTLE [7]

for a centre-of-mass energy of

p

s = 188:63GeV and M

W

= 80:39GeV=c

2

[8] is

�

e

+

e

�

!W

+

W

�
= 16:65 � 0:33pb, which gives a value of �

e

+

e

�

!W

+

W

�

!q�qq�q

= 7:59 �

0:15pb.

2 Neural Network

2.1 Introduction

Arti�cial Neural Networks are mathematical models based on some key ingredients

from biology and neurofysiology. Whether they are really similar is further a philo-

sophical question [9]. The subclass of Neural Networks used and discussed here are

Feed Forward Neural Networks. These are mostly used for pattern recognition and

thus classi�cation tasks.

2

Here we mean a charged lepton and an antineutrino or a charged antilepton and a neutrino
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2.2 Building blocks

The basic elements of a Neural Network are the neurons with outputs n

i

, which can

take values within the interval [0,1].

When a neuron is fed by the output of other neurons n

j

through weighted connec-

tions (weights w

ij

), the action of the neuron produces an output n

i

:

n

i

= g(

X

j

w

ij

: n

j

) (1)

Here g is a non-linear transfer function, usually a sigmoid, as shown in Fig 1.

and de�ned as:

g(x) =

1

1 + e

�(x�0:5)

C

(2)

where C is an appropriate scaling constant.

Figure 1: Sigmoid function for di�erent values of C.

2.3 Feed Forward Neural Network

A collection of interconnected neurons is called a neural network. Feed Forward

networks are layered and such that signals are processed from a set of input neurons

in the bottom to output neurons in the top, layer by layer. In each neuron the local

updating rule of equation 1 is used.
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2.4 Training & testing

A pattern recognition system such as a neural network can be considered as a two

stage device. First there is feature extraction, then classi�cation.

Let's consider a feature vector or pattern: a vector that contains characteristic

variables for the di�erent classes that have to be separated. In our case it will be

the physical variables which are typical or just not typical for the signal events. The

'summed square error function' is then de�ned as :

E =

1

2

X

p

X

i

(o

p

i

� t

p

i

)

2

: (3)

Where i is running over all the output neurons and p over all training patterns.

The quantity t

p

i

is the expected (known) network output on output neuron i for

pattern p and o

p

i

is the corresponding e�ective network output.

'Training' the network is then de�ned as minimizing this error function, by chang-

ing the interconnecting weights (w

ij

in equation (1) ) in the network in a systematic

way. To do this, a wide range of imaginative algorithms ('learning rules') is available

[10, 11].

Once this error function is minimized, the network weights are �xed and its

performance must be determined by passing through independent samples of all

classes of inputs that have to be classi�ed. This is called 'testing'.

3 Selection of the e

+

e

�

! WW ! q�qq�q candidates

3.1 Preselection

After a track selection, a loose sequential cut preselection was applied to reduce the

main backgrounds.

The track selection was the following :

� charged particles :

{ track length > 15cm

{ 0:4GeV < momentum < 200GeV

{ abs(R

impact

) < 4cm

{ abs(z

impact

) < 10cm

� neutral particles :

{ total energy E > 0:4GeV

{ 4E=E < 1

3



The preselection consisted of the following cuts :

�

p

s

0

p

s

> 0:80

p

s is the centre-of-mass energy

p

s

0

is the e�ective centre-of-mass energy of the event calculated with the

SPRIME package [12]

�

E

vis

p

s

> 0:16

E

vis

is the total visible energy of the event

�

E

ch

p

s

> 0:06

E

ch

is the total energy in the event carried by charged particles

� Number of charged particles � 10

� Number of jets (using LUCLUS [13] with d

join

= 4:0GeV=c

2

) � 3

The preselection e�ciency was 97:8�0:1%. In the data 4748 events were selected,

while 4706 were expected from Monte Carlo if one considers q�q(
), ZZ, Ze

+

e

�

, q�ql�

and signal processes. This shows that all important backgrounds have been consid-

ered. The remaining background is given in Table 1.

Table 1: Result after preselection.

Type E�ciency (in %) cross-section left (pb)

q�ql� 40.7 2.94

q�q(
) 18.5 18.4

ZZ 54.4 0.86

Zee 4.1 0.34

Total background - 22.55

q�qq�q 97.8 7.42

After these cuts, there was a good agreement between data and Monte Carlo

simulation for the variables that �ll in the feature vectors for the network, as can

be seen in Figs. 2, 3 & 4.

3.2 Neural Network classi�cation

A fully connected Feed Forward neural network was used, consisting of an input

layer of 10 neurons, 1 hidden layer of 8 neurons and 1 output neuron.
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Figure 2: Data - Simulation comparison after preselection.
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Figure 3: Data - Simulation comparison after preselection.
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Figure 4: Data - Simulation comparison after preselection.
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The network has been implemented in the 'Stuttgart Neural Network Simulator'

[14] package.

The feature vectors for the events contained the following 10 variables:

�

p

s

0

p

s

�

E

vis

p

s

�

E

ch

p

s

with

p

s

0

,

p

s,E

vis

and E

ch

de�ned as before.

� CPM : number of charged particles.

� E

jet;max

, E

jet;min

: maximum and minimum jet energy, after forcing the event

in 4 jets and applying a 4C �t (four momentum conservation).

� �

jj;min

: minimum interjet angle, after forcing the event in 4 jets and applying

a 4C �t.

� d

join

(4 ! 3), d

join

(3 ! 2) : the value of the LUCLUS parameter d

join

for

which the topology of the event changes from 4 jets to 3 jets and from 3 jets

to 2 jets respectively.

� PM

jet;min

: smallest jetmultiplicity, after forcing the event in 4 jets.

The training was done with a standard backpropagation algorithm. The weights

were optimized by feeding the network 4000 signal and 4000 q�q events (both pres-

elected) 1500 times, being shu�ed every cycle. For other backgrounds no training

has been done.

For testing the network, independent samples of signal and all background events

(remaining after preselection) were fed to the network to calculate the network per-

formance. The network-output distribution for the simulated samples agreed well

with that for the data, as shown in Fig. 5.

A di�erent training however leads to another performance of the network. Dif-

ferent training-variations have been studied like :

� other training durations.

� other reweighting algorithms.

� using a pruning algorithm: this reduced the hidden layer of the network to

3 nodes instead of 8, with a similar performance. This is interesting since it

shows that the network topology chosen might be more complex than neces-

sary, but no further research has been done in this direction.
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Figure 5: Output distribution of the network. The points are the output for the

data and the histograms show the output for the simulated signal and the di�erent

backgrounds.
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The network used for the analysis was optimized in function of the e�ects of these

variations.

The ultimate selection was done by a cut on the network output, where the

product of total e�ciency and purity is maximal. Fig. 6 motivates the choise :

NNoutput > 0:62 .

Figure 6: Evolution of e�ciency, purity and the product of both as a function of

the cut value on the network output.

The total selection e�ciency and purity are 87:7 � 0:3% and 76:7 � 0:6% re-

spectively. A total of 1369 candidates remained in the data, while we expected

1361 events from simulation. In Table 2 the remaining signal and background is
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presented.

Table 2: Result after cut on NN output variable.

Type Total e�ciency (in %) cross-section left (pb)

q�ql� 2.2 0.16

q�q 0.86 1.44

ZZ 24.6 0.39

Zee 0.39 0.03

Total background � 2.02

q�qq�q 87.7 6.65

4 Result and systematic error

4.1 Cross-section

A total of 1369 events where selected out of the 157pb

�1

of data. Taking into

account the e�ciency and purity of the selection, the following value is obtained for

the cross-section:

�

e

+

e

�

!W

+

W

�

!q�qq�q

= �

tot

WW

:BR(WW ! q�qq�q) = 7:63 � 0:21(stat)pb (4)

whereBR(WW ! q�qq�q) is the probability for the WW pair to give a purely hadronic

�nal state. The error is statistical only.

4.2 Systematic error

The systematic error introduced by a neural network is very hard to determine.

There is no consensus about standard procedures, but some guidelines exist. The

problem is that small deviations in the distribution of the input variables might

introduce non negligible deviations in the output distribution, thus in the number

of selected events.

First the following remarks should be made :

� After the preselection described in paragraph 3.1, only small di�erences could

be seen between data and simulation in the distributions of the variables �lling

the input or feature vectors.

� For the output distribution of the Neural Network there is good agreement

between data and Monte Carlo simulation.
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Considering this, only one study has been made to investigate the e�ect on the

network behaviour due to small deviations in the input variables.

Each of the input variables, except CPM and PM

jet;min

, has been smeared sep-

arately following a Gaussian distribution, with a width given by the experimental

error on its measurement. For the two discrete variables, no study has been made.

The network performance has been calculated for every smeared variable, always

using the same original events. The resulting shift in the cross-section has been

determined. The results are given in Table 3. The biggest deviation in e�ciency

and purity was caused by the smearing of the maximum jet energy variable.

Table 3: Result after smearing of the input variables.

Spread Variable e�.(%) pur.(%) Shift e�. Shift pur. Shift cross-sec.(pb)

p

s

0

p

s

87.3 76.7 -0.4 0.0 0.03

E

vis

p

s

87.5 76.6 -0.2 -0.1 0.00

E

ch

p

s

87.6 76.8 -0.1 0.1 0.01

E

jet;max

87.1 75.9 -0.6 -0.8 -0.03

E

jet;min

87.6 76.6 -0.1 -0.1 -0.01

�

jj;min

87.7 76.5 0.0 -0.2 -0.02

d

join

(4! 3) 87.5 76.6 -0.2 -0.1 0.00

d

join

(3! 2) 87.6 76.5 -0.1 -0.2 -0.02

total 0.05

The variation of the cross-section with the cut on the Neural Network output

variable has been examined and leads to an additional systematic error of 0.03

pb. Taking into account also the errors on the total integrated luminosity, on the

e�ciency and purity due to the limited Monte Carlo statistics and the theoretical

error on the cross-sections for signal and q�q events we have for the systematic error:

�

e

+

e

�

!W

+

W

�

!q�qq�q

= 7:63� 0:21(stat)� 0:11(syst)pb (5)

5 Summary

For the data sample of 157pb

�1

integrated luminosity taken by the DELPHI ex-

periment in e

+

e

�

collisions at an average centre-of-mass energy of 188.63 GeV,

the cross-section for the process e

+

e

�

! W

+

W

�

! q�qq�q was measured to be

7:63� 0:21(stat)� 0:11(syst)pb. The �rst error is statistical and the second error is

systematic. The systematic error comes from the uncertainty on the total integrated

12



luminosity and from the errors on the selection e�ciency and purity determined in

paragraph 4.2.

This result is compatible with the Standard Model prediction of 7:59 � 0:15pb and

is in agreement with the results published by the four LEP experiments [8].
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