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Abstract

The cross-section for the process ete™ — WTW ™~ — ggqq has been measured
with the data sample taken by DELPHI at an average centre-of-mass energy of 189
GeV, corresponding with an integrated luminosity of 157pb~!.

Artificial intelligence, in the form of pattern recognition by means of a Feed Forward
Neural Network has been used to select the events.

Based on the 1369 events selected as ete™ — WTW~ — ¢gqg candidates, the
cross-section has been measured to be 7.63 4+ 0.21(stat) + 0.11(syst) pb.
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1 Introduction

In this paper a result is given for the value of the cross-section for the decay process
of the interaction ete™ — W1W~ where both W’s decay into hadrons (called fully
hadronic final states).

The data used was collected by the DELPHI experiment at a centre-of-mass energy
of 188.63 + 0.06GeV during the 1998 data taking period.

The total integrated luminosity corresponds to 157pb~! and has been measured by
detecting Bhabha processes, which are described very well theoretically. Its system-
atic error is estimated to be 0.6%.

A detailed description of the DELPHI detector and an overview of its performance
are given in ref. [1, 2].

The cross-section which has been determined refers to the processes described by the
three doubly resonant tree-level diagrams (’CC03 diagrams’ [3] ) involving t-channel
v exchange and s-channel v and Z exchange.

The selection has been done in 2 steps; a loose preselection based on sequential cuts,
followed by a Neural Network classification.

The selection performance was expressed in efficiency and purity, selection param-
eters which where determined from Monte Carlo simulation samples for signal and
backgrounds. These were made with the PYTHIA 5.7 [4] event generator followed
by the DELSIM [5] full detector simulation program.

The backgrounds which had to be considered after loose precuts where qg(vy), ZZ
and ZeTe™ events and semileptonic WW events, in which only one W decays hadron-
ically and the other one decays into a lepton and a neutrino 2.

Although the four-fermion final states can also be produced via other diagrams, in-
volving either zero, one or two massive vector bosons, the correction which accounts
for the interference between CC03 diagrams and these additional diagrams are neg-
ligible at this energy for the fully hadronic final state [6].

The CCO03 Standard Model cross-section calculated by the program GENTLE [7]
for a centre-of-mass energy of \/s = 188.63GeV and Mw = 80.39GeV/c* [8] is
Oete-—w+w- = 16.65 = 0.33pb, which gives a value of Gete— _wrw-_ggqe7 = 7.59 £
0.15pb.

2 Neural Network

2.1 Introduction

Artificial Neural Networks are mathematical models based on some key ingredients
from biology and neurofysiology. Whether they are really similar is further a philo-
sophical question [9]. The subclass of Neural Networks used and discussed here are
Feed Forward Neural Networks. These are mostly used for pattern recognition and
thus classification tasks.

*Here we mean a charged lepton and an antineutrino or a charged antilepton and a neutrino



2.2 Building blocks

The basic elements of a Neural Network are the neurons with outputs n;, which can
take values within the interval [0,1].

When a neuron is fed by the output of other neurons n; through weighted connec-
tions (weights w;;), the action of the neuron produces an output n; :

n; = g(z w;;. 1) (1)

Here g is a non-linear transfer function, usually a sigmoid, as shown in Fig 1.

and defined as:

1
g(z) = T _(=—0s5) (2)
l1+e ©
where C is an appropriate scaling constant.
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Figure 1: Sigmoid function for different values of C.

2.3 Feed Forward Neural Network

A collection of interconnected neurons is called a neural network. Feed Forward
networks are layered and such that signals are processed from a set of input neurons
in the bottom to output neurons in the top, layer by layer. In each neuron the local
updating rule of equation 1 is used.



2.4 Training & testing

A pattern recognition system such as a neural network can be considered as a two
stage device. First there is feature extraction, then classification.

Let’s consider a feature vector or pattern: a vector that contains characteristic
variables for the different classes that have to be separated. In our case it will be
the physical variables which are typical or just not typical for the signal events. The
’summed square error function’ is then defined as :

B= YY) (3

Where 7 is running over all the output neurons and p over all training patterns.
The quantity ¢} is the expected (known) network output on output neuron ¢ for
pattern p and o} is the corresponding effective network output.

"Training’ the network is then defined as minimizing this error function, by chang-
ing the interconnecting weights (w;; in equation (1) ) in the network in a systematic
way. To do this, a wide range of imaginative algorithms (’learning rules’) is available

(10, 11].

Once this error function is minimized, the network weights are fixed and its
performance must be determined by passing through independent samples of all
classes of inputs that have to be classified. This is called ’testing’.

3 Selection of the ete™ — WW — ¢gqq candidates

3.1 Preselection

After a track selection, a loose sequential cut preselection was applied to reduce the
main backgrounds.
The track selection was the following :

o charged particles :

— track length > 15cm
0.4GeV < momentum < 200GeV
— abs(Rimpact) < 4cm

— abs(Zimpact) < 10cm
e neutral particles :

— total energy E > 0.4GeV
- AEJ/E <1



The preselection consisted of the following cuts :

R § > 0.80

/s is the centre-of-mass energy

Vs’ is the effective centre-of-mass energy of the event calculated with the

SPRIME package [12]

o L > 0.16

E,;, is the total visible energy of the event

o % > 0.06

E., is the total energy in the event carried by charged particles

e Number of charged particles > 10

e Number of jets (using LUCLUS [13] with d;s, = 4.0GeV/c*) > 3

The preselection efficiency was 97.840.1%. In the data 4748 events were selected,
while 4706 were expected from Monte Carlo if one considers qg(v), ZZ, Zete™, qqlv
and signal processes. This shows that all important backgrounds have been consid-

ered. The remaining background is given in Table 1.

Table 1: Result after preselection.

Type Efficiency (in %) | cross-section left (pb)
qqlv 40.7 2.94
qq(7) 18.5 18.4
Z7 54.4 0.86
Zee 4.1 0.34
‘ Total background ‘ - 22.55
| 9397 | 97.8 7.42

After these cuts, there was a good agreement between data and Monte Carlo
simulation for the variables that fill in the feature vectors for the network, as can

be seen in Figs. 2, 3 & 4.

3.2 Neural Network classification

A fully connected Feed Forward neural network was used, consisting of an input

layer of 10 neurons, 1 hidden layer of 8 neurons and 1 output neuron.
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Figure 2: Data - Simulation comparison

after preselection.
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Figure 3: Data - Simulation comparison after preselection.
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The network has been implemented in the ’Stuttgart Neural Network Simulator’
[14] package.
The feature vectors for the events contained the following 10 variables:

5

B

SE

o

ch

B

with \/?,\/E,Evis and E., defined as before.
o CPM : number of charged particles.

® Eict maxs Ejet,min : maximum and minimum jet energy, after forcing the event
in 4 jets and applying a 4C fit (four momentum conservation).

® 0,;min : minimum interjet angle, after forcing the event in 4 jets and applying

a 4C fit.

o divin(4 — 3), djoin(3 — 2) : the value of the LUCLUS parameter d,,;, for
which the topology of the event changes from 4 jets to 3 jets and from 3 jets
to 2 jets respectively.

® PMjet min : smallest jetmultiplicity, after forcing the event in 4 jets.

The training was done with a standard backpropagation algorithm. The weights
were optimized by feeding the network 4000 signal and 4000 ¢g events (both pres-
elected) 1500 times, being shuffled every cycle. For other backgrounds no training
has been done.

For testing the network, independent samples of signal and all background events
(remaining after preselection) were fed to the network to calculate the network per-
formance. The network-output distribution for the simulated samples agreed well
with that for the data, as shown in Fig. 5.

A different training however leads to another performance of the network. Dif-
ferent training-variations have been studied like :

e other training durations.
o other reweighting algorithms.

e using a pruning algorithm: this reduced the hidden layer of the network to
3 nodes instead of 8, with a similar performance. This is interesting since it
shows that the network topology chosen might be more complex than neces-
sary, but no further research has been done in this direction.
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Figure 5: Output distribution of the network. The points are the output for the
data and the histograms show the output for the simulated signal and the different
backgrounds.



The network used for the analysis was optimized in function of the effects of these
variations.

The ultimate selection was done by a cut on the network output, where the
product of total efficiency and purity is maximal. Fig. 6 motivates the choise :

N Noutput > 0.62 .
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Figure 6: Evolution of efficiency, purity and the product of both as a function of
the cut value on the network output.

The total selection efficiency and purity are 87.7 &+ 0.3% and 76.7 4+ 0.6% re-
spectively. A total of 1369 candidates remained in the data, while we expected
1361 events from simulation. In Table 2 the remaining signal and background is
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presented.

Table 2: Result after cut on NN output variable.

Type Total efficiency (in %) | cross-section left (pb)
qqlv 2.2 0.16
qq 0.86 1.44
Z7 24.6 0.39
Zee 0.39 0.03
‘ Total background ‘ — ‘ 2.02 ‘
| 9397 | 87.7 | 6.65 |

4 Result and systematic error

4.1 Cross-section

A total of 1369 events where selected out of the 157pb~' of data. Taking into
account the efficiency and purity of the selection, the following value is obtained for
the cross-section:

Ootem —WAW-—qq0s = Oopw -BR(WW — q3qq) = 7.63 & 0.21(stat)pb (4)

where BR(WW — qgqq) is the probability for the WW pair to give a purely hadronic
final state. The error is statistical only.

4.2 Systematic error

The systematic error introduced by a neural network is very hard to determine.
There is no consensus about standard procedures, but some guidelines exist. The
problem is that small deviations in the distribution of the input variables might
introduce non negligible deviations in the output distribution, thus in the number
of selected events.

First the following remarks should be made :

o After the preselection described in paragraph 3.1, only small differences could
be seen between data and simulation in the distributions of the variables filling
the input or feature vectors.

o For the output distribution of the Neural Network there is good agreement
between data and Monte Carlo simulation.

11



Considering this, only one study has been made to investigate the effect on the
network behaviour due to small deviations in the input variables.

Each of the input variables, except C PM and P M.t min, has been smeared sep-
arately following a Gaussian distribution, with a width given by the experimental
error on its measurement. For the two discrete variables, no study has been made.

The network performance has been calculated for every smeared variable, always
using the same original events. The resulting shift in the cross-section has been
determined. The results are given in Table 3. The biggest deviation in efliciency
and purity was caused by the smearing of the maximum jet energy variable.

Table 3: Result after smearing of the input variables.

Spread Variable | eff.(%) | pur.(%) | Shift eff. | Shift pur. | Shift cross-sec.(pb)
e 87.3 | T6.7 -0.4 0.0 0.03
P 87.5 76.6 -0.2 -0.1 0.00
L 87.6 76.8 -0.1 0.1 0.01
Eietima 87.1 | 75.9 -0.6 -0.8 -0.03
Ejetmin 87.6 | 76.6 -0.1 -0.1 -0.01
0, 5.min 87.7 | 76.5 0.0 -0.2 -0.02
djin(4 —3) | 875 | 76.6 -0.2 -0.1 0.00
djoin(3—2) | 876 | 76.5 -0.1 -0.2 -0.02
total 0.05

The variation of the cross-section with the cut on the Neural Network output
variable has been examined and leads to an additional systematic error of 0.03
pb. Taking into account also the errors on the total integrated luminosity, on the
efficiency and purity due to the limited Monte Carlo statistics and the theoretical
error on the cross-sections for signal and ¢g events we have for the systematic error:

(5)

Oete—WHW-—qgqq = (-63 = 0.21(stat) £+ 0.11(syst)pb

5 Summary

For the data sample of 157pb~! integrated luminosity taken by the DELPHI ex-
te~ collisions at an average centre-of-mass energy of 188.63 GeV,
the cross-section for the process ete™ — WTW™ — ¢gqg was measured to be
7.63 +0.21(stat) + 0.11(syst)pb. The first error is statistical and the second error is
systematic. The systematic error comes from the uncertainty on the total integrated

periment in e
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luminosity and from the errors on the selection efficiency and purity determined in
paragraph 4.2.

This result is compatible with the Standard Model prediction of 7.59 + 0.15pb and
is in agreement with the results published by the four LEP experiments [8].
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