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Introduction

Snowmass 2021 CompF4 Scope

The Snowmass 2021 CompF4 topical group’s scope is facili-
ties R&D, where we consider “facilities” as the hardware 
and software infrastructure inside the data centers plus the 
networking between data centers, irrespective of who owns 
them, and what policies are applied for using them. In other 
words, it includes commercial clouds, federally funded High 
Performance Computing (HPC) systems for all of science, 
and systems funded explicitly for a given experimental or 
theoretical program. However, we explicitly consider any 
data centers that are integrated into data acquisition systems 

or trigger of the experiments out of scope here. Those sys-
tems tend to have requirements that are quite distinct from 
the data center functionality required for “offline” processing 
and storage.

As well as submitted whitepapers, this report is the result 
of community discussions, including sessions in the Com-
putational Frontier workshop [1] on August 10–11, 2020, 
and the CompF4 Topical Group workshop  [2] on April 
7–8, 2022. These workshops drew attendees from all areas 
of High Energy Physics (HEP), with representatives from 
large and small experiments, computing facilities, theoretical 
communities and industry. Registered workshop participants 
are listed in Appendix  A.

The community discussions quickly converged on six 
distinct sub-topics within this topical working group. Those 
include the obvious “Storage” and “Processing” that are 
already in the name of our topical group, but also potentially 
less obvious like “Edge Services”, “AI Hardware”, “Analysis 
Facilities”, and of course “Networking”. The leads for these 
topics are listed in Appendix B. Each of these sub-topics 
defines itself below in its respective sections, and arrives 
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at conclusions within its respective scope. We find that in 
many cases, multiple sub-areas arrive at related, or mutu-
ally reinforcing recommendations for needed action. We thus 
bring these together into a coherent picture, rather than just 
summarizing each sub-topic separately.

Findings and Recommendations

The one characteristic that remains unchanged is the nature 
of HEP as a “team sport” with teams that are global in 
nature. These global teams will continue to require global 
federation of “in-kind” resources because each funding 
agency involved will make its own decisions on how to pro-
vide the required resources for a given program. The move-
ment of data across the global research and education net-
works, and in/out of processing and storage facilities is thus 
the one characteristic that is unlikely to change.

With the slowdown of Moore’s Law we expect a diversi-
fication of computing devices, architectures, and computing 
paradigms. R&D is required for the community to under-
stand how to exploit a much more heterogeneous computing 
and storage landscape at the facilities to contain overall costs 
given this slowdown.

HEP will need to make more efficient use of facilities that 
are diverse both in the type of facility (e.g., dedicated grid 
resources; HPC and cloud) and the type of compute they 
have available (CPU, GPU, special purpose AI accelerators, 
computational storage, etc.).

Our report calls out several areas where there are con-
siderable opportunities to achieve these needed improve-
ments. Significant R&D is required to make efficient use of 
the diverse resources expected to be available at grid, cloud 
and HPC facilities, which we summarize below:

1.	 Efficiently exploit specialized compute architectures and 
systems. To achieve this will require the allocation of 
dedicated facilities to specific processing steps in the 
HEP workflows, in particular for “analysis facilities” 
(“Processing and “Analysis Facilities” sections); design-
ing effective benchmarks to exploit AI hardware (“AI 
Hardware” section); improved network visibility and 
interaction (“Networking” section); and enhancements 
to I/O libraries such as lossy compression and custom 
delivery of data (“Storage” section).

2.	 Invest in portable and reproducible software and com-
puting solutions to allow exploitation of diverse facili-
ties. The need for portable software libraries, abstrac-
tions and programming models is recognized across 
all the topics discussed here, and is especially called 
out in the “Processing” section, “AI Hardware” section 
and “Storage” section. Software frameworks to enable 
reproducible HEP workflows are also greatly needed 
(“Analysis Facilities” and “Edge Services” sections).

3.	 Embrace disaggregation of systems and facilities. The 
HEP community will need to embrace heterogeneous 
resources on different nodes, systems and facilities 
and effectively balance these accelerated resources 
to match workflows. To do so will require software 
abstraction to integrate accelerators, such as those for 
AI (“AI Hardware” section); orchestration of network 
resources (“Networking” section); exploiting computa-
tional storage (“Storage” section); as well as exploiting 
system rack-level disaggregation technology if adopted 
at computing centers.

4.	 Extend common interfaces to diverse facilities. In order 
to scalably exploit resources wherever they are available, 
HEP must continue to encourage edge-service platforms 
on dedicated facilities as well as Cloud and HPC (“Edge 
Servies” section), develop portable edge-services that 
are re-usable by other HEP projects, and exploit com-
monality within HEP and other sciences (“Edge Ser-
vices” section). These interfaces will also need to extend 
into all aspects of HEP workflows, including data man-
agement and optimizing data movement (“Networking”, 
“Processing” and “Storage” sections), as well as the 
deployment of compute resources for analysis facilities 
(“Analysis Facilities” section).

We suggest that the funding agencies use the above recom-
mendations in future solicitations targeting collaborative 
work between domain and computer science and engineer-
ing. In addition, we encourage the HEP community to be 
creative in using existing solicitations to write proposals 
that cover these areas. We note that the HEP community 
has been very successful in competing across all of science 
in these kind of solicitations, especially in NSF-CISE and 
NSF-OAC. On the DOE side, we encourage, for example, 
the community to work together with the DOE HEP office 
towards SciDAC proposals that cover the above recom-
mendations. Looking into the future, we want to highlight 
the work by the “National Artificial Intelligence Research 
Resource (NAIRR) Task Force” [3]. This task force is 
expected to conclude with its final recommendation by 
December 2022, and may recommend addressing some 
of the gaps we have identified here as it pertains to future 
investments in AI computational and data resources. Like-
wise, within the DOE there are ongoing activities for post-
Exascale programs around AI and “Integrated Research 
Infrastructure”. We encourage the HEP community to 
pay close attention to these activities and reports as they 
emerge.

The rest of the report covers the detailed discussions of 
challenges and research directions for each topic that help 
derive the above recommendations. The “Processing” sec-
tion discusses processing in general. The “AI Hardware” 
section focuses on R&D needed for specialized AI hardware. 
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Storage and I/O software are discussed in the “Storage” sec-
tion. The “Analysis Facilities” section covers research needs 
for analysis facilities. Edge services are discussed in the 
“Edge Services” section.  Finally, networking challenges 
and research directions are presented in the “Networking” 
section.

Processing

Introduction

Processing is the step that transforms raw data, simulation 
configurations or theoretical models into objects useful for 
analysis and discovery, and plays a central role in HEP com-
puting. Processing takes place in a variety of environments 
under different constraints. The environments span from low 
latency experiment online systems, through globally distrib-
uted dedicated processing sites, to HPC and cloud alloca-
tions and opportunistic resources.

The largest of the next generation of physics projects 
represent exascale science endeavors with annual data rates 
of exabytes to process, store, and analyze [4]. Large-scale 
theory-based numerical simulations [5–7] are reaching for 
higher and higher precision to more accurately describe 
nature and uncover new science, and have been the power 
users of the HPC resources. Small science projects may also 
have big processing needs [8]. To meet these challenges 
we will need to exploit a changing landscape of new hard-
ware and new techniques. More than 20 years ago science 
switched to the x86 processor and commodity computing. 
Today there are accelerated processor architectures like 
GPU, FPGAs, and TPUs, which show dramatic performance 
improvements for certain types of calculations. Low-power 
general purpose ARM processors are appearing in devices 
from iPads to supercomputers. Exploiting new architectures 
requires investment in software design and portability but 
opens access to new resources like HPC facilities. New 
techniques like AI/ML, advanced data analytics, and digital 
twins [9] change how we think about science processing and 
simulation as well as the computing and I/O requirements.

Challenges

The evolution of the computing landscape introduces many 
challenges. The increasing prevalence of heterogeneous 
computing systems makes it essential to adapt the existing 
software stacks that have been largely developed for homo-
geneous CPU-based systems [6, 10]. The growth of HPC 
and Cloud computing systems concentrates unprecedented 
computing resources away from the scientific instruments 
and the custodial storage, which places new demands on 
data access and networking [11]. The introduction of new 

techniques like AI and ML can change the performance 
of the workflow, but can also change the resource balance 
with significant processing and data access needed for train-
ing before the workflow processes data. The I/O require-
ments for the inference step can be much larger than tradi-
tional workflows and there is often specialized hardware as 
described in “AI Hardware” section.

The technical processing challenges are listed below:

•	 Heterogeneous hardware: Scientific code is the result of 
contributions from many people of varying skills over 
many years. Even maintaining and optimizing for a single 
platform has been challenging. The increased diversity of 
accelerated hardware architectures that are deployed for 
processing is exacerbating this challenge. The GPU mar-
ket now has three players: NVIDIA, AMD and Intel, each 
of which has its own native programming API: CUDA 
for NVIDIA, HIP for AMD and SYCL/OneAPI for Intel. 
It is impractical to rewrite the vast HEP software stacks 
for each platform. A sustainable solution that incorpo-
rates software portability, productivity and performance 
is critically needed to exploit the heterogeneous comput-
ing resources that will be widely available in the next 
decade.

•	 Resource interfaces: The WLCG (Worldwide LHC Com-
puting Grid) and the OSG (Open Science Grid) have 
served the data-intensive science community for more 
than a decade. The protocols and interfaces to connect to 
grid sites have functioned and scaled, but the integration 
of new resources like HPC and clouds sites is a new tech-
nical challenge. The HPC facilities have stricter cyber-
security requirements and Authentication and Authoriza-
tion Infrastructure (AAI) needs.

•	 Resource description: The increase in the use of hetero-
geneous architectures and the integration of HPC and 
cloud resources dramatically increases the diversity of 
information needed to describe resources and make intel-
ligent scheduling decisions.

•	 Provisioning and policy: Increasing the use of HPC and 
clouds opens new resources but introduces new chal-
lenges for how they are provisioned and consumed. 
HPC facilities typically make awards for fixed alloca-
tions during a period of time. The time scale for a com-
puting award might range from months to a year, but is 
significantly different from the relationships established 
between the dedicated grid sites, which might last for 
decades. Clouds add the additional complexity of having 
a cost per use. Both HPC and Clouds are fixed resources, 
either due to allocation or budget, and this places chal-
lenges on how to predict usage and enforce experiment 
priorities.

•	 Data management and delivery: Scientific computing 
has traditionally maintained a reasonably strict coupling 
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between processing and storage resources. Data are 
moved to dedicated storage and accessed locally with 
only a minority share, if any, of the data streamed. The 
addition of non-dedicate processing resources like HPC 
and clouds places challenges on the data management 
system to be more dynamic. The proposals to use Data-
Lake style data management models places demands on 
the networking, data federation and data caching infra-
structure. Additionally, the increased use of accelerated 
hardware solutions can improve the performance of 
processing, but it also increases the challenges of data 
management. If application performance is increased by 
a factor of ten, the I/O must scale commensurately. The 
interfaces to storage need to be evaluated in the presence 
of accelerated architectures and workflows.

•	 Impact of Machine Learning (ML)-based processing: The 
adoption of ML-based workflows in processing-intensive 
applications has the potential to dramatically improve 
the application throughput, but introduces challenges 
in the balance of resources and the types of computing 
needed. ML training is processing intensive and needs 
to be performed before the real data workflows can be 
performed. It is potentially a good application for HPC 
sites. The inference step requires much less computing, 
but can benefit from dedicated hardware like FPGAs.

Research Directions

In order to overcome the challenges facing processing for 
scientific computing in the next decade, we need to establish 
research directions and make investments. We should take 
the opportunity to rethink our historical choices and evaluate 
what are the right decisions to best complete our work given 
the changing technology landscape.

What are the Best Processing Facilities for HEP Research 
in the Future?

The first research question that needs to be answered is what 
are we optimizing for when we design our processing sys-
tems and decide what resources to use. We should take the 
opportunity of the planning exercise to assess the efficiency 
of ways of working without the constraint of what is cur-
rently deployed. Possible metrics for establishing the “best” 
solution include the following:

•	 Overall cost
•	 Utilization of existing infrastructure
•	 Time to results
•	 Familiarity and comfort level of the user community
•	 Carbon footprint
•	 Minimized effort
•	 Synergies with other science activities or industry.

The most important aspect is to decide in advance what are 
the criteria that will be used in making choices. The land-
scape is changing and there are many new elements since 
many HEP computing models, such as LHC, were designed 
decades ago. The addition of clouds, HPC, and heteroge-
neous architectures open many opportunities but all come 
with benefits and costs. It is unlikely that one solution or 
optimization will apply to the entire research program over 
a decade, but the process to establish what is important and 
to justify what choices were made is common.

Research Areas

In addition to the big question of what we are optimizing 
for, there are a number of more specific research directions 
needed that will serve as input to the optimization question 
and help the field navigate the changing landscape.

•	 Use of heterogeneous architectures: The use of hetero-
geneous hardware architectures including accelerated 
coprocessors has traditionally involved specialized skills 
and a redesign of the application to achieve reasonable 
performance. Recently unified programming models and 
portability libraries are opening the possibility of a single 
code base that runs with reasonable efficiency on multi-
ple architectures. Adding new architectures can be done 
once in the portability layer, improving code maintain-
ability. Additional research and a systematic approach to 
move the field to be more flexible in terms of supported 
hardware platforms is needed [12, 13].

•	 Evolution of resource sharing and provision: The ability 
to integrate new hardware architectures and to deliver 
data to non-dedicated resources will enable growth in the 
resource pool with the addition of clouds, HPC sites, and 
other opportunistic facilities. The typical resource provi-
sioning of annual pledges with the expectation of a com-
mitment over the life of an experiment will not necessar-
ily work for these new classes of resources. Research is 
needed in how we might burst to much larger resources 
enabling provisioning for peak and execution of fixed 
duration computing activities. Evaluations are needed 
into what percentage of processing activities could map 
efficiently onto HPC and cloud allocations. Negotiations 
are also needed with the HPC and Cloud providers if 
alternative longer term provisioning would be acceptable 
in some cases.

•	 Evolution of data access: In data-intensive science it 
is impossible to separate processing and data access. 
Traditionally, this has meant coupling data storage and 
processing infrastructures. As we evolve to exploit large-
scale HPC and cloud computing resources we need to 
explore data access solutions that are more dynamic 
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and make efficient use of caching and the network. The 
DataLake models proposed for the LHC are moving in 
the right direction but need to be able to scale to deliver 
tens of Petabytes daily to remote processing sites and 
potentially to export similar data volumes.

•	 Evolution of interfaces: One of the big successes of 
the grid was a common set of interfaces for process-
ing, storage access, and information services. Those 
services relied on very similar destination hardware and 
provisioning and accounting expectations. With a more 
diverse landscape including non-dedicated sites, large 
HPC allocations, heterogeneous hardware solutions, 
and rented computing services, we need to develop an 
enhanced set of interfaces that scale both in size and 
environment complexity.

•	 Modifying computing models: LHCb and ALICE, even 
for LHC Run3, have moved to a largely triggerless con-
figuration where most the offline processing is performed 
in nearly real-time. The smaller reconstructed objects are 
stored. This pushes many traditional offline workflows 
into the online environment including some analysis 
steps. This technique has efficiency gains in processing 
because the online and offline elements are not dupli-
cated and can save significantly in storage if only syn-
thesized data formats are retained [14]. It increases the 
risks in offline processing because there are not necessary 
resources or raw data formats available to recover from a 
problem in the data reconstruction. A general assessment 
of the benefits and risks of moving more workflows to 
real-time, single pass execution should be performed.

Types of Computing Resources

Building the original grid infrastructure was a large multi-
national investment over years, but the resulting infrastruc-
ture has enabled the distribution of computing sites to facili-
tate the efficient use of local computing investments and has 
provided the LHC experiments with processing capabilities 
from day 1. It has also demonstrated the ability to move 
and process data globally and the need to treat processing, 
storage, and networking as equal partners in sustaining a 
computing model. To build the next generation of process-
ing infrastructure, one that allows a rich diversity of hard-
ware architectures and includes contributions from HPC 
sites, institutional clusters and clouds, will be a significant 
investment also. The project can and should be divided by 
technical area: application software, services and interfaces, 
data management, etc. Forming projects that include a mix 
of large and small experiments with different requirements 
and workflows will help find common technical solutions.

Recommendations

We conclude this section with the following recommenda-
tions to meet the increasing HEP processing needs in the 
next 10–15 years.

•	 HPC facilities should revisit their resource access poli-
cies to allow more flexible allocations and job executions. 
This, coupled with new authentication and authorization 
models, will allow more HEP projects to benefit from the 
large computing facilities.

•	 Investment in software development effort is key to 
maximize the efficient utilization of diverse processing 
resources. In particular, research and development of 
portable software solutions is critical for a sustainable 
software ecosystem in light of the evolving and increas-
ingly diverse hardware architectures.

•	 Research is needed to determine the tradeoff between 
dedicated HEP computing facilities and general-access 
computing facilities such as the HPC center, Grid and 
Cloud resources.

•	 Infrastructure development will be needed to support bet-
ter data management frameworks across different types 
of facilities.

AI Hardware

Executive Summary

Artificial intelligence (AI) and machine learning (ML) 
are becoming increasingly prevalent in all stages of data 
processing, generation, and simulation across HEP to gain 
deeper insight into data and accelerate discovery. With 
uniquely massive data sets and high data acquisition rates, 
high-performance and high-throughput computing resources 
are an essential element of the experimental particle phys-
ics program. HEP experiments are continually increasing in 
both sophistication of detector technology and intensity of 
particle beams. With growing data rates and volumes and 
rapidly developing AI techniques pushing the computing 
capacity, more efficient hardware architectures specially 
designed for AI computations are one path to mitigating 
these effects. Similarly, theory calculations and physics 
simulations are also increasing in complexity, requiring 
powerful AI algorithms that can benefit from powerful AI 
hardware.

In this section, we focus on the application of novel AI 
hardware for accelerating offline data processing. However, 
there are closely related focus areas with similar themes such 
as machine learning (CompF03), instrumentation trigger and 
data acquisition (IF04), and electronics/ASICS (IF07).
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AI hardware has been developing rapidly with many 
technologies recently becoming available and others antici-
pated. This space includes traditional CPUs, as well as GPUs 
which are the current standard for AI workloads, as well as 
a number of emerging hardware platforms such as FPGAs, 
ASICs, and deep learning processors (DLPs). The latter are 
specialized architectures for AI and include both traditional 
CMOS and beyond-CMOS technologies. While HEP is not 
necessarily a driver for the advancement of these technolo-
gies, it is important to systematically study the landscape 
of AI hardware and understand which architectures are best 
suited for various important and unique HEP AI tasks. To 
that end, we have identified two main areas of development, 
shown in Fig. 1 that would inform and improve the adop-
tion of AI hardware in HEP computing workloads. First, it 
is important to establish curated datasets and AI benchmark 
tasks with robust metrics on which different AI hardware can 
be evaluated. These AI benchmark tasks should highlight 
HEP workloads and be complementary to standard industry 
benchmarks. Second, because AI hardware is continually 
evolving, there may not ultimately be a single solution and 
it is important to develop software and computing infra-
structure to efficiently integrate and abstract this hardware. 
This could involve, for example, “as a service” access of 
any number of AI hardware platforms in HEP computing 
workflows.

HEP Computing Challenges

As HEP computing ecosystems grow in scale and com-
plexity, new data processing and reduction paradigms need 
to be integrated into the computing infrastructure design. 
Fortunately, this coincides with the rise of ML, or the use 
of algorithms that can learn directly from data. Recent 
advancements demonstrate that ML architectures based on 
structured deep neural networks are versatile and capable 
of solving a broad range of complex scientific problems. 
While each scientific application is unique, there are large 
overlaps in data representations and computing paradigms. 
In Ref. [16], a summary of scientific needs and science 
drivers are presented for a number of HEP applications 
such as DUNE, the LHC experiments, cosmology surveys, 
intensity frontier experiments, and accelerator operations. 
Ref. [16] also discusses other non-HEP applications and 
how they dovetail with HEP workloads.

One unique aspect of the HEP computing challenges 
that goes beyond traditional industry workloads is their 
combination of data rates, latency/throughput require-
ments, data volumes, and data representations. The first 
three are summarized in Fig. 2, which shows how HEP 
computing workloads compare to industry applications 
and demonstrate how the requirements are similar or can 
even exceed those of traditional benchmarks.

Beyond the computing system requirements, HEP 
workloads also can have a variety of unique AI data 

Fig. 1   AI hardware ecosystem including scientific and industry tasks—we highlight the connection of hardware with HEP challenges including 
areas for development, benchmarking and abstraction
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representations and computing motifs. In Ref. [17], for 
example, there is a discussion of overlapping and common 
data representations across a variety of domains including 
the use of domain-specific features as inputs, spatial data 
in regular grids or sparse, irregular point clouds, tempo-
ral data, and spatiotemporal data. Further considerations 
include the total size of the model, output structure and 

size, input and batch size, and whether batches are ragged 
(varied) for each inference or training graph.

Hardware Taxonomy

Just as no single ML architecture is the most appropriate 
for all problems, no single hardware architecture will be 
optimal for addressing every physics use-case effectively. 
As the technology and the field evolve, so too will the 
methods most optimized to different use-cases. Hardware 
that can be faster and more efficient than traditional CPUs 
for inference is one possibility for reducing the overall 
computing load of ML.

We present a high-level taxonomy of these hardware 
architectures and discuss their relevant characteristics 
when it comes to the acceleration of machine learning 
workloads. This is essential to understand how they will 
differ in their execution behavior, what it takes to leverage 
their unique features and how they can potentially benefit 
from previously introduced optimization techniques.

A broad range of hardware architectures to deploy 
machine learning algorithms exists today. We can broadly 
characterize them by the following criteria:

•	 Basic type of compute operation.
•	 Inherent support for specific numerical representations.
•	 External memory capacity (which is mostly relevant for 

training workloads).
•	 External memory access bandwidth.
•	 Power consumption in the form of thermal design 

power (TDP).
•	 Level of parallelism in the architecture and the degree 

of specialization.

Fig. 2   Plot of the streaming data rate in bytes per second and latency 
requirements in seconds for various experiments. These require-
ments will which AI hardware can be exploited by these experiments. 
Points of comparison from industry and other scientific fields are also 
included. The size of the bubbles represents the total per year data 
volume. Taken from Ref. [16]

Fig. 3   Taxonomy of compute architectures, differentiating CPUs, GPUs, and DLPs [17]
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As is shown in Fig. 3 [17], we classify the compute archi-
tectures into scalar processors (CPUs), vector-based proces-
sors (GPUs), and so-called deep learning processors (DLPs), 
although realistically these categories blend to some degree. 
DLPs are specialized for this application domain whereby 
we distinguish the more generic matrix- or tensor-based 
processor and a spatial processing approach. DLPs can be 
implemented with either ASICs or FPGAs. All of these 
architectures will be discussed individually below.

•	 CPU: CPUs are widely used for ML applications and are 
viewed as largely serial or scalar compute engines (high-
end variants may have up to 10 s of cores). They are 
optimized for single-thread performance, with implic-
itly managed memory hierarchies (with multiple levels 
of caches), and support floating point operations (FP64 
and FP32) as well as 8bit and 16bit integer formats with 
dedicated vector units in most recent variants.

•	 GPU: GPUs are SIMD-based (Single Instruction, Multi-
ple Data) vector processors that support smaller floating 
point formats (FP16) natively, as well as fixed point 8-bit 
and 4-bit integer formats more recently, and have a mix 
of implicitly and explicitly managed memory. NVIDIA 
GPUs are some of the most popular hardware targets for 
machine learning—others include AMD and Intel GPUs.

•	 FPGA/ASIC: FPGA and ASIC customize hardware archi-
tectures to the specifics of a given application. Figure 3 
shows two such architectures (spatial dataflow or matrix 
of processing elements). They can be adapted in all 
aspects to suit a use-case’s specific requirements includ-
ing IO capability, functionality, or even to suit specific 
performance or efficiency targets. FPGAs can be repro-
grammed, whereas ASICs are fully hardened. Examples 
cover a wide range of architectures, e.g. Google TPU, 
Intel Habana Goya, Cerebras WSE, Graphcore IPU, IBM 
True North, Mythic Analog Matrix Processor, etc.

•	 Beyond CMOS: These also include a wide-range of 
exploratory technologies for efficient Vector-by-Matrix 
Multiplications including photonics, floating gates, 
emerging memory technologies, hyperdimensional com-
puting, and more as well as dedicated technologies for 
spiking or neuromorphic neurons with metal oxide or 
diffusive memristors.

AI Ecosystem and Integration

AI Benchmarking

There are several existing AI benchmarks. One well-estab-
lished set is the community-driven MLPerf benchmarks from 
MLCommons [17]. These benchmarks are run under prede-
fined conditions and evaluate the performance of training 
and inference for hardware, software, and services. MLPerf 

regularly conducts new tests and adds new workloads to 
adapt to the latest industry trends and state of the art in AI 
across various domains including high performance comput-
ing (HPC) [18], datacenter [19], edge [20], mobile [21], and 
tiny [22]. Additionally, BenchCouncil AIBench is a compre-
hensive AI benchmark suite including AI Scenario, Training, 
Inference, Micro, and Synthetic Benchmarks across data-
center, HPC, IoT and edge [23]. Other benchmarks have 
also been developed by academia and industry, including 
AI Benchmark  [24], EEMBC MLMark [25], AIMatrix [26], 
AIXPRT [27], DeepBench [28], TBD [29], Fathom [30], 
RLBench [31], and DAWNBench [32].

However, scientific applications (i.e., cosmology, parti-
cle physics, biology, clean energy, etc.) are innately distinct 
from traditional industrial applications with respect to the 
type and volume of data and the resulting model complex-
ity [18]. The MLCommons Science Working Group [33] has 
a suite of benchmarks that focus on such scientific workloads 
including application examples across several domains such 
as climate, materials, medicine, and earthquakes. SciML-
Bench [34] from the Rutherford Appleton Laboratory is 
another benchmark suite specifically focused on scien-
tific machine learning. The suite currently contains three 
benchmarks that represent problems taken from the mate-
rial and environmental sciences. MLPerf HPC and AIBench 
HPCAI500 are two more benchmarks that include scientific 
workloads. In general, HPC is being leveraged by the sci-
entific community for accelerating scientific insights and 
discovery. MLPerf HPC aims to systematically understand 
how scientific applications perform on diverse supercomput-
ers, focusing on the time to train for representative scientific 
machine learning applications with massive datasets (cur-
rently cosmology, extreme weather analytics, and molecular 
dynamics). Similarly, AIBench HPCAI500 also includes a 
benchmark on extreme weather analytics.

Within HEP, there have been some initial efforts to define 
AI benchmarks such as the top-tagging [35] and Kaggle 
tracking ML challenge [36], the latter being one of the few 
that emphasizes balancing the accuracy of the solution 
with the speed of inference. We can leverage experiences 
with these organizations to build out more HEP-specific AI 
benchmarks that define metrics for both physics performance 
and computing efficiency. As discussed above, this will be 
an evolving and dynamic program that should be sustained 
with the evolution of hardware.

Software Abstraction and Integration

Because flexibility is required in evaluating constantly evolv-
ing AI hardware for a wide array of evolving HEP tasks, 
there are a number of paths to deploying coprocessor hard-
ware for HEP use-cases. This is illustrated in Fig. 4 where 



Computing and Software for Big Science             (2023) 7:5 	

1 3

Page 9 of 26      5 

either domain or machine learning algorithms can run on 
any number of technologies (GPU, FPGA, ASIC, etc.). We 
classify how the coprocessor hardware is connected to the 
CPU host system as either “direct connect” or “as a service 
(aaS)” The former can be more optimal for performance, 
typically running bare-metal applications, while the latter 
is abstracted and can be more versatile in the deployment—
often times not co-located with the CPU host processor.

We present a number of considerations when design-
ing a system to deploy coprocessor AI hardware and note 
that investment is required to develop technologies that can 
accommodate a variety of hardware.

•	 Flexibility: Allowing multiple clients to connect to mul-
tiple coprocessors enables many arrangements to ensure 
optimal usage of all devices.

•	 Cost-effectiveness: Related to flexibility, making optimal 
use of coprocessors can reduce the number that must be 
purchased to support algorithm inference.

•	 Symbiosis: Where possible, facilitate the use of existing 
industry tools and developments, rather than requiring 
HEP software developers to reimplement common tasks 
such as ML algorithm inference repeatedly for different 
ML frameworks and coprocessors.

•	 Simplicity: Modules only implement conversions of input 
and output data, which reduces the amount of code nec-
essary to develop and maintain in order to perform ML 
algorithm inference.

•	 Containerization: Model abstraction and containerization 
keeps the ML frameworks separate from the experiment 
software framework, eliminating the significant workload 
needed to integrate two software systems that each have 
their own complicated dependencies.

•	 Portability: Related to containerization, enable experi-
ment software workflows to swap between CPUs, 
GPUs, FPGAs, and other coprocessors without any code 
changes including the choosing the ML framework with 
no other modifications.

Trade-offs for these considerations should be compared 
when considering direct connect versus aaS paradigms. 
As an example of ongoing R&D, “Services for Optimized 
Network Inference on Coprocessors” (SONIC) is a soft-
ware design pattern to integrate a client–server approach for 
inference as a service into experiment software frameworks 
(which are usually based on C++). It offers useful abstrac-
tions to minimize dependence on specific features of the cli-
ent interface provided by a given server technology. SONIC 
has been implemented in the CMS software [37–39] and in 
LArSoft for protoDUNE [40] and is being explored by other 
experiments including ATLAS. Existing implementations 
of SONIC [38, 40] focus on the open-source Triton infer-
ence server from NVIDIA [41]. This enables the automatic 
portability that is a key advantage of the SONIC approach. 
In the future, other client–server technologies such as the 
interprocess communication (IPC) provided by Apache 
Arrow [42] could be considered.

Storage

With ever increasing data rates of future HEP experiments 
such as at the HL-LHC, Input/Output and storage of both 
RAW and derived data will become more challenging and 
costly. And as processing of HEP data moves to new archi-
tectures, I/O and storage infrastructure needs to adapt to 
these changes (Fig. 5).

Storage Media

Storage technologies in use by HEP can be considered in 
one of three categories: magnetic tape, rotating magnetic 
hard drives, and solid-state storage. While the cost and per-
formance of each technology continue to evolve, the relative 
hierarchy in terms of cost per byte and latency continue to be 
the same with tape on the bottom and solid state on the top 
in terms of cost and the same hierarchy inverted in terms of 
latency. Other technologies are not foreseen to be a factor for 
HEP in the coming decade with optical storage not practical 
at the necessary scales and technologies like holographic 
memory and DNA storage being anticipated much further in 
the future. In the timescale covered by this Snowmass report, 
the needs and purchasing influence of hyperscaler providers 
will primarily govern the storage landscape.

Tape

Magnetic tape continues to be the backbone of archival data 
storage in HEP with sites such as CERN, BNL, and Fermilab 
managing several hundred petabytes of active tape storage 
each. The areal density of data on tape is far from reaching 
physics-determined limits. The future of tape is thus much 

Fig. 4   Paths for deploying AI coprocessors for HEP algorithms
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more driven by market forces than by more fundamental 
limits. Large-scale tape storage deployments are challenging 
to plan and operate with three basic components: the stor-
age media in the form of tape cartridges, tape drives, and 
robotic tape libraries. Additionally, dedicated networking 
and compute servers may be needed. Thus, HEP tape stor-
age tends to be centralized at a few sites per participating 
country; a trend that is unlikely to reverse in the future. Tape 
cartridge capacity, which currently peaks at approximately 
20 TB, is expected to increase much faster than tape drive 
bandwidth, which is currently at approximately 400 MB/s. 
Thus, aggregate bandwidth is likely to be a bigger factor in 
estimating tape costs at HEP sites in the future than overall 
storage capacity.

Rotating Disk

Despite its rapid disappearance in the consumer segment, 
rotating hard disk drives (HDDs) continue to provide the 
bulk of active storage in enterprise data centers. HDDs also 
provide nearly all of the storage in small to medium HEP 
computing sites as well as the nearline storage and cache 
for tape-enabled archival storage sites. Unlike tape storage, 
HDD areal density has largely stagnated in recent years with 
manufacturers turning to adding platters to increase drive 
capacity. Perpendicular Magnetic Recording (PMR), which 
is used in most HDDs, is unlikely to increase drive capac-
ity beyond 20TB. Manufacturers are turning to technologies 
such as Heat-Assisted Magnetic Recording (HAMR), Micro-
wave-Assisted Magnetic Recording (MAMR), and Shingled 
Magnetic Recording (SMR) to go beyond the limitations of 
PMR. Hard drives with all of these technologies have been 
brought to market as of 2022. The cost per byte of HDDs, 

while lagging behind that of tape, continues to be less than 
that of solid-state storage, despite the cost of the latter drop-
ping substantially over the past decade.

Solid‑State Storage

Solid-state storage now dominates the consumer market for 
storage both with portable and desktop computers as well 
as exclusively for mobile devices. Despite the vast increase 
in production of solid-state storage driven by this demand, 
a significant price gap between it and HDDs persists with 
an approximately order of magnitude gap in terms of price 
per byte. Thus, much of the enterprise storage market con-
tinues to be driven by HDDs, including at the large hyper-
scalars. Solid-state storage usage continues to be small in 
HEP outside of system/local disks and specialized caches. 
While solid-state storage allows greater aggregate through-
put as compared to HDDs, its most significant performance 
advantage is in IOPS. As HEP potentially moves away from 
monolithic architectures for computing, the use of high-
speed solid-state storage will considerably benefit platforms 
devised for end-user analysis which are often more limited 
by IOPS.

Storage and I/O Software

ROOT

ROOT has been the primary format for storage of experi-
mental HEP data since well over two decades and today 
experiments store over 1 Exa Byte of data within ROOT’s 
TTree storage type. Over the next five years, ROOT will 
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undergo a major I/O upgrade of the event data file format 
and access API and provide a new storage type: RNTu-
ple  [45], which is expected to eventually replace TTree. 
The reasons for this transition are substantial performance 
increase expectations: 10–20% smaller files, 3–5 times bet-
ter single-core performance, because RNTuple is developed 
with efficient support of modern hardware (GPU, HPC, 
Object Stores, etc.) in mind (built for multi-threading and 
asynchronous I/O). In addition, RNTuple promises: native 
support for HPC and cloud object stores, systematic use of 
check-summing and exceptions to prevent silent I/O errors 
and inclusion of lossy compression algorithms.

Data Storage for HEP Experiments in the Era 
of High‑Performance Computing

Processing for future HEP experiments, such as HL-LHC, 
faces large challenges due to processing cycles, and porting 
workflows to HPC systems is being considered as mitiga-
tion  [46]. In addition to data offloading to compute accel-
erators such as GPUs, this approach requires scalable and 
efficient data storage and input/output. HPC systems often 
feature custom storage infrastructure, often with multiple 
layer hierarchy (such as parallel file system and burst buffer) 
that may be used more efficiently using more HPC native 
storage software such as HDF5.

The last few decades have been dominated by the grid 
computing ecosystem where ROOT has been used by most 
of the HEP experiments to store data. Initial explorations 

with HDF5 have begun using the ATLAS, CMS and DUNE 
data.

An I/O test framework has been under development by 
the HEP Center for Computational Excellence (HEP-CCE) 
that supports the study of scaling of the I/O performance 
with different data-formats on different systems by looking 
at memory usage, file size, compression and storage soft-
ware like ROOT and HDF5.

Studies done by the HEP-CCE project have relied on 
ROOT serialization for typically complex HEP event data 
models to be stored as binary objects in HDF5, as HDF5 
does not provide the same near-automatic C++ type sup-
port. Storing binary objects requires having their original 
type, size and location/offset as well. Different data mapping 
methods have been investigated, such as storing individual 
data objects in separate HDF5 Datasets or accumulating the 
complete event content into a single HDF5 Dataset. HEP-
CCE also has developed a prototype exercising HDF5’s 
collective output capability, writing to the same file from 
multiple processes (Fig. 6).

Simpler event data models, such as raw, generator or 
analysis level data can be stored in HDF5 directly without 
relying on ROOT serialization and ongoing studies are being 
undertaken by the DUNE and the HEP-CCE group.

Lossy Compression of Derived Data

HEP experiments routinely are using loss-less compression 
for their data to reduce storage requirements. For small parts 

Data Product (X)
Event 1
Event 2

ROOT to serialize

Data Product (Y)
Event 1
Event 2

ROOT to serialize

HDF5 DataSet X

HDF5 DataSet Y

navigational metadata dataset Single navigational metadata dataset
X Y Event, X, Y

Single HDF5 DataSet

Fig. 6   Two different ways of mapping HEP data to HDF5. Leftmost 
two boxes represent the X and Y data products of the events. The 
center column shows the one-to-one mapping where data products 
are stored in individual HDF5 datasets after ROOT serialization. The 

rightmost column shows the mapping where all attributes of an event 
are accumulated after serialization and stored in a single HDF5 data-
set
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of their data models, some experiments also deploy modules 
that reduce the precision of data in a very controlled manner. 
Some experiments have also incorporated lossy compression 
in specific cases (e.g., IceCube) with success, but currently 
major experiments do not use more generic methods of lossy 
compression, despite the fact that the storage precision of 
derived data can exceed the quality of the measurement by 
many orders of magnitude. Given fixed storage budgets for 
future experiments, storing data loss-less with too high pre-
cision will mean that not as many records can be stored as 
for a scenario where lossy compression would limit insig-
nificant bits, so, e.g., trigger rates have to be controlled more 
strictly.

RAW data are often considered the most valuable out-
come of an experiment, at the same time derived data can 
take up the majority of disk volume. Finding generic meth-
ods to limit storage precision of variables can reduce stor-
age required for derived data, without degrading its physics 
potential or changing the original RAW data.

Custom Content Delivery and Streaming

Most disk storage is occupied by derived data and detector 
RAW data requires only limited disk resources. The stor-
age requirements for derived data of multi-purpose collider 
experiments such as ATLAS and CMS are increased due to 
multiple physics groups needing different, but overlapping, 
subsets of the data (different event selection and/or differ-
ent event content). Both experiments have standard formats, 
called DAOD-PHYS & PHYSLITE for ATLAS and nano- & 
mini-AOD for CMS, that are intended to satisfy the needs for 
most analysis and are produced for all events. However, if a 
physics analysis needs additional information, even for just 
a sub-sample of the events, alternatives such as adding the 
content (for all events) to the main data format or producing 
a separate custom stream are expensive for disk storage. And 
for the analysis to process on larger/upstream data format 
can be very slow and burdensome.

A more efficient scenario could include the capability to 
read additional data on-demand from locations other than 
the current input file. For example, while processing events 
in the nano-AOD, a physics analysis workflow may request 
additional data objects for a sub-sample of events that was 
stored only in the mini-AOD or was written into a separate 
location that is accessed only when needed. Such a scenario 
will need to be supported by a functional persistent naviga-
tional infrastructure (as in Ref. [47]) and robust data stream-
ing capabilities.

Storage System Evolution

The POSIX IO file system interface was created in 1988 and 
patterned after the UNIX design principle of “Everything 

is a File”. This design principle made POSIX IO system 
calls like read() or write() largely independent of the 
evolution of devices and reduced the need to change APIs 
whenever new resources became available. However, with 
the advent of hyperscaler providers and open source ecosys-
tems including efficient data formats, in-memory representa-
tions, and scalable storage systems, new storage interfaces 
have emerged. These include Amazon Web Service’s S3, 
object storage, key/value storage, and, more recently, dataset 
interfaces.

Hyperscaler providers have enough data to design and 
sufficient clout to order custom storage device hardware 
from the component industry at very large quantities. How-
ever, they need to balance the efficiency and competitive 
advantage of proprietary designs with the efficiency of 
open source communities in terms of software development 
speed and talent development. Through institutions like the 
Apache Foundation and the Linux Foundations and its many 
sub foundations, including the TODO Group as the umbrella 
organization for Open Source Program Offices of nearly a 
hundred corporations, hyperscalers and their suppliers stra-
tegically support open source projects that their businesses 
depend on. The general availability of the software of these 
open source projects creates in turn new markets for the 
component makers that they look to develop without vio-
lating their NDAs with hyperscalers. Thus, the HEP com-
munity will benefit from aligning their data services stack 
with open source ecosystems, not only because those com-
munities are large, well-funded, and move quickly, but their 
designs are indirectly informed by large industry investments 
in hardware designs that have already proven successful in 
their proprietary space. One example with potential impact 
to the HEP computational frontier is computational storage.1

Computational Storage

The key advantage of the cloud is its elasticity. This is imple-
mented by systems that can expand and shrink resources 
quickly and by disaggregation services, including compute 
and storage. Disaggregation allows compute and storage 
to scale independently, but it places greater demand on 
expensive top-of-rack networking resources as compute 
and storage nodes inevitably end up in different racks and 
even rows as data centers are growing. More network traffic 
also requires more CPU cycles to be dedicated to sending 
and receiving data. Network traffic and CPU cycles are key 
power consumers and can increase latency in case of con-
tention. Therefore, disaggregation, somewhat paradoxically, 

1  While “computational storage” most often refers to computational 
storage devices we use here the more general notion that includes 
computational storage services.
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amplifies the benefit of moving some compute back into 
storage because data-reducing filtering and compression 
operations can reduce data movement significantly.

There is however a catch: in order to move function 
to data, the local data need to provide the context for the 
function to succeed: e.g., a projection of a table requires 
all the metadata and data of that table to be locally avail-
able. Many scalable storage systems stripe data across many 
storage servers or devices to maximize parallel access and 
workload balance. This striping is based on fixed byte off-
sets optimized for low-level memory allocation and device 
controllers instead of semantic completeness of a higher-
level data structure such as a table. Thus, striping will have 
to be semantically aligned instead of byte-aligned. Another 
name for this is record-based storage. Common examples 
of record-based storage are key/value and object storage (as 
long as values and objects are not themselves striped) as well 
as the much older Virtual Storage Access Method (VSAM) 
commonly used in IBM mainframe applications that pairs 
files with inverted indices.

Once semantic partitioning of the data is established, 
computational storage needs to be able to execute functions 
on that data. This raises the question of how these functions 
are implemented and how they are executed. For computa-
tional storage to be sustainable, data access libraries will 
have to be able to evolve independently from computational 
storage, i.e., computational storage will have to support the 
embedding of access libraries with minimal change. As an 
example, the IRIS-HEP Skyhook Data Management pro-
ject recently merged a Ceph plug-in with the Apache Arrow 
project [48]. The execution of access functions, especially 
when performed in devices, will need to be sandboxed in 
some way. Popular technologies are eBPF (ebpf.io) and 
WebAssembly.

Convergence of Data Warehouses and Data Lakes

Data-intensive industries are looking for technologies that 
reduce the time-to-insight between arrival of the latest sen-
sor data to having the data available to advanced analysis 
processing. In the past data were collected in file-based data 
lakes and then some of that data were ingested in data ware-
houses to be queried using SQL and traditional database 
management technologies. In recent years a number of open 
source projects have emerged that leverage efficient file for-
mats for columnar data such as Parquet format to replace 
the database management system of a warehouse with dis-
tributed processing engines such as Spark and a file-based 
transaction log and scalable metadata handling [49]. Open 
source projects implementing this approach are Apache 
Iceberg, DataBrick’s Delta Lake, and Apache Hudi. In par-
ticular, Apache Iceberg uses a “specification-first” approach 

where the file format of transaction logs and metadata are 
published first and then a set of libraries that comply to 
these formats are implemented. The query performance 
is competitive to data warehousing but without the cost of 
data ingest and limits of scalability. The value proposition 
of these technologies for HEP is data management of large 
HEP datasets with the support of version control and views, 
similar to what git provides for software repositories with 
associated savings in storage space and robust and automatic 
metadata management.

There is also new movement on data query languages that 
are more suited to data exploration of hierarchical data than 
SQL [50], e.g., Malloy [51] (see also [52]) which improves 
composability of joins and aggregations. The combination 
of these trends could provide significant opportunities on 
how the HEP community manages data in the future, with 
significant savings in storage space (due to views and data-
set versioning using abstractions similar to git) and network 
bandwidth due to higher utility of cached data and the abil-
ity to push down operators into network and storage layers.

The key technologies to watch out for in the next 5–10 
years are:

•	 Access libraries that map a dataset to multiple kinds of 
data sources, including multiple instances of itself. This 
will allow access library instances on clients to push 
down operations to access library instances embedded 
in the storage layer. For HEP a particularly interesting 
example of this because of its 1:1 mapping to Awkward 
Array, is the Apache Arrow Dataset Interface. These data 
source abstractions are akin to “foreign data sources” that 
have been popular in relational database access libraries 
for some time.

•	 Cross-language specification for data compute operations 
(e.g., substrait.io) which will enable fusing cached query 
results from multiple data sources into results of new 
queries.

•	 Sandboxing technologies eBPF and WebAssembly with 
extensions that go beyond what is allowed in the Linux 
kernel, including floating point calculations, and that can 
run access libraries efficiently

•	 Distributed resource management for computational stor-
age that dynamically places data management functions 
balancing locality with occupancy while reducing overall 
data movement and providing latency guarantees.

•	 Storage devices with computational power and I/O accel-
erators (for compression and serialization) similar to a 
smartphone.

•	 Lake housing technologies such as Apache Iceberg. They 
are currently Java-based but there are efforts under way 
to port these systems accessible in the Python/C++ eco-
system.
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•	 New query languages that ease data exploration of hier-
archical data while leveraging SQL query optmizers and 
provide better composability in query evaluation with 
cached data.

Analysis Facilities

Definition of Future Analysis Facility

We define a future analysis facility (AF) as:

The infrastructure and services that provide integrated 
data, software and computational resources to execute 
one or more elements of an analysis workflow. These 
resources are shared among members of a virtual 
organization and supported by that organization.

This definition is intentionally more broad than the tradi-
tional thinking in HEP of end-user analysis facilities as pri-
marily large compute and data centers. These large analysis 
facilities are important components to support HEP science 
since they accommodate a large number of use cases and 
benefit greatly in terms of system management from econ-
omy of scale. They also often provide a platform for login 
access to interactive computing and access to a batch system. 
Future analysis facilities should also integrate systems and 
services that are tailored and optimized for specific elements 
of an analysis workflow. Examples include facilities that 
provide services for parameter fitting and statistical infer-
ence, a system optimized for the training of machine learn-
ing models and a Jupyter notebook hosting service. These 
future systems might support multiple analysis services, or 
may be single purpose given specific aspects of the hardware 
platform. Modern analysis tools make a distinct break from 
the past in that they are often massively parallel and make 
use of distributed services to operate efficiently and quickly.

Two other important aspects of the future analysis facili-
ties definition are related to sharing and support. For exam-
ple, while an individual’s laptop or desktop might be a cru-
cial part of their analysis infrastructure (e.g., for terminal 
access to facilities or generating plots), it is not a resource 
shared broadly with a virtual organization nor is it supported 
by that organization. What elevates a resource to the level 
of an analysis facility is official support as a shared resource 
within an organization of people with shared interests (e.g., 
a scientific collaboration). The sharing and support go 
hand-in-hand, thus making sure a facility is leveraged by 
the whole community.

Challenges Exemplified by the Energy Frontier

To illustrate some of the specific challenges in designing 
future Analysis Facilities, we discuss ongoing work towards 
these facilities for the Energy Frontier. We understand these 
challenges to be exemplary for other areas in HEP as well.

Motivated by the need to probe increasingly rare physics 
processes, HL-LHC will deliver luminosity to the experi-
ments at roughly an order of magnitude higher rate than 
previously. For this reason, new techniques and services are 
expected to be used by HL-LHC analysis teams. An Analy-
sis Facility will provide these at scale. To prepare for this 
new era, prototype facilities must be built, rapidly iterated 
on, and tested. Testing will need to involve all aspects of a 
facility from throughput, to ease of use, time-to-insight, and 
support load.

As part of the integration strategy of software compo-
nents for analyzing the data as well as the deployment of 
the analysis software at analysis facilities, IRIS-HEP is 
organizing an “Analysis Grand Challenge” [53], with a goal 
to demonstrate and test new technologies envisioned for 
HL-LHC, including new user interfaces, innovative data 
access services that provide quick access to the experiment’s 
data sets, new systems and frameworks such as the Coffea 
analysis framework [54] allowing analysts to process entire 
datasets with integrated statistical model building and fit-
ting tools. Analysis workflows selected for Analysis Grand 
Challenge include packages and services that also support 
the reinterpretation and analysis preservation steps allow-
ing to provide long-term re-usability of the entire analysis 
workflow in the future.

The Analysis Grand Challenge workflow defines an 
analysis benchmark that could be easily re-implemented and 
executed on any generic Analysis Facility and is designed to 
help showcase to physicists how to use an existing analysis 
facility at scale for their analysis.

As evidenced by the response to various workshops, 
Analysis Facilities topics have been popular across the US 
LHC community. A number of new approaches and tech-
nologies and resource opportunities are now available for 
analysis facilities. In several submitted Snowmass white-
papers [55–57], a set of recommendations and suggestions 
were developed for analysis facilities with proposed features 
that could be interesting for both new users and resource 
providers from an AF development’s point of view.

From the resource provision point of view, large HPC 
centers already are offering opportunities to do large-scale 
processing. To date, the community has done well adapting 
these resources for production workloads (e.g., simulation 
and reconstruction). But they have not been well used for 
individual user analysis.

There are now modern analysis tools that are 
being adapted to run on HPC systems (large-scale 
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machine-learning, fitting as a service [58], dataset skim-
ming) that could be available for analysts. This step will 
require integration with a portal that allows broad access 
to the community. In other disciplines this is referred to 
as “Science Gateways”. Such gateways that support tens 
to hundreds of thousands of researchers exist today for 
Neuroscience, Genomics, Nanoengineering, and many 
other disciplines. There are thus many existence proofs 
at scales far exceeding even the largest HEP experiments. 
These Science Gateways may also be useful as templates 
for making public HEP data more easily accessible to the 
wider scientific community beyond the collaborations that 
produce the data.

Another important requirement is that facilities must 
integrate with the existing distributed computing infra-
structure, meaning that future analysis facilities will be 
successful only if they leverage the larger operations and 
national-scale resource investments that currently exist 
or are planned. Introducing the new services in analysis 
facilities ecosystem should be balanced by the important 
requirement to tightly integrate existing services such as 
batch systems.

From an infrastructure point of view, the LHC commu-
nity provides various facilities that serve the independent 
needs of each experiment. We believe that we need to focus 
on providing common approaches such as deployment via 
Kubernetes [59] to help exchange ideas at the infrastructure 
level. Such common approaches have the added value that 
they are widely used across commercial clouds and aca-
demia. It is maybe worth noting that there are roughly 4,000 
institutions in the USA engaged in open research, and only 
three DOE leadership class computing centers. Choosing a 
common approach as basis for analysis facilities may allow 
integration of a much larger set of resources across the wider 
community, reducing cost while increasing access for the 
community at the same time.

Another crucial R&D topic for new facilities is to inves-
tigate the use of “federated identity” and authorization [60, 
61]. The challenges in this area are as much “social policy” 
as “technical implementation”. Crudely speaking, the larger 
the computing and data facility the more restrictive the secu-
rity controls and policies tend to be, with the interesting 
exception of commercial clouds. The latter provide access 
to vast resources with the main security concern being that 
the customer proves they are capable of paying their bill. 
We propose to investigate the federated identity providers 
(e.g., new WLCG identity providers) for both web-based 
and SSH-based access to facilities to facilitate both science 
gateway and traditional user login via unix account access.

Current analysis facilities are mostly providing the login 
account and access to disk storage hosting experiment data 
sets in addition to access to computing resources through 
a batch system. Jupyterhub [62] integration with various 

batch systems should be investigated to improve the user 
experience.

Another key feature for analysis facilities is the provision-
ing of authoring and sharing environments, allowing users 
to easily share their software environments within their own 
groups and with other groups. The use of containers also 
greatly improves portability of software and repeatability 
of environments.

Another possible R&D area is the integration of data 
access services to reduce local storage needs at analysis 
facilities. This could be achieved by filtering and projecting 
input data and caching results, which will remove the need 
for manual bookkeeping for analysts. Investigating object-
storage for analysis facilities, which is widely used in indus-
try, should become another priority in the HEP community.

Considering the fact that analysis facilities are specific 
to a given experiment or community and the software tools 
are often the same, user support personnel often spend most 
of their time answering generic support requests. Using an 
alternate model where experiments could share personnel at 
shared facilities would allow for lower overall costs, which 
would be a more sustainable approach.

All the requirements mentioned above for analysis facili-
ties apply equally to the Energy, Neutrino, and other experi-
mental Frontiers. In this spirit, it will be important for HEP 
members across all subfields to communicate their devel-
opments on analysis facilities. As a current example, the 
HEP Software Foundation Analysis Facilities Forum [63] 
provides a community platform for those interested in con-
tributing to the development of analysis facilities for use 
by HEP experiments, serving as a space to develop and 
exchange ideas.

Analysis Frameworks and Integration in Analysis 
Facilities

The submitted whitepaper [57], strongly emphasized an idea 
that integration of both hardware and software will be a pri-
ority, using the term “analysis cyberinfrastructure” rather 
than the more common “analysis facility”.

In this section, we expand on this notion of “analysis 
cyberinfrastructure” and how it integrates “analysis frame-
works” and other components as the layers of software stack 
in an Analysis Facility.

First, starting from top to bottom, is the Analysis Soft-
ware layer, which includes the software the analysts write 
themselves along with any direct dependencies. It may take 
the form of one or more user created libraries and one or 
more applications built on top of those libraries. In addi-
tion, libraries from the broader scientific python ecosys-
tem outside of HEP may be used as integral parts of these 
applications.
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Defining the analysis framework software stack layer, this 
layer sits directly underneath the analysis software layer to 
facilitate the interaction between the analysis software and 
the common reduced data format as well as providing some 
connection to scale-out mechanisms.

The user interface layer is responsible for providing users 
with the ability to interact with the computational resources.

The batch infrastructure layer connects the distributed 
application and framework to the computational resources 
to perform the analysis. While the storage infrastructure 
layer consists of a stack with potentially several layers, 
including the possibility to transform data from one format 
to another and potentially also caching the results of that 
transformation.

From the cyberinfrastructure perspective, a focus on inte-
gration across the layers can provide important advantages 
when trying to diagnose potential bottlenecks. Another open 
question to consider when exploring approaches to scaling 
up analysis cyberinfrastructure to support multiple groups is 
whether it makes sense to focus on the approach of scaling 
up through a specially designed physical facility to support 
multiple analysis groups, to approach analysis cyberinfra-
structure as an add-on feature to existing computational 
facilities (such as LHC Tier-2 sites), or to design analysis 
cyberinfrastructure to be deployed in a cloud-like approach 
across a variety of different physical resources from experi-
ment owned sites like LHC Tier-1, 2, and even 3 facilities, 
to resources that are used on a more temporary basis, such as 
HPC facilities or even commercial cloud resources.

Reproducible Computing Environments 
and Infrastructure as Code for Analysis Facilities

The analysis facilities discussed in Ref. [56] were designed 
from the start to use a container-based infrastructure. Con-
tainers provide flexibility, portability and isolation with-
out the additional overhead of virtual machines. Sites that 
deploy this infrastructure widely make it easier to add 
elasticity to the analysis facility; servers for a different pur-
pose (e.g., batch worker nodes) can be re-provisioned on 
the fly for scheduling analysis tasks. The orchestration tool 
of choice for containers is Kubernetes [59]. It provides a 
unified declarative description and configuration language, 
configuration management, service discovery, service load 
balancing, automated roll-outs and rollbacks, and other fea-
tures key to providing stable services.

Kubernetes was originally designed for cloud comput-
ing, which adopts a single-tenant model: one user creates 
and owns an entire cluster. Since its original public release, 
it has been extended with much more complex base-access 

controls, policy primitives, and a configurable programma-
ble filter module in front of the API. For this reason pure 
Kubernetes is a good fit for facilities such as Coffea-casa 
[64] at University Nebraska-Lincoln which are designed to 
serve a single experiment. For multi-tenant facilities there 
exists Red Hat’s open-source OKD platform [65], which 
is a super-set of Kubernetes. OKD incorporates additional 
security and isolation, adds operations-centric tools, a user 
friendly GUI, and additional storage and network orchestra-
tion components, making OKD a good choice for the Elas-
tic Analysis Facility at Fermilab or any other DOE funded 
analysis facility.

Analysis facilities, such as Coffea-casa [64] and Elastic 
Analysis Facility in Fermilab build and use custom contain-
ers to facilitate the integration of such a complex applica-
tion. Although the team builds and maintains these images, 
the versatility of Kubernetes [59] allows for the drop-in 
replacement of other custom Jupyter notebook containers, 
and the Jupyterhub [62] instance can be configured to allow 
user selection of supported images.

Another more sustainable option to provide more flex-
ible reproducible solution is a Binderhub [66], which is a 
Kubernetes-based cloud service that can launch a repository 
of code (from GitHub, GitLab, and others) in a browser 
window such that the code can be executed and interacted 
with in the form of a Jupyter notebook. Binder, the prod-
uct behind mybinder.org as a user interface, is also useful 
for reproducibility because the code needs to be version 
controlled and the computational environment needs to be 
documented in order to benefit from the functionality of 
Binder.

From an infrastructure point of view, using Infrastruc-
ture as Code (IaC) [67] offers advantages for auditing 
and reproducibility. GitOps [68] is defined as a model 
for operating Kubernetes clusters or cloud-native appli-
cations using the version control system Git as the single 
source of truth. One of the features GitOps envisions is 
declarative descriptions of an environment to be stored 
as infrastructure-as-code in a Git repository. Continu-
ous integration, delivery, and deployment are software 
development industry practices that enable organizations 
to frequently and reliably release new features and prod-
ucts. They allow for rapid collaboration, better quality 
control, and automation as code goes through formal 
review processes and is audited and tested on a regular 
basis.

Analysis Facility Summary: Future Work

We have described a set of requirements we believe that 
could be considered for upcoming years for the Analysis 
Facilities architects and developers.
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We suggest to work on prototyping of Analysis Facilities 
together with analysis software developers, resource provid-
ers and analysis facility architects using modern techniques, 
such as exploring concepts of “Infrastructure as Code”, the 
integration of “federated identities”, to facilitate the preser-
vation of user environments and many others.

We also recommend that Analysis facilities be made 
interoperable, allowing users to navigate seamlessly from 
one Analysis Facility to another, and easily extensible, to 
accommodate future needs without disruptions.

Edge Services

Definition

We adopted the following definition for edge services:

Edge Services operate at the interface between a data 
center and the wide area network, separated from the 
data center’s core services. This includes middleware 
that facilitates user access between the data center and 
external systems (e.g., storage, databases, workflow 
managers). These services may be managed externally 
in partnership with the data center and federated across 
multiple data centers.

Here, “wide area network” can mean the Internet as a whole, 
but could also include specialized network connections for 
specific services. Edge Services may also serve applications 
on the “interior” of a data center, such as a bespoke work-
flow manager or database. We also note that these services 
could be user-supplied, and run on infrastructure that is itself 
considered an Edge Service. Finally, we note that defini-
tions are evolving rapidly and may diverge between different 
disciplines. For example, approximately five years ago, the 
term would have primarily referred to data caching services 
related to data delivery. Outside the HPC community, “Edge 
Services” may sometimes be associated with the “Internet of 
Things (IoT)”. Therefore, while useful, our definition should 
not be regarded as exclusive or permanent.

The current and proposed activity in “Analysis Facilities”, 
as covered in the “Analysis Facilities” section, makes heavy 
use of these edge services and so some of the research activ-
ity covered here overlaps with that proposed in that section 
though it has broader applicability.

Recurring Themes

There are many examples of existing Edge Services, but to 
focus on the future, we need to look at the common features 
of these services.

Many modern services are based fundamentally around 
the idea of containers: images that contain all the software 
and library dependencies that are needed to execute a par-
ticular application. These containers can be assembled in 
various ways to form a full application stack. Most com-
monly Kubernetes [59] is now used to deploy these applica-
tions, though there are alternatives.

These applications are typically configured using a 
declarative language that can be stored in a version-con-
trolled repository, such as GitHub, and then deployed using 
automated tools. In the wider technology industry, this is 
called “DevOps”. Other terms that capture the same idea are 
“System as software” or “Infrastructure-as-a-Service” (see 
also the “Analysis Facilities” section).

Since these services are easily deployable by design, we 
have seen that “federated” services are becoming increas-
ingly common. The same application may be active on many 
different data centers, and there is a closely related concept 
of “federated identity”, where authentication provided by 
one laboratory or data center can be shared among many 
data centers.

Concerns

The common themes described above address many of the 
concerns that have been raised by the community around 
this topic. For example, systems originally developed in the 
c.2000–2010 era were highly specialized and are no longer 
affordably maintainable. By leveraging open-source and 
open-infrastructure capabilities instead, future teams can 
easily pick up and deploy edge service tools.

As mentioned above, many edge services are deployed 
using Kubernetes. While powerful, this application is known 
to be difficult to learn, configure and maintain. Simpler man-
agement tools are needed to assist the process of migrating 
applications to this system.

Security is, of course, a large, if not the largest, concern. 
Indeed, the concept of federated services also demands 
federated security. We have seen an increasing reliance on 
third-party authentication, such as OpenID [69], Google 
Identity [70], or ORCID [71], among many examples. While 
this does reduce workload on individual data centers, who 
do not need to deploy and maintain their own authentication 
mechanisms, there is a risk that these services could become 
unavailable, and centers need to be prepared to at least alert 
end-users when, for example, ORCID is not a valid authen-
tication mechanism because it is temporarily offline.

Future Needs

Looking forward to the next decade, we can already see 
situations where the needs of scientific applications, even 
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for smaller HEP collaborations and projects, are at a scale 
beyond the capacity of individual data centers. This is where 
federated services will be in high demand. In fact, individual 
data centers may have different internal policies and proce-
dures, but federated edge services can “glue” those centers 
together and provide a unified application to enable science.

We also foresee an increasing number of user-supplied 
applications that enable domain-specific or project-specific 
science. For example, the Spin [72] service at NERSC [73] 
allows any NERSC user to create services that access their 
own data. In effect, this edge service enables the creation of 
other edge services. This trend should be encouraged, and 
the developers of the underlying infrastructure should be 
aware of demand for “push-button” services. For example, 
individual users should be able to create a database service 
with minimal effort, given a template provided by a data 
center providing such a service.

Data center and HPC center managers need to be aware of 
this trend. Although many centers are working on provision-
ing edge services, these services still do not necessarily rise 
to the attention of the highest level of planning. We believe 
that immediate and near-future efforts should be directed to 
address this concern.

Finally, we note that the edge services we have examined 
enable science well beyond the field of high-energy physics. 
For example, we have examined edge service applications 
relevant to astrophysics, genomics and microbiology among 
many other fields. As part of the Snowmass process and 
beyond, the high-energy physics community should reach 
out to and share experience with other disciplines.

Networking

Networking, in conjunction with computing and storage, 
are key enablers for all aspects of Particle Physics—experi-
ments, data analysis, and discovery. Particle Physics has a 
strategic commitment to custodial responsibility for experi-
mental and observational data sets. The computing and data 
analysis landscape is in a state of continuous evolution and 
change, with the location and technology of data analysis 
moving as technology evolves. Networking is the data circu-
latory system for scientific collaborations, transporting sci-
ence data (the “crown jewels” of the science community) to 
computing and data analysis, and the results back to the col-
laboration. However, unlike compute and storage resources, 
the perception of networking is that it is ubiquitous, unlim-
ited, and unpredictable. This perception, supported by many 
years of exponential capacity growth, will need to evolve 
during the next decade. We foresee two reasons for this: (1) 
the exponential increases in capacity for fixed cost will begin 
to see hard limits over this period and (2) the globalization 
of many other science domains will significantly increase 

the demands on research and education networks. Therefore, 
we believe that it is critical to take steps now to ensure we 
will have the network capacity and capability required to 
effectively pursue particle physics science goals over the 
next decade and beyond.

Overview and Motivation

Research and Education (R&E) network traffic continues to 
grow at an exponential rate [74], with traffic from Particle 
Physics expected to grow by a factor of 10 between 2022 and 
2029 [75]. Historically, network capacity and technology 
upgrades have kept up with demand, however, we are quickly 
approaching the physical limits (e.g., Shannon’s limit [76, 
77], coherent detection [78]) of the advancements that can 
be made, and simply deploying more physical infrastructure 
(e.g., laying down new fiber) may prove cost prohibitive. In 
addition, the use of the network as an unpredictable “black-
box” resource results in significant inefficiencies in today’s 
complex and widely distributed workflows. To this end, we 
propose the following four areas of research and develop-
ment that would enable more interactive, intelligent, and fair 
use of network resources moving forward.

•	 Network interaction optimization: Capabilities or func-
tions that allow the application to better interact with the 
network, resulting in improved performance or enhanced 
features. Examples of such activities include network 
traffic shaping and packet pacing (e.g., Linux tc [79], 
or the behavior of BBR TCP [80, 81]), transitioning to 
IPv6 [82], and multi-domain source based routing [83, 
84].

•	 Resource orchestration and automation: The ability to 
intelligently coordinate the scheduling and provisioning 
of network resources to facilitate predictable data move-
ment behaviors. Examples of such activities include site 
traffic steering [85], network and DTN resource orches-
tration [86], compute APIs [87], white-box switches and 
SDN routing [88], AI/ML-driven network utilization 
prediction and traffic engineering [89], as well as frame-
works for integrated facilities [90].

•	 Network and traffic visibility: Insight into network health 
and traffic flow patterns to guide data movement deci-
sions, and direct troubleshooting efforts. Examples of 
such activities include packet marking and flow labe-
ling [91], and high-fidelity network telemetry [92, 93],

•	 Data movement optimization: Capabilities or functions 
that can improve the end user experience by reducing 
the time to fetch data. Data Movement Optimization is a 
key component of improving network performance while 
coping with significantly higher future demand within 
the limitations imposed by finite funding resources. 
Examples of such activities include in-network cach-
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ing [94] to reduce the latency of data access and reduce 
long-haul network traffic load, and multi-domain traf-
fic load-balancing [95] to reduce traffic congestion and 
increase throughput and resiliency.

While the proposed areas above are considered discrete, tak-
ing a systems approach is key. Optimization of individual 
components will not result in an integrated workable system, 
as there are too many inter-dependencies, and many of the 
capabilities that the community needs are emergent proper-
ties of synergistic interaction between multiple components 
of a larger system. Having a system with these capabili-
ties will allow Particle Physics to make better networking 
decisions, increase workflow predictability, and potentially 
reduce the overall time to results.

It is imperative to understand that networking is an end-
to-end service which involves multiple domains, and as such, 
requires collaborating networks to provide inter-operable 
and congruent capabilities, as well as usage policies that 
are aligned. Equally important is the notion that security 
must be an integral part of the research, prototyping, and 
production implementation, and not an afterthought.

Lastly, it is well understood that the technology land-
scape changes quickly over time, and well-organized col-
laborations staffed with knowledgeable experts can make 
effective use of current and future technologies, what-
ever they may be. It is critical that Particle Physics make 
long-term investments in collaborations between scien-
tists and technologists so that cutting-edge networking 
technologies can be effectively used by Particle Physics. 
These collaborations must combine research, prototyp-
ing and production implementation, as this is the only 
way that components and technologies can be effectively 
integrated into the scientific enterprise as effective 
capabilities.

Network Interaction Optimization

There are multiple interaction points between a network 
application (e.g., a data transfer service such as FTS) 
and the network itself. Optimizing these capabilities can 
have significant benefits, including increased application 
performance, increased application flexibility, increased 
network efficiency, and deterministic path selection for 
reliability. Optimizations of this kind represent a set of 
incremental improvements, which can result in significant 
improvements when taken together. Several examples of 
current optimization efforts are described here to illus-
trate the breadth of options available, but the key point 
is that as technology evolves it will remain important to 
have experts working on Network Interaction Optimization 
so as to be able to continuously improve the interaction 

between Particle Physics applications and the networks 
that interconnect them. Network traffic shaping can reduce 
the burstiness commonly associated with TCP’s interac-
tion with the wide area network, resulting in less traffic 
variability and fewer instances of packet loss. Traffic pac-
ing is a similar capability, which can be configured in the 
Linux kernel using tc [79] or incorporated into protocols 
as exemplified by TCP BBR [80, 81]. Beyond the behavior 
of individual packets or specific protocols, science net-
works are increasingly able to provide network paths or 
channels with specific capabilities to scientific applica-
tions—including traffic engineering (guaranteed band-
width and explicit path). This can be accomplished using 
services such as OSCARS [96] or by deploying segment 
routing [83, 84] in the network. In addition to optimizing 
protocol and packet interactions, it is important that the 
set of organizations and entities (networks, sites, caches, 
computing systems, storage systems) interact using an 
interoperable and coherent set of mechanisms. Coordina-
tion across many infrastructure-aware tools and systems 
is a capability in itself, which requires research, prototyp-
ing, and transition to production. These interactions are 
complex, and deserve their own research and development 
effort.

Resource Orchestration and Automation

Domain science workflows are currently forced to view 
the network as an opaque infrastructure into which they 
inject data and hope that it emerges at the destination with 
an acceptable Quality of Experience. There is little ability 
for applications to interact with the network to exchange 
information, negotiate performance parameters, discover 
expected performance metrics, or receive status/trouble-
shooting information in real-time. Resource orchestration 
which includes the network along with the compute, storage, 
and instrument systems will be needed as the trend toward 
large team distributed collaborations increases. This orches-
tration of workflow dependent network resources will allow 
deterministic network performance around which science 
workflows can plan and adjust. Software-driven network 
control has matured to the point where it can be applied in 
service of domain science workflow objectives. Leveraging 
AI/ML innovations to predict usage and help drive resource 
allocation decisions will also need these integrated orches-
tration mechanisms to fully realize system optimizations. 
These types of network focused orchestration and automa-
tion technologies are identified as key enabling technologies 
to realize the DOE Integrated Facilities vision as outlined 
in Ref. [90]. Some of the key considerations and technolo-
gies challenges include: (i) API and AuthN standardization 
and/or other mechanisms to simplify access to orchestrated 
services; (ii) ease of workflow use will require sophisticated 
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network side monitoring and troubleshooting functions; (iii) 
AI-based network control systems which are verifiable, mon-
itorable, and controllable.

There are multiple ongoing projects focused on these 
types of network resource automation and integrated 
orchestration technologies. The NOTED [85] project is 
building workflow specific network use optimization tools. 
The SENSE [97] project has developed a multi-resource 
multi-domain orchestration system. The NERSC developed 
Superfacility API [87] enables automated HPC usage. The 
RARE [88] project is focused on programmable network 
dataplanes. Network system focused AI/ML projects include 
the HECATE [89] project which is developing self-driving 
network technologies.

Network and Traffic Visibility

The ability to view the status of compute jobs is fundamental 
to understanding how an analysis process is progressing. 
Unfortunately, this level of transparency is typically una-
vailable for networking resources, and as such, networking 
is typically perceived as a “black-box”. Precision network 
telemetry and high-fidelity traffic flow tracking can provide 
unprecedented insight into network health and traffic move-
ment patterns, and drive informed decision-making.

Precision network telemetry information that is accessi-
ble to applications (in real-time) can be extremely valuable 
in setting expectations, understanding performance issues, 
and guiding intelligent decisions on when data movements 
should be scheduled. Technology solutions such as the P4 
In-band Network Telemetry [92] and the ESnet High-Touch 
platform [93] can provide real-time per packet information 
of how a data flow is performing. Additionally by observing 
the flow at different points in the network, it is possible to 
pin-point the locality of network performance issues.

High-fidelity traffic flow tracking is important for accu-
rate data movement analysis and auditing, and develop-
ing precise usage models. Understanding how related data 
sets transits a network can provide invaluable insight into 
capacity planning and traffic engineering decisions. This 
is especially important where bandwidth is comparatively 
constrained, such as the trans-oceanic links. Activities such 
as the RNTWG [98] packet marking [91, 99] is an example 
of large-scale flow tracking analysis, spanning multiple net-
work domains.

Networking, by its nature, relies on a richly connected 
fabric of network providers. This has two obvious impli-
cations as it pertains to network telemetry and traffic flow 
information. Firstly, the information is only useful if it is 
being collected, i.e., instrumented across the various net-
works, and secondly, if the information can be shared. Hav-
ing a unified statistics platform across WLCG sites would 
go far to facilitate end-to-end multi-domain traffic analysis. 

Additionally, a common AuthN framework with bilateral 
trust relations would be beneficial if sensitive data are to 
be accessed.

Data Movement Optimization

Most, if not all networks, operate under the assumption of 
best-effort delivery. This is the result of statically config-
ured link metrics that are used to determine the “best” path 
between the network ingress and egress. Such practices often 
lead to unmitigated transient congestion and inefficient use 
of the network. Techniques such as in-network caching, 
multi-path end-to-end load-balancing, and meta-schedul-
ing, can be utilized to reduce the inadequacies of best-effort 
delivery.

In-network caching can reduce the time to retrieve data 
and improve workflow performance. This is especially true 
if the placement of the data is geographically local to the 
receiver. An added benefit to in-network caching is that it can 
be used in conjunction with scheduling algorithms to reduce 
traffic congestion in the network. Efforts such as the OSG 
in-network caching pilot [94] and WLCG data lakes [100] 
demonstrate the benefit of a network caching model. From a 
deployment standpoint, it should be noted that administrat-
ing “3rd party” caching stacks requires a non-trivial amount 
of coordination (e.g., acquiring the appropriate certificates, 
balancing domain security concerns for access, negotiating 
support models, etc.) for ongoing operations.

Multi-path end-to-end load-balancing allows for several 
benefits, such as alleviating hot-spots in the network, using 
underutilized network paths, and enhancing application level 
data transfer resiliency. To effectively perform load-balanc-
ing above the network layer [101] at high speeds, it requires 
hardware that can take session layer information to deter-
mine which data packets constitute the same flow, and steer 
the data packets over different paths [95]. The granularity 
of how load-balancing is executed can range from selecting 
different network domains in the end-to-end path, down to 
specific paths within a network. In both cases, an under-
standing of network routing policies is necessary, along with 
some method to interact with the network (see “Network 
Interaction Optimization” and “Resource Orchestration and 
Automation” sections above). With load-balancing being 
performed above the network layer, there is a requirement 
that both the source and destination ends must possess the 
same capability to ensure proper segmentation and reassem-
bly of the load-balanced data flow.

Meta-scheduling is a complementary approach to exist-
ing and new traffic engineering mechanisms that can make 
efficient use of available network capacity through job 
awareness, keeping key components of network infrastruc-
ture, such as trans-Atlantic links, cost effective. Analogous 
to how existing workload management systems consider 
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computational aspects such as cores and available storage 
when scheduling a job, a meta-scheduler that is network 
aware could manage network resources in a similar man-
ner. For example, TEMPUS [102] manages the scheduling 
of both long-running and high priority transfers while con-
sidering the economic models of cloud resources, and Pre-
tium [103] uses pricing models to drive traffic engineering 
decisions. Other approaches such as DIANA [104] demon-
strate how meta-scheduling can be integrated into a com-
plex workload management system, and can be extended to 
leverage data management and software-defined networking 
techniques.

Network Summary: Challenges and Needed Work

We have described a set of four broad areas in networking 
we believe will need active effort during the coming years. 
Noting that technology evolution will change the way the 
above concepts are implemented, it is critical to have struc-
tures in place to track, implement and integrate new tech-
nologies. Especially important is the transition from research 
into production, which will require significant effort and 
should not be underestimated.

Prototypes offer powerful means of demonstrating new 
technologies and capabilities, allowing evaluation of cost, 
complexity, effort, and maintainability. In all the identi-
fied areas, we suggest that there be work plans that clearly 
identify the steps and decision points from prototyping to 
production.

Security considerations are critical, starting from ini-
tial design all the way to production, and needs to be part 
of any process that will provide our future infrastructure 
components.

Of special consideration for the networking space is 
accountability and fairness within and between experi-
ments. If technology allows varying levels of service 
across the networks, how will that be managed in equi-
table ways between users of the network, from individual 
scientists to large collaborations?

A central aspect of future networks will be their capac-
ity (bandwidth) and its associated cost evolution. If the 
world-wide set of science collaborations have global traffic 
demands evolving faster than what the R&E networks can 
afford, we will be driven towards mechanisms that focus 
on the efficient, equitable management of the available 
network capacity. We note that this would be a significant 
change in the network environment and will require new 
tools, approaches and mechanisms to operate efficiently. 
While there are varying opinions on how likely such sce-
narios are, we must prepare for them years in advance to 
realistically expect to have the needed capabilities if such 
scenarios arise.
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