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Abstract

We review some older and more recent results concerning the energy and particle
distribution in ground states of heavy Coulomb systems. The reviewed results are
asymptotic in nature: they describe properties of many-particle systems in the limit of
a large number of particles. Particular emphasis is put on models that take relativistic
kinematics into account. While non-relativistic models are typically rather well under-
stood, this is generally not the case for relativistic ones and leads to a variety of open
questions.
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1 Introduction and historical background
1.1 Many-particle quantum mechanics

Properties of ground states of large Coulomb systems involving N electrons, such as
atoms or molecules, are of fundamental interest in quantum physics and chemistry.
Notable examples are the ground state energy and the electron distribution in the
ground state. The latter may be expressed in terms of the one-particle ground state
density, i.e., the probability density of finding one of the N electrons at a specific
location in R3. It is well known that systems on atomic length scales are accurately
described by quantum mechanics [105, 106]. This understanding relies on precise
investigations of the underlying Hamilton operator.

We consider a molecule that consists of K point-like nuclei of charges Z =
(Z1,...,Zk) € (0, oo)K, fixed at pairwise different positions R = (Ry, ..., Rx) €
R3K , as well as N electrons, all interacting via Coulomb potentials in the Born—
Oppenheimer approximation. The total nuclear charge is [Z| := Zle Z,. The
number of spin degrees of freedom is denoted by ¢ € N. Althoughinreality ¢ = 2, one
may, for notational convenience, choose g = 1 when the spin-dependence is trivial.
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A non-relativistic quantum mechanical description of this system is provided by
the operator:

N

N
1 1 .
HN,V = Z (_EAV — V(.XV)> + Z m +U in /\ Lz(R3 . (Cq)
v=1 1<v<u<N v w v=1
(1.1)
with
K
Z
Vi)=Y Ix——KRI (1.2)
k=1 i
and
Zi 2Ly
U= _ 1.3
Z R — Ryr| (1)

1<k <k’'<K

We choose Hartree units, so that h = e = m = 1, where h, e, and m denote the ratio-
nalized Planck constant, the elementary charge, and the electron mass, respectively. In
the atomiccase (K = 1,R =0,Z = Z),wehave U = Oand write Hy 7 := Hy z/|x|-

Since electrons are fermions, they obey the Pauli exclusion principle, i.e., the Hilbert
space in which the operator (1.1) acts is given by /\{;v=1 L2(R? : C9), i.e., the subspace
of L2(R3N (C"N) consisting of all square-integrable, €4" _valued functions whose
sign changes under the exchange of any two particle coordinates.

We write

ES(N,Z, R) := inf spec(Hy.y) (1.4)

for the lowest spectral point of the Hamiltonian Hy v . This number E S(N, Z, R) may
or may not be an eigenvalue, and, if it is, it may be degenerate. While the results in this
review concern (1.4), there is an important, related quantity, which has not received
the mathematical attention it deserves; see (5.1) below.

In the atomic case (K = 1, R = 0, Z = Z), we write ES(N, Z) := ES(N, Z, 0)
and, for neutral atoms, ES(Z) := ES(Z, Z, 0). It is well known that ES(N, Z) is an
eigenvalue when N < Z + 1, see Zhislin [251] or Simon [215].

In addition to ground state energies, we will be interested in one-particle ground
state densities. We recall that the one-particle density of a general (pure) state ¢ €
AN L2([R3 : C9) is defined by

q
p(x) = NZ/N Y@ ot ya, )P dys s dyy (1.5)
o=17T""

forx € R3. Here I' := R? x {1,2,...,q}. Elements y € I" are space-spin variables
and the corresponding measure dy is the product measure consisting of Lebesgue
measure on R? and counting measure on {1, ..., ¢}.

If ¢ in (1.5) is an eigenfunction of Hy, vy with eigenvalue ES(N, Z, R), we write

05 (1.6)
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for its density and analogously for other Hamiltonians that we discuss later. Although
this might be an abuse of notation since the eigenvalue ES(N, Z, R) could be degen-
erate, our statements about pg will be true for any choice of an eigenfunction. The
notion of a one-particle density and, in particular, of a one-particle ground state den-
sity can be generalized to the case of mixed states, but we do not do this here. Also,
if the lowest point in the spectrum E S(N , Z, R) is not an eigenvalue, one can still
obtain meaningful statements for so-called approximate ground states, but we will not
discuss these in this introduction.

The goal of this review is to summarize known results and open questions con-
cerning the ground state energy and the one-particle ground state density in the limit
of large electron numbers and nuclear charges for non-relativistic and, especially, for
certain relativistic descriptions of Coulomb systems. In the rest of this introduction, we
will focus on results for non-relativistic atoms. This and other settings will be treated
in more detail in later sections, see the table of contents and Sect. 1.6 for relevant
pointers.

Remark 1.1 Some remarks on our goals are in order.

(1) It is well known that the spectral analysis of N-particle systems for fixed N is
prohibitively difficult already when N > 2, since the O(N?) many interparticle
interactions prohibit a reduction to a three-dimensional (possibly) soluble one-
particle problem. (For instance, if the electron—electron repulsion was absent and
K = 1in Hy v, then one could separate variables to end up with the direct sum
of Schrodinger operators describing hydrogen.) Instead, one often considers the
properties of a system for a large number of particles. This leads to the study
of asymptotic properties. In this review, we entirely focus on results in the limit
Z1,...,Zg, N — oo. The precise way of carrying out this limit when K > 1 is
explained later.

(2) Studying asymptotics clearly leads to less quantitative mathematical statements
and is also questionable from a physical point of view since experimentally
observed values of Z are bounded, e.g., by 92 for stable atoms. However, the
mathematical analysis is drastically simpler and, interestingly, leads to theorems
that coincide astonishingly well with experimentally measured data. (This observa-
tion has been made repeatedly in different contexts in mathematical physics. Stell
[228, p. 48] calls it the principle of unreasonable utility of asymptotic expansions
and makes some interesting philosophical remarks.)

(3) There are some notable exceptions, however.

(a) For instance, recently much progress has been made in the investigation of
smoothness properties of single eigenfunctions and sums of squares of eigen-
functions of many-particle Coulomb Hamiltonians, such as Hy z, for fixed N.
In this regard see, e.g., the works [75-78, 81] for non-relativistic and [80] for
(pseudorelativistic) Chandrasekhar atoms. Such a priori estimates for many-
particle eigenfunctions are important, e.g., for the derivation of eigenvalue
asymptotics for the associated one-particle density matrix [220] and the one-
particle kinetic energy density matrix [221].

(b) Another example concerns the maximal ionization of atoms (and molecules).
Experiments indicate that doubly or higher charged anions do not exist (Massey
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[164, 165]), i.e., one expects at most Z + 1 many electrons to be bound to
the nucleus, while any further electrons are located infinitely far away with
vanishingly small kinetic energy. Proving this claim is a notoriously difficult
problem in mathematical physics, see, e.g., Nam [179, 180] for recent reviews.
A slightly weaker formulation, the so-called ionization conjecture, states that
there is a number Q < o0 such that, if ES(N , Z) is an eigenvalue, then
N < Z + Q. Two well-known results in this direction are due to Lieb [145]
and Fefferman and Seco [66, 67], who provedthat N < 2Z +1land N < Z +
CcZ% , respectively, are necessary conditions for ES(N, Z) to be an eigenvalue.
Recently, Nam [178] improved Lieb’s result and showed N < 1.22Z 4 3Z 3 R
which leads to a sharper result when Z > 6. Lieb’s result implies the fact that
doubly negatively charged hydrogen atoms do not exist.

1.2 Glimpse at Thomas-Fermi density functional theories

The N particle quantum Coulomb problem of computing ES(N, Z, R) and the asso-
ciated eigenspace is—Ilike its classical analogue, the Kepler problem—prohibitively
difficult to solve (even numerically) already for N > 2 because of the O(N 2) many
interactions between the N electrons. This necessitates the derivation of so-called
effective theories, i.e., energy functionals or equations, which depend only on a fixed,
but small number of variables, like three or six, and describe at least the macroscop-
ically observed properties of the given system “sufficiently accurately”. Although
these theories are usually more accessible to numerical analysis, they also pose some
interesting mathematical challenges in view of the presence of nonlinearities, which
simulate the interparticle interactions. Here we focus on so-called density functional
theories, i.e., energy functionals, that only depend on the one-particle density.

Remark 1.2 'We chose to bypass density matrix functionals (e.g., due to Hartree [102,
103], Fock [73], Slater [218], Miiller [175], and Sharma et al. [201]), as it would go
far beyond the scope of this review. In addition to referring to [206], we highlight
pioneering works by Lieb and Simon [150, 151], Bach [3, 4], Graf and Solovej [97],
as well as the works [84], [203, 204], and Kehle [131].

For simplicity, assume from now on the neutral, atomic case (K = 1, R = 0,
Z = Z = N). The breakthrough in the description of ground state properties of Hy v
came with the help of a particularly simple density functional theory, the so-called
Thomas—Fermi theory [71, 72, 235], which will be reviewed in Sect. 2.1. In their
seminal work [152], Lieb and Simon connected Thomas—Fermi theory to the quantum
problem of finding £5(Z) and showed that the Thomas—Fermi energy E'F (Z), i.e.,
the infimum of the Thomas—Fermi functional EEF (Lenz [138]), is the leading term of
the asymptotic expansion of ES(Z) when Z — oc. The Thomas—Fermi energy scales
like ETF(Z) = E™F(1) . Z7/3, which is a consequence of

EF1Z7p(Z2' P91 = Z1PEF pl.
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Thus, the result of Lieb and Simon for the ground state energy reads
ES(Z)=E™1)- 2" +0(Z") as Z — oo, (1.7)

see also Theorem 3.1. A numerical computation shows that ETF (1) &~ —0.48429-¢%/3,

cf. Gombds [94, p. 60].

Figuratively speaking, the leading order in (1.7) is generated by the bulk of the elec-
trons, which are located on distances O(Z~1/3) from the nucleus and are described
semiclassically. It should not come as a surprise that this energetic result is accompa-
nied by a result connecting the quantum ground state density pg with the minimizer of
S}F, the Thomas—Fermi density p}F. Indeed, Lieb and Simon [152], and Baumgart-
ner [12] showed that the suitably rescaled ground state density ps converges to the
minimizer of the Thomas—Fermi theory for hydrogen. More precisely, one has, due to
the scaling properties of Thomas—Fermi theory, the convergence

lim Z7%ps(27' ) = p7t, (1.8)
Z—00

when both sides are integrated against characteristic functions of bounded, measurable
subsets of R3. In the context of the ionization conjecture, Fefferman and Seco [66]
obtained (as a corollary) the convergence in a stronger topology, namely in the so-
called Coulomb norm; see (2.6). The precise result is contained in Theorem 3.1.

1.3 Quantum effects close to the nucleus

Although Thomas—Fermi theory correctly predicts the leading order of ES(Z), it
turned out that, as Scott [200, p. 859] wrote in 1952, the Thomas—Fermi energy gives
values for the binding energy (—1) - ES(Z) “which are too high by roughly 20%. The
actual binding energies increase quite smoothly with increasing Z, which suggests the
existence of a more appropriate formula.” Naturally, this defect of simple Thomas—
Fermi theory triggered some discussions. One year before Scott’s publication, Foldy
[74] had proposed the formula ES(Z) = ¢y - Z"*/5 + ¢3(Z). Here ¢3(Z) depends on
ES(2) and the sum of the ionization potentials of all atoms with atomic number greater
than or equal to three and less than or equal to Z. (Foldy does not give a bound on
¢2(Z) but seems to assume that ¢2(Z) = o(Z'2/%).) More importantly for us, c; is a
constant that only depends on the chosen units and obeys ¢; > ETF (1). The exponent
12/5 was derived from numerical values of the electrostatic potential close to the
nucleus as a function of Z (Dickinson [35]). Since these values were only available
for Z < 80, Foldy’s formula was not expected to hold asymptotically as Z — oo. In
the discussion of his formula, Foldy [74, p. 398] points out that Thomas—Fermi theory
does not correctly take into account the following two effects close to the nucleus. On
the one hand, such electrons are bound stronger to the nucleus, but, on the other hand,
they screen the bulk of the electrons at larger distances to the nucleus. Foldy suspected
the screening to dominate, which explains the inequality c; > E TF(1) despite the fact
that Z'2/5 > 77/3 for Z > 1.

@ Springer



The Scott conjecture for large Coulomb systems: a review Page 7 of 79 1

Scott [200, p. 867] made Foldy’s observations more precise and suggested a differ-
ent formula for E3(Z). He believed that Thomas—Fermi theory does correctly describe
the leading order of the ground state energy expansion, but that the failure of Thomas—
Fermi theory “is due partly to the shortcomings of the statistical model in the region
nearest the nucleus, and partly to the effect of exchange”. Like Foldy, Scott suggested
that the few, but high-energy electrons that are located close to the nucleus should
generate this correction. Due to their proximity to the nucleus, these electrons should
be described quantum mechanically. Since the correction would be generated only by
“finitely many” electrons, the electron—electron repulsion should be irrelevant and the
order of the correction should be O(Z 2), i.e., in agreement with the magnitude of the
eigenvalues of the hydrogenic Hamiltonian

1 z
i .= —54- o in L>(R® : C) (1.9)
X

with nuclear charge Z. By a simple calculation (see Sect. 3.1.4 for March’s derivation),
Scott was led to

ES(Z)y=E™1).-72"3 + % 272+ 0(Z%) as Z — oo. (1.10)

If one drops the electron—electron repulsion in the Hamiltonian (1.1), the corre-
sponding ground state energy will also behave to leading order like a constant times
Z7/3 as Z — oo, but with a constant different from ETF(1). There will also be a
subleading correction, given by a constant times 72, and, remarkably, the constant
here is the same ¢ /4 as in (1.10). This is not a coincidence and will become clear in
the discussion below.

1.3.1 Scott correction

About thirty years later, Lieb [143, Problem 6] and [144, pp. 623—-624] and Simon
[214, Problem 10b] revisited the problem of finding the second term in the asymptotic
expansion of ES(Z). Because of Scott’s compelling arguments, Formula (1.10) was
coined Scott correction/conjecture.

In the same decade, Hughes [113, 114] (lower bound) and the authors of [208—
210] (upper and lower bound) proved this conjecture. That is, they rigorously derived
the expansion (1.10); see Theorem 3.4. The proof in [208-210] relied in part on the
mathematical and physical intuition gained in the precursor [213], where the Scott
correction is proved in the absence of electron—electron repulsion. We will present
this motivating result and its short proof in Sect. 2.3.

Remark 1.3 As has been observed, e.g., by Conlon [28], Huxtable [115], or Sobolev
[219], the Z2-correction is a consequence of the singularity of the Coulomb potential
and cannot be explained semiclassically. For instance, Huxtable’s result [115, Theo-
rem 7] states
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. 1 4 1 7 5
inf v, E —=NAy —Z3W(Z3xy) | |V ) =cTrZ3 + O(Z3)
Ve, L2(R3:CY) =\ 2

I¥l2=1

(1.11)

as Z — oo for any potential W € C®(R?) satisfying c|x|*> < —W(x) < C|x|? and
IVW (x)| < c'|x]| for some ¢, C,c’ > 0. Here crF is related to the non-relativistic
Thomas—Fermi theory with potential W.

1.3.2 Strong Scott conjecture

The Scott conjecture has a close relative that concerns the ground state density, the
so-called strong form of the Scott correction (in short “strong Scott conjecture” from
now on). It was formulated by Lieb [144, pp. 623—-624]; see also Heilmann and Lieb
[104, p. 3629]. The strong Scott conjecture states that the suitably rescaled ground
state density ps on distances of order Z~! from the nucleus converges to ¢ times the
three-dimensional hydrogenic density, i.e.,

[’} L e’}
P i=q-3 > D WP xR (1.12)

(=0 m=—¢€n=0
The latter is the sum of squares of the L>(R> : C)-normalized eigenfunctions 1//;?” em

of the hydrogen Hamiltonian
H 1 | g
S =—§A——| in L~(R” : C). (1.13)
X

The hydrogenic density péq is rather well understood; see Theorem 3.11. In particular,
the right side of (1.12) converges and is spherically symmetric. (The labeling of the
eigenfunctions I/Js” ¢.m uses the decomposition into angular momentum channels and
will be further explained in Sect. 3.1.2.)

Note that S is unitarily equivalent to Z~2§ g by scaling x — x/Z, where S g is
defined in (1.9). Any eigenfunction ¢z of Sg scales like ¢z (x) = Z3/2(p1 (Zx), where
¢1 denotes the corresponding eigenfunction of S IH =St

Tantchenko et al. [117] showed, among other things, that

1
lim — Z_3,os(Z_1rw) dw = péq(r) for each r > 0, (1.14)
Z—o00 41T S2

see also Theorem 3.5. It follows from the convergence results there that the one-particle
ground state density ps is approximately spherically symmetric in the limit Z — oo

on distances Z~! from the nucleus.
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1.4 Dirac-Schwinger correction

As mentioned in the previous subsection, Scott anticipated that the subleading terms in
the expansion of the ground state energy ES(Z) should take into account the extreme
quantum effects close to the nucleus, but also the exchange energy of the electrons, as
proposed by Dirac [39].

On a formal level, Schwinger [199], as well as Englert and Schwinger [45-47] (see
also Englert [44] for a textbook treatment) derived the third term in the asymptotic
expansion of the ground state energy, which grows like 753 In fact, this term is
not only generated by the exchange energy of the electrons, but is also due to the
semiclassical asymptotics of the eigenvalue sum of the operator — % A — ®TF with the
semiclassical parameter Z~!/3 and the Z-dependent Thomas—Fermi potential ®TF
(see (2.15)). In view of the results in Sect. 1.2, the occurrence of —%A — ®TF in the
analysis of ES(Z) is not unexpected.

A decade later, Schwinger’s and Englert’s derivation was made mathematically
rigorous in the monumental work of Fefferman and Seco [61-65, 68, 70]; see also
Bach [3, 4] and Graf and Solovej [97] for simplifications and improvements of parts of
Fefferman’s and Seco’s arguments and see [60] for a review of Fefferman’s and Seco’s
proof. They proved the existence of a constant Cpg > 0, which can be computed in
terms of the Thomas—Fermi density p}il, see [68, p. 528], such that

ES(z)=E™ )77 + %22 — CpsZ°3 + 0(Z°73). (1.15)

In [60, pp. 6, 9—10] and [64, pp. 13—14], Fefferman and Seco make a conjecture
concerning a fourth, possibly oscillating term in the expansion of ES(Z). Cérdoba et
al. [29-31] analyzed this term in detail and showed, in particular, that it is bounded
from below and above by constants times Z3/2.

1.5 The necessity of a relativistic description

From a physical point of view, it is questionable whether one can describe atoms with
large nuclear charges non-relativistically since already the bulk of the electrons is
localized in orbitals whose distance to the nucleus is roughly Z~!/3 or less. As Z
increases, the electrons become localized closer to the nucleus and, by Heisenberg’s
uncertainty principle, one expects that at least the velocities of the innermost electrons
are a substantial fraction of the speed of light c. In fact, the non-relativistic energy for
electrons on the length scale Z ! in the field of a nucleus of charge Z is already —Z2 /2.
Thus, the virial theorem implies that its kinetic energy is Z2 /2. In classical mechanics,
this would show that the velocity of the electron is Z. Since the velocity of lightis 137 in
our units, a single electron in the field of a uranium nucleus (Z = 92) would therefore
move with a speed of ~ % - ¢, which indeed is a substantial fraction of the speed
of light. For this reason, a relativistic description is mandatory, in particular on the
short length scale Z —1 Meanwhile, at distances Z~!/3, electrons are expected to move
with velocities < 10% of the speed of light and, indeed, as we will see momentarily,
relativistic effects are negligible to the leading, i.e., Thomas—Fermi order of ES(Z).
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Before turning to details, we point out that already Scott [200, p. 866] anticipated
possible shortcomings of his non-relativistic formula for large Z:

“Relativity effects of all kinds have been disregarded so far. Though this simplifi-
cation has no serious consequences for Z < 30, these effects are quite important
for heavy elements. It would be a difficult task to calculate them accurately. A
straightforward extension of Thomas’ statistical method (Vallarta and Rosen
[241]) is inapplicable to our present problem, because most of the correction
originates in the region close to the nucleus where the statistical method is viti-
ated by the boundary effect, and, in fact, such methods would give an infinite
binding energy. Moreover, the interaction between the electrons is not wholly
electrostatic.”

Concerning an extension of “Thomas’ statistical method”, we refer to Sect. 2.4 for
recent developments in this direction.

From a fundamental physical point of view, heavy atoms and molecules should be
treated by relativistic quantum electrodynamics (QED) and the corresponding field
theory. Unfortunately, many fundamental mathematical elements, e.g., the state space
and the Hamiltonian, lack mathematical understanding. As a consequence, one is
thrown back to approximate models. Here we will review three such approximate
Hamiltonian models that have been derived by physical arguments from QED, and
proven useful in applications. Moreover, we consider a mathematical simplification
thereof and a density functional obtained in this vein.

The first model can be traced back at least to Chandrasekhar [24] in the context
of stability of neutron stars. In it the single-particle kinetic energy, —A /2 is replaced
by v/—cZA + ¢* — ¢* with ¢ being the velocity of light. Despite its mathematical
simplicity, the resulting operator features many physical defects, such as the violation
of the principle of locality. More crucially for us, it leads to ground state energies that
are much too low compared to experimental data and can only be applied to atoms
with nuclear charge Z < 88.

Physically and chemically more accurate models are based on projected Coulomb—
Dirac [37, 38] operators, such as the Brown—Ravenhall [22] or the Furry [93] operator,
which are applicable to atoms with nuclear charge Z < 125and Z < 138, respectively.
The latter is used in quantum chemistry to compute the ground state energy of large
atoms or molecules to chemical accuracy, see, e.g., Reiher and Wolf [192].

A common property of relativistic operators is the fact that, at least for large
momenta, the kinetic energy scales like the Coulomb potential. On a heuristic level,
it is clear that the sole limit Z — oo is meaningless since the potential energy cannot
be controlled by the kinetic energy anymore. Consequently, the total energy will not
be bounded from below, and the atom becomes “unstable” for fractions Z/c beyond
a critical model-dependent coupling constant. To make mathematically meaningful
statements about asymptotics, one considers the limit when both Z and ¢ tend to infin-
ity simultaneously with a fixed ratio Z/c =: y. (Of course, like the limit Z — oo, the
limit ¢ — o0 is questionable since c¢ has a fixed value). The idea to introduce y as a
separate parameter goes back at least to Schwinger [198].

For y < 2/m, Sgrensen [184] proved that in the above-described limit, the leading
order of the ground state energy in the Chandrasekhar model is given by the Thomas—
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Fermi energy. Moreover, the ground state density on the Thomas—Fermi length scale
converges weakly and in the so-called Coulomb norm (see (2.6)) to the hydrogenic
Thomas—Fermi density [168, 169]. This indicates that the bulk of the electrons on the
length scale Z~!/3 does not behave relativistically.

On the other hand, electrons on the hydrogenic length scale Z~! are located much
closer to the nucleus and, as described before, are expected to lead to relativistic
corrections of the Scott correction. In fact, Schwinger [198] derived a relativistic 72
correction, which is lower than Scott’s. This lowering was proved, by two different
approaches, in Solovej et al. [224] and in [90]. Later, a relativistic correction of the
Scott correction was also proved for the Brown—Ravenhall [91] and the Furry operator
[100].

The relativistic generalization of the strong Scott conjecture was proved recently in
[87] (see also [85]), i.e., the convergence of the suitably rescaled one-particle ground
state density of Chandrasekhar atoms on the hydrogenic length scale 1/Z to the sum of
the squares of the eigenfunctions of the one-particle Chandrasekhar operator. Shortly
thereafter, the corresponding statement for the physically and chemically accurate
Furry operator was proved [170]. These results underscore the fact that electrons
close to the nucleus behave relativistically and that self-interactions of the innermost
electrons are negligible.

1.6 Organization

We briefly summarize the contents of the present review.

In Sect. 2, we review three examples of density functional theories. For the first two,
we refer to March’s and Lieb’s reviews [144, 161]; see also [206] for a recent review.
First, and most important for us, we discuss Thomas—Fermi theory. Secondly, we
review Weizsicker’s extension of Thomas—Fermi theory, which is physically and math-
ematically richer than Thomas—Fermi theory. Qualitatively, this extension correctly
accounts for quantum effects of electrons close to the nucleus. Thirdly, we investigate
the Hellmann—Weizsidcker functional, which served as the basis for Siedentop’s and
Weikard’s proof of the Scott correction. Finally, we consider a density functional that
reduces to the Thomas—Fermi—Weizsicker functional in the non-relativistic limit. It
was derived by Engel and Dreizler and was recently investigated from a mathematical
point of view.

In Sect.3, we consider non-relativistic atoms, ions, and molecules, both in the
presence and absence of a self-generated magnetic field, and summarize theorems
concerning the energy asymptotics and the convergence of the quantum density on
both the Thomas—Fermi and the Scott length scales. Emphasis will be put on Scott’s
original derivation of the energy correction, as well as the initial motivating results in
[213].

Section 4 is concerned with relativistic descriptions. We summarize results con-
cerning the energetic asymptotics as well as the convergence of the density for all the
three different relativistic models discussed in the introduction—the Chandrasekhar,
the Brown—Ravenhall, and the Furry model.

In Sect. 5, we discuss some open questions.
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Notation

We write A < B for two non-negative quantities A, B > 0 to indicate that there is
a constant C > 0 such that A < CB. If C = C; depends on a parameter t, we
sometimes write A <; B. The notation A ~ B means A < B < A. The indicator
function of a set 2 is denoted by 1. The negative part of a real number or a self-adjoint
operator A is defined by A_ := max{0, —A} > 0.

2 Density functional theories

In this section, we briefly review three examples of effective theories that are known to
describe correctly at least the leading order of the ground state energy of large atoms
and molecules. They are known as density functionals, i.e., energy functionals that only
depend on the one-particle density of a given many-particle system. We refer to Lieb’s
detailed review [ 144] on Thomas—Fermi-type theories and to [206] for a recent survey
of density (matrix) functional theories. In particular, [144] also treats extensions of
Thomas—Fermi theory like Weizsédcker’s inhomogeneity [240] and Dirac’s exchange
[39] correction. The first one will be of some interest for us since it generates a Scott
correction, whereas the second one will be discussed in passing only.

2.1 Thomas-Fermi theory

We begin with the simplest non-relativistic “statistical model of the atom” (Fermi
[71, 72], Gombds [94]), which was formulated in the late 1920s independently by
Thomas [235] and Fermi [71, 72]. In the molecular case with K nuclei of charges
Z=(Zy,...,Zg) € (0, oo)K situated at positions R = (Ry, ..., Rg) € R3K, the
so-called Thomas—Fermi (TF from now on) functional (Lenz [138]) is given by:

3
EV(p) = /R . (§VTF05/3(x) - V(x>p(x)> dx+D(p.p)+U (2.1

with V and U as in (1.2) and (1.3), respectively. In the atomic case K = 1, we write
EIF ._ (TF
z = %Z/lxI’

The first term of 8?,1: (p) represents the kinetic energy and is derived via the following
argument based on a semiclassical phase space integration. The TF model views the
N non-relativistic quantum particles in a potential W as a classical gas in phase space.
Since Planck’s constant is # = 2w h = 27 in our units, the density of the semiclassical
gas is:

d 4
00 =4 [ Vpepawio) s = Foams @O @)

Thus, the semiclassical kinetic energy is:
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2
P dp q 1 4rm 52 3 53
‘1/ T lrrswe G = G 25 G = Sy e ()
2.3)
with the Thomas—Fermi constant
r o= (6772 2mg* )~ = (627 /q)* /2. 24)

The second term in (2.1) represents the interaction energy between the electrons
and the nuclei.

The third term in (2.1) is the electrostatic self-energy of the charge density p. It is
defined, more generally, for p and o by

p(X)o(y)
D(p,0) = /]R3 /]R* x| dx dy. 2.5)

Note that (by Plancherel and the convolution theorem), D(p, o) is sesquilinear and
positive, and (by Cauchy-Schwarz), D(p, o) < /D(p, p)-+/D(o, o). Infact, D(-, -)
defines a scalar product on the set Z defined in (2.7) below. Thus, the right side of

lollc := D(p, p)'/? (2.6)

defines a norm on that space. This norm is sometimes called the Coulomb norm.
The TF functional (2.1) is defined on its natural domain (Simon [216])

7= {peL5/3(R3): D(p, p) < oo, pzo}, 2.7

i.e., for nonnegative densities with finite kinetic energy and finite electron—electron

repulsion. These conditions automatically guarantee the finiteness of the electron—

nucleus interaction. (The local singularities at the nuclei are controlled by the kinetic

energy, whereas the long-range part is controlled by the electron—electron repulsion.)
To describe a system of N electrons, we restrict the TF functional to the set

rvelper: [pen)

- {peL5/3(R3): D(p,p) < o0, p >0, /p:N}. (2.8)

Here, mathematically speaking, N need not be an integer.

In their seminal work [152], Lieb and Simon were the first to analyze this functional
with mathematical rigor. (See also [144, Section II] and [206, Subsection 4.1] for
more detailed reviews.) The following theorem asserts the existence and uniqueness
of minimizers of the TF functionals on Z and Zy .
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Theorem 2.1 Let Z = (Zi,...,Zk) € (0,00)X and R = (R, ..., Rx) € Rk,
Then, the following statements hold.

(1) (Unconstrained problem): There exists a unique 0 < ,OTF(Z, R, x) such that
Je3 P™(Z R x)dx = |Z| = YK, Z and

EF 1™ =inf(E}Fp]: p € Ty = E™(Z, B). (2.9)

(2) (Constrained problem): If N < |Z|, then there exists a unique, non-negative
,OTF(N,Z, R, x) such that /R3 ,OTF(N, Z,R,x)dx = N and

EVIp™ 1 =inf{& p] : p € Iy} = E(N, Z, R). (2.10)

In particular, N — ETY(N, Z, R) is strictly decreasing. If N > Zle Zy, then
ET(N, Z, R) is not a minimum, i.e., there are no negatively charged ions in TF
theory.

(3) (Unconstrained Thomas—Fermi equation) In the unconstrained problem, the min-
imizer p'¥ € T obeys [ p™ = |Z| and

yre(p™)3 =V — (pTF@, R, |—1|) : @11

Moreover, if p € 1 satisfies (2.11), then it minimizes 5};1: onT. IfK =1, then p™F
is spherically symmetric and decreasing.

(4) (Thomas—Fermi equation in constrained problem) In the constrained problem with
0 < N < |Z|, the minimizer p'% € Ty satisfies

yrep ™ (x)F = (V(x) ~ (pTFuv,z, R, ) * |1—|) (x) — u) (2.12)
+

for some (unique) i = w(N) > 0. Moreover; there is no solution p € Iy to (2.12)
for any p other than p'Y. When N = Z, then i = 0, and otherwise jn > 0. As N
varies from 0 to |Z|, i varies continuously from oo to 0. Moreover, |4 is a convex,
decreasing function of N.

(5) (Scaling) For any a > O, the scaling relations

P (N, Z, R, x) =a2p"(@aN,aZ,a PR, a7 Py), (2.13a)
E™(N,Z,R)=a""PE™(@aN,az,a 'PR) (2.13b)

hold.

Remark 2.2 (1) The number ETY(N, Z, R) is called the Thomas—Fermi energy and
the minimizer pF is called the Thomas—Fermi density.

(2) Although ETF(N, Z, R) is not a minimum on Zy and (2.12) has no solution with
[p=NifN > Zle Z., the number ETF(N, Z, R) still exists and we have
E™(N,Z,R) = E™(|Z|, Z, R) in that case.
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(3) If K = 1 in the unconstrained problem, then we write o1 (Z, 0, x) =: pLF(x)
and ETF(Z,0) =: ETF(Z). Similarly, in the constrained problem we shall write
P (N, Z,0,x) =: pIF(N,x)and ETF(N, Z,0) = ETF(N, Z).

(4) The scaling relations for K = 1 show, in particular, that TF theory has “natural”
length and energy scales, the Thomas—Fermi length scale Z~1/3 and the Thomas—
Fermi energy scale Z73, respectively. For Z = 1, the minimizer pTF (either in
the unconstrained or constrained problem) is called the hydrogenic Thomas—Fermi
density. The numerical value of the associated infimum is: ETF (1) ~ —3.678 74 -
Yop » cf. Gombis [94, p. 60].

The following theorem due to Lieb and Simon [152, Theorem IV.5] (see also [144,
Theorem 2.8]) summarizes some important properties of the TF density.

Theorem 2.3 (Properties of ,oTF) Let Z = (Zy,...,Zk) € (0,00)K and R =
(Ry,...,Rg) € R3K and let pTF denote the solution to the constrained Thomas—
Fermi equation (2.12) with f P (N, Z, R, x) = N. Then, the following statements
hold:

(1) Letk € {1, ..., K} be arbitrary. Then, as x — R, one has

3
K

7 7
pF(N,Z, R, x) = (—) Ix — Re| 72+ o(lx — R |71/, (2.14)
YTF

(2) p™(N,Z, R, x) — Oas |x| — oo.

(3) pTF is real analytic on {x € RY: x # Ry Vk, ,OTF(x) > 0}.

(4) In the neutral case (N = |Z|, u = 0), one has p'F (x) > 0 forall x € R3.

(5) In the ionic case (N < |Z|, u > 0), p™F is compactly supported and C' away
from the R,.

(6) (Thomas—Fermi equation) Let the Thomas—Fermi potential ®F be defined by

(N, Z, R x) = V() — (0N, Z,R, ) % |- |7H(x). (2.15)

Then, ®TF obeys the Thomas—Fermi differential equation

K
1 _
— (AT, Z R.x) =} Zeb(x = Ro) =y (@7 = i (2.16)
k=1
(7) (Sommerfeld) In the neutral case (1 = 0), the Sommerfeld solution
Y (x) = ¥(x)) = yip - G/m)* - x| (2.17)

solves the TF differential equation (2.16) for |x| > 0 and x # R, and it is the
only power law that does so. Moreover,

_ maxp =y ®""(N,Z,R,x) _ miny— ®"(N,Z, R, x)
lim = lim =1
§— 00 w(s) §— 00 w(s)

(2.18)
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In the atomic case (K = 1), the TF density p'* obeys

3
p (N, Z,x) = (3?) x| 78 + (x| 76) (2.19)

as |x| — oo.

Remark 2.4 Observe that Sommerfeld’s solution (2.17) (see [227]) is independent of
Z and even solves the molecular TF equation; due to the scaling of the TF density,
the Sommerfeld asymptotics |x|~® of the TF density still has magnitude O(Z?) for
Ix| < Z~'3. Sommerfeld-type estimates are contained in Solovej’s proof of the
ionization conjecture in Hartree—Fock theory [223, Theorems 4.6, 5.2, 5.4]; see also
[144, Theorem 2.10] and [119, Section 1] for further estimates for the TF density and
potential.

In the absence of electron repulsion, the Thomas—Fermi energy can be computed
easily. This is important for the heuristic derivation of the Scott correction (Sect. 3.1.4)
and is done in the following remark.

Remark 2.5 (Thomas—Fermi energy for the Bohr atom) Let K = 1 and Z > 0, and
consider TF theory for an atom in the absence of electron repulsion, i.e.,

3
E Bonr(0) = /R ( SVTFP(X)S/ 3 - ﬂp(x)) dx. (2.20)

For N > 0, let
Bohr(N Z) = inf {52 Bohr(p) 0= p e L5/3(R3) /,0 = }

It is elementary to see that there is a unique minimizer pgghr(N , Z) and that this
minimizer satisfies the Euler—Lagrange equation

Z
YIE - Pponr (N, Z, 0)* = (— - u) (2:21)
NN
with some p > 0. Integrating the 3/2-th power of this identity leads to the relation
(7.[2 ) % 1 72
w=—7r) ——=
4 YIF N3

and then to the formula for the energy

2

3 712 3 1
Bohr(N Z) Z Bohr(pBohr(N Z)) - ( ) ZzN} . (222)
oy \ 4
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2.2 Thomas-Fermi-Weizsacker theory

The semiclassical derivation of TF theory assumes that the density is locally constant.
In this regard, we recall Scott’s observations [200, p. 859, p. 867]:

“The Thomas—Fermi statistical model of the atom leads to the formula 20 -
92 Z7/3 ev for the total binding energy of an atom with atomic number Z, but
this formula gives values which are too high by roughly 20%. The actual binding
energies increase quite smoothly with increasing Z, which suggests the existence
of a more appropriate formula. [...] The failure of the currently quoted formula
is due partly to the shortcomings of the statistical model in the region nearest
the nucleus, and partly to the effect of exchange.”

In 1935, Weizsidcker [240] proposed a correction of Thomas—Fermi theory that
penalizes rapid changes of the density, which are expected to occur close to the nucleus.

Remark 2.6 Some words on the history: Weizsicker introduced this correction to
explain the rise of the mass defect per nucleon in a nucleus from very heavy (say
uranium) to semi-heavy nuclei (like iron). To that end he consulted Gamow’s liquid
drop model for nuclei and argued that, as a consequence of the uncertainty principle,
the “surface of the nucleus” must be smeared out. For otherwise, an instantaneous
drop of the density with infinite slope would lead to an infinite kinetic energy, which
is unreasonable. This smearing of the surface could be accounted for by replacing the
eigenfunctions that are used in the derivation of the Thomas—Fermi functional, namely
plane waves, by waves with linearly varying amplitude. This gives rise to Weizsicker’s
term p~ ' (Vp)2.

We consider the Thomas—Fermi—Weizsicker (TFW from now on) functional

A
&) =3 /R Vol + EF () (2.23)
with nuclei of charges Z = (Z1,...,Zg) € (0, oo)K situated at positions R =
(Ry,...,Rg) € R3K 1tis naturally defined on the set
A:={peLi®): p>0, Vype LR, |plc < oo}, (2.24)

where the gradient is understood in the sense of distributions. For fixed particle number
N € (0, 00), the functional is defined on

AN:={,0€A:/,0=N}. (2.25)

Weizsicker introduced (2.23) with A = 1. However, it is convenient to have A > 0
as an adjustable parameter, as we shall see soon.

The mathematical analysis of E‘T/FW started with the works of Benguria [13] and
Benguria et al. [14]. Besides its mathematical richness, it turned out that TFW the-
ory describes—at least qualitatively—the physics of real atoms more accurately than
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Thomas—Fermi theory. For instance, the TFW minimizer is finite at the nuclei and
decays exponentially at infinity. Moreover, binding is possible and anions can be sta-
ble in TFW theory. For a concise summary of TFW theory, we encourage the reader to
consult [13, 14], as well as [144, Sect. VII]. Here we restrict ourselves to a summary
of the energy expansion and the minimizing density as [Z| — oco. Our presentation
closely follows Lieb [144] and Lieb and Liberman [146]. We start with the following
result on existence and uniqueness of minimizers of the TFW functional.

Theorem2.7 Let A >0, Z = (Zy,...,Zk) € (0, 00)K, and R = (Ry,...,Rg) €
R3*K. Then, the following statements hold.

(1) (Unconstrained problem) There is N. € (|Z|,2|Z]|) such that the TFW func-
tional Ez,FW has a unique minimizer p"*V (Z, R, x) on A with particle number
f pT™W(Z, R, x) dx = N.. This minimizer satisfies the TFW equation

A
(—EA + W) pTEW =0 (2.26)
with
TFW Z, R,
W) = yree™ (2, R 0% — Vo) + / PZRY) G o
R3 [x — ¥

The infimum is denoted by:

E™W(z, R) :=inf(EFV[p] : p € A)}. (2.28)

(2) (Constrained problem)If N < N, then the TFW functional has a unique minimizer
pT™W(N, Z, R, x) on Ay. This minimizer satisfies the TFW equation

A
<_5 A+ W) ATV — /o TEW (2.29)

with W (x) as in (2.27), © > 0, and i = 0 for N = N,. The infimum is denoted by
ET™(N,Z, R) :=inf{EFV[p]: p € Ay). (2.30)

If N > N, there is no minimizer on Ay.

Remark 2.8 Benguria and Lieb [15] proved the previously mentioned ionization con-
jecture for TFW molecules and showed 0 < N, — |Z] < 270.74 - (ﬁfﬂ - K. As
we shall see below, the value A = 0.1859 is in some sense natural. Together with the
value of yrp = (672/2)%/3 /2, this leads to the bound N, — |Z| < 0.7335 - K.

Theorem 2.7 shows, in particular, that anions can be stable in TFW theory. The next

theorem says that pTF" on the TF length scale is described by pTF; see also Solovej
[222] for results when only some of the nuclear charges tend to infinity.
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Theorem 2.9 ([144, Theorem 7.30], [146, 2.25)]) Let A > 0, Z = (Zy,...,Zg) €
(0,000, R=(Ry,...,Rg) € R** and N > 0 50 that » :== N/|Z| is fixed. Define
zandr by Z =|Z|zand R = |Z|~3r, respectively. Then

Aim 212" (N, Z, R NZI T Px)y = p™F Mz x) (2.31)
L]|—>00

weakly in L' if . < |Z| and weakly in LlloC if A > |Z|.

Naturally, the question arises of how close the two infima ETFW (N, Z, R) and
ET(N, Z, R) are, i.e., one seeks an upper bound on the right side of

0<E™(N,Z, R —E™(N,Z R). (2.32)

Already in the neutral, atomic case (K = 1, R = 0, Z = Z = N) one might be
tempted to say that the difference is O(Z%/3) by plugging in the TF density p" and
using the scaling relation ng(x) = 7?2 ,olTF(Z 1/3x). However, this is not correct, as
can be seen heuristically as follows. By Theorem 2.3, one has ,01TF (x) ~ const |x |_3/ 2

as |x| — 0, which makes it plausible that |V plTF| ~ const |x|~7/4, but this is not
square-integrable and leads to an infinite Weizsédcker term. Instead, as the following
theorem shows, the difference E™¥W (Z, Z,0) — ETF(Z, Z,0) is given, to leading
order as Z — 00, by a constant times Z2. This is the Scott correction in TEW theory.
As in the quantum problem, the Z2-term originates from effects on the hydrogenic
length scale Z~! rather than the TF length scale Z~!/3, see [144, p. 635]. Lieb [144,
Theorem 7.30] also shows that the correction is independent of the electron number,
i.e., it also holds when comparing the TF and TFW energies for ions with fixed ratio
N/Z.

Let us return to the general, multi-center case. To describe TFW theory on the length
scale Z~! more precisely, we consider the atomic TFW functional without electron
repulsion. After a ‘renormalization’ (that is, formally subtracting the integral of

2 ( 7 >5/2
— VTF
5T i

from the right side of (2.23)) one can show that the resulting functional has a unique
minimizer and that this minimizer solves the Euler—Lagrange equation

2

A V4
(Boem

) Jp =0; (2.33)
X
see [144, Theorem 7.29]. By scaling, one has p(x) = (2Z%/(Ayrr))>/? poc (2Zx/ A),

where po is the solution corresponding to Z = A/2 = yrE.
Then we have the following results on the hydrogenic energy and length scales.

Theorem 2.10 ([144, Theorem 7.30], [146, (2.26)]) Let A > 0, Z = (Z, ..., Zk) €
0,000, R=(Ry,...,Rg) € R*X and N > 0 50 that . := N /|Z| is fixed.
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(1) (Energy) We have

K
E™W(N.Z R =E™(N.Z R+ D™ >z +0(IZ*) (2.34)

k=1

with DTFW .= 21/241/2, 2312 [ |7 /5512 dx.

(2) (Density) Define z and r by Z = |Z|z and R = |Z|~13r, respectively. Then, the
solution p™™W of the problem (2.30) converges to that of (2.33) in the sense that
foreachk € {1,..., K},

Jim ZZpTVN, Z, R, Re + Z7'x) = (Ayme/2) P peo2x/4) - (235)

both pointwise and in Llloc.

As emphasized by Lieb and Liberman in [146, Section 2.C], the second term in
(2.34) has the following properties, which allows one to think of it as a “core effect”:

e Itisindependent of A = N/|Z].

e It is additive in the nuclei, that is, it is a sum of terms corresponding to each atom
in the molecule.

e The constant DTFW does not change if the electron—electron repulsion is removed.

By the last point, we mean that (2.34) remains true, with the same constant DTFW,
if in the definitions of both ETFW(N, Z, R) and ETF(N, Z, R) the term D(p, p) is
dropped. This is proved in [144].

The asymptotics (2.34) and the convergence in (2.35) suggest a discussion of the
parameter A in (2.23). By Theorem 2.10, it suffices to discuss the atomic case K = 1.
While Weizsicker initially chose A to be one, other values have been suggested. For
instance, Kirzhnits [132] suggested A ~ 1/9 based on the gradient expansion of
the Hohenberg—Kohn functional, assuming the Coulomb potential was replaced by a
“weak perturbing potential” ( [146, p. 12]). However, due to the local singularity, the
Coulomb potential cannot be regarded as such a weak perturbing potential.

More than 15 years before Theorem 2.10 was proved, Yonei and Tomishima [250]
analyzed (2.33) with 41 such that the solution ps 0beys [ poo = Z. From a numerical
analysis, they concluded A =~ 1/5 (especially when Z > 25) leads to good agreement
with the energy obtained from summing up the first Z eigenvalues of the hydrogen
operator (1.9) (Bohr atom, cf. Remark 2.5 and Sect. 3.1.4).

Possibly inspired by Yonei’s and Tomishima’s work, Lieb and Liberman [146,
(2.32)] chose A such that the Z2-correction in the TFW model agrees with that of the
quantum model, i.e., DTFW = g /4. This choice leads to A = 0.1859.

Another choice for A is motivated by comparing the densities ngW and the one-
particle ground state density ps in (1.5) on the length scale Z ~1. Asindicated in (1.14),
the spherical average over ps tends to the hydrogenic density pg (cf. (1.12)) on the
length scale Z~! pointwise as Z — oo. Recall that all hydrogenic eigenfunctions of
(1.13) are finite at the origin with only eigenfunctions with £ = 0 being nonzero. (For
a detailed analysis of ,oéq , we refer to Theorem 3.11 by Heilmann and Lieb [104].)
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Thus, the limiting value of Z SBps(Z71(0+4)) as Z — oo is well-defined and can be
computed explicitly thanks to the explicit knowledge of hydrogen eigenfunctions. At
the same time, the convergence in (2.35) is pointwise as well, so Z 3 p}FW(Z “Lyis
also accessible and can be computed numerically. Thus, to have agreement of the quan-
tum density ps and the TFW density on the scale Z~!, one may choose Weizsicker’s
parameter A so that one has the equality

P8 (0) = (Ayrr/2) 7 oo (0). (2.36)

This led Lieb and Liberman to the numerical value A &~ 0.4798, cf. [146, (2.33)].
The following table summarizes plausible choices for Weizsécker’s coefficient A.

A
Weizsicker (mass defect theory) =1
Kirzhnits (gradient expansion) ~0.11
Yonei—Tomishima (numerical computations, Bohr atom) ~ 0.2
Lieb-Liberman (energy agreement) ~ 0.1859
Lieb-Liberman (density agreement) ~ 0.4798

In conclusion, one may regard the proof of the Scott conjecture in TFW theory
as a warm-up problem for its proof in the full quantum problem. (One may wonder
whether Scott was aware of Weizsidcker’s extension [240] at the time of writing his
work [200].)

2.3 Hellmann-Weizsacker functional

In this subsection, we discuss the so-called Hellmann—Weizsdiicker functional, which
plays an important role in the proof of the Scott conjecture by Siedentop and Weikard,
as we will discuss in Sect. 3.1.4 below.

We first introduce the Hellmann—Weizsicker functional for fixed angular momen-
tum £ € No. We work on R with the measure dr. Here and in the following, we use
the letter o : Ry — R to denote one-dimensional, radial densities with particle num-
ber fooo o(r)dr, i.e., we integrate with respect to dr and not r2dr. Three-dimensional

densities are denoted by the letter p : R* — R,.. We set
GV i=loe ’®): 020, 7 € L*®Ry), 00) =0}

Here, the derivative of \/E’ is understood in the sense of distributions and we recall
that the square integrability of this derivative implies that ,/o is continuous on R
and has a boundary value ,/0(0). In particular, the last condition in the definition of
GV is well-defined. Let
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(o)
o= ——r
g2t +1)

and define, for Z > 0 and ¢ € GV,

e(e+ 1)

1 [ xz
1y =7 / (((@’<r>)2 o(r) + = g(r) )dr - f Zo(r)dr.
0 0 r

(2.37)

The second term is finite by Hardy’s inequality and so is the last term, since, for any
R >0,

00 00 1/3 0 2/3
/ o) 4 _ g / e +< / 0u(r)? dr) < / Y dr) _
0 r 0 R R

Thus, EEVZV is well-defined on GV .
Next, we introduce the full Hellmann—Weizsiacker functional. It is defined on
sequences @ = (00, 01, ...) With gy € GV forall ¢ € Np. For such a sequence,

we set
~ 1 / ,
De.o)=35 3. /f dr gy’ Q00D
o 2 eo>0Y YRexRy max{r, r’}

Let

1
MW |ae(gW>N°-Z/ (((f)())2 (+ )Qz(r>+%ge<r>3)dr<oo,

>0

D(o.0) < oo] (2.38)

The Hellmann—Weizséicker functional [108] is defined, for ¢ € MY by

&V =) &Y ) + Do, o) (2.39)
>0

One can prove that Elgw is well-defined on ¢ € MY This functional is studied in
detail in [207]; see also Hoops [112]. Finally, for N > 0, we set

My = e e MY Z/ ou(rdr = N},

>0

The following theorem shows how the terms (op / 3)@2 in the Hellmann—Weizsicker
functional are related to the term (3/5)yrrp>/> in the TF functional.
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Theorem 2.11 Let EgF (N, Z) be the Thomas—Fermi energy of the constrained prob-

ohr
lem without electron—electron repulsion; see Remark 2.5. Then, if N = aZ and
Z — 0o,
inf {€5V (0) — D(0.0) : 0 € MY} = Eggp (N, Z) + Oo(Z%). (2.40)

Remark 2.12 (1) If one replaces Weizsicker’s gradient term in the definition of EIZ{W by
(4r?)~ o, (which is a lower bound by Hardy’s inequality), one is led to the Hellmann
functional

1) =Y &40, (2.41)
>0

1 [ L+1/2)2 ©z
&' 700 = 3 /0 (%Qm)%%gm)) dr — /0 —ou(r)dr. (2.42)

These functionals are well-defined on sets G and M that are defined in a similar manner
as GV and MW . A straightforward computation [213, Theorem 1] shows

inf{€5(0) : 0 € My} = Egee(N, Z) + O(Z*N~17). (2.43)

This is one step in the proof of Theorem 2.11.

(2) Hoops [112, Theorem 4.5] showed that the electron—electron repulsion does not
alter (2.40) significantly. Moreover, he computed the coefficient of the Z>-term in this
case. If Z —aZP < N < Z + Q¢ wherea > 0,0 < 8 < 2/3,and Q, > 0 is the
Z-independent number specified in [112, Theorem 3.3], then one has

inf{E5V (0) : 0 € MY} = E™(2) + ¢GZ* + o(Z?), (2.44)

where G is the infimum of another explicit functional defined in [112, (4.15)—(4.16)]
and obeys the numerical bounds 2 - 0.388 < G < 2-0.417, see [112, p. 58]. The
coefficient G is about three times bigger than Scott’s coefficient 1/4. As Hoops puts it
[112, p. 58]: “To have such a big discrepancy suggests that the Hellmann—Weizsdcker
functional does not treat the innermost electrons sufficiently accurate to get the same
behavior as the quantum mechanical ground state. That means that Weizsdcker’s
gradient term is a major correction (it creates a Z*-order term) at places where we
have strong varying potentials but it does not suffice to give the right coefficient.”

2.4 Relativistic TFW functional by Engel and Dreizler

As discussed in the introduction, a relativistic description of large Coulomb systems
is mandatory. This suggests to consider relativistic density functionals. A particularly
simple one can be traced back at least to Vallarta and Rosen [241] and Jensen [124], who
mimicked the steps (2.2)—(2.4) with the kinetic energy p2/2 replaced by \/c2 p? + ¢*—
¢? to derive a relativistic Thomas—Fermi theory. For ¢ = 2 and nuclear configuration

@ Springer



11 Page240f79 R.L.Frank et al.

Z=(Z1,....,Zg) € (0,00K, R = (R, ..., Rx) € R*X the resulting functional
is

&N (p) =T (p) — /R V@)p(x)dx + D(p. p) + U (2.45)
with 5
TTF (p) = f & _qTF (@> dx, (2.46)
R3 82 c

TF @) .=t (12 + 1)32 + 13 (12 + 1)'/2 — arsinh(z) — %t3, and the Fermi momentum
p(x) = B p(x)'. (2.47)

This functional is unbounded from below since the relativistic kinetic energy can-
not control the Coulomb singularity. This was already anticipated by Jensen, see
also Gombas [94, §14], [95, Chapter III, Section 16] for a review of these facts.
Gombas also suggested that Weizsicker’s (non-relativistic) inhomogeneity correction
would prevent the unboundedness from below. His suggestion was first carried out by
Tomishima [238], who showed, among other things, the finiteness of the energy and
the electron density at the nucleus.

While Gombds introduced the Weizsidcker term ad hoc, Engel and Dreizler [43]
offered a (formal) derivation from quantum electrodynamics. The Engel-Dreizler
derivation also yields an exchange term. In total, their functional reads

ETEVD (p) = E7F () + TV (p) — X(p). (248)

The Weizsicker term is
3A 2
V(p) = / 3 (VP @) e f (@) dx (2.49)
R3 8 c

with f(t)2 =11+ 72 4 2¢2(1 + 12~ arsinh(r) and an adjustable parameter
A > 0. The exchange term is

4
Xp) = /3 < x (p(x)> dx (2.50)
R

873 ¢

with X (r) := 21* — 3[t(1 4+ 1*)"/? — arsinh(r)]?.

The analysis of SET‘I;WD started with Chen [25] and was continued in the works
[26, 27]. In the ultrarelativistic limit, i.e., in absence of the arsinh function in the
Weizsidcker term, it had been investigated earlier in [16]. The functional SET‘I;WD is
naturally defined on

P:={pelL*’®R: p>0, D(p,p) <oo, V(Fop)e L* (R}, (251

Psz{peP:/pr} (2.52)
R3
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where F(t) := fé f(s) ds. In the absence of the exchange term X(p), Chen [25, p. 39]
proved the existence of minimizers of Q?EWD.

As we shall discuss in Sect. 4.1, non-renormalized relativistic quantum models
for Coulomb systems are not expected to be well-defined for arbitrary large nuclear
charges, since the Coulomb potential and the kinetic energy have the same scaling
behavior, at least for high momenta. The renormalization in Engel’s and Dreizler’s
derivation leads to the arsinh function in Weizsicker’s term, which ensures the lower
boundedness of S{TEW D (p) for all nuclear charges Z. The necessity of renormalization
was realized early, see, e.g., Heisenberg and Euler [107].

Theorem 2.13 ([26, Theorem 1]) For K = 1 and given ¢, Z, A > 0 let k =
Z/(cvVA). Let & := (4n) ' max{X(1)/r> : t > 0} and so : Ry — Ry be the
explicit function given in [26, (16)], which is strictly monotone increasing and sat-
isfies s0(0) = 0 and limy_, o so(k) = 00. Then for all p € P with f,o = N one
has

4 5
&P p) = _%ng;mzw —&cN. (2.53)

In the absence of the Dirac term, an analogous result was proved in [27, Theorem 1].
In fact, their result also holds in the molecular case.

The existence of minimizers and bounds for the excess charge (in absence or pres-
ence of the Dirac term) were proved by Chen [25, p. 39] and in [27, Theorem 2] and
[26, Theorem 2]. In passing, we mention that bounds on the excess charge are available
in many non-relativistic models; see, e.g., Lieb [144], as well as Benguria and Lieb
[15], Solovej [222], and the more recent work [88].

The following result concerns the energy asymptotics in the atomic case.

Theorem 2.14 ([205, Theorem 1]) Let K = 1 and Z/c > 0 be fixed. Then

inf &) = E™NZ) + O(Z%) as Z — oo, (2.54)
VA

where Py is defined in (2.52) with N = Z.

The core elements of the proof are the facts that the relativistic kinetic energy is
dominated by the non-relativistic one, that relativistically described electrons far away
from the nucleus behave non-relativistically, and that the TFW functional provides a
Z?-correction to the Thomas—Fermi energy. One may argue that Theorem 2.14 is
expected in view of the heuristics explained in Sect. 4.3.1. Still, it is quite surprising
that a formally derived functional correctly yields a fundamental feature like the ground
state energy of large atoms.

3 Quantum mechanics of non-relativistic Coulomb systems
In this section, we review results for the energy and density of non-relativistic systems

with one or several nuclei. These are described by the Hamilton operator Hy v in
(1.1). Recall that the ground state energy ES(N, Z, R) is defined in (1.4).

@ Springer



11 Page260f79 R.L.Frank et al.

3.1 Atoms without magnetic fields
3.1.1 Thomas-Fermi scale

One of the main results of the work [152] of Lieb and Simon is that TF theory correctly
describes both the leading order of the quantum mechanical ground state energy of
large atoms, and the one-particle electron distribution on the length scale Z~!/3 in the
limit Z — oo. This is summarized in the following theorem.

Theorem 3.1 Let ES(N, Z) = inf spec(Hy.z) be the ground state energy of Hy z.
Fixax = N/Z. Then,

. ES(N,Z) TF

If ES(N, Z) is an eigenvalue of Hy .z and ps is the one-particle density of any of its
associated normalized eigenfunctions, then one has

lim |Z72ps(Z713) — p2E (@, )llc = 0, (3.2)
Z—00

lim | U@x)Z 2ps(Zz7Px)ydx = [3 U)pit (a, x)dx (3.3)
R R

Z— 00

forall U e LS/Z(R3). Finally, if N < Z, then the convergence Z_z,os(Z_l/3-) —
py::l (a, -) also holds in the weak L'-sense.

Remark 3.2 As mentioned before, E S(N , Z) is indeed an eigenvalue of Hy 7z in the
most relevant case N = Z. However, there are generalizations of the convergence
statements (3.2)—(3.3) that remain valid even if E S (N, Z)isnotaneigenvalue. Namely,
one can take pg to be the one-particle density of elements in any sequence of normalized
functions ¥y, N = 1, 2, ... in the form domain of Hy 7z satisfying

i YN Hyz9n) — ES(N, 2)
m =
N—o00 Z7/3

0. (3.4)

Such a sequence (¥ ) yen is sometimes called an approximate ground state of Hy 7z
on the Thomas—Fermi scale.

Asymptotics (3.1) and (3.3) (the latter for characteristic functions of bounded,
measurable sets) are due to Lieb and Simon [152, Theorems III.1, II1.3]. In the context
of a proof of stability of matter, Thirring [234] found a substantially simpler proof of
the lower bound in (3.1) that used coherent states involving Gaussians. Lieb slightly
generalized these coherent states and found a shorter proof for the upper bound in
(3.1), see [144, Theorem 5.1] (where also an adaption of Thirring’s proof of the lower
bound is reported). Formula (3.3) (for certain characteristic functions) is also due to
Baumgartner [12], while the convergence (3.2) of ps in Coulomb norm was proved by
Fefferman and Seco [66]. (Note that the Scott correction with error bound O(Z47/24)
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(see [1, 2, 208, 209]) actually implies the quantitative bound ||Z 2p5(Z27 13y —
pE (@, e S Z273/16)) Asymptotics (3.3) for general U € L3/?(R?) follow from
the fact that finite sums of characteristic functions of bounded measurable sets are dense
in L>/?, together with the uniform boundedness fR3 (Z_z,os(Z_1/3)c))5/3 = O(),
which in turn follows from the kinetic Lieb—Thirring inequality.

Remark 3.3 (The Bohr atom) Let Egonr (N, Z) be the ground state energy of Hy v
in the atomic case (K = 1, R = 0, Z = Z) and without electron—electron
repulsion, that is, without the double sum in (1.1). Let Egghr(N , Z) be the cor-
responding quantity in TF theory, defined in Remark 2.5. Note that, by scaling,
EMY (N,Z) = ELE (N/Z, 1) - Z"/3. We claim that, for any fixed « = N/Z,

Egone(N,Z)

lim = EpF (o, 1).

795 211
Indeed, this can either be proved by following the proof of Theorem 3.1 or, much more

directly, by using the explicit formula for the eigenvalue Epon (N, Z) and the explicit
formula for Egshr(N , Z)in (2.22).

Let us return to the situation of Theorem 3.1. Recall that the TF minimizer satisfies
,o%le(x) ~ const |x|_3/2 as x — 0 (see Theorem 2.3). Thus, Theorem 3.1 implies
that the ground state density develops a singularity on the scale Z~!/3. This is not
surprising, since the electrons in a Bohr atom have a density proportional to Z3, which
tends to infinity relative to the TF magnitude Z2. Thus, TF theory is not expected to
provide a complete description of large atoms, especially on scales Z~! close to the
nucleus. For this reason, we now look closer at the electrons on the shorter, hydrogenic
length scale Z~!.

3.1.2 Scott scale

As explained in the introduction, Scott’s idea is that the leading correction to TF
theory stems from the few innermost high-energy electrons on distances Z~! from
the nucleus, i.e., on the natural length scale of the hydrogen operator Sg (see (1.9)).
Recall also that the eigenvalues of this operator have magnitude O(Z?).

The following theorem states that Scott’s conjecture is indeed true. Hughes [113,
114] (lower bound) and the works [208, 209] (upper and lower bound) proved this
conjecture for neutrally charged atoms. Since the Scott correction should not depend
on “electrons on the outermost shells”, it was believed that the conjecture also holds
forions. Indeed, Bach [1, 2] showed that also this intuition is correct and proved Scott’s
conjecture for (positive and negative) ions.

Theorem 3.4 ([1,2,113,114,208,209]) Leto > 0 and N = aZ with N € N. Then,
the ground state energy ES(N, Z) of Hpy.z in (1.1) satisfies

ES(N,Z) = E™(a, 1)- 273 + CZ] S Z2 4 0ZYH, (3.5)
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We will give a heuristic argument in favor of Theorem 3.4 later in Sect. 3.1.4. At
this point, we would also like to mention two alternative and interesting proofs of
Theorem 3.4 by Ivrii and Sigal [119] and by Solovej and Spitzer [225], which do not
use the spherical symmetry of the atomic case (see Theorem 3.15). Both used them to
prove the Scott conjecture for clamped nuclei whose distances are scaled by Z~1/3,

Next, we turn to the strong Scott conjecture. Scott’s heuristics led Lieb [ 144, p. 623]
to the belief that for large Z the suitably rescaled electron density pg on distances
Z~! from the nucleus converges to the hydrogenic density pg (see (1.12)). Since the
magnitude of the total electronic density of a Bohr atom is proportional to Z>, one
suspects that the correct object to study is the scaled density Z~3ps(Z~'x). A step
towards the proof of the strong Scott conjecture in the full N-particle setting was taken
in [202], where the following upper bound was shown:

. ps(0) 7
lim sup < —q; 3.6)
Z—00 z3 24

see also Theorem 3.8 for a more general statement. Interestingly, the numerical value
/24 is quite close to q‘l . pSH 0) =1 £(3) (see Theorem 3.11). Motivated by this
strong numerical evidence, lantchenko et al. [117] eventually proved Lieb’s strong
Scott conjecture.

In fact, in [117] also an angular-momentum-resolved version of this conjecture is
proved. To formulate this result, for £ € No, welet Yy ,,,m € {—¢, ..., £}, be Lz(Sz)—
orthonormal spherical harmonics of degree £. We then define one-dimensional, radial,
angular-momentum-resolved densities of ¢ € /\f}V: 1 L2(R3 : C%) by

4 q
oe(r):=Nr? Y~ 3 fr

m=—{Lo=1

2
sz do Y@y (rw,o;y2,...,yn)| dy2---dyn

3.7

for £ € Np and » > 0. We recall that we use the letter o : Ry — Ry to denote
one-dimensional, radial densities with particle number fooo o(r)dr, i.e., we integrate
with respect to dr and not 72dr. Three-dimensional densities are denoted by the letter
p:R3—> R . The densities o¢ in (3.7) are related to the total density p in (1.5) by

/82 p(rw)dw = r2 Z o¢(r) 3.8)

=0

for r > 0. If ¥ in (3.7) is an eigenfunction of Hy y with eigenvalue ES(N, Z,R),
we write

oe.s (3.9)

for (3.7) and analogously for other Hamiltonians that we discuss later.

Recall that the (spinless) hydrogen Hamiltonian S was defined in (1.13). Due to
the spherical symmetry of S, one can consider its parts in a fixed angular momentum
channel ¢ € Ny, i.e.,

@ Springer



The Scott conjecture for large Coulomb systems: a review Page 29 of 79 1

1/ d> ee+D\ 1.,
E(_@+r—2)_; in L“(Ry, dr : C). (3.10)

The eigenfunctions Wns, ¢m OF S H are then of the form

S
Y g (%) = MY@,W, ( * ) , 3.11)

x| x|

where 1//3, ¢ € LZ(R+, dr) are normalized eigenfunctions of (3.10). Unsold’s theo-
rem (cf. [239, p. 377], [247, Section 18.4]) states that Zﬁl:_g Yom(@Yem(o) =
%Pg (- 0) for w,0 € S* and the £-th Legendre polynomial P, which obeys
Py(1) = 1. Using this, one can carry out the m-summation in the definition of the
hydrogenic density p g in (1.12) and obtains

l oo
Heo\ _ H 3
psl () = s Y ofls(x), xeR (3.12)
£=0
with the one-dimensional, angular-momentum-resolved hydrogenic densities

ofs(r) = qQe+ 1)) |y ()P, r>0. (3.13)
n=0

Formula (3.12) implies, in particular, that pgl is spherically symmetric, as mentioned
in the introduction. The right sides of (3.12) and (3.13) converge; see Theorem 3.11
for details.

The following theorem states the validity of the strong Scott conjecture.

Theorem 3.5 ([117]) Let £ € N, ES (N, Z) be an eigenvalue of Hy 7z, and ps and let
0¢.s be the total and angular-momentum-resolved one-particle densities associated
with any of its eigenfunctions, respectively. Then, the following statements hold.

(1) (Convergence of angular momentum density). For all r > 0, one has pointwise
convergence

lim Z2005(r/Z) = of's(r). (3.14)
Z—>00

Moreover, for v e L' (R, dr) one has

o0

lim r () Z300s(r/Z) dr = /Ooor—lv(r)gfs(r) dr. (3.15)

Z—o0 Jo
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(2) (Convergence of total density) Let W € L%°(S*) and r > 0. Then the total density,
when spherically averaged, converges pointwise to the hydrogenic density, i.e.,

lim /2 W(w)Z 3 ps(rw/Z) dow = pll (ro) f2 W(w)dw forallo € S*.
S S

Z—0o0
(3.16)
Moreover, for any locally bounded v € L'(R3), one has
lim / |x|v(x)Z73pg(x/Z) dx =/ |x|v(x)pSH(x) dx. (3.17)
Z—oo JR3 R3

Remark 3.6 Theorem 3.5 remains valid for the total and angular-momentum-resolved
one-particle densities ps and o, s of elements in any sequence of normalized functions
Yy, N =1,2, .. in the form domain of Hy, 7 satisfying

i YN Hy 29w — ES(N, 2)
1m =
N—o00 72

0. (3.18)

Such a sequence (¥ n)yen is sometimes called approximate ground state of Hy z on
the Scott scale.

Later, we shall see that the hydrogenic density obeys

1 \32
pd(x) = (—) X732 + o(|x| 7% (3.19)
YTF

as |x| — oo. Since Theorem 2.3 asserts that the TF density has the exact same
1
asymptotic behavior, but for small |x| (on the scale Z™3), Theorem 3.5 shows that
. .. 1
there is a smooth transition of pg between the length scales Z~! and Z~3.

Remark 3.7 (More results on the quantum density) We summarize some further results
for the many-particle ground state density.

(1) Recall that Theorem 3.5 does not say anything yet about the quantum density at
the origin » = 0. Therefore, it is of interest to find quantitative upper bounds on
ps(0). We record the following theorem.

Theorem 3.8 ([187, 188,202]) Let (Yn)nen be an approximate ground state of Hy 7
on the Scott scale in the sense of Remark 3.6, and let pg be the one-particle density of
the element yry of that sequence. Fix any ¢ > 0 and assume that N/Z > 0 is fixed or
that N > Z — cZ'/%. Then one has

. ps(0) m
lim sup < —q. (3.20)
oo 23 24
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For N = Z, this was shown in [202] before the strong Scott conjecture [117] was
proved. The result for ions is due to Rakowsky [187] and [188]. At the core of the
proof of Theorem 3.8 lies a linear response argument and the inequality

s (0) < 3/3 S 4o (3.21)
R;

)= 27 |x|?

due to Hoffmann—Ostenhof et al. [110]. Theorem 3.8 supports the belief that the strong
Scott conjecture holds for ions as well.

(2) The work [118] proved the convergence of the one-particle ground state density
matrix on Scott’s scale. Consider an approximate ground state ({¥y)yen of Hy z
on the Scott scale. For x, y € R3, let

ys(x,y) = Z Z/w , dxne e drp iy - day

Ol seens on=1v=1

YN (X1, 015 o) Xu—1, Oy—1} X, Oy} Xyl Oyl -y XN, ON)

X YN (X1, 015 ooy Xy 1, Ou—13 Y5 Ou5 Xpg [, Opt1s o) XN, ON)
(3.22)

be the kernel of the associated approximate one-particle ground state density
matrix yg. Observe that 0 < yg < ¢ is a trace class operator. Recall the L%(R?)-
normalized eigenfunctions wri ¢.m Of the hydrogen operator (1.13). Define the
orthogonal projection onto the negative (purely discrete) spectral subspace of this
operator by

y.SH: Z |wnlm nlm' (3.23)
n>0¢

where the series is pointwise convergent (see Theorem 3.11 by Heilmann and Lieb
[104]). Then, the following result holds.

Theorem 3.9 ([118, Theorem 1]) Let K be a trace-class operator, and let ys be an
approximate one-particle ground state density matrix of Hy z on the Scott scale in
the sense of Remark 3.6. Then, one has the weak convergence

Jim Tr (K Z 3y (E 2)) = Tr(Ky!h). (3.24)

(3) As already indicated, there is a smooth transition of ps between the scales Z -1
and Z~1/3 (in view of Theorems 2.3 and 3.5, and Formula (3.19)). This may
have led to Lieb’s belief [144] that Z—3/23/(268) ps(x/ Z‘s) should also behave like
(1/y1E)3/?|x|73/% when § € (1/3, 1). In [116], Tantchenko succeeded in proving
this conjecture using some of Ivrii’s and Sigal’s methods [119] adapted to the case
of (neutral) atoms.
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Theorem 3.10 ([116, Theorem 2]) Let (Yn)nen be an approximate ground state
of Hy z (in (1.1)) on the Scott scale in the sense of Remark 3.6, and let ps be the
one-particle density associated with ¥y. Let U € C®(R? \ {0h N L®R?), and
assume

10°U ()| So 1x177H0)73, x> 2, v > 0, (3.25)
10°U ()| Su X7 1xl <2, vl > 0. (3.26)

(Here v = (v1, v, 13) € (No)? and [v] = vi + va 4+ v3. We also use the notation

(x) ==/ 1+ |x|% forx € RY.) Then for any § € (1/3, 1), one has

1 \3/2
lim U(x)Z_3/2_3/(28)ps(x/Z‘S)dx=/ U (x) <—> |x|~3/% dx.
Z—oo JR3 R3 YTF
(3.27)

It may very well be true that Theorem 3.10 also holds under less severe assumptions
on the test function U. Theorem 3.10 can also be generalized to the molecular case,
see [116, Theorem 7] for details. Further extensions were recently outlined by Ivrii
[120-122].

Some elements of the proof of Theorem 3.5 will be given in the relativistic case,
which is in spirit the same but technically more elaborate (Sect. 4.3.3). Here we just
mention that all known proofs for the convergence of the density (as of this writing)
rely on energetic results. It would be interesting to see if this scheme could be reversed.

Before we come to the arguments in favor of Theorem 3.4, we collect some prop-
erties of the hydrogenic density ,og .

3.1.3 Hydrogenic density

Recall the normalized eigenfunctions ws ¢ Of the hydrogen operator (1.13) acting in

L%(R? : C). Recall also the definition of the hydrogenic densities p§’ and, for £ € Ny,
the angular-momentum-resolved version Qgs in(1.12) and (3.12)—(3.13), respectively.

The specific knowledge of the lﬂi ¢.m dllowed Heilmann and Lieb [104] to analyze

pé’l and Qfs in great detail. Forn € Ny, £ € Ng, and m € {—¢, ..., £}, they are
S X
Vo om ) = Ry e(r)Yem ) (3.28)

where the R, ¢ are explicitly known [104, p. 3630]. Thus, by Unsold’s theorem,

q
psl () = =3 D QL+ DRy e(x])*. (3.29)

n>0¢>0

Making heavy use of properties of special functions, they carried out the £- and n-
summations (in that order) and proved the following theorem.
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Theorem 3.11 ([104, Theorem 1, p. 3631])

(1) The series on the right side of (3.29) converges pointwise.
(2) One has the asymptotic expansion, as r — 09,

Pl (r) = %r*/ 2D ai@n 7 —sin(/32r) ) b8
T

Jj=0 j>1

+cos(v/32r) Y e (8r) 72
Jj=1
(3.30)

The first few coefficients are:

ap=2/3 a1 =—1/12 a» = 79/960,
by =3/2 by = —140589/11 200,
c1 = 141/40 ¢y = —2028 627,44 800.

(3) Let A € (0, 1] and let pgil(k, x) be the TF minimizer ofggil on ZL,. Then for
any A € (0, 1],

lim [x[*?pd (Ix]) = lim |x[*?p75 (1, x). (3.31)
[x]—00 |x]—0
(4) psfl (r) is monotone decreasing and achieves its maximum at r = O with

Pl ==L+ ~q-038. (3.32)

n>0

Remark 3.12 The “shell structure”, i.e., the oscillations of p§’ (r), is barely visible. As
Heilmann and Lieb put it [104, p. 3633]: “In fact, it is necessary to take two derivatives
with respect to r in order to make the oscillatory terms as large as the nonoscillatory
ones. In short, shell structure is not a prominent property of this universal atomic
function.” For graphical illustrations, see, e.g., [104, p. 3633].

3.1.4 Scott’s derivation of the Z2-correction and ideas of Siedentop and Weikard

We first present Scott’s [200] heuristic derivation of the Z?-correction to TF theory.
For simplicity, we restrict ourselves to the neutral case N = Z. Our exposition follows
March [161, pp. 8-11]. Afterward, we present the ideas in [208] to prove the upper
bound (3.5).

Scott’s idea is that the Z2-correction stems from the innermost electrons, which live
roughly a distance Z~! away from the nucleus. Since there are only “few” electrons
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on this scale, one expects the electron—electron repulsion to be irrelevant there, i.e.,
the electrons should be described by the hydrogen operator S g .

These heuristics suggest that the first correction of the Thomas—Fermi energy for a
large atom should be the difference between the “Bohr energy” (i.e., the sum over all
hydrogen eigenvalues) and the Thomas—Fermi Bohr energy. We computed the latter
in (2.22). In the neutral case, we obtain

EfF L (Z) = =33 )2)¢* 3773, (3.33)

On the other hand, in the Bohr atom, each shell (indexed by n € N) of energy
—Z72/(2n?) has gn? states. Thus, the N = Z many electrons occupy k shells, where
k is determined by

L ) KBk k )
Z=N = k+1 = — 4+ =+ -+ (kk+1 3.34
qn2=1n+(+)8 q<3+2+6+(+)8> (3.34)
and where 0 < & < 1 is the fraction of the (k + 1)-st shell that is filled. One finds

k=@Z/p'3 - % —¢&+o(l) as Z — o0. Thus, the energy of the Bohr atom is

z? : q ., 2
Epon(Z) = ——=-q (s + X} 1) = Egop(2) + 12 o), (3.35)
n—=

The second term here is exactly the Scott correction.

We now present some ideas from [208] that enter into the proof of the upper bound
in (3.5). As usual, an upper bound will be derived using a suitable trial state. As we will
describe later in more detail, this trial state contains, in addition to hydrogen orbitals,
also so-called Macke orbitals. It is in connection with these Macke orbitals that the
Hellmann—Weizsédcker functional defined in Sect. 2.3 comes into play [212].

To motivate why this functional is relevant, we recall that the TFW energy has an
asymptotic expansion whose first term coincides with the TF energy and whose second
term behaves like Z2. If one could show that the TFW functional (with some choice of
A) provides an upper bound for the ground state energy ES(N, Z), then there might
be a chance that this functional can be used to prove the upper bound in (3.5). Apart
from a factor that decreases like N2 and is irrelevant in the limit N — oo, this was
indeed proved in one spatial dimension by March [162] and March and Young [163].
They showed that the sum of the first N eigenvalues of — % —vin L2(R) is bounded
from above by

inf ! o Lo X o
in {A[E((\/ﬁ)) +§?( —m>,0(X) —v(x),o(x)] Xx:pe N}’
(3.36)

where Ay is the one-dimensional analog of (2.25); see also [206, Section 3] or Miiller
[176, pp. 114-139]. To prove this, March and Young used cleverly constructed trial
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functions by Macke [158, 159]. These so-called Macke orbitals may be seen as a (finer)
analogue of coherent states. March and Young also proposed d-dimensional versions
of Macke’s orbitals, which, however, lead to a contradiction, as was pointed out by
Miiller [176, pp. 131-134], Lieb [143, p. 96], and the author of [212, p. 213]; see also
Dietze [36] for a closer inspection.

Let us return to the three-dimensional case. In [207, Theorem 5.2] and [213, (4.1)]
(see also Ladéanyi [136] and [212] for precursors), the following upper bound was
proved in the atomic case:

ES(N. 7) < inf {&%(0) + R(@) : 0 € MY (3.37)

with an (unimportant) remainder term

ap [—1 468 — 382 2¢3 — 682 + 4¢ i

R(o) := Z Zt ¢ £ e ¢ ¢ Qg(r)3 dr.

= 3 n2 n3
£20,10 0 ¢ ¢ 0

(3.38)

Here ny = (q(2¢ + 1))’1 fooo o¢(rydr and g; := ny — [n¢] € [0, 1). Physically, ng
has the interpretation as the number of electrons in the sector of angular momentum ¢
corresponding to fixed magnetic quantum number m and spin s. (In [207, 208, 213], this
number is denoted by Ny, s.) The total number of electrons in the angular momentum
channel ¢ is therefore g (2¢ + 1)n,. Note that, if n, is integer, then R(0) < 0 and the
term can be dropped. For general ny, this term has the effect of slightly modifying
the prefactor of the term involving Qg in the Hellmann—Weizsicker functional. For
properly chosen g, it is O(Z>/3), cf. [208, pp. 472—473, Proposition 3.6]. In this way,
one can obtain from (3.37) the bound

ES(N, Z) < E™N(N, Z) + const Z°. (3.39)

This contains an error term of the correct order and is the ‘interacting analogue’ of the
upper bound in Theorem 2.11. The proof also reveals that Weizsédcker’s correction is
o(Zz) when the ¢-summation starts at L = [Z!/12], cf. [208, Proposition 3.3]. Thus,
we have obtained an upper bound of the correct order, but not yet with the correct
coefficient. In order to obtain the correct coefficient, we need one more modification
of the above strategy.

After this preparation, we can give a brief outline of the proof in [208] of the upper
bound in (3.5). The basic idea is to describe electrons close to the nucleus using hydro-
gen eigenfunctions, and electrons far from the nucleus using the Hellmann—Weizsicker
functional. The distinction between “close” and “far” electrons is implemented by an
angular momentum cutoff L = [Z°] for an appropriate § € (0, 1). This is suggested
by the solution of Kepler’s problem, where the perihelion of a planet grows like the
square of its angular momentum. For the hydrogen atom, this is reflected by the explic-
itly computable expectation values of powers of |x| in their eigenfunctions, see, e.g.,
Bethe [17, (3.19)—(3.27)].
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In the following outline, we disregard the electron—electron repulsion. Treating this
term requires some effort, but it does not affect the Scott correction and, therefore,
ignoring this term helps to clarify the basic steps in the proof.

(1) Use the variational principle with a trial state that is made up of hydrogen eigen-
functions for angular momenta 0 < ¢ < [Z ﬁ] and Macke orbitals for £ > [Z ﬁ].
For the precise form of the resulting upper bound, see [208, (2.3)].

(2) The Macke orbitals for large ¢ lead to the Hellmann—Weizsicker functionals 5?\;
(see (2.37)). These functionals are summed starting from £ > [Z 17121 As remarked
after (3.39), the Weizsicker term is o(Z2); see [208, Proposition 3.3]. Thus,
D =121 EEVZV[QZ] < D isizi 522[9?] + 0(Z?) in terms of the Hellmann
functionals SEZ in (2.42) and their minimizers Q?.

(3) The summation of the hydrogen eigenvalues up to angular momentum ¢ < [Z!/12]
leads to Zk[zl/lz] SEZ [Q?] plus Scott’s correction %Zz plus O(Z23/12); see [208,
Propositions 3.1 and 3.2].

(4) By (2.43), the leading order of the Hellmann functional is the TF energy modulo
O(Z5/3)-err0rs; see [208, Lemma 4.1].

This concludes our sketch of the upper bound in (3.5). We mention that Macke
orbitals and the Hellmann—Weizsédcker functional can also be used to give a proof of
the lower bound of (1.10); see [210] and, for an exposition of the basic ideas, [211].
Both in the proof of the upper and lower bound, the use of Macke orbitals is reminiscent
of the use of coherent states by Thirring and Lieb in their proofs of the asymptotic
exactness of TF theory.

3.2 Molecules without magnetic fields
3.2.1 Thomas-Fermi scale

As in the atomic case, TF theory predicts the leading term of E S (N, Z, R) and the
density ps on the TF length scale correctly. More precisely, fix R = (Ry, ..., Rg) €
R3K, Z=(Z1,...,Zk) € (0, oo)K, IZ| = Zle Z,, and the TF electron number
A. It is not necessary to assume A < |Z|. Foreach N = 1,2, ..., define ay = N/A.
In Hy,v in (1.1) replace each Z, by ay - Z, and each R, by a;,mRK. This means
that the nuclei come together at the rate a;,m ~ |Z|7'3 as N = 0o when N/|Z|
is kept constant. At this point we want to emphasize that this scaling of R,, which
has become customary in the mathematical literature, is motivated by mathematical
considerations rather than by physical reality. However, neither the energy nor the
density is expected to be close to the molecular ground state energy or ground state
density. In fact, the two energies are expected to differ already to leading order, since
the minimal positions of the nuclei do not scale in this way.

In case ES (N,anZ, a;,lﬁﬁ) is an eigenvalue, let ¢y be an associated eigenfunc-
tion with corresponding one-particle density ps. If not, pg shall denote the one-particle
density associated with the element ¥y of an approximate ground state (/) yenN On
the Thomas—Fermi scale in the sense of Remark 3.2.
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By the scaling relations (2.13) for TF theory, we have

P 0L Z R x) = ay? o (N, ayZ,ay PR, ay'Px) (3.40)
E™0. 2 R =ay"E™(N,anZ ay'*B). (3.400)

We now make the connection between the full quantum problem (1.4) with frozen
nuclear positions associated to Hy v, and TF theory by letting the total nuclear charge
|Z| and the electron number N tend to infinity in such a way that the ionization
degree N/|Z| is kept constant. The following theorem due to Lieb and Simon [152]
generalizes Theorem 3.1.

Theorem 3.13 ([152, Section III], [141, Theorem 5]) Fix A > 0 and let ay = N/,
z=(z1,...,2x) € (0,00K, and R = (Ry, ..., Rg) € R*X. Let Hy y be as in

(1.1) with nuclear configuration {ayz, aX,lBE}. Then, the following statements hold:

(1) The quantity a;7/3ES(N, anz, a;1/3£) has a limit as N — oo and this limit
coincides with ETF (., z, R).

(2) The scaled one-particle density a;lz 0S (a;]l/ 3x) associated with a (possibly
approximate) ground state on the TF scale has a limit as N — oo. If A < |z|, then
the convergence is weakly in L' and the limit is p™F (X, Iz|, R, x). If A, > |z|, then
the convergence is weakly in LllOC and the limit is ,OTF(|§|, Iz|, R, x).

As Lieb [141, p. 560] notices: “Note that if A > |z|, then this result says that the
surplus charge moves off to infinity and the result is a neutral molecule. This means
that large atoms or molecules cannot have a negative ionization proportional to the
total nuclear charge; at best they can have a negative ionization which is a vanishingly
small fraction of the total charge.”

Remark 3.14 Note that, if the R, are kept fixed and unscaled, one ends up with isolated
atoms in the limit N — oo, see Lieb [141, pp. 559-560] for the precise statements.

3.2.2 Scott scale

In addition to being independent of the absence or presence of the electron—electron
repulsion and of the ionization degree, one expects the Z2-correction to be the sum of
the Scott corrections of the atoms constituting the molecule, as long as the minimal
internuclear distance is not too close to the Scott scale. In particular, this is expected
for ground states of molecules where the interatomic distance is expected to be of
order one in the scaling parameter of the nuclear charges.

The Scott conjecture for molecules with frozen nuclear positions was first proved
by Ivrii and Sigal [119] using a multiscale analysis and microlocal techniques. Later,
Solovej and Spitzer [225] found a proof that is partly similar to the multi-scale analysis
in [119] using an interesting new coherent states method. Around the same time,
Balodis [8] proved the Scott correction uniformly in K. The following theorem is the
content of [225, Theorem 1].
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Theorem3.15 Let Z = (Z1, ..., Zk) € (0,00)K and R = |Z|7'3(r1, ..., rk) €
R3K withmingg |ry —r¢| > 1o for somerg > 0. Definez = (z1, ..., 2k) = |;|*‘;.
Let ETF(g, r) be the Thomas—Fermi energy of the unconstrained problem (2.9) and

let ES(N, Z, R) be the ground state energy of H,z, v with nuclear configuration Z
and R. Then

K
ES(ZI,Z,R)=E™ @z, 12" + %Z Z2+ 0127130 (3.41)

as |Z| — oo, where the error term (9(|Z|2_1/3O) besides |Z| depends only on
Z1,...,Zg and ry.

3.3 Molecules with self-generated magnetic fields

In this subsection, we consider molecules in the presence of a classical magnetic
field. Quoting Erd6s and Solovej [53, p. 229]: “External magnetic fields were taken
into account in [153, 154] (homogeneous) and [52] (inhomogeneous), but subject to
certain regularity conditions. Self-generated magnetic fields, obtained from Maxwell’s
equation, are not known to satisfy these conditions.” For this reason, we shall consider
self-generated magnetic fields here. (See (2) in Remark 3.16 below for an explanation
of the word “self-generated”.)
To introduce the setting precisely, let

Wi= (A LB R :RY: VoA 2@ RY), dvia) =0),  (42)

where all derivatives are understood in the sense of distributions and where V ® A
denotes the 3 x 3 matrix of all derivatives d; A ;. We set |V ® AP = ?,j:l [0; A |2
and, with ¢ > 0 denoting the velocity of light, consider the magnetic field energy

62 C2
—/ I(V x A)))? dx = —/ (V& A)(x)|* dx. (3.43)
8 Jr3 8 Jr3

The identity here is a consequence of the Coulomb gauge.
In the non-relativistic approximation, the one-particle kinetic energy is the magnetic
Schrodinger or Pauli operator

T(A) == (~iV+A®) or T(A) = % [0 (—iV+AW)] (3.44)

N =

in L2(R? : C?) depending on whether the particles are (effectively) considered spin-
less, or have spin—%. Here o = (01, 02, 03) is the vector of Pauli matrices.
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The total energy of a non-relativistic molecule with charges Z = (Z, ..., Zg) €
(0, 00)X fixed at positions R = (Ry, ..., Rg) € R3X in a classical magnetic vector
potential A € 2 is then described by the Hamilton operator

N N
Z 1 .

HN,V,A = (T(U)(A) - V(xv)) + § i +U in /\(LZ(R3 : (CZ))’
v=1 1<v<p<N T = X v=1

(3.45)

where V is the electron—nucleus interaction as in (1.2).

In case the kinetic energy is described by the Pauli operator, we will need to impose
an additional restriction on the quotient | Z|/c?. Indeed, if | Z|/c? is sufficiently small,
then the quadratic form associated with (3.45) is bounded from below uniformly in A,
see, e.g., [69, 92, 147, 148]. Crucially, however, stability fails, if | Z| /c2 is too large,
see [48, 157].

For both choices of the magnetic kinetic energy 7 (A) and each fixed A € 2, the
operator Hy v 4 is defined as the Friedrichs extension of the corresponding quadratic
form defined on S(R> : C?).

For fixed magnetic potential A € 2 and fixed nuclear positions, the electronic
ground state energy is

E(N,Z,R, A) :=infspec(Hy v, a). (3.46)

The total ground state energy with fixed nuclear positions arises from minimizing this
energy with respectto A € 2, i.e.,

2
ES™ME(N, Z R, c¢):= inf (E(N,Z,B, A+ C—/ 18% XA)(x)Izdx)-
Aefl 8 Jg3

(3.47)

Remark 3.16 (1) In (3.47), it suffices to minimize over all compactly supported A € 2.

(2) Asremarked in [53, p. 231], the Euler—Lagrange equation that arises from mini-
mizing <\I/, (HN,V,A + % ng (V x A)(x)|? dx) lIJ> over ¥ and A, corresponds
to the stationary version of the coupled Maxwell-Pauli system, i.e., the eigenvalue
problem Hy v AV = E S’mag(N , Z, R, c)W together with the Maxwell equation
for the magnetic field, i.e., Vx B = 4x c2 Jy; here J, is the current of the wave
function W. This explains why B is called a self-generated magnetic field.

3.3.1 Thomas-Fermi scale
On the Thomas—Fermi scale, it turns out—as the semiclassical picture suggests—that
the magnetic field does not change the leading order of the energetic expansion as

Z — oo. To make this precise, define

ES™E(Z R ¢) = Allan ES™ME(N Z R, ¢), (3.48)
€
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ESronmag 7 R ) = Iivan inf spec(Hy v.0). (3.49)
€

Erdds and Solovej [53] proved the following theorem.

Theorem 3.17 ([53, Theorem 1.1]) Suppose that T (A) is either the Pauli or the
magnetic Schrodinger operator (see (3.44)) and assume (for simplicity) Z = Z1 =
Zy = .. =Zg and |R; — Rj| > c1Z7 V3 foralli # j. Then, there is a positive
constant kg such that if Z /¢* < ko, then

ES1OMIE(Z R ¢) > ES™E(Z, R, ¢) = ES™(Z, R, ¢) — 2235, (3.50)
3.3.2 Scott scale

The following theorem due to Erdds et al. [50, 51] characterizes the Scott correction
in the presence of a self-generated magnetic field.

Theorem 3.18 ([50, Theorem 1.1]) Suppose that T (A) is either the Pauli or the
magnetic Schrodinger operator (see (3.44)). Let z = (z1,...,zk) € (0, 00)X with
Zle 2k = landr = (r1,...,rg) € R3K withminge |1 —r¢| > ro for somerg > 0
be given. Let Z = (Zi,...,Zg) = |Z|(z1,...zx) € (0,00)K for some |Z| > 0
and R = |Z|~'3r be the charges and the positions of the nuclei of the operator
Hy v A in (3.45). Then there is a universal (independent of z,r, K), continuous,
monotone non-increasing function S : (0, ko] — R with some universal ko > 0
and with lim,\ o S(k) = 4—1¥ such that, as |Z| = Zle Z,e — 00 and ¢ — o0 with
max, 87'[Z,(/c2 < kg, one has

K
ES™(2], Z, R, c) = E™ (2, nIZ"P + 21217 ) 22 - S@r Z /) + 0(1ZP).
k=1

(3.51)

Remark 3.19 (1) The theorem is independent of the existence and uniqueness (modulo
gauge freedom) of the minimizer A. In fact, it is not clear whether the infimum is
attained at A = 0 or at a non-trivial magnetic field.

(2) The threshold kg for which the assertion of Theorem 3.18 is shown to hold is less
than the number «¢; above which Hy v 4 fails to be bounded from below.

(3) The theorem does not assert that S(k) is strictly decreasing, although this is
believed to be the case. In fact, it is conceivable that S(k) is constant equal to
1/4 for all « up to the critical value «.; beyond which it is minus infinity.

Remark 3.20 Theorem 3.17 concerning the leading order holds also in the case where
the A-field is quantized [53]. So far, the Scott correction for quantized A-fields—both
in the non-relativistic setting of Theorem 3.18 and in the relativistic one of Theorem
4.21 below—can only be proved with a low ultraviolet cutoff of the magnetic field
which corresponds to a length scale that is longer than the Scott scale, i.e., would be
of limited physical meaning.

@ Springer



The Scott conjecture for large Coulomb systems: a review Page 41 of 79 1

We emphasize that all results in this subsection concern the energy. We are not
aware of results concerning the density.

4 Relativistic Coulomb systems

In this section, we discuss relativistic models of large Coulomb systems and begin
with an overview of the relevant underlying one-particle operators.

4.1 One-particle operators

We first introduce the relativistic one-particle operators that will later be used to con-
struct the many-particle operators that we are mostly interested in. We state conditions
on the coupling constants of the Coulomb potential for which the operators can be
defined and recall some of their spectral properties. More detailed treatments are con-
tained, e.g., in the textbooks by Balinsky and Evans [7] and Thaller [232], as well as
in the paper by Matte and Stockmeyer [166] and the references therein.

4.1.1 Chandrasekhar operator
Definition

The Chandrasekhar operator is the simplest relativistic operator discussed here. In the
literature, this operator is sometimes referred to as Herbst operator or pseudorelativistic
operator. Its origins can be traced back at least to Chandrasekhar in the context of
(in)stability of neutron stars [24] (see also [155, 156]). The mathematical investigation
of this operator started with the work of Herbst [109]; see also Weder [244] for electric
potentials V(x) = |x|~# with B € (0, 1). The operator is defined as the Friedrichs
extension of the quadratic form—whenever it is bounded from below (see (4.3))—
associated with

z
cl,=V-AA+ct—c*— = inL*®R:0) 4.1

|x|

with form domain being the Schwartz space S(R? : C). In the following, we abbreviate
the fractional Laplace operator by |p| := +/—A.

Scaling

The operator has a natural length scale, namely ¢~!. Indeed, scaling x — x/c and
writing y := Z/c shows that C fz is unitarily equivalent to ¢>C fiy =: CZC){{ with

CH = V=A+1-1- |V—| in L2(R3 : ©). (4.2)
X
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Kato's inequality

The sharp Hardy—Kato—Herbst inequality—for short Kato’s inequality—states that

2
2 /3 de < /3 IE1GE) > dE, u e SRY), 4.3)
R R

T |x]

where i(£) := 27)73/2 fR3 e 1§y (x) dx; see Kato [130, Chapter 5, Formula (5.33)]
(without proof) and Herbst [109, Theorem 2.5]. It follows from Kato’s inequality and
the inequalities | p| > m — 1 > |p| — 1 that the quadratic form associated with
C )I,'I is bounded from below if and only if y < yc with

2
yc = —. 4.4
T

In fact, Raynal et al. [189] showed that the form is strictly greater than —1, even if
y = 2/m. Numerical evidence for this fact had been provided by Hardekopf and
Sucher [101].

Domain considerations

The quadratic form domain of C;I is H'/2(R3) when y < 2/x. For y = 2/x, the

form domain is the closure of S(R?) with respect to the norm ({u, C){{u) + lul®2.
In analogy to the local case, we believe that there are functions in the form domain of
Cf‘;n for which both sides of Kato’s inequality are infinite and, therefore, that this form

domain strictly contains H 172 (R3). For domain considerations, see also Le Yaouanc
etal. [137].

Decomposition into angular momenta

The spherical symmetry allows to decompose C;{ into angular momentum channels.
Decomposing L%(R?) into the direct sum

L2(RY) = LRy, r2dr) ® L*(S?, dw) = EP) Hu,
£eNg

induces the decomposition

=Pl ek, 4.5)
£eNg

where Cf! acts in L?(Ry, r> dr). Here Hy = L*(Ry, r?dr) ® K¢ with K¢ being
the eigenspace associated with the £-th eigenvalue £(¢ + 1) of the Laplace—Beltrami
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operator on S Defining U : LRy, r2dr) — L2(Ry, dr) by (Uf)(r) = rf(r) for
f € L*(R4, r?dr), we may introduce

- a2 e+ Y.
cl, = Ucfyu*=\/_m+ ", +1—1—7 in L2(R4, dr). (4.6

Fourier-Bessel transform

The kinetic energy operator

2 ee+1
Cy = ——+$+1—1 in L>(R,., dr) 4.7
dr? r2
can be diagonalized by the Fourier-Bessel transform ®, : L*(Ry,dr) —

L*(R,,dr). For u € S(R,), it acts as
o0
u > (Dou)(k) ;=/ dr \/I;J%M(kr)u(r), keRy. (4.8)
0

Note that ®; = ®7 is unitary on L%(R,, dr). Just as the Fourier transform diag-
onalizes translation invariant operators, the Fourier—Bessel transform diagonalizes
translation invariant, spherically symmetric operators when restricted to a specific
angular momentum channel £. Define the operator p, in L>(R, dr) by the equality

(u, pewd 2@, ary = (f+ (=D F) 2 @) 4.9)

for any f(x) = |x|_1u(|x|)Yg,m(x/|x|) with u € S. Formally, we have

dz e+
Pt = +—2

dr2 r

Then, for any spectral multiplier F' € Llloc (R4+) of pg, one has

(Pe(F(po) (k) = F(k) - (Pef)k), k>0, (4.10)

and (in weak sense) the kernel of F(py) is
o0
(F(pe))(r,s) :f dk F(k)\/er%H(kr)vksJ%M(ks), r,s > 0. 4.11)
0
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Hydrogen eigenvectors and density

Let wf’ ¢.m denote the L%(R*)-normalized eigenvectors of C}f’ . Due to the spherical
symmetry of CX, we have

C
Yy () = Mnm <i> : (4.12)
” |x] |x]

where 1//nc ¢ are the Lz(RJr, dr)-normalized eigenvectors of C{’y. The radial, one-
dimensional hydrogenic density in angular momentum channel £ € Ny is

oflc(r) ==qQU+ 1Y [y, >0, (4.13)
n>0
and the (spherically symmetric) total, three-dimensional density is
1
He oy _ H 3
) = s > odclxh, xeR’. (4.14)
€20
These quantities are indeed well-defined as the following theorem due to [87, Theo-
rem 1.4] shows. To state it, we define
D:(—1,1] = (—o0,2/7]
2 (53 —0))T (51 4+0))
1
r(3)rie-o)

= (1 —-o)tan (7170)

(4.15)

This is a monotone increasing function, which satisfies lim,\ 1 ®(0) = —oo and
®(0) = 0, and whose maximal value is 2/7 = ®(1). Consequently, for any y €
[0, 2/7] there is a unique o, € [0, 1] such that ®(0},) = y fory € [0, 2/x], i.e.,

o, =® '(y) €10,1] fory € [0,2/x]. (4.16)

Theorem 4.1 ([87, Theorem 1.4]) Let 1/2 <5 <3/4if0 <y < (1 + \/5)/4 and
1/2 <5 <3/2 -0, if(1+ V2)/4 <y < 2/n. Then for all £ € Ny there is a
constant Ag ,, > 0 such that for all r € R, one has

—45+1
ol <q Ay, (€+3)77

25—1 4s—1
r 1 T 1 1
X £+% {r<e+1) €+% e+ <r<@+1)?)

1\4s—1
H(+3) Ly |- (4.17)
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Moreover, for any ¢ > 0, there are constants Ay, A, ¢ > 0 such that for all r € R
one has

I\)\..J

q-A,r if 0<y <(++2)/4,
q-A, (—2% Ny +r ) i A +VD/A <y <2
(4.18)

pl (r) < {

Remark 4.2 (1) The proof of (4.17) uses Bessel kernel bounds for C fy, i.e., bounds
for the integral kernel

(CL, +an) ™ (r.s) (4.19)

withay = ay(€+l/2)’2,r, s > 0,andt € (1, min{3—20,, 3}).Fory < 1/2,the
Hardy potential y /r is an operator perturbation for p,—o by Hardy’s inequality.
Hence, the proof in this case effectively only uses Bessel kernel bounds for C,
(recall (4.7)), which can be obtained using the Fourier—Bessel transform. On the
other hand, if y > 1/2, a comparison between powers of C f and py is not
straightforward. In this case, the proof of [87, Theorem 1.4] used the comparison
result in [86] (see Theorem 4.17 later). This is the reason for the assumption
s < 3/2 — o0y, and the appearance of ¢ > 0 in (4.18).

(2) Instead of comparing Bessel kernels of C fy and py, one can compare the Bessel

kernels of C fy and py — y/r. For £ = 0, the latter can immediately be derived
using the spectral theorem and recent heat kernel bounds for | p| —y /| x| by Bogdan
etal. [18]. Since for £ > 1 the Hardy potential is again an operator perturbation for
y < 1/2 (by Hardy’s inequality), Bessel kernel bounds for p, — y /r are similar
to those for p,. We expect that this strategy allows to remove the ¢ > 0 in (4.18)
when y > (1 4 +/2)/4. It is an open problem to prove that the behavior of o ZC
and pf atr =0 for y > (1 ++/2)/4 is optimal.

(3) We do not expect Bessel kernel bounds for p, — y/r to yield precise (probably
y-dependent) bounds for o/ ¢.c at the origin in the cases £ = 0 and y < 1/2, and
{>1landy <2/m, because the Bessel kernel bounds for pe — v /r are similar to
those for py.

(4) The appearance of y = (1 + V2) /4 is technical and comes from the restriction
o < 3/4 together with the fact that O1+v2)/4 = 3/4.

Larger coupling constants for higher angular momenta

Using a relative to the Fourier—Bessel transform, namely the Mellin transform, Le
Yaouanc et al. [137] showed that the largest admissible coupling constant associated
with CH Ly increases as £ increases. Independently, Yafaev [249, (2.4), (2.26)] gave an
alternatlve proof of this fact and proved

(4.20)

r(;4 +2€))2 /00 lu(r)|? .

dk k| (Deu) (k)|
/0 ‘ rie+20) r
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For d = 3 and ¢ = 1, the largest admissible coupling constant is /2, which com-
pares to the critical value 2/m when ¢ = 0. We note that similar inequalities hold in
dimensions d other then three and powers « € (0, min{2, d}) of the square root of the
Laplacian.

Ground state transform

An alternative representation of the operator (—A)'/2 — y/Ix] in L2(R3) proceeds
via the ground state transform. To that end, recall (4.15). The ground state transform
makes use of the fact that the radial function x — |x|™7 is a (generalized) ground
state for |p| — ®(o)|x|~!. It states that

1 _ 2
(pl = 0@l = 5 [ =D iy asdy @20

where o € [0, 1], u(x) = |x|“v(x) with v € S(R3\{0}), cf. [83, Proposition 4.1].
Note that for the ordinary Hardy operator with inverse-square potential the ground state
transform has been known long before, see, e.g., [190, p. 169] for a textbook treatment
when d = 3. For a further study of the ground state transform in the fractional case,
see [89].

Spectrum

Although the eigenvalues Az, ¢ (n € Np) of C fz are not explicitly known, the

inequality /p2 + 1 — 1 < p?/2 and the lower bound of [91, Theorem 2.2] imply the
inequalities

72 72

- & > zae¢> —comst  ——— 422
2t )2 = A= Tt e (4:22)

where the constant in the second inequality can be chosen independently of y €
[0, 2/m]. The expression on the left side is just the n-th eigenvalue of the hydrogen
operator (1.9) in angular momentum channel £. Thus, although the relativistic eigen-
values are smaller than the non-relativistic ones, their magnitudes in Z are the same
and many of their summability properties with respect to n are similar.

Finally, the spectrum of Cf in [0, 0o) is purely absolutely continuous, the sin-
gular continuous spectrum is empty, and there are no embedded eigenvalues [109,
Theorem 2.3]. In particular, there is no zero eigenvalue, a fact that we will use later.

Physical shortfalls

Although C f is mathematically well understood, it has a number of physical deficits.
For instance, the restriction y < 2/m implies that only atoms with nuclear charge
< 88 can be described. Moreover, the predicted ground state energies for heavy atoms
are much too low. This can already be anticipated by comparing the ground state
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energies for hydrogen with ¢ = 1 and coupling y close to 2/, which are &~ —0.5 in
the Chandrasekhar model [189, p. 106] and &~ —0.06 (cf. (4.35)) in the Dirac model,
respectively.

Although the model is unsuitable for the quantitative description of systems with
strong attractive external Coulomb forces, Chandrasekhar [24] used it successfully for
attractive two-particle Coulomb forces in his Nobel prize winning estimate on the mass
necessary to collapse a star to a white dwarf. Despite its mathematical simplicity and
its success in correctly describing some qualitative features of relativistic Coulomb
systems, it is desirable to examine models that also lead to quantitatively correct
predictions for ground state properties. Such models are, e.g., based on the Coulomb-
Dirac operator, which we discuss next.

4.1.2 Coulomb-Dirac operator
Free Dirac operator

In 1928, Dirac [37, 38] derived a Lorentz invariant equation of motion for quantum
mechanical particles with spin moving in an external electromagnetic field, the so-
called Dirac equation. We refer to [17, 232] for comprehensive treatments. For a free
particle, the equation reads

[0 (t, x) = (—icg~ v+ ﬂc2) Wt x) (4.23)

with the Dirac matrices o = (o1, o2, ®3),

O~ o
. — C J
aj_("j O((:?)’

the Pauli matrices o := (01, 02, 03), and B = diag(1l, 1, —1, —1). The operator on the
right side of (4.23) is called the free Dirac operator. It acts on states ¥ (¢, x) € C*, called
Dirac spinors. The underlying Hilbert space is L2(R> : C*). The domain on which
the free Dirac operator can be realized as a self-adjoint operator is H'(R® : C%).
The Foldy—Wouthuysen transform Upw allows to perform a block diagonalization,
whereby the free Dirac operator takes the form

N=cZA 4t 0 ) 424)

Usw (—ica -V + Be?) Uiy =
b (~iew- ¥+ %) Uy ( N e S

This shows that the spectrum equals (—o00, —c2] U [c2, 00). Physically, this means
that states can possess “negative energy” and that there is an infinitely deep energy
reservoir, the so-called Dirac sea. By adding electromagnetic fields and the charge
conjugation operator, one can interpret states with negative energy as “antiparticles”,
i.e., particles with same mass but opposite charge. Such particles are called positrons.
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Self-adjoint extensions of the Coulomb-Dirac operator

The one-particle Dirac operator describing the hydrogen atom can initially be defined
on S(R? : C*) and is formally given by the differential operator

z
DI, = —ica - V+ 2B - = in L2(R3 : CH. (4.25)
’ X

Scaling x — x/c and writing y := Z/c shows that DfZ is unitarily equivalent to

| —ia - V+p—L|=2DH = 2DH. (4.26)
] v TN

Weidmann [245] showed that Df is essentially self-adjoint on SR\ {0} : CH

if and only if |y| < ﬁ/Z, see also [232, Theorem 4.4]. For y € [\/5/2, 1], there is
a “distinguished” (sometimes called “physically relevant”) self-adjoint extension of
Df .For y € («/5 /2, 1), this extension was established by Schmincke [197], Wiist
[248] (see also Kalf, Schmincke, Walter, and Wiist [ 128] for a review of these results),
Nenciu [181], and Klaus and Wiist [133]. According to Schmincke and Wiist, this
realization stands out by the property that all states in the domain of the Coulomb-
Dirac operator have finite potential energy. On the other hand, Nenciu’s realization is
distinguished by the fact that states have finite kinetic energy. Klaus and Wiist showed
that both realizations coincide and that the essential spectrum is (—oo, 1]JU[1, 00), see
[134] (or [232, p. 117] for a textbook treatment). In summary, the domain dom ( D)f] ) of
the distinguished realization satisfies H'(R® : C*) ¢ dom(D}f’) c HYV2R3 . CH,
and the quadratic form domain is H'/2(R3 : C*). In particular, the expectation values
of both kinetic and potential energy are finite in dom(Df ); this motivates the term
“physically relevant extension”. With the help of the sharp Hardy—Dirac inequality
[42],

2 . 2
4.27)

Esteban and Loss [57] constructed a distinguished self-adjoint extension for y =
1. States in the domain of this operator need not have finite kinetic and potential
energy separately. We remark that similar results in two dimensions (where the critical
coupling is y = 1/2) were proved by Warmt [243]. In this review, we will only focus
on the three-dimensional case and y < 1.

Partial wave analysis

Since D}f’ is spherically symmetric, one can, analogously to the angular momentum
decomposition for spherically symmetric scalar operators, perform a partial wave
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decomposition, see, e.g., [59], [7, Section 2.1], [232, Sections 4.6.3—4.6.5], and [170,
Appendix A]. We begin by observing that those of the spherical C2-spinors

£+%+2sm
2S\/ 201 Em"(w)

Qf,m,s(w) = (4.28)
0+ —2sm
V2 Yemy (@)
with? =0,1,2,...andm = —{ — %, b+ % that do not vanish, form an orthonor-

mal basis of L2(S2 : Cz), see, e.2., [99, (7)]. Moreover, they are joint eigenfunctions
of L?, J?> (J = L + S being the total angular momentum), and J3 with respective
eigenvalues £(€ + 1), (£ +s)(£ +s + 1), and m.

Introducing the spin-orbit operator K = S(J? — L2+ 1/4), there is an orthonormal
basis of eigenvectors 7, of L*(S? : C*) such that JZCD,Z’m = ji Uk + DPY
S307, = m®7,, and KOF = Py, with the total angular momentum j, and
orbital angular momentum ¢, defined as

Ji i= lk| — 5 and £ = j — 3 sgn(x) = |k| — O (k), (4.29)
the magnetic quantum numbers m € {—ji, ..., j.}, the spin—orbit coupling
k €7 :=17\ {0}, (4.30)

and o € {+, —}. A standard choice is

o (isgn(/c)szek,m,;sgn@))’ o :( 0 >
fem 0 fem - Sgn(K)Q€K+sgn(/<),m,—% sgn(k)

(4.31)
Using these spinors, we introduce the spaces
By =spanx > D00k (1) LUDgo (1y: p+ f7 e L2(R,)),
(4.32)
Ji
be = B bem (4.33)

m=—ji

These spaces form an orthogonal decomposition of L2(R? : C*#). Note that Dirac
operators with radial potentials leave the spaces b, ,, invariant. To see this, let f €
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Bem NH'(R? : C*) and g € b,y N H' (R} : C*). Then, one has that

{f, D;{g>L2(R3:(C4)

(7 =5 =5 =5\ (¢ S!Sy
f_ ) d_« _1_Vv g— ) kK’ Omm’ >
dr r r L2(Ry:C?)

see also [232, (7.105)].

(4.34)

Spectrum

The Coulomb-Dirac operator D)fl has no embedded eigenvalues (Kalf [129]) and no
singular continuous spectrum in [0, oo) (Vogelsang [242], and Richard and Tiedra de
Aldecoa [193]). The lowest eigenvalue is A; = /1 — y2 and one has lim_, 5o Ax = 1.
The eigenvalues of Djf’ are explicitly known and given by

—1/2
2
M =14+ —L— . (4.35)
(n+ KZ—}/2>

They only depend on (k,n) € (—N x N) U (N x Np). Sommerfeld [226] antici-
pated these eigenvalues in the framework of the old relativistic theory of quanta even
before the Coulomb-Dirac operator was written down. Darwin [32], Gordon [96],
and Pidduck [185] solved the eigenvalue equation for the Coulomb-Dirac operator
only 12 years later; see also Bethe’s [17] or Thaller’s [232, Section 7.4] textbooks for
comprehensive treatments and Mawhin and Ronveaux [167] for interesting historical
comments. In particular, one has the bounds

2 2

Y
A —1> —const - ———
e = (n+€+1)2

v
2n+e+ 12~

see also [100, Lemma 1].

Remark 4.3 If the Coulomb potential y/|x| is replaced by a more general measur-
able Hermitian 4 x 4-matrix-valued function V : R? — C*** with 0 < V(x) <
v /1x|®14, then the eigenvalues of —i- V + B —V can be computed using analogues
of the classical Courant-Fischer min-max principle, (cf. [191, Theorems XIII.1-2])
originally written down by Talman [231] and Datta and Devaiah [33], mathematically
established by Esteban and Séré [58] and by [98, 99], and further developed by Dol-
beault et al. [41, 42], Morozov and Miiller [173], Miiller [177], Esteban et al. [55, 56],
and Schimmer et al. [196]. The latter turned the principle around and used it to define
the Hamiltonian, since the maximization leads to the Hardy type inequality (4.27).
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Hydrogen eigenvectors and density

w.«.m Of the eigenvalue equation DH Wn e = An K!ﬁn m
are also well-known, see, e.g., Pidduck [185] (in terms of Laguerre polynomials) or
Gordon [96] and Darwin [32] (in terms of hypergeometric confluent functions). For
nice pictorial representations, see, e.g., White [246] and, for textbook references, see
Bethe [17, Formula (9.37)] and Thaller [233, p. 427]. The three-dimensional density
for a Bohr atom for a given y € (0, 1) in spin—orbit channel x € Zis

Similarly, the eigenvectors P

o) Jk 4
pip@) = > 3 > Y .k o), xeR, (4.36)

n=0(—«) m=—j, o=1

and the total, three-dimensional hydrogenic density is

ph (1) =Y plhx). xeR. (4.37)

kel

These quantities are indeed well-defined, as the following theorem demonstrates. To
state it, let

%, =1- m €[0,1] fory €0, 1]. (4.38)

Theorem 4.4 ([170, Theorem 23]) Let1/2 < s < 3/4 if y € (0,v15/4) and
1/2 <s <3/2—-%,,ify € [V15/4,1). Then for all k € 7, there is a constant
As,y > 0 such that for all x € R3 \ {0} one has

| |1 —4s
p/(D(x) < AY)/ | |2

|)C| 2s—1 |x| 4s—1
4s—1
x [(m) Loy + (m) Ljej<pe<pey + 1617 l{llexlz}]

Moreover, for any ¢ > Othere are constants A, ¢, A, > 0suchthatforall x € R\ {0}
one has

i) < Ay lx| 72 if v €(0,+/15/4]
P Ay (10172 <y + 67 P gesy) i v € (VI5/4,1)
(4.39)

The proof of this theorem is similar to that of Theorem 4.1.
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Instability

In the Chandrasekhar model, we call an atom “unstable”, if the coupling constant
is so large that the operator is unbounded from below. Recall that for y < 1 the
Coulomb-Dirac operator Df has a “distinguished” self-adjoint extension with the
property that the expectation values of both kinetic and potential energy are finite in
dom(D)I,{ ). Instability for the Coulomb-Dirac operator refers to the fact that all self-
adjoint extensions of the Coulomb-Dirac operator have infinitely many eigenfunctions
with infinite expectation value of the potential energy. This situation occurs when
y > 1, i.e., in the case when the lowest eigenvalue of D]fl has hit zero. See, e.g.,
Hogreve [111, Theorem 2.1.(iii)] and the references therein for details and Thaller
[232, p. 218] for an overview.

Brown-Ravenhall operator

According to Dirac, the “vacuum”, i.e., the situation in which no (negatively charged)
electrons with positive energies are present, is described by a completely filled neg-
ative energy continuum of the Dirac operator (the so-called Dirac sea), whereas only
solutions to the free Dirac equation with positive kinetic energy should be regarded
as “physical electrons”. Dirac proposed the following interpretation [40, p. 362]:

“The most stable states for an electron (the states of lowest energy) are those with
negative energy and very high velocity. All the electrons in the world will tend to
fall into these states with emission of radiation. The Pauli exclusion principle,
however, will come into play and prevent more than one electron going into any
one state. Let us assume there are so many electrons in the world that all the
most stable states are occupied, or, more accurately, that all the states of negative
energy are occupied except perhaps a few of small velocity. Any electrons with
positive energy will now have very little chance of jumping into negative-energy
states and will therefore behave like electrons are observed to behave in the
laboratory. We shall have an infinite number of electrons in negative-energy
states, and indeed an infinite number per unit volume all over the world, but
if their distribution is exactly uniform we should expect them to be completely
unobservable. Only the small departures from exact uniformity, brought about by
some of the negative-energy states being unoccupied, can we hope to observe.”

Shortly after Dirac’s equation was formulated, Breit [19-21] derived a relativistic
wave equation for helium using the quantum electrodynamics of Heisenberg and Pauli,
which reads

,‘M - (—ig-V—l—ﬁ)(l)—|—(—ig-V—|—f3)(2)—L—L—}—#
ot il el e — X2l
(4.40a)
1 D e —x) 0@ - (1 —
_ o @ Y (x1—x) - . (x1 — x2) Uy x).
2|xy — x3] lx1 —x2]
(4.40b)
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As is explained in [22, p. 552], “the superscripts (1) and (2) indicate operation on the

coordinate or spinor components of the first or second electron, respectively, in the
sixteen-component wave function ¥ (x1, x2)”. Up to the single term in (4.40b), Breit’s
equation coincides with the naive extension of Dirac’s equation for two particles.
Brown and Ravenhall [22] observed that the energies predicted by Breit’s equation
did not match the experimentally measured values very well and explained their obser-
vation as follows [22, pp. 552-553]:

“Because of the negative-energy states, equation (4.40) is in fact meaningless.
This can be seen by constructing a solution of [the Dirac equation for two
electrons in absence of electron-electron repulsion] and then turning on the
inter-electron interaction slowly. The system can make real transitions to states
where one electron has a large negative energy and the other electron is in the
positive-energy continuum, thus equation (4.40) has no stationary solutions if
interpreted in this way.”

In the language of spectral theory, the spectrum of a two-particle Coulomb-Dirac
operator occupies the whole real axis (already without electron—electron repulsion),
and all eigenvalues are embedded. This phenomenon is sometimes called Brown—
Ravenhall disease [186, 192, 230]. As is well-known from the non-relativistic theory,
these are likely to turn into resonances when the electron—electron repulsion is turned
on, which leads to unphysical consequences, such as the instability of the atom. We
conclude this discussion by mentioning that despite these physical deficits, Oelker
[182] recently showed that the single-particle Dirac operator may be extended to a
self-adjoint multi-particle operator.

To remedy the above serious defects, Brown and Ravenhall proposed to only allow
states with positive energy with respect to the free Dirac operator, i.e., they restricted
the Hilbert space of admissible states to

Beo i= Aco(LX(R? 1 CY) 1= 1(0,00) (—ica - V + 2 B)(LHR : CY).  (4.41)
The energy of an electron in the Brown—Ravenhall picture is then given by
(V. (DI, — ), ¥ € A oSSR : CH. (4.42)

The work [59] showed that this energy is bounded from below, if and only if y =
Z/c < yp with

2
YB 1= Sy Ty (4.43)
which implies Z < 125. For such y, the energy form can be extended to a closed
quadratic form in b, ( with form domain b, o N S(R? : C*). The resulting self-adjoint
operator constructed according to Friedrichs is called the Brown—Ravenhall operator
and is denoted by B, z. By scaling x — x/c, the Brown—Ravenhall operator is seen
to be unitarily equivalent to czBW with y = Z/c. We write By, := By .
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Although we will not use it in this review, we record the following convenient
representation of the Brown—Ravenhall operator as a self-adjoint operator in L2(R> :

C?): for Ec(£) := /c2|&]2 + ¢* with & € R? and

E Y
0 (&) = ,/%, jel0.1), £eR, (4.44)

we define the C2*2-valued functions
o-& 3
Do) == @o(IEN1p2, P1(§) = ¢1(|§|)|§—|, §eR’. (4.45)
Then, the map
P, : LZ(R3 : (Cz) — L2(R3 : (C4), U <$?E:i§;35> (4.46)

maps L2(R® : C?) unitarily onto be.0, cf. [539]. Therefore, By, in b, ¢ is unitarily
equivalent to the operator

E.(—iV)—c* =T, (|—Z|) in L>(R?: C?) (4.47)
X

with the “twisted potential”

. [ Po(=iV/c) Do(—iV/e)
T (V)= (cbl(—iV/c)) v <<1>1<—N/c>)

o0 (2T ven () (25 o ()

for any V : R> — C*, whenever meaningfully defined. From a technical point of
view, the representation (4.47) is important, e.g., in [23, 59, 91, 168]. (Figuratively
speaking, the transformation 7, mollifies the Coulomb singularity and ensures the
lower boundedness of B, for coupling constants greater than 2/7. This transpires,
e.g., in [91, Lemma 2.7] and [82, Lemma 5.2].)

In [59], the authors showed that the Brown—-Ravenhall operator B,, is bounded from
below by —y (w/4—1/7)—1wheny < yg.Infact, Tix [236, 237] proved the stronger
lower bound —y5.

If y < yg, the essential spectrum of the Brown-Ravenhall operator B, is [0, o0)
and the singular continuous spectrum is empty [59, Theorem 2]. Moreover, there are
no embedded eigenvalues, and the spectrum in [0, 0o) is purely absolutely continuous
[7, Theorem 3.4.1]. As in the Chandrasekhar case, the eigenvalues Az, ; ¢ of B¢ 7 in
channel (j, £) satisfy the bounds

(4.48)
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Z? Z?
——————— > Az j¢ > —cCONSt - —————,
2n+ e+ 12 = At = T it

where the constant in the second inequality can be chosen independently of y. The
lower bound is due to [91, Theorem 2.1], while the upper bound follows from the fact
that the non-relativistic kinetic energy dominates the relativistic one. In particular, the
Brown—Ravenhall eigenvalues are smaller than those of D g’ 7= ¢? due to the min—max
principle for operators with spectral gaps, cf. [98, 99].

Furry operator

Naturally, the projection onto the positive spectral subspace of the free Dirac operator
is not the only possibility to get rid of the positronic part of the wave functions. Furry
and Oppenheimer [93] proposed rather to project onto the positive spectral subspace
of the Coulomb-Dirac operator, i.e., the Hilbert space of admissible states is

Be.z = Ae.z(L*(R? : C) = 10,00) (DI H(L* R : C).

Since D)If can be realized as a self-adjoint operator with form domain H'/?(R3 : C*)
by Nenciu’s method [181] when Z/c = y < yg with

vr =1, (4.49)
we have
Acz(SR3:CH) c H2R? : ¢
and dense in b, 7. Therefore, the quadratic form
Y. (D, —cH)., ¥ e AezSR:CH (4.50)

is well-defined and bounded from below when y € (0, yr). According to Friedrichs,
the form gives rise to a corresponding self-adjoint operator. The quadratic form domain
of this operator is H'/2(R3 : C*) N B..z- This operator is called the Furry operator
and denoted by F, z. Scaling x +— x/c shows that the Furry operator is unitarily
equivalent to ¢> F 1,y With y = Z/c and we write F), := I}, in the rescaled picture.

Mittleman operator

Although, at this point, the choice of the projections seems to be arbitrary and only
justifiable by the comparison of the results with the measured quantities this is—
according to Mittleman [171]—not the case: the optimal projection and optimal ground
state should be obtained by a mini—max principle, namely the infimum over the states
in a class of fermionic Hilbert spaces defined by the positive spectral subspace of
some Dirac operator —ic - V 4+ mc?B — ¢ followed by a supremum over a suitable
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class of potentials ¢. However, this has not been implemented on a mathematical
level. In fact, there some elementary no-go results [9, 11] that a potential mathematical
implementation has to circumvent. For a more detailed review of Mittleman’s principle
and references, see, e.g., [54, Section 4.5].

For a variational principle inspired by Mittleman, see, e.g., [5], and for works
connecting Mittleman’s principle and the Dirac—Fock equations, see, e.g., [9—-11].

4.2 Many-particle operators

The results for the above-discussed single-particle operators allow to define many-
particle operators.

4.2.1 Chandrasekhar operator

Chandrasekhar molecules with g = 2 are described by

N

Cyy = Z <\/—6‘2AU +ct—c?— V(xv)> + Z _ +U (4.51)

v=I1 1<v<pu<N |xV - x'“'

fory < yc =2/m and V and U as in (1.2) and (1.3), respectively. Technically, Cn v
is defined as the Friedrichs extension of the corresponding quadratic form with form
domain consisting of finite linear combinations of N-particle Slater determinants with
entries in S(R3 : C?).

The ground state energy of a Chandrasekhar molecule is:

ES(N, Z, R) := inf spec(Cy.v). (4.52)

In the neutral, atomic case (K = 1, R = 0, Z = Z = N), the ground state energy
ECC(Z) = ECC(Z, Z, 0) is an eigenvalue [139].

For an associated ground state i of Cy v (or an approximate ground state on the
Thomas—Fermi or Scott scale), we define the associated three-dimensional one-particle
ground state densities

2
pe(x) :NZ/FN_I W0ty yn)Pdys o dyy, xR (453)
o=1

Similarly as in the Schrodinger case, we define the one-dimensional angular-
momentum-resolved version of pc for any £ € Ny by

2
/SzYz,m(w)w(rw,o;yz,...,y,v) dys -+ -dyy

2 L
orc(r) :=Nr2 ) 3" /F

o=lm=—¢

(4.54)
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for r > 0. Note that

/sz pero)dow =r2% " oc(r), r>0. (4.55)

>0

4.2.2 Brown-Ravenhall and Furry operators

The energy of an atom in the Brown—Ravenhall or Furry pictures is given by:

N
£c,z,Nw]:=<w, Y (pez=¢) + X % w>, (4.50)

Xy — X
v=1 I<v<pu<N v I}'l

whenever ¢ belongs to the space of finite linear combinations of N-particle Slater
determinants with entries in AC,#S(]R3 : C*) where # € {0, Z}. The quadratic form
is bounded from below if y < yp in the Brown—Ravenhall case and if y < 1 in the
Furry case by the previous discussion of the one-particle operators. The resulting self-
adjoint operators constructed according to Friedrichs are called the Brown—Ravenhall
and Furry operators, respectively. If N = Z, we drop the third index in the above
energy form and write &, z[Y¥] :=&..z. 7.
The ground state energy of a Brown—Ravenhall or Furry atom is

N
EB(N, Z) := inf {a.,z,,v[w] cy e /\ AcoSR <c4)}, (4.57)

v=I

N
EY(N, Z) :=inf {5C,Z,N[1/f] cye )\ AezSER: <c4)}. (4.58)

v=1

We record that Morozov and Vugalter [174] (see also Morozov [172], JakubaBa-
Amundsen [123] for HVZ theorems), and Matte and Stockmeyer [166] proved that
for N = Z, the Brown—-Ravenhall and Furry ground state energies E? / 1:(Z) =
B/F .
E." (Z, Z) are eigenvalues.
For an associated ground state ¥ of £ z y (or an approximate ground state on the
Thomas—Fermi or Scott scale) in either the Brown—Ravenhall or Furry picture, we
define the associated one-particle ground state densities

4
PB/F(X) 1= NZ/N [ x, o 2, yn)Pdy2 - dyn, x €RY(4.59)
-
o=1
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As in the Chandrasekhar case, we define a spm -orbit resolved version of pg/r. More
precisely, for given spin—orbit coupling ¥ € 7 (recall (4.29)—(4.30)), we define

dw(b" m(@, DY (|x|w, T, y)

Pic,B/F(X) =1 Z Z /N 1

J€{+ —}m=—ji
(4.60)

for x € R3. Here ®°

K,m

are the spherical Dirac spinors (4.31). Note that

L / ppr(xlo)do = 3 popp), x € R (4.61)

kel

Remark 4.5 (1) The Brown—Ravenhall and Furry operators are examples of so-called
“no-pair” operators, i.e., Schrodinger operators that can formally be derived from
quantum electrodynamics by neglecting the creation of electron-positron pairs [229].
These operators are popular among quantum chemists, as they provide decent numer-
ical results which are in good accordance with experimentally measured data. For
instance, the Scott correction in the Furry picture (Formula (4.78) in Theorem 4.11)
coincides astonishingly well with experimental data (see, e.g., [135]), see [100, Sec-
tion 6], and [186, 192] for textbook treatments.

(2) The Scott correction is also believed to be true when the mean field in the sense
of Mittleman [171] is taken into account.

However, this is so far only known in the Hartree—Fock approximation when the
involved projection is given by the Dirac—Fock operator, see Fournais et al. [79].

In the following subsections, we summarize results concerning the asymptotic
expansion of the ground state energies and convergence of the one-particle ground
state densities for the above-introduced models in the atomic and molecular cases. In
particular, we review the elements of the proof of the relativistic strong Scott conjecture
for Chandrasekhar atoms in [85, 87].

4.3 Atoms without magnetic fields

As far as we know, the results below have only been proved in the neutral case N = Z.
We believe that they also hold for ions.

4.3.1 Thomas—Fermi scale

In all of the above relativistic models, the leading order of the asymptotic expansion of
the ground state energy is non-relativistic. These results indicate that electrons whose
distances to the nucleus are of order Z~!/3 still behave non-relativistically, although
they are being sucked into the nucleus. The following theorem was proved by Sgrensen
[184] (Chandrasekhar), by [23] and [91] (Brown—Ravenhall), and by [100] (Furry, as a
consequence of the Scott correction). Recall the critical coupling constants yc, yB, Yr
in (4.4), (4.43), (4.49).
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Theorem 4.6 Let N = Z and E'Y(Z) denote the Thomas—Fermi energy of a neutral
Thomas—Fermi atom with g = 2. Then,

ES€(Z2) - E™(z Z
Zlim o )Z7/3 2 _ 0 for fixed — < yc, (4.62)
,C—>00 C
i EX(Z)—-E"™(Z) 4
, Clgoo lE =0 for fixed ? < yB, (4.63)
lim E(2) —ET(2) =0 for fixed z_ YE- (4.64)
Z.,c—>00 Z7/3 c

Remark 4.7 (Elements in the proof of Theorem 4.6) We make some remarks on
Sgrensen’s proof [184] for the Chandrasekhar case. Since 4/ p2 +1-1< p2 /2,
it suffices to prove the lower bound, whose proof is similar to Lieb’s simplified proof
of Theorem 3.1, see [144, Theorem 5.1]. It can be split into the following steps.

ey

@)

(€)

Reduce the linear many-particle problem to estimating the nonlinear one-particle
quadratic form

N
Z 1
Z<mu, |:\/ —AA 4t =P — = plF —] mv> (4.65)

i x| B

with the Thomas—Fermi density p}F and orthonormal orbitals {mv}f)\;l from below
with the help of a correlation inequality (e.g., by Lieb and Oxford [142, 149, 183]
or that of [160]).

Due to the (non-perturbative) Coulomb singularity at the origin, one localizes
position space into the regions x| < Z7¢ and |x| 2 Z~° with o € (1/3,2/3).
Guided by the proof of Theorem 3.1 (Lieb [144, Theorem 5.1]) and the intuition
that electrons on distances Z~? behave non-relativistically, it is expected that the
electrons in the region |x| 2 Z~¢ lead to the TF energy, while the contribution
from |x| < Z7% is 0(Z7/3). The localization errors can be controlled at the end of
the argument with the help of an arbitrarily small amount (Z~¢) of kinetic energy.
The contribution of the electrons in {|x| < Z7?}, where the Coulomb singularity
is located, can be controlled with the help of the following strengthening of one
of Daubechies’ inequalities [34],

Tr <|p| _2m V) < /R} V(x)4 dx (4.66)

|x|

by [83] and the inequality /p2 +1 — 1 > |p| — 1. (Inequality (4.66) is often
called Hardy—Lieb-Thirring ineguality because of the homogeneity of the “unper-

turbed Hardy operator” |p| — ‘ﬁ—’r.) Here, V is a bounded function, supported

on {|x| < Z7°}. Using (4.66) one computes the contribution to the energy to be
O(Z>+30-9) which is more than Z7/3. For this reason another localization on the

length scale Z™" is necessary. The Hardy—Lieb—Thirring inequality for V being
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supported on {|x| < Z7'} then produces an 0(Z’/3) error when i € (8/9, 1).
The additionally introduced localization error can be controlled by an ¢ of kinetic
energy, too.

(4) The energy contribution of electrons located in the intermediate region {Z ™% <
|x| < Z7°} can be controlled using Daubechies’ inequality,

Tr («/—A Fi-1- V(x)) < /3(Vi/2(x) + V) dx. (4.67)
.

Note that |x|~! ¢ L*(R?).
(5) Electrons in the region {|x| = Z7°} are expected to generate the TF energy.
Here semiclassical analysis is used. Roughly speaking, one compares the quantum

energy
Y z 1
20 Lzz-0) [V —CA+ct = =ty x ﬁ] L2 z-0ym0)

v=1

(4.68)
to the classically expected energy

Z 1 dpd
f f (W ol ﬁ(‘”)_ oyt @69

lg12Z~°

The latter leads to the non-relativistic TF energy, since \/c2p? + c* —c? ~ p?/2
for |p| < Z° « Z (since |x| 2 Z7° with 0 € (1/3, 2/3)). To that end, a phase-
space localization using coherent states [ 144, Theorem 5.1] is used. In fact, merely
the localization errors coming from the phase-space localization force the position
localization to the scale < Z~1/3,

Theorem 4.6 is accompanied by the following convergence results for the ground
state densities.

Theorem 4.8 ( [168, 169]) Let N = Z and let p]FF denote the hydrogenic Thomas—
Fermi minimizer with f ,olTF(x) dx = 1land g = 2. Then

Z

lim Z2pc(Z713) = pIt for fixed = < yc, 4.70)
Z,c—>00 C
Z

lim Z2pg(Z7 '3 = pIt for fixed = < yg, 4.71)
Z,c—>00 C
z

lim Z72pp(Z7'3) = p[F forfixed = < yr. 4.72)
Z,c—>00 C

In all three formulae, the convergence holds in Coulomb norm (see (2.5)—(2.6)) with
convergence rate O(Z73/19). In the Chandrasekhar case, the convergence also holds
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when both sides are integrated against any U € L>?* N L*(R?) and in the Brown—
Ravenhall case when in addition U € | - |~' L™ is Lipschitz.

Remark 4.9 (1) The proof of the convergence in Coulomb norm uses an observation
of Fefferman and Seco [66], together with the energetic expansion of the ground
state energy. For an error term O(Z¢) to the leading TF energy with a < 7/3, the
convergence rate is O(Z @=17/3)/ 2). In view of the energetic results [90, 91, 100, 224]
(Scott correction), we have a = 47/24.

(2) The proof of weak convergence uses the proof of the energetic results (Theo-
rem 4.6) together with a linear response argument. We will flesh out the details in the
discussion of the densities on the Scott scale (Sect. 4.3.3).

4.3.2 Scott scale

As explained in the introduction, electrons in proximity of the nucleus are expected
to generate relativistic effects that should be visible in the ground state energy and
density on the spatial scale Z~!. In fact, the Scott correction is relativistically lowered.
The precise amount depends on the sum of the differences of the non-relativistic and
the relativistic hydrogen eigenvalues. To that end, let Ag, A,C,, AE, and AE denote the
y-dependent eigenvalues of the non-relativistic operator S)fl in (1.9), of the Chan-
drasekhar operator Cf in (4.2) (with g = 2), of the Brown-Ravenhall operator B,,,
and of the Furry operator F),. (The Furry eigenvalues coincide of course with those
(4.35) of Df — 1.) We introduce the spectral shifts

10.vc1 3y = sc) =y 2 Y (15 =i ) 20, (473)
n>0

10,7813y = s8() =2 Y (i —iF) 20, (474
n>0

[0.71 3 7 = se() =y 2 ) (35 = 25) = 0. (475)
n>0

and record the following observation.

Proposition 4.10 Let# € {C, B, F}. Then, the functions sg on their respective domains
are continuous and monotone decreasing and obey sg(0) = 0.

Proof For sc, this is proved in [224, Theorems 1.1, 1.4, Corollary 1.6]. See also [90,
p. 552], where it is shown that sc is monotone decreasing and finite. For sg, the
claim can be inferred from the explicitly known eigenvalues AE and )\5, respectively.
The continuity and monotonicity of sg follow from the explicit knowledge of the
Schrédinger and Coulomb-Dirac eigenvalues, and the inequality AF > AB. O

The following theorem concerning the energy asymptotics of Chandrasekhar atoms
was proved independently by Solovej et al. [224], and the work [90] using different
techniques. The result for Brown—Ravenhall atoms was proved by [91], and that for
Furry atoms by [100].
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Theorem 4.11 Let N = Z and let EYF(Z) denote the Thomas—Fermi energy of a
neutral Thomas—Fermi atom with g = 2. Then

ES(Z) - [E™(2) + (4 — sc(»)) Z?]

i VA

Z,lclgloo 72 =0 for fixed = <y, (4.76)
ER2) - [E™(2)+ (% - 72 7

lim [ ( ) [ ( ) . (2 SB(V)) ] =0 fOrﬁxed Z < VB, (477)
Z,c—00 7 c
E¥z) - [ET(2) + (L — 72 P

llm C( ) [ ( ) - (2 SF(V)) ] =0 fOrﬁX@d Z < (478)
Z,c—>00 7 c

In all of the above limits, the error term can be quantified and is O(Z*"/**).

Remark 4.12 1t is believed that these results also hold for ions (at least as long as the
jonization degree is sufficiently small), since the electrons on length scales O(Z°)
should not disturb the energy generated by electrons on length scales O(Z~!). How-
ever, a rigorous proof is lacking.

The energetic results on the Scott scale are accompanied by recent results [85, 87,
170] for the density in the Chandrasekhar and Furry cases.

Theorem 4.13 ([85, 87, 170]) Let
UeDi={WeLl®y): Ye>03a>0% >0:
W) < a (r_ll{,sl} + r_%_gl{,zl})} (4.79)

be arbitrary. Then, the following statements hold.

(1) (Convergence for fixed angular momentum/spin-orbit coupling) Let ¢ € Ny and
k € Z be fixed. Then

o0

o0
Z
lim c_3ge,c(c_1r)U(r) dr =/ ch(r)U(r) dr for fixed — < yc,
Z,c—>00 Jq 0 ’ c
(4.80)

VA
lim c_3pK,p(c_1x)U(|x|)dx =/ pr(x)U(|x|) dx for fixed — < yp.
Z,c—oo JR3 R3 ’ C
(4.81)

(2) (Convergence of total density) We have
. -3 —1 H Z
lim ¢ pclc  x)U(|x])dx = oc WU(|x])dx  for fixed — < yc,
Z,c—~0 JR3 R3 c
(4.82)
. -3 —1 H Z
lim ,€ pe(c  x)U(|x])dx = ,PD (x)U(|x])dx for fixed — < yp.
R c

Z,c—~ Jr
(4.83)
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Remark 4.14 (1) For the sake of clarity, we restricted attention to the above class D
of test functions, although the results actually hold for a substantially larger class.
(2) However, the exemplary test function class (4.79) is believed to be optimal.

(a) DuetoKato’s inequality, we cannot expect (at least not for £ = 0) (4.80)—(4.83)
to hold for test functions, whose singularity is worse than |x|~!.

(b) The |x|3/%~¢ decay seems optimal in view of the x| =3/ 2-decay of pg/F, see
Theorems 4.1 and 4.4.

(3) In view of Theorems 4.1 and 4.4, a transition between the length scales Z ~land
Z~1/3 is again clearly visible.

4.3.3 Elements in the proof of Theorem 4.13

The rest of this subsection is concerned with explaining the key elements of the proof
of Theorem 4.13 in the Chandrasekhar case, i.e., the limits (4.80) and (4.82). For
simplicity we set ¢ = 1 here. We begin with the argument to prove (4.80) for a fixed
angular momentum channel.

We follow the lines of Lieb and Simon [152], Baumgartner [12], and [117] by
employing a linear-response argument. Let |1/) (| be a ground state density matrix
of the atomic many-particle operator Cz (see (4.51)), and define, for U € D and in
slight abuse of notation, the perturbed operator

VA Z
Czy:=Cz—2 ZCZU(C|xv|)HLU in /\ L*(R?). (4.84)
v=1

v=1 =

Here Tl is the orthogonal projection in L?(R?) onto the ¢-th angular momentum
channel defined by

¢
M= > Yeum) (Yol

m=—{

and ITy , acts as IT, with respect to the v-th particle. Since the singularity of U is
Coulombic, Cyz , is realized as a self-adjoint operator by Kato’s inequality if y < 2/m
and |X| is sufficiently small. Moreover, since (4.80) is linear in U we may assume
U > 0 and A > 0 without loss of generality.

By the linear response argument, the Scott correction (Theorem 4.11), and scaling
X — x/c, we have

o0

an ¢ o0cr/o)U(r)dr
—0 Jo
[V ) (¥|(Cz — CZ,A)i|

rc2

= ,?Tn?) Zlgnoo Tr/\vz=1 L2(RY) |:

IA

(4.85)

Tryom (CH —AU@P)- —Tryam (CH )_
2+ 1) - lim L=Ry)\ e,y LR\ e,y
N0 A
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with C fy as in (4.6). To compute the right side of (4.85), we have two options.

(1) Find a majorant to apply the dominated convergence theorem to interchange
liminf;~\o and Tr. Then apply standard perturbation theory, i.e., the classical
Hellmann—Feynman theorem for a single eigenvalue. This leads to the shorter
proof in [85].

(2) Compute the derivative with respect to A directly. This lead to the longer, original
proof in [87].

Here we shall present the arguments of the longer proof, as we believe that it better
unearths the involved mathematics of the relativistic strong Scott conjecture. Besides,
it allows us to popularize a generalization of the classical Hellmann—Feynman theorem
that may be of independent interest in the analysis of many-particle problems.

First we state this generalized Hellmann—Feynman theorem with “natural” assump-
tions on the perturbation. However, this version is not applicable to our problem.
Afterward, we state a generalization with weaker assumptions, which suffices for our
purposes. Recall that an operator B is called relatively form trace class with respect to
a self-adjoint operator A that is bounded from below, if (A + M Yy12B(A 4+ M)~1/2
is trace class for some (and hence any) large enough M > 0.

Theorem 4.15 ( [87, Theorem 3.1]) Assume that A is a self-adjoint operator in some
Hilbert space with A_ trace class. Assume that B is a non-negative operator in the
same Hilbert space, and relatively form trace class with respect to A. Then, the one-
sided derivatives of

A SA) :=Tr(A—AB)_
satisfy
Tr Bl(—0,0)(A) = D™ S(0) < DTS(0) =Tr B1(_s,01(A). (4.86)

In particular, S is differentiable at . = 0, if and only if Blger 4 = 0.

Remark 4.16 (1) The relative form trace class assumption implies that the expression
on the right of (4.86), and consequently also that on the left, is finite.

(2) By the variational principle, it follows that S is convex. Thus, S has left- and
right-sided derivatives (cf. [217, Theorem 1.26]).

(3) If inf 0egs(A) > 0 or A — A B has only finitely many negative eigenvalues, then
the derivative and the trace can be interchanged and the result follows from the
classical Hellman—-Feynman theorem. The point is that the formulae remain valid
even when the bottom of the essential spectrum is zero, so that perturbation theory
is not directly applicable.

In our application, A is the Chandrasekhar operator C gy (which has no zero eigen-

value)and B = U in L2(R.., dr). Thus, (4.80) would follow from Theorem 4.15, if one
could verify its assumptions. By Kato’s inequality (using y < 2/m), one can replace
A by the kinetic energy C,. In this case, the relative trace class condition can be formu-
lated explicitly using the Fourier—Bessel transform. But since (k+ ! ¢ L! (R4, dk),
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this shows that C [H cannot satisfy the relative trace class assumption, no matter how
nice the perturbation B = U is.

For this reason, we proved and used a generalization of Theorem 4.15, where the
relative trace class assumption is stated with respect to (A + M)?* for some s > 1/2.
We will state this generalization in Theorem 4.18 in a moment. Using the following
special case of [86, Theorem 1.1], the assumption of Theorem 4.18 can be recast as
an assumption involving the kinetic energy C; (see (4.7)) instead of ng.

Theorem 4.17 ([86, Theorem 1.1]) Let2/7m >y > 0,0 <5 < 3/2—0, (Witho, as
in (4.16)), and assume V € LIIOC(R?’) satisfies —y /|1x| < V < 0. Then, we have the
quadratic form inequality

Ip1* < (Ipl+ V)™, (4.87)

We are now ready to state the generalization of Theorem 4.15.

Theorem 4.18 ([87, Theorem 3.2]) Assume that A is self-adjoint with A_ trace class.
Assume that B is non-negative and relatively form bounded with respect to A. Assume
that there are 1/2 < s < 1 such that for some M > — inf spec A,

(A+M)B(A+M)"* istrace class (4.88)
and
limsup ||(A + M)*(A —AB + M)’ | < oc. (4.89)
A—0

Then, the conclusions in Theorem 4.15 are valid.

Thus, to conclude the proof of (4.80), we are left with showing the assumptions of
Theorem 4.18. Since the test functions U in the above formulation of Theorem 4.13 are
bounded by a multiple of the Coulomb potential, the condition (4.89) can be verified
easily using Theorem 4.17. We now verify (4.88) with A = C gy and B = U. Letting
| - Il2 denote the Hilbert—Schmidt norm, we have, forany 1/2 < s < 1,

W2, + )15 S IUVACe+ M)

o0 [ee) krlJ k 2
zf dr U(r)/ ak —Krderptr)
0 0 VKT +1 =1+ M)

S WUl

where we used Theorem 4.17 and the Fourier—Bessel transform. Here,

1wl [/R(r)zs_lwv( Har+ [ 1w >|d}
) := sup — r r+/ r)|dr|.
K r=12LJo \R R

Clearly, functions U € D, the test function space (4.79), satisfy ||U]|| K < 00. This
concludes the sketch of the arguments in the proof of (4.80). ’
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To prove the convergence of the total density ¢ 3 pc(x/c), we also need to inter-
change the £-summation with the limits Z — oo and A — 0. This is done using the
dominated convergence theorem. To apply it, it suffices to prove that there is an ¢ > 0
such that

Tr(Co — V — AU (F))— — Tr(Cp — V)— < AL +1/2)7 27, (4.90)

whenever 0 < V < y/r.In our application, V is closely related to the Thomas—Fermi
potential. For the proof of (4.90), see [87, Section 5].

4.4 Molecules without magnetic fields

We immediately present the energetic result for Chandrasekhar molecules on the Scott
scale, which was proved by Solovej et al. [224].

Theorem4.19 Let g € N, z = (z1,....2x) € 0, DX with YK 20 = 1 and
r = (r,...,rg) € R3K yith ming¢ [rx — rel > ro for some ro > 0. Define
Z = (Zy,...,Zk) = |Z|z and R = |Z|"'Pr for |Z| > 0. Let E™ (2, 1) be the
Thomas—Fermi energy of the unconstrained problem (2.9) and let EE(N ,Z,R) be
the ground state energy with nuclear configuration Z and R. Then, the following
statements hold:

(1) The function

2 i o1 dpdv
o 2] s ([ [% - o] i vonn o)

4.91)
with

—y2A+yt—y2—1/Ix| if y €(0,2/n],

4.92
—1A —1/Ix] ify=0 @

Hc(y) == !

is continuous, monotone decreasing, and satisfies Sc(0) = 1/4.
(2) As |Z]| = Zf:] Z, — o0 and ¢ — oo with max,{Z,/c} < 2/m, one has

K
Z _
ES(ZI.2.R) = E™(@.nIz"P +q)  Z% - Sc (7) +0(| >3,
k=1

(4.93)

The error term O(|Z)*~'3%) means that |O(Z)>~13%)| < |Z1>71/39, where the
implicit constant depends only on roy and K.

Remark 4.20 The convergence of the one-particle ground state density on the Thomas—
Fermi scale in Coulomb norm can be proved using the argument in the proof of
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Theorem 4.8 together with Theorem 4.19. The convergence of the density on the Scott
scale has not been worked out so far.

4.5 Molecules with self-generated magnetic fields

Suppose that the kinetic energy of the electrons is described by the Chandrasekhar
operator in the presence of a magnetic vector potential, i.e.,

TA) := /2T (A) + c* — 2, (4.94)

where T (A) is either the magnetic Schrodinger or Pauli operator as in (3.44). We
consider A-fields in

A:={Ae LSRR :R): div(A) =0, [V Al € L*RY)}.  (4.95)
Let
N 1 N
Cnyv.a= Z (7?)0)@) - V(Xu)> + Z ﬁ +U in /\ Lz(R3 : (C2)
v=1 I<v<pu<N Xv K v=1
(4.96)

be a Hamilton operator for a relativistic molecule with given vector potential A, and
V and U as in (1.2) and (1.3), respectively. (Technically, Cy v, 4 is defined as the
Friedrichs extension of the corresponding quadratic form with form domain S(R3 :
C?), whenever max, Z, /¢ < yc.)

For admissible vector potentials A € A, given nuclear positions R, and N = |Z]
the ground state energy is

E¢™(Z, R, A) := inf spec(Cy.v.a). (4.97)

and the total energy including the magnetic field energy is

2
ES™E(z R) = inf ( ES™(Z, R, A) + — f IV x AP). (4.98)
Al 82 R3

The following energetic result for the Scott scale was proved by Erdds et al. [49].

Theorem 4.21 Let the notations and assumptions be as in Theorem 4.19. In particular,
fix K, z € (0, DX, and r € R3X. Assume furthermore that there is yo < 2/7 such
that max, Z,/c < yo. Then

K

Ec™(Z.R) = EW @ nizP+Y 22 (% - SC(V)) +o(Z) (499

k=1
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in the limits |Z], ¢ — oo.

Remark 4.22 (1) Since ¢~'|Z| is bounded, the prefactor c?/(87?) of the magnetic
energy in the relativistic case is of order |Z|? (at least if we assume additionally
that |Z|/c is kept constant when |Z|, ¢ — 00). This is much larger than in the non-
relativistic case (Theorem 3.18), where ¢ 2| Z| was bounded. Thus, the self-generated
magnetic field has to be much smaller in the relativistic case, which explains why it
does not alter the Scott coefficient (contrary to the non-relativistic situation). In fact,
the prefactor 87 in front of the field energy is irrelevant and can be replaced by any
other fixed constant in the relativistic situation.

(2) The convergence of the density on the Scott scale has not been worked out so
far.

5 Open questions

We collect some questions that—at least from our perspective—are interesting both
from physical and mathematical points of view.

(1) For N e Nand Z € (0, 00)X, we set
€s(N, Z) :=inf(ES(N, Z, R) : R € R*K}. (5.1)

This is the ground state energy of a non-relativistic molecule in static approxima-
tion, provided there is a state ¥ in the form domain of Hy v and nuclear positions
R € R3*K guch that (Y, Hy vr) = €Es(N, Z). Question: Can one prove the Scott
conjecture for Eg(N, Z), i.e., when one minimizes over the nuclear positions? We

expect additivity of the energy up to o(|Z]| 3 ), i.e.,

K
Es(N.Z) = (ETF(ZK) +32 - CosZi ) +o(Z®). (52

k=1

Even more, one might ask whether the strong Scott conjecture would hold around
each of the nuclei if (5.2) is true. A step in this direction was taken by Iantchenko
et al. [117, Theorem 3] under the additional hypothesis that the minimal nuclear

distance is bounded from below, e.g., by const |Z |_%. The analogue of &g can
be defined for other many-particle models discussed in this review, e.g., those in
Sect.4. As far as we know, the Scott conjecture is also open for these problems.
Again, we expect additivity of the energy up to order o(|Z|*/3). One could also
consider a variant of this problem, where the kinetic energy of the nuclei is taken
into account.

(2) It is folklore in quantum chemistry that chemical accuracy is achieved without
taking a self-generated magnetic field into account. Therefore, we ask whether in
physical models at least the Scott conjecture does not depend on the self-generated
magnetic field.
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(3) The Scott conjectures for the energy and the density are open for no-pair oper-
ators where a self-consistent mean field is taken into account. In this case, the
Hilbert space of admissible one-particle states (in the x +— x/c rescaled picture)
is Ay (LAR3 : C%) with Ay = 1(0,00)(D)I;I + x) with a (not necessary local)
mean field x. The resulting no-pair operator is sometimes called Fuzzy opera-
tor. Possible choices for x are the Thomas—Fermi potential (the right sides of
(2.11)—(2.12)), or the Hartree—Fock potential

» |(pi|2*i(x)_(/’i(x)§0i(')
|- lx —-|

i

generated by a set of appropriately chosen orbitals {¢;};. The latter choice is
especially popular in quantum chemistry, see, e.g., [125-127, 194]. It turns out,
though, that numerically computed values of the ground state energy for all atoms,
also heavy ones, in the Fuzzy picture are quite close to those in the Furry picture;
see also [100, 171, 192, 195]. Nevertheless, from a mathematical point of view it
is interesting to investigate the precise value of the Scott correction for the Fuzzy
operator. The following tasks seem natural.

(a) Show that for any (reasonable?) choice of the mean field x, the leading order
of the ground state energy is still the Thomas—Fermi energy.

(b) Show the Scott conjecture for the Fuzzy model defined in the spirit of Mittleman
(minimization of the electronic degrees followed by a maximization of the
splitting).

(c) Show that, to within the order of accuracy of Scott’s correction, the maxi-
mization is attained in the Furry picture. (Recall that the Z>-correction in the
Furry picture is exclusively generated by the effective one-particle problem
involving the hydrogenic operator Df . Thus, our intuition is supported by the
variational principle for operators with spectral gaps [99, 173], which leads to
the largest eigenvalues of A DJ{{ A, when one chooses A, to be the Furry
projection. This is also the underlying spirit of Schwinger’s derivation [198]
of the relativistic Scott correction.)

(4) Can one show first- and second-order asymptotics for the Lieb—Loss model [140]?
See Bach and Hach [6] for the first order in the non-relativistic setting.

(5) Let us formulate some questions regarding the hydrogenic densities pf with
# € {C,B,F}. For # = F one might be able to exploit the explicitly known
eigenfunctions of the Coulomb-Dirac operator (cf. [17, 32, 96, 185, 232]) as in
Theorem 3.11 by Heilmann and Lieb.

(a) Inspired by Theorems 4.1 and 4.4, we ask whether the densities ,of satisfy
a power law at the origin, i.e., whether there are model-dependent constants
ay #, by # > 0 such that

ll‘imo ofl () |x[*r# = by, 4. (5.3)
x|—
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In view of Theorems 4.1 and 4.4 and the fact |1ﬁn 0=t O~ lx|~ > for
m= —je,..., jx and |x| < 1 (cf. [17, p. 316] or [233 p. 427]), it seems
natural to believe that a, ¢ = o) (cf. (4.16)) and a5 r = X, (cf. (4.38)).

(b) Electrons far away from the nucleus are expected to behave non-relativistically.
Can one show

Jim |x|3/2pH(x)— hm |x|‘/2pZ NEY) (5.4)

as in Theorem 3.11? (Here p¥ Z | is the hydrogenic TF density with g = 2.) In
case # = F one might be able to derive an asymptotic expansion as in (3.30)
using the explicitly known eigenfunctions

(c) The non-relativistic density pg H(x) decreases monotonically in |x| > 0. Is this
also true for the relativistic hydrogenic densities?

(6) As we have seen in Theorem 2.10 and the ensuing discussion, Weizsidcker’s
parameter A in the TFW functional (2.23) can be tuned to achieve either energy
agreement, or agreement of the TFW density near the origin. This leads to
the following (vague) question of whether one can construct a modification of
Weizsicker’s gradient term that gives simultaneously the energy and the density
at the origin correctly.
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