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ABSTRACT PAGE

The scattering of polarized electrons from a polarized proton target provides a
means for studying the internal spin structure of the proton. The CLAS (CEBAF
Large Acceptance Spectrometer) EG1b experiment in Hall-B at Jefferson Labo-
ratory measured double-spin inclusive and exclusive electron-nucleon scattering
asymmetries using longitudinally polarized frozen NH; and ND; targets and a lon-
gitudinally polarized electron beam at 4 different energies (1.6, 2.5, 4.2, 5.6 GeV).
Extraction of the virtual photon asymmetry A% (for 0.05 GeV? < Q? < 5.0 GeV?)
provides precision measurements of the polarized proton spin-structure function
g7 in and above the resonance region. Linear regression of data between the
varying energies yields new constraints on the virtual photon asymmetry A% (and
thus the structure function ¢5) in the resonance region (for 0.3 GeV? < @Q? < 1.0
GeV?). Measurements of these structure functions and their moments allows test-
ing of perturbative Quantum Chromodynamics (pQCD) models and evaluation of
moments of the structure functions in the Operator Product Expansion. Testing
of Chiral Perturbation Theory (xPT) at Q? < 0.2 GeV? is enabled by the new data.
Other applications of polarized structure functions include measurement of foward-
spin polarizability, evaluation of high-order corrections in *H hyperfine splitting, and
testing of quark-hadron duality.



Contents

Acknowledgements . . . . . . .. e
Preface . . . . . . . e e e e e e e e e e e e e e

Background and Motivation

1.1 Introduction . . . . . . . .. e e e e e
1.1.1 Electron-protonscattering . . . . . .. ... ... .. ... ..
1.1.2 Modelsoftheproton . . . . . . ... ... ... ... ... ...
1.1.3 Kinematic Definitions . . . . . . . . . . . ... L oo
1.1.4 A Motivation for Studying ProtonSpin . . . . . . .. .. ... ... ...

1.2 Structurefunctions . . . . . . . . . . . ...
1.2.1 Electron scattering and structure functons . . . . . ... ... ... .. ...
1.2.2 Unpolarized structure functions (F,, Fo, R) . . . . . ... .. .. ... ....
1.2.3 Polarized structure functions (g1, g2) . . - . . . . . . . . ...
1.2.4 Q2evolutionand scalingviolations . . . ... ..................

1.3 Momentsandsumrules . . . . . . . . . . .. e e e
1.3.1 The Operator Product Expansion . . . . .. ... ... .............
1.3.2 Firstmomentofg; anditssumrules . . ... ... ... ............
133 Othermomentsofg; . . . .. ... . .. . ... ...
134 gianditsMoments. . . . . . . .. .. .. ... ...

1.4 Asymmetries . . . . . . . L. e e e
1.41 Measuringasymmetries . . . . . . . . . .. L Lo e
1.4.2 Asymmetries to polarized structurefunctions . . . . . . ... ... .._....
1.4.3 Behavior of A; intheresonanceregion . ... ... ... ...........

1.5 Existing Measurements . . . .. . .. . . . ... ... e
1.5.1 Earlymeasurementsofg? . . . . ... ... ... .. ... ... . ...
152 ThespincCrsis . . . . . . . .. . . . . . e e e
1.5.3 Second generation SLAC and HERMES polarized experiments . . . . . . . .
1.5.4 The missing kinematic region: motivatonfor EG1 . . . . . .. ... ... ..
1.5.5 Current measurements of g5 (E155xandRSS) . . . . ... ... ... .. ..

Experimental Apparatus and Models
2.1 The EG1ib Experiment: Introduction . ... .. ... ... ...............

2.2 The CEBAF ElectronAccelerator . . . . . . . . . . . . . . . .. .. .. ... ...
221 Beamlinjector . . . . . . . . . . . L L.

222 06GeVLINac .. ... ... . .. .. e e e
223 Recirculation ArcsandBeamOptics . . . . .. ... ... ... ........
23 HallBBeamlineDevices . . . . . .. .. .. .. .. . . .. ...



231 Maller Polarimeter . . . . . . . . . . . .. e e e e 88

2.3.2 Beam PositionMonitors (BPM) . . . . . . . .. ... ... ... 92
23.3 HarpBeam ProfileMonitors . . . . . . . .. ... ... ... ... ..... 92
234 FaradayCup . . . . . . . . . e e e 93
24 TheEG1 PolarizedTarget . . . . . . . . . . . . . . . . . i 95
2.4.1 Preparation, Annealing and Rasteringofthe Target . . . . . . .. .. ... .. 95
2.4.2 Dynamic Nuclear Polarization: Overview . . . . . . . ... ... ... ... 96
2.4.3 DNP, Neglecting Spin-Spin Interactions . . ... .. ... ........... 97
2.4.4 DNP in areal solid: Equal Spin Temperature (EST) Theory . . . . ... . .. 100
245 BNH;asaPolarizedTarget. . . . . .. ... ... ... ... ... ... 103
246 PolarizedTargetSystem . . . . . . . . ... Lo Lo 103
2.4.7 Modeling the Target for Background and Radiative Corrections . . . . .. .. 110
25 TheCLAS Detector . . . . . . . . . . . @ i it e e e e e e e e 114
251 TorusMagnet . . . .. .. ... . .. e e e 114
252 DrftChambers . . . . . . .. . . .. 117
253 CherenkovCounters . . . . . . . . .. ... ... .. 120
254 ScintitatonCounters . . . . . ... ... L L 124
2.5.5 Electromagnetic Calorimeters . . . . . . .. ... ... .. 132
26 DataCollection . . . . . . . .. ... 136
26.1 DataAcquisition . ... ... .. .. .. ... 137
2.6.2 The Simple EventBuilder (SEB) . . . ... ... .. ... ... ... .. 139
2.6.3 The EG1b Data Set: PreparationforAnalysis . . . . ... ... ........ 140
2.7 Structure function and asymmetrymodels . . . . . ... ... L o Lo L. 143
2.7.1 Model of unpolarized structure functions Ffand R? . . ... ......... 143
2.7.2 Model of virtual photon asymmetries A¥and A2 . . .. .. .......... 145
273 Modelforo,fog . . . . . . o o e 150
2.8 Radiated nuclear cross-sectionmodels . . . . .. ... .. ... ... 151
Helicity and Particle ldentification 157
3.1 Reading the Data Summary Tapes (DSTs). . . . . . . . .. .. ... ... ... ... 157
3.1.1 DSTorganization . . . . . . . . . . . . . e e 157
3.1.2 Reading particle data fromthe DST . . .. .. ... ... ... ........ 158
3.1.3 TreeFileStructure . . . . . . . . . . . ... . e e 159
3.2 Removal of Problematic Helicity Buckets . . . . .. . . ... ... ... ........ 160
3.2.1 Identifying helicity bucketsforremoval . . . . . .. .. ... ... ... ... 160
3.2.2 Further helicity bucketproblems . . . . ... ... ... .. ... ... .. 162
33 QualityChecks . . . . . . . . . . e e e e 164
3.3.1 Beamchargeasymmetrycheck . ... .. ... ... ... .......... 164
332 Eventratecheck . .. .. ... .. .. .. ... ... e 165
3.3.3 Target polarization and hailf-wave platecheck . . . . . . ... ... ...... 167
3.3.4 Rasterpatterncheck . . . . . . . . ... Lo 170
3.35 Inclusive W-spectrumcheck . .. .. ... ... ... ... .......... 171
3.3.6 Miscellaneousissues . . . . . . . . . L. 173
3.3.7 Data Organization and Testsof QualityChecks . . . . . ... ... ...... 176
3.4 Electronidentification . . . ... ... .. .. ... ... L 176
3.41 CherenkovCounterCuts . . . ... . . ... ... ... ... ....... 177
3.4.2 Electromagnetic CalorimeterCuts . . . . . . ... ... .. .......... 178
3.4.3 Particle identification parameters for elasticepevents . . . . . ... .. ... 182



3.5 HlasticepEventSelection . . .. ... ... ... ... ... ... ... 183

3.6 MiscellaneousMinorCuts . . . . . . . .. ... ... ... 186
3.6.1 Vertexcut . . . . . . . . e e e 186
3.6.2 Triggerbits . . . . .. ... 188
3.63 Statusflags - . . . . . . . . .. e 188
364 ECenergysumcorrection. . . . ... ... ... ... .. ... .. ... ... 189
3.6.5 Minor kinematicand geomefriccuts . . . .. ... ... ... ... 190

Precision Cuts and Corrections 192

41 PionBackgroundRemoval . . . ... ... ... ... L oo 192
411 Remainingpionbackground . . . . .. .. ... ... ... ... .. ... 192
4.1.2 Geometriccutsonaccepted CCtriggers. . . . .. . ... ........... 194
413 PMTcutsonacceptedCCiriggers . . . . . . . ... ... ........... 194
414 Timingcutsonaccepted CCitriggers . . . . . . ... ... . ... ....... 196
4.1.5 Results of Osipenko’s cuts and Implementation . . . . ... ... ....... 198

4.2 Kinematics Corrections . . . . . . . . . . L e 201
4.2.1 The kinematics correctionpackage . . . . . ... .. ... ... ... 201
422 Rastercorrection . . . . . . . . . ... ... e 202
423 Torusscalingcorrection . . .. . ... ... .. ... ... ... ... 205
424 Beamenergycorrection . . . .. . ... ... .. o L. 207
425 Multiple scatteringcorrection . . . . .. ... .. ... L L. 211
426 Stray magneticfieldcorrection . . .. ... ... ... ... ... . ..., 213
427 Energyloss(dE/dx)correction . . .. ... ... .. ... ... .. 214
428 Momentumcorrections . ... .. .. ... .. .. .. ... 216

4.3 Momentum Correctionatlow @ . . . . . . . . ... ... ... .. 224

44 Fiducial Cuts . . . . . . . . .. e e e e e 229
441 Determination of Inefficient CCRegions . . . . . ... ... ... ....... 231
4.4.2 Determining the Fiducial CutBoundaries . . . . ... .. ... ........ 233
4.4.3 Interpolation of Cut Parameters Between Momentum Bins . . . . . . ... .. 237
4.4.4 Application and Effectsof FiducialCuts . . . . . . ... ... .. ....... 239

45 FaradayCupCorrections . ... .. ... ... .. . ... 242
4.5.1 Correction for multiple scattering divergence . . .. ... ... ... .. ... 242
452 Bitfactorcorrection . ... ... ... ... ... 245

46 GenerationofSkims . . . . . .. .. . . ... e 246

Dilution Factors: Removal of Unpolarized Background 248

5.1 Calculation of Background-subtracted Asymmetries . . . ... ... ... ...... 248

5.2 Combining Data from DifferentRuns . . . . . . .. . . ... ... ... ..., 249
5.2.1 Caorrections to empty (LHe) targetcounts . . . . . . ... ... ... .. ... 252

53 Calculationof Targetlength L . . . . . . . .. .. . . ... .. ... .. 257
5.3.1 Calculationof Lfromdata . . . . . ... .. .. ... .. ... ........ 259
5.3.2 Calculation of L from radiated cross-sections . . . .. ... ... ....... 260

54 Modeling 2Cto®NData . . .. .. ... .. .t e 267
5.4.1 Developmentofthemodel. . . . . . . . .. ... Lo 267
5.4.2 Comparisontotheolderfitmethod . . . . . . . ... ... ... ........ 272
5.4.3 Direct determination of £, withthemode! . . . . . . ... .. .. ... .... 278

5.5 Calculation of Ammonia Targetlength £, . . . .. .. ... .. .. ... ... .... 279
55.1 Calculationofésfromdata . . .. ... ... .. ... ... . ... ... 280

iii



5.6

5.5.2 Calculation of £,4 from radiated cross-sections . . . ... ... ... .....
Dilution Factors . . . . . . . . . . e e e e e e e e e e
5.6.1 Calculationof Fprpfromdata . . . ... .. .. ... .. .. .........
5.6.2 Calculation of Fpr from radiated cross-sections . . . ... ... .......
5.6.3 Application of dilutionfactors . . . ... ... .. ... ..o ...

6 Removal of Polarized and Other Target Background Events

6.1

6.2

6.3
6.4

ete” Background Correction . . . . ... .. ... ... ... . ... ... ...,
6.1.1 Measurement of pair-production rates and asymmetries . . . . . .. ... ..
6.1.2 Application of pair symmetriccorrection . . . . . .. .. ... .. ... .. ..
Beam x Target Polarizations . . . . . . . .. ... .. ... . ... . oo,
6.21 Inclusivemethod . ... ... ... ... .. ... .. ...
6.2.2 Exclusiveepmethod . . . . . . .. . . ... ...
6.2.3 Finaldeterminatonof P,P,values . . ... ... ... ... ..........
6.24 ComparisontotargetNMR . . . ... ... ... ... ..., ... .....
6.25 PP forweightingpurposes. . . . .. ... ... .. ... ... .. ...
Polarized Nitrogen Correction . . . . . . . . .. .. ... . ... . . . ...,
Radiative corrections . . . . . .. .. ...
6.4.1 Basic methodology of radiative corrections . . . . . ... . ... .......
6.4.2 Internal radiative corrections . . ... ... .. ... . ... ... .......
6.4.3 Externalradiativecorrections . . . .. ... ... ... .. .. ... ... ..
6.4.4 Application of radiativecorrections . . . . . . .. ... ... ... ... ..

7 Combination of Data Sets and Calculation of Systematic Errors

71

7.2

Evaluation and Combinationof Ay Values . . . . . .. .. ...............
7.1.1 Combining asymmetries from opposite HWP status . . . . . . . .. ... ..
7.1.2 Combining asymmetries from opposite target polarizations . . . ... .. ..
7.1.3 Combining asymmetries from opposite toruscurrents . . . . . . .. ... ..
7.1.4 Combining asymmetries from slightly differing beam energies . . . . . . . . .
Systematic error calculation . . . . . ... ... ...
7.21 Targetmodelerrors (1-9) . . . .. ... .. . .. ... e
7.2.2 FErrorsindilutonfactormodel (28) . . ... .. ... ... .. ... . .....
7.2.3 Uncertainties in determination of beam x target polarization (10,13,17-21) .
7.2.4 Statistical uncertaintyon PP, (41-52) . . . . . . . . .. ... ...
7.2.5 Miscellaneous background subtraction errors (22-27) . . . . . ... ... ..
7.2.6 Kinematicsresolutionerrors (29-32) . . . . . .. . ... ... ..
7.2.7 False asymmetry and Faraday cuperrors(33,35) . . . . . . ... ... .. ..
728 Modelserrors(36-40) . . . .. .. . . .. ... ... ..
7.2.9 Uncertainties with no effects on asymmeiry analysis (11-12,14-16,20,34) . .
7.2.10 Combination of systematicerrors . . . . .. .. ... ... ...........

8 Final Results

8.1

8.2

Virtual Photon AsymmetryResults . . . . . . . .. ... ... ... ..........
8.1.1 Extractionof A1 . . . . ... ... .. ...
8.1.2 Extractionof Az . . . . . . . . L. e e e e e e e e e e e e e
8.1.3 Refining Accuracy of A; and A, Measurements . . . . . ... ... ......
Spin Structure FunctionResults . . . . . . . . . .. .. ... ... ... ... ...
821 Resultsforg; . .. .. .. . . . . . e e



822 Resultsforgs . . . .. ... . e e e 409

8.3 Spin Structure FunctionMoments . . . . . . ... .. .. .. ... . ... ..o, 413
8.3.1 Procedure for calculatingmoments . . . . . . ... ... ... . L. 413

832 Momentsofgi .. ... ... ... e 419

833 Momentsofga . ... ... ... . . ... ... 423

84 Applications . . . . . . . .. e 424
8.4.1 Forward Spin Polarizability (yo) - - - - . - - - - . . - ... oo 425

8.4.2 H Atomic Hyperfine Splitting . . . . . . . ... ... ... ... ........ 429

843 Bloom-GilmanDuality . ... ... ... .. ... ... ... ... .. ... 435

8.5 FutureDirections . . . . . . . . . . . . e e 443
8.5.1 OQutstandingDetails . . ... ... ... .. ... ... ... . ... ... 443

8.5.2 Upcoming ExperimentsandData . . . . .. ... ... ............. 443

8.53 TestingQuarkModels . . . . ... . ... ... ... .. ... ... ..., 446

A Glossary of Acronyms 451
B Additional Tables 456
B.1 KinematicBinTables . . . . . . . . . . . .. ... .. e 456
B.2 Pion Background CutParameters. . . . . . . ... .. ... .. ... ... .. 459
B.3 Fiducial CutParameters . . . . . . . . . . . . . .. ... e 466
B4 A;+qnAzResults . . . . . . L e e e 486
B.5 Virtual Photon AsymmetryResults . . . . . . . .. ... .. ... L. 515
B.6 Structure FunctionResults . . . . . . .. .. ... ... oo 526
B.7 Momentsandintegrals. . . . . . . . . . ... ... .. ... e 543
Bibliography 553



List of Tables

Flavors of quarks and theirproperties . . . . . . ... . ... ... ... ....... 5

List of experiments measuring g? . . . . . . .. ... oo 72
21 EG1target material properties . . . ... ... .. ... ... ... ... .. ..., 113
2.2 Otherusefultargetparameters . . . . . . . . . .. .. ... ... L. 114
2.3 Radiation lengths of targetmaterials . . . ... .. ... ... ... ... ....... 155
3.1 EG1brunsetsbybeamenergyandtoruscurrent . . . . . . .. ... .. ... .... 158
3.2 Helicity label definitions. . . . . . . .. .. ... 161
3.3 Helicity pairing (HeLP)tableexample . . . . . . . . . . . .. ... ... ... ... . 163
3.4 Particle identification (PID)cuts . . . . . . . . . .. ... .. ... . 182
3.5 EHlasticepkinematiccuts . . . . . ... .. .. ... ... ... e 186
4.1 Raster ADC to cm translation parameters . . . . . . .. .. .. ... .. ... ..., 202
4.2 Nominal vs. actual beam energiesforEG1b . . . . .. ... .. .. ... ... .... 210
4.3 Sector-dependent Momentum Correction Parametersfor EG1b. . . . . . .. ... .. 224
4.4 Torus current-dependent parameter T.; for outbendingsets. . . .. ... ... ... 224
4.5 Forward angle momentum correction coefficientsforEG1b . . . . . . . ... .. .. 229
4.6 Loose fiducial cut parameters for inbendingruns . . . . ... ... ... 0oL .. 241
4.7 Sample tight fiducial cuts parameters forinbendingruns . . . . . .. .. ... .. .. 241
4.8 Sample tight fiducial cut parameters for outbendingruns . . . . . . . ... ... ... 242
4.9 Faraday Cup normalization factors for multiple scattering correction. . . . . ... .. 245
5.1 RunbracketlabelsforEG1b. . . . . . . _ ... . .. ... ... o . 249
5.2 Runbracketlabelsfor ®N/'2Cdata. . . . ... .. ... ... ... ..o .. 250
5.3 Experimental L measurements for empty target anomaly analysis . . . .. ... .. 257
5.4 Empty target anomaly correctionratios . . . . . .. .. ... ... ... ... ..., 257
5.5 Targetcelllength Lforeachbracket . ... .. .. ... ... ............. 264
5.6 Normalization factors for 15SN/'2Cratios . . .. ... ... ............... 272
5.7 Fit coefficients a and b for 15N/*2C cross-sectionratios . . . .. ... ......... 276
5.8 Frozen nitrogen target lengths €5 for 5Nrunbrackets . . . ... ... ........ 280
5.9 Frozen ammonia effective target lengths ¢4 foreachbracket . . . . . .. . ... ... 285
5.10 High-W cutoffs for dilution factor measurement . . . . . .. ... ... ... .. .... 287
6.1 Fit parameters for ete™ background correction . . . . . .. ... ... ... .. ... 303
6.2 Form factor Gg(Q?) and Gp(Q?) fitparameters . . . .. ... ... ......... 306
6.3 Carbon target scaling W-limits and scaling factors for elastic backgrounds . . . . . . 309
6.4 Inclusiveelastic W-limits . . . . . . . . .. . ... ... ... ... o 309

vi



6.5 Carbon scaling factors for exclusive epbackground . . . . . ... ... ... ..... 315

6.6 ExclusiveepelasticW-bounds . .. ... ... ... ... .. ... ........ 316
6.7 P,P, measurements by half-wave-plate status and target polarization . . . . . . . .. 319
6.8 P,P, measurements by target polarization . . . . . ... ... ... ... .. ..... 320
6.9 P,P, measurementsforeachbracket. . . .. ... ... ... ............. 321
6.10 P, P, measurements used fordataweighting . . . . . . . .. ... ... ... ..., 328
6.11 Meller beam polarizations and >N polarization . . . . ... ... ... ........ 333
7.1 Students t-test results for half-wave-plate status combination . . . .. ... .. ... 349
7.2 Students t-test results for target polarization combination . . . . ... ... ... .. 351
7.3 Students t-test results for opposing torus current combination . . . . ... ... . .. 353
7.4 Students t-test results for close beam energy combination . . . . ... ... ..... 355
7.5 Systematicerrorindexkey. . . . . . . . . ... ... 359
7.6 Fit parameters for dilution factor model systematicerror . . . . .. ... .. ... .. 366
8.1 Worlddatareferencesources . . . . . . . . . . .. ... e 389
8.2 Students ¢-test results for A; combinations from different beam energies . . . . . . . 391
B1 Standard @2 binsforEG1b . .. . . .. . ... ... ... e 457
B.2 # and momentum(p) bins for ete~ backgroundremoval. . . ... ... ... ... .. 458
B.3 Pion backgroundcutparameters . . . . .. .. .. ... ... ... ... 460
B.4 Inbending fiducialcutparameters . . . . . .. . . ... Lo o L. 466
B.5 Outbending fiducialcutparameters . . . . . .. .. .. .. ... .. ... ... .. 468
B.6 Resultsfor 4; +7n4;, E=16GeV. .. .. ... ... .. .. ... ... 486
B.7 Resultsfor A; +nds, E=25GeV . . . . . . . o L 491
B.8 Resultsfor A; +n4z, E=42GeV . . . . . . .. ... 498
B9 Resultsfor A; +nd,, E=5.7GeV . . . . . . . ... 507
B.1OResultsfor A . . . . .. . .. 515
B.t1 Resultsfor AL . . . . . . . 521
B.12ResultsforDIS AT vs. = . . . . . . . ... .. .. 525
B13Resultsforg? . . ... ... ... 526
B.14 Resultsfor gy /FF . . . . . o . e 532
B.ASResultsforgl . . . . . . . .. 538
BiA6ResultsforIy . . . . . . .. L 543
Bi7ResultsforT% . . . . . . . ... 544
BiA8ResultsforT . . . . . ... ... 545
B9 Resultsfor fghdr . ... ... ... .. ... .. ... 546
B20Resultsfor [x?ghdx . . . .. . ... ... ... ... 546
B.21 Results forthe matrixelementd, . . . . . . .. .. ... ... L. oo, 547
B22Resultsfor fo2AYFPdz . . . . . .. ... 548
B23Resultsforyo - . . . . . . L e e e e e 549
B.24Results for By . . . . . . . . e e e e e e e e e e e e e e e e 550
B.25Resultsfor Ba . . . . . o . . . e e e e e e e e e e e e e e e 551
B.26 Results for BY'W . . .. 552

vii



List of Figures

1.1 Pictures of the proton at varying probe distances . . . . . . .. ... ... .. .... 4
1.2 Inclusive epscatteringkinematics . . . . . . .. .. ... ... ... 0000 6
1.3 Unpolarized inclusive scatteringinthelabframe . . .. .. ... . ... ....... 12
1.4 Polarization transformations upon reflections and Lorentzboosts . . . . . . ... .. 23
1.5 Scaling behavior of spin-fliptransitions . . . . . .. ... .. ... ..., .. .. ... 28
1.6 Contour of integration in the Optical Theorem . . . . . .. ... ... .. ....... 43
1.7 Expected Q?evolutionof T} . . . . .. ... ... ... ... ... .. ... . 52
1.8 Expected Wevolutionof AY . . . .. ........ ... .. ... .. ... .. 69
1.9 Early measurements of A} at SLAC . . .. . . e 69
1.10 Early measurements of g” atSLACandCERN . . . .. ... .. ... ........ 71
1.11 Measurements of gf /FF inSLACE143andE155. . . . . . ... ........... 74
1.12 Measurementsof zgf atHERMES . . . . . . ... ... .. .............. 76
1.13 Comparison of abundances of world data vs. EG1dataforgf . ... ... ...... 78
1.14 Measurements of :cg” fromSLACEISSX . . . . . . . . . e 79
1.15 Measurements of gf fromJLabRSS(Hall-C) . . ... ... ... ... ........ 80
2.1 Schematic of CEBAF electron accelerator at Jeffersontab . .. .. ... ... ... 82
2.2 Schematic of photoelectrongun. . . . . . ... ... .. ... ... . L. 84
2.3 Schematicofbeaminjector . . . ... ... ... .. ... .. ... ... ... 85
2.4 Photographofcryounit . . . . . . . . ... .. ... e 85
25 Photographofiinacsection . .. ... .. ... .. .. .. ... ... . ... 87
2.6 Photograph of recirculationarc . . . ... ... .. ... ... ... .. . ... 89
2.7 Schematic of Hall-B and beam line monitoringdevices . . . . .. ... ... ..... 90
2.8 Photograph of Maller polarimeter . . . . . . . . .. .. .. ... ... 90
2.9 Schematic of Maller polarimeter . . . . . . . . . ... ... ... .. .. ... 91
2.10 Beam Position Monitor (BPM) measurements . . . . . . .. ... .. ... ...... 92
2.11 Resultsof harpscanmeasurement . . . . . . ... ... . ... ... ... 93
2.12 Faraday Cup and Synchrotron Light Monitor measurements comparison . . . . . . . 94
2.13 Photograph of frozen NHs targetbeads . . . . . . ... ... ... ... ....... 96
2.14 Energy levels in magnetized proton targetpriortoDNP . . . . . . .. .. ... . ... 99
2.15 Energy level transitions in Dynamic Nuclear Polarization (DNP) . . . . . ... .. .. 101
2.16 Distribution of energy levels in Equal Spin Temperature (EST) theory . . . . . . . .. 102
2.17 Relative polarizations of ®Nvs. pinSMC . . . . . ... ... ... ... ....... 104
2.18 Schematic of polarized targetcryostat . . . . . . ... ... .. ... ... 105
2.19 Photograph of targetassembly . . . . . . _ .. .. ... ... . L. 105
2.20 Online NMR polarizationmonitoring . . . . . . .. .. ... ... ........... 106
2.21 Photograph of targetinsertstrip. . . . . . ... ... ... ... .. ... ... 107

viii



2.22 Photograph of target stickand vacuumfltange . . . . . . . ... ... ... .. .... 108

2.23 Photograph of filled targetimmersedin kN2 . . . . . . .. .. .. ... L. 109
2.24 Photograph of Kaptonfoit . . .. ... ... ... . ... . ... ... ... .. ... 110
2.25 Photograph of banjo interiorandminicup . . . ... .. ... ... .. .. ... ... 111
2.26 Photograph of assembled polarizedtarget . . . . .. ... ... ... ... . ... 112
2.27 Schematic of CLAS (parallelcutaway) . ... ... ... .. ... .. ... ...... 115
2.28 Schematic of CLAS (perpendicularcutaway) . ... ... ... ............ 116
2.29 Schematic of torusmagnetframe . . . . . . . . ... ... ... .. ... ....... 117
2.30 Schematic of driftchambercells . . . .. _ ... ... ... . ... .. .. ..., 118
2.31 Photograph of outermost (Region 3) driftchamber . . . . . ... ... ... ..... 119
2.32 Time-based tracking inthedriftchamber . . . . . . . . .. .. ... ... ....... 121
2.33 Distance of closest approach (DOCA) vs. drifttime . . . . . .. .. ... .. ... .. 121
2.34 Driftchamberresiduals . . . . . . . . . . ... e 122
2.35 Schematic of Cherenkov Countersector . . . . . . ... ... ... .. ........ 122
2.36 Schematic of Cherenkov Countersegment . . . . .. ... .. ... ......... 124
2.37 Photograph of CherenkovCounter . . . . . . ... .. ... ... ... .. .. .... 125
2.38 Schematic of Scintillator Counter . . . . . . . ... ... .. ... .. ... ... 126
2.39 Scintillation Counter PMTADCchannels. . . . ... .. .. ... ........... 126
2.40 Time-walk evolution in Scintillation Counter PMT . . . . .. ... . ... ....... 127
2.41 Time-of-flight left-right alignmentplots . . . . . . . ... ... ... ... ...... 129
2.42 Attentuation length calibration plot for Scintiliation Counters . . . . . . . . . ... .. 130
243 RFbunchtimingoffsets . .. ... ... ... ... ..... ... . ... . .. ... 131
2.44 Paddle-to-paddle time-of-flight calibration . . . . . .. .. ... .. .. .. ..... 132
2.45 Schematic of Electromagnetic Calorimetersector . . . . . . ... ... ... ..... 133
2.46 Vertical cross section of Electromagnetic Calorimeter . . . . . . . . .. ... ... .. 134
2.47 Electromagnetic Calorimeter timing calibration . . . . . .. ... .. .. ... .... 135
2.48 Photograph of partially assembled CLAS . . . . . . ... ... ... ... ...... 136
2.49 Data Acquisition System flowchart . . . . . . ... ... ... ... ... ... 138
2500nlinedatareconstruction . . . . ... .. ... ... ... e 138
2.51 Time-of-flight reconstructed massspectrum . . . . . . ... .. ... ......... 141
2.52 Kinematic coverageof EG1b . . . . . . ... ... . o Lo L. 142
2.53 Eventtiming qualitycheckplot . ... .. ... ... ... ......... ... ... 144
254 Modelvaluesof FP . . . . . . .. . ..o 146
255 Modelvalues of RP . . . . . . . . . e e e e e e 147
256 Model valuesof AL . . . . . . .. L. 149
2.57 Model valuesof o, /ag - . . . . . . . L e 152
2.58 Mass thickness externaltotargetvs. 6 . . . . . .. . .. .. .. ... ... .. ... 156
3.1 Helicitylabelingexample. . . . . . . .. .. .. ... ... ... .. 161
3.2 Online monitoring of helicity bits . . . . . . . ... .. ... ... ... .. ...... 162
3.3 Beam charge asymmetryqualitycheck. . . . . .. .. .. ... ... ... .. ..., 165
3.4 Inclusivecountratesineachsector. . . .. . ... ... ... .. ... ... ... 166
3.5 Countrate qualitycheckexample . . . . . ... ... .. ... ... ........ 167
3.6 Identification of countratechangecauses . . . . .. .. .. ... ........... 167
3.7 Target polarization and half-wave-plate statuschecks . . . . .. ... ... ..... 169
3.8 Rastereventratedensity . . . . .. ... .. .. ... ... 170
3.9 Raster pattern quality comparison . . . . . . ... ..o o L oo oo 172
3.10 Raster pattern anomaly foremptytarget . . . . . . . .. . ... L oL, 173



3.11 Count spectravs. W forindividuairuns . . .. ... ... ... ............ 174

3.12 Cherenkov Counter photoelectronspectra . . . . . . . ... ... .. .. ....... 179
3.13 Particle Identification by Electromagnetic Calorimeterenergy . . . . ... ... ... 180
3.14 Particle Identification by Electromagnetic Calorimeter energy and momentum . . . . 181
3.15 Elasticepeventkinematiccuts . . . . .. .. ... .. ... ... ... ... ... 185
3.16 Vertex position v, vs.runnumber . . . . . . .. . ... ... . L ... 187
3.17 Consistency of internal Electromagnetic Calorimetersignals . . . . . . . .. ... .. 189
3.18 Anomalous vertex reconstructionin Sector5 . . . . . ... ... .. ... ... .. 191
4.1 Cherenkov photoelectron spectra of electronsandpions . . . . . ... ... ... .. 193
4.2 Cherenkov Counter projection plane definition . . . . . . . . ... ... ........ 195
4.3 Cherenkov Counter and Scintillation Counter geometric discrepancy . . . . . . . .. 196
4.4 Cherenkov Counter and Scintillation Counter timing discrepancy . .. ... ... .. 197
4.5 Effect of precision Cherenkov cuts on photoelectronspectra . . . . . .. ... .. .. 199
4.6 Determination of residual pion contamination after precisioncuts . . .. .. ... .. 200
4.7 Schematic of raster correction geometry (frontview) . . . . ... ... ... ... .. 204
4.8 Schematic of raster correction geometry (longitudinal view) . . .. ... .. ... .. 204
4.9 Effect of raster corrections on reconstructed z-vertex . . . . . . ... ... ... ... 206
4.10 Effectof torus currentcorrection . . . . . ... .. oL oL ... 208
411 Visualization of multiple scattering . . . . . . ... ... .. ... ... ... ... 212
4.12 Summary of kinematic correctioneffects . . . . ... ... ... ... ... ... ... 220
413 Distribution in#of elasticepevents . . . . . . . .. ... .. ... ... ... ..., 222
4.14 Azimuthal dependence of momentumcorrections . . . . .. ... ... ... ..... 225
4.15 Low 4 elastic peak positions prior to finalcorrections . . . . ... ... ... ... .. 227
416 Low ¢ momentum correctionfit . . . . . ... ... ... ... ... ... 228
4.17 Effects of final low- momentum corrections . . . . . . . .. ... ... ........ 229
4.18 Net effects of kinematic correctionsoninclusivespectra . . . . . . ... ... .. .. 230
4.19 Effects of target solenoid field on scattering angle measurement . . . . . . ... .. 232
4.20 Inbending fiduciat cuts (low momentum) . . . . . ... .. ... oL, 235
4.21 Inbending fiducial cuts (highmomentum) . . . .. .. ... ... ... ........ 235
4.22 Qutbending fiducialcuts . . . . . . .. ... .. ... . ... ... 238
4.23 Interpolation of fiducial cutparameters . . . . . . .. .. ... ... ... ... 239
4.24 | oose inbending fiducial cut for asymmetry measurement . . . . .. .. ... ... 240
4.25 Effects of fiducial cuts on pion contamination . . . . ... ... ............ 243
5.1 Inclusive count rates foreachbeamenergy . . .. .. ... .. ... ... ...... 253
5.2 Empty target anomalyrasterpatterncuts . . . . ... ... ... ... ... .... 256
53 Targetlength L measurementfromdata . . . ... ... ... ............. 261
5.4 Empty to carbon target count ratios foreach bracket . . . . .. . ... ... ..... 262
5.5 Targetlength L measurementfrommodel . . . .. .. .. ... ............ 265
5.6 Targetlength Lforeachbracket . .. ... . ... ... .. ... ... ... ..... 266
5.7 Count rate change during drainingofminicup . . . . . . .. ... ... ... . ..., 268
5.8 Frozen nitrogen 1o carbon target count ratios (2.3 GeV beamenergy) . . . . . . . .. 270
5.9 Frozen nitrogen to carbon target count ratios (other beam energies) . ... ... .. 273
5.10 Fit of carbon to frozen nitrogen inclusivespectra . . . . . ... ... ... ...... 277
5.11 Measurement of 5N frozentargetlength £ . . . . . . . . ... ... ... ...... 279
5.12 Measurement of ammonia targetlength {4 fromdata . . . . .. . ... ... ... .. 281
5.13 Measurement of ammonia target length £4 frommodel . . . . . . . ... ... ..., 284



5.14 Dilution factors from dataplottedvs. W . . . . . . . . . ... ... ..., 289

5.15 Dilution factors plotted individually by sector and polarization status . . . . . . . . .. 290
5.16 Subftracted background using dilutionfactors . . . . . . .. ... .. ... ... ... 291
5.17 Dilution factors (from data) plotted vs. Q% . . . . . .. ... ... .. ... ...... 292
5.18 Dilution factors from data and modelcompared . . . . . . . ... ... ... . ..., 294
6.1 Ratiosofet/evs.p. . ... .. .. . .. ... 301
6.2 Ratiosofet/e vs. 0. . . .. . . . . ... 302
6.3 Positron asymmetriesasafunctionofp ... ... ... . ... ... L. 304
6.4 Background-subtracted inclusive elasticspectra. . . . . .. .. ... ... ... ... 310
6.5 Elasticepeventsintermsofg, —¢. . .. .. ... ... .. oL 316
6.6 Background-subtracted elasticepspectra . . . . . . . ... ... .. L. 317
6.7 B, P, values divided by half-wave-plate status and target polarization . . . . . . . . . 321
6.8 PF,P, values divided by target polarizaton . . . .. .. ... ... ... .. ._...... 322
6.9 Final PP, values(set1) . . . . . . . . . . .. . e e e 323
6.10 Final PPy values (set2) . . . . . . . . . . . . . . . e e 324
6.11 Comparison of measured P, P; and Moller x NMR measurements . . . .. ... .. 326
6.12 P, P, ;e Values used for relative weighting of opposite polarizations . . . . ... .. 329
6.13 Parametrization of 1®N vs. p polarizations . . . .. .. ... ... ... ........ 331
7.1 Raw asymmetries by half-wave-plate status and target polarization . . . . .. .. .. 345
7.2 Raw asymmetries by target polarization . . . . .. .. ... ... ... .. ... 0. 348
7.3 Finalcombinedrawasymmetry . . . . .. ... .. .. ... ... .. ... ... 351
7.4 Measurement of A;; (before radiative corrections) . . . . . . ... ... ... ... .. 352
7.5 Measurements of A with radiative corrections . . . . . . ... .. .......... 354
7.6 Measurements of Ay/Dbybeamenergy ... ... .................. 356
7.7 Systematic errorson A; +ngAsbysource . .. .. ... Lo Lo oL 358
7.8 Dilution factor systematic errorsduetotargetmodel . . . .. .. ... ... ... .. 363
7.9 Dilution factor model error determination . . . . . .. . .. .. Lo Lo 365
7.10 Systematic errors on A; + nA; due to systematic P, P;effects . . . . . . ... .. .. 370
7.11 Systematic errors on A; + A, due to statistical PP, effects . . . ... ... . ... 371
7.12 Systematic errors on A; + nAz due to miscellaneous backgrounds . . . . . . .. .. 375
7.13 Systematic errors on A; +nA; dueto kinematicerrors . . . . . . ... ... ..... 378
7.14 Systematic errorson A; + nA; duetomodelserrors . . . . ... ... ... ..... 381
7.15 Local bins used for systematic errorsmoothing . . . . . .. ... ... ... .. ... 383
7.16 Measurement of A4;;/D showing total systematic errors (magnified) . . . . . ... .. 385
7.17 Measurement of A,/ D showing total systematic errors (actual size) . ... ... .. 386
81 Keytoworlddataplots. . . . . ... ... ... ... .. ... .. 388
8.2 Systematicerrorson A} . . . . ... 390
83 Resultsfor AT vs. W . . . . . . 392
84 Resultsfor AT vs. Q2. . . . . ... 393
8.5 Results for A7 vs. zdemonstratingduality . . . .. ... ... .. ... ... ..., 394
8.6 Kinematic coverage and exampiles of linear regressionanalysis . . . . . .. ... .. 395
8.7 Results for A} vs. W withoutuseofthe AZmodel . . . . . . . .. .. .. .. ... .. 396
88 Resultsfor ASvs. W . . .. . ... ... L. 398
89 ResultsforASvs.z .. ... ... .. .. 399
810 Resultsforgi vs. z(set1) . . . . . . . ... ... ... 400

Xi



811 Resultsforgf vs. z(set2) . . . . .. ... .. ... ... 401

812 Resultsforgi vs. z(set3) . . . . . . . .. ... 402
8.13 Resultsforgl vs. z(set4) . . . . . . . .. . ... ... 403
8.14 Resultsforzgi vs. z(set1) . . ... . .. ... ... . ... 404
8.15 Resultsforzgi vs. z(set2) . . . .. ... ... ... . 405
8.16 Resultsforzgi vs. z(set3) . . . ... .. ... . ... ... 406
8.17 Resultsforzgl vs. z(setd) . . . . .. . ... . ... ... ... 407
8.18 Results for g7 /F?, averagedoverall Q% . . . ... ................... 409
8.19 Results for g7 /FP vs. Q%,binnedinz . . . . . .. ... .. ... ........... 410
8.20 Results for g7/ FF vs. Q2 compared between beam energies and analyses . . . . . . 411
8.21 Resultsforzgf vs. z (high QZonly) . . . . . . . .. ... ... ... ... . ... ... 412
822Resultsforghvs. . . . . .. .. 414
823 Resultsforxzgh vs. = . . . . . . . ... e 415
824 Resultsforghand zgh vs. Q% . . . . . . ... 416
8.25 Results for g5 and zgf vs. Q%, binnedinz . . ... .. ... ... ........... 417
826 ResultsforT Y vs. Q% . . . . . .. .. .. . . 421
827 ResultsforTfvs. Q% . . . . . .. ... .. ... 422
828 ResultsforTEvs. Q% . . . . . .. ... ... 422
8.29 Results for the firstmomentofghvs. Q% . . . . . .. . ... ... ... ... ..., 424
8.30 Results for the third momentof gf vs. Q2 . . . .. .. ... ... .. ... ..... 425
8.31 Results for the matrixelementdf vs. Q% . . . . . . ... .. ... .. ... ...... 426
8.32 Results for the forward spin polarizability integral vs. Q2 . . . . . .. .. ... .... 429
8.33 Results for the forward spin polarizability vovs. Q% . . . . . ... ... ........ 430
8.34 Results for the hyperfine splitting contribution By vs. Q2 . . . . . .. .. .. ... .. 436
8.35 Results for the hyperfine splitting contribution Bovs. Q2 . . . . . . ... ... .. .. 437
8.36 Results for the B, leadingtwistterm B¥W vs. Q2 . . ... .. ... .. ... .... 438
837 Globaldualityof g7 . . . . .. ... ... 441
8.38 Global duality of g asafunctionof Q% . . . . . .. ..... ... ... .. ...... 442
8.39 Projectionof EG4 analysisresults . . . ... ... ... . ... ... ......... 445
8.40 Projected kinematic coverage of SANE . . . . . . ... .. ... ... . ... ... 446
8.41 Projected SANE results of the & matrixelement . . . . . . .. ... ... . ..... 447
842 Summaryof AT DISresults . . . ... ... ... 449
8.43 Projected z-coverage of CLAS12DiSdata. . . . . . . . . ... . ... ... ..... 450

xii



Acknowledgements

No research project of this magnitude takes place in a vacuum, nor can any advancement in collec-
tive knowledge be made without building on the work and experience of others. Therefore, credit
must be given both to those who helped set the stage and lay the foundation for the work presented
in this dissertation, and to the experienced researchers who taught me the necessary physics and
assisted in the more daunting aspects of this research.

A special thanks goes to Renee Fatemi, Vipuli Dharmawardane, and Yelena Prok, whose past
work and dissertations in inclusive analysis of the EG1a and EG1b experimental data built a solid
framework for the continuation of this research. Appreciation also goes to Cornel Buttuceanu and
Stepan Stepanyan, whose help was essential in the early stages of work in time-of-flight calibra-
tion and experimental event reconstruction. Credit is shared with the many members of the EG1
collaboration. The extensive experience of Professors Sebastian Kuhn and Gail Dodge from Old
Dominion University provided much-needed structure and guidance throughout the analysis pro-
cess. Also, the collaborative nature of this work must be emphasized, to which end | must thank the
efforts of Josh Pierce (for his polarized target experience and programming of the DST data trans-
lator framework), Nevzat Guier (primarily for his development of the kinematic correction package,
precision pion background and pair-symmetric background removal code and help with the P, P;
calculations and time-of-flight calibrations, among other tasks, including continued development
of the structure function models package with S. Kuhn), Sharon Careccia (for work in calorimeter
timing calibration and particle identification cuts), and Shifeng Chen (for drift chamber calibration
and general database management). Harut Avakian deserves additional credit for his knowledge
of the simple event builder details and target solenoid field corrections. Thanks also goes to Volker
Burkert, Tony Forest, and Ralph Minehart for their many constructive critiques and contributions,
which are too numerous to list here.

A very special thanks goes to Peter Bosted, whose many years of experience and paraliel
analyses of EG1 data provided an indispensable asset in producing results of high integrity. His
invaluable hours of assistance and development of the radiated cross-section model, kinematic

corrections, and general leadership in our collaborative effort in refining the details of the 15N/2C

Xiii



cross-section ratio model, made him the most essential contributor to the analysis as a whole.

I would also like to thank my advisor, Professor Keith Griffioen at the College of William and
Mary, for giving me the chance to get involved with the EG1 working group, for providing countless
hours of his professional time toward advancing this research, maintaining high standards of writing
and productivity, and sustaining the level of patience necessary to train me with the skills necessary
to be successful in the field of experimental hadronic physics research. This thanks extends to all
the members of my Defense Committee, whose input throughout the years has improved my ability
to present physics work at conferences and other venues. All members of the CLAS Collaboration
and Deep Processes Working Group at Jefferson Laboratory, not mentioned in these short para-
graphs, are also credited with their many contributions.

None of this would be possible without the physics knowledge imparted by the many great
teachers who have helped me build a base education for the subject, especially J. D. Walecka,
Shiwei Zhang, Cart Carlson, Chris Carone, and Marc Vanderhaegen at the College of William and
Mary, Mark Sharnoff, George Watson and Ed Eyler at the University of Delaware, and Roger Vol-
rath of Glenelg High School in Marytand, who, during my formative years, started me in an ongoing
educational journey by sparking an interest in this subject.

As a final note, | remark that besides professional and educational help, that there are those
in my life who were crucial in helping me in maintaining my sanity during the sometimes arduous
process of completing a disseration (sometimes at the cost of some of their own sanity). Without
the support of my friends and family, especially my loving wife Theresa (who patiently endured my
long work hours and repetitive remarks of “I'm almost done” for many months), | would not have
maintained a positive outlook and happiness throughout the last several years of my life. | thank
especially my wonderful parents, Robert (Sr.} and Barbara Fersch, who always taught me to main-
tain high ambitions without pressuring me for specific outcomes, allowing me to define my own

educational journey and goals.

Xiv



Preface

This thesis is intended as a thorough documentation of the analysis procedures used in the analysis
of inclusive proton data in the EG1 experiment. Where possible, explicit details of caiculations and
procedures are provided, so that this work can be employed as a reference work for future CLAS
analyses, especially inclusive electron scattering analysis, though certain aspects of this analysis
also have applications to exclusive and semi-inclusive event analysis, as well. An attempt was
made to firmly clarify the motivation and theory behind the research goals, as well as to investigate
applications of the evaluated g, and g, structure functions for the proton, in addition to specifying
the experimental procedure.

Chapter 1 introduces electron scattering experiments, defines kinematic values, explores the
theory behind structure functions and asymmetries, and provides a list and brief explanation of past
accelerator experiments that specifically measure the ¢, and g, polarized structure functions of the
proton. Chapter 2 details the JLab accelerator and CLAS detector apparatuses, the EG1 polarized
target functionality and physics, and delineates the kinematic coverage of EG1. A description of the
models used to parametrize structure functions and asymmetries not directly measured in EG1 is
also presented.

Chapters 3 and 4 focus on early analysis tasks, mainly cuts and corrections on data. Chapter 3
focuses on basic particle and helicity identification and file quality checks, while Chapter 4 focuses
on more refined and precise cuts and corrections, such as momentum and other kinematic correc-
tions, and fiducial and pion removal cuts.

Chapters 5 through 7 contain the “main” analysis of the data. Chapter 5 contains all aspects of
unpolarized background removal, including determination of target material thicknesses and dilu-
tion factor calculation. Chapter 6 concentrates on removai of all other backgrounds, namely beam
and target polarization correction, pair-symmetric background, polarized nitrogen and radiative cor-
rections. Chapter 7 summarizes the combination and compatibility testing of various data sets, and
the determination of systematic error effects.

The final chapter (Chapter 8) presents all virtual photon asymmetry (A4, and As) and spin struc-

ture function (¢, and g2) results, and their various moments in the Operator Product Expansion.
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Selected physics applications of the data are also explored. Extensive data tables (Appendix B) of
all these quantities are provided at the end of this thesis, prior to the Bibliography. For convenience
and utility to those unfamiliar with spin physics and/or CLAS jargon, a glossary of acronyms is in-
cluded in Appendix A.

The result of a detailed documentation of an extensive analysis project is a very lengthy disser-
tation. Effort has thus been made to make this work useful as a reference by making chapters and
sections as self-contained as possible, with cross-references supplied as needed. Those interested
only in the theoretical motivation and new results, but not the experimental procedure, can easily
read Chapters 1 and 8 and skip the bulk of the thesis; while those only interested in a summary of
the CLAS detector and basic particle identification can read Chapters 2 and 3, for example.

It is my hope that this thesis can be useful as a document for those wishing to become familiar
with spin-structure functions, or those attempting to tackle various aspects of CLAS analysis (or
both), especially newer graduate students at Jefferson Lab. With this intention in mind, | made an
earnest attempt to explain and clarify subjects on a level assuming a standard two-year graduate
physics education (with appropriate background in field theory and particle physics), but with little
to no background in JLab or spin physics. Attempts were made to be as explicit as reasonably
possible in derivations, or to provide specific references (listed in the Bibliography) where more
information can be found. 1 sincerely hope that this thesis will find its intended future utility in the
field of polarized physics experiments, so that others can continue to build and extend the reach of

this and related research.
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Chapter 1
Background and Motivation

1.1 Introduction

The scattering of high-energy electrons from a stationary target provides an effective method for
investigating the internal structure of nucleons, that is, the protons and neutrons that compose the
atomic nucleus. In particular, the study of scattered electrons over a wide kinematic range provides
measurements of the structure functions that quantify the internal dynamic behavior of the nucleon
and the evolution of the perceived structure over varying short-distance scales. This thesis deals
specifically with the study of the proton through analysis of data from the EG1b experiment at Jef-
ferson Laboratory, focusing on the scattering of electrons from a stationary NH; target. ' More
specifically, we seek to study the spin structure of the proton, which requires the use of both a
polarized electron beam and a polarized target.

In this chapter, the theory and formalism behind the study of spin structure functions are in-
troduced, and a brief history of existing data utilizing polarized leptons scattered from polarized

protons is reviewed, as a prelude to the discussion of the EG1 experiment.

1An NDj target was used for the study of deuteron/neutron structure, as well; and although most of the analysis of this
target data is similar to the NH3 analysis, it is not examined in this thesis. See, for example, Ref. [2].



1.1.1 Electron-proton scattering

High-energy electrons are an excellent probe for the study of the nucleon. First, the interaction of
electrons with protons is governed exclusively by the (well-understood) electromagnetic interaction,
making this a very “clean” probe of the nucleon. The interaction occurs with the electromagnetic
current density of the nucleon. 2 Also, the strength of the electromagnetic coupling constant
a= ﬁ is very small, so that perturbative techniques can be used to describe the interaction [1].

Experiments using stationary nuclear targets are ideal for making high-precision measurements
of subatomic structure. While the high collision energies achievable using two colliding beams [3]
cannot be reached with a fixed target, a much higher luminosity allows for collection of a much
larger number of scattering events. The development of polarized electron beams (like that at the
CEBAF accelerator at Jefferson Laboratory) and polarized targets (like the NH; and NDj3 targets
used in the EG1 experiment) allows us to study the spin distributions of the quarks in nucleon, in ad-
dition to the unpolarized momentum distributions that were previously measurable with unpolarized
beamsfargets. Finally, the construction of fast response detector systems with large acceptances
(that is, coverage over a large spatial geometry) such as the CEBAF Large Acceptance Spectrom-
eter (CLAS), allows us to collect bilfions of particle events, and thus good statistical measurement
of the quantities in question.

To consider how high energy electrons are useful for probing protons, we consider an optical
analogy [1]. I radiation of a certain wavelength passes through a circular aperture of width a, and
is projected on a distant plane, the angle ¢ from the central axis to the first minimum (i.e. the Airy

disc) is given by
0.61A
a

0~

(1.1)

If we use the standard terminology for the wave number in terms of wavelength k = 2x/), the

momentum transfer  is given by
N 270
D)

2The weak interaction also makes a small contribution to the interaction, but in the measurement of the asymmetries
dealt with here, it is a very small contribution indeed, and is greatly overshadowed by other systematic errors; this effect is
discussed in Section 7.2.7.

(1.2)

K




and

(1.3)

This implies that the larger the transfer of momentum, the shorter the resolved distance. Quantum
mechanics asserts that electrons have a wavelength inversely proportional to their momenta, given
by the deBroglie wavelength:

A= —r — (1.4)

where v is the energy transferred from the electron to the proton. Here the approximate equality
(=) assumes the electron mass is insignificant compared to that of the target, a valid approximation
at ultra-relativistic velocities. Therefore, the higher the energy of the incident electron beam, the
smaller the distance scale within the nucleon that can be resolved.

If the electron-nucleon interaction amplitude is determined only by the charge distribution, p(r),
and the scattered plane-wave amplitude at a point r is equal to exp(i« - r), then the total scattering

amplitude &, is given by integrating over the volume of the incident nucleus V [1]:

o = / drp(r)e™* (1.5)
\ 4

This is just the Fourier transform of the spatial charge distribution. We see now (semi-)quantitatively
that the macroscopic measureable amplitude due to the scattering of electrons from nucleons re-

veals microscopic information about the charge distribution of the nucleon.

1.1.2 Models of the proton

Figure 1.1 qualitatively demonstrates a model of the proton as it is understood today, in terms of
the squared 4-momentum transferred by the electron (Q?). How one pictures the proton depends
upon the distance scale used to probe it. Equation 1.4 provides an approximate means of equating

distance scales {~ )) to transferred energy (v).

At distances greater than 1 fm = 1015 m (which corresponds to a transferred momentum of v ~

0.2 GeV), the proton behaves as a coherent object with overall charge +e and angular momentum



Q2 increases >

Figure 1.1: A qualitative picture of the proton model, starting at Q2 — 0 on the left, Q? increasing
with each diagram. The text explains in greater detail the evolution of the proton as a simple object
(left) into a complex assembly of quarks, antiquarks, and gluons (right).

k/2, with a resultant magnetic moment

_ 2.79¢h

M= (1.6)

in the direction of the proton spin. However, quantum mechanics predicts, for a point-like particle,
a value of u, = e/M, thus providing the first hint that there must be some kind of structure to the
proton.

At shorter distances, on the order of 1.0 to 0.1 fm, (0.2 GeV < v < 2.0 GeV), one begins to
resolve the structure of the constituents, or partons, within the proton, into 3 constituent quarks
with fractional charge. Table 1.1 lists the 6 known flavors of quarks, and their basic properties.
Specifically, two up quarks (charge +§e) and one down quark (charge —-%e) make up a proton.
The quarks are bound together by the strong interaction, which is governed by the theory of quan-
tum chromodynarics (QCD). The discovery of parton structure by early deep inelastic scattering
(DIS) experiments at the Stanford Linear Accelerator in the 1960’s was a vindication of the Eightfold
Way previously proposed by Murray Gell-Mann, which described the observed diversity of hadrons,
including nucleons, as constructions of pairs or trios of up, down and strange quarks bound by
the strong force [7). Free quarks have never been observed due to the phenomenon of confine-
ment, which, via the high binding energy of the strong force, restricts quarks to gqq trios (known as

baryons) or ¢qq quark-antiquark pairs (known as mesons).



At distances less than 0.1 fm (or momentum transfer greater than 2.0 GeV/c), the simple picture
of the proton, built of 3 constituent quarks, begins to break down. At these distances, QCD pre-
dicts (non-intuitively) that the force between quarks. Although incredibly strong at long distances,
this binding force is small at short distance scales, allowing quarks significant freedom of motion
within the confines of the nucleon. Thus, quarks can be observed as effectively free particles as
Q? — oo. This phenomenon is known as asymptotic freedom. At the shortest distance scales, not
only can the incident electron scatter from one of the 3 point-like valence quarks, there is a possi-
bility that scattering from one of the sea quarks in the proton medium can occur. Sea quarks are
quark-antiquark pairs generated from hard (i.e. high-energy) gluons, carrier particles of the strong
force between quarks; these quark-antiquark pairs can actively participate in a scattering event, as
well. The gluons and sea quarks contribute to higher order perturbations in QCD theory at short
distances. Quantification of the contributions of the gluons and sea quarks to the distributions of
charge, linear momentum and angular momentum {spin) of the proton are main topics of medium
and high energy physics research. The distribution of the spin, in particular, is the subject of the

polarized scattering analysis presented in this thesis.

Table 1.1: The six known flavors of quarks and their basic properties. The valence mass is the
actual mass of the bare quark. The constituent mass includes all the gluons and ¢g pairs that
surround the bare quark, and constitute (approximate) effective mass in a hadron/meson. From
Ref. [5] and [7].

| Flavor | Symbol | Charge | Valence Mass (MeV/c?) | Constituent Mass (MeV/c?) |

down d —~ze 4. -8. 363/310
up U +ie 15-40 363/310
strange s —ze 80 - 130 538/483
charm c +ze 1150 - 1350 ~1500
bottom b —se 4100 - 4400 ~4700
top t +ze 169100 - 172700 not found as constituents

1.1.3 Kinematic Definitions

The formalism for describing electron-proton scattering uses several conventional variables that

are common to the relevant literature [4]. Figure 1.2 shows the basic process of ep scattering.
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Figure 1.2: A diagram of inclusive electron-proton (ep) scattering, as studied in this thesis. An
incoming electron with momentum E and spin s exchanges a virtual photon of momentum ¢ with a
stationary proton of mass M and spin S, causing the scattered electron to recoil with momentum E’
and spin s, with one or more reaction products released (X). Measurements of inclusive scattering
events only concern themselves with precision measurements of the scattered electron.

This process is described, in the lab reference frame, as an incident electron with energy (and
momentum) E, 4-momentum k and spin s interacting by way of a virtual photon with energy v
and 4-momentum g, with a stationary proton with 4-momentum p = (M, 0,0,0) and spin S, where
M=0.938 GeV/c? is the proton mass. The incident electron recoils with energy (and momentum)
E’, 4-momentum &’ and spin s’. The virtual photon is an internal particle to the Feynman diagram,
and as such, it need not be massless, nor, consequently, transversely polarized, as is a real photon
[7]. In fact, later, we shall distinguish between the response functions corresponding to transverse
and longitudinal virtual photon modes.

For convenient reference, here follows a list of commonly used variable definitions (that recur
frequently in this thesis), with relevant descriptions to follow. Defining the beam axis along the

2-direction, and thus labeling the polar scattering angle ¢, one obtains

Q? = —¢* = AEFE'sin? g = 2EE'(1 — cos#f) (1.7)



V:E—E’z%g (1.8)

W =(p+q? =M+ 2Mv - Q2 (1.9)
s=(k+p)?=2ME + M? (1.10)
_2;2.2(1:25\2421/ (1.11)
:P'(:‘;k') - E}‘f’:% (1.12)
2‘22'2‘1 :i (1.13)
72%/%_3"2.: ‘/f_z (1.14)
ng_";=;1§ (1.15)

€= <1+2[1+T]tan2 g-)_l (1.16)
n:-é-‘{% (1.17)
g:”%ji) (1.18)
D=1—;f-;£ (1.19)
d=D 12; (1.20)

& = ————(1;(161526;)”) (1.21)

where R is a ratio of unpolarized structure functions of v and @2, defined later in section 1.2.2.
Equations 1.7 through 1.13 can be derived directly from Lorentz invariant 4-vector products de-

fined in Figure 1.2; 1.14 through 1.18 are conventional kinematic definitions derived from the basic

Lorentz invariants; and 1.19 through 1.21 are depolarization factors - described in more detail in

Section 1.4.2.



The first few of these quantities warrant discussion about their specific interpretations. The
quantity Q? is the positive definite square of the virtual photon 4-momentum; it is fully analogous
to x? in the optical example in the Introduction. Q2 — 0 indicates the limit of scattering by a real
photon, while Q? — oo indicates the approach toward an infinitesimal distance resolution. The
virtual photon energy v is equal to the electron energy absorbed by the proton. |

The variable W is the Lorentz-invariant missing mass of the struck proton. In elastic ep scatter-
ing, W = M = 0.938 GeV, but for the inelastic reaction ep — eprt#n—, wefind W > M42m,, > 1.218
GeV. ? The value of W = M + m, = 1.077 GeV is known as the inelastic threshold, below which
there is not enough energy in the collision to create any new particles while conserving baryon and
lepton number. Interactions where W > 2.0 GeV (and Q2 > 1.0 GeV?) are conventionally labeled
as Deep Inelastic Scaltering, or DIS events. The quantity s is a Loreniz-invariant Mandelstamn vari-
able [3]; in this configuration it remains constant so long as the beam energy E is constant.

The quantitities = and y are known as Bjorken Scaling Variables. * Results for DIS are often
expressed in terms of Q2 and z; both = and y are commonly used in Perturbative QCD (pQCD)
calculations. The interpretation of the meaning of z is important; it requires definition of the Breit ref-
erence frame. Kinematically, |q| > v, so that we can always find a reference frame for which v = 0;

we define this as the Breit frame [6]. In this reference frame, we have (for the proton momentum)
P* = (M|q|/Q,0,0,—Mv/Q = 0) (Breitframe) (1.22)

In the Breit frame, the virtual photon carries no energy, so that the overall longitudinal (2-direction)
momentum of an (asymptotically free) struck quark in the nucleon must be of equal magnitude

before and after the collision. That is, the quark 4-momentum is given by
p}(2) = pi(2) + Q = —p{(2) (Breitframe) (1.28)

with the subscripts f and i representing final and initial momenta, respectively, and with @ rep-

resenting the magnitude of the momentum transfer. This relation requires that p}(2) = —Q/2;

3This reaction is associated with the well-known A+ resonance.
4¢ is used in place of z in many discussions. In this thesis, £ is reserved for a scaling replacement for z after approximate
target mass corrections (TMC), as explained at the end of this thesis, in Section 8.4.3.



combining this with Eq. 1.11 yields

Q* _ -Qp{(z) _ pi(z) _ pi(2)
2Mv My ~Mv/Q  pi(z)

il

(Breit frame) (1.24)

T

where p;(z) is defined by the z-component of the whole proton momentum, above. So, we see that
z is interpreted as the momentum ratio of the struck quark to that of the whole proton (in the Breit
frame, where » = 0). It is also useful to note (for finite z) that as Q? — oo, p;(z) — oo. For this
special case (of scaling) the Breit reference frame is often referred to as the infinite momentum
reference frame.

For electron-proton scattering, x is constrained to

0<z<1 (1.25)

with z — 0 representing the short-distance (infinite Q2) limit and = = 1 representing a purely elastic

scattering event. 5

1.1.4 A Motivation for Studying Proton Spin

As explained in Section 1.1, electron scattering is used to investigate the electromagnetic structure
of the proton. The qualitative picture of the proton shown in Figure 1.1 is the result of a culmination
of decades of theoretical research and experimental data collection and analysis at woridwide ac-
celerator facilities. The original “simple” proton model of 3 quarks bound together by the strong, or
“color” force worked wonderfully well in predicting new excited baryon and meson particle states,
as well as in modeling the observed magnetic moments of these particles [6]. Measurement of
total quark momentum fractions demonstrated the need for a sophisticated model of the proton
containing additional quark, antiquark and gluon “partons” within the internal nucleon structure,
maintaining consistency with the quark model.

Given the success of the quark model in describing magnetic moments based on quark charges

and spins [7], one might expect an experimental probing of the spin distributions to conform to the

5Scattering from larger nuclei can produce values of = > 1. Specifically, in that case, 0 < z < A, where A is the atomic
mass. z = A then represents quasi-elastic scattering from the nucleus.
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expectations of a constituent quark model. However, polarized beam and target experiments per-
formed at SLAC and CERN beginning in the 1970’s proved that this was far from the case. In fact,
data from these experiments showed that only a very small portion of the proton spin was carried by
its constituent quarks. This was known as the spin crisis, and is described more quantitatively later
in Section 1.5. Experimental attempts to resolve the so-called spin crisis, along with unpolarized
experimental data, have helped in constructing the picture of the proton we have today. However,
as we shall sée, the lack of precision meaurements of many of the essential quantities used to
describe this picture still leaves many open questions.

The bulk of this chapter is dedicated to explaining how laboratory measurements have provided
us with this insight into the structure of the proton, and providing definitions of the physical quantities

necessary for extracting this information, namely the structure functions of the nucleon.

1.2 Structure functions

The measurement of structure functions, in terms of the kinematic quantities defined in Section
1.1.3, provides insight into the distribution and behavior of the constituent particles, or partons,
within the proton. The scattering cross-sections of particles can be expressed in terms of these
structure functions. In this section, the physical interpretation of both unpolarized structure func-
tions (F; and F3) and polarized structure functions (g, and g-) are briefly explained, along with their

physical context in electron scattering measurements.

1.2.1 Electron scattering and structure functions

To understand the significance of structure functions, one must become familiar with the terminol-
ogy used to describe how measurable quantities in scattering relate to quantities that describe the
physics of the proton. Namely, the significance of cross-sections must be expounded upon. Also,
a description of the target response surface and the expression of the hadronic tensor in terms of

the structure functions are detailed.
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Cross-sections and internal structure measurements in scattering

The cross-section of a particular scattering event, like that shown in Figure 1.2, is a directly mea-
surable laboratory quantity. The overall cross-section o of a particular type of scattering event is

defined in a straightforward way [8] as

P(éz) féx

~ (1.26)

Il

a

where P(éz)/dx is the probability of a scattering event per unit distance, and N is the number
density of scattering centers. This gives the cross-section units of area, so that the cross-section
can be loosely interpreted as the effective area of the response surface of the interaction.

In practice, in order to evaluate the model at various distance scales, as outlined in Section
1.1.2, one must know how the cross-section changes as a function of the angle and momentum of
the scattered electron. Thus, scattering experiments typically measure the scattering cross-section
in bins that cover small subdivisions of the total range of measured kinematic quantities Q2 and W'.
This quantity, the differential cross-section

2o

07TV (1.27)

can then be integrated (which in this case, amounts to a simple summation over bins) to find the total
cross-section o. At a fixed beam energy E, the kinematics of inclusive scattering can be described
completely by only two degrees of freedom, expressed by kinematic variables (Section 1.1.3). The
(unpolarized) differential cross-section can thus be defined completely as a function of any 2 of
these variables; e.g. do/dQ?dz, do/dvdz, do/dQ*dW, etc. Any one of these different differential
cross-sections completely parametrizes the inclusive scattering behavior, as differing pairings of
these kinematic variables simply correspond to different coordinate definitions of the same phase
space. Differential cross-sections are commonly written in terms of the solid scattering angle
and recoil momentum E’ as do/d2dE’. In the special case of inclusive scattering, the scattering

event can be described completely in a two-dimensional plane in the ¢-direction (Figure 1.3), so
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Figure 1.3: Unpolarized inclusive scattering viewed from the lab frame. The symbol ¢ refers to
the angle of the scattering plane, and 8 is the angle of the scattered electron with respect to the
beamline axis. As long as the inelastic scattering products (red) are not tracked, the scattering
event takes place in an azimuthal plane, so that ¢ need not be considered.

symmetry allows one to write
1 ™ Bo b= d*c
o Jo dQdE' "~ dodE’

(1.28)

which also completely parametrizes the scattering event. Because, in reality, data exists in finite

quantities, and hence, finite bin sizes are required. The measured cross-sections become

d%o Ao d%0 Ao

ddE  NOAE ° dgraw  AgEAw ¢ ot© (1.29)

where A8, AW, etc. represent the finite bin size used to demarcate the data. Total cross-sections

are then found by summation over the bins, rather than integration.

Leptonic and hadronic cross-sections; their relation to the cross-section

According to Fermi’s Golden Rule [9] the partial cross-section can be written (to lowest order) [6]
as
Ao 12n

D~ Tﬁjwﬁﬁ (1.30)

where j is the electron beam current density, A® is the complete phase space (described by

two kinematic variables as per the previous explanation) and .#; = (Y| #,.:|+;) is the transition

amplitude between the initial and final wavefunctions of the electron-nucleon configuration. The
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amplitude of the interaction Hamiltonian .#/; contains all the physical dynamics of the interaction.
For the simple case of scattering of an electron from a point particle, the transition amplitude
#s; can be derived completely using the covariant Feynman Rules for quantum electrodynamics

and techniques of Casimir et al. ¢ The (spin-averaged) result is given by 7

() = (i‘l;—i‘—)sz"Lp » (1.31)

where a = T§—7 is the fine coupling constant, ¢ is the virtual photon amplitude (see Figure 1.2) and

L* and L, ,, are covariant tensors, given, in the approximation of a massless electron,® by
LB = kP K" + KV K* — ¢* (k- k') (1.32)

Lp yu = 2(pup), + p"0"* + g"*(M? —p-p') (1.33)

Knowledge of the kinematics then allows for a complete solution of the transition amplitude. ¢
Substitution of the 4-vectors shown in Figure 1.2 into the above equations, and finally, into Eq.

1.30, ultimately yields

Ao  4a’EPE , 0 22, . ,
AT O E cos” 5 (1 + el tan (6/2)) elastic scattering; structureless particles

(1.34)
where the phase space A® = AQAE’ has been reduced to AQ) due to the fact that, for elastic
scattering from a point particle, E’ is constrained by a §-function to a specifically defined function
of 8.

Early ep scattering experiments (e.g. Ref. [10]) made it clear, however, that this result is not
obeyed for the elastic scattering of electrons from protons, indicating that protons are not simple,

point-like particles. To account for the hadronic structure of the proton, Eq. 1.31 must be rewritten

6See, for example Ret. [7] Section 8.3 or Ref. [1] Chapter 11.

7From this point on, “natural® & = ¢ = 1 units are used in this thesis.

8m.=0 is a very good approximation for medium- and high- energy electron scattering, as the relativistic momentum is
orders of magnitude greater than the rest mass. From this point onward, the very small electron mass is ignored.

9Readers unfamiliar with the covariant notation should consult any introductory field theory book, e.g. the preface to Ref.
[11].
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as

QP = ﬁ’q’?—’ng”Wuu (1.35)

where the new response surface tensor W, replaces L, ... The tensor is constructed to acco-
modate any possible scattering response of the electron. Thus, terms representing every possible

covariant 4-vector term are present in its definition [7]:

DuDv
M2

Quv
M2

Wuu = _nguv +Ws + Wy + Wy (pu(b/ +pvq;4) + W (quV - pu(Iu) (1.36)
It can be easily shown [1] that current conservation implies

q;thu =WuQy = 0 (1 .37)

Applying this to the definition of W,,,, it can also be shown [1][7] that W = 0 0 and that W, and

Ws can be expressed in terms of Wy and Ws:
. 2 -
Wy=—=W1+ (———-qq p) W 3 Ws= 1L Py, (1.38)

This yields

quqy W, q-p q-p
o (e )+ ()0 (4 (58)0) 09

Substitution into 1.31 and using the 4-vectors p, and g, in the lab frame eventually yields [3][7]

(4mra)?

M) = EErant@ra)

(2W1 sin® g + W2 cos? g) (1.40)
Using Fermi's Golden Rule and A® = E2AE’'AQ results in

AE'AQ  4E?sin(0/2)

A 2
d i (2W1 sin? g + Wa cos? g) (1.41)

0This can be seen by noting that L= is symmetric, so that the antisymmetric Ws term makes no contribution.
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It is important to note that W; and W, are kinematic functions. Changing the phase space coordi-

nates using
EFE'
™

AQ?*Av = AQAE’ (1.42)

and Q? = 4EFE’sin?(0/2) gives [6]

Ao 4wa®FE’ cos?(6/2)
AQPAL O°E

(Wz(Qz, v) + 2 tan® g—Wl(Qz, u)) generalized ep scattering

(1.43)
This is a central result for electron-proton scattering experiments. It shows that measurement of
the inclusive cross-section in terms of the momentum and electron scattering angle provides us
information about W; and W5, which contain all the physics of the scattering. Two explicily macro-
scopic measureable degrees of freedom, E’ and #, describe Wy and W5, which yield microscopic
details about the electromagnetic interaction between the electron and proton. As outlined in the
first section of this chapter, as electron beam energy is increased, the behavior over shorter dis-
tance scales inside the proton is revealed. The quantities W1 and W, are referred to as structure
functions of the proton. We now concentrate on breaking down W; and W, into different terms, that

is, different structure functions with specific physical interpretations.

1.2.2 Unpolarized structure functions (F3, F;, R)

We proceed now to the introduction of the unpolarized structure functions F; and F>. Measurement
of these quantities is not the purpose of this thesis. However, their understanding is an essential
prerequisite to the more complex topic of polarized structure functions, introduced in the next sec-
tion. Also, it will be shown later that knowledge of the unpolarized structure functions is necessary

for extrication of the polarized structure functions g; and gs.

Form factors and structure functions

Consider for a moment the specific case of elastic scattering of the electron from the proton, in
which kinetic energy is conserved, and hence, no new particles are produced. The constraint of

kinetic energy conservation on the initial and final momentum 4-vectors reduces E’ to a uniquely
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determined function of the scattering angle [7}:

/ E 2
T 1+ (2E/M)sin’(8/2) E-on

(elastic scattering) (1.44)

A similar calculation to that of the previous subsection, with the added constraint of kinetic energy
conservation'!, gives the analog to Equation 1.41 for elastic ep scattering:

Ao o? E'

0 0
—— T e ettt r—. ittt 3 2 — 2 — i i
XU 2T 72 <2W1(e,) sin” = + Wy cos 2) (elastic scattering) (1.45)

2

Here, the uniquely determined value of E' has been integrated, so that only AQ (and thus, only
A after a simple ¢-integration) is needed to completely parametrize the cross-section. The W-
structure functions are now functions of one kinematic variable only. Because E’ is no longer an

independent parameter, and v = F — F’,
W1,2(Q%, v) = Wi 5y (Q%) (elastic scattering) (1.46)

if we define Gg and Gy such that

Wi
Ghi(@h = 2 (1.47)
and
GH(Q?) = (1 + T)Wa) — Wia (1.48)
where T = v?/Q?, we can write the well-known Rosenbluth Formula for elastic scattering:
Ao a? E 2 o . 20 GEQY)+1GL(Q%) L0
— L in? — hd 1.
AD 4E2 sin4(0/2) E (2TGM (Q ) S1It 2 + 1+7 COSs 2) ( 49)

G and Gg are known as the Sachs magnetic and electric form factors; in the following we show
how these quantities may be interpreted as such.

The scattering matrix .#, in terms of the interaction propagator and electromagnetic current

" The quantity 3‘1-'53 = —1 in this section, for the special case of elastic scattering.
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operators, is written as
2

(1.50)

. 1
b ()7l

where j, and J# are current operators for the electron and proton, respectively. The electron is a

| A yil? = ’<¢f

structureless particle, so we can write the matrix operator for the (lowest order) term j,, according

to standard QED formalism [3] as

(Wrli* i) = —et(k)y*u(k) (1.51)

However, we do need to account for the unknown structure of the proton, so J,, must be expressed
as the most generalized possible (parity-conserving) 4-vector containing independent terms and

Dirac y-matrices:
(Wrl ) = (@) (7-F2(Q%) + 0™ 2 22(Q) ) ulp) (1.52)

where #1(Q?) and #2(Q?) are unknown parameters, known as the Dirac and Pauli form factors,
respectively. Solving for the cross-section again, inserting these current definitions into .#;;, one

finds 12

Fa (1.53)

and

Gy = F1 + F, (1.54)

We now shift to the Breit reference frame (introduced in Section 1.1.3), the reference frame in

which v = 0, and hence E = E’. For elastic scattering, the Breit frame is the same as the ep

2Mast texts use F; and F; to denote the Dirac and Pauli form factors in this and related equations. These are norf at
alt the same quantities as the Fy and F, structure functions. To awoid this (unfortunate) notation, %1 and %, are used to
symbolize the Dirac and Pauli form factors in this thesis. Also, some works (e.g. Ref. [3]) write the anomalous magnetic
moment « explicitly in these equations, while others (e.g. Ref. [12]) absorb it into the form factor definitions; the latter
approach is used here.
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center-of-mass reference frame. Evaluating Eq. 1.52 in this reference frame results in

(@O @) = eals) (1 + 50 - 22 ) up) (1)

The notation J(0)* notes the current operator in the Breit frame. If the Dirac spinors are written
explicitly in terms of the helicity spinors x and x), and evaluated in this reference frame, one can

evaluate the four components of J* as [12]
W1 (—Q%/2)|T°(0)[1:(Q%/2)) = 2MeGE(Q%)dss (1.56)

and

(W5 (~Q%/2)|T(0):(Q%/2)) = Ca(Q@D)x!. (7 x D)xs (1.57)

This can all be simplified a bit if we define a z-axis along the direction of the ep collision, in which
case the matrix elements are diagonal. If we note that J* = (p, J;, Jy, J;), we can then write the
nonzero matrix elements as [3]

p=2MeGr(Q*) (s =s) (1.58)

and

Jz £iJy = F2|§leCGm(Q?) (s =-§ = $%) (1.59)

Now, we have the charge J° = p as a function of @2, as well as J,; + i.J,,, which can be interpreted
as a current loop about the z-axis; that is, the magnetization p of the proton as defined along our

chosen axis. In this frame, then, simple 3-dimensional Fourier transforms

3

o) = [ e T MGE(@?) (1.60)
3 . — =

pa(F) = / %e"’q’rlﬂGM(Qz) (1.61)

can be made to obtain the charge or magnetization density in the Breit frame.

The main point of importance to be noted here is that Gg and Gs can be interpreted as electric
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and magnetic form factors, respectively. In the limit Q? <« M?, then, the charge distribution and
magnetization density of the proton can then be respectively determined by the Fourier transforms
of Gg and Gy. Very precise parametrizations of Gg and G, from elastic scattering experiments
have been published [13][14]. These parametrizations are later used in this thesis for calculation of

the beam times target polarization product (see Section 6.2).

Extension of elastic formalism to inelastic scattering

The main subject of this thesis is the study of inelastic structure functions. Why then, are we
concerned with the analogous terms to W, and W5 in the elastic region, as detailed in the last
section? The answer becomes immediately apparent upon extension of these elastic results into

the inelastic region. Looking at Equations 1.47 and 1.48, we see

Wl(el) = TG%J (Q2) (1 62)
and
2 2 2 2
Wy = ZE@ )fj:f M) (1.63)

If we extend the concept of W, and W, to inelastic scattering events, and we are still to believe the
interpretation of the Sachs form factors in Equations 1.58 and 1.59 past this threshold, then it is
clear that W1(Q?, v) parametrizes the transverse part of transition matrix element |.#;|? (as repre-
sented by the magnetic dipole field in the Breit frame), but that W»(Q?, ») contains both transverse
and longitudinal parts of the transition matrix [6].

To separate the longitudinal part of the matrix for inelastic events, it is conventional to define W,
as

WL(Q2,v) = (1 +1)W2(Q%,v) — Wi(Q%,v) (1.64)

(note the similarity to Eq. 1.48). We can now define the ratio of unpolarized structure functions,

labeled R by convention:

or _ Wi(@%v)

R(Q27 V) = or - Wl(Q2,V)

(1.65)
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so that, for elastic events,

G2
GM

Ry = (1.66)

In other words, R is defined as the ratio of the transverse to longitudinal transition strength [6] in

the ep reaction.

Structure Functions and Deep Inelastic Scattering

We now switch to a different perspective - scattering in the deep inelastic region (W > 2.0 GeV). As
explained in Section 1.1.3, if the virtual photon transfers enough energy to the proton, it will scatter
elastically from the individual quarks, but only if their momentum fraction (calculated in the Breit
Frame) is given by = = Q?/(2Mv). In Section 1.1.2, we considered the possibility that both valence
quarks and sea quarks/antiquarks of many different flavors could “exist” inside the proton. If we
then define f(z) to be the probability of quark of flavor f having a value between z and z + Az,
then (assuming quarks have no structure of their own), that means one can simply rewrite the
elastic cross-section, multiplied by 3, f(z)Axz, to express the DIS cross-section!

To do this, we use Eq. 1.34, with a couple modifications. First, we drop the recoil factor oy
and assume the target does not recoil. > We also must consider that the coupling strength « is

proportional to the the product of the charges of the interacting particles, so
a— zZra (1.67)
for each term in the sum, where z; is the charge associated with the quark flavor. This yields

A 402 E" cos8/2
e L_QES_/_ szf@mﬂ_m 2;z?f(m)Az (1.68)

13 In DIS experiments, the recoil factor in the cross-section is a very complicated quantity to calculate, due 1o the fact
that, in this regime, some of the incident energy of the electron goes into creating different angular momentum and flavor
states, while some goes into the target recoil. For this reason, DIS cross-sections are generally calculated assuming no
recoil in the nucleon, and a complicated TMC (farget mass correction) is factored in at the end. It is common convention in
measurement of DIS quantities not to include target mass corrections until they are needed. Except for in the discussion of
quark-hadron duality in Section 8.4.3, the TMC is deferred in this analysis.
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It is conventional to write DIS cross-sections in terms of AQ? instead of AQ = A¢pA(cos8). This

requires integrating over A¢ (i.e. factor of 27) and using Eq. 1.7 to show AQ? = 2EE’sin §Ad, and

hence
A(cosf) = —sin Al = ;gglz (1.69)
Using Eq. 1.11 to show
Az = 2_]\JQ:2 Ay = -—V—AV (1.70)
we can rewrite Eq. 1.68 as [6]
- 322 - 47ra2EC;(;2(0/2) (% Xf: 2 f(x) + % tan? g Xf: 2} f(x)) (1.71)

Finally, we are in a position to define the unpolarized structure functions F, and F; in the deep

inelastic region [12]:

Fi(z,Q%) = MW (v, Q%) (1.72)

Fo(z,Q%) = vWa(v, Q?) (1.73)

It is also sometimes useful to use Eq. 1.64 to define

Fr(z,Q%) = 2MW; = 2M [(1 + )Wa(Q?,v) — W1(Q%,v)] (1.74)

Substituting F; and F; into Eq. 1.43 gives

Ao 4moPE’ cos’(0/2)
AQ2AY QE

( —Fu(z Q2)+ tan? ——Fl(z Qz)) (1.75)

With this definition of the F; and F3 structure functions, this means, that if the quark theory holds

true, then in the DIS region

Fi(z) = % Y 22f(z)| (DIS only) (1.76)
f

Fy(z) ==y _2}f(z)| (DIS only) (1.77)
F




22

That is, the structure functions exhibit scaling behavior and become dependent only on x at high
values of Q2. That is, in the DIS region, we can interpret F;(z) as representing % the probability,
weighted by the square of its charge, of a quark having a momentum fraction pgyqrk /Pproton =  in

the Breit reference frame. It is obvious, in the scaling region, that we expect

Fi(z) = 2xF5(x) (DIS only) (1.78)

which is known as the Callan-Gross Relationship.
Also, it is obvious from the above relations that F;, F> and R are all algebraically related. A

quick derivation using Egs. 1.64, 1.65, 1.72 and 1.73 yields

_R(1+13)

FIRRE (1.79)

meaning that knowledge of any two of these three quantities completely parametrizes the third.

1.2.3 Polarized structure functions (g,, g2)

We saw in the previous sections how structure functions for unpolarized scattering cross-sections
relate information about the interior of the nucleon to measureable quantities in the laboratory. Now,
we extend the discussion to polarized electron-nucleon scattering cross-sections, which provide

information on distribution of the angular momentum within the proton.

Generalizing the leptonic and hadronic tensors

The leptonic and hadronic tensors L,,,, and W,,,, can provide information about the momentum and
charge composition of quarks in the case of unpolarized targets. In that case, complete symmetry
is required upon exchange of the indices p and v, because spins of individual electrons and protons
cannot be isolated, and the scattering configuration is identical to its reflected image in all reference
frames. However, if we introduce a polarization s, to the electron and/or S, to the proton, this is
definitely not the case (see Figure 1.4). Experiments that aim to extract the related spin-dependent

structure functions must utilize polarized electron beams and/or proton targets.
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Figure 1.4: Diagram showing how the apparent polarizations of particles in ep scattering change
upon reflection of coordinates or change of reference frame. The top diagram shows a scatter-
ing event in the lab frame where an incident electron (black arrow) with a given spin impinges on a
stationary particle, maintaining the same spin before and after the scattering event. A coordinate re-
flection reverses all the apparent helicities. The bottom figure shows the same event in a reference
fram moving at velocity ». In this reference frame, the helicities of both the proton and the electron
after the scattering event are opposite their direction in the lab frame. Lorentz invariance dictates
that the particle interaction cannot be represented solely by matrix terms that are symmetric upon
exchange of z, y, z and ¢ coordinates.

»)




24

We now return to Eq. 1.35, and expand the scope of L,, and W, to include the asymmetric
space-time physics of polarized particles. Any tensor can be written as a sum of a symmetric and
antisymmetric tensor, so that

L# = L& 4 ¥ (1.80)

and

W =W5, + W, (1.81)

The symmetric components were detailed in the previous discussion of unpolarized structure func-

tions. The antisymmetric leptonic tensor for a structureless spin-% particle is calculated as [12]
LY, = F2iepapk®k? (1.82)

where €, is the antisymmetric Levi-Civita tensor (defined as eg123 = +1 in this convention). Here,
the - represents the sign of the helicity, which, for a “massless” particle (i.e. the electron), is the
same as the polarization direction.

Once again, the most generalized possible tensor must be constructed to represent the hadronic
contribution, with the unknown coefficients again representing the unknown response functions.
First, the nuclear polarization vector S,, must be introduced. We know from (nonrelativistic) quan-

tum angular momentum theary for spin-% particles [9] that
§=xtexs (1.83)

where xs is the two-component spinor wavefunction of the proton and & is the Pauli spin matrix.

Relativistic generalization of this quantity to a 4-vector yields [12]
S* = a(p)y* v u(p)/2M (1.84)

where u(p) is Dirac spinor representing the proton and v#~° is the combination of Dirac matrices

needed to generate an antisymmetric matrix. The most general antisymmetric matrix possible'

4 Actually, it is the most general antisymmetric matrix that conserves parity. This requires the factor €uvap 10 cancel the
parity-violating effects of the 4> matrix.
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that can be constructed from the vectors p#, ¢* and S* (analogous to Eq. 1.39) is [12]

Ga(v, Q?
Wi = iepant® (Gr(1@)5" + TV 59p.4 - 1P5.9)) (1.85)
Just as the symmetric term can be characterized completely by the two response functions W; and
W3, the antisymmetric (completely spin-dependent) term can be characterized completely by the
two response functions G; and G».

In exact analogy to the case of unpolarized scattering (save a factor of v) we define

|91(2, Q%) = MLGi (v, @P) | (1.86)
gz(.’L‘, Qz) = V2G2(V’ Qz) (187)

Substituting these into W2, gives
Wi, = imeeetd [gl(a:, Q*)S” + g2(2, Q%) (sﬂ - M% )] (1.88)

Now, putting this all together, we have

(4ma)?

<I'/ﬂfil2> = &

(LEWS, + LYWh) (1.89)

where the two cross-terms L'{'W5, and L{"W, cancel due to the symmetry requirement of .#;.
Now, we must consider possible orientations of the electron and proton spin. The EG1 experi-
ment utilizes a longitudinally polarized electron beam and target, so we limit our considerations to
the possibilities of parallel and antiparallel orientation of the electron and proton spins.
Applying the appropriate sign to Eq. 1.82 and the appropriately polarized spinors into Eq. 1.84,
one can use Fermi’s Golden Rule and the ep scattering 4-vectors of Figure 1.2 to evaluate the
differential cross-sections in the lab frame for both the spin-parallel(1#) and spin-antiparallel(1})

[12]:

AQAE ~ AQAE' ~ Q2E Mv

Aglt Ao 202 FE ( E + E'cosf

91(z,Q%) - fﬂ—};yz(sc, QZ)) (1.90)
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Aot Ao 22E' (E + E'cosf

1
_ 2y = 2
AQAE ~ AQAE | Q°E My 9@ @) - 3@ )) (1.91)

We see the unpolarized cross-section of Eq. 1.41 is part of the total polarized cross-section. Hence,
one can already see that knowledge of the unpolarized structure functions is necessary for extrac-
tion of the polarized structure functions.

it can also be seen that, by either adding/subtracting the above cross-sections, it is possible to
isolate the unpolarized/polarized cross-section contributions:

Ao 1 AoTd Aot
XOAE =5\ AqA -+ - (1.92)
AQAFE unpolarized 2 QAE'  AQAE

Ao _1 Ac™ 3 Ac't (1.93)
AQAE' | aizea 2 \AQAE'  AQAFE '

This important result is paramount to the discussion of the relation between asyrmmetries and the

spin structure functions.

DIS interpretation of polarized structure functions

Like F; and F3, g; and g, also have an interpretation in the DIS region that implies scaling behavior,
except that instead of parametrizing the linear momentum distribution of the quarks (as is the case
for F1 and F3), g1 and g, parametrize the spin orientation distribution of the quarks.

It is easiest to see the scaling behavior of g; by introducing the double spin asymmetry

AotV — Aot Aopoa
N _ polarized
A“(z’Q ) - Aot + AgTt AO’unpolal'iZed

(1.94)

From Egs. 1.90 and 1.91 one can calculate

Ao _ 402 E' E’ Q2 2
(S0 s ™ 0 (4 00 50 = )] 199
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Applying Eq. 1.42 to Eq. 1.75 yields

Ac 40 cos?(0/2) ( 1,0 o 1 ) )
E = ——Q%im | 3 tan 5 iz, Q7) + — Fa(z, 1.96
(AQAE')umo,amd Q'E? 77 2 5@, Q) + - Fa(z, Q) (1.96)

We can see from both of these equations, at large v, the contributions to the cross-sections from

F; and g; are much larger than those from F; and g,. ' Thus, we can see

A(z,Q%) « %11—((2’7%% +6 (%) (1.97)
where £(1/v) is a small term containing the contributions from g, and F5, which we ignore for now.

Earlier, a function f(z) was defined as representing the probability of a quark with flavor f
containing the fraction x of the total proton’s momentum, when viewed in the Breit reference frame.
It was seen that, at high enough Q?, that the F; and F structure functions become simple functions
of f(z), as summed over all quark flavors, assuming only that the quark model and asymptotic
freedom hold true, an example of scaling behavior.

Now, consider the quark model, again assuming asympitolic freedom to be true. At high enough
Q? (i.e. the scaling region), the absorption of the virtual photon must be by one of the individual
quarks. Figure 1.5 shows the absorption of a virtual photon by the constituent quarks. When the
initial spin of the electron and proton are parallef (e.g. S = s = %), not only must the quark have
momentum fraction z in the Breit frame (as for unpolarized DIS scattering), but angular momentum
conservation dictates that the exchange must occur by the electron flipping its spin (to & = —%)
and emitting a spin +1 virtual photon, which is in turn absorbed by the single quark with spin —1,
which then flips its spin, resulting in a final spin of §' = +§ for the nucleon. '® Conversely, when
the initial electron and proton spins are antiparalle! (e.g. s = % and S = —%), either one of the iwo
spin —% quarks (with momentum fraction x) can absorb the spin +1 virtual photon, resuiting in a
final spin of S’ = +3. Note that the exact same situation arises with both antiparallel and parallel

spins when the initial spin of the electron is s = —1, due to the symmetry of the configuration. 7

SBecause v is large and Q2 ~ E in the DIS region

'6This changes the proton to a spin-3 state (e.g. A+), which in turn decays very quickly.

7 This is why only the double-spin asymmetry need be considered; this is due to the cancellation of the cross-terms in
Eq. 1.89.
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Figure 1.5: Diagrams showing the spin-transition at scaling region kinematics for polarized ep scat-
tering, in both possible longitudinal double-spin configurations. The initial electron and proton spins
are labeled, along with the quark spin directions (i). The electron (black dot) emits a virtual pho-
ton of spin 1, flipping the electron spin (ii), which is then absorbed by a guark of the same spin
alignment (as it must be from angular momentum conservation), fiipping its spin and changing the
nucleon spin (ii). See the text for more specific details.
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We now define simple, but more specific distribution functions f1(z) (f!(x)) as the probability
distribution for finding a quark of flavor f and momentum fraction = of the proton in the Breit frame
with its spin aligned parallel (antiparallel) to the whole proton spin. From the considerations of the

preceding paragraph, then, in the scaling region only, we expect

Ao™ — Aot 3 g} (z) — Y ¢ fH(x)

2 —
A“(Q ,.’II) B AOrunpolarized O( EQ?f(x)

(1.98)

The relation between g; and the polarized cross-sections now becomes clear. The constant of
proportionality in the above equations is the depolarization factor of Eq. 1.19; it is dealt with later

in Section 1.4. If we define

Af(z) = fl(z) — f(z) (1.99)
then we can see that, in the scaling region

Y aiAf(z) g
o TR (1.100)

(where we have ignored contributions to the order £(1/v)). We see that, just as F; can be inter-
preted as a sum of over the distributions of the linear momentum fractions of the quarks, g; can be
interpreted as the sum of the distribution of the linear momentum fractions of the quarks, weighted
by their spin distributions. Thus, the ¢, structure function provides an indirect way of observing
the angular momentum distribution of the quarks within the nucleon. Writing the quark flavors out

explicitly, and extrapolating the concept to the non-scaling region, one finds

0@ Q) = 3 Y @AM Q) = —%Au(w,QZ) + 250z, @) + - As(2,Q7) (1.101)

with the contributions from quarks and antiquarks subsumed within the A f functions. Note that a
factor of % is included by convention (just as in F}) so that the ratio of Eq. 1.100 holds true.
To this point, an intuitive interpretation of the g, structure function has not been discussed.

Unfortunately, g can not be interpreted in such a (relatively) straightforward manner as g;. We have
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seen that, in the case of parallel/anti-parallel spins at high Q2, most of the polarized cross-section
contribution comes from g,, with g only making only a lower-order contribution. This might naturally
lead one to guess that the converse is true for perpendicular spin alignments; since these are spin-
structure functions, electron-proton scattering for a perpendicular relative polarization difference
should be dominated by g, with g; only making a minor contribution. This, however, is not true; in
fact[12]

Act=> AcTe  4a’E?

_ _ 2, 2E 2]
AOAE ~ AQAE ~ MvO°E [gl(w,Q )+ —-92(2,Q )} sind, (1.102)

meaning both structure functions make a contribution of the same order. This (and the lack of
any simple interpretation) occurs because of relativistic effects, relating to the fact that, in moving
to the Breit (or any other reference) frame, the perpendicular spins in the lab frame do not remain
perpendicular in the new reference frame [6]. (This is obviously not a problem for parallel/antiparallel
spins, since the spins transform along a common axis.)

We will see, though, in the following sections that the g, structure function, like g;, is also
expected to obey various sum rules, and that predictions can be made as to its behavior in the
DIS and resonance regions. For now, it can be seen that g; and g, are the two structure functions
that completely parametrize the polarized cross-sections for the lowest order scattering diagram of

Figure 1.2.

1.2.4 (? evolution and scaling violations

In Section 1.1.2, a qualitative summary of phenomenological proton/quark models and their behav-
ior varies with the strength of the virtual photon Q?, was discussed. Namely, at low values of QZ,
the virtual photon interacts “coherently” with the entire nucleon, as if it was a fundamental particle,
while at the highest values of Q?, the virtual photon interacts with the (asymptotically free) individual
valence quarks and sea quark-antiquark pairs in the nucleon.

This limiting behavior constrains the behavior of the structure functions by predicting behavior
at these extreme kinematic values. The scaling behavior of both the polarized and unpolarized
structure functions has already been discussed. The expectation of scaling behavior, though, has

implicitly assumed that the entire process of the scattering of a virtual photon from the constituent
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guark can be described by a relatively simple process governed by a single Feynman diagram:

M x (1.103)

whereas, in reality, the process is better described by a sum of this and several higher order dia-

grams:

(1.104)

where we see additional diagrams for quark-antiquark production (from scattering off a “hard” gluon)
and spontaneous radiation of gluons from the quark fermion lines. A rigorous calculation of these
terms has been made by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi [15] by solving for the cross-
sections in terms of d2 or dpr = d(p’sin §), and integrating in @2 down to an infrared divergence

limit Q2. '® The results for the quark and gluon spin contributions are the DGLAP equations (also

8This is necessary because, at low @2, due to the large size of the QCD coupling constant, simpie perturbative methods
(i.e. low-order approximations) can no longer be used, and more sophisticated treatments are required. These techniques
are far beyond the scope of this thesis; the interested reader is directed to Ref. [16], for example, for details.
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called the evolution equations and the Altarelli-Parisi equations):

d _a(t) ftdy x z
G8ar ) = S5 [ | gy, )P (3) + Doty )8Ry (5 (1.108)
d a,(t) [dy il x T
— = hat:4 - - 1.1
gl === ;AQf(y,t)Aqu =)+ Ay, AP { 2 (1.106)
where
2
tEln—Q—g (1.107)

and o, (t) is the strong coupling constant, which is a “running” function of ¢. '® The splitting functions

APsp (where A, B = g or q for gluons or quarks) are defined as

APy =Paipy — Pa_By+ (1.108)

where the “+” and “-” represent the helicities of the quarks/gluons in question, and P can be

interpreted as the probability for a coupling between the quarks/gluons taking place. 2 These are

given by
2
APy = CpitZ (1.109)
1-2
1-(1-2)%
APy, = Cp—1"2 (1.110)
1 2 2
Aqu=§[z - (1-2)9 (1.111)
3 sffl, 1) 1=z
Aqu—CF(1+Z)[(z+1_Z p, (1.112)

for z < 1, where z is the fraction of the given quark momentum contributed by the recoil of the
emitted parton.

We can see from Eq. 1.101 that this directly affects the g; structure function. In fact, the main
point to be made here is that QCD predicts that violations of the scaling behavior of the spin-

structure functions due to changes in the spin-dependent distributions of quarks and gluons do

9The evolution of the strong coupling constant is discussed thoroughly in Ref. [16] and many other introductory texts in
QCD. A relatively thorough treatise on the status of calculations of this quantity can be found in Ref. [17].
2More properly, (s /27)Pa g is the coupling probabitity.
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indeed occur, and that the specific magnitude of the violation as a function of Q% and z can be
calculated.
Egs. 1.105 and 1.106 are cumbersome, so, using ¢ to represent a parton (gluon or quark)

distribution, these are often written in the condensed notation [18]

1.9 _ 29 are g, (1.113)

where the ® symbol represents a convolution of the AP operators with the parton distributions.

It is important to emphasize that pure scaling behavior only manifests at high Q% and/or low
z [19], and that scaling violations can only be calculated in this manner in the kinematic region
where pQCD is applicable, @ > 1.0 GeV? [20], in the DIS region (W > 2.0 GeV). Outside of this
range, the complications caused by the growth of the running coupling constant and the presence
of resonances (see Section 1.4.3) render the methods of pQCD unusable, and other models must

be used.

1.3 Moments and sum rules

In the resonance region (1.08 GeV < W < 2.0 GeV), we see the variation of structure functions
and asymmetries due to the excitation of various hadronic states. As already mentioned, these
resonances are not predictions of the standard pQCD method. At this point in time, no analytic
or perturbative solution exists for the evolution of structure functions across excitations of hadronic
states. Instead, we must rely upon the Operator Product Expansion (OPE) to express the moments
of structure functions in terms of empirically evaluated hadronic matrix elements. The evaluation
of these moments allows the testing of various physical sum rules, as well as a wide range of

applications regarding other physical quantities (see Chapter 8).

1.3.1 The Operator Product Expansion

A basic understanding of the Operator Product Expansion is essential for proper interpretation of

measured moments of the structure functions. As we will see, the measurabie scattering cross-
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section is the result of the product of two electromagnetic current field operators. Unfortunately, the
product of two fields is not a well-defined entity, particularly as it relates to long-range QCD effects.
The OPE provides a method for separating the short distance (i.e. high-energy) correlations of the

inelastic cross-section so that one can utilize perturbative expansion techniques [16].

Product of two fields in ep scattering

It has already been demonstrated, for the case of elastic ep scattering, that the square of the
transition amplitude, and hence the scattering cross-section, can be expressed in terms of the
electromagnetic current operator J,, (Eq. 1.50), and that (in the Breit frame) this can be reduced to
terms of a local current operator .J,,(0) (Eq. 1.55).

Now, we attempt to generalize this formalism for inelastic scattering in the lab reference frame,
and show that the resulting cross-section contains an inseparable product of two field operators

Ju(r)J,(0). 2! Rewriting W,,, (defined in Eq. 1.35) as general sum over states yields [16]
Ww = 2 ;@w) 5px ~p—q) Z\:(p)\lJ,,(O)lX) (X1 (0)lpA) (1.114)

The expression for W,,,, simply states that the contribution to the square of the scattering amplitude
{|.#)?) from the virtual photon-proton interaction is given by the sum of the matrix elements given
by the transition amplitudes between the initial proton momentum states and eigenstates |pA) and
final state of scattered particles |X), as measured at the proton origin r = 0, with the §-function
enforcing momentum and energy conservation.

By simply writing the §-function in terms of its Fourier transform and using closure of states?,

one finds

W, = 117; / d4rei(1'x—1'*q)'f;(pMJ,,(O)Jy(o)[p,\) (1.115)

By use of the translation operator eiP-P )7, we have

(PAlJu(0) 1 (0)[pA) = " PX"PIT(pA|J,,(2)J, (0)[pA) (1.116)

Zl1Here, r is used as the space-time 4-vector instead of the more conventional z, to avoid confusion with the kinematic
variable defined in Section 1.1.3. .
2That is, Tx I XX =1
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because the indices v and p are associated with initial(p) and final(px) state momenta, respectively.

Thus, we simplify W,,, to
1 )
W, = — / direiD S AL (1), (0)pA) (1.117)
4T X

Using the exact same process, we can prove

>_(2m) 6% (a —p+px) D (A (0)|X) (X7,(0)[pA) = / dhret™ Y (PAL(0)J, (r)lpA) =0

x g g (1.118)
This equation equals zero because the condition ¢ — p + px = 0 in the é-function is kinematically
forbidden, since ¢ = k — k' = px — p > 0 always. &

This result can be used to rewrite Eq. 1.117 in terms of a commutator of current operators:
1 -
Wi = 3= 3 [ dtree” (o, A,(0), L (O)Ip) (1.119)
a A

The commutator [J,(r), J,.(0)] must vanish for space-like coordinates (for which r? < 0). We also
realize that the integrand is oscillatory, so that if the oscillations become close enough together in r
(i.e. if |¢ - | becomes large enoughy), the integral evens out to zero. Thus, the dominant contribution

to W, comes from the localized region®*

0<r2<riy (1.120)
where, using Q2 = —¢2,
1
2
Tlimit X @ (1.121)

The main objective of this presentation is to show that the hadronic tensor W,,, contains a field
product of two current operators. While this product in itself is not an easily defined field operator,
it can be shown with relative ease that the dominant contribution to the measurable cross-section

comes from the localized timelike components of the product J,,(r)J,.(0). This provides a motivation

2That is, the recoil particle cannot have more energy than the incident particle.
24p more rigorous proof of this relation is found in Ret. [16]; the point here is to convey the general distance scale over
which the dominant contribution to the scattering cross-section is made.
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for extricating the dominant components of the field in terms of an operator product expansion about
the point r = 0, in the neighborhood of r2,....
Summary of the OPE (Light Cone Expansion; Twist)

The goal of the Operator Product Expansion, then, is to expand the product of two operators fi(r)

and B(r') in terms of a well defined third operator P(r) such that

A(r)B(r') = ic,.(r —r)P (” + r') (1.122)

=0 2

A detailed proof of the O.P.E. and the specific values of all the coefficients for the hadronic tensor
is beyond the scope of this thesis; the reader is hereby referred to Ref. [16] for more information.
Instead, a summary providing the major points is presented, only to show the reader how the
extraction of structure functions provides input into our knowledge of the terms and operators in the
resultant expansion.

As already explained, the locality near the origin of the light-cone (Eq. 1.120) serves as the
region of importance for the expansion of Eq. 1.122. This corresponds to the kinematic region

Q? — oo with fixed z = Q?/(2p - ¢). Thus, in this light-cone region [16]
Q=g ~Ip-ql > p*|, M? (1.123)

The hadronic tensor W,,,, contains a product of two current operators (Eq. 1.117). In terms of the
the Feynman diagram in Figure 1.2, the portion of interest to the hadronic tensor evaluation can be

written mathematically equivalently in terms of an (unsquared) Compton scattering diagram as [11]

=21Im (1.124)
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The challenge, then, is to expand the diagram term on the right in the Operator Product Expan-
sion in the the vicinity of the light cone origin (that is, using the conditions enforced in Eq. 1.123).

This diagram can be expressed perturbatively; here we consider only the highest order terms in the

expansion:

+...
(1.125)

There are exactly two diagrams of order 1/Q? in this series, related by crossing symmetry. For
now, we consider only the first diagram in this expansion. 2> To show the form taken by the OPE in
the light-cone expansion, we need to consider the general form of the matrix element .#;;. In the

DIS (scaling) region, the current product can be written

e N—
Ju(r) o (0) = @(r)y,q(r)@(0)v.4(0) = g(r)vu ¢(r)d(0) v.4(0) + - -- (1.126)

where v, are the 4x4 Dirac matrices and ~~~ indicates a contraction over indices in the embraced
operators. Note that the operators in this equation correlate exactly to the expansion of Eq. 1.125.
According to the Feynman rules, the scattering amplitude for the proton will have the propor-

tionality [11]

(07 +¢°0)
(10 + q)?

BCrossing symmetry effects on the OPE result in either even or odd moments of structure functions going to zero. This
will be considered again in Section 1.3.2.

. o S—
Mproton X / d*re"7q(r)y, ¢(r)a(0) 1a(0) = a(r)v, 4(0) (1.127)
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Thus, we see that the OPE requires expansion of the denominator in the locality of the light cone

origin. Using Eq. 1.123, a Taylor series expansion can be used to find

1 — 1 2iq - 8 2
(i8+q)2_~Q2_2iq.a+32 QzZ( ) (1.128)

Terms of order 2 can be ignored. By using y-matrix identities, one can show [11] that the amplitude

can be expressed as

0
Mproron % ~iG(r)(27,(i0,) — G sz Z (2’52 ) 4(0) (1.129)

Note that this expression contains 2 separate terms, each summed over n. The g,,, term represents
a trace,?® and the i9, is the main part of the new combined operator in the light cone expansion.

The operator corresponding to the kth term in the expansion can be seen to contain the operator

‘j(r)7#1 (iaﬂ-z) e (iam;)Q(O) & /d4rei4'f§(r)7#1 (Tﬂz) e (rll-k )6(0) (1 R 30)

where we have equated the momentum-spaée composite operator to the Fourier transform of the
equivalent geometrical-space operator on the right.
Generalizing the above to any current operator in the light-cone expansion, then, the product of

two current operators can be written as

J(r)J(0) =Y COEHrm ...r#=PR |, (0) (1.131)

in

where ﬁ,(f,)m,‘n (r2) is the expansion of composite operators, and C,(,i) (r?) is an expansion of corre-
lated coefficient functions. This decomposition is known as the light-cone expansion, and it is the
key relation in the Operator Product Expansion for DIS electron-hadron scattering.

One last topic that must be addressed before applying the expansion is that of the analytic

structure of the coefficient functions and the definition of the twist of these functions. It is simplest

ZXThis is subtracted from the main operator to make the main cument operator traceless. The subtraction of fraces, while
necessary, is not the primary concern here; the remainder of the explanations in this section will assume the trace terms
are implicit in the OPE equations.
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to define twist by using dimensional analysis on the operators assuming a free-field expansion (i.e.
no renormalization terms). If we define d;, as the canonical dimension of the operator J(r), and

d(n) as the canonical dimension of the composite operator term 13,5’1) ..un» then clearly, we require
2d;, = di(n) (1.132)

Looking at Eq. 1.131, in order to conserve dimensionality in terms of », the coefficient function must
be [16] of the form
Cr(:) (1"2) ~ (TQ)—djo —n/24+dh(n)/2 (1 .133)

We will see (near the end of this section) that the magnitude of the operator terms is directly
determined by the “strength” of the singularities in the coefficients, as determined by a contour
integral in the complex plane. Looking at the form of c® (r?), it can be seen that if the exponent is
sufficiently large enough (that is, if dj(n) — n > 2d;,), that the singularity structure of the i-th, n-th
coefficient function disappears. Thus, the magnitude of the integral is directly determined by the

value of d§(n) — n, a quantity referred to as the twist 7 of the operator term:

'r:; Edf)(n)—n (1.134)

Generally, this naive derivation of twist through dimensional analysis does not work for the case of
interacting field operators. The required renormalization of the operator terms results in dimensional
regularization of the higher-order terms; the renormalization group equations [11][16] are then
required in the subsequent expansion to obtain the singularity structure.

Generally, an OPE composite operator of term n and dimension d can be shown to make a

2-q "1 d~n—2 W™
(&) @) o= 1159

where the value of n is referred to as the “spin” of the operator [12], with the twist defined here as

contribution of order [11}

7 = d — n. The lower the twist, the greater the contribution to the expansion from the operator. in
general, twist-2 operators result from the lowest order expansion of functions, with higher twist (HT)

contributions leading to (small) violations of sum rules and scaling derived using only the twist-2
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terms. Twist-1 (or lower) terms make no contributions to the expansion; in fact, the identity operator

is the only possible twist-1 QCD operator [11].

Application of the OPE to spin-structure functions

In this section it is shown how the OPE can be used to expand the general hadronic tensor W,
for polarized scattering, and how the (polarized and unpolarized) structure functions Fy, F3, g; and
g2 can be written in terms of this expansion. Once again, this section is not intended as é rigorous
proof, but merely to clarify the expansion of the field operators results in a summation of moments
of structure functions.

To begin with, the generalized electromagnetic current operator commutator of Eq. 1.119 is
assumed to have the most generalized form possible?” under the constraints of Lorentz invariance

and current conservation [16][21]:

T{Ju(r)J.(0)] =
— (g#,,D2 — auay)él (7", 0) - (gyAgVaD2 - gukauaa - guaauA + guuakaa)é%a(r; 0)

+ G600 QI(1,0) — i(Breupre 8 — u€rpro0” — DP€ne )37 (,0)  (1.136)
The expression T[J,(r)J, (0)] here refers to the time-ordered product of the currents operators [1]:
T[J.(r)J.(0)] = Ju(r)J.(0)8(ro) + J,.(0)J,.(r)8(—r0) (1.137)

where 8(ry) is the step function, equal to 1 if the -component of r (i.e. time) is positive, and equal
to O if this quantity is negative.

Here the (symmetric) terms containing operators O, and O, are relevant to the unpolarized
response functions W; and W5, and the (antisymmetric) terms containing operators @, and Q, are

relevant to the polarized response functions G; and G». Again, we use the light-cone expansion to

27qu o @gain represents the Levi-Cevita tensor, and 0? = 8,8* is the D’Alembertian operator.
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write these bilocal operators as

Or(r,0) = ;cﬁ,{(rz)rm PO (5) (1.138)

0} (r,0) = Y Ot B (5) (1.139)

Q50 =Y EOeHr .ok L (3) (1.140)
i,n

237 (r,0) = Z Egzz('rz)'r‘“ .. .r“"RéfL);‘T_.#n (g) (1.141)

i,7n
The variables Cf‘)z and E% are the expansion coefficient functions of the operators O% and QY)Z
respectively.
The matrix elements of these new composite tensor operators Pf’% and R% have the structures

[16}[21][22]

@IPL) . Oy = A Dy, .14, (1.142)
(PIPz(f;),ALn O)p) = AS) 22 0 Ppr - - D (1.143)
(psIRYY . (O)ps) = —MI) {Soppy - Py} (1.144)
R (0)|ps) = —M§) 2 (prSs — poS 1.145
<pSg 1;1,1...y,n( )IpS) 2,n2(p/\ o~ Po z\)pul - Pup ( . )

where terms containing g,.,, (which reduce to traces) are simply dropped, as they do not correlate
to terms into the structure function expansion, and thus have zero coefficients. The curly brackets
{...} in Eq. 1.144 denote a complete symmetrization of the space-time indices u contained within.
Here the variables Af) and Agi) are coefficients® for the expansion of the unpolarized (sym-
metric) terms (correlating to Wi and W), and Ml(‘), and Mé") are coefficients corresponding to
corresponding to the polarized (antisymmetric) terms (correlating to G and G2).
The other coefficient functions C{?, ¢{?, E{Y) and E{” are singular functions of r (in the neigh-

borhood of r? = 0). Iif we define the Fourier transforms of these functions with a tilde(~), for

#These are not to be confused with the asymmetries A; and A2, which are completely different quantities.
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example,

C(z)( QH(—i)(Q?/2) gt .. gt :/d4reiq'rr“1 ...r“"CffZl(mj) (1.146)

and take the Fourier transform of Eq. 1.136, then that equation can be rewritten as

Tu = /d"‘r(plT[JAr)J,,(O)}lp) =

2 [ew AL CELQY) + fu ASLCEL (@) + b MULED (QP) + 5 ML ESL (@D (1.147)

where w = 1/z (as defined in Section 1.1.3) and the tensors e,, through j,, are sums of the

generalized kinematics terms in Eq. 1.136 divided by ¢%; e.g.

eur = Guv — qgg" (1.148)

This brings us to the central point in this process: The Fourier transform of the time-ordered prod-

uct of current operators in the Operator Product Expansion can be expressed as a power series
expansion of a kinematic variable w.

At this point, we introduce the Low equation for the scattering amplitude [1]. Inserting the com-

pleteness relation Y~ |X){X| = 1 between the two time-ordered currents in the left hand side of

Eqg. 1.147 and expilicitly evaluating the integrals yields

T = Y (any | L2BEZGR) 15 01 (x15, 00
X

Pxo—4qo —

i (px +q- p)
Pxo+qo —Po — <P|J (O XWX [Tl 0)|P>] (1.149)

Just as in Eq. 1.118, energy conservation dictates that the second term goes to zero. Using this

and the expression for W,,,, in Eq. 1.115, one finds that
1 . 3 1
W = %[Tw,(qo +ie) — Tou(go —ie)] = ;Abs Ty (1.150)

Here Abs T,,, refers to the absorptive part of T, [16]. Applying a Cauchy integration along the
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Figure 1.6: The contour % used to evaluate the w-integrals in Equations 1.151 and 1.152. A branch
cutis made along the real axis for jw| > 1. The singularity strength of the coefficient functions along
this cut determine the overall magnitude of the integral. Copied from Ref. [16].

contour € shown in Figure 1.6 to Eq. 1.149 and Eq. 1.150, one can show [16]

1 T, 2 [ 1
—p £ =C / i"f"—Abs Ty =2 / dzz™ W, (1.151)
2mmi Jo W™ w [Jy wh 0

Another integration along ¥’ can be done to show

1

: f dww™ ™ = Gy 1 (1.152)
21 7

which, if applied to Eq. 1.147, has the effect of reducing the sum over i and » to a sum over : only,

so that
T =2 lewAin 1 Cin1(Q%) + fuw A, 1C5_1(@7)
+ hﬂVM{le—l‘E‘{sz—l(QQ) + j;wMz(?;-IEgzz—l(Q2)] (1.153)

Ali that remains is equate the right side of Eq. 1.150 to Eq. 1.153, to arrive at an Operator Product
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Expansion of the hadronic tensor W,,,..

At this point, we once again point out that the hadronic tensor contains separate terms (Eq. 1.81)
that can be expressed algebraically in terms of the unpolarized structure functions F; and F;,, and
the polarized structure functions g; and g.. In terms of the bilinear tensors (used for abbreviation in

this section), one can write the unpolarized (symmetric) contribution to W,,,, as
W3, = euwFL + fu P2 (1.154)

where F, and F; are the structure functions defined in Section 1.2.2. Putting this into Eq. 1.150

and Eq. 1.153 yields the operator product expansion for the unpolarized structure functions:

1
/ dz 2" 2Fp(z,Q?) = Y AD.C9.(Q%) (1.155)
0 3
1 N g
/ dr 2" 2Fy(z,Q%) = 3 AD.CE).(Q?) (1.156)
o i

Naturally, the same process can be applied to the polarized (antisymmetric) part of W,,,., as well.
Equating the antisymmetric parts of Eqs. 1.150 and 1.153, and separating the polarized structure
functions g; and g- (as labeled in Eq. 1.88) ultimately yields [22]

/ dz "1 (z,Q%) = ZM%’L EO@ (1.157)

1
1 i) n—1. ) &6
|t s it @) = 3 [ MQER@Y) - P MOEL@) (1.158)
0

i

The OPE for g, is more complex than that for g; due to the prominence of transverse effects [22]
that do not remain isolated in a Lorentz transformation like the longitudinal components of g;. ltis

customary to define the matrix components

an = ZM(’) E® @Y (1.159)
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E——Z M) ESL(Q (1.160)

so that Egs. 1.157 and 1.158 can be rewritten more simply as

/ dx ™ x,Qz) 1 (1.161)
1
do 2" ga(m, @) = 5 (0~ an) (1.162)
0 n

One should keep in mind that this is a greatly simplified “derivation” of these OPE relations, where
the subtraction of trace elements and flavor structure of the quark fields has been suppressed [22].
The relations of Egs. 1.161 and 1.162 are known as sum rules. The integrals on the left hand sides
of these equations are referred to as the nth moments of g; and go.

If we look at these relations, we can begin to understand the motivation for the Operator Product
Expansion. The structure functions g; and g2 can be experimentally measured, as we will see in
Section 1.4.2, but only with a limited amount of precision. By integrating the structure function data
(in essence, just summing over the bins in z), one can greatly reduce the relative size of the error
bars, providing information about the matrix coefficients, which in turn vyield additional information
about the Q? evolution of the structure functions.

The term a,, contains the twist-2 operator sum contribution, while d,, is the matrix element of the
sum of all twist-3 operators contributing to the nth moment of g, [22]. ?° It is possible to incorporate
scaling violations (Section 1.2.4) and even non-perturbative phenomena into the OPE to derive
additional sum rules; these sum rules involve higher twist (HT) matrix elements, and, to leading
order, can be shown to give the same results as the DGLAP equations (Section 1.2.4). Due to
the enormous complexity of the involved calculations, detailed derivations of higher-twist and non-
perturbative effects are not possible here; we do however, summarize some of these sum rules in

the following sections.

29The expansion for g; and the unpolarized structure function includes only the base (twist-2) expansion terms; the twist-3
term is included in the expansion for g2 because it is not suppressed by inverse powers of Q2, as generalized in Eq. 1.135,
due to complications introduced by transverse polarization terms and “off-shell*/interacting partons [22]. More light is shed
on the behavior of g2 in Section 1.3.2.
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1.3.2 First moment of ¢; and its sum rules

Given a configuration of a target and beam with parallel spin orientation, g, is the easier of the two
spin structure functions to measure. It also has the simpler interpretation in the parton model, and
can be expressed to leading order exclusively in terms of twist-2 operators. The first moment of g;

for the proton

1
Q% = /0 dz g1(z, Q%) (1.163)

is the dominant term in the Operator Product Expansion of Eq. 1.157. In this section we discuss
some of the sum rules that apply specifically to I'?, and help illuminate the expected behavior of
the g¢; structure function at differing magnitudes of Q2. The most important of these rules are the
GDH Sum Rule, which constrains the behavior of I'] as Q* — 0, and the Bjorken Sum Rule, which

dictates the behavior of the moment as Q? — co.

The Gerasimov-Drell-Hearn Sum Rule

The Gerasimov-Drell-Hearn (GDH) Sum Rule takes advantage of the fact that the cross-section of
the scattering of a photon from a nucleon can be equivalently expressed in terms of the scattering
amplitude .# = f(v) of forward Compton scattering, as shown in Eq. 1.125. This is really a

statement of the optical theorem [12],
in
oyn(v) = —Imf(v) (1.164)

As shown in Figure 1.5, the nucleon can have a final spin of  or 3, so that we can write the optical

theorem in terms of either final spin-dependent cross-section:

N1 3(1/) = il;—lmfl g(l/) (1.165)

232

The total Compton amplitude transition matrix can be expressed in terms of the initial (final) photon

polarization £ (¢') and initial (final} electron spinors x; (xs) as [12]

T =8nMx}Hf(v)e- &% —ig(v)d - (€% &) (1.166)
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where f is the spin-independent amplitude, and g is the spin-flip amplitude, and & represents the

standard 2x2 Pauli spin matrices. The amplitudes for the two spin cases can then be written

=f-g (1.167)

~
[N
il
[y
+
Q
~
it

At low photon energies (that is, Q2 — 0), where the photon scatters coherently from the proton on

its (zero) mass shell, the amplitudes f and g can be expanded in powers of v:

fw)=- e +(aE+ﬂM)u + oY) (1.168)
2 2
g(v )-—8 Mz”*”“” +0(°) (1.169)

Here xp =~ 1.79 is the anomalous magnetic moment of the proton. Three new terms are introduced
- the electric and magnetic polarizabilities «z and Sy, and -, the forward spin polarizability. Cal-
culation of forward spin polarizability is an important application of g; moments, discussed more at
the end of this thesis in Section 8.4.1.

The GDH Sum Rule is a dispersion relation, which, like the derivation of the OPE expansion
in terms of structure function moments (Eq. 1.153), exploits the analyticity of forward Compton
scattering, utilizing Cauchy’s theorem [23]

Fv) = / mFQ) 0, (1.170)

v—v

along with uniformity and crossing symmetry, that is
g(v) = —g(-v) (1.171)

By applying Cauchy’s theorem to Eq. 1.169 (working to order v only, as we assume Q? — 0), one

can derive the basic form of the Gerasimov-Drell-Hearn Sum Rule:

—5—2—'{'%’_*_/ d—ylm g(v) = — dV[O'S(I/)—O'l(I/)] (1.172)
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where vy, marks the inelastic (pion production) threshold. We see from Eq. 1.100 and the caption

of Figure 1.5 that the ¢, structure function can be expressed in terms of
gi~at— gt =g3 o (1.173)

so that we can write the GDH Sum Rule in terms of the g; structure function. Making a conversion

of the integration variable from v to z, the result® for this substitution is [22]

52 _ M2 Zih
—-f:Ip(O)=2—Q—2-/0 91(z, Q*)dzx (1.174)

It is important to note that the expansion of Eq. 1.169 is used in deriving this sum rule, so that
it only holds exactly at Q? = 0, where the virtual photon becomes a real photon. However, since
the right side of Eq. 1.174 is just (2%; times) the first moment of g,, this relation can be used to

constrain the behavior of the I'} as Q% — 0. Specifically, we see

1 ,Q> 0456 ,
—2fP3 T 1.1

Q- 0) =

so that we expect I'}(0) = 0 with a slope of -0.456/GeV? as Q? — 0.

While this summarizes the basic application of the GDH sum rule to the low Q2 behavior of the
moment I'Y, before moving on, we mention the Generalized GDH Integral. A generalization of the
GDH Sum Ruie, applicable beyond the Q2 — 0 limit, has been suggested by Ji and Osbourne [24].
A generalized dispersion relation

*® VGV, Q%)
2 2

S1(v, Q%) = 4/ (1.176)

Q*/2M

can be defined containing the G; = g,/(Mv) polarized response function (see Eq. 1.85). As we

will see later in this thesis, g; (and hence G;) can be measured experimentally, while S; can be

OPraperly, a recalculation involves dividing out the contribution to g; from the unpolarized cross-section via recalculation
ot the dispersion relation with the Kramers-Kronig relation for the proper amplitude containing both g(») and f(v). Thisis
not done in detail here; the objective in this thesis is merely to demonstrate the relation between the quantities.
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expressed theoretically, by expanding it into moments in small v as [23]

Si1@) = Y v sM@Y (1.177)

n=0,24,...

for which the dispersion relation can be written

0 dv

SO =1 [ e (1.178)

Q*/2M

The low Q? region is amenable to the methods of chiral perturbation theory (xPT), which has been

used to fourth order [24] to find

2 2
g n__Ffp ., 94 HO2 4. —K2 2(i AT
$1(0,Q°) = we T 12(dnf, ) Mm, (14+3sv +2(1 +3ks)T7)Q° + Kp+24Q%(in GeV”) +
(1.179)
thus providing a method of extending the predictions of a generalized GDH integral to virtual Comp-

ton scattering for finite Q2, for Q2 < 0.1 GeV?2. 3!

The Bjorken Sum Rule

While the GDH Sum Rule governs the behavior of I'} at low @2, the Bjorken Sum Rule is a relation
that governs the behavior of I} at high Q2. The derivation of the Bjorken Sum Rule is simple. We
start with the definition of ¢ in the scaling region (Q? — oo) in Eq.1.101. If we consider the same
structure function for the neutron, g, which, by isospin symmetry, is identical to the proton in quark
structure, except that

wud — udd (1.180)

then ¢? and g7, in terms of quark wave functions, should be identical on exchange of Au and Ad,
such that
1 4 1
T )= —A )+ —A H+ A 2 1.
gl (xiQ ) 18 ’U.(Z',Q )+ 18 d(er )+ 18 s(a’.fQ ) ( 181)

31n this equation, 5 simply denotes .S without elastic event contributions; g4 = 1.26 is the axial coupling constant,
Ky = 1.85 and k4 = —0.06 are the isovector and isoscalar anomalous magnetic moments, f, =92.4 MeV is the pion-
decay coupling coefficient, and m,. = 137 MeV is the pion mass.
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Integrating over z, one gets for the first moments (as Q — oc):
I2(Q?) = = Au(Q?) + = Ad(Q?) + -=As(Q) (1.182)
! 18 18 18 '

Crh %A“(Qz) + %Ad(y) + 1_18‘AS(Q2) (1.183)

Subtracting these two moments yields the Bjorken Sum Rule:

1
?-rt= E(Au —Ad) = -égA (1.184)

The quantity g4 = 1.26 is the axial vector coupling constant, which is well measured from 5~ decay,
B~ capture, and other weak phenomena [7]. It is easy to show that g, is given by Au — Ad by
considering, for example, the axial vector component of the 5~ capture reaction wave function, and
equating the wavefunction of the whole nucleon with the same reaction over the constituent quarks
[6]:

9a(n, 5|07 |p, 8) = (n, 5| Y _ 7, o5lp,s) (1.185)
q

where the nucleon spin s =f or {}, and — is the isospin lowering operator, which converts |p) to
[n), or u to d, in the case of the quark isospin lowering operator 7.~ on the right hand side.

Let us pause a moment to consider the meaning of this equation. The left hand side tells
us nothing about the quark structure of the nucleon; it just states that the axial amplitude in the
electron capture reaction converts a proton to a neutron with an unknown amplitude g4 that must
be determined experimentally. In other words, the constant g4 “soaks up” our ignorance of the
constituent quark composition. The right side expresses the same quantity by operation of the
isospin lowering operator over each quark wavefunction, which must sum to the same total value
as the left side, if the picture of the nucleon made of constituent quarks is indeed correct.

The SU(2) isospin symmetry result (n|7~|p) = (p|73|p) can be used to write Eq. 1.185 as [6]

94(p, sl0°7%|p, 5) = (p, 8] D _ 73075|p, 5) (1.186)
q
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Operating on the right side of the equation, summing over both possible flavor/spin wavefunctions

2o3u ) =ul); 2oul) = —|ul)
2l 1) }5 Ta% (1.187)
Teogld 1) = —|d1); 7303ld 1) =d 1)
Adding these terms together and equating both sides of Eq. 1.186 gives
ga=lul)—lul)—|d)+|dl)=Au—Ad (1.188)

hence showing that the well known constant g4 must equal Au — Ad in the Bjorken Sum Ruie. In
summary, this sum rule dictates that I’} — I'? approaches a constant value as Q2 — oo, given by a
constant, g4, which can be measured by low energy experiments such as 5~ decay.

Much as in the case of the GDH Sum Rule, the Bjorken Sum Rule can be generalized to the
case of results at different Q2. By introducing perturbative QCD (pQCD) effects, consisting of both
radiative effects (of gluons, ¢¢ production, etc. by way of the DGLAP Equations (Section 1.2.4))
and higher twist corrections in the OPE expansion, a modified virtual Compton amplitude can be

derived, and a dispersion relation for the modified Bjorken Sum Rule can be extracted [12][23]:
2 2\ 2 21y 3
I?—I7 = [1 - 9‘-(7?—) — 3583 (9-(#&)) — 20215 (9—(7-?—)) + ﬁ(as(Q2)4)] %’1 (1.189)

Here a,(Q?) is the running coupling constant of QCD. In the region of Q2 ~2-10 GeVZ, the theory

has been shown to match experiment within 10% accuracy, prior to the EG1b experiment [12].

Behavior of I'] at intermediate (?

At Q? values greater than about 0.2 GeV? (below which the generalized GDH Sum Rule and xPT
theory are applicable) and less than about 1 GeV? (above which pQCD and the modified Bjorken
Sum Rule are applicable), predictions by theory to physical QCD systems become extremely diffi-
cuilt. We do know, from the constraints enforced by the aforementioned sum rules, that somewhere
in the range 0.2 < Q? < 1.0 GeV that the (negative) moment must make an upward turn and

eventually (and gradually) flatten out at high Q?, as scaling behavior sets in (see Figure 1.7). This



52

Figure 1.7: The expected evolution of the T} structure function moment (blue), as enforced by the
GDH Sum Rule (low Q?) and the Bjorken Sum Rule (high Q2). See the text for details.

intermediate range is dominated by resonance behavior; aside from Lattice QCD computations,
there is little that can be done at this point to directly compute the structure functions and their
moments in this region, without the input of experimental data describing the structure of the reso-

nances.

1.3.3 Other moments of ¢,

The motivations for measuring the first moment of g;, I';, as a test of principles of QCD, including
the GDH sum rule, xPT, pQCD and Bjorken scaling behavior, are now clear. However, if we recall
from the Operator Product Expansion (Eq. 1.157), there are higher moments of g, to consider, as

well. In generatl, the nth moment of ¢, is given by

1
T,(Q?) = /; dz 7" g (x, Q%) (1.190)
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In the light cone expansion, I'; is guaranteed to make the dominant contribution fo the OPE. A
complete reconstruction of the Q? evolution of g; to higher order naturally requires information
regarding higher moments, as well, especially when higher twist effects are considered.

Before introducing the reconstruction of structure functions from their moments, it is important to
discuss a very important consequence of the effects of crossing symmetry in the Operator Product
Expansion. Namely, due to the optical theorem, the scattering of a virtual photon from a nucleon
can be expressed in terms of Forward Compton Scattering (Eq. 1.124). The two leading order
diagrams, shown in Eq. 1.125, are related by an interchange of photon lines, so that ¢ — —q in the
opposing diagram. 2 Each moment in the OPE for the spin structure functions contains a factor of
z=Q?/(2p- q), so that

T - (1.191)

in the OPE for the second leading order diagram. Thus, any OPE term containing a factor of an

odd power of £ must cancel when the two diagrams are added. Thus, in Eq. 1.157,
MY =M =M3=...=0 (1.192)

with a similar relation for even n for MZ(’,)L Therefore, only odd moments of the spin structure
functions need to be considered in the Operator Product Expansion. 33

As previously pointed out, measurements of structure function integrals in Q2 can be made with
higher precision than their explicit dependence over both Q2 and z. Of course, this integration
destroys information about the shape of the resonances as a function of . However, one can
still reconstruct detailed information about the Q? evolution of g; through use of the inverse Mellin

transform [12][25]:
K+ioo

@@= [ dnatr(QY) (1.193)

where K is any real constant in the complex plane to the right of any singularities in the integrand.

While this transformation preserves the analytic continuity of the structure function, naturally, it

325ee also Eq. 1.171.
33This isn't explicitiy shown here for higher-order diagrams, but the cancellation of even moments holds true to any order,
since all possible diagrams in Forward Compton Scatiering have two external photon lines that can be crossed.
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does not include the resonance structure in the reconstruction, because this information has been
eliminated in the integration. However, this is enough information to apply the DGLAP equations,
for example, to obtain information about the accuracy of pQCD regarding the @2 evolution of the
structure functions [18][26]. In practice, the entire range 0 < z < 1 cannot be completely known due
to experimental limitations, especially as © — 0 {where infinite beam energies would be needed),

so truncated moments are used in the reconstruction:

1
IW(@?) = / dz 2" g1(z, QP) (1.194)

where x; is a suitable cutoff point chosen for the given @ value. If we define the truncated moments

of quark distribution functions as

1
g4, = / dz z" 1q(z) (1.195)
then, using Eq. 1.182, the moments of g; can be written in the parton model as

4 1 1
P — —
rs 18_’4_,,, +—d, + 18§'"

i (1.196)

Looking now at individual quark distributions, the (abbreviated) DGLAP equations (Eqg. 1.113) then

imply

dg, (z0,t)  au(t) [* -
.‘lnf;"to ) _ 0255) Lodmzn 1(AP®q)(z‘,t) (1.197)

Using the general form of the DGLAP Equations, it can then easily be shown [18] that

[ dam 8P ® o)) = ("APE)] 8 g,)(@) (1.198)

To

so that Eq. 1.197 can be rewritten

dﬂnEZo,t) _ a;(rt) ("APE) @4, ) (0. 1) (1.199)

The inverse Mellin transform of Eq. 1.193 can then be used to determine the quark distributions,

including violations from scaling predicted by the evolution equations. In other words, even with a
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truncated moment, the Q% evolution of the DGLAP equations can be tested with an inverse Mellin
transform of structure function moments.

Naturally, the more higher order moments that can be experimentally determined, the greater
the precision to which pQCD theory can be verified. Due to the increasing magnitude of z”~! with
each higher moment, higher z values make up a larger proportion of the integral contribution as
n increases, making large-acceptance, medium-energy experiments like EG1b ideal for measuring
the higher moments of g;. The only limit imposed on the maximum value of n is that of the decreas-
ing magnitude of the higher moments, such that the proportion of systematic error (particularly due
to kinematic bin smearing; see Section 7.2.6) eventually becomes too large for accurate measure-

ment.

1.3.4 ¢, and its Moments

As mentioned before, a straightforward interpretation of g» in the parton model is problematic due
to the difficulties involved in perpendicular polarization. 3 We can, however, infer some behavior

of this structure function by splitting it into components of differing twist. If we write

g2=9Y" +7s (1.200)

where g%V, known as the Wanazura-Wilczek form of g,, contains only leading twist (twist-2) con-
tributions to the structure function, and g» contains twist-3 (and higher) contributions, the OPE can

be used to write (see Egs. 1.161 and 1.162) [22]

1 —
/ do v [" L 01(2,@%) + gng(x,Qz)] -0 (1.201)
0
Inverting this equation [27] yields
1
d
BV @0 = -0 @)+ [ Law.0)=—n@@)+ o™ (1.202)

Hgpecifically, one can say that the perpendicular spin operator and free quark Hamiltonian operator do not commute.
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(with y defined in Section 1.1.3), which is called the Wandzura-Wilczek relation. 1t is important to
note that this equation considers only leading twist effects. The magnitude of the contribution of
higher twist effects to g- is an unresolved question at this time; the matrix element 4,,(Q?) in Eq.
1.162 represents the twist-3 terms in the expansion. Thus, measurement of g, presents a potential

probe of higher twist effects. It is customary to extract the matrix element [22]

n n

n—1

m_ 192($7 Qz)l =2

1
/ dz " '32(z,Q%)|  (1.203)
o

1
Q%) =2 / dz 2" gy (2, Q%) +
1]

which provides a direct measurement of the deviation from the Wandzura-Wilczek relation.
Note that if higher twist effects are absent from g,, that is, g¥" = g,, then if we setn = 1 in Eq.

1.201, that

1
/ dz g2(z,Q%) =0 (1.204)
0

This is the Burkhardi-Cottingham Sum Rule. 1t obviously holds in the absence of twist-3 effects;
though the proper derivation of this sum rule [28] requires considerably less restrictive conditions
than the absence of higher-twist effects. Though it is not implied by the above (pseudo-)derivation,
the only necessary conditions for this sum rule to hold true are analyticity, crossing symmetry, parity
conservation and convergence of g, as = — 0,3° even in the presence of higher-twist terms [29].

Measurements of g, at this present time, have limited accuracy for most values of Q2, mostly
due to experimental difficulties involved with large acceptance experiments involving transversely
polarized targets. Reconstruction of the structure functions through an inverse Mellin transform
offers potential utility in obtaining information regarding the g, structure function. Error bars on g-»
measurements (at most Q? values) are generally too large to obtain meaningful information regard-
ing the resonance structure, but Q2 evolution of transverse polarization elements using summed
bins, as described in the previous section for g;, can potentially be derived with this methodology.
Existing measurements of g5 are summarized in Section 1.5.

As a final note on the g; and g, structure functions, it important to point out that the measurement

of d,,, as given by Eq. 1.203, is also important for higher twist corrections to g; [22]. Specifically,

35The last of these assumptions is actually quite complex; a proper freatment of this issue requires an in-depth discussion
of the limits of residue values in the far DIS region; see Ref. [29] for details.
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HT corrections to the OPE give

1 2 4
I?Q* = /0 dz g} (z, Q%) = %al + 5%-2-(% +4ds +4f3)+ 6 (%z) (1.205)

Here, a new maitrix element f,, which includes twist-4 contributions, has been introduced. f, is
defined by an explicit quark-gluon correlation operator. Thus, we see that the relation between g;
and g» can not be completely separated, when all HT terms are considered. Measurement of both

these structure functions is necessary for a complete QCD spin model of the nucleon.

1.4 Asymmetries

So far, the motivation for measuring spin-structure functions of the nucleon has been explained
in some detail. However, it is yet to be explained how measurement of g, and g, can actually
be extracted from experimental data. Section 1.2.1 gave an introduction to the meaning of cross-
section measurements. In practice, direct measurement of cross-sections is not always the most
practical approach to sensitive electroproduction measurements, because the overall acceptance®
of the spectrometer must be taken into account. Instead, asymmetries are often used instead, as
they rely on a ratio of measured counts, and hence have no reliance on detector acceptance for
their accuracy. 3 The expression of results in terms of virfual photon asymmetries A; and A also
provides a more straightforward physical interpretation of data in terms of virtual photon exchange,

and provides a link between the measured asymmetries and the extracted spin-structure functions.

1.4.1 Measuring asymmetries

As previously mentioned (e.g. Eq. 1.93 and 1.95), measurement of the spin-structure functions

directly depends on the difference (in a given bin) between the scattering cross-sections with the

36 Acceptance is defined as the ratio of measured events to physical events as a function of the free parameters (such as
E’ and 8, or x and Q?).

37 Measuring count ratios, however, does have the disadvantage of reducing statistical precision of measurements, since
directly measuring a ratio of two statistical quantities results in a large relative statistical error [8]. For that reason, a very
long running time (to acquire high statistics) was required for the EG1 experiment.
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electron beam spin and target proton spin aligned parallel and anti-paraliel:

Ao — Aot (1.206)

This quantity can be measured directly; but, as mentioned, to avoid the need for acceptance cor-

rections, it is easier to measure the quantity (previously defined in Eq. 1.94)

Aot — Aot
2y
A2, Q%) = AT AT (1.207)
If n is defined as the normalized rate of detected counts in a bin, then
o= ——0r (1.208)
acceptance
making it easy to see that the acceptances cancel in Eq. 1.207 38 so that
oy _ 0 (2,Q%) —nt(x,Q?)

A“(x1Q ) - n__(x’ Q2)+n+(a:,Q2) (1.209)

with n™ and n~ representing the count rates for 11t and 14 scattering events, respectively, defined
as positive helicity and negative helicity events from this point forward. In practice, the counts for
each helicity need to be normalized to both the amount of charge in the beam, as well as detector

dead time, so that
+_ N *

_ 1.210
Fct ( )

n

with NV representing the actual number of detected particle hits and FC, representing the (helicity-
sorted) charge measured with the Faraday Cup device, gated to only include detector live time. The
Faraday Cup operation and details are discussed later, in Section 2.3.4.

The quantity Ay is referred to as the longitudinal double-spin asymmeltry; it is the actual quan-
tity directly measured in the EG1b experiment described in this thesis. As explained in Section

1.2.1, inclusive ep-scattering (at a constant beam energy) can be fully parametrized in terms of two

38This assumes, of course, that the detector has the same acceptance for both T4+ and 1J scatlering events. Accep-
tance is dependent only on detector geometry and efficiency, which depend only on scattered particle type, energy and
location/direction, so this is a valid assumption.
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variables; in practice, it is actually

n= (AW, AQ?) — nt (AW, AQ?)
n= (AW, AQ?) + nt (AW, AQ?)

A(AW, AQ?) = (1.211)
that is measured for each beam energy in a two-dimensional bin array, with desired variable trans-
lations (using the equations in Section 1.1.3) being made in later analysis.

Another often-mentioned quantity is the transverse double-spin asymmetry

AcT> — Aol
2y _
which provides much more information regarding transverse polarization effects (and thus, g-) than
the longitudinal double-spin asymmetry. The CLAS detector configuration is not currently suited for
a perpendicuiarly polarized target, due to the magnetic field configuration [30], so this quantity is
defined here for completeness and comparison purposes only.

In addition to double-spin asymmetries, it is obviously possible to measure single-spin asymme-

tries,
_ Agt — Agt

A, == =7
L7 Aot + Ac?

(1.213)

Parity-violating quantities, such as the electroweak asymmeiry, take this form [31]. In order to
minimize contamination effects from possible single-spin asymmetries, both the beam and target
spins are periodically reversed. 3 This causes a simple sign cancellation of most of the effects of
the single-spin asymmetry, so that only the relative orientation of the beam and target polarization

has any effect on the asymmetry measurement.

1.4.2 Asymmetries to polarized structure functions
The virtual photon asymmetry A;

We now discuss how a measured double spin asymmetry (A or A, ) can be used to calculate the

spin structure functions g; and g». As already shown in Figure 1.5 and Section 1.2.3, in the Breit

38In EG1, the beam polarization oscillates at ~30 Hz, while the target polarization is switched over a period of hours or
days; see the next chapter for more details.
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frame, we can interpret the longitudinal asymmetry as the asymmetry in cross-sections between
final spin-% and % hadronic states. As required by angular momentum conservation, this is really
just an asymmetry between spin +1 and spin —1 virtual photons. Thus, we define the virtual photon

spin asymmetry [6]

Ay(yr) = 20— 9200 (1.214)
op(v) + o3 (")

The subscript T implies that the cross-section only includes transversely polarized (i.e. spin +1)
virtual photons, because longitudinal virtual photon polarizations cannot excite the final desired

states. %0 Egs. 1.97 and 1.98 imply

A(z, Q%) x Ay (x,Q*)+ € (%) (1.215)

meaning that Aj; o A; in the scaling region of Q? — co. Recalling from Eq. 1.94 that Ay is ratio
of polarized to unpolarized cross-sections, we refer to the equation for the DIS unpolarized cross-
section, Eq. 1.43. Recalling that the transverse contribution to the cross-section is given by W,
and that R = W, /W; (Eq. 1.65), this unpolarized cross-section can be rewritten as [6]

Aoc  4ma’E' cos®(8/2) Wi(Q%,v)
AQ?AY QAE e(1+7)

[1+eR(Q?,v)] (1.216)

The quantity in square brackets, then, is the ratio of the total cross-section to the transverse term
(i.e. Wi only) cross-section. Using the definitions of Eqs. 1.94 and 1.214, the proportionality
constant in Eq. 1.215, defined D, is given by

4 _ 1t
D= ap y o o

_ : (1.217)
Ounpolarized ar(v*) — o7 (v*)

The first of these two cross-section ratios, the ratio of the fotal transversely polarized virtual photon
cross-section to the total cross-section, is simply (1 +€R)~1, as dictated by Eq. 1.216. The second
ratio can be interpreted as the inverse of the helicity fraction transferred from the electron to the vir-

tual photon [6}; it can be calculated, in the scaling region (where the virtual photon and polarization

“ORecall that virtual photons are not constrained to transverse polarizations, unlike their real counterparts.
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directions are parallel, as in Figure 1.5) to be /1 — €2, where ¢, given by Eq. 1.16, is the ratio of
longitudinal to transverse polarization of the virtual photon [12]. This relation is not proven explicitly
here, but this can be seen to make logical sense, in that all helicity is transferred in the limit of a
purely transverse virtual photon (e = 0).

Therefore, Eq. 1.215 becomes [6]

[Al(x, QP+ (;1;)} (scaling region) (1.218)

One can see that, for large v, that the longitudinal asymmetry is given completely in terms of A4;.

However, at lower Q2 (and hence lower /), we expect other contributions to be made.

The virtual photon asymmetry A,

Basically, the reason the assumption that A; o« A; works in the scaling region is because, in this
case, the angle of the virtual photon 8* (with respect to the polarizations) is always zero. That is,
the direction of virtual photon exchange vector is aligned parallel to the electron and nucleon spins.
At higher z, leaving the DIS region, this is, of course, not always the case; the virtual photon vector
can have any angle 6* with the polarization.

In the case of nonzero 6%, the A, contribution to A;; naturally must be multiplied by cos(6*). This,
however, is not the end of the story, as there are still €(1/v) terms, no longer unimportant, with
which to deal. This contribution can be looked at as an “interference” between the longitudinal and
transverse photon polarization cross-sections, which we can define as o,7. Simple orthogonality
requires that

oir <oror (1.219)

We now define a second asymmetry

Ap(yy=TEr - 2orr (1.220)

T
T __opr)+oi(r)

Njes
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Egs. 1.65 and 1.219 enforce the constraint*!

|A2] < VR (1.221)

The higher order term in A, requires the familiar factor of (1 + ¢R)~! to divide out the longitudinal
cross-section contributions; the relation to A, depends on transverse virtual terms, so instead of
cos(6*), a sin(6*) factor is needed, as well as a different helicity transfer factor of 1/2¢(1 - ¢). Adding

in the higher order term, the complete expression for A;; becomes [6]

A(B,z,Q%) =V1-¢€ cos(é’*)f—:f-’-z-% + v/2¢(1 — ¢) sin(6*) 114122 (1.222)

It is conventional to simplify this equation to

Ay(E,z,Q? E) = D[A(z,Q%) +nAa(z, Q%) (1.223)

where D is, for reasons that are now apparent, called the depolarization factor, and n is a (beam
energy-dependent) kinematic factor. Through kinematics calculations in the lab frame, these quan-
tities can be simpilified to the forms shown in Egs. 1.17 and 1.19.

It is essential to note that the double-spin asymmetry 4, is expressed in terms of 3 unknown
parameters: A,, A;, and R. In practice, if A is the measured experimental quantity, two of these
three must generally be approximated by models to extract the third quantity. For the kinematic
region of interest in this experiment (that is, the resonance region), R and n A, are relatively small

quantities compared to A4;. 4? Therefore, A, measurements serve as a good measurement for 4;:

A Ap(1+eR
="‘|l“"7A2=—'————”( )

A= 1—¢E'JE

nAs (1.224)

where models, evaluated in terms of Q2 and W, are used to evaluate the (small) contributions from

Rand A,.

“1In the elastic region, we have A;.; = 1 and Ay, = VRg = G /(TG ). These equations are useful for calculating
Ay for elastic scattering events,and are used later in Section 6.2.

42In particular, € < 1 because 1/42% + Q%/(2M=z)? is large. Then 5 < 1 because 7 « €/@Q>.




63

However, the variables A; and A, are not entirely uncorrelated, of course, as can be inferred
through the presence of the #(1/v) term in Eq. 1.215. The correlation in the higher-order terms
can be exploited to solve for both these asymmetries simultaneously (while modeling only R), but
with very limited precision. The asymmetries A; and A, can be evaluated completely in terms of
virtual Compton scattering, as will be be discussed momentarily. This implies that A; and A, are
functions of Q2 and ¢* (the virtual photon magnitude and angle) only, as these are the only free
parameters involved in the v*p scattering. Using the relations in Section 1.1.3, these asymmetries
can also (equivalently) be parametrized completely by Q% and z. * Looking at Eq. 1.17 (as well as
1.7 and 1.16), on the other hand, we see that n, a purely kinematic parameter, requires knowledge
of three independent parameters, E, E' and 4, or, equivalently, E, Q? and z. This means we can
write Eq. 1.224 as

2 (5,07 2) = 41(Q%2) +1(E, @, 2)42(@*, ) (1.225)

Thus, inside of a particular kinematic AQ?, Az bin, one expects A; and A, to be constant, while
Ay /D varies linearly with 7, with 7 depending only on beam energy. By measuring A,/ D at different
beam energies, one can plot Ay/D vs. 5 and solve for A, and A, for that AQ?, Az bin by linear

regression:

A
A; = y-intercept [3“(17)] (1.226)

and

A, = slope [%(n)] (1.227)

Naturally, because this is a bin-by-bin measurement method, with no assumptions about the ana-
Iyticity of the functions A;(Q?,z) and A2(Q?, z) going into the calculation, large statistical error bars
are expected. The best possible measurements of A; and A, require an iterative method of using
models and linear regression measurements. This issue is dealt with in Section 8.1.3. Of course,
measurement of A; would provide more exact measurements of A,. The analogous relation to Eq.
1.223 is

A(E,z,Q%) = d[Ai(z, Q%) + CA2(z, Q%)) (1.228)

“3The variables Q2 and W can be used, 100, as is done for most of the duration of this analysis.




64

However, as previously stated, CLAS is not configured to measure 4,, so the linear regression

method must be used if any information regarding A- is to be obtained from the EG1 experiment.

Extraction of spin-structure functions from 4, and A4,

Now, the task remains to convert the virtual photon asymmetries 4, and A, into the structure
functions ¢; and g». To do this (and to properly derive Eq. 1.222, as well), one must solve for the
relation between the hadronic ep tensor W,,,, in terms of the virtual photon polarization asymmetries
A; and A, to obtain explicit solutions of o:,%, a:,% and o7 in terms of g, and g». This can be done by

again using the optical theorem [12]*
2r MW, (v, Q%) = Im T, (v, Q%) (1.229)

where T,,, is the amplitude tensor for virtual Compton scattering, as described previously in this

thesis. The virtual photon cross-sections are calculated in terms of g, and g,. The results are

[12][22]
1 3 2
o} — ok =22 012, @) ~ 7 0u(s, Q7] (1.230)
2
orr = 22y [, @) + 92(2, Q) (1.231)
1 a 2
or = % (0771 +072~) = SMW—VC’:Fl(.’E, Q% (1.232)

Eq. 1.230 contains only polarized structure functions, because a subtraction of the cross-section
terms cancels the symmetric (unpolarized) components of transition amplitude. Conversely, Eq.
1.232 contains only a single unpolarized structure function, because an addition of the cross-
section terms cancels the antisymmetric (polarized) components of the transition amplitude. The
simple form of Eq. 1.232 should come as no surprise, since F; = MW/ represents a purely trans-
verse virtual photon amplitude (see Section 1.2.2).

The variable v* in the above equations is known as the equivalent photon energy; it is the nor-

“4Two other interpretations of this theorem are applied in discussion of the OPE and GDH sum rule - graphically in Eq.
1.124 and algebraically in Eq. 1.164.
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malization factor for the virtual photon spectrum. *° Its value, a function of kinematics, is a matter
of convention. More detail on its use is given later, in the derivation of forward spin polarizability in
Section 8.4.1.

Inserting these cross-sections into A; (Eq. 1.214) and A, (Eq. 1.220) yields

Ay (IE, Qz) = [g1(iL', Qz) - 7292(3:7 Qz)]/F1(:B, Qz) (1 233)

Az(z, Qz) = ’Y[gl(il', Qz) + ga(x, Qz)]/Fl(wy Qz) (1.234)

The value of v2 = 4E'E/(E — E')?sin?(6/2) = 4M?z2/Q? is small for deep inelastic kinematics, so

that g, makes very little contribution to A; for DIS. Solving in terms of the structure functions yields

01(2,Q%) = 721 - [41(2, @) +74(5,Q)] Fi(@, @) (1.235)
@) = 7 |3 42(0,@) - 4100, @) Fa(2. @) (1.236)
g2.z, 72_*_1 y 2\4y 1\4y 1\Ly .

which can be used to derive the polarized structure functions from the virtual photon asymmetries.

1.4.3 Behavior of A; in the resonance region

As well as providing a method of measurement for the polarized structure functions, the virtual
photon asymmetries also provide direct information about the behavior of resonances within the
nucleon. Asymmetry measurements in the medium to high z region also provide valuable quantita-
tive tests of QCD models.

Resonance region behavior is of great interest, because of the relative dearth of experimental
data in this region (see Section 1.5), the fact that it serves as a “bridge” between the “well-behaved”
reaims of xyPT and pQCD modeling where the physics behavior cannot be well-predicted, and the
fact that resonances exhibit physics which cannot be accessed by DIS measurements.

To investigate resonance structure, it is best to use the Lorentz invariant missing mass W, in

place of z, as it provides a clearer scale in the resonance region. In the context of ep scaitering,

45Many sources (e.g. Ref. [6]) use the notation K in place of v*.
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a resonance is basically a temporary excitation, or new particle state, that arises due to the impar-
tation of energy and angular momentum. We know that that several such excitations exist for the
range 1.08 GeV < W < 2.0 GeV. Below W = 1.08 GeV, no such excitations are possible, because
M +m, = 1.08 GeV, and pions are the lightest particle that can be emitted from a resonance de-
cay. Above W = 2.0 GeV, DIS dynamics dominate, as the excitations blur into a (nearly) constant
cross-section, where excitations of individual quarks and gluons dominate the spectrum.

intuitively, one might expect that, since we observe discrete mass and angular momentum states
of final particles, that sharp, d-function resonances would be observed, limited only in resolution by
the precision of the spectrometer. However, we know from the uncertainty principle AEAt > A that
the energy (and hence missing mass) resolution I' must be inversely proportional to the decay time
7 of the resonant state:

T X = (1.237)

so that structures with a finite, measureable width are expected. Only the elastic peak at W = M =
0.938 GeV is expected to be a é-function,since, for elastic scattering, there is no finite “lifetime” of
any “excited” state (i.,e. T' — oo). in practice, numerous other higher-order Feynman diagrams
and external radiation effects greatly broaden the elastic peak from its “exact” §(M) form. This is
explained in more detail in Section 6.4.

Experimentally, one observes several resonances,* including the spin-g'- hadron excitation A(1232),
and several spin% N* excited nucleon resonances (including the well-known Roper resonance
N*(1440)). Recalling Eq. 1.214, it is obvious that the A (spin-%) excitation implies 4; < 0, while an
N* (spin-%) excitation implies A; > 0. There are several observed spin-% excitations, classified by

their overall angular momentum S (L = 0), P (L = %), D(L=1orF (L= %), and subscripts ,,.,

46These are typically labeled with their missing mass in MeV in parenthesis
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representing L, and total energy discrete states [5][12]:

[ Pyi(1440)
D13(1520)
S511(1535)

S31(1620)

e+p— ¢ (1.238)
)

531 (1620)
S11(1680)
F15(1680)
D33(1700)

Detailed information of resonance structures is important to multipole analysis [1], a thorough study
of which is far beyond the scope of this thesis. For example, the A(1232) resonance amplitude A%
is known by multipole analysis to occur through a magnetic dipole (M1) and electric quadrupole
(E2) transition [12]:

V3
4y == (M - Eﬁ/z)) (1.239)

Nk

The total cross-section of the resonance is then given by [12]

2
T =4y (1.240)
2

A% can then be related to the structure functions in L, W#¥ through the optical theorem, for an
explicit solution of the resonance contribution. The asymmetry A, then arises from comparison to
the contribution A atthat kinematic point, and application of Eq. 1.214. The p — A transition can
occur through the reactions

e+ps?§»A(1232) —e+N+7 (1.241)

(with N and = representing final nucleon and pion states of varying isospin and charge) or, less
commonly, by
e+p—y A(1232) — etp+at+a~ (1.242)
=2
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For this reason, exclusive analyses, which look specifically at events containing decay products,
are often done to explore the multipole structure of resonances, including the spin asymmetries of
resonances such as [32]

e+p—oetn+at (1.243)

The total inclusive asymmetry contains the combination of all possible excited resonances. The
inclusive cross-sections are the combination of all possible exclusive cross-sections. With all these
resonances (and possibly others) combined, one expects A; to be composed of a blurred contin-
uum of finite-width resonances in W, dipping into the negative region near W = 1232 MeV and
then rising to a positive value somewhere near the Roper resonance at W = 1440 MeV, eventually
leveling off to a smooth region for DIS, at W > 2000 MeV (see Figure 1.8).

It is also interesting to consider the behavior of A, exclusively in the DIS region. We know from
Eq. 1.214 that A; = 1 for elastic scattering, because, obviously, o3/, = 0 for these events. 47 We
know z = 1 for elastic ep scattering, by definition. Looking only at events where W > 2.0 GeV
(and the quark structure of the proton is probed), but as z — 1, near-elastic scattering occurs from
asymptotically free quarks, with few higher order corrections needed for gluons and ¢g pairs. This
requires increasingly high values of Q?, with z = 1 requiring Q? — oo (i.e. scaling). The DIS region
where z — 1, free of the difficulties introduced by extra resonance parameters, is thus an excelient
region for the testing of pQCD theory. The measurement of the rate that 4; — 1asz — 1 is

consequently of great interest to QCD theorists (see Section 8.5.3) [33].

1.5 Existing Measurements

Now that the theory, motivation and method of extraction of g; and g, from physical data have been
presented, a basic summary of the published measurements of these structure functions is given.
In this section, a brief summary is given of existing spin physics experiments, outside of EG1b,
that have provided measurements for g7 and g%, as well as a presentation of the current worlid data
and the expectations for this analysis. Fine details about the experimental apparatus, etc., are not

provided here; interested readers are directed to the included references for this information.

4Tin other words, if there is any spin excitation, then it is obviously not an elastic scattering event.
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A1

elastic
Ar=1
*\ N* resonances

Figure 1.8: Qualitative expectation of the measured virtual photon spin asymmetry A;. The DIS,
resonance, and elastic scattering regions are highlighted in green, blue and red, respectively. Note
that in practice, radiative effects greatly broaden the elastic peak from its ideal é-function shape
(dotted line). See the text for more details.
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Figure 1.9: Earliest measurements of A; for the proton at SLAC. A value of g is expected in the
stationary quark SU(6) model; this value holds fairly well for high . From Ref. [34].
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It should be noted that the structure functions g; and g for the neutron have been measured
in numerous experiments, utilizing electron and muon scattering data from stationary deuteron and
3He targets. The majority of experiments listed in this section (including EG1b) also incorporated
measurements of gI and/or g5 using one of these two targets in addition to a proton target. Ad-
ditional experiments in Hall-A at Jefferson Laboratory with a stationary polarized 2He target have
supplied further neutron data (see, for example, Ref. [35]).

Though measurements of g7 and g% are of equal importance to those of g7 and ¢} with regard
to a complete understanding of nucieon dynamics (especially where isopsin study is involved, as
in the Bjorken Sum Rule in Section 1.3.2), the focus of this work is the study of the proton, so the

collection of world data on g7 and g7 is the sole focus of this section.

1.5.1 Early measurements of g7

A chronology of major experiments producing measurements for the g; structure function of the
proton is given in Table 1.2. A very brief overview of the chronological history and summary of this
measurement is presented here.

The E80 experiment at the Stanford Linear Accelerator (SLAC) in 1976 is the first notable ex-
periment to utilize a polarized electron beam (ranging from 6-13 GeV) and a polarized (butanol)
target. A low beam current limited collection to only 2 million events [36], but it enabled the first ever
measurements of A} at Q? ~ 2 GeV? (Figure 1.9) [37]. The higher energy SLAC experiment E130
(run to reduce higher twist effects through scaling) at 23 GeV beam energy was run in 1983, at 3.5
GeV? < Q? < 10 GeV?, collecting even fewer events, but at higher z than the first experiment [38].

Polarized deep-inelastic scattering (PDIS) at CERN, in the European Muon Collaboration (EMC)
experiment used a different measurement approach. Polarized muons were used in place of elec-
trons [39]. Muons are “automatically” polarized when produced from the decay of high-energy
pions

T = p U (1.244)

due to the weak axial-vector coupling of the decay, avoiding the difficulties involved in producing

polarized electrons [22]. With the exception of a differing target mass correction (TMC) for the
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Figure 1.10: The first available data for g7 from the SLAC E80 and E130 and the CERN EMC
experiments. Resolution was not fine enough in these experiments to bin in terms of more than
one kinematic variable. From Ref. [40].

recoil of the struck particle, the up and ep reactions are identical, so that the same asymmetry and
structure functions can be measured. CERN is a high-energy facility; .~ energies of 100-200 GeV
were produced. The EMC experiment utilized a polarized NH; target with polarization measured
by NMR. “8 Muon polarization was (rather tenuously) evaluated by a Monte Carlo distribution of the
scattered particles. The g? results from these early experiments are shown in Figure 1.10.
Obviously, these early measurements did not produce the event flux or kinematic breadth of data
necessary for a fine measurement of the Q2 or x evolution of the structure function. They were,
however, abie to test two predictions: the stationary SU(6) quark symmetry, and the Ellis-Jaffe Sum

Rule.
48 A simitar system is used in EG1, but used only as a secondary check for polarization. See Section 6.2,
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Table 1.2: A tabular summary of experiments measuring the g} structure function, including the
approximate Q? range and approximate number of triggers.

Date | Experiment | Location | Q* range (GeV?) T range | Approx. # of events
1976 E80 SLAC ~2 0.1-0.5 2 %108
1983 E130 SLAC 3.5-10 0.2-0.65 1 x10°
1987, 1989 EMC CERN 3.5-29.5 0.01-0.70 1.2 x10°
1992 SMC CERN 0.01-23.1 0.00006-0.121 4.5 x10°
1993-1994 E143 SLAC 1-40 0.014-0.90 2.36 x108
1996 HERMES DESY 0.18-20 0.0041-0.9 347 x105
1997 E155 SLAC 1.22-34.72 0.015-0.750 1.7 x10%
1998 EG1ta JLAB 0.02-5.0 0.01-0.70 3 x10°
2000-2001 EG1b JLAB 0.02-5.0 0.01-0.70 2.3 x 1010
2002 RSS JLAB ~1.3 0.3-0.8 1.6 <108

1.5.2 The spin crisis

The stationary SU(6) quark model does not account for Fermi smearing caused by internal motion
of quarks in the nucleon, nor does it account for the presence of the gluons and sea-quarks. From

a basic constituent quark model, using the notation of Section 1.2.3, we can predict [6]

4 g @GAu+giAd %-§+
lN_: —_ 4

. —Tl 5
5 =3 (1.245)

o

which agreed reasonably with the DIS data from SLAC and CERN, at least at high x (see Figure
1.9).

Another prediction of early double-spin asymmetry experiments was the Ellis-Jaffe sum rule.
Using Egs. 1.182 and 1.184, and assuming As = 0, one can write [12]

5
I? = %‘ + 55 (Au + Ad) (1.246)

This is a simple form of the Ellis-Jaffe Sum Rule. The sum Au + Ad can be evaluated from hyperon

p-decay [12], in a manner analagous to the evaluation of g4 presented in Section 1.3.2, assuming
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SU(3) symmetry holds for the quark triplet uds. The result is

Au+ Ad = 0.57+£0.06 (1.247)
QCD radiative corrections [12] modify Eq. 1.246 (to first order in o) to

2 2
-2 [1 _ #l} 2 (Bu+ Ad [1 _ 1—2"—(7-?—)} (1.248)

Using this, along with the known value of g4 = 1.26, yields
I'(Q? = 3GeV?) ;s = 0.167 4 0.008 (1.249)

The EMC result of 0.114 + 0.012 4 0.026 clearly violated this rule - meaning that very little of the
proton spin resides on the consituent quarks « and d - an unexpected result, considering the prior
success of the quark model. The discrepancy became known as the spin crisis. 4° This result
made it apparent that a spin parton model of the nucleon was far from complete.

The unexpected violation of the Ellis-Jaffe Sum Rule motivated the next experiment to measure
nucleon spin, the Spin Muon Collaboration (SMC) experiment at CERN, which instead used a
butanol target (like the early SLAC experiments) and better beam polarization measurements using
the positron spectrum from u~ decay [41]. The SMC data supplemented the original EMC run, and
extended the kinematic reach down to even lower z, with a considerably higher event flux. It also
provided measurements of ¢g¢ (and hence ¢7) from deuterated butanol, so that the Bjorken Sum

Rule (Eq. 1.184) could be tested.

1.5.3 Second generation SLAC and HERMES polarized experiments

The next generation of PDIS experiments at SLAC utilized solid state GaAs cathodes to produce a

higher flux polarized beam than was available for the EB0/E130 polarized experiments. The E143

experiment, utilizing beam energies of 19.4, 22.7 and 25.5 GeV, and a polarized solid NH;3 target,

“9Clearly, other components (As, Ag, efc.) contribute to the total proton spin - components that are isospin invariant,
assuming the Bjorken sum rule holds.
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Figure 1.11: Measurements of ¢7/F? in selected z bins for the SLAC E155 experiment (s), com-
pared to results from E143(c), HERMES(x) and SMC([1). See the text for more details. The solid
line is a NLO QCD model, while the dotted line is a simpler fit. From Ref. [42].
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was thus able to generate 300 million measured events, orders of magnitude higher than available
in any prior double-spin asymmetry measurement for the proton, with a more easily calculable
unpolarized background subtraction [4]. The E143 target provides the basic model for the target

used in the EG1 experiment (see Section 2.4). Measurements of the moment T'¥ from E143
Q%= 3GeV2) =0.127 £ 0.004 £ 0.010 (1.250)

showed once and for all that this moment lay at least two standard deviations below the Ellis-Jaffe
expectation, thus showing a clear violation of this sum rule due to, presumably, higher order QCD
and higher twist effects.

The most recent SLAC polarized NHj target experiment, E155, provides the widest range of
@2 and 2 acceptance available prior to the EG1 experiment. E155 data covered very low z values
(down to 0.025), at a lower Q? range than previously available for DIS scattering in this range (see
Figure 1.11) [42].

Using a very different setup, the HERMES experiment employed a unique longitudinally polar-
ized gas target, which produced a jet of atomic hydrogen with polarized states selected by Stern-
Gerlach separation (exchanged by RF transitions) [43]. This method provides a very thin radiation
length target, but also gives the advantage of scattering from a target with no large-A background,
and thus no dilution factor (see chapter 5). A high-flux electron beam (~30 GeV) from the DESY
HERA lepton storage ring provided a high precision measurement for very low values of = (as low
as 0.0041), at much lower Q? values than achieved by the E155 experiment (see Figure 1.12). With
the new SLAC and HERMES data, it was finally possible to check the assumptions of QCD models

and sum rules in detail, and test the behavior of models in terms of both Q2 and z.

1.5.4 The missing kinematic region: motivation for EG1

It is apparent from a careful inspection of Figure 1.12 that a large kinematic region, namely at low
Q? and high z, has still not been significantly covered by the global data set. This situation is
clarified in Figure 1.13, which shows the breadth of the world data on g7 before and after EG1.
By substituting sample values (covered by the inverted red triangles) of Q% and z into Eq. 1.9, it
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Figure 1.12: A plot of g} data from HERMES, with low Q? data (o) and high Q? data (e) superim-
posed on the available world data. The HERMES data cover a fuller range of kinematic values than
any previous data, but there is still a noticeable void for high = values at low Q? after the completion
of this experiment. From Ref. [47]; color version from Ref. [48].

is easy to see that a large portion of this region lies in the resonance region 1.08 GeV < W <
2.0 GeV. Structure function data in this region, covering the A and N* resonances, is expected
to oscillate greatly, and thus the specific values of g; cannot be reconstructed from their OPE
moments using assumptions of analyticity and continuity alone (see Section 1.3.2). As explained
in Section 1.4.3, detailed data of the resonance structures must be explicitly known to account for
nuclear structure in the intermediate @2 region to test assumptions of theories such as xPT and
even Lattice QCD. Detailed interpolation from widely spread data points is not possible where the
structure function value shifts rapidly in terms of z. Therefore, much more data are required in
this region to gain the same type of precision measurements of the g; spectrum in this region. This
requires an experiment with large acceptance and statistics, needs fulfilled by the EG1b experiment
at Jefferson Laboratory.

EG1b is a follow up to the shorter EG1a experiment. EG1a was a smaller preliminary data set,
intended as a “test run” of the experimental conditions employed in the later, much longer EG1b
experiment. EG1a data have already been analyzed [44]{45]. The kinematic coverage for EG1a is

only slightly different that EG1b. However, EG1b, with its much longer running time, provides much
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more data and hence greater statistical precision than the preliminary EG1a experiment. 50

1.5.5 Current measurements of ¢ (E155x and RSS)

Transverse polarization experiments are, in practice, more difficult to implement than longitudinal
polarization experiments, and even when implemented, the resulting asymmetry provides an (ap-
proximately) equally mixed measurement of the g; and g» structure function, rather than a (nearly)
pure spin-result, as in the longitudinal case. Therefore, available g% data are very limited in scope
and detail.

At this point, only two experimental analyses contribute notably to our knowledge of ¢5. E155x
was an extension of the E155 experiment at SLAC, similar to its parent experiment, except that it
utilized a transversely polarized target to measure A, enabling extraction of the sum g; + g2 in the
DIS region [49]. The older, E143 experiment placed some constraints on the value of g,, but these
measurements are rendered obsolete by E155x (see Figure 1.14).

Measurements in the resonance region for g5 are even rarer. The only available precision mea-
surement comes from the recent Resonance Spin Structure (RSS) experiment in Hall-C at Jeffer-
son Lab. RSS, like EG1, utilized a frozen ammonia target, which could be aligned both parallel
and perpendicular to the beam, with data collected by the High Momentum Spectrometer (HMS)
[52]. While this was a very high precision experiment, the acceptance of the HMS was not nearly
as broad as that of CLAS in Hall-B, so that only a very narrow band at Q% ~1.3 GeV? was cov-
ered by the data. However, the versatility of the polarized target allowed for the measurement of
both Ay and A, so that extraction of both g; and g, was possible in the resonance region (see
Figure 1.15). RSS results show unambiguously that g, # ¢¥" in the measured kinematic region,
meaning that higher-twist effects, and thus long-range correlations bewteen quarks and gluons, are
likely a determining factor of spin-behavior at this kinematic scale (see Section 1.3.4). Thus, future
measurements of g in this kinematic region are of considerable physical interest.

Unfortunately, the EG1 polarized target cannot be set up in a perpendicular polarization config-

uration, so that A, cannot be directly measured in the experiment in this thesis. However, due to

50prior to this thesis, a majority of the 1.6 GeV and 5.6 GeV data in EG1b were already analyzed in a first pass analysis
[2][46]. This thesis represents a complete analysis of all inclusive proton scattering data in EG1b, with improvements upon
some aspects of analysis used in the first pass.
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rithmically as a function of Q2 and z. An offset C(z) is added to g, to separate different values of
z. Plots courtesy A. Deur.
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the use of multiple beam energies and the very high statistics available in EG1, the method of linear
regression shown in Section 1.4 can be used to extract a lower-precision measurement of Az, and
hence g,, for the proton, over a wider Q2 range in the resonance region than previously available.

This process is described further in Section 8.1.2, near the end of this thesis.



Chapter 2

Experimental Apparatus and Models

2.1 The EG1b Experiment: Introduction

We now set the stage for analysis of the data by describing the experimental apparatus and pro-
cedure. Data were collected over approximately a 7-month period from 2000-2001, with 1-6 GeV
(~70%) polarized electrons produced at a rate of approximately 20 nA from the CEBAF electron
accelerator, scattered from a (~70%) polarized target,! and detected in Experimental Hall-B by the
CLAS (CEBAF Large Acceptance Spectrometer) detector. Data were then archived on tapes for
later analysis.

Technical details regarding the CEBAF accelerator, CLAS detector components, and £EG1 polar-
ized targets are archived in the various NIM (Nuclear Instruments and Methods) papers referenced
throughout this chapter. In this thesis, only a brief description of the experimental apparatus is
supplied, with appropriate references, so that the bulk of this chapter can be dedicated to detailed
descriptions of this particular analysis.

In the sections that follow, all experimental components are described, beginning with the beam
injector and accelerator, followed by the EG1 target, the components of the CLAS detector, and

finally the storage of the data for later analysis.

10Only the NH3 target had a polarization this high; ND3 polarizations were considerably lower.
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Figure 2.1: Schematic of CEBAF, the Continuous Electron Beam Accelerator Facility at Jefferson

Lab. See the text for details regarding the components.

2.2 The CEBAF Electron Accelerator

The CEBAF electron accelerator is capable of generating beam energies of up to 5.8 GeV (with a

spread AE/E < 2.5x 107%) 2 at currents of up to 300 uA delivered in 1497 MHz RF modulated

pulses, split between three research halls. 3 Electrons can be (up to 75%) polarized in alternating

bunches of up to 3 pC of charge [53]. 4

Figure 2.1 shows an overall diagram of the CEBAF accelerator. Polarized electrons at 45 MeV

are generated in a beam injector unit, then fed into a pair of 600 MeV linear accelerators employing

RF cryomodules, cooled by a central LHe refrigerator. Recirculation arcs magnetically steer the

2Pians are in place to upgrade the maximum beam energy to ~ 12 GeV by ¢.2012.
3This means an effective pulse rate of 499 MHz is delivered to each Hall.

“4Beam polarization has reached up o 85% in recent years; the 75% limit corresponds to the time of the EG 1b experiment.
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beam through up to 5 passes (controlled by the beam switchyard operator) through the linac pair.
A total maximum beam energy of 6.0 GeV can thus be delivered to each of the 3 research halls. °
Due to spectrometer instrumentation limits (most particularly the inner layer drift chambers), only a
maximum of 100 nA can be delivered to Hall-B, with only about 20 nA typically used for the EG1
experiment. More details (and references) regarding specific beam components are outlined later

in this section.

2.2.1 Beam Injector

Polarized electrons used in Jefferson Lab experiments are produced initially in the Beam Injec-
tor Unit, prior to their introduction into the North Linac. First a GaAs photocathode (Figure 2.2a)
is activated to a negative electron affinity by introducing Cs and oxidizing NF3 gas to the cath-
ode surface [58]. Then, under ultra-high vacuum (~ 10~1! Torr), polarized electrons are produced
from the cathode at 100 keV by exciting electrons from the top (spin-biased) valence state into
the conduction band. The excitations are made by circularly polarized light [54] supplied by MOPA
(Master-Oscillator-Power-Amplifier} or Ti:sapphire lasers configured in the ultra-high-vaccuum sys-
tem (Figure 2.2b) [55). A half-wave plate (HWP) can be inserted in the laser beam to change the
polarization phase by 180°. The HWP is inserted and removed at semi-regular intervals through-
out the experimental run to ensure that no polarity-dependent bias is manifested in the measured
asymmetry.

The 100 kV electrons are introduced into the injector line (Figure 2.3), through a prebuncher
cavity and two circular apertures (A; and A;), which pare down the beam in length and diameter
so that it can be passed to the chopper, which splits the beam into 499 MHz bunches for delivery
into each of the 3 experimental halls [55][56]. A buncher cavity, followed by a five-cell graded-
electron capture section, compresses the RF bunches and kicks the beam energy up to ~500 keV.
Unbunched residual electrons are steered to a beam dump. Then, a quarter-length cryomodule
(containing 2 SRF (superconducting RF) cavities, explained momentarily) accelerates the experi-
mental electrons to 5 MeV, freezing the axial beam dimension to a 90um (300 fs) bunch. Finally,

then, two complete cryomodules boost the beam energy to 45 MeV, prior to their introduction into

SHowever, beam quality concerns practically mandate a slightly lower maximum energy of just under 5.8 GeV.
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Figure 2.2: Diagram of a 100 kV GaAs photoelectron gun, used to generate polarized electrons in
CEBAF (top). Alternating pulses from two guns are fed into the photoinjector (bottom) leading to
the rest of the injector unit (Figure 2.3). From Ref. [58].
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Figure 2.3: Diagram of the CEBAF Beam Injector Unit. See the text for details. From Ref. [59].

Figure 2.4: A cryounit, consisting of 2 resonant RF cavities. A cryomodule is a series of 4 cryounits
(see text for details). From Ref. [53].

the North Linac of the accelerator (Figure 2.1) [56]. Electrons are bent through a chicane mag-
net prior to injection, producing synchrotron light. The intensity of synchrotron radiation is directly
proportional to the beam current. Thus, a Synchrotron Light Monitor (SLM) measures the relative

beam current at this stage [57].

2.2.2 0.6 GeV Linac

Each linear accelerator, or linac, is capable of increasing the electron energies by ~600 MeV, boost-
ing the energy by ~1200 MeV in each complete pass around the accelerator. Each linac contains
a series of 160 resonant superconducting niobium RF cavities, a pair of which are shown in Figure
2.4. Eight cavities in a series comprise a “cryomodule”, containing vacuum pipes/pumps, and mag-
netic dipoles/quadrupoles for beam steering/focusing.

Cryomodules are cooled by 2.2 K LHe from the central helium refrigerator, with 4.5 K LHe sup-
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plied from an end-station refrigerator for the radiation shields. This lowers the niobum cavities to
well below the 9 K superconductivity point, optimized to minimize BCS energy losses. A 5-kW
klystron generates RF power for each cavity, locked to the master driving RF (at the main injector
cathode) to less than a 1° difference in phase. This creates an oscillating phase gradient along each
cavity (reguiated by an RF control module to one part in 10%) with maxima and minima separated
by a spacing equal to the distance between the nodes in the cavity. This causes a net acceleration
of the electron bunches, because the klystron driving RF is in resonance with the bunch frequency
[53].

Because electrons are such light particles, they effectively travel at the speed of light for ener-
gies ranging from 45 MeV (upon leaving the injector) to 6 GeV. Thus, the same resonant cavities
and driving frequencies can be used to boost the electron energies in every pass through the ac-
celerator, which allows electrons in separate passes to be superimposed. A view of part of the linac

during maintenance is shown in Figure 2.5.

2.2.3 Recirculation Arcs and Beam Optics

Magnetic recirculation arcs are installed on both ends of the accelerator so that multiple passes
can be made through the linacs. Four arcs are located on the west end, and five on the east side
(see Figure 2.1}, to accomodate up to 5 passes through both linacs. Although the spacing of all
high energy electron bunches is constant (enabling them all to make multiple passes through the
same linac), the separate recirculation arcs require differing magnetic field strengths for each pass.
A chicane magnet at the end of each linac splits the beam into monoenergetic paths, which then
pass through a series of six “periods” in each arc (Figure 2.6). Each period (nominally) contains
8 dipoles, 8 quadrupole and 4 sextupole magnets [60]. The optical configuration was designed to
avoid beam degradation through dispersion and blurring, provide a path length that is an integer
muitiple of the RF wavelength (to avoid phase space dilution), and minimize energy spread due to
the emittance of synchrotron radiation. In total, the optics design of the accelerator requires 2267
individual magnetic elements [53].

A beam swilchyard separator either allows the beam to continue unhindered after one complete

pass, or extracts the beam with a chicane from the appropriate recirculation arc after 2-5 passes,
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Figure 2.5: Photograph of a section of a linac during maintenance. Cryounits are concealed inside
the cylindrical cryostats. From the JPIX Jefferson Lab picture exchange.
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depending on the beam energy requested. To deliver beam to all 3 of the research halls (A, B
and C), a % harmonic RF separator system splits the interleaved bunches using an oscillating,
deflecting magnetic field, steering the desired bunch toward the appropriate opening in a 3 aperture
Lambertson septum, and delivers the beam to the appropriate experimental hall [53]. Different
beam energies can even be delivered to different halls simuitaneously by performing a similar “two-
beam” split at the switchward separator. ¢ Elecirons delivered to Hails A and C must be bent
through arcs with steering magnets. These arcs are used to provide a precise measurement of the
beam energy (see Section 4.2.4). Electrons continuing straight forward can then be delivered to
the CLAS detector in Hall-B, the location of the EG1 experiment.

2.3 Hall B Beam Line Devices

After the Hall-B electron bunches are separated from the main beam line, they approach the en-
trance to Hall-B inside an evacuated beam pipe. Prior to entering (and after exiting) the EG1
polarized target and CLAS detector, the beam passes several devices, including a Maller Polarime-
ter, 3 Beam Position Monitors (BPMs), 3 Harp Scanners and, finally, a Faraday Cup. The uses of
these beam line instruments are detailed in this section. Figure 2.7 shows a schematic diagram of

Hall-B and the locations of these devices.

2.3.1 Moller Polarimeter

At the entrance of Hall-B, a Maller Polarimeter (Figure 2.8) is used to take measurements of the
beam polarization. Maller polarimetry requires the use of a magnetized iron target, so it is an in-
vasive measurement that cannot be done during data collection. Separate Meller data runs (taking
~30 minutes) were made periodically throughout the experiment.

The polarimeter consists of a target chamber with a 25-um thick permendur? foil oriented at
+20° with respect to the beam line, longitudinally polarized to 7.5% by a 120 G Helmoltz mag-

$This is a bit more complex, though. An oscillating RF deflection tield steers the selected bunch across a septum and
out of the arc. The other two bunches, 120° out of phase, are steered slightly in the opposite direction. Their paths are
corrected by subsequent magnets before reinjection into the linac.

TPermendur is 49% Fe, 49% Co, 2% Va.
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Figure 2.6: Photograph of a section of a recirculation arc. From the JPIX Jefferson Lab picture
exchange.
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Figure 2.7: Hall-B schematic, showing the location of CLAS and the approximate locations of the
beam line monitoring devices. One BPM and harp are located further up the beam line and are not
shown.

¢ Ry

Figure 2.8: Photograph of the Mgller polarimeter in Hall-B, showing upstream (left) and downstream
(right) views. The electron beam travels through the thin central pipe. From Ref. [61}.



91

TOP VILW
Loy Bnergy: lacusing
Flich cnvve s debe sy dii s duebinorsang

oo detector
Farget Quadrupole Quadrupole particle
chamber ' 5 exit tange g
e L 375 cmi
i AL pipe 3 :
; ¥
- T 156000 ,
- = 25qan

\l'il"i"scfi\ e field mgiuu/

ERINTY -
Figure 2.9: Schematic diagram of the Hall-B Mgller polarimeter. From Ref. [30].

net [62]. Two quadrupoles separate the scattered electrons according to their potarizations. The
electrons then enter one of two lead/scintillator/photomultiplier tube combinations for detection (see
Figure 2.9) [30].

Elastic electron-electron scattering coincidences are used to determine the polarization. The
differential scattering cross-section, in terms of the permendur target polarization (P?) and beam

polarization (PY), is given by [2][61]

do

el BRa Z PlA; P 2.1)
i,J=x,y,2
where
. 4
sin® Oomr
Apy=—Ape = ——r—— 2.2
v (3 + cos?8cnr)? (2.2)
A = (7-|-COS2 0CM)SiIl2 Ocm (2.3)
i (3 + cos?0cm)? ’

Aij,i#j =0 (24)

Here, 8¢\ is the scattering angle in the CM frame, = is defined as the beam axis, and the ee scat-
tering plane is defined to be the zz plane. Using knowledge of the scattering kinematics and P*
(from the detectors and foil alignment, respectively), the beam polarization, P2, can be determined.

The Mealler measurement typically had an absolute statistical uncertainty of 1% and a system-
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Figure 2.10: Screenshot of the online Beam Position Monitor measurement for the z-coordinate (in
mm) during part of the EG1b experiment. The three colored lines represent measurements from
each of the 3 BPMs. The last several minutes of the plotted time period show marginal beam quality
that required correction by the accelerator operators. From Ref. [63].

atic uncertainty of ~2% [30]. In practice, normalization to the elastic scattering asymmetry is used
to determine the beam xtarget polarizations (see Section 6.2); the only actual uses for Maller mea-
surements in this thesis are for determining the polarized **N correction (Section 6.3) and for con-

sistency checks on the P, P, measurements.

2.3.2 Beam Position Monitors (BPM)

Three beam position monitors are located 36.0, 24.6 and 8.2 m upstream from the CLAS center.
They measure the beam position in the zy plane, as well as the (relative) beam intensity. Each
BPM is composed of 3 RF cavities. The beam position is cross-calibrated using the Harp Beam
Profile Monitors (described next), and the intensity is calibrated (periodically) with the Faraday Cup
(Section 2.5). Measurements are taken at a rate of 1 Hz, and these data are used in a feedback
loop to keep the beam centered on the target [30]. An example of BPM measurements along one

coordinate for all 3 monitors is shown in Figure 2.10.

2.3.3 Harp Beam Profile Monitors

The profile and diameter of the electron beam delivered to the target is measured during periodic
harp scans. There are three different “harps” (at 36.7, 22.1 and 15.5 m upstream of the CLAS
center) composed of thin, movable wires (20um W, 50um W and 100um Fe, respectively) in a
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Figure 2.11: Results of a Hall-B beam harp scan during the EG1b experiment. Note that the PMT
count scale is logarithmic; beam diameters smaller than 0.5 mm are typical. From Ref. [63].

cross-hair pattern. During a harp scan, the wires are slowly moved through the beam, resulting
in scattering events whenever the wire crosses the beam. Photomultipliers (PMT) 10 cm from the
beam line detect the scattered electrons via Cherenkov radiation in the PMT glass window. A beam
profile (in z and y) can then be reconstructed [30}.

Figure 2.11 shows the results of a typical harp scan along both the = and y-axes, performed
during the EG1b experiment. Typical beam diameter measurements show an RMS of around 80
pm, so that most of the beam is contained within a 200 um diameter. Note that, like Maller mea-

surements, harp scans constitute an invasive measurement that cannot be completed during data

collection.

2.3.4 Faraday Cup

The beam line ends at the Faraday Cup (FC), 29.0 m downstream from the CLAS center point. The
Faraday Cup is used to integrate the beam current. The device is a 15 cm diameter long horizontal

cylinder consisting of 75 radiation lengths (4000 kg) of lead, connected to an electric feedthrough
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Figure 2.12: Faraday Cup charge asymmetry plotted against Synchrotron Light Monitor asymmetry
for a set of EG1 runs, indicating a linear relation between measured charge and beam intensity.

From Ref. [64].

to measure the collected charge [30].

It is connected through a logic gate to the CLAS data acquisition system, to record both total
(ungated) and detector live-time (gated) counts. The latter omits charge collected when the readout
electronics are busy. The main RF frequency is used to gate the FC so that readings for each
beam helicity are recorded separately. Figure 2.12 compares Faraday Cup charge asymmetry
measurements compared to asymmetry measurements from the Synchrotron Light Monitor (SLM)
described earlier, from a test for helicity-related bias in the total charge measurement [64].

It is important to note that the narrow FC cylinder width (15 cm) means that the beam must
remain tightly collimated after passing through the polarized target and CLAS detector. if multiple
scattering in the target causes an angular spread in the beam, not all the incident charge will enter
the Faraday Cup. This is a greater problem at lower beam energies, and is, in fact, a considerable

problem in this experiment. Section 4.5 explains how this problem is handled in the analysis.



212

Figure 4.11: A greatly exaggerated picture of multiple scattering effects. The true vertex position
and apparent angle are distorted by this effect. The black arrows show the true angles and vertex,
while the blue dotted lines show the apparent angle and vertex positions of the scattered particles.
Notice, in this case, that the true vertex position fies between the apparent vertex positions for each
particle. While this is not necessarily the case for a specific event, using the weighted average of
the vertices does, on average, increase the kinematic precison.
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Figure 2.13: Beads of ammonia in a target cup. The purple discoloration is due to radiation damage.

the width of the target window. Helmholtz coils produce the required oscillating fields at the correct
frequencies to produce the desired pattern. Raster magnet ADC amplitudes are recorded in coinci-
dence with each scattering event, so that the raster pattern can be reconstructed (see, for example,

Section 3.3.4).

2.4.2 Dynamic Nuclear Polarization: Overview

The method of Dynamic Nuclear Polarization (DNP) is used to polarize the ammonia target material.
A complete, detailed treatise of this method is beyond the scope of this thesis; only a basic summary
(specific to this experiment) and appropriate references are inciuded here.

For spin-3 nuclei, which only have two possible spin orientations in an external field (+3 and

—%), the polarization along the magnetic field (z) axis is given in terms of the spins J as simply
P=(J,}/J=n4y —n_ (2.5)

where n represents the fraction of nuclei with each spin. Assuming internal equilibrium, the spins

can then be characterized by the Boltzmann law with a characteristic temperature Ts:

2= = exp(—Em/kTs) (2.6)
ny
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where E,, is the energy differences between the two spin states m = +3. Using E,, = 2uH (for
a spin of +§) where u is the magnetic dipole moment of the nucleus and H is the magnetic field

maghnitude, the polarization in thermal equilibrium is

—n_ 11— 2uH/kTs H
e il 62 T = tanhL (2.7)
iy +n_ 1+ e2nH/kTs kTs

However, in a 50 kG magnetic field at 1 K, this gives a polarization of P = 0.00511, clearly too small
for a polarized experiment. Dynamic polarization of the impurities must be employed to improve

this value.

2.4.3 DNP, Neglecting Spin-Spin Interactions

Neglecting spin-exchange interactions between adjacent electrons and adjacent nuclei, the spin

Hamiltonian for an electron of spin .S and a proton of spin J can be written [67]
H = Hsz + Hyg + Hsy+ Hrr (2.8)

where the four terms represent the Zeeman energy of the electron, Zeeman energy of the proton,
the spin interaction of the electron and proton, and the externally applied microwave (RF) field,

respectively. The dipole interaction term can be written [67]

2 g. 7.

where . (7,) is the gyromagnetic ratio of the electron (proton). This can be caiculated in terms of

the products of the bilinear spin operators S, . _ and J, 4 _. First order perturbation theory yields
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the |pe) spin eigenfunctions

la) =1 =) +&"| =)
B) =1~ +el —+)
le) =+ +) +&*+-)
|d) = |+—) +el++)
(2.10)

where

€= %% sin 8 cos fe (2.11)

and ¢* is the complex conjugate of e. # and ¢ represent the polar and azimuthal angles of r with
respect to the polarization axis.

Thus, we see that the eigenstates resuiting from the e-p spin interaction are mixtures of the
unperturbed free particle eigenstates. That is, the spin eigenstates |+ +), |+ —), | —+), | ——) are
rotated’ into the eigenstates |a}, |b), |c), |d) by the spin-spin interaction. This is essential, as now
an externally applied field (o#zr) can induce transitions between the new eigenstates, flipping the

spins of both the electron and proton, such as

|[+4) = =)
+-) = =)

(2.12)

which are forbidden (due to dipole selection rules) if the electron-proton spin interaction is neglected

(see Figure 2.14).



29

B-field splitting

of e and p-spins
B-field splitting e +)
ofe-spins / | -
—L |+ 4)
unperturbed
energy hv
(no B-field) o

/

I
"
L

Figure 2.14: Energy levels of the ep target system in an exiernal magnetic field. The ket notation
|SpS.) represents the spin states of the proton and electron. Allowed transitions hvesg (Electron
Spin Resonance) and hunur (Nuclear Magnetic Resonance) are shown in blue and red. Other
transitions are forbidden by dipole selection rules in the absence of a changing external field.
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An external oscillating electromagnetic field with frequency

v = VEPR + UNMR (2.13)

(where the EPR and NMR energies are shown in Figure 2.14) excites the “forbidden” transition, W+
or W— (shown in Figure 2.15), depending on the sign in Eq. 2.13. The probability ratio of a W+
transition to that of an “allowed” dipole transition is 4|¢|?, as calculated from the matrix elements
s%rr applied to the admixed eigenstates [67].

After a simultaneous spin flip (Eq. 2.12), both the electron and proton eventually return to
their ground state, as determined by their respective spin-lattice relaxation times. This relaxation
time is approximately a factor of 10 longer for the proton than the electron [65] (about 103 s for
the electron, but 10® s for the proton). Once the electron relaxes, it is again available to interact
with another proton, and induce another “forbidden” spin flip. The process continues, albeit with
a decreasing probability, as the distance » increases as the protons are polarized, shrinking the
magnitude of the Hamiltonian terms in Eq. 2.9. Eventually, a net polarization of the protons is
induced, and an equilibrium is reached. '© When this occurs, the polarization of the target remains

stable, so long as the magnetic field and microwave radiation are continuously applied.

2.4.4 DNP in a real solid: Equal Spin Temperature (EST) Theory

The preceding provides a relatively simple model for DNP, where the Zeeman energy levels were
considered infinitely sharp, in the absence of spin-interactions within the electron lattice. However,
in real solids (such as our NH; target}, the spin-spin interactions greatly complicate the system,
effectively “broadening” the energy levels into bands containing many degrees of freedom. In this
case, the thermodynamic approach of Equal Spin Temperature (EST) theory must be used to de-
scribe the system.

EST theory presumes that the proton Zeeman system (described above) is characterized by a
temperature T, and that the spin-spin Hamiltonian between electrons is characterized by a second

Boltzmann distribution with temperature Tss [67]. If the radiating microwave energy is fixed, but the

Ok is not strictly true that the value of = in the Hamiltonian is the limiting tactor in the inducing of polarization in the target;
a mechanism known as spin diffusion is also involved in transporting the polarization to adjacent nuclei.
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Figure 2.15: Energy levels (expressed in a new set of basis kets) after application of microwave
radiation to the magnetized material. The transitions W+ or W~ enable forbidden transitions,
excluded from Figure 2.14, that simultaneously flip the spins of both the electron and proton. From
Ref. [67].
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Figure 2.16: Distribution of energy levels in terms of population fraction n. In thermal equilibrium
(a), the average energy separation between the bands is v, = vgsp, and a single spin temperature
Ts describes the whole system. If the energy separation is slightly perturbed (that is, the separation
is v = v, — &), then two characteristic temperatures, Tss and Tz, describe the system. If v < v,,
(b) then Tss > 0. If v > 1, () then Tss become negative, corresponding to opposite polarization.
From Ref. [67].

“bands” corresponding to the polarization states (depicted in Figure 2.16) contain many (closely
separated) energy levels, then the electron system absorbs an energy h(v + 4), with v defined in
Eq. 2.13, with the energy hé absorbed by the spin-spin thermodynamic system.

The Zeeman and spin-spin temperatures of the electron system move toward thermodynamic
equilibrium Tz = Tss = T, (lattice temperature). In the process of achieving this equilibrium,
energy is emitted or absorbed by the spin-spin system, and the proton Zeeman system (with its
own temperature, T, ) either emits or absorbs energy uwun (i.e. the proton Larmor frequency).
The proton Zeeman system “cools” through an electron double-spin flip and proton single-spin flip
[68]. "' The polarization then stabilizes at thermal equilibrium, with a polarization given by Eq. 2.7,

with the substitution Ts — Tz,..

1Note that cooling can occur through emission or absorption of energy, the latter seeming contrary to intuition. For spin-%
systems, however, canonical absolute temperatures can be positive or negative, with negative temperatures corresponding
to spins in the negative direction. Systems with negative temperatures must absorb energy in order to cool [68].
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2.4.5 'SNH; as a Polarized Target

15NH; was selected for use as a polarized target due to several specific properties. Free protons
(*H) are required for ep scattering experiments, and these protons must be in a polarizable (spin
1) configuration. Pure H, is (unfortunately) not a viable option, because the bonding of the two
hydrogen atoms results in a non-polarizable spin-1 configuration. 2 Traditionally, butanol and
ammonia have been used for polarized targets. Of these two targets, ammonia is much better at
retaining its polarization under prolonged irradiation [69].

Of course, under DNP, the nitrogen nuclei are not immune to the effects of polarization, either,
though the net polarization of the nitrogen is much smaller than that of the free protons. °N
is selected in lieu of the more common isotope, 4N, because, viewed in the shell model, !°N
has a single (spin-;-) unpaired neutron which carries all the polarization, whereas, 4N (a spin-1
nucleus), contains ah unpaired proton and neutron, which can both be polarized [70]. EST theory
predicts well the relation between the polarizations of 15N and 'H in NH;; this empirical relation
has been well tested in past target studies [71]. Figure 2.17 shows the polarization of °N as
a function of proton polarization in the SMC frozen NH; target compared to the full calculation
of EST theory. Note that, at low polarizations, the relation is fairly linear. At high polarizations,
nonlinear saturation effects begin decreasing the efficiency of the proton polarization against that

of the nitrogen. Asymmetry corrections due to °N polarization are dealt with later, in Section 6.3.

2.4.6 Polarized Target System

The EG1 target system consists of the following list of elements:
1. Superconducting Helmholtz magnet (to generate the 5 T magnetic field)
2. Refigerator and cryostat unit (to maintain the necessary 1.5 K temperature)
3. Microwave system (for inducing the RF double spin-flip transitions)

4. Continuous wave NMR system (for online monitoring of the polarization)

2As noted in Section 1.5, HERMES utilized a polarized hydrogen target, but only in a gaseous form, which greatly limited
the event fiux.
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Figure 2.17: Polarization of *N as a function of proton polarization in frozen NH3 during the SMC
experiment. Actual data (obtained using two methods) are compared to the prediction of EST
theory. From Ref. [71].

5. Target insert (contains the actual target material, to be changed for different runs)

The target magnet is positioned at the center of the torus magnet inside the CLAS detector (Section
2.5). It surrounds the target, producing a magnetic field coaxial with the beam line. The field is
uniform (accurate within 10~4) over a central cylindrical volume 20 mm in diameter and 20 mm
long [65]. This uniformity is necessary to ensure a narrow ESR linewidth. The axial diameter of the
magnet allows for unimpeded forward scattering within 50° of the beam axis. Coil superconductivity
is maintained by an external liquid helium refrigerator.

The 1.5 K temperature necessary to maintain the polarization was achieved by pumping liquid
helium at a rate of 3300 m3/hr through a diagonally mounted cryostat system (Figure 2.18). The
target chamber is injected with LHe from the cryostat. Evaporation occurs through hexagonal vents
around the front end of the target. Temperature was monitored by a 3*He pressure bulb inside the
evaporation chamber. Figure 2.19 shows the LHe reservoir as the target assembly is inserted into
the Helmholtz cylinder.

The RF is supplied by an Extended Interaction Oscillator (EIO) that delivers about 1 W of mi-
crowave power with a linewidth of about 10 MHz. The 140 GHz radiation, adjustable over a band-
width of 2 GHz (by varying the length of a remotely controlled resonant cavity), is generated to

match the precise frequency requirements required by Eq. 2.13. The radiation is emitted from a
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Figure 2.18: The polarized target cryostat assembly, shown in its configuration with the target
chamber (banjo), insert, and magnet coil. From Ref. [65].

Figure 2.19: The target assembly being inserted into the superconducting Helmholtz magnet. The
LHe reservoir is clearly visible in the foreground.
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Figure 2.20: Screenshot of the online NMR polarization monitor for an NH3 target. The area under
the curve gives the total polarization, measured as —0.736 in this case.

small metal “horn” (visible later in Figure 2.25) to continuously irradiate the magnetized target vol-
ume.

The NMR system, used for online monitoring of the ammonia (NH3 and ND3) polarizations, con-
sists of a coil wrapped around the polarized target material as part of a resonant RLC circuit. A
varying RF frequency centered about 212.6 MHz (the proton Larmor frequency) is swept through
the circuit. '3 In a plot of voltage vs. frequency, the polarization of the sample is proportional to the
area under the curve. Figure 2.20 shows a screenshot of the online NMR monitor plot for the NH;
target.

Unfortunately, the proportionality constant used to calculate the polarization is difficult to deter-
mine accurately, due to thermal drifts in the NMR circuit [65], and is known to be less accurate

at lower polarizations. Also, the polarization at the center of the target, where scattering actually

occurs (and degradation due to radiation may be greater), may be different than that measured by

13For ND3, the Larmor frequency is 32.6 MHz. NMR analysis for the deuteron RF peak is also different, because two
peaks are involved. See Ref. [65] for details.
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Figure 2.21: Target insert strip showing the 4 target cells used for the EG1 targets: NDs, *2C, NH;
and empty, from the top down. Note the NMR coils that surround the ND3 and NHj cells. Only the
carbon target is full at the time of this photograph.

the NMR. Thus, although NMR is useful as an online monitor, actual analysis of polarizations relies
on the ep elastic peak ratio method, described in detail in Section 6.2.

The target insert is a thin aluminum strip (25 uzm thick at the target cell entrance) consisting of
(nominally) 1-cm thick cylindrical cells, shown in Figure 2.21. These cells contain the target mate-
rial. Frozen NH; and ND3; beads are placed in two of the cells (surrounded by NMR coils), and a
2.3-mm thick slab of amorphous carbon (for background subtraction) is placed in a third cell. The
fourth cell is left empty, for additional background subtraction purposes. This strip is connected to a
metal vacuum flange (with necessary feedthroughs) and a brass heat sink to maintain a cryogenic
vacuum environment for the target (Figure 2.22). A motor shaft allows vertical motion of the target

sirip, so that the target cells can be alternated between experimental runs.
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Figure 2.22: The target stick connected to a vacuum flange (with feedthroughs) for vertical insertion
into the EG1 target system.



109

Figure 2.23: The target stick, alf cells filled, immersed in a liquid nitrogen bath. The NH; cell is
shown.

The filled targets must remain immersed in liquid nitrogen when not in use (Figure 2.23), to
maintain the presence of the paramagnetic free radicals. A 50 um thick Kapton foil cover (Figure
2.24) is used to keep the material in each cell in place. * The filled target stick is inserted into
a (nominally) 2.0 cm diameter (127 um thick) Kapton “minicup” within a cylindrical vacuum-sealed
“banjo” with thin (71 pm) aluminum exit windows (Figure 2.25). The minicup is filled with liquid
helium during the experimental run.

A second (*°N) target stick, nearly identical to the first, except that it contained only two cells,
was used for two shorter run sets during the experiment. One cell contained a 2.2 mm thick amor-
phous carbon slab, while the other was filled with isotopically enriched (98%) solid 1°N. This target
was used for modeling the relation between '°N and 1?C so that amorphous carbon data (collected
throughout the experiment) could be used for accurate background subtraction.

The entire target assembly was mounted together (Figure 2.26) and inserted into the target
magnet and CLAS detector, where the polarization process in the 5 T magnetic field could begin.
More detailed descriptions of all the EG1 target components can be found in Ref. [65]. A much

longer and more detailed description of the target assembly, operation and performance can be

4Kapton is added to the empty target cell, as well.
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Figure 2.24: Kapton foil coverings used on the target cell. Kapton foil is used in nuclear physics
experiments due to its high resistance to radiation damage.

found in Ref. [32].

2.4.7 Modeling the Target for Background and Radiative Corrections

The measured vertex resolution of scatiered events in the EG1 experiment is good enough to
subtract scattering contributions from the vacuum windows, but not nearly good enough to separate
scattering events from the banjo windows, Kapton and aluminum cell windows, or minicup. Also,
scattering occurs from LHe in the minicup, as well as from the 1°N nuclei. Dilution factors must be
determined to remove the contributions from all these elemenits, leaving only the sums over proton
scattering events. This procedure is described in Chapter 5. Making these calculations requires a
precise model of the thicknesses and densities of the target through the beam path and through all
possible forward scattering angles.

Table 2.1 lists the densities and thicknesses of all materials in the target(s) within ~5 cm of the
target center. > Note that length of ammonia is only approximate, due to the unknown packing
fraction of frozen granules, which can “powder” and settle within the target cell. The 1°N target

length is also not exactly known, since the amount of frozen material is not necessarily constant.

The LHe (total cell) length is also uncertain from the target dimensions, due to possible warping of

5This includes all target materials inside of the wide event vertex cut that will be made later.
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Figure 2.25: An internal view of the banjo, showing the (orange) Kapton cylindrical LHe minicup
into which the target stick is inserted. Note the metal “horn”, the source of microwave emission, on
the left side.
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Figure 2.26: The assembled EG1 polarized target, viewed downstream, prior to insertion into CLAS.
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the Kapton minicup. These quantities are calculated from event data in a more rigorous manner

in Chapter 5. Of course, there is a limit on the accuracy of length and density measurements,

particularly the latter, as densities can vary with temperature. These inaccuracies are dealt with in

the calculation of target model systematic errors (Section 7.2.1).

Table 2.1: Densities and lengths of materials in the EG1 target. Values are from Ref. [72] and Ref.
[73]. Numbers in square brackets [ ] pertain only to the **N target stick.

Material Density (g/cm3) | Density {(mol/cm?) Total thickness(cm)
ammonia (NH3) 0.917 0.0508 ~0.6
ammonia (ND3) 1.056 0.0502 ~0.6
carbon (12C) 217 0.180 0.23{0.22]
nitrogen-15 (1°N) 1.1 0.073 ~0.5
liquid helium (LHe) 0.145 0.0362 ~1.9 minus solid target material
Kapton (K) 1.42 0.00371 0.0304(0.0384 after 27997)[0.0354]
aluminum (Al) 2.69 0.0997 0.0167

Material Present in target Comment
ammonia (NH;3) NH;3 length dependent on packing fraction
ammonia (ND3) NDj length dependent on packing fraction
carbon (**C) carbon carbon in °N target stick
is 100 pm thinner
nitrogen-15 (*°N) nitrogen-15 length and density not well known
liquid helium (LHe) all length dependent on other thicknesses
& total minicup length
Kapton (K) all extra 80um added after Run 27997;
extra 50um of Kapton on 15N target stick
aluminum (Al) all includes cell window and banjo windows

Note that a leak in the ND; target during a later run set necessitated the addition of extra

Kapton foil. The Kapton and target lengths also vary (slightly) between the two (ammonia and 1°N)

target sticks. The NH3; and NDs lengths are also subject to change when the target material is

refilled during the experiment. Table 2.2 contains some other quantities related to the densities and

lengths that are useful later in the analysis.
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Table 2.2: Some other useful quantities for calculating target parameters. Numbers in square
brackets [ ] pertain to the 15N target stick.

Quantity Value Description

pclc 0.498 g/cm? = 0.0415 mol/cm? mass thickness of carbon
[0.476 g/cm? = 0.0397 mol/icm?)
orcli 0.0432 g/cm?(0.055 g/cm? after 27997) mass thickness of Kapton

[0.0503 g/cm?]
patbal 0.045 g/cm? mass thickness of aluminum
prér | 0.0882 glcm?(0.0996 g/cm? after 27997) | mass thickness of Al + K foils
[0.0952 glcm?]
f 0.177(0.200 after 27997)[0.235] prlr/pclc

2.5 The CLAS Detector

The CEBAF Large Acceptance Spectrometer (or CLAS) detector is a large-acceptance detector ca-
pable of reconstructing multipie particle (exclusive) events, as well as providing a large acceptance
(8° < 8 < 49° in 6 azimuthal sectors) for the detection of inclusive electrons and other particles.
The detector uses a toroidal magnetic field (Section 2.5.1) for momentum determination. A 3-layer
drift-chamber (DC) (Section 2.5.2) is used to reconstruct charged particle tracks, with time-of-flight
gauged by an extensive scintillation counter (SC) system (Section 2.5.4). Cherenkov counters
(CC) (Section 2.5.3) aid in particle identification at forward angles, while electromagnetic calorime-
ters (EC) (Section 2.5.5) provide identification of neutral parficles, additional timing information, and
additional particle identification parameters [30]. '® Figure 2.27 shows a cutaway of the detector
along the beam line. Figure 2.28 shows a cutaway perpendicular to the beam axis, showing the
azimuthal 6-sector symmetry of the detector. In this section, a brief explanation of the functionality,

capabilities and calibration of each of these detector components is given.

2.5.1 Torus Magnet

A toroidal superconducting magnet, approximately 5 m in length and diameter (Figure 2.29) is used
to generate a B-field along the ¢-direction [30}. The torus can generate up to a 2.5 T-m field

6 additional elements are also present, including a tagger for the generation of photon beams, and a large angte calorime-
ter (LAC) for the identification of wide-angle-scattered exclusive channels, but these are not utilized in this analysis, and
hence not discussed here.
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Figure 2.27: Cutaway diagram of the CLAS detector, showing components used in this analysis.
A reconstructed ep scattering event is superimposed; the top track shows an inbending electron,
radiating a photon in the layer 2 drift chamber, and creating a particle shower in the calorimeter.
The bottom track shows the correlating proton, which bends in the opposite direction in the torus
field and creates little to no calorimeter shower. From Ref. [30].
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Figure 2.28: Cutaway diagram of the CLAS detector, perpendicular to the beam line. All detector
components mentioned in this section are constructed in this six-fold symmetry. From Ref. [30].

integral in the forward direction, 7 where the field is at its maximum intensity, to better differentiate
the spectrum of high-momentum particles scattering at forward angles. Torus currents of 1500 A
(at low beam energies) or 2250 A (at high beam energies) were employed in this experiment. The
torus current was periodically reversed; negatively charged forward particle (i.e. electron) paths
were bent toward the center for + torus current, or inbending data, while electrons were bent away
from the center for — torus current, or outbending data. The former allows for better spatial detector
acceptance at large scattering angles (high 6), while the latter allows for better acceptance at small
scattering angles (low 6). Employing both polarities provides for high-precision measurements over
a larger momentum range than would be possible with only a single torus current direction. The
central, field-free region allows for the operation of a polarized target (Section 2.4). Coils of Nb
Ti/Cu wire wrap around each of the six magnet spools. Superconductivity is maintained by cooling
the coils to 4.5 K with LHe in cooling tubes at the edge of the wire windings.

The purpose of the torus magnet is to maintain a magnetic field, reasonably homogeneous in

7This value corresponds to the maximum achievable torus current of 3860 A.
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Figure 2.29: View of the torus magnet frame, showing the relative placements of the Region 2 and
3 drift chambers. The Region 1 drift chambers (not shown) are placed in the central (field-free)
region of the torus. Superconducting wires are wrapped around the edges of the 6 kidney-shaped
frames to generate an azimuthally-directed field. From Ref. [30].

¢, for the identification of momenta based on particle path curvature. While a rudimentary map
of the magnetic field exists [30], a thorough map of the CLAS torus field was never successfully
completed. Calibration of the momenta using well-understood events (typically elastic ep events) is

therefore necessary (see Section 4.2.8).

2.5.2 Drift Chambers

The CLAS drift chambers consist of three “regions” (Figure 2.29), each of which contain two “su-
periayers” of 6 layers of multiple hexagonal cells'® (Figure 2.30). The DC chambers in each sector
are installed between and around the frames of the torus magnet; one of the DC layers for a sector,
prior to installation, is shown in Figure 2.31.

Each individual hexagonal cell in the drift chamber contains a voitage wire (140 um Au-plated
Al) and detection wire (20 pm diameter Au-plated W) surrounded by a 90%/10% Ar/CO, mixture

[74]. This mixture of gas is optimized to produce a high ionization gain of induced charge when

8The exception is Superlayer 1, which contains only 4 layers.
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Figure 2.30: Diagram of a particle passing through the cells of the outer layer drift chamber, giv-
ing an initial estimate of the path of the particle through hit-based tracking. Each hexagonal cell
contains a perpendicular sensor wire in its center. From Ref. [74].
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Figure 2.31: Photograph of one sector of an outer layer drift chamber section prior to installation in
the CLAS detector. From the JLab JPIX picture exchange.

energetic particles pass through the cell. This induced charge drifts toward the sense wire and
produces a current, thus providing information that a particle has passed through the cell. This in-
formation provides initial hit-based tracking information about the particle trajectory, reconstructing
the actual particle momenta within an accuracy of 3-5%.

Wires are strung perpendicular to the magnetic field in one of the two superlayers of each region,
and at a 6° angle around the cell radius in the other superlayer, to provide ¢-direction information.
In total, about 130,000 wires are strung through the cells of the drift chambers. Cell material was
minimized, so that only ~1% of a radiation length would (on average) be encountered by a particle,
to lower the incidence of multiple scattering events. There are 1296, 2262, and 2304 individual
hexagonal detection cells in each sector of the Region 1, 2, and 3 drift chambers, respectively. The
sizes of the individual cells range from 15 mm in Region 1 to 45 mm in Region 3 [74].

Charge induced by an ionized particle drifts toward the sensor cell at a relatively slow velocity of
around 4 cm/us. More accurate path information can be provided once the total time-of-flight of the
particle is determined by the scintillation counters (Section 2.5.4). Then, a reference time can be
used to indicate when the particle passes through each cell, and this can be compared to the TDC

time of the signal generated in the sense wire. If the relation between drift time and distance within
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individual hexagonal cells is known, the distance of closest approach (DOCA) to the sensor wire
in each cell can be calculated, thus greatly improving the accuracy of the path through time-based
tracking (see Figure 2.32). The DOCA function is fit by a x? minimization of a polynomial function

to the observed drift times. For example [74], Region 3 is fit with the function

t \? t \?
z(t) = vot + 7 + & (2.14)
tma;t tmaz

where vy is the saturated drift velocity (at t=0), t,,,... is the maximum drift time (at the cell edge) and

7, &, p and ¢ are fit coefficients, determined by the minimization of

= |2(t) _2 Tpath|” (2.15)
O path

where z,.:n and 0,0, are the DOCA distance from the sense wire along the path and the error
on this quantity, respectively. Polynomial forms are used for Regions 1 and 2. '® A sample of the
parameterized DOCA vs. drift time is shown in Figure 2.33. The value |z(t) — zpan| is called the
residual of the fit; the magnitude of this value is used to evaluate the quality of the drift chamber
calibrations (see Figure 2.34). Time-based tracking is capable of increasing the precision of track
measurement to a certainty of <500um (for the largest cells; i.e. Region 3). The radius of curvature
in the magnetic field can then be used to determine the particle momentum to within a fraction of a

percent accuracy.

2.5.3 Cherenkov Counters

Once forward angle particles pass through the regions of the drift chamber, they enter the Cherenkov
counters (CC), which are used to aid in particle identification, particularly the separation of forward-
scattered electrons from inelastically produced pions. The Cherenkov counters are used to detect
electrons in all 6 sectors scattered at forward angles of up to ~45°. Each sector of detectors (Figure
2.35) contains a total of 18 symmeitrical mirrored chambers (segments), filled with perfluorobutane
(C4F10) gas. Individual segments are divided in half, with a photomuitiplier (PMT) tube on each half

1SRegion 2 requires an additional correction for the fact that the main torus fields causes perturbation of the electric
potential map; see Ref. [74].
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Figure 2.32: Cutaway view of a drift chamber, showing how path accuracy can be increased by
the calculation of the distance of closest approach (DOCA) through time-based tracking. From Ref.
[75).
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Figure 2.34: Typical residuals [z(t) — zpees| (in cm) after track-fitting for the Superlayer 5 (Region
3) drift chamber, for 5.7 GeV beam energy data in the EG1b data set. Colors show residuals for
each of the 6 sectors. Accuracies of ~500um = 0.05 cm (as shown here) are typical for the Region
3 DC. Regions 1 and 2 have smaller cell sizes, and, correspondingly, smaller residuals.
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Figure 2.35: A schematic drawing of the 18 symmetrical mirrored segments in one sector of the
CLAS Cherenov Counter. From Ref. [76].
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to detect Cherenkov radiation from particles passing through the gas.

High-energy scattered particles have velocities that approach the speed of light ¢ in a vacuum,
where the index of refraction n = 1. If a high energy particle enters a medium where n > 1, like
the aforementioned C4F,y gas (maintained at a positive pressure of 340 Pa), such that the particle
velocity 3 = v/c is given by

1

where n(f) is the index of refraction of light, as a function of of frequency f (that is, the speed
of the particle is greater than that of light in the medium), then a electromagnetic shock wave will
be produced. 2 The shock wave has a coherent wavefront, conical in shape, with axial angle 6

defined (in a thick medium) as [8]%!
1
Bn(f)

This Cherenkov light is reflected between a (forward) elliptical mirror and (rear) hyperbolic mirror,

cosfc = (2.17)

with the optics optimized to direct reflected light from (almost) any entry point to a parabolic refiect-
ing “cup”. The cup directs light into a photomultiplier (PMT) vacuum tube at the chamber edge (see
Figure 2.36). The PMT tubes convert the UV Cherenkov light into an ADC signal corresponding to
the number of photoelectrons. 22 The PMT tubes are magnetically shielded from the effects of the
torus field [76].

The Cherenkov counters exhibit an efficiency that falls off sharply near the PMTs and the outer
edges of the chamber, as well as along the center “ridge” in the case of an outbending (negative
current) torus field. This is partly due to the imperfect mirror optics and reflectivity, and partly due to
the residual effects of the torus field on the PMT. Cherenkov Counter efficiency is the limiting factor
in the acceptance of CLAS measurements. This is further explored and accounted for in detail in
Section 4.4.

The primary purpose of the Cherenkov counters is to distinguish light hadrons (primarily pions)
from electrons, by their Cherenkov response threshold. Electrons, practically massless, radiate

Cherenkov light at relatively low energies, while pions only reach a value of 3 sufficient to produce

20This is analogous o the effect of a “sonic boom™ for objects exceeding the speed of sound in air.

21Note that this relation holds exactly only for an infinitely thick medium. The real relation is somewhat more complex
(see, for example, Ref. [8]). For the Cherenkov counters in CLAS, however, Eq. 2.17 is a good approximation.

ZCalibration of this signal is performed by a singie fit function detailed in Ref. {76].
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Figure 2.36: Diagram showing the refiection of Cherenkov radiation toward a PMT in haif of a CC
segment. From Ref. [76].
Cherenkov light at p = 2.7 GeV or higher.

Naturally, this separation works best at fower momenta, where g differs the most between elec-
trons and the (considerably more massive) pions. More detail on the identification of particles by
their Cherenkov spectra is given in Section 3.4.1. A view of the CLAS Cherenkov counters can be

seen in Figure 2.37.

2.5.4 Scintillation Counters

The scintillation counters (SC) surround the CLAS detector around the full solid angle of the drift
chambers (DC). The scintillation counters are used to measure the time of flight (TOF) of scattered
particles int order to establish time-based tracking in the drift chambers, and set a baseline time
standard for event measurement. The SC system is composed of 48 paddles in each sector (see
Figure 2.38). Each paddle consists of a length of scintillation material capped with photomultiplier

tubes (PMTs) on either end. The scintillators are 15 or 22 cm wide?® bars of transparent material

that produces viclet (425 nm) light when its molecules are ionized by charged particles. Al foil is

BThe scintallators are 15 cm at forward angles, 22 cm at large angles, as per Figure 2.38.
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Figure 2.37: A view of the CLAS Cherenkov counter (CC), separated from the drift chambers (upper
right corner) for maintenance. From the JPIX JLab picture exchange.

wrapped around the scintillator to prevent loss of light, as it reflects internally toward the PMTs.
Light guides (twisted at the backward angles) are used to direct the signal to the PMT windows.
Cytindrical mu-metal tubes are used to shield the PMTs from the effects of the main torus magnet
[771.

There are 48 x 6 = 288 paddles, and a total of 288 x 2 = 576 PMTs in the SC. This necessitates
an extensive sequence of calibrations to make the SC detector work as a coherent unit. Calibrations

are performed in 3 stages:

1. ADC and TDC channels from each PMT are calibrated, so that a signal incident on a PMT at
time ¢ records a signal correlating to this exact time. These calibrations ignore the scintillator
entirely; they are performed by feeding electrical or luminous luminous LED signals directly
into the PMTs. First, a pedestal value P must be subtracted to provide for the “zero signal”
threshold of the ADC value A to get the true signal amplitude A’:

A=A-P (2.18)
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Figure 2.38: Diagram of the CLAS scintillation counter (SC) is one sector. The large red box
contains a whole paddle, while the smaller yellow boxes surround PMTs. Modified from Ref. [77].
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Figure 2.39: ADC channels in SC PMTs as read from electronic pulser trigger data, shown before
and after the addition of pedestals. CLAS detector components require the addition of pedestals to

define the ADC readout for a null signal.
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(see Figure 2.39). Then, input from a pulse generator is used to calibrate the TDC signal T

to the true signal time ¢ with a quadratic fit:
t=co+aT +cT? (2.19)

Then, laser light generated by photodiodes on each PMT is used to calibrate against the
dependence of the TDC signal on the ADC amplitude (a phenomenon known as time-walk).
This fit is considerably more complex [78]; the corrected time ¢,, is given by

tw =t — fu (%—) + fw (%) (2.20)

where T'h. is the TDC channel number corresponding to the leading pulse edge?* and

o (T < wo)

wor(l+w2) — 285 (2> wo)
0

fulz) = (2.21)

where wy, w; and w,, are fit constants (see Figure 2.40).

2. Once a consistent time and amplitude response is obtained from the individual PMTs, each
paddie, composed of 2 PMTs and a length of scintillator, must be calibrated so that it provides
a consistent TOF response from particle hits along any point of the scintillator length. Cosmic
rays can be used for these calibrations, as can actual scattering data. ° Light from ionization
requires finite times ¢z and ¢g to travel to the left and right PMTs, respectively. A hit at the
exact center of the paddie (i.e. the center of the hit distribution) should record a simultaneous

signal on both PMTs. To enforce this, it is necessary to add a left-right calibration offset [78]

0trr = (edger + edger)/vess (2.22)

to the TDC output (see Figure 2.41), where edge,,  is the coordinate distance from the central

point to the appropriate edge of the of the scintillator, and v is the effective velocity of light

24800 is the ADC channel corresponding to an MIP (minimum ionizing pariicle) response.
%5 Cosmic ray runs are the only way to ensure accurate calibration over the full detector acceptance.
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Figure 2.41: Left-right alignment plots for Sector 6, shown before and after calibration. The axes
represent paddie number vs. distance from the scintillator center, in cm.

along the scintillator toward the PMTs. The effective velocity is less than the speed of light
in the scintillator, due to oblique internal reflections of light within the scintillator. Effective
velocity is determined by using [78]

trr=to+ — (2.23)
Veys

where t, is the measured time of an event at the geometric scintillator center, and y is the
position along the scintillator. The value of v, is approximately 16 cm/ns, and in fact, this
value can be assumed with little reduction in timing resolution. 2

In addition, the ADC channels are calibrated for energy loss and attenuation (i.e. dispersion
of the light signal) along the scintillator. The attenuation is exponential; the fit to the ADC

channels (see Figure 2.42) is

Mor/r , _
P e MR po—y/A
L/R = 10 MeV € (2.24)

where E is particle energy deposited in the scintillator, M,;,z/10 MeV is a normalization

XThis is indeed the case for this analysis.
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In (AL/AR) vs. x,5ec 1id 13

Figure 2.42; Piot of the log of the ratio of ADC values vs. scintillator position (in cm) for Paddie 13,
Sector 1, after the attenuation length calibration of Eq. 2.24.

factor (determined in the fit), X is the fit attentuation length and y is again the hit position,
defined by

y= Ffzij‘(tL — R — Yoffset) (2.25)

where yonset 1S @nother fit variable. Note that due to the codependence of the variables, the
calibration steps for the paddle must be performed iteratively, with reasonable initializations

of the fit parameters [78].

3. When individual paddles are properly calibrated, the final step is to ensure that all the active
paddles in every sector act as a coherent, single detector, tracing the start time of an (approx-
imately zero-mass) electron scattered through any angle properly back to the vertex point.

Then, the TOF of slower, heavier particles, and hence their mass, can be calculated.
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Figure 2.43: RF bunch timing offsets, before and after calibration of the RF start time. The points
represent the reconstructed start time of electron events vs. the position in the RF bunch. A
polynomial offset function is fitted in segments to center the offset at zero.

First, the start time must be determined. As detailed in Section 2.2, the electron beam is
delivered to Hall-B in RF-pulsed bunches. The phase of these bunches is subject to periodic
changes. Event start timing is offset by a function of its phase within the RF signal. To adjust
the start time, a third-degree polynomial and an overall offset constant are fit as a function of
offset time within the pulse distribution?” (see Figure 2.43).

Finally, then paddle-to-paddle or counter-to-counter delay offsets c.2. are determined for each

paddle from a fit of scattered electron and/or pion data [78]:28
ot
tL/R =ty t '—;’_Ri + Cc2c (226)

Plots of reconstructed hadron mass before and after this calibration are shown in Figure 2.44.

27In event that the RF pulse information is unavailable, in fact a probiem for large sections of the EG1b run set, electron
TOF was used to normalize the start time of the heavier hadrons.
28This equation is slightly different than the one shown in Ref. [78], as unused calibration constants are omitted here.
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" M2 vs Strip , 0, Sector 5

Figure 2.44: TOF-reconstructed mass squared (in GeV?) vs. paddle number for sector 5 events,
before and after paddie-to-paddie delay calibrations. The wide band represents protons (M? =
0.879 GeV?) and the bottom band represents pions (M? = 0.019 GeV?). (Paddle 20 failed to
calibrate properly with the automated software (right plot), and required manual recalibration.)

Assuming these offsets are chosen properly, the time-of-flight z for any SC hit can be found as

t, +tr
2

TI= (2.27)

The time of flight not only establishes time-based tracking in the DC, it normalizes timing for the EC
and CC. Timing resolution within 0.2-0.3 ns can usually be achieved with proper calibration of the

SC constants.

2.5.5 Electromagnetic Calorimeters

After passing through the various (DC, CC, SC) detector components, forward-scattered particles
enter the outermost detector portion in CLAS, the electromagnetic calorimeters (EC). The EC ab-
sorbs energy from the scattered particles in 15 radiation lengths of lead, interleaved with scintillation
detectors that provide energy and timing information for the scattered particle.

The calorimeters in each sector are composed of 39 dual alternating layers of (2.2 mm thick)
Pb and (10 mm thick) scintillator, the lengths optimized for maximal energy resoclution and minimail
transverse light attentuation [79]. The calorimeter in a given sector is triangular in shape. The scin-

tillators are cut into 36 parallel strips in each layer. The scintillator direction alternates to provide
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Figure 2.45: Diagram of one sector of the CLAS electromagnetic calorimeter, showing the stacks

of scintillator strips aligned along 3 different orientations, alternating with lead sheets. Fiber light
guides send light from the scintillator planes to the PMTs. From Ref. [79].

spatial resolution along 3 orientations, labeled as U, V, and W (see Figure 2.45). Each orientation
thus has 36 + 3 = 13 Pb/scintillator layers. Light from the first 5 scintillators along a given orienta-
tion (ECi,) leads through light guides to one PMT, while light from the remaining 8 scintillators along
a given orientation (EC,y) leads to a second PMT. This arrangement is capped with steelffoam
plates. A diagram of this configuration is shown in Figure 2.46. Each “column” of 13 strips has its
own pair of PMTs, for a total of 13 x 3 x 36 = 216 PMTs in each sector [79].

incident charged particles in the EC (above a minimum energy threshold of ~0.5 GeV) pro-
duce either ionization reactions (in the case of incident hadrons) or showers of e*e~ pairs and
Bremsstrahlung photons (in the case of incident electrons or positrons). 2° lonizing tracks are the
easier case to localize; the hit location along the intersection of the U, V, and W orientations gives
the location of the particle. Showering events, which produce several signals over the scintillators in
each layer, require more sophisticated reconstruction. First, adjacent strips along each orientation

meeting a certain energy threshold are grouped, and peaks, in the form of a centroid and RMS of

2Neutrons and photons can also be detected in the EC, but this is of little relevance to inclusive analysis, and is not dealt
with in this thesis.
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Figure 2.46: Vertical cross section of one edge of the EC in one sector, showing lead (Pb) plates
and scintillators (SC), light guides (LG), fiber optic bundies for the inner and outer calorimeter
layers (FOBIN and FOBOU) and the inner plate (IP) of steel face sheets and foam core, needed for

structural support. From Ref. [79].

each group, are calculated. Then, the peaks above another threshold are matched for geometrical

compatibility in a three-iteration ioop over the U, V and W coordinates to produce a hit location.
Once the hit is identified, energy measurements for EC;,, ECoy, and the signal sum ECyy are

recorded for all PMTs in the peak. The total energy deposited in the EC is equal to the total particle

energy multiplied by a sampling fraction f;. The EC energy resolution is then

g ts
E X Jf——s (228)

where t; is the calorimeter thickness in radiation lengths. A fairly constant sampling fraction of

fs = 0.27 + 0.02 is characteristic at electron energies higher than 1.5 GeV, with lower (and less ac-
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Figure 2.47: Difference between EC and SC times (in ns) for reconstructed electron events in sector
4, after EC timing calibrations.

curate) sampling fractions for lower energies [79]. Thus, to translate EC energies to actual particle
energies, the EC energies must be divided by 0.27.

Much like the TOF (SC) detectors, the scintiltators and PMTs in the EC require calibrations. As
for the SC, PMTs require internal calibrations (for ADC pedestals), as well as corrections due to the
scintillator properties (i.e. exponential attentuation). Gain matching is also required, such that the
sum of channel energies totals E x f,. 3¢ After the experimental run, during pre-analysis, the EC
timing signal is calibrated to the SC signal, by using a 5-parameter model fo minimize the average
difference between the SC and EC timing. A sample plot of the overall resulting time resoiution is
shown in Figure 2.47.

The main purpose of the EC in the EG1b experiment is to help aid in particle identification.
Due to the ete~ showers produced by incident electrons at high energies, the EC is most effec-
tive at discriminating between electrons and hadrons with higher momenta (unlike the CC, which
discriminates most efficiently between low-momentum particles). The use of the EC in particle
identification is dealt with in detail in Section 3.4.2. The secondary purpose of the EC is to supply

additional timing information to aid in event reconstruction (see Section 2.6.2).

30This is the ADC analogy to paddle-to-paddle calibration of TDC values described in Section 2.5.4.
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Figure 2.48: A photograph of the CLAS detector, partially assembled. The spherical drift chambers
(DC) are in the center. The foil-wrapped, hexagonal scintillation counters (SC) surround the DC on
all sides when enclosed. On the far right, gas feedthroughs into the Cherenkov counters (CC) and
PMT feedthroughs into the electromagnetic calorimeters (EC) can be seen.

2.6 Data Collection

The individual CLAS components, shown together in Figure 2.48, must be made to operate together
during the data collection process. A brief description of the detector electronics, data acquision
(DAQ) system, and simple event builder (SEB) used for event reconstruction follows, along with a
brief summary of the EG1b data set. Again, the goal is not to provide a complete blueprint of the
data collection and event reconstruction procedure, but merely to provide an outline and direction

to relevant references regarding the hardware and software methods.
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2.6.1 Data Acquisition

All analog signals from the CLAS detector are digitized by FASTBUS and VME modules in 24
crates. CLAS has two different trigger levels that can be used as conditions for event recording.
For this experiment, Level 1 triggers, which require minimum thresholds in both the inner layer EC
and in the CC [2] were employed. All PMT signals (i.e. SC, EC, and CC) within 90 ns of the trigger
are processed, as well as drift chamber TDC signals [30]. The trigger supervisor (TS) electronics
board then takes the Level 1 trigger inputs and generates all signals, busy gates and resets required
to generate event parameters. These are then fed into the data aquisition, or DAQ system.

The CLAS DAQ system was designed to handle event rates of up to 2 kHz and data rates of 25
MB/s [30]. 3' CLAS data flow is shown in Figure 2.48, and is described in this brief outline:

1. Digital output from the 24 crates is read into 24 Readout Controllers (ROCs), then through

fast ethernet lines into the central DAQ.

2. The Event Builder (EB) software assembles the digital signals into complete particle events.

Each event is labeled with a number and the trigger bits (see Section 3.6.2).

3. Assembled event data is passed through shared online memory managed by the Event Trans-
port (ET) system, so that online reconstruction and monitoring can take place. ET1 manages
the memory, sending data to ET2 for online monitoring, and ET3 for online reconstruction and

analysis (see Figure 2.50).

4. ET1 sends data to the Event Recorder (ER), which in turn temporarily stores the data on local
RAID (Redundant Arrays of Inexpensive Disks) disks.

5. Data is transferred (in parallel) to be written on magnetic tapes in a remote recording and

retrieval silo. The data can then be retrieved as needed for analysis.

Data collection is managed by CODA (CEBAF Online Data Acquisition) software [80], which
provides the configuration of the DAQ components outlined above. The CODA software writes the

data separated into 2 GB file blocks. Typically, 15-30 of these file blocks constitutes a complete

3*These figures correspond to 2000-01, when these data were taken. The DAQ has received substantial upgrades since
that time.
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Figure 2.49: A flowchart showing data transfer in the CLAS DAQ system. See the text for details.
From Ref. [30].
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Figure 2.50: A screenshot of online event reconstruction at 1.7 GeV beam energy during the EG1
experiment. The left plot shows total reconstructed event counts in terms of missing mass W (in
GeV). The right plot shows the raw double-spin asymmetry (Eq. 1.209). In both cases, the elastic
peak (W = 0.938 GeV} and the A-resonance (W = 1.23 GeV) are clearly visible. The absolute sign
of the asymmetry is inverted due to a negative beam-target polarization product. From Ref. [63].
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data run. There were approximately 2000 runs in the EG1 data set, meaning at least 40 terabytes
of data were written to the silo data tapes. Because this is an unwieldy quantity of data for analysis,

several stages of data compression were employed.

2.6.2 The Simple Event Builder (SEB)

The simple event builder (SEB) is used during a process known as “cooking” to convert the raw
TDC and ADC channel data into kinematic and particle identification data by incorporating geo-
metric parameters and calibration constants. Calibration and mapping constants are read from the
CalDB (calibration database). The CalDB is a MySQL database with a user interface that contains
all ADC and TDC offsets and corrections, geometric constants, status flags and run information for
all Hall-B experiments [81].

Once particle track momentum, geometry and crucial EC and CC information has been estab-
lished, the superfiuous digital channel data can be excluded from the new, compressed files. The
RECSIS (Reconstruction and Analysis) package uses a Tcl initialization file to instruct the SEB to
produce smaller “cooked” data files from the “raw” data files, writing data only into specified banks
to minimize the required disk space [82].

The SEB works by matching tracks/hits in the CLAS coordinate system [83], which is defined
geometrically in terms of z (horizontally), y (vertically) and z (along the beam axis) for the DC, EC,
and SC, and along polar coordinates ¢ and ¢ for the CC. First, the geometric DC cell tracks for each
particle are assumed to be master tracks, then hits in the CC, SC and EC (a;) are matched to the

track in the detector plane (a,;) by the minimizing

2
2 _ a; — Gy
x° = E p (2.29)

Neutral particles, of course, have no DC track, so straight lines from their EC hit points traced to the
target vertex (at z = —55.1 cm) are used as the master tracks. This process is known as hit-based
tracking.

The SEB then cycles through particles in the event to search for a single trigger electron®? as

32That is, it looks for an electron unpaired (by momentum conservation) with a positron, as that would indicate a ete™
pair production, not a scattered electron.
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the trigger particle, requiring that it has a negative charge and produces an EC shower. If more
than one electron candidate is found, the one with the highest momentum is selected. Tracing this
particle back to the vertex along its geometric path (assuming v = ¢) determines the trigger start
time. The time-of-flight of other particles can then be determined relative to the start time using SC
TDC values. EC TDC values are used if SC values are not available for the particle. The mass m

of any charged particle in the event can then be determined from the relation

£ ¢ + m?2
tsc — tstann £ 6 = P;"‘ = PZ“'1/”2 p2m (2.30)

where tgc and tsan are the particle SC time and trigger start time, £pan is the particle path length

(determined by hit-based tracking), c is the speed of light, p is the particle momentum, and g = v/c.
The uncertainty § is the inherent Gaussian detector error in determining the TOF; it is usually in
the neighborhood of a few to several hundred picoseconds after TOF calibration. A (preliminary)
particle type ID can then be assigned to each particle based on its paosition in the TOF spectrum
(see Figure 2.51). This is known as time-based tracking, and it provides the minimal present criteria

for an event to be considered for further analysis.

2.6.3 The EG1b Data Set: Preparation for Analysis

The EG1b experiment collected electron data at 4 approximate beam energies (1.6, 2.5, 4.2, and
5.7 GeV). In reality, beam energies could not be kept at precisely these values for the whole 7 month
EG1b run, so several different beam energies (1.606, 1.723, 2.286, 2.561, 4.238, 5.615, 5.725
and 5.743 GeV) were used, with two possible (inbending and outbending) main torus currents.
Calibration constants were determined for a total of 12 different data sets (or brackets) for each
combination of beam energy and torus current. CLAS runs 25488-28570 comprise the EG1b data
set. Kinematic coverage of the EG1 data for the 4 nominal beam energies is shown in Figure 2.52.
Comparing to Figure 1.13, one can indeed see that the new data provides coverage in the low z
and Q2 region.

Each bracket contains runs using each of the available targets on the main insert: NHz, NDj,



141

10600 —

Figure 2.51: TOF mass (in GeV) of secondary (non-trigger) particles for an EG1b data run, shown
after TOF calibration. Mass is given in GeV. The pion and proton peaks can clearly be seen at 140
and 938 MeV. Much smaller kaon and deuteron peaks can also be resolved at 494 and 1876 MeV.
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Figure 2.52: Kinematic coverage of data (by energy) in terms of Q2 and z in the EG1b data set. This
plot was constructed by analysis of the events of an inbending and outbending run at each of the 4
energies. The solid and dotted lines mark missing mass W= 1.08 GeV and 2.0 GeV, respectively.
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12C, and empty (LHe and windows only). Shorter, special run sets were taken with the 15N target
insert, as well. In addition to these production runs, numerous other calibration and test runs were
made, including runs for DAQ tests, Meller runs, cosmic ray calibration, TDC calibration, laser
calibrations and pedestal calibrations [84]. These runs were separated from the production runs.
After calibrations were completed as outlined in Section 2.5, quality checks of the calibration of
each data set were made. The RECSIS code was applied to the whole run set, first for only the first
file in each data set, a procedure referred to as pass0 cooking, to test overall TOF quality, EC timing
quality, and residuals from DC calibrations. Necessary adjustments to subsets of runs (sometimes
required for a change in RF offset, for example) were then made. Figure 2.53 shows mean electron
RF timing offsets after pass0 cooking for the 2.286 GeV data. Assuming the calibration quality of
the run set is acceptable, then, pass1 cooking is done, processing all production data into time-
based tracking event data for physics analysis. Analysis of these “cooked” data is the subject of the

remainder of this thesis.

2.7 Structure function and asymmetry models

Section 1.4 indicated that quantitative models parametrizing the contributions from physical quan-
tities are required to extract structure functions from the data. This section provides a brief de-
scription of the models package (designed by S. Kuhn et al.} used to evaluate contributions from
unpolarized structure functions and virtual photon asymmetries. The 'models’ are parametrized by
FORTRAN code originally inciuded in the RCSLACPOL code used at SLAC, modified for the lower

beam energies found at JLab, especially in the resonance region.

2.7.1 Model of unpolarized structure functions F? and R?

The F; and F;, structure functions for the proton have long been well-parametrized by data in the
DIS region. The ratio of longitudinal to transverse cross-sections for unpolarized scattering, R (Eq.
1.65), isrelated to F; and Fi by Eq. 1.79. The fit for R uses JLab Hali-C High Momentum Spectrom-

eter (HMS) measurements of L/T separated virtual photoabsorption cross-sections [85] combined
with an oider SLAC parametrization of DIS world data [86]. Specifically, Hall-C measurements of
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the reduced cross-section [87]

1 do

= fm = O'T(Wz, Qz) + GO'L(WZ, Qz) (231)

Or

were used, where the virtual photon flux T is given by

_ aE(W? - M?)
L= GrPQeMEQ - o (2.32)

Values of o1 and or were extracted from o, using the older DIS fit to R. These extracted data
were then fit independently, and the newly determined R value was used to iteratively extract new
values of o1 and o until convergence was reached. With R known, fits to the fofal unpolarized
cross-sections, together with Eq. 1.79, were used to extract F; [87]. Values of F} are known to a
precision of better than 3%; RP? errors are accurate to approximately 3% over the kinematic range
covered by EG1b.

The total cross-section is fit by contributions from resonant production (described by threshold-
dependent Breit-Wigner forms and Q?-dependent amplitudes) superimposed on a smooth non-
resonant background. Data from JLab and SLAC are used for the resonance and DIS regions,
while DA®HNE and other older photoproduction data constrain the Q2 — 0 limit. Exact details of
the fit equations, data sets, and a full description of the fit procedure by E. Christy and P. Bosted
can be found in Ref. [87]. Plots of the unpolarized structure function models of F7 and RP for
various Q? bins are shown in Figures 2.54 and 2.55. In this thesis, the F; model provides the basic
unpolarized ratio for the extraction of g; and g, from virtual photon asymmetries, while R is used

exclusively for calculation of the depolarization factor D (Eq. 1.19).

2.7.2 Model of virtual photon asymmetries A7 and A}

Fits for modeling the virtual photon asymmetries A; and A- utilized all the pre-EG1b data described
in Section 1.5, i.e. E80, E130, EMC, SMC, E143, HERMES, E155 and EG1a for 4, and ¢,; and

E155x for A; and g2. 3 The A; model was generally used only for comparison and general

3ASS data was not yet included in the model fit at the time of the writing of this thesis.
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Figure 2.54: Model values of F; [87] for the proton used to extract the g; and g2 structure functions
in this thesis, shown in terms of missing mass W. Each curve corresponds to a different Q2 bin.
The highest Q? value shown in the top plot is the same as the lowest Q2 value shown in the bottom

plot.
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Figure 2.55: Model values of R = o, /g [87] for the proton used to extract the g, and g structure
functions in this thesis, shown in terms of missing mass W. Each curve represents a different Q?
bin. The highest Q2 value shown in the top plot is the same as the lowest Q? value shown in the
bottom plot.
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weighting between target polarizations, while the 4> model was essential for extracting the A,
asymmetry. In fact, the A, model incurs the single largest systematic error on the extraction of A4,;
see Section 8.1.1.

The parametrization by N. Bianchi [89] uses Regge theory to constrain the A, fit at Q% = 0,

describing high-energy cross-sections as

1 3
0“2— — 0‘5 ~ sao_l

(2.33)

(with s defined in Section 1.1.3) and
ag=J —a'm? (2.34)

is given in terms of a spin J and mass m; of an exchanged meson, assumed to be the a;(1260)
or f1(1285) for the isovector and isoscalar contributions to the cross-section, respectively [89], and
o' ~ 0.85. A global fit in terms of W was applied using this general form at the real photon point.
The parametrization in the resonance region uses an extrapotation from the DIS fit to the world
data, with resonance data added as a separately parametrized contribution, fit with a total of 9
parameters.

Very little data exists to parametrize A,, but some constraints can be applied to develop a
rudimentary model of this quantity. The first constraint, which can be derived from Eqgs. 1.214,

1.220 and 1.219, is the Soffer bound [90]

Ax(z, @) < | 2 Rz, @) (235)

The Wandzura-Wilczek relation (Eq. 1.202) and Burkhardt-Cottingham Sum Rule (Eq. 1.204) were

used as further constraints to the model, although it is not yet known at this point whether they hold
exactly. 3 The model also makes the assumption that all higher twist effects are contributed by the
resonance region, with a smooth transition to the DIS region,3® where A, — 0 in the scaling region

[90]. Model values of As used in this thesis are shown in Figure 2.56.

341n fact, we know from RSS data that it is very unlikely at least one these rules holds exactly, but RSS was not incorporated
into the described version of the model, and, in any case, these rules serve as a good first-order approximation.
Bnot necessarily true, but compatible with a fit to E155x data
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Figure 2.56: Model values of A, [90] for the proton used to extract the g; and g- structure functions
in this thesis, shown in terms of missing mass W. Each curve represents a different Q2 bin. The
highest Q? value shown in the top plot is the same as the lowest Q2 value shown in the bottom plot.
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2.7.3 Model for o, /0,4

Derivations of the dilution factor in the elastic region rely partially upon the assumption that electron
scattering cross-sections of the various target materials are proportional to the number of n-p pairs
in the nucleus. Neglecting the small nuclear EMC effect (see Section 2.8), this is generally a valid
assumption. However, when using 2C to model the 5N (for background subtraction), we must
account for the effects of the unpaired neutron in '°N. This requires knowledge of the ratio of the
neutron cross-section a,, to that of the deuteron o4. For inelastic scattering, Equation 1.75 gives,

for the neutron (n) or proton (p),

. 0 M 6
I(n,p) X 2sin’® (5) Fin,p) + —;0082 (5) Fo(n,p) (2.36)

in the inelastic region (W > 1.07 GeV). The Rosenbluth formula (Eq. 1.49) gives, for elastic scat-

tering,

Gy + TG 9 0
(n,p) M(n,p} | 2 2 . 2
Onp X T cos (5) + 27Gy(n,p) SIN (5) (2.37)

In both cases, the proportionality constants for the proton and neutron are equal. Neglecting Fermi

smearing in the deuteron, we assume

In __In (2.38)

04 On +0p

For elastic scattering events, values of Gy and G'g for the neutron and proton are derived from fits
to the world elastic scattering data [14]. For inelastic scattering, the F; and F> models explained
in the previous section are used for the proton. The structure function F; for the deuteron is fit to
the world data in a similar method as described in the previous section, with F; for the neutron in
the DIS region extracted using a specific free nucleon fit form, also developed by E. Christy and P.
Bosted as detailed in Ref. [88].

If we use Eq. 1.79 to rewrite Eq. 2.36 as

} /] M 2z ¢
O(n,p) X [2 sin? (5) - = cos’ (5) (Rin,py — 1)J Fi(n.p) (2.39)
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and make the assumption that the longitudinal to transverse virtual cross-section ratio is approxi-
mately equal for all nucleons, that is

Rp) = Rn) (2.40)

then we can see that its contribution to the cross-section ratio is negligible,3¢ so that

on . Fiwm

Iy T 2.4
04 Fim) + Fip) (247)

and F; can be neglected within the systematic bounds of accuracy for this model (see Section 7.2).

2.8 Radiated nuclear cross-section models

In order to properly calculate a model for dilution factors (Chapter 5) to remove scattering contribu-
tions from background material in the target, it is essential to have good models of the unpolarized
cross-sections of the various materials in the target. As shown in Section 2.4, the materials present
in the targets that must be modeled are free protons (p) and nitrogen-15 (1N} in the ammonia,
aluminum (Al) and Kapton (C2N>OsHs) in the target entrance and exit windows, helium-4 (‘He)
used to freeze the ammonia, and carbon-12 (12C), used in a separate cell to determine the total
length L of the target + helium and the effective length £ 4 of the frozen NH; target material.

The unpolarized cross-section models used in this thesis are generated by a code developed by
P. Bosted, and include radiative corrections using the (now standard) treatment of Mo and Tsai [91].
Modeling radiative effects requires both internal and external corrections; detailed explanation of

these radiative corrections is deferred until Section 6.4. A cross-section of the form

OTOTAL = OBom + ORC (2.42)

is derived for each material compared. Ratios of all the cross-sections involved are required for
determination of the material lengths and dilution factors (see Chapter 5).

The Born cross-section ogom is the basic (iree-level Feynman diagram) scattering cross-section

36 At the large energies involved in inelastic scattering, electric and magnetic modes of the virtual photon are comparable,
so that the quantity (R — 1) is small, allowing this approximation.
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Figure 2.57: Model values of o,, /0,4 [87][88] used in the statistical (bin-by-bin) method of unpolarized
background calculation later in this thesis. Each curve represents a different Q2 bin. The highest Q?
value shown in the top plot are the same as the lowest Q2 value shown in the bottom plot. The flat
region for W < 1.08 GeV shows the elastic cross-section ratio. All other values are W-dependent
inelastic ratios. The values depend slightly on beam energy (E = 1.606 GeV in this figure).
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from the nucleon; its value is dependent only on the 3 free inclusive parameters E, Q% and W.
For the nuclear cross-sections (*He, 12C, 15N, Al) the effective charge radii of the nuclei was taken
from Ref. [92]. To parametrize the quasi-elastic peaks®, the formalism of superscaling by Donnelly
and Sick [93] is used, in which cross-sections are determined in terms of a kinematic function ¥
which gives results independent of A (atomic mass) and the momentum transfer ¢. Specifically, a
polynomial fit to the superscaling function of Ref. [94] was used, with binding energies per nucleon
E, ranging from 15-20 MeV, and the effective Fermi width parameter Kr used in Fermi smearing
ranging from 180-260 MeV, depending on the nucleon species [95). This function was fit 1o both
longitudinal and transverse cross-sections in the quasi-elastic region, with values for the Gg and
Gy form factors parametrized in Ref. [13].

For inelastic scattering, a Fermi-convolution of the smearing of free nucleon cross-sections was
fit to cross-section data. The fit equation employed a total of 15 free parameters F; and 15 Fermi-

smearing parameters #; in the form [95]

15
oa(W, Q%) =Y [Z0p(W/, Q%) + (A - Z)on (W}, Q*)IF; (2.43)

=1

where

(W) = W2 + 5, Kp|g| — 2E5(v + M) (2.44)

Specific values for all the parameters 7;, F;, Kr and E, can be found in Ref. [95]. Cross-sections
for the free proton and deuteron (neutron) were calculated from a fit to the world data of F¥ and F}
[87], or F* and FY* [88], respectively (see Eq. 1.75).

The last factor that needs to be employed in any A-dependent nuclear scattering model is the
well-known nuclear EMC effect [97], which is, in effect, a deviation from the linear scaling of inelas-
tic scattering cross-section magnitude as a function of A. This effect was parametrized using SLAC
data [98],%8 and was assumed to be only z-dependent, with no dependence on Q2 or beam energy,

and assumed constant for z > 0.7.

37The term quasi-elastic is used because scattering from events in a bound nucleus at W ~0.938 GeV can include
correlations between nucleons, and thus aren't elastic in the true sense.

38This reference contains an empirical fit to scattering data from nuclei in various targets ranging from A = 410 A = 197,
specifically measuring the A-dependence of cross-sections at SLAC energies.
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The radiative correction cross-section orc, unlike ogom, directly depends on the thickness of the
material, due to external radiative correction and range staggling effects. In practice, the radiated
cross-section for 1% and 2% of a radiation length®® X, is calculated. The target mass thickness is
approximately 1.5% of a radiation length. The total cross-section ororaL is given simply by interpo-
lating to the radiation length fraction p¢/ X, of the material. Note that the radiation length of 1°N is
not well known, so it is assumed that X(**N) = 12 X,,(1*N). Radiation lengths of the various target
materials are listed in Table 2.3.

Using the formalism for unpolarized cross-sections outlined in Section 6.4, the radiative correc-

tions to each Born cross-section can be found, and using

249

the model can be used to determine the ratio of counts attributable to unpolarized backgrounds.
The probability of external Bremsstrahlung goes as ¢ dv/v, where v is the photon energy, and ¢ is
the thickness in terms of X,. External radiative corrections must take into account the total value of
t, so precise knowledge of mass thicknesses (in g/cm?) is needed for accurate radiative corrections

to unpolarized cross-sections. The following materials are accounted for:
1. Materials along the beam line from the back edge of the target to the scattering center (¢5,¢)
2. Materials from the scattering center to the edge of the target along the scattering path (t:arq/ cos 6)
3. Combined thickness of banjo windows and target cell exit windows (see Section 2.4).

4. All elements external to the target traversed by the scattered electron.

The last of these is an explicit function of 8, and accounts for aluminum in the (inward bowed) target
vacuum shield exit window, aluminum in the thermal shields (which increases in thickness at wider
angles), layers of superinsulation (for the target solenoid; see Section 2.4), air (outside the vacuum

shielding), and the inner layer drift chambers (see Section 2.5). *° The total mass thickness of

3 A radiation length is defined as the amount of a material, usually measured in glcm?, necessary to cause a high-energy
electron to lose ail but 1/ of its original energy; it is characteristic to a given material in terms of Z and A.

400f the 3 layers of drift chambers, only the first is considered for radiative corrections. The complex magnetic torus field
dominates the second layer (so it is neglected). By the time the third layer is reached, any radiated photons will be emitted
in the particle direction, and hence absorbed by the calorimeters, so they are not considered.
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these external elements as a function of 6 is shown in Figure 2.58. As one can see, the radiation
lengths of these external elements (ranging from 1.1% to 1.5% of X,,) are comparable in magnitude
to that of the actual target, and therefore need to be accounted for if accurate modeling of the cross-

sections is to be made.

Table 2.3: Radiation lengths of irradiated materials in the EG1 experiment. Kapton has a very simi-
lar cross-section and radiation length to 12C, and the latter is used for its cross-section calculations.

Material Radiation Length(X,)(g/cm?)
p (free proton) 61.28
d (free deuteron) 122.4
4He (liquid helium) 94 .32
12C (amorphous carbon) 427
ISN (nitrogen-15) 37.99x :2=40.70
Al (aluminum) 24.01




156

Mass thickness external to target boundary

0.02
0.018
0.016
0.014

0.012

t/ Xo

0.01
0.008
0.006
0.004

0.002

o

100 K thermal shield

H!IIHIIHIHI[II]“I!{ll!!illllll‘HI

| TR TR A TR S Y A A U A VA S W O B AT

4 K thermal shield
thermal

superinsulation

LY

%

10

20 30 40
8 (°)

50

Figure 2.58: Mass thicknesses, expressed as a dimensionless fraction of radiation length X, at-
tributable to materials outside the target (e.g. thermal shields, insulation, air, inner layer DC; that
is, item 4 in the text) as a function of 8. Arrows point out reasons for sudden increases in the mass
thickness. The approximate limits of acceptance for this experiment are bounded by the vertical red

lines.



Chapter 3
Helicity and Particle Identification

3.1 Reading the Data Summary Tapes (DSTSs)

3.1.1 DST organization

All crucial information regarding reconstructed events (produced by the SEB) and their constituent
particles is written to Data Summary Tape (DST) files and stored in the permanent storage silos
with the other important (raw data, n-Tuple, etc.) files from the EG1 data set. Only information
relevant to the analysis of reconstructed events (i.e. kinematics, event- and particle-correlated ADC
measurements required for particle identification, Faraday Cup counts, etc.) is recorded in the the
DST files, to conserve both analysis time and disk space.

When all calibration and raw data processing were completed, the final versions of the DST files
were uploaded from the silo to a semi-permanent 3 terabyte cache disk for easy reading. DST files
from viable runs' were then organized in directories by beam energy and torus current (see Table

3.1).

1This includes all sets utilizing a normal electron beam, consistent main torus current and one of the main EG1b targets
(either NHz, ND3, 12C, empty (LHe), or frozen 15N).
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Table 3.1: All EG1b run sets with usable electron beam data, organized by beam energy and torus
polarity. These set labels are used throughout this and later chapters.

| Set Label | Run Number Range(s) | Beam Energy(GeV) | Torus Current(A) |
1.6+ 25488-25559; 25669-26221 1.606 +1500
1.6— 26222-26359 1.606 —-1500
1.7+ 28512-28526 1.724 +1500
1.7— 27644-27798; 28527-28532 1.724 —1500
2.3+ 27205-27351 2.288 +1500
2.5+ 28001-28069 2.562 +1500
25— 27799-27924,; 27942-27995 2.562 —-1500
28— 27936-27941 2.792 —1500
4.2+ 28074-28277; 28482-28494; 28506-28510 4.239 +2250
42— 28280-28479; 28500-28505 4.239 —-2250
5.6+ 27356-27364; 27386-27499 5.627 +2250
5.6— 27366-27380 5.627 —-2250
5.7+ 27069-27198 5.735 +2250
573 26874-27068 5.735 —2250
576— 26468-26722; 26776-26851 5764 —2250

3.1.2 Reading particle data from the DST

The data in the DST were written in a compressed format using a a FORTRAN-based bit-packing

algorithm [99]. Events were written to sequential “buckets” containing a single beam helicity. A

C++ program, constructed around a previously used DST bank opening prototype [100}, unpacked

the compressed data banks and converted the data to numerical arrays. After unpacking and

accessing the event-by-event DST data, it was then possible to make kinematic corrections and

cuts not included in the SEB or calibration processes. In practice, it was easiest to compress the

data to successively more compact forms (beginning with ROOT trees [101]) for quick, successive

reading. The basic particle identification cuts and kinematic corrections were implemented in the

DST reader, and the output was written to ROOT tree files for temporary storage. More specific

cuts and corrections could then be added later, so that various cut options could be applied and

tested as needed with relative ease.

The basic purpose of the DST reader was to:

1. Read run, helicity, event and particle information from the DST file.




159

2. Truncate unwanted helicity buckets that could potentially lead to biased or erroneous asym-

metry measurements (see Section 3.2).

3. Apply basic particle identification (PID) cuts on the scattered electron candidate for each event

(see Section 3.4), and cut out pion background (see Section 4.1).
4. Correct momentum and other kinematic quantities for all particles (see Section 4.2).

5. Write the needed electron event data to a ROOT tree file, along with data pertaining to any
additional particles in each event. Secondary charged particles in a 2-charged particle event
are candidates for an elastically scattered proton, needed for determination of beam x target

polarization (P, P;) (see Section 6.2.2).

3.1.3 Tree File Structure

A ROOT Tree is an array, or n-Tuple, with elements that need not be of the same data type [101].
2 Each event constitutes an entry in the tree. Each entry has members divided into branches for
organization. Separate branches are defined to hold crucial run information (e.g. beam energy,
torus current, etc.), event-specific information (e.g. beam raster position, number of particles, he-
licity information etc.), and additional branches pertain to crucial information for each particle in
the event (e.g. z, y and z position and momentum, EC and CC channel data, etc.) Text log files,
containing scalars, including total gated and ungated Faraday cup charges, were also produced.

Tree files provide a legible repository of event-by-event data, are much faster to read than the
compact DST files, and are useful for the application of cuts requiring refined detail (such as fiducial
cuts (Section 4.4) and elastic proton kinematic cuts (Section 3.5)). However, there are still millions
of electron events in each run, leading to a tree file size exceeding 2 GB for some runs. 2

It became clear that more data compression was required for an efficient, repeatable analysis
in kinematic bins of Q2 vs. W. This process is outlined at the end of this chapter in Section 4.6.

First, however, details must be provided regarding the basic cuts and corrections made prior to the

further compression of data.

2n fact, they need not even be numbers. C++ and ROOT data objects can also be members of a ROOT tree.
SLow energy outbending runs, in particular, included up to ten times as many reconstructed events as a higher energy
inbending run.
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3.2 Removal of Problematic Helicity Buckets

3.2.1 Identifying helicity buckets for removal

The electron beam is longitudinally polarized, with the polarization direction alternating pseudoran-
domly at a rate of 30 Hz. The events that occur within the ~0.03 second window are referred to as

a helicity bucket. The raw asymmetry is a function of the kinematics, defined as

-t

A= %—1’%? (3.1)
where nt and n~ are the count rates of scattered events in the + and — helicity buckets, respec-
tively. Measurement of asymmetries is the goal of this analysis. Thus, it is very important that the
helicity buckets are properly identified. Also, one must be careful not to remove problematic helicity
buckets (those containing unreadable data, for example) in a way that biases one of the two helic-
ities; this can also result in a non-physical asymmetry. For this reason, whenever a helicity bucket
is labeled for removal, the opposite member of its pair, or complement, is also removed to prevent
possible bias in a measured asymmetry.

Helicity buckets alternated pseudorandomly at 30 Hz, and the helicity state information was
recorded in two separate data outbank files. * Occasionally, due to detector dead time or other
errors, mistakes occured in the recording of helicity buckets. To correct these errors, a synchro-
nization clock signal with exactly double the frequency of the polarization switch was used to identify
skipped helicity buckets (see Figures 3.1 and 3.2), and reorder helicity buckets by pair. They couid
then be labeled according to Table 3.2. Helicity buckets without a complement were deleted from
the data.

This makes the identification of unpaired helicity buckets (unpaired because their “partners”
failed to write due to dead time or other reasons) very easy, as a bucket labeled 1 should always
be followed by a 4, and a 2 always followed by a 3. Buckets that do not properly fit into this scheme
were flagged with a negative number label for removal.

To ensure that the helicity bucket filtering worked as expected, Hel P (Helicity Pairing) tables

4These are labeled TGBI and HLS, with the latter taking precedence where the information differs - see Rel. [46], pages
121-123.
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Figure 3.1: The clock sync bit is used to detect a missing helicity bit and arrange the helicity
buckets into original/complement pairs labeled 1 through 4, according to helicity and position in the
pair. This aids in identifying bad helicity buckets. (See also Ref. [2], p.97-98.)

Table 3.2: Helicity label definitions.

Label | Polarization | Position in Pair
1 — original
2 + original
3 - complement
4 + complement




162
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Figure 3.2: Helicity bits monitored online during the EG1b experiment, as explained by Figure 3.1.
Helicity bits are shown in yeliow (Ch1); and the original/complement states in cyan (Ch2). The
magenta (Ch3) shows the triggering of the helicity flips by the clock sync bit. From Ref. [63].

were generated, listing the sequence of helicity labels, polarization states and applied flags (see

following subsection).

3.2.2 Further helicity bucket problems

In spite of the above precautions, review of the HelP tables showed that the algorithm used to
eliminate unpaired helicity buckets when generating the DSTs did not work perfectly. Namely, the

foliowing problems were found:
« Not all unpaired helicity buckets were properly flagged.

+ Not all event humbers were properly matched between the two helicity data banks and HelP
tables.

» A possible file closing error generated suspicious-looking helicity labels at the end of every
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Table 3.3: Short excerpt from a HeL.P (Helicity Pairing) table. The three (normally) single digit num-
bers are, from left to right, the helicity label, polarization and status flag, respectively. A status flag
of 1 represents a good bin, while negative flags mark helicity buckets that are removed from the
analysis. Note the unpaired “2” helicity label that is flagged with a “-1000” for removal by the “patch”
program. This is done to complement the “-500” (an unreadable helicity), previously flagged for
removal in the data banks. The other (6-digit) numbers represent the ranges of reconstructed scat-
tering event numbers (which number around 100-200 for a given bucket in this particular sample).
Events numbered in the specified range are assigned the nominal polarization if the fiag is equal to
1.

751719 751863 1
751865 752012
752013 752152
752154 752276
752285 752412 752285 752412
752417 752543 752417 752543 1

752546 752689 2 0 752546 752689 -1000
752986 753083 -600 -500 752986 753083 -10
753084 753205 1 1 753084 753205 1

753207 753326 4 0 753207 753326 1

753328 753454 2 0 753328 753454 1

753457 753593 3 1 753457 753593 1

753597 753763 1 1 753597 753763 1

753767 753931 4 0 753767 753931 1

1 751719 751863
0 751865 752012
0 752013 7521562
1 7521564 752276
1
0

DR W N
N )

file, possibly corresponding to repeated writing of the same events.

A C++ program and PERL script were written [102] as a patch for the DST reader, which reads
the HeLP tables, looks for the above discrepencies, adds appropriate flags® and rewrites the table.
This new table is then used as a reference for labeling the helicity states of particles when the DST
reader loops through the particle events (see Table 3.3).

Note that these tables determine the refative helicities between events in adjacent helicity buck-
ets, since insertion of the half-wave-plate and energy-dependent spin precession can reverse the

meaning of the recorded labels. To determine the absolute helicities (i.e., whether 0, 1 represents

5The last of these three problems is solved simply by flagging all helicity buckets a fixed distance from the end of the fite
for removal.
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+, — or —, +) are determined by checking that the sign of the elastic asymmetry is always positive

(see Section 3.3.3).

3.3 Quality Checks

There are over 2000 runs in the EG1b data set, but not all of them contain usable data. Runs
are categorized by target (either NH;, ND3, 2C, empty, or °N), and removed from the data pool if
unusable. Runs used for diagnostic purposes (Maller runs, DAQ tests, cosmic ray runs, etc.) were
excluded, as well as runs with problems encountered during data collection (bad beam charge
asymmetry, massive DC high voltage trips, loss of target polarization, etc.). In cases where prob-
lems only affected part of a run, individual DST data files in the run were systematically checked
and kept if possible.

3.3.1 Beam charge asymmetry check

The Faraday Cup records the cumulative beam charge incident on the target (Section 2.3.4). it
is desirable to have the same amount of beam charge corresponding to both of the beam helicity
states, in order to avoid a false asymmetry that might correlate with unknown deviations in the
behavior of the Faraday Cup over time. Thus, the total beam charge asymmetry was measured for

each file in every run:

FC* —FC~

FC+*+FC- 32)

Abeam =

where FC* is the ungated Faraday Cup counts for a + or — helicity state. ® A rigorous study of the
beam charge asymmetry was made [64], finding the expected null result. The study showed that
a cut of +0.005 on the beam charge asymmetry removed only obviously anomalous files. Figure
3.3 shows this cut applied to two different runs. Because a beam charge asymmetry affects only
the polarized data, this cut was not enforced on unpolarized background subtraction runs (carbon,

frozen nitrogen and empty).

SThe ungated charge is desired because the task at hand is the search for biases in the physical beam line and detector,
independent of DAQ performance.
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Figure 3.3: Beam charge asymmetries for two two representative runs. Files with asymmetries of
greater magnitude than 0.005 were cut, including several of the early files in Run 26292 (left). This
is an unusual case; less than 1% of the total data were excluded by this cut. Run 27313 (right)
was a more typical case. (Half-integer file numbers represent data overflow from the previous file
exceeding the 2 GB file size limit.)

3.3.2 Event rate check

Measurements of the count rates, normalized by the (livetime gated) Faraday Cup, are useful for
checking the quality of the detector data. A sudden change in the count rate of inclusive electrons
in an isolated sector can indicate a high voltage trip or detector problem (usually in the DC or EC
channels). Uniform drops in count rate across all sectors indicate a change in the target, DAQ
or general electronics (e.g. a leak in the target, an unrecorded change in EC thresholds, efc.).
Also, because the count rates varies with target type, it is possible to identify an improperly labeled
target or Faraday Cup bit (see Section 4.5). Figure 3.4 shows an example of this method of target
identification. 7

Count rates were studied individually for all DST files in every run containing viable data. A
change in count rate likely indicates a change in detector acceptance, which does not in any way
alter an asymmetry measurement (see Section 1.4). Therefore, no NH; files were cut from the
asymmetry measurement based on count rate. However, for the purposes of determining dilution
factors (and other background subtraction), it is important for the acceptance of the NH3 runs to

match that of the 12C and LHe runs.

7Unfortunately, the software configuration at the time of this experiment necessitated the manual entry of the target fabel
by shift-takers for each run, resulting in many erroneously labeled runs.
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Figure 3.4: Charge-weighted count rates in all 6 sectors for a subset of the 2.3 GeV inbending data.
The change in count rates corresponds to differing targets. Most runs are ammonia (NH3z) with 4
carbon (2C) runs and 2 empty target (LHe) runs corresponding to the points with obviously lower
rates. Plots like this were useful for verifying the target labels. (The LHe target count rates here are
plotted before the Faraday Cup bit correction (Section 4.5.2), so these two runs show count rates
that are too high by a factor of 2.)

The unpolarized target runs are interspersed throughout the experiment, so that long-term
changes in the behavior of the detector affect all data equally (see Section 2.4). However, short-
term changes (due to HV trips, for example) can lead to a change in the count ratio bewteen targets,
causing an error in the dilution factor. For this reason, the count rates of every file in every run were
measured for each individual sector. Files with a count rate (in any one or more of the six sectors)
outside a +-5% limit relative to the count rate average for a given target in a given set were cut from
the files used to calculate dilution factors and other background. This limit was kept in place for the
lower energy (1.x and 2.x GeV) runs. The higher energy runs, however, showed greater statistical
fluctuations in their count rate,® so the threshold for the higher energies (4.x and 5.x GeV) was
increased to +8% (see Figure 3.5).

Whenever there was a prolonged change in the file count rate, an effort was made to scrutinize
the online electronic logbook [63] for the cause. Drops in count rate caused by acceptance changes
could then be removed with confidence. Changing rates caused by target refills (a particularly

prevalent issue with the 2.5 GeV outbending data) did not warrant removal of data. 2 In virtually

8This is due to a greater spread in the momentum of inclusive electrons from scatiering processes.

SInstead, the averaged value of the count rate and resuiting ammonia target length was incorporated into the dilution
factor for this case. Because this change in count rate actually corresponds to a change in the physical composition of the
target, the change needs to be incorporated into the overall dilution factor. In the case where target refilis caused a count
rate change, the average rate was calculated for each segment of runs between the target refills, and the +5% limit was
enforced for each of these subsets individually.
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Figure 3.5: A sample count rate check in Sector 3 for 5.76 GeV outbending NHj runs (highlighted
in blue). The dotted line is the average count rate; files outside the range of the solid lines (denoting
the +£8% cut limit) are removed from the dilution factor and background calculation data (but still kept
for asymmetry measurement). Gray points represent files for other targets (analyzed separately).
Note that the scale is selected to show details in the fluctuations.
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Figure 3.6: A example of the identification of data collection problems for 5.7 GeV inbending data in
sector 5. The online logbook was used ta correlate the problems with recorded issues during data
collection. FC-weighted count rates are shown. Magenta-highlighted data are NH3 runs.

all cases where the count rate dropped suddenly in a sector for prolonged time periods, the reason

was clearly identified, and the proper course of action was taken (Figure 3.6).

3.3.3 Target polarization and half-wave plate check

Measurement of the double-spin asymmetry is dependent on the relative longitudinal polarization
direction between the beam and the target. The beam polarization flips approximately every 30
ms (Section 2.2}; great care has already been taken that “buckets” of alternating beam helicity are
symmetrically labeled (Section 3.2). The constant alternating of this helicity prevents any bias in the
double-spin asymmetry resulting from acceptance changes over time. The half-wave plate (which

reverses the beam helicity states) is also periodically inserted into the beam injection line (Section
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2.2.1) to rule out any possible false asymmetries dependent the absolute polarity. The target po-
larization remains constant throughout periods lasting several runs (see Section 2.4), but is also
periodically reversed to minimize systematic errors from single-spin scattering or inherent detector
asymmetries.

Unfortunately, the half-wave-plate (HWP) status and target polarization were not always recorded
correctly in the DST. '° To further complicate matters, electron spin precession in the recirculation
arcs causes multipie reversals of the beam polarity within the accelerator. This phenomenon is
beam-energy dependent, meaning some energy sets require a factor of —1 on the double-spin
asymmetry, in addition to the HWP and target polarization sign corrections.

Fortunately, the elastic double-spin asymmetry is known to be positive by definition (Section
1.4). This fact, along with the information recorded in the online logbook [63], was used to resolve
ambiguities in the HWP stalus, target polarization and spin precession factor. For each individual
DST file, the inclusive double-spin asymmetry (Eq. 3.1) was measured in the elastic region only.
This region was defined by a cut on W depending on the elastic peak resolution for the given beam
energy (found later in Table 6.4). If all three of the above Boolean (+/—) variables are properly
defined, the asymmetry should be positive (or, equivalently, the raw elastic assymetry (corrected
only for spin precession) muttiplied by the HWP status should have the same sign as the target
polarization - see Figure 3.7). If the asymmetry is not positive, one or more of these variables must
be fixed in the database, usually based on a careful reading of the online logbook.

Once these factors are correctly determined, the corrected value of the raw asymmetry evalu-

ated henceforth is given by

IAraw(con’) = Araw X ftarg X fHWP X flmac (33)

where the factors f are the corrective values (4-1) for the target polarization, HWP status and
electron spin precession.
Ultimately, a reference table was compiled containing correct target labels, HWP status, target

polarization, spin precession factor, and Faraday cup charge corrections after a check of all runs.

10Typically, the polarization reading was only faulty at the experiment start (1.6+ data) and during an NMR readout failure
in the 2.3+ sef, but the recorded half-wave-plate status was often incorrect throughout the whole experiment.
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Figure 3.7: Piots showing the raw elastic asymmetry times HWP, against the target polarization sign
{colored background). Also shown are the averaged asymmetry value and NMR target polarization
readout. Each color represents a different target. The first plot shows the correct HWP and target
sign for an NH; run (indicated by cyan); note that the HWP corrected asymmetry matches the target
sign (negative). The second plot shows an NDs run (magenta) for 5.7 GeV with the wrong HWP sign
{note the HWP-corrected asymmetry does not match the target polarization). Asymmetry signs for
ND;3, especially at high energy, were the most difficult case to discern, but were necessary to know
to put together a complete experimental history. The third plot is a carbon target (red) with no
discernable elastic asymmetry. The recorded target polarization for these (and other unpolarized)
runs was changed to zero. The last plot shows an NH; run that reversed target polarization during
the middle of a run due to a polarized target malfunction; this run was removed from the analysis.
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Figure 3.8: Histogram of event rate density over different regions of the beam raster. The blue
area at the fop is an area of lower event density, most likely caused by seftling of the frozen NH;3
suspension in the surrounding LHe. The ‘crosshair’ pattern is an anomaly caused by a bug in the
null ADC channels, and has no physical meaning.

3.3.4 Raster pattern check

Another useful test for checking file quality is the plotting of the number of events as a function of
raster coordinate position, as is shown in Figure 3.8. inhomogeneities in these plots were then
carefully scrutinized to determine if they were inconsequential to the analysis (like the area of lower
rate seen in Figure 3.8), or whether they indicated a possible problem with the run. In general, a
lower count rate area (particularly near the top of the pattern) indicates “settling” of the target mate-
rial, and does not affect overall packing fraction or consequent dilution factors/asymmetry, while an
area of elevated count rate (particularly a crescent-shaped “hot spot”) indicates the electron beam
scraping the target edge or other interfering material in the target. These runs must be checked for
further problems, then either be removed or corrected as necessary. Few runs exhibited problems
requiring further investigation, but two specific recurring cases warrant mentioning here.

Two separate target inserts were used in EG1b (Section 2.4), one containing the main (NH3 and
ND;) targets, and the other the frozen !°N target. Both inserts contained a 12C target. All carbon
run raster patterns in the first (of two) 1*N/*2C “mini-experiments” (runs 27326-27380) showed a
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strange ‘crescent’ shape of unknown origin (Figure 3.9). A comparison was made between the
count rates in the top half vs. the bottom half of the target. By application of the same mode! used
for packing fraction calculation (Section 5.5.2, applied to the carbon instead of ammonia target),
it was determined that the rate difference corresponded to no more than a 2% error in the overall
effective carbon target length, so the runs were kept, accounting for this systematic error [95].

Of greater concern was a raster pattern anomaly that appears in all empty target (LHe only)
runs, beginning at Run 27899, persisting through the end of the EG1b experiment. The start of the
problem correlates to the identification of a leak in the ND; target during the 2.5 GeV outbending
set. The crescent-shaped “hot spot” that persists in the empty target thereafter (see Figure 3.10)
likely results from a wire or other debris in the window path after the disturbing of the target. !
The empty (LHe) target is of crucial importance to the measurement of the total target length L,
needed for unpolarized background subtraction. The special correction required to this target data

is discussed later, in Chapter 5.

3.3.5 Inclusive W-spectrum check

Due to the beam energy dependence of the elastic peak prominence, it was sometimes difficult to
identify the difference between ammonia and carbon targets based on an overall inclusive count
rate. Also, there were occasionally slight changes in count rate within a particular target type (due
to target leakage or EC threshold change, for example) that warranted closer inspection.

As a final check on overall run quality, the spectrum of each run, in terms of invariant mass
W, was checked for the presence of any obvious problems (see Figure 3.11). Where integrated
inclusive count rates between differing ammonia and/or carbon targets are similar, the identification
of an elastic peak at W = 0.938 GeV easily distinguishes these cases. In the case of a varying EC
threshold, a slight shift in the high-W limit was noticed. Runs with the differing count rate'2 were

excluded from dilution factor analysis (but still kept for asymmetry measurements).

" An analysis of the “hot spot” indicated no sign of an elastic proton peak, so it is not frozen ammonia or frozen H,O
contamination.

2This indicates a change in the detection threshold at low momenta, occurring in the early part of the 2.3+ data. The
effect diminished when a reasonable low-momentum cut was implemented.
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Figure 3.9: Raster pattern quality checks for three different runs. The top pattern shows the (good)
raster pattern from a 12C run on the main (ammonia) target insert (Run 27313). The middie pattern
shows the problematic raster pattern common to *2C runs on the nitrogen/carbon target insert, in
the first of these special run sets (Run 27340 shown). The third pattern shows a nearby 1N raster
pattern (Run 27342), indicating this problem affected only the carbon runs, not the whole target
insert. This figure is also found in Ref. [95].
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Figure 3.10: Raster pattern for an empty (LHe) target run in the latter part of the EG1b run set. The
elevated count rate in the lower right indicates a problem of unknown origin.

3.3.6 Miscellaneous issues

Naturally, given the large number of variations that occur during an experiment of this duration,
many issues arise that cannot be encompassed by a simple set of well-defined rules for inclusion
and exclusion of data. Where cases involving selection based on quantifiable measurements oc-
curred (i.e. beam charge asymmetry, count rates, etc.), data were cut according to strict criteria
unrelated to the douple-spin asymmetry, so as to avoid introducing any unintentional bias into the
analysis.

Scrutiny of the online logbooks revealed many underlying problems with certain runs that usu-
ally, but not always, correlated to one or more of the previously described quality check violations.
Obviously problematic runs were removed from all analysis. Problems expilicitly labeled in the log-

book included®

o Experiment not ready (all runs prior to 25747)

¢ DAQ problems (26275,26230,28388)

8 This list is not by any means comprehensive, and is intended only to serve as an example of problems encountered
during data collection.
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Figure 3.11: W-spectra check for three EG1b runs. The blue and red represent positive and nega-
tive relative polarization inclusive counts, respectively; these generally overlap, in the shown plots.
The top two diagrams show the spectra of two consecutive runs (26720, 26721), the top NH; and
the middle '2C. Note the difference in the (quasi)elastic peak (W ~ 0.938 GeV) region. These
two runs are high-energy (5.76 GeV) runs. Low energy runs have a much more prominent elastic
peak (bottom diagram, run 25790, 1.6 GeV). Note the obvious asymmetry between the polarization
states in the elastic region at the lower beam energy.



o Torus current malfunction (26723-26775)

Large number of HV trips (26506)

Beam off target (26558-26559, 27835, 26903-26924)

Target irradiation/annealing not completed (26842)

Bad EC thresholds (27490)

e Bad CC threshold (28310)

¢ Incorrect pedestal values (28343-28349)

o Thresholds set for wrong energy (28513-28521)

e Sudden target polarization loss/change (25802,27263)
e Beam helicity labels changed during run (25888)

+ Wrong DAQ configuration file (26510-26522,27123)
o Target not yet polarized (26036)

e Changed target during run (26178)

e Wrong size raster and thresholds (26468-26480)

¢ Time-of-flight malfunction in 3 sectors (27399)

e Missing EC, CC channels (27445)

Target only half full (27803-27819; 27821)

Beam energy 200 MeV higher than rest of set (27933-27941)

HWP inserted during run (28324)

+ Wrong beam energy used in SEB reconstruction (28415,28444)
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In addition, all runs containing 2 or fewer raw data files'* were also removed, regardless of
documentation. These runs compose only a very smalil minority of the data, and runs were usually

stopped this quickly only if a problem occurred.

3.3.7 Data Organization and Tests of Quality Checks

After comprehehsive lists of good files for the cases of asymmetry measurement and background
removal were organized, directories containing soft links to the cached files were created. One was
(labeled RATEY) for files of all targets used for background removal (including cuts on the inclusive
count rates), and another (labeled ASYM/) linked only to frozen ammonia target runs considered
good for asymmetry measurements (no count rate cuts inciuded).

As a final check, tests on the overall asymmetry sign (Figure 3.7) were rerun using corrected
polarizations. Also, count rate checks for complete runs (Figure 3.4) were redone to check for
correct target labeling and rate cuts.

With confidence that only high-quality data are referenced in the database, and all preliminary
particle identification cuts and kinematic corrections in place, analysis then proceeded to the next

steps.

3.4 Electron Identification

The SEB labels particles by their time-of-flight, charge and momentum, mainly as determined by
the scintillation counter (SC) and drift chamber (DC) detectors (see Section 2.6.2). However, it is
difficult to distinguish light hadrons (especially = ) from electrons simply by their trajectory and flight
time, as, at GeV energies, their time-of-flight distributions overlap, especially at forward scattering
angles [30]. Fortunately, the interaction of hadrons with matter differs significantly from that of
electrons. This fact is exploited by the Cherenkov counters (CC) and electromagnetic calorimeters
(EC) to make a basic preliminary particle identification (PID) for the DST reader to utilize as a
starting point in identifying the electron and its associated particles. In addition to the requirement
that the charge ¢ = —1 and 8 = v/c = 1 (a good approximation at GeV beam energies), limits

4 Complete runs typicaily contained around 20 raw data files.
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are set on the values of the ADC signals associated with the EC and CC for the particle to be

considered an electron candidate.

3.4.1 Cherenkov Counter Cuts

As previously noted, the Cherenkov Counter is used to distinguish electrons from hadrons by count-
ing the radiated photons as a superluminal particle travels through a gas (see Section 2.5.3). The
rate of photon production (with respect to distance traveled, z) of a negatively charged particle due

to Cherenkov radiation can be calculated to be [8]

d®N  2ra ( 1 )

Ddz ~ T B0y @4

where o = 1§,—7 is the fine structure constant, X is the wavelength of the emitted light, and n()\) is
the refractive index of the medium.

At the 1-6 GeV energies of Jefferson Lab, electrons can safely be considered ultrarelativistic
(8 = 1). Pions, however, have velocities considerably smaller than ¢. Therefore, one expects a
smaller number of Cherenkov photoelectrons for pions than for electrons. Recall from Section 2.5.3
that particles do not emit Cherenkov light unless g > ¢/n()\); this condition is not met for pions
below a momentum of 2.7 GeV, making the CC the ideal tool for separating low momentum pions
from electrons. Statistical (Poisson) distributions of measured photoelectrons are expected. 15
Specifically, we observe two approximately overlapping Poisson distributions with different peaks
corresponding to pion and electron events, with pions having a sharper, lower peak, consisting
mostly of sub-threshold noise. Figure 3.12 shows these distributions.

A minimum of a 2.0 photoelectron signal was required for an electron candidate at momenta of
less than 3.0 GeV. This removes a large number of pions from the inclusive electron candidates,
but not all of them, of course, as the upper tail of the Poisson distribution trails under the electron
distribution. At higher momenta, where 3 — 1 for both pions and electrons, it is not possible to
segregate the electrons and pions in this manner without incurring a very high electron loss, as

they mix heavily (see lower figure). Therefore, at momenta greater than 3.0 GeV, a very low cut of

15 poisson distributions are generally expected whenever a phenomenon with a constant expected number of events per
unit time is measured during a sufficiently high number of observations [103].
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0.5 photoelectrons is used, ¢ and other methods, outiined in the following sections, are relied upon

to prevent pion contamination.

3.4.2 Electromagnetic Calorimeter Cuts

The Electromagnetic Calorimeter (EC) separates electrons from pions by the differentiation of min-
imum ionizing particles (MIPs), which include high-energy pions (and other hadrons), from elec-
trons, through their differing interactions with matter.

Pions, with a mass of ~140 MeV, are considerably more massive than electrons (~0.5 MeV).
The primary mechanism of energy loss for pions is through collisions with heavy nuclei. High-
energy pions obey the Bethe-Bloch formula of energy loss (see Eq. 4.25). According to this for-
mula, the energy loss rate dE/dx of a heavy charged particle decreases with increasing energy
and reaches a minimum at 8~0.96. At speeds higher than this, it begins to increase again, but only
very gradually, never again achieving the energy loss rate exhibited at lower energies [8]. 17 Past
this threshold of minimum energy loss, particles are referred to as minimum ionizing.

At energies in the GeV range, pions can safely be considered to be minimum ionizing. Elec-
trons, on the other hand, cannot be considered MIPs, due to the fact that the energy loss mecha-
nism governing electrons is very different than that for heavier particles, due to their much higher
charge-to-mass ratio. High-energy electrons, even at energies as low as 100 MeV, lose energy
primarily through Bremsstrahlung radiation (i.e. photon radiation emitted due to negative accelera-
tion of the charge) resulting in subsequent electron/positron pair production. The photon emission

probability varies as the inverse square of the particle mass 8]

e2

O X =55
(mc?)?

3.5

meaning photon radiation loss by electrons is almost 80000 times as intense as from pions. The
energy loss rate dE/dx varies considerably with the energy of the electron, in contrast to the nearly

constant energy loss rate of MIPs [8].

6Below this value, PMT and other internal noise dominates the CC response.
7when energies near ~100 GeV are reached, Bremsstrahlung radiation becomes significant; but this is far beyond the
energy range encountered at Jefferson Lab
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Figure 3.12: Spectrum of photoelectrons (p.e.} corresponding to photons detected by the
Cherenkov counters for the leading particle in each event. There are two superimposed (approx-
imately Poisson) distributions in each piot. The high peak at <2 p.e. represents primarily =~
particles, while electrons dominate the wider, higher distribution. The line represents the minimum
cut requirement imposed on the data. At high momenta (> 3 GeV), a minimal cut of 0.5 p.e. (to
biock out sub-threshold noise) is used. Data shown are from the 5.76 GeV beam energy set.
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Figure 3.13: Total energy deposited in the calorimeter vs. energy deposited in the inner calorimeter
layer only, for high (> 3 GeV) outgoing momenta in 5.7 GeV data. Pions appear as a small spot in
the lower left, while electrons fan out over a wide range of deposited energies. The enforced cut is
shown by the black line and arrows.

To differentiate between electrons and pions in the electromagnetic calorimeter (EC), plots of
Ekcwoar VS- Eecinner Were generated. This shows the total energy deposited in the calorimeter vs.
the energy deposited in the inner layers of the calorimeter only (see Section 2.5.5 for more details
on the calorimeter layer structure). The differences exhibited between pions and electrons are
dramatic, especially at higher momenta, as shown in Figure 3.13. The minimum ionizing nature
of the pions, resulting from their nearly constant energy loss rate, confines them to a very small
region on the plot, as opposed to the wide range of energy loss spanned by the photon radiation
and subsequent et e~ pair-production loss characteristic of electrons in matter. A lower minimum
of 0.22 GeV energy loss in the inner layer of the calorimeter™ was used to define an inclusive
electron.

Because the energy loss of electrons and pions is statistical, inserting a simple cut on the EC

8This corresponds to an actual reading of 0.06 in the inner EC channel ADC. EC values must be divided by 0.27 to
convert to actual energy lost. See Section 2.5.5.
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Figure 3.14: A final cut on the total EC energy per unit momentum restricts accepted particles to
the region of electrons. Plots for all 4 beam energies are shown. The other CC and EC parameter
cuts, as well as fiducial cuts (see Section 4.4) have aiready been implemented in these plots. Note
the resulting discontinuity in the histogram totals at p=3.0 GeV in the latter two figures.

energy does not completely separate the two particles. To improve the situation, cuts are also made
on the ratio of the deposited energy to particle momentum. With all the previous (CC and EC) cuts
in place, plots of ECiot/p vs. p (where p is particle momentum) were generated. Additional cuts
were then implemented to remove the bulk of any remaining pion contamination. More stringent
cuts were used at p >3.0 GeV to remove the greater 7~ background (see Figure 3.14). Based on
these piots, a minimum EC energy absorption to momentum ratio of 0.74 for p <3.0 GeV and 0.89

GeV for p >3.0 GeV were used for identifying electrons. 1?
19These correspond to values of the EC ADC channel/p (with p in GeV) of 0.20 and 0.24, respectively.
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3.4.3 Particle identification parameters for elastic ¢p events

Exclusive analysis of elastic electron-proton scattering events is also required to measure the beam
x target polarization (Section 6.2.2). Momentum and kinetic energy conservation at the interaction
vertex is applied to 2-particle events for identification. 2 Because of the strict constraint of 4-
momentum conservation, we can afford to loosen the CC and EC cut criteria considerably without
contaminating the sample with non-electron triggered events. Instead, we rely on the restriction of
the kinematic conservation requirements to remove pions and other inelastically generated parti-
cles. Very loose cuts are used for both the electron and proton. The cut requirements used for all
4 cases in this analysis (inclusive electron (p <3 GeV), inclusive electron (p >3 GeV), exclusive ep
electron (p <3 GeV), and exclusive ep electron (p >3 GeV) and exclusive ep proton are recorded in

Table 3.4.

Table 3.4: PID cuts for electrons in inclusive and exclusive elastic ep analysis. EC values are given
here as EC ADC parameiers for easy reference. All EC values must be divided by the sampling
fraction of 0.27 to get the actual absorbed energy in GeV.

{ Quantity | Inclusive (p <3.0) | Inclusive (p >3.0) |
CC photoelectrons >2.0 >0.5
FEEcCinner >0.06 >0.06
Ecciotat/p >0.20 >0.24
[ Quantity | Exclusive ep (p. <3.0)) | Exclusive ep (p. >3.0) |
CC photoelectrons >0.5 >0.5
Eecom/P >0.15 >0.20

D pctually, all events with 2 charged particles are looked at. Neutral particles, which could just be Brehmsstrahlung
photons, are ignored.
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3.5 Elastic ep Event Selection

In addition to inclusive electrons, which must be very strictly identified by the cuts explained in this

chapter, exclusive ep events, scattering elastically as
ep — ep (3.6)

are required for this analysis, not only for momentum corrections (Section 4.2.8), but for asymmetry
measurement for P, P, determination (Section 6.2.2).

For the identification of these protons, only events with 2 detected charged particles (inciuding
the electron) are considered. Cuts used to make a preliminary identification of the electron are
identified in Section 3.4 and Table 3.4. Protons were identified by their time-of-flight using Equation
2.30, with the condition |§] < 0.9 ns. Cuts exploiting 4-momentum conservation are placed on the
proton, dependent on the kinematics of the electron, to identify elastic ep events.

The energy of elastically scattered electrons can be calculated by setting W = M in Eq. 1.9 as
(71

Ebeam
E = 3.7
¢ 14 2Epeam sin®(0./2)/M 3.7

where M is the proton mass and 8, is the polar electron scattering angle. If we apply energy

conservation

Eieam + M = E, + E, (3.8)
and use sin®(0./2) = 3(1 — cos(f.)), this yields

MEbeam
M + Fyepm(1 — cos )

E, = Epeam + M ~ (3.9)

By noting E = /p? + M2, the “missing energy” of the proton can then be defined as

o M Epeam 2
AE = Epeam + M — gr—p— s — PR+ M (3.10)
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This quantity is used to heip define an elastic ep event. Constraints can also be placed on the polar

angle 4, by using momentum conservation on the z-axis:

FEpeam = E. cos8. + ppcosb, (8.11)

Solving for cos 8, and applying relativistic momentum, this gives

Eyeam — B cos 0,

cos @, = (3.12)
’ VELE— M2
so that the “missing theta” is given by
o
A = arccos Ebcam — B¢ 0056 (3.13)

— arccos(p;, /pp)
VEL) — M?

Momentum conservation in the radial direction must also be considered. Since the initial momen-

tum in this direction is zero, the particles should travel in directly opposite radial directions, so that

the “missing phi” (in radians) is defined by

Ap=|bp = el =7 (3.14)

or, in terms of momenta,

!qu = |arctan(py,/ps,) — arctan(py, /ps, )| — 7 l (3.15)

If the event is an elastic ep event, the AE, Af and A¢ should all be close to zero, within a margin of
error allowing for CLAS resolution. Deteriming optimal cuts was an iterative process. Histograms of
the “missing” quantities were made for all charged 2-particle candidates meeting the electron ep cut
criteria in Table 3.4 and proton TOF cut. Very wide elastic cuts were initially applied. The histograms
were then regenerated, with all these cuts in place (except the cut on the plotted quantity), and

the cut was tightened to border the (now narrower) elastic peak. This was continued until peak
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Figure 3.15: Cuts on AE, A#, and A¢ for elastic ep events in a 5.7 GeV outbending data run. Each
plot has the cuts on the other two quantities already applied. Also, a cut of 0.88 GeV < W < 0.99
GeV was used prior to plotting.

resolution reached its limit. Final plots of AE, A8 and A¢ for a 5.7 GeV NHj3 run are shown in
Figure 3.15.

In addition to these cuts, a cut was placed on the missing mass W. Depending on the resolution
of the elastic peak (which worsens as beam energy increases), a cut of 30-60 MeV from W = M =
0.938 GeV is used (these are listed explicitly in Section 6.2). Because the data skim files preserve
the W and Q? values of the event (Section 4.6), it is not necessary to implement a fixed W cut in
this analysis stage. The W cut is instead optimized according to the resolution for each data set
just prior to the measurement of F,P;. The other final cuts used for elastic ep events are listed in
Table 3.5.

Of course, a small percentage of the isolated events are not actual ep events scattered from the
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free protons in the NH3, but are instead quasielastic background events scattered from '°N, LHe
and the target windows. Removal of the background is done by scaling of the same data from 2C

in the “wings” of the ¢ distribution; this procedure is also outlined in Section 6.2.

Table 3.5: Kinematic cuts used to select elastic ep events. See the text for details on these variables.
W -cuts are energy-dependent and not implemented until after binning of the data takes place.

| Quantity cut
AE +0.15 GeV
A6 +1.5°
A +2.0°
w See Table 6.6

3.6 Miscellaneous Minor Cuts

At this point, all preliminary PID cuts have been developed for application to the data. Now, some
minor cuts are added addressing various issues, to prevent spurious events from surfacing in the

data.

3.6.1 Vertex cut

To help ensure scattering from target materials only, a longitudinal cut on the reconstructed z-vertex
position v, must be considered. Unfortunately, the target configuration makes it impossible to cut
out the target window material with a vertex cut, as the resolution of the event vertex reconstruction
is not fine enough to resolve distinct scattering peaks within the ~2.3 cm distance of the target
banjo length. Thus, other techniques (i.e. dilution factor calculation) must be used to eliminate
contributions from the aluminum, Kapton and liquid helium on either end of the frozen ammonia
target material.

This considered, a vertex cut was put in place narrow enough to exclude events that scatter

off the LHe refrigerator ends?! but still include all properly scattered events within 3¢ of the target

21This can be seen by the secondary purple “stripe” on the right of Figure 4.9, later in the text.
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Figure 3.16: Average z-vertex position (in cm)} as a function of run number. The error bars on
each run correspond to the standard deviations of the vertex position distributions of each run. The
weighted average over all runs agrees quite well with the nominal value of —55.1 cm. Plot courtesy
J. Pierce.

center (nominally located at -55.1 cm in CLAS coordinate space). The loose cut

-~58¢cm < v, < ~52cm (3.16)

was therefore placed on the data. Figure 3.16 shows the average z-vertex position as a function of
run number for the EG1b data.

Cuts on the z and y positions of the vertex were not made. However, raster patterns were
inspected for each run to ensure that the beam impacted the target and not the surrounding cell

(see Section 3.3.4).
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3.6.2 Trigger bits

Every reconstructed event in the DST contains a trigger bits variable.This integer represents a

16-bit binary number. An N-bit binary number can be represented in the form

0120 + (1221 + (1322 + ...+ aN2N_1 (3.17)

where the coefficients a,, are either 1 or O (i.e. the bit is present or not present). A trigger bit of

49313, for example, can be written as

49313 =2° 425 4 27 + 211 4 215 (3.18)

meaning that bits 1, 6, 8, 15, and 16 are present, in this example. Trigger bits 1-6 represent a
proper event trigger (CC + EC) in respective sectors 1-6. Trigger bits 7 and 8 represent triggers in
the EC only, with 8 representing a lower EC threshold than that normally used for event triggers.
Trigger bits 9-14 are unused, and trigger bits 15-16 {(redundantly) record the value of the helicity
bucket. 2

Only events that contain valid hits in at least one sector are desired for inclusive analysis, so only
events containing trigger bits 1-6 were included in the data. Events with only bits 7 and higher were
cut. For pion background analysis, it was important to consider the behavior of the EC background

triggers, so trigger bits 7 and 8 were used for these studies (see Section 4.1).

3.6.3 Status flags

Each individual particle in the DST was correlated to a one or two-digit status flag variable indicating
the nature of the detector signal corresponding to the particle. A flag least digit value greater
than 5 corresponds to trajectories reconstructed from hit-based tracking only (Section 2.6.2). Only
accurately reconstructed events using time-based tracking are desired; these correspond to flag
least digit values in the range 0-5.

In the event that a particle is detected in all 3 superlayers of the DC (see Section 2.5.2), resulting

2Bits 15-16 are overriden by the modified variable read from the fixed helicity tables (see Section 3.2) and are not used.
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Figure 3.17: Difference in deposited EC energy between the total signal and sum of both layers of
the calorimeter. Events far from zero indicate an inconsistency in the internal signals of the EC.

in a very accurately reconstructed trajectory, a +10 is added to the flag variable. These are definitely
events that should be kept. Therefore, particles correspondingto 0 < flag < 5or 10 < flag < 15

are kept, while all other particles are discarded.

3.6.4 EC energy sum correction

The Electromagnetic Calorimeter records 3 ADC signals for the energy deposited by an incident
particle, denoting the inner calorimeter layer (EC;i,), outer calorimeter layer (EC,) and total energy
deposited (ECiot) (see Section 2.5.5). Occasionally, the readings in these channels did not match.
That is, ECist # ECin+ ECou (see Figure 3.17). This occurred because, occasionally, part of the
energy was not recorded in one or more of the channels, even though these represented perfectly

good events in every other respect. Thus, the correction

ECiot = max(ECigt, ECin + ECout) (3.19)

was enforced to ensure that the full measured EC energy was employed in the PID cuts.
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3.6.5 Minor kinematic and geometric cuts

Analysis of CLAS data becomes problematic when scattered particles get too close to the edge of
the geometric acceptance of the detector, or when momentum becomes so low that the efficiency
of the detectors and momentum measurement is unpredictable. Also, certain events (such as those
with E’ > F) are obviously non-physical particles. For that reason, the following cuts are added for
inciusive electrons:
v=E~E >0 (3.20)
=1- %’ < 0.80

8.5° < Opc < 49°

Here 0p¢ is the polar angle measured at the inner layer drift chamber. The low angle here marks the
innermost forward angle definitively covered by CLAS acceptance, and the upper angle is limited
by physical interference from the target magnet coils.

Another cut necessitated by closer inspection of the data in each sector is
fpc < 18° and fpc > 22° (Sector 5 only) (3.21)

A comparison of plots of 85 between sectors showed a discrepancy in the angle reconstruction of
inclusive electrons in sector 5. This was confirmed by plotting the reconstructed z-vertex position
vS. Opc (see Figure 3.18). Data in the excluded range were obviously reconstructed incorrectly by

the SEB, possibly due to mislabelled channels in the drift chamber wire map.
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Figure 3.18: Reconstructed event vertex position (in cm) along the longitudinal axis vs.g (in de-
grees), as reconstructed from the drift chamber data, for sector 5 data only. Note the obviously
incorrect vertex position between 18 and 22 degrees.



Chapter 4

Precision Cuts and Corrections

4.1 Pion Background Removal

4.1.1 Remaining pion background

The detector cuts explained in the previous chapter remove a large percentage of remaining pions
among the inclusive electrons. However, due to the statistical nature of the pion and electron
distributions in terms of these cut parameters, it is not possible to remove all pions from the electron
data sample using such basic cut parameters. A small but significant background of pions still
remains in the data.

By inverting the electromagnetic calorimeter cuts in the previous sections, and selecting trigger
bits corresponding only to particles not matched to Cherenkov triggers,’ the shape of the pion
distribution in the Cherenkov counter photoelectron spectrum (Figure 3.12) can be estimated {104].
Figure 4.1 shows a comparison of photoelectrons remaining after all the applied PID cuts (except,
of course, the CC cut) and the approximate photoelectron spectrum of pions. Of course, due to
the unknown relative cross-sections of the cut regions, the relative height of these spectra is of

littte relevance. However, a look at the n— spectrum shows a statistical tail that overflows into

1See Section 3.6.2 for definition and selection of trigger bits. For the plots shown in this section, “pions” were identified
by cuts of Eccigt/p <0.24 and Eeoyot/p <0.28 were used for p <3.0 and p >3.0 GeV, respectively, along with a general
cut of Eeci, <0.01 (all values given in ADC channels, not GeV). Events containing trigger bits 1-6 were excluded from pion
spectra.

192



193

Cherenkov Counter Spectra (25° < 0 < 30°)1.8 GeV < p < 2.1 GeV) I

20000
18000
16000
14000
12000
10000

CC e spectrum (before x cuts)

= CC n spectrum (unscaled)

6000
4000
2000

| P SROY SRR SR PPN AN SR Amtaut MY SO S0t 1A Mt e vt oo e } L 7
) 5 10 15 20 25 30
CC Photelectron Signal (p.e.)

Figure 4.1: The Cherenkov photoelectron distribution for a given bin in p and 8. Distribution shapes
for both negative pions and electrons, as determined by calorimeter and trigger bit cuts, are shown.
Pion tracking and timing cuts (Sections 4.1.2 - 4.1.4) are not yet used in this plot. Data shown are
from a combination of 5.x GeV NHj; runs.

the electron distribution. Part of this tail is, no doubt, electrons, but at least a portion of it is part
of the pion distribution. Apparently, 7~ contamination is still an issue above the threshold of the
Cherenkov photoelectron cuts (Table 3.4).

Older analyses of CLAS inclusive electron data utilized a model to estimate the magnitude of
remaining pion contamination as a function of p and 4, and a function was fit to the data. This
function was subtracted as background from the inclusive spectrum, and counts were rebinned the
in terms of Q2 and W [2][46]. 2 Unfortunately, this method of background subtraction is prone to
high systematic error.

M. Osipenko et al. have determined that most of the pion background results from indeterminate
track matching of the Cherenkov counter photomultipliers to the DC and SC-determined track path
and timing, allowing internal PMT noise to correlate with the particle [105]. Applying restrictions to
the geometry and trigger timing in the CC, the overwhelming majority of remaining =~ background

can be removed, and the (very low) remaining residue can be considered a systematic error (see

2 (more accurate) variant of this method is still used for removal of the e+e— pair production background removal. See
Section 6.1.
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Section 7.2.5).

4.1.2 Geometric cuts on accepted CC triggers

For a hit triggering a given CC segment®, a geometric cut of the form

wp _ ezenter . Oszset[ < 30’;1 (41)

is used, where 4, is the polar angle of the particle angle in the CC projective plane, calculated using
the SC-plane trajectory angle. A detailed depiction of this projective plane is shown in Figure 4.2.
The quantity 9;6"“'“ is the polar angle of the CC segment center image in the CC projective
plane, and 2/ 7%¢ is the difference between the hit distribution center of 8, — 82" (see Figure 4.3).
The CC projective plane is the plane through all points extrapolated from the original Cherenkov
ray direction through the equivalent distance traveled to the CC PMT [105]. In the CLAS coordinate

system, this plane is given in xg and z by
1—azg—bz=0 4.2)

where o =0.0007841 cm™!, b =0.001681 cm™1!, and zs is the radial particle distance along the
sector center line. 4 The distribution width, o, is the width of the 6, distribution for the electron

events. Figure 4.3 demonstrates the efficacy of this geometric cut.

4.1.3 PMT cuts on accepted CC triggers

Each segment of the Cherenkov Counter contains two different photomuitiplier (PMT) tubes for the
detection of Cherenkov light. Once 6, and ¢, (the polar and azimuthal angles of the track with

respect to the projective plane) are known for an electron track, the PMT corresponding to the half

318 segments per sector x 6 sectors = 108 segments. See Section 2.5.3.
“This is z in CLAS sector coordinates.
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CC projective plane
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Figure 4.2 A profile of the location of the Cherenkov counter projection piane for a particular CC
segment. The blue arrows represent the paths taken by incoming particles, and the reflection paths
of their subseguent Cherenkov light between the mirrors to the PMT. To form the projective plane,
the equivalent distance to the PMT is traced along the initial direction of the particle (red arrows);
the resultant plane formed by the projection of possible paths is the projective plane. The angle
between an extended red arrow and the normal to the projective plane is 6,, and the angle made
with the center projection (vertical dotted line) and the plane normal is gge™ter.
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Figure 4.3: The difference ¢ — @, for low photoelectron peak events (red) and events with > 2.5
photoelectrons (blue). Actual electrons exhibit a sharp peak, easily distinguishable from the back-
ground from a simple cut (black lines). Note the small offset (957 /**) from zero. Data shown are
from 4.2 GeV outbending data specific to sector 4, CC segment 9. (Compare to Ref. [105], Fig. 5.)

of the counter segment containing the track can easily be identified. If the event-triggered PMT
does not correspond to the electron track identified as the event trigger, then the event is cut from
the data, as it is most likely a pion with a PMT triggered by background particles and/or noise. In
simpler terms, a good event is identified by ¢s < 0 for a left PMT trigger, and by ¢s > 0 for a right
PMT trigger (with ¢ being the azimuthal angle with respect to the sector center).

4.1.4 Timing cuts on accepted CC triggers

Assuming that the SC and CC are triggered by the same particle, the expected time difference
between the two signals is obviously given by dividing the distance difference by the electron speed.
Thatis, 5

TSC — TCC
Atosincidence = 7@ (4.3)

5This must be done after time-of-flight calibration, of course, so that effective velocity of light in the scintillator need not
be considered. See Section 2.5.4
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Figure 4.4: This is the same data shown in Figure 4.3, except in terms of At5¢~CC_ Due to the
multiple peak structure exhibited by good electrons at higher At5¢—CC, only a lower cut (black line)
is used. (The narrow twin peaks are caused by timing differences in the CC PMTs, while the wider
peak at ~55 ns is of undetermined origin but definitely internal to the CC.) (Compare to Ref. [105],

Fig. 6.)
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where r5¢ — rCC s the track distance between the SC paddles and CC projection plane. The

observed time difference from that expected is thus given by

SC

cc
ApSC—CC _s¢ _ycc T

-r

" (4.4)

As with the geometric cuts, the electron peak (now measured in terms of this time difference), rises
above the pion background. The edge of this peak is again used to determine the edge of the cut.
A plot of the event rates vs. At5¢—CC is shown in Figure 4.4. The timing cut is decided based on
this and similar figures for each CC segment. Due to a strange prominence at the upper end of the
spectrum, related to timing discrepancies internal to the CC [105], only a lower edge cut is used
on At5C-CC 1o avoid cutting electrons that may be present in the structures at higher At5¢—CC

values. &

4.1.5 Results of Osipenko’s cuts and Implementation

The effectiveness of these cuts can be investigated by looking at the Cherenkov photoelectron
spectrum in various p and @ bins, with and without the cuts, demonstrated in Figure 4.5. Figure
4.6 shows that very little pion contamination remains after these cuts are implemented. The shape
of the photoelectron distribution is not well understood [105], but a function of z2 or z3/2 times a
Gaussian worked well for fitting the post-cut photoelectron distribution. This curve is extrapolated
to the low photoelectron region and subtracted to approximate the remaining pion contamination
at the low end of the spectrum. The contamination beyond the range of the CC PID cut can then
be estimated by scaling the pion distribution (shown in blue in Figure 4.1) to the height of the
difference, and extrapolating the fit into the high-photoelectron region. 7 The small remaining =~
contribution can then be treated as a systematic error on the asymmetry (Section 7.2.5).

To implement these cuts, a function is referenced with the necessary input parameters. Values

for geenter, goffset, g, and the lower cut on AtS°—CC were uniquely determined for each CC seg-

6The origin of this extra "hump® in Figure 4.4 is not well understood, but is definitely internal to the CC, as can be
determined by replacing the SC timing signal with the EC timing signal {see Ref. [105]). it may represent electron signals
undergoing extra reflections in the CC, and cannot be assumed to be pion background.

7This may seem like a rather slipshod method of calculating the background, but it is only an estimation of what turns out
to be a very small remaining contamination. Due to the presence of electrons in the “pion” distribution, it is guaranteed to at
least slightly overestimate the remaining contamination, so the error is on the side of caution.
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Figure 4.5: Photoelectron spectra for 5.7 GeV electrons in three different p and 6 bins, before (red)
and after (black) M. Osipenko’s Cherenkov tracking geometry and timing cuts. Note the nearly com-
plete diminishing of the low photoelectron peak. The contamination problem becomes somewhat
worse near the edge of geometric acceptance (bottom diagram).
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Figure 4.6: Photoelectron spectra for 5.7 GeV electrons (on a logarithmic scale), showing low
photoelectron contamination before (top) and after (bottom) Osipenko’s cuts. In the top diagram,
the post-cut electron spectrum is shown scaled (yellow) to the total pre-cut electron spectrum (red).
A fit function to this curve in the region p.e. > 3 was extrapolated downward; this was subtracted
from the electron curves to show the remaining pions in the low p.e. region (magenta). The pion
curve (blue in Figure 4.1) is scaled to this difference and extrapolated upward (green) to show
an estimate of the =— contamination before the cuts described in this section. The bottom fig
shows the same principle after Osipenko’s cuts, with the post-cut electrons (black histogram), the
remains after subtracting an extrapolated fit (gray) and the extrapolated scaled pions (cyan), which,
compared to the green curve above, shows a significant reduction in the remaining pions.
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ment and sector by N. Guler. Because of the differing path track geometries and timing, separate

cut parameters were used for inbending and outbending data. A complete record of these variables

for reference purposes is included in Table B.3.

4.2 Kinematics Corrections

4.2.1 The kinematics correction package

Necessary kinematic corrections were integrated directly into the DST reading program. Adjust-

ments were made to the momentum components p,, p,, p, and the vertex position v, to compen-

sate for both known inaccuracies in the CLAS detector and lack of precision in the event recon-

struction code. The following corrections were made for each particle:

1.

Raster correction (o correct for vertex position given by the beam raster point on the target

at the time of the event)

. Torus scaling correction (to correct for discrepancies between the physical torus current

and the current used for event reconstruction)

. Beam energy correction (to make sure the exact beam energy is used, corrected for energy

loss of the beam within target materials prior to the event vertex)

. Muitiple scattering correction (to correct for the angle and vertex displacement caused by

multiple scattering of all particles before they exit the target)

. Stray magnetic field correction (correction for angular deflections in particle path caused

by the target solenoid fieid)

Energy loss correction (dE/dx corrections for each scattered particle to account for energy

loss in the target after scattering)

Momentum correction (final sector-by-sector calibrations due to inaccuracies in magnetic

field mapping and drift chamber geometry).

Each correction is described individually in detail in this section.
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4.2.2 Raster correction
Translation of raster ADC coordinates

As explained in Section 2.4.1, the electron beam is continuously rastered in a spiraling, circular
pattern. The = and y rastering amplitude ADC values were recorded for each reconstructed event
time in the DST. Assuming a linear relation between the magnet ADC values and the raster dis-

placement, & the ADC amplitudes can be converted to centimeters as

Tem = (:L'ADC - :L'O)xscale (45)

Yem = (YADC — Y0)VYscale
The translation coefficient values are shown in Table 4.1. ¢

Table 4.1: Raster ADC to cm translation parameters for EG1b, for use with Equations 4.5

l Run Set [ Lo I Tscale l Yo I Yscale I

1.6+; 1.6— 3800 | —0.000175 | 5600 | —0,000180
5.76—;5.73—; 5.7+ | 4250 | —-0.000195 | 6360 | —0.000190
2.3+ 3900 | —-0.00048 [ 4000 | —0.00048

5.6+; 5.6 3900 | —-0.00019 | 4000 | —0.00019

77— (mainset) | 3900 | —0.00060 | 4000 | —0.00060

2.5—; 2.5+ 3900 | —-0.00041 | 4000 | —0.00041

4.24; 4.2~ 3900 | —0.00026 | 4000 { —0.00026

1.7+ 1.7— (**C/°N) | 3900 | —0.00060 | 4000 | —(0.00060

Using this coordinate system, it is possible to create a histogram image of the number of events
in the physical raster coordinate space, as was done in Figure 3.8.

Due to the varying entry point of the beam into the target, a geomefric correction was made to
the vertex position. The basic correction method is outlined in [106], and the correction geometry

is elucidated here.

8Given the very small displacements, this is a reasonable assertion.

9These were determined as fit parameters for each set by actually applying the geometric corrections described in this
subsection to the z-vertex position (v} and using MINUIT to minimize x% = Y_(v,(corr) — vz0)*. See Rel. [106] for more
details.
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Correction of vertex coordinate v,

if one takes into account that the beam entry point into the target cell is actually along a path parallel
to the “center” assumed by the SEB for kinematic reconstruction?, then it becomes obvious that the
actual location of the scattering event vertex along the = (beamline) axis is slightly displaced from
the scattering point, had the event actually occurred at the target center. To correct the position v,,

first the sector angle is defined as

¢s = (sector# — 1) x 60° (4.6)

and the azimuthal scattering angle (¢ = arctan(p,/p.)) is calculated.
Then, the, projection of the raster coordinates r, and r,, (in cm) on to the radius sector ray at ¢,
is calculated as

§ =175 COS P + Tysing, 4.7)

as shown in Figure 4.7. Then, this segment is projected on to the ¢ component of the SEB re-
constructed track direction to get the displacement of the particle along the the r-direction of the
track:

z' = 5/ cos(¢p — ¢s) = (rz cos s + Ty sing,)/ cos(¢p — @) (4.8)

Then, finally, the corrected vertex position along the z-direction v,. can be calculated from the

uncorrected position v, by backtracking:

Vy(corr) = Vz0 + Z’/ tan(f) (4.9)

as shown in Figure 4.8.

10gtrictly speaking, of course, the beam path isn't exactly parallel for every point on the raster, but the raster magnet
is distant enough relative to the target dimensions that the approximation of parallel beam paths at every raster point is
adequate.
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Figure 4.7: Raster correction geometry, viewed from the front of the target. The black dotted line
represents the (uncorrected) particle trajectory; while the solid biack line (s) is the reference line of
the triggered sector. The projection of the raster coordinates (green) on the trajectory is defined as
' (blue).
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Figure 4.8:. Raster correction geometry, viewed from the side. The corrected z-vertex position
V,(corr) i Calculated from the uncorrected position v.o by backtracking through the end of =’ (drawn
in Figure 4.7). Here, the black ray is the uncorrected particle path, the red ray is the “backtracked”
ray, and the blue path is the final, raster corrected path through the true vertex.



205

¢ correction due to v, shift

The SEB code automatically scales the azimuthal deflection through ¢ to compensate for the 5 Tesla
magnetic field in the vicinity of the target (see Section 2.4). However, due to the raster correction
to the position of the z-vertex, the amount of time the particle spends in the target magnetic field is
different than that assumed by the SEB, so the ¢ deflection must be corrected.

The correction required exactly compensates for the extra distance traveled, just as the SEB

reconstruction code:

de = do — (g x 50 x 2/ /100 x 0.02998/p) (4.10)

where the charge ¢ = +1, 50 kG = 5 T is the field strength, 0.02998 = ¢ (in cm/us) and p; = psind
is the transverse momentum (in GeV) [106].

For inclusive electron analysis, however, the ¢-component is not a concern. Even for exclusive
ep analysis, which is used in this procedure,'! the signs of both =’ and the charge q reverse sign
under an exchange of e and p, causing an identical ¢ shift for both (oppositely directed) particles,
so the analysis is unaffected. Only in multiple-particle exclusive events (such as epr*7~) does the
¢ correction become relevant, but it is mentioned here for completeness. The improvements made

to inclusive events in terms of ¢ and v, due to raster corrections can be seen in Figure 4.9.

4.2.3 Torus scaling correction

During the pass1 SEB and DST generation process (see Section 2.6.3), there was a coding error
in some of the Tcl files omitting the fixed torus current. Instead, the value for read from a current
monitoring transducer was used in track reconstruction. This torus current value produced values
fluctuating by up to 18 A between runs, in confrast to the fixed, regular values consistent with a
superconducting electromagnet. The SEB tracking code allows for a margin of error of 0.2% within
this fluctuation range for the commonly used settings [107]%2, so that, in most cases, despite the
coding error, the correct torus current was used in particle reconstruction, and no correction was

required.

1 Bastic exclusive events are needed for PbPt calculations. See Section 6.2.2.
2These “common” seitings include the +1500 and +£2250 A used in this experiment.
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Figure 4.9: Plots of ¢ vs. z-vertex position before and after raster corrections, shown for 1.6 GeV
inbending data (no other kinematic corrections added). Note the significant increase in vertex
resolution after the correction. The purple “strip” on the far right represents scattering from the
vacuum shield/refrigerator end. These events are removed with a wide vertex cut (Section 3.6.1).
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However, for some runs, the torus current transducer reading occasionally fiuctuated to a value
that did not fall within the +0.2% limit of self-correction. Therefore, the wrong torus current was
used in the event reconstruction. Also, in one case (the 4.2 GeV outbending data), a fixed torus
current was used, but the value was 10 A too high (i.e. 2260 A instead of 2250 A). In these cases,
the reconstructed particle momentum required correction to reflect the actual magnetic field value.
Since the magnetic field B is proportional to the torus current, and the measured momentum of
the particle is proportional to the field, it is easy to see that the first-order correction to the initial

(incorrect) momentum p; is given by

Btrue Itrue
— . true,,. R
B, Pi I, Di (4.11)

Ptrue

This leading-order correction suffices for the 0.4% torus current error in the 4.2 GeV outbending
data, as seen in Figure 4.10. Other run sets requiring the correction fluctuate within an even smaller
limit, making this crude correction adequate. The torus scaling was applied to all 4.2 GeV runs with
negative torus current,’ as well as a few other data sets in which the used torus current incorrectly

fluctuated (specifically, 2.3+, 2.5+, 2.5—, and 4.2+).

4.2.4 Beam energy correction

High precision knowledge of the beam energy prior to the electron-nucleon interaction is crucial for
accurate kinematics determination. Therefore, precise determination of the beam energy electrons
prior to interaction with the target and degradation due to the beam energy loss dE/dx within the

target are implemented into the kinematics correction package.

Accurate determination of real beam energy

Nominal beam energy measurements are supplied from the MCC (Machine Control Center) based
on the number of passes through the accelerator and spin precession, measured by beam po-

larimeters [62]. This nominal number is limited in accuracy, however, and may not accurately reflect

13For the specific case of *5N/2C analysis, the DSTs for involved runs were regenerated with I =—2250 A for precision
measurements of the cross-section ratios [96]. For general caiculation of the dilution factor, though, any accuracy gained
thereby is overshadowed by other systematic errors, so the scaling method is deemed satisfactory for this analysis.
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Figure 4.10: 4.2 GeV inbending data before (blue, top stats box) and after (red, bottom stats box)
torus current corrections. (Both plots are raster corrected, but no other kinematic corrections are
applied.) The distribution width (sigma) is not changed much (and is actually not improved until later
corrections), but the peak location is improved significantly due to the momentum scaling, moved
closer to the true elastic value of W = 0.938 GeV.
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the true Hall-B beam energy. To better determine the delivered electron energy, accurate energy
measurements made during the same time period by Hall-A were scaled by the relative number of
passes of the beam through the accelerator to get the Hall-B energy.

Two methods were used by Hall-A to determine the beam energy, accurate within a factor of ~2
x 104 [108]. The first method is a direct measurement of the beam energy as it passes through
a series of magnets in the 40 m arc section between the accelerator and experimental Hall-A (see

Figure 2.1), in terms of the magnetic field integral [ B - dl and the bend angle ¢, using the equation
C

E=——/B~dl (4.12)
L3

summed over the eight bend magnets. * The second method [109] utilizes a more complex
iterative procedure utilizing Hali-A BPMs (calibrated against magnetic measurements from the 9th
dipole of the arc magnets) combined with the field integral of Eq. 4.12.

Both methods gave very close results for the Hall-A beam energy. The average was assumed
to be the correct Hall-A energy. Then, the average energy E, produced in each linac can be found
from the Hall-A energy E4 by

E; = (E4 — 45 MeV)/2N, (4.13)

where N4 is the number of accelerator passes made for the Hall-A beam, and 45 MeV is the injector
energy (see Section 2.2.1). The Hall-B energies are then found simply, depending on the number

of accelerator passes delivered (Ng), as

| Ep = 2NpE; + 45 MeV (4.14)

The validity of this relationship within a value of 2 MeV can be verified by comparing Hall-A and
Hall-C direct measurements from the same time period [110].
If the magnetic field map in Hall-B was precisely known, the exact beam energy could be verified

by selecting elastic ep events and measuring the scattering angle of each particle. The energy

14The magnetic field must be measured indirectly through comparison to a reference magnet connected in series to the
other magnets, since the arc is inaccessible. See Ref. [108] for more information.
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would then be given by [111]

cosf + (sinf./ tanbp) — 1

4.15
1—cosb, ( )

Ex=M,

However, because of lack of precise knowledge of the magnetic field, the exact beam energy is
required for performing momentum corrections (Section 4.2.8), to center the elastic peak at its
correct kinematic location. Therefore, elastic ep events cannot also be used to calculate the Hall-B
beam energy, and external sources must be relied upon instead. The scaled (Hall-A determined)

vs. nominal (MCC) beam energies for EG1b are listed in Table 4.2.

Table 4.2: Nominal vs. actual beam energies for EG1b

[ Set Label | Nominal Beam Energy(GeV) | Actual Beam Energy(GeV)
1.6+ 1.606 1.606
1.7+ 1.724 1.723
2.3+ 2.288 2.286
2.5+ 2.562 2.561
4.2+ 4.239 4.238
5.6+ 5.627 5615
5.7+5.73— 5735 5723
5.76— 5.764 5.743

Effective beam energy due to dE/dx in matter

At energies in the GeV range, energy loss due to Bremsstrahlung radiation outweighs the en-
ergy loss by atomic collisons by an order of magnitude or more [112]. However, the effects of
Bremsstrahlung radiation are accounted for by external radiative corrections (Section 6.4), so they
should not be accounted for prior to that point. Energy loss due to atomic collisions (dE/dzcou)
prior to the interaction vertex, however, must be subtracted to accurately determine the initial elec-
tron energy, E. Since this, like all other corrections in this package, is a leading order correction,

only a good estimate, not an exact value, for dE/dx..y; is needed. Assuming a 12C target's and
By = p/(Mc) ~ 2000, the energy loss rate dE/dz..;; measures as approximately 2.8 MeV/(gm/cm?)

5This is a good approximation, since the value of dE/dz is proportional to Z/A, which is roughly the same for all the
EG1 targets
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[5}; this value was used for the energy loss of electrons. The energy loss due to collisions remains
fairly constant as a function of electron momentum in this energy range, so using a constant value
is an adequate approximation. Using the modified vertex position v,, the amount of energy loss

can easily be calculated from the densities and lengths listed in Table 2.1 as

[ AE[MeV] = 2.8pAz (4.16)
with mass thickness pAzx given by
pAz [—9—] = 0.4+ 0.6(0.5 — 62) 4.17)
cm?

where §z is the distance between v, and the target center (i.e. (—55.1 cm)—v.). The other numbers
correspond to the mass thicknesses of target window materials plus LHe and NH; (0.4), packing
fraction (0.6), and target half-thickness (0.5). See Section 4.2.7 for details on these numbers. 6
The average energy loss is typically ~2.0 MeV. The effective energy Ep.., is adjusted accordingly

downward to account for this loss.

4.2.5 Multiple scattering correction

After an eN event occurs, the scattered particles usually still have a short distance left to continue
traveling through the target material before continuing on to the detector. During this interval,
the particle(s) undergo multiple scatlering within the target material. Also, unwanted scattering
can occur between the electron and detector components (especially the drift chambers). These
multiple scattering collisions cause both a net angular deflection and displacement of the apparent
vertex position (see Figure 4.11).

The GEANT Hall B simulation package GSIM [113] was used to study the effects of multiple
scattering in the EG1 configuration [114]. The angular effects of multiple scattering produce an
(approximately) Gaussian distribution about the mean angle, and are accounted for as part of the

systematic error on the kinematic precision (see Section 7.2.6). The GSIM study showed, though,

6gpecifically, use the same equations as in Section 4.2.7, excepting that the particle is entering, not leaving the target
{0z — —dz),and ¢ =0.
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Figure 4.11: A greatly exaggerated picture of multiple scattering effects. The true vertex position
and apparent angle are distorted by this effect. The black arrows show the true angles and vertex,
while the blue dotted lines show the apparent angle and vertex positions of the scattered particles.
Notice, in this case, that the true vertex position fies between the apparent vertex positions for each
particle. While this is not necessarily the case for a specific event, using the weighted average of
the vertices does, on average, increase the kinematic precison.
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that using the weighted average of all vertex positions

DL
Lo 72 7d A
as the particle vertex {in place of the v, value for the individual particle) increased the accuracy of

the determination of ¢ and 4, where the weighting factor o is '/

o 50.10/(ﬂ,/p§ +92) (4.19)

The (raster-corrected) vertex positions for aff particles in each event were used to calculate this av-
erage. This derived vertex position is then used as the “real” vertex position for all other corrections.
The GSIM study also showed a necessary correction to the polar angle 8 correlating to multiple

scattering within the Region 1 and Region 2 drift chambers (Section 2.5.2):

[d6 = —52(0.0186 + 0.002/p) | (4.20)

where the particle momentum p is measured in GeV, and éz = v, — (v,).
As in the case of raster corrections, a correction must also be made to the azimuthal scattering
angle ¢, due to effects of the target magnet and the changed location of v,. The GSIM parametrized

correction needed is 18

dp = 0.015¢0z/p | (4.21)

where the charge ¢ = +1 as appropriate.

4.2.6 Stray magnetic field correction

The SEB track reconstruction software accounts for the target solenoid field in the vicinity of the
target. However, it is unable to account for the effect of the field in the region of overlap with the first

layer of drift chambers and outward (see Section 2.5.1). Along with the multiple scattering effects

7See the note in Ref. [114], Section 5 and Ref. [8] Eq. 2.86 (for example) for a justification of this weighting scheme.
BUnlike the case for the ¢-correction in Eq. 4.10, this ¢-comrection can affect elastic ep analysis, because the value of 6z
can be different for both the electron and proton.
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(previous section), the GSIM software was used to parametrize the necessary corrections due to

extension of the magnetic field into the inner detector components.

|48 = 0.005(9 — 0.26)/p| (4.22)
and
dé = —0.0015¢+/2.2(6) /p (4.23)

are the corrections,? fit from a parametrization of the GSIM data, with 8 and ¢ expressed in radians.
A reevaluation of the beam energy using elastic ep data and Eq. 4.15 showed beam energies in
much closer agreement with the the Hall-A scaled beam energies than previous studies after this

correction was applied [114].

4.2.7 Energy loss (dE/dx) correction

As explained in Section 4.2 .4, particle energy loss through collisions within the target must be taken
into account for accurate energy/momentum determination. The situation is slightly more complex
for particles emerging from the target after the scattering event.

The correction is identical, in principle, to the beam energy loss correction, except that there is
a polar scattering angle through the remainder of the target thickness, meaning the total energy
loss of the scattered particle must be divided by cos@. Also, while the collisional energy loss of 2.8
MeV/g-cm? (see Section 4.2.4) can be used again for electrons, for which 3 = 1, collisional energy
loss for hadrons is -dependent, and can vary considerably.

Collisional energy loss in heavy ionized particles is governed by the Bethe-Bloch formula [8]:20

1dE 2 Z1 2m.c2y2 32 2
& 47rNaremec22E [In (———f—— -8 (4.24)

¥These equations are similar 1o, but not exactly the same as those listed in Ref. [114]. This is due to an update in the
parametrization since Ref. [114] was written.

2We have used Wiar = 2mc?g%+2 (a valid high-energy assumption) and § = v/c to get this form from that shown in
Ref. [8]. The constant r. is the “classical electron radius®, and N, is Avogadro’s number.
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Using the approximations Z/A ~ 0.5, and I ~ 10 eV x Z ~ 90 eV (where [ is the mean excitation

potential), this yields

__ld_E_ ._____Mev - E 2 2 _ a2
o dz [g cm2] = 0306 x 25 x [In(2 x 5115%7%/0.090) ~ 7] (4.25)

which is the energy correction for scattered hadrons.

To calculate the total energy loss, AE, the above quantity must be multiplied by pAz,2' with
pAzlglem?] = [(6z + 0.5 cm)pm, + parlar + Pl + prebise] / cos 8 (4.26)

where 4z is the distance between the target center {-55.1 cm) and the average vertex position (given
by Eq. 4.18), ¢ is the polar scattering angle of the particle and 0.5 cm is the (approximate) distance
from the center of the target material to the window. The remaining densities and lengths are given

in Table 2.1. Using these values (for ammonia, aluminum, Kapton and liquid helium)?? we find
oalar + pxli ~ 0.1 glom? (4.27)

and

pHelre =~ 0.3 glcm?® (4.28)

We also have pnu, = 1 g/em3, but this must be multiplied by the packing fraction, that is, the fraction
of the target volume actually occupied by solid ammonia. This quantity is derived formally in Section

5.5.1, and equals approximately 0.6. Thus, we have

pAz[glem®] = [0.6(8z + 0.5) + 0.4}/ cos (4.29)

HAE — 4E can salely be assumed for a thin target and high energies.

2Naturally, this equation hoids “strictly” only for the ammonia target runs. However, the carbon target was chosen so
that it has the same approximate radiation length X, as the ammonia target, so that the same corection is usable as an
approximation. The 15N target is also approximately the same in dimensions and density as the ammonia target. The empty
LHe target differs considerably in radiation length, but the empty target is only used as a small correction to the inclusive
dilution factors, utilizing only high energy electrons, which are only minimally affected by dE/dx comrections. Measurements
of the total cell length L also use the LHe target, but these again rely on an average across alt DIS electrons compared
to carbon, and are radiation length comrected. The dE/dx corrections for the ammonia target thus sufficed generally as a
leading-order correction.
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for the desired quantity. This is multiplied by Eq. 4.25 (for hadrons) or 2.8 MeV/(gfcm?) (for elec-
trons) for the appropriate correction to the outgoing particle energy. This value must be added to
the measured energy, as it reflects energy lost in the target and missed by the detectors. 2

Note that by no means is this an exact correction, due to all the approximations involved, and the
margin of error involved in the calculation of the vertex position. The total internat target energy loss
is generally less than a few MeV for inclusive electrons,?* though, making this approximation gen-
erally adequate for energy scales on the order of 0.1-5.0 GeV. Like the other kinematic corrections
detailed in this section, it is only a first-order correction meant to improve the general precision and
accuracy of particle momentum measurements, and provide as refiable as possible a starting point

for the momentum corrections, the most important and final part of the base correction package.

4.2.8 Momentum corrections

The kinematics corrections previously described account for the physical effects of known, directly
quantifiable phenomena. These corrections serve to reduce the systematic biases in the measure-
ment of particle momenta and angles (a necessary precursor to a complete momentum correction
scheme [115]). However, the task still remains to account for the effect of “unknowns” on the par-
ticie kinematics, that is, effects that cannot, due to practical considerations, be accounted for by

direct physical measurements or caiculations. Such effects include (but are not limited 10)

» Slight misalignment of the drift chambers from their nominally determined geometric positions

o Errors in the calculation of the location of drift chamber wire feedthrough holes

Effects of gravitational sag and thermal expansion on the drift chamber wires

o Inexact knowledge of both the main torus and target solenoid magnetic fields

Possible (but indeterminable) errors and/or miscalculations regarding the physical effects ac-
counted for in previous stages of the kinematic corrections (e.g. raster ADC timing lag, un-

known torus current offset, systematic timing errors missed during calibrations, etc.)

BThe resolution limits of the z-vertex occasionally resulted in a particle with a reconstructed vertex outside the target
window. In that case, the vertex was assumed to be on the target edge for purposes of the dE /dz calculations.

24Multi-particle exclusive event data have have lower momentum and higher dE/dz. Low-momentum protons, for exam-
ple, can lose up to 20 MeV in this manner.
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These miniscule but cumulatively significant effects can definitely not be accounted for by spe-
cific physical corrections. Obviously, other, more indirect means must be used to correct for these

effects.

Momentum corrections: initial strategy

The process used to precisely correct the EG1b particle momenta utilizes the fact that 4-momentum
conservation is required for specific dynamic scattering processes (i.e. resonances). The particle
momenta are corrected for these miscellaneous effects by the fitting of an expression, containing
14 different correction coefficients, corresponding to the most pertinent of the expected physical
effects mentioned above. The expression is fit (separately, in each of the 6 CLAS sectors) to the
momentum and scattering angles corresponding to these resonances, such that 4-momentum is
conserved to the best possible precision [115].

Eight fit parameters (A — H) were used to parametrize the effect of drift chimber dislocations
(relative to Region 1) on p and @ in terms of p, & and ¢ (with ¢ written in sector coordinates, that is,

(¢ — ¢s) — ¢, where ¢s marks the center *baseline”of the sector):®

A0 = (A + Bg) ;’:Z +(C + D¢)sind (4.30)
Ap _ ((E+F¢)°°SH+(G+H¢) ma) P (4.31)
p cos ¢ "7 ) tBrorus :

Terms are included to correct for offsets in the radial position (factor cos8/ cos $)%, ¢-dependent
radial displacements (i.e. rotations around the z-axis; factor ¢ cosf/ cos¢ terms), displacements
along the z-axis (factor sin 8)%, and rotations about the ¢-direction (factor ¢sin8). The quantity
Biorus = [ B, dl along the track path is given by [116]

Fiorus SIN> (46)
3375 -6

SNote no ¢-correction terms are included. This is because ¢-coordinates are calculated with a larger intrinsic uncertainty,
so that the precision corrections in this phase would have little, if no noticeable effect on the final resolution [115].

2The factor of cos @ arises from a vertical offset Ay because the offset in p and 8 becomes largest at forward (smaller)
angles. The 1/ cos ¢ factor arises because of the flatness of the drift chambers and because the particle track in ¢ is only
perpendicular to the DC surface at ¢ = 0, the sector center.

27The factor of sin 8 arises from a horizontal offset because the effect of the offset is greatest at larger polar angles.

Biorus = 0.76 6 < 7/8) (4.32)
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Ito'rus
= Q. >
Biorus = 0.765222%% (6> 7/8)

with @ given in radians.

As well as mechanical displacements of the drift chambers, differences between the real mag-
netic field and the field map used in event reconstruction must be taken into account. As these
corrections are a function only of the field geometry, no p-dependence is expected. To account for

this effect, the terms

Jcosf + K sind + Lsin(26) + (M cos@ + N sin 0 + Osin(26))¢ (4.33)

were added to Eq. 4.31. 22 Note that each variable A-O represents six actual variables, one for
each sector. From this point on, it is implicitly assumed that the fit variables A, B, C, ..., O are actu-
ally A,, B,, C,,....O0, where s = 1...6 corresponds to the sector number of the particle.

Drift chamber dislocation and magnetic field uncertainty are the two greatest impediments to
accurate momentum determination, and are the effects directly accounted for by the terms in the
momentum corrections. However, other, smaller effects on the momentum not accounted for ear-
lier are also absorbed into the 14 x 6 = 84 coefficients used in the momentum corrections, as the
missing momenta in exclusive reactions are centered exactly at zero by the correct choice of coef-
ficients. For this reason, care was taken that prior corrections were not be altered in any way once
the coefficients A-O were determined.

To determine the coefficients, the transverse momenta (p.., p,, p.) of elastic ep scattering events

were analyzed. For each event, the missing momenta and energy were calculated:

Pzpmiss = Pz, + Pz, = Pe SN O cos pe + pp sin O, cos ¢y, (4.34)
Dymiss = Py. + Py, = Pe Sin b sin ¢, + pp sin b sin ¢y, (4.35)
Pzmies = Pz + Pz, — Ebeam == Pp COS e + Pp cos ap - Ebeam (436)

Eiss = pe+ v/ Pf, +M2-M - Eyeam (437)

ZUnlike the drift chamber position terms, the field correction terms were arrived at by trial-and-emor [115), and are not
easily respresented term-by-term as dependent on phenemonological comections.
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Then, the functions for Ap and A# were added to the values of p and @ in the missing momentum,
to find values of the coefficients A-O that brought the x? of these values closest to zero. Egs. 4.30

- 4.33 were applied (starting with all coefficients A-O at zero), the substitution
9—>9+Aa;p—»p(1+%3) (4.38)

was made, and the missing 4-momenta (Eq. 4.34-4.37) were recalculated.

The sum

E2 ) 2 ’ ) 2 ) 6 4 X2
Ao = Z ( ;nzzss +Px,;m +P§..;s, +Pz.;m + Z Z ! (4.39)
events E . %oy %%, sector=1a—1 ? Xa

was then minimized (through iterative reapplication of the correction equations), resulting in the
best values for the parameters A-O in each sector using the MINUIT minimization package. 2°
The intrinsic measurement uncertainties for the 4-momenta are set to oz = 0, = 0.020 GeV and
0p, = 0p, = 0.014 GeV,

The sum over coefficients at the end of Eq. 4.39 is added in order to prevent the problem of
“runaway solutions” for the fit variables (a common problem in fitting large numbers of variables in
any fitting algorithm). Here the X, are the 14 fit variables A-O specific to each sector. An intrinsic
uncertainty of 0.001 was used for o x_, except for the ¢-dependent displacement terms (F and H),
which have a larger intrinsic uncertainty (o = oy = 0.01).

Once MINUIT optimized the fit variables, the correction Eqs. 4.30 - 4.33 were applied to p, =
psinfcos ¢, p, = psinf@sing and p, = pcosé as part of the kinematics correction package, prior
to writing these quantities to the ROOT tree files. This method makes a significant improvement
to both the precision and accuracy of the elastic peak location, as the cumulative effect of the

corrections shows (Figure 4.12).

29Minimization of 84 variables might appear to be formidable task for MINUIT. However, many of the constants are ef-
fectively decoupled from one another (e.g. variables in different sectors; magnetic field from DC displacement constants (if
inbending and outbending are both included), etc.), and the stable equilibrium diplacement is close enough to the initializa-
tion point that the values rapidly converge when Eq. 4.39 is applied [117].
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Figure 4.12: Deviations of elastic ep scattering kinematics (of the electron) from the values expected
for elastic events. Missing energy, theta, and phi values are expected to be centered at zero, while
invariant mass (W) should equal the proton mass (0.938 GeV). (See Section 3.5 for calculation
of these quantities.) The blue histograms represent data with raster and torus scaling corrections
only; the red histrogram adds energy loss and beam energy corrections; green adds stray target
field and multiple scattering corrections; and black marks the addition of final sector-dependent

momentum corrections. Combined ep data from all 2.x GeV NH; runs are shown.
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Additional corrective terms

After the completion of momentum corrections, there were still a couple minor problems with the
proper centering of the elastic W-peak between inbending and outbending sets, when using the
same correction constants for every set. It was determined that the resolution of the elastic missing
mass peak could be improved if the total momentum was slightly shifted for the outbending (i.e.

negative torus current) sets:

P J fina

This minor correction was necessary to preserve the ease of drawing from a single set of constants
with uniform utility. As one can see from a quick look at the T, values in Table 4.4, they are very
small corrections indeed. In the largest case, less than half a percent of an adjustment is made to
the total momentum.

It was very difficult to get a correct fit of the parameters to low momentum particles, due to their
sensitivity to changes in the coefficients. Since these particles do make some contribution to the
elastic peak,% it is possible to include correction terms that give a slightly better improvement to
elastic events if a correction is also applied directly to p instead of just to Ap/p. In practice, two

terms are added to the total momentum, one of them a factor of ¢3!
Pfinal =P+ Q+ R (4.41)

where @ and R are sector-dependent constants of opposite signs. While these are negligible
corrections for high momentum particles, they contribute a comparably larger percentage to the
correction as momentum decreases, since the terms are added directly to the momentum, not the
ratio Ap/p.

After adding these additional torus polarity-dependent and low-momentum corrective terms, the
fit was redone, and found to give a better distribution for the elastic peak region than Egs. 4.30 -

4.33 alone.

300ne can calculate My = 2E sin?(0/2), for elastic events. Thus, these events are at the largest measurable scattered
angles in CLAS.
3tThe angle ¢ is defined, as before, in the sector coordinate system.
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Figure 4.13: Distribution in @ of elastic ep events for the 2.5 GeV outbending data. Approximately
equal numbers of events were sampled from each shown bin for momentum correction. Bins with
too little data for a significant sample were not used in the fit at all.

Proper weighting of the correction function in ¢

Because the distribution of scattering events is a statistical function, the correction factor must be
weighted properly as a function of the magnetic field and detector geometry. The scattering is ho-
mogeneous in ¢, so this coordinate constitutes no problem. However, the distribution is definitely
not homogeneous in @ (see Figure 4.13), leading to a heavier weighting of the function in certain
regions (peaking at 6, = 27° in the shown set). The correction function should not be given prefer-
ential weighting for events in any specific part of the detector geometry.

To correct for the possibility of improper weighting, elastic ep events were divided into 1° #-bins,
and only a certain percentage of events in each bin (selected randomly) were used in making the
MINUIT fit. The percentage used for each bin was chosen so that the distribution of the elastic ep
events used for the momentum correction was constant in @, eliminating any possibility of a weight-
ing bias introduced by the strong polar angle dependence of the detected elastic events.

In spite of this precaution, extension of the fit to far forward scattering angles (6. < 12°) still
proved to be problematic, as there simply were not enough exclusive scattering events in this kine-

matic range for a reliable fit. This problem is addressed in Section 4.3.
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Extending the fit to the resonance and DIS region

Although this fit gives satisfactory resuits for elastic ep events at W = M = 0.938 GeV, the question
remains open as to whether extrapolation of the fit to the inelastic region (W > 1.077) gives equally
valid results. To ensure a reasonable fit to the data at all kinematics, a scattering reaction was

chosen for the fit in the inelastic region, in addition to the elastic ep events. The exclusive reaction

ep— epmtm™ (4.42)

is a dominant decay channel, just far enough in the inelastic region (W =~ 1.23 GeV) to serve this
purpose, while still providing enough statistics to contribute significantly to the fit, assuming an
appropriate weighting scheme is used.

The process for incorporating these events is virtually identical to that used for elastic ep events.
Events where all 4 outgoing particles can be identified (by time-of-flight) are used to reconstruct
the given events. Then, 4-momentum conservation is enforced for the sum over all particles at the
vertex (resulting in twice as many terms for the fit equation parameters in the equations analogous
to Eq. 4.34 - 4.39, of course). For each configuration of beam energy and torus current, the ratio of
eprtn~ 10 ep events used for the corrections was approximately 1:5. 32

Study of the distributions of missing transverse and longitudinal and momenta for exclusive
eprtn~ reactions before and after corrections [114] show that the momentum corrections improve
the kinematic fit in the inelastic as well as elastic region. It is important to keep in mind that these
fits are iterative in nature. After a fit is done with the initialization of A-R and T, all to zero initially,
it is redone with improved values of these coefficients until stable values are reached. Final values
of the correction coefficients are listed in Table 4.3. if done correctly, only one set of fit parameters
is needed, regardless of the beam energies and torus currents used. 3

With these final corrections applied, the most accurate and precise momentum corrections pos-
sible with the available data can be ensured, as the procedure utilizes well-known reactions and

the actual data, as opposed to externally measured parameters. Two differing scattering processes

3210000 eprtn— and 50000 ep events per set were used, specifically If 10000 inelastic events were unavailable, then
the fit was simply done with a lower ratio of inelastic to elastic events. Also, no theta-dependence scaling was employed for
the eprt»~ events.

33The sole exception is the single Tse: correction variable.
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(one elastic and one inelastic) are used, removing the inherent uncertainty of extrapolating from
a single value of invariant mass W. Figure 4.14 demonstrates the net improvement of missing

momentum as function of ¢ as a resulit of this correction.

Table 4.3: Sector-dependent Momentum Correction Parameters for EG1b.

| Parameter | "Sector1 | Sector2 | Sector3 | Sectord Sector5 | Sector6 |
A 0.00091 0.00085 -0.00005 -0.00084 -0.00152 -0.00162
B -0.00265 -0.00112 -0.00425 0.00269 -0.00052 0.000145
C -0.00369 -0.00465 -0.00130 0.00103 0.00147 0.00091
D 0.00236 0.00266 -0.00156 -0.00363 -0.00355 -0.00534
E 0.00003 -0.00063 -0.00423 0.00239 0.00041 0.00072
F 0.02302 0.01214 0.01677 -0.01380 0.00404 -0.02218
G 0.00261 0.00715 0.00510 -0.00439 -0.00065 -0.00552
H -0.03800 -0.01755 -0.01946 0.02098 -0.00409 0.04574
J 0.00117 -0.00593 -0.00277 0.00258 0.00273 0.000992
K -0.00348 0.00304 -0.01285 -0.01154 0.780 -0.00584
L -0.00000976 | -0.00000899 | 0.00000164 | -0.0000162 | -0.0000183 | -0.00000878
M -0.00200 -0.00393 0.00 -0.00400 -0.00678 0.00319
N -0.00778 0.01507 -0.01295 -0.01491 -0.00755 -0.00623
[e; -0.0001340 -0.0000603 0.0000082 0.0000144 | -0.0000485 0.0000755
Q 0.00196 0.00183 0.00120 0.00117 0.00080 0.00139
R -0.00094 -0.00463 -0.00486 -0.00523 -0.00120 -0.00437

Table 4.4: Torus current-dependent parameter T, for outbending sets.

| Set | Toet ]
1.6— -0.000159
1.7— 0.000705
2.5— 0.000308
42— 0.003203
56— | -164x10~ 7
5.73— 0.000854
5.76— -0.000589

4.3 Momentum Correction at Low ¢

The momentum corrections described in the previous section are satisfactory for the correction of
data in kinematic regions where exclusive ep and epntn~ events are plentiful, which is over most

of the CLAS acceptance. However, at low values of @ (the electron scattering angle) there are no
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Figure 4.14: Plots of ¢ vs. Ap/p for elastic ep events before and after sector-dependent momentum
corrections, shown for sector 3 for 2.5 GeV outbending data. The mean value of Ap/p is greatly
improved after application of the correction.
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elastic ep events3* and very few eprt7~ events. Therefore, in the region 4 < 12°, the momentum
corrections of Section 4.2.8 are using an unrefiable extrapolation of the momentum correction func-
tions into the forward angle region. A large proportion of the inclusive data (especially at low Q?)
lies in this low angle range, so that accurate momentum corrections are essential for a complete
analysis.

Study of inclusive scattering events at low angles, after momentum corrections were complete,
indeed showed that the elastic peak location was not consistent as a function of ¢. Only inclusive
scattering events consistently cover this kinematic region, meaning that momentum conservation
at the vertex cannot be employed to correct the kinematics. Instead, a correction function in terms
of ¢ and @ is fit to the momentum p such that the offset of the elastic missing mass peak value
Wpear — M is minimized.

P. Bosted and N. Guler developed, through trial and error, a fit function that changed rapidly

enough in ¢ to accomodate the complex magnetic field in the forward region:

E}; = E| {1 +0.02 [U + (V +W 3(1)0 (¢ - 300)) (13")3] } (4.43)

where U, V and X are fit coefficients, determined independently in each of the 6 sectors. %

Separate parameters are required for inbending and outbending torus currents, but there is no
dependence on the torus current magnitude or beam energy. Note that the listed values (in Table
4.5) correspond to negatively charged particles. Particles with positive charge require use of the
coefficients corresponding to the opposite polarity.

Because inclusive electrons are scattered from NH3; molecules, not just free protons, the W-
peak is not just an elastic peak, but rather an elastic peak superimposed on a broader quasi-elastic
background, contributed by scattering from the !°N nucleus. To better locate the true W-position
of the elastic peak (rather than the position of the peak plus background), it is useful to divide the
normalized count rate of NH; events by that of the NDj3 target scattering events. 3 Then, the 15N

HThis is due to an inability to detect back-scattered protons, at farge angles where the target solenoid and support frame
cut off the acceptance.

35Here, 8 and ¢ are determined at the inner layer drift chamber, not the event vertex.

380 2.3 GeV inbending, where NDj3 is unavailable, 12C was substituted. This gives similar results, though with less
statistics.



227

o,
N
b,

e

T T

R i

LT

. e PP T S PP

7 . e
r .. e LT

Figure 4.15: Ratios of NH3/ND3 spectra for six different ¢-values in Sector 1, at ¢ < 13°, separated
by an arbitrary offset for visibility. Corrections are obviously needed to center the peaks at the
proper elastic value of W = 0.938 GeV. Piot courtesy P. Bosted.

background cancels in the ratio, leaving the ratio of the free proton elastic peak to the deuteron
quasi-elastic peak. The deuteron peak is considerably more narrow than the '°N peak, resulting
in considerable narrowing and more precise location of the exact elastic peak position. This ratio
was calculated in 10° ¢ and 1° @ bins, and the peak location W, was then simply the maximum

point of this ratio. 3’ Figure 4.15 shows a (pre-correction) example of this peak ratio in each of the

6 sectors.

The coefficients U-X were then fit using MINUIT such that

D Wear(6,4) — M =0 (4.44)
0,¢

An example of the fit, made individually for each sector, is shown in Figure 4.16. Sector 6 did not

37This assumes a reasonable W-range of course. At extreme low W, where statistics are low, the count ratio can trail
spuriously up to extreme values that are obviously not associated with elastic events.
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Figure 4.16: A fit of the low angle momentum corrections for 8° < # < 9° for 4.2 GeV outbending
data, shown for missing momentum Ap/p. Lines represent a fit to the data points after the correc-
tions of Section 4.2.8. Error bars are estimated, and depend only on beam energy. The x points
represent the data before the momentum corrections of Section 4.2.8. Plot courtesy P. Bosted.

behave according to any easily fit function; the improvement in this sector is only slight compared
to the other five.

Fit coefficients in each of the 6 sectors are listed in Table 4.5. The fit function is designed to
maximize influence at forward angles (manifested by the inclusion of the 10° /4 term). It has little ef-
fect in higher @ regions, where the momentum corrections of Section 4.2.8 have already adequately
calibrated the momentum. At small 8, however, the corrective effect is quite significant (see Figure
4.17), and indeed necessary for consistent kinematic determination between energy sets.

In practice, the correction was most effective for data with low beam energies and outbending
torus current, where low Q2 data are most abundant. This “patch” correction was thus applied only
to the data sets where improvement in the elastic peak resulted, namely all outbending data where

Epeam < 4.2 GeV, as well as 1.6 GeV inbending data. Note these coefficients were determined
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Figure 4.17: Inclusive electons for 8 < 11° shown for Sector 1, from one run of 2.5 GeV outbending
data. The histograms represent events in ¢ vs. W — M before (left) and after (right) the special low-
6 momentum corrections. in both cases, the standard corrections of Section 4.2 have already been
applied. The corrections are not perfect, but do show a marked improvement, without sacrificing
the smoothness ensured by a global correction.

independently of the momentum corrections of the previous section, only after the previous correc-
tions were completed. Figure 4.18 shows the net effects of all the kinematic corrections on some

sampled data.

Table 4.5: Sector-dependent forward-angle correction coefficients for EG1b, for inbending and out-
bending electrons. For positively charged particles, coefficients corresponding to the opposite torus
polarity are used.

| Parameter | Sector 1 | Sector 2 | Sector 3 | Sector 4 | Sector 5 | Sector 6 |

QOutbending
U -0.0472 | -0.0378 | -0.2485 | -0.0066 | 0.0257 | -0.5182
Vv -0.2235 | -0.1650 | -0.0532 | -0.2370 | -0.2588 | 0.1406
X -0.2730 | -0.1789 | -0.4687 | -0.1929 | -0.1733 | -0.2743
Inbending
U -0.2238 | -0.2621 | -0.0024 | -0.1918 | -0.1217 | -0.1203
|4 0.2786 | 0.3348 | -0.4065 | 0.3624 | 0.2378 | 0.1846
X -0.963 -0.748 0.713 0.591 -0.032 -1.070

4.4 Fiducial Cuts

As already noted, the calculation of asymmetries does not require knowledge of the acceptance

of different detector regions. However, the calculation of dilution factors (see Chapter 5) requires
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Figure 4.18: Net effect of kinematic corrections at § = 13° for 4.2 GeV outbending data on the
inclusive event spectrum. Various colors represent differing ¢-bins, all in Sector 3. Plots courtesy
N. Guler.

that the acceptances of the 12C and LHe runs are the same as the acceptance of the NHj runs,
as dilution factors are directly dependent on the ratios of counts from these differing targets. The
kinematic acceptance of a detector is a direct function of the geometry of the apparatus. Therefore,
specific regions of the detector where the acceptance is not well-understood must be removed from
the analysis.

Drift wire chamber and scintillator components of the CLAS detector (i.e. the DC, SC, and EC)
can be considered as “perfectly” efficient devices, in that they respond to practically 100% of in-
clusively scattered electrons. 38 Due both to limitations incurred by properties of the Cherenkov
gas, and reflective loss within the mirror geometry, however, the Cherenkov Counter (CC) exhibits
definite inefficiencies in the identification of electron triggers.

The purpose of fiducial cuts, then, is to remove electron hits in inefficient regions of the Cherenkov
Counter from the data used in any acceptance-dependent calculations. In an inefficient region of
the CC, statistical fluctuation in the number of observed photoelectrons is too great to determine an

accurate measurement of electrons, due to the narrow Poisson distribution of the photoelectrons.

38This is true during gated live time, assuming the momentum is not too low. This is part of the reason a low-momentum
cut is used on inclusive data. The drift chamber is 98+% eflicient {(assuming occupancies are not too high) [74} , and
scintillator devices (like the EC and SC} are generally nearly 100% efficient to high-energy electrons [8].
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4.4.1 Determination of Inefficient CC Regions

To implement the fiducial cuts, a criterion for determining the expected number of photoelectrons
in each region of the Cherenkov Counter was established. A thorough study of the behavior of the
CC, using 1.6 GeV data taken before the the EG1b data,® has already been done by A. Vlassov
[120].

This study entailed measuring the average number of photoelectrons generated by hits from
elastically scattered electrons as a function of # and ¢ (measured at the EC/CC). Preliminary cuts
were made in W, the fraction of particle energy deposited in the EC, and the vertex reconstruction
point in order to enforce a rudimentary exclusion of inelastic hits and pions. A limit on the deviation
from the matching point between the EC and CC was also made to exclude poorly maiched tracks.
The average number of photoelectrons produced for these events was then recorded over the full
area of the detector, as a function of 4 and ¢, measured at the SC/EC plane. Once the geometric
dependence of the expected number of photoelectrons was empirically determined, an applicable
function was developed to determine the expected number of photoelectrons in the CC as a function
of particle track coordinates.

To calculate the actual efficiency as a function of ¢ and ¢ in each sector, it was assumed that
the number of photoelectrons generated by a hit in the detector region obeys a Paisson distribution.
40 For purposes of cutting down pion contamination, a fower limit of 2.0 photoelectrons was used
for electron definition. The efficiency at any particular point in the CC can then be determined by
finding the percentage of events in the Poisson distribution (with a mean value determined by A.
Vlassov’s function) that remain after all the events with less than 2.0 photoelectrons are removed
from the distribution. Thus, the efficiency of a detector location can be expressed in terms of the

expected photoelectrons (1) and minimum photoelectron cutoff (c) as

ur
efficiency = ) _

e"l"
n!
n>c

(4.45)

39The E1b experiment, completed in 1999, was used.
40See Footnote 15 in Chapter 3.
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Figure 4.19: Plots of detected electrons in 8 vs. ¢ for a quarter million 2.3 GeV EG1b events,
contrasting the measurement of ¢ as reconstructed at the vertex (left) against actual Region 1
DC coordinates (right). The inner drift chamber ¢ measurement (right) shows less distortion with
respect to 4, and is the value used for both determining and applying fiducial cuts.

An efficiency of 80% was a used as a cutoff for exclusion of inefficient CC detector regions,*!
which corresponds to an approximate value of 4.3 expected photoelectrons in a Poisson distribution.

Plots in 0 vs. ¢ were made for each sector, showing only events that registered above the
calculated photoelectron threshold. Geometric cuts were then made on these plots to exclude
regions that did not contain a significant density of events meeting this minimum requirement. The
polar angle 6 was measured as arctan(p,/p,) (reconstructed from the DC and SC tracking), but,
due to the axial target polarization field, the azimuthal angle ¢ was measured at a point independent
of the vertex. The innermost layer drift chamber provided a more geometrically stable determination

of the ¢-coordinate (see Figure 4.19). 42

“1This is a somewhat arbitrary number. However, it was noted from the fiducial cut histograms that the dropoff in expected
photoelectron rate occurs at such a steep slope with respect to location that even large variations in this value do not change
the location of the cut boundary in any significant way.

“2The sector-by-sector ¢ ¢ coordinates translate to the equivalent reconstructed $e as ¢e(°) = ¢pc + 60 x (sector —
1) — 30, minus 360 if ¢ > 180°.
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4.4.2 Determining the Fiducial Cut Boundaries

Different cuts were used for inbending and outbending electrons, due to the differing trajectories
through the Cherenkov Counters corresponding to a given scattering angle. In both cases, a func-
tion symmetrical in ¢ that suitably evolved with the electron momentum was used. Inbending elec-
trons were the simpler case, as only one cut curve was required, and each sector has a similar
enough geometry that the same cut could be used for all six sectors. Outbending electrons showed

greater variation in photoelectron efficiency from sector to sector, and required a more complex cut.

Inbending Cuts

For inbending electrons, the fiducial cut fimits for ¢ and & are given by

30° - Ap < ¢ <30° + Ag (4.46)

and

0 > Oco (4.47)

where the cut limits A¢ and 6..,,; are defined by

A= A- (sin( — Ocut)) ™™ (4.48)
with
c
exp. =B - (pe , 3375 amp. (4.49)
Itorus
and
E

Ocus = D + (po + F) 25800, (4.50)

Itorua

In these equations, p. represents the electron momentum, I,,.,, the torus current, and A, B,

C, D, E, and F are empirically determined constants. Roughly speaking, A, B and C control the

width and curvature of the cut, while D determines the minimum é-value of the cut curve, and £
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and F control the rate of evolution of the curve with momentum. 43

To determine the values used for these empirical constants, a curve drawn using these equa-
tions was superimposed on sector-dependent ¢ vs. 8 plots of particle events meeting the threshold
of required expected number of photoelectrons, as explained in the previous section. Bins in p,
of 0.15 GeV were used, ranging from 10% to 100% of the beam energy (in GeV). Previous deter-
minations of fiducial cuts in Hall B used fixed values of the empirical constanis over large regions
of the entire beam energy range, with no more than two sets of constants used for any set [2].
In order to better circumscribe the efficiency region, with no sharp “edges” cutting into the data
between kinematic bins, values for the six empirical constants were sfightly varied for each 0.15
GeV momentum bin, and the values were stored in an array. At p. > 4.0 GeV, variables were no
longer varied with momentum, as the pattern remained fairly stable. In addition, a parameter 8,,,,..
was added to determine the location of the “corner” of the cut (i.e. the maximum #-value before
¢ becomes constant). A maximum polar angle (#) limit of 49.5° was also added to cut electrons
scattering from the target solenoid. inbending fiducial cuts for a couple of different momentum bins
are shown in Figures 4.20 and 4.21.

The fiducial cuts are specifically dependent on the electron path geometry as a function of mo-
mentum. Thus, different fit coefficients must be assigned for each torus current value. The values of
the coefficients outlined above, for both +1500 A and +2250 A main torus current, are summarized
in Table B.3.

Outbending Cuts

Outbending electrons exhibited a more complex efficiency pattern than inbending electrons. Vari-
ation between sectors was too pronounced to use the same cut for every sector, so different cut
coefficients were determined for every sector.

A slightly different outer curve was used for outbending electrons:

30° — A¢ < ¢ < 30° + A¢ (4.51)

“Bin practice, A, B and D were adjusted, while the other three variables were left at nearly static values. Due to the narrow
momentum binning and everitual interpolation of the variables, adjustment of the other parameters was seldom necessary.
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Sector 5: CC efficient events in ¢ vs. 6(1.20 GeV < p <1.35 GeV) | [ Sector 5: All events in¢ vs. 0 (1.20 GeV < p < 1.35 GeV) l
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Figure 4.20: Inbending fiducial cuts for one momentum bin and sector for a torus current of 2250
A. The first figure shows only electron events meeting the 80% efficiency criterion as defined in the
text. The second figure shows all potential electron events, demonstrating that these cuts remove a
significant number of particles from the data. The excluded “eyebrow” structures that wrap around
the first plot are direct particle impacts on the CC PMT.

I Sector 4: CC efficlent events in ¢ vs. 0 (4.85 GeV < p <4.80 GeV) I || sector 4: All events in¢ vs. 0 (4.65 GeV < p < 4.80 GeV)
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Figure 4.21: Same as Figure 4.20, except for a different (higher) momentum bin and different sector.
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and

Ocut <0 < ohigh (452)

where
A¢p = A - (sin(6 — 6.5°))%°F (4.53)

1 \C
exp. = B- (5pc) (4.54)
1 F
Ot =D+ E- (1 - Zpscale) (4.55)
Onign = Min(40°, Opom,) (4.56)
35° 1 3375amp. 3
hom = e = | = - ———— +2.5GeV/c 4.57
™ (GeVic)? [5 (p “ | Trorus | )] (457)
1500amp.

DPscale = Pe - __E (4.58)

| Zeorus |

Here, A through F are empirically determined constants, just as in the case of inbending cuts.
Note that a maximum value in 8 is used in order to exciude events that might miss the EC due to
a large outbending angle. Additionally, the maximum ¢-dependent ¢ value of the cut boundary was
parametrized, just as in the inbending case. However, due to asymmetry in ¢, different values of
this angle were used for the upper ¢ and lower ¢ “corners” (0,pper and Giouer)-

In many cases, the center strip along ¢ in each CC sector (corresponding to the mirror joint at
the center “ridge” of the CC) showed regions of low efficiency. To remove this center strip from the

data, the following curve was used
300 + ¢center < ¢ < 300 - ¢center (459)

where
G

Deenter = m (4.60)

Due to pervasive asymmetfric efficiency patterns with respect to ¢, separate parameters were de-
termined for the upper and lower bounds of the curve, resulting in 4 (instead of 2) extra parameters

(Guppers Giower, Hupper, Hiower). In addition, two extra overall additive offsets in ¢ were included for
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both the inner and outer boundaries (innerof fset and outerof f set).

As in the case of inbending fiducial cuts, values of all these parameters were determined for
each 0.15 GeV momentum bin ranging between 10% and 100% of the beam energy (again varied
only up to 4.0 GeV), and their values were recorded in a variable array. Some examples of out-
bending fiducial cuts for various momentum bins are included in Figure 4.22. Unlike the inbending
cuts, outbending fiducial cuts differed for each sector. This resuited in a very large number of pa-
rameters. However, many of the parameters are similar in value, requiring only minor adjustments
from sector-to-sector and bin-to-bin. The outbending fiducial cut parameters, for torus currents of

both —1500 and --2250 A, are listed in Table B.5.

4.4.3 Interpolation of Cut Parameters Between Momentum Bins

To avoid sharp “edges” that can appear between bins when cuts changed suddenly (potentially
with unpredictable effects on the measurement of count ratios near such an “edge”), the parame-
ters were smoothly interpolated between momentum bins, and the fiducial parameters were made
into a variable function of the particle momentumn. The cut function was modified to make a uniquely
determined fiducial cut boundary on each electron based on its individual momentum by interpolat-
ing the values of each parameter with a curve from bin to bin. A third-degree polynomial was fit in
up to 4 (but usually only 2 or 3) momentum regions for each parameter to generate a variable cut
function in terms of § and ¢. All variable parameters were treated this way for inbending cuts (see
Figure 4.23 for two examples). For outbending cuts, only the outer cut boundary was treated in this
manner; the center strip was left determined by a discrete function in p. 4

The interpolated values*> were then referenced (along with the discrete center-strip outbending
parameters) in a C++ function which returned an acceptable hit value only for electron events with

8 and ¢ values within the designated cut boundaries.

“4Evolution of the center strip cut parameters G and H varied too unpredictably between momentum bins to be reasonably
interpolated by a polynomial fit.

“SThese are A, B, C, D, E, F for both inbending and outbending cuts, plus 0., for inbending cuts of fupper, f1ower and
outerof fset for outbending cuts.
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Figure 4.22: Outbending fiducial cuts, shown for two different sectors in the same momentum
bin. Notice the differences between the two cuts (especially in the center strip). The top image
shows electrons meeting the 80% efficiency requirement, and the bottom shows the same data
set, showing all events in both sectors. (The empty vertical “strip” on the right hand plots is due to
an inactive SC paddie.)
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Figure 4.23: Graphs of the interpolated values between momentum bins of fiducial cut constants.
Shown are the 0,,,, values for torus current +1500 A and A in sector 1 for —1500 A, as two
examples. The polynomial fit parameters were then used in the fiducial cut function in place of the
discrete fit parameters.

4.4.4 Application and Effects of Fiducial Cuts

The fiducial cuts outlined in this section are necessary for removing regions of the Cherenkov de-
tectors where the response and acceptance are not well understood. This is crucial when direct
count rates are used in analysis, as in the case of dilution factor (Section 5.6) measurement. How-
ever, asymmetry measurements are not dependent on the detector efficiency or response.

Fiducial cuts are a very restrictive set of cuts, especially for high momentum inbending data (as
can be seen in Figure 4.21). It is desirable, therefore, to use the fiducial cuts only when needed.
Therefore, fiducial cuts are only used for measurements where clean count measurements are
needed (e.g. dilution factors, pion background calculation, etc.). The asymmetry A (Eq. 1.209) is
then measured without the fiducial cuts.

The case of inbending data, however, still presents a concern, due to the electrons directly im-
pacting the Cherenkov photomultiplier tubes in this configuration (depicted in Figure 4.20). The high
photoelectron counts in this region are not necessarily a Cherenkov response, and thus this data
cannot be relied upon for a good PID. Therefore, a second set of “loose” fiducial cuts was made for
the inbending data that only cuts out the region of direct PMT hits. 46 This cut, shown in Figure

4.24, uses only 2 sets of parameters (for p < 3 GeV and p > 3 GeV) and uses no parameter inter-

“6The high angle limit is also left in place to prevent scattering from the target solenoid.



240

Sector 4: CC Efficient hits {3.45 GeV < p < 3.60 GeV)
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Figure 4.24: “Loose” fiducial cut for one momentum bin and sector for inbending data. The bands
of direct PMT hits in the CC were specifically removed by these cuts.

polation. 47 This loose cut was applied to inbending Ay, data, while no fiducial cuts were used on
the outbending A;; data. Table 4.6 summarizes the parameters used for these less restrictive cuts
for inbending data. Unlike the the other fiducial cuts, the parameter 8,,,. is replaced with ¢g;p,i:-
That is, the constant ¢-edge of the cut is explicitly defined, instead of determined in terms of 4.

For convenient reference, a simple set of “starting parameters™ are alsc included for the normal
(tighter) inbending and outbending fiducial cuts in Tables 4.7 and 4.8, respectively. These parame-
ters do not provide the smooth transition between bins like the refined cut parameters in the longer
parameter tables, but provide a reasonable starting point for the development of future fiducial cuts.

The decision to use different cuts for asymmetries and absolute count rates arose partially from
an investigation of the Q% and W dependence of the measured rates of data with and without fidu-
cial cuts. Omitting fiducial cuts from asymmetries allows for an expansion of the measured range
of A;; slightly beyond the viable range of the measured dilution factor. The dilution factor can then

be applied to the asymmetry in all kinematic regions by the extrapolation of a smooth model (see

#This less intricate method resulted in limited accidental regions where the “tighter” cuts actually kept data excluded by
the supposedly “looser” cuts. Thus, the cut subroutine was modified in the “loose” case to keep events that pass either cut,
so that the “tight” cuts always retained a subset of the “loose” cut events.
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Table 4.6: “Loose” inbending fiducial cut parameters. These cuts are intended for removal of direct
Cherenkov PMT hits only, and should not be applied to acceptance-dependent measurements.
These numbers correspond to p in GeV and all angles are in degrees.

Parameter | p <3 GeV | p >3 GeV

A 41 41
B 0.26 0.26
C 0.30 0.30
D 9 8
E 16.72 16.72
F 0.06 0.06

Dlimit 21.5 215

Table 4.7: “Tight” inbending fiducial cut parameters. These parameters are not used in this
analysis, and are merely included as a reference for a starting point for future fiducial cuts. These
numbers correspond to p in GeV and all angles are in degrees.

Parameter | p <3 GeV | p >3 GeV

A 36 36
B 0.28 0.25
C 0.30 0.30
D 10 10
E 16.72 16.72
F 0.06 0.06

¢limit 20 20
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Table 4.8: “Tight” outbending fiducial cut parameters. These parameters are not used in this
analysis, and, like the previous table, they are merely included as a reference for a starting point
for future fiducial cuts. These numbers correspond to p in GeV and all angles are in degrees.

| Parameter | p <3 GeV(—2250 A) [ p >3 GeVc (—2250 A) | —1500 A |
A 34 45 34
B 0.28 0.54 0.33
C 0.22 0.21 0.22
D 5 9.5 6.2
E 3 -4 3
F 1.46 1.2 1.46
Goupper 0.15 0.3 0.15
Hpper -0.09 0.1 -0.09
Glo‘wer 0.15 03 0.15
Hioper -0.09 0.1 -0.09
Dlimits; 21 21 21
Plimit,, 22 22 22
outerof fset 1.2 -0.6 1.2
innerof fset 0 0 0

Section 5.6.2 for details).

The effectiveness of fiducial cuts can be seen by viewing the number of pion events (charac-
terized by a low CC photoelectron peak) removed by the cuts, in the absence of the pion track
matching cuts (Section 4.1). Figure 4.25 shows the basic inclusive PID cuts of Chapter 3 applied

to data with and without fiducial cuts, for comparison.

4.5 Faraday Cup Corrections

4.5.1 Correction for multiple scattering divergence

The Faraday Cup lies about 29.5 m downstream from the CLAS target [30] and has a diameter of
15 cm. As mentioned in Section 4.2.5, multiple scattering effects within the target cause the exit

angle of electrons from solid materials to change (Figure 4.11). This creates an overalt statistical
divergence, or “spread” in the beam as it leaves the target.

Given these dimensions, the entire beam will not enter the Faraday Cup unless the spread angle
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Figure 4.25: Basic electron PID cuts (black lines) for 2.3 GeV inbending data. Electrons are sep-
arated from pions (red “hot spot”) by application of these cuts. The top and bottom plots show the
same data and cuts, except that fiducial cuts (Section 4.4) are added in the bottom plot, greatly
reducing the pion peak in the upper left corner. Note that no pion track matching cuts have been

apptlied in either case.
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of the scattered beam is less than arctan(15/2/2950) = 0.146°. The divergence caused by multiple
scattering is a given by a statistical (Molliére) distribution [5], for which the root mean square is
given by

Orms = \/51—3—'2%6\'\/:5/)(0[1 +0.038 In(z/ Xo)] (4.61)

To estimate the effects on the worst case (i.e. lowest energy) EGtb data, weuse S~ 1andp ~
1600 MeV. The value of t/X, (radiation length fraction of target material) for the *2C target*8 is
given by

t  pclc | pafa , pxbk | prelie
to_pfe 2K 4.62)
Xo Xoc Xoar Xk  Xone (

0498  0.045 0.0432 & 0.145(1.90 - 0.23)

=7 tant n7 04.32 = 0.017

All numbers in the above can be found on Tables 2.1 and 2.3. This yields a value of 6,,,, =
0.0017 rad = 0.097°, which translates to a projected width on the Faraday Cup of (29.5 m)x tanfy,s =
5.0cm.

Clearly, this is approaching the Faraday Cup radius of 7.5 cm. Within the inner 98% of the
distribution, a Molliere and Gaussian distribution are similar [5]. This means the Faraday Cup can
only detect (approximately) 1.5 standard deviations, or 87% of the electron beam. 4? On the other
hand, if the same calculation is repeated for an empty (LHe only) target,® ¢/ X, = 0.005 and the
corresponding 9., (projected spread) is given by 0.029° (1.4 cm), meaning almost no charge is
missed by the Faraday Cup, in this case.

In theory, these calculations could be used to calculate a target and beam energy-dependent
multiplicative number for the Faraday Cup charge, but the situation is complicated by the possibility
of “overfocussing” by the Helmholtz magnet [117], where the beam focal point falls short of the
Faraday Cup, causing an additional divergence. 5' Thus, empirical methods must be relied upon to

renormalize the Faraday Cup values to account for this issue.

“8The 12C and NH; targets have approximately the same radiation lengths, so we use the simpler case here.

49This assumes the Gaussian approximation translates to the projection, a valid assumption for angles as small as these.
S0This is an identical calculation, except that £; = 0 and £, = 1.90.

51This “spread” is proportional to the inverse square of the beam energy, so it is also worse at lower beam energies.
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A study was made by R. Minehart et al. measuring the current at the upstream BPMs (Beam
Position Monitors) for different targets. The assumption was made that no correction was needed
at 5.7 GeV°2 and this was established as a “baseline” for a 1:1 correspondence between the BPM
and Faraday Cup (i.e., an appropriate “weighting factor” for translation between the two was de-
termined). Then, the ratio of the (weighted) BPM value to the ungated Faraday Cup measurement
was recorded for each beam energy and each target. The average of the ratios for the 3 BPMs (see
Section 2.2) determined a “normalization factor” for the total charge delivered to a given target. No
corrections were used for 4.x and 5.x GeV data, since the scattering angle is too small to be no-
ticed at those energies. Corrective factors for the lower beam energies for each target are tisted in
Table 4.9. Note that it is the ratios between differing targets that is important here, not the absolute

correction on any particular target. 33

Table 4.9: Faraday Cup normalization factors correcting for angular spread caused by multiple
scattering effects. The recorded Faraday Cup value must be divided by the appropriate number to
get the “true” weighting value. The 1.723 GeV values were determined by linear interpolation from
1.606 GeV values.

Beam Energy (GeV) | NH3; | ND; 2C | empty(LHe) |
1.606 0.846 | 0.828 | 0.850 0.965
1.723 0.856 | 0.840 | 0.860 0.967
2.286 0.951 | 0.951 | 0.962 1.000
2.561 0.986 | 0.986 | 0.986 1.000

4.5.2 Bit factor correction

Empty (I .He) target runs utilized a higher beam current than the other target, because of the much
shorter radiation length ¢/ X, of the empty target, meaning a much higher beam current could be
tolerated with the same dead time. To accomodate this change, one bit was removed from the
Faraday Cup count response rate. In other words, the FC recorded “clicks” at half the rate it did for
other runs. Thus, to get an accurate count rate for the empty target runs, the FC counts for these

runs had to be multiplied by 2.

52This is a valid assumption, as 0, is less than 1/3 that for 1.6 GeV, and thus the distribution is almost 100% contained
in the Faraday Cup opening.

53For 12C/A5N analysis, the radiation lengths of the only two targets used were believed to be similar, so no corrective
factors for the FC were used, at least initially (see Section 5.4).
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There were also a few exceptions of other target runs erroneously missing an FC bit in the DST.
5 Runs 26055, 26491, 27294, 26683, and runs 27982-27986 all required a factor of 2 on the FC
charge to get the proper value. Conversely, one LHe run (28201) was not missing the FC bit as it
should have been; the FC charge for this run was doubled.

To ease the confusion caused by the Faraday Cup issues, the Faraday Cup charge for every run
read both the multiple scattering factor (Table 4.9) and a bit factor correction from a reference table

developed after quality checks were complete.

4.6 Generation of Skims

At this point, the DST files have been converted to an easily readable (ROOT tree) format, and all
essential preliminary cuts and corrections are in place. The next necessary step is to convert the
data into compact skims retaining only the essential information needed for physics analysis. Gated
Faraday cup charges, target and polarization information, beam energy and torus current were
written to short text files for each run. Remaining analysis steps were mainly completed in terms
of Q2 and W, so cumulative counts for each run, divided by helicity, were written to designated Q2
and W bins for various combinations of PID and sector cuts. This simplified checks and changes
in later analysis steps. Counts for both inclusive electrons and exclusive ep events in terms of Q?
and W were recorded to the skims.

300 x 40 arrays were used in W and Q2. W bins were constant in size, exactly 0.01 GeV
in width, ranging from a bin minimum of 0.0 to 2.99 GeV. A logarithmic scale was used for the
designation of Q? bins,5® ranging from 0.01 to 10.0 GeV2. Labels for the standard Q2 bins are
listed in Table B.1.

Also, kinematic values, averaged over the number of events, were recorded in each Q?, W bin,
for exiraction in future asymmetry calculations. Averaged values of W, @2, s, =, v, D, 1, ¢, v, 8 and
E’ (defined in Section 1.1.3) were also calculated for each bin and recorded in 300 x 40 arrays,

to avoid later difficulties of relative weighting within bins. The Q2 values, weighted by the elastic

5This is evidenced by exactly double an inclusive count rate, and target confirmation by W-spectrum analysis (see
Section 3.3).
55This is done to obtain finer resolution at lower Q2 values.
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double-spin asymmetry, were also recorded for inclusive and exclusive events (see Section 6.2 for
details).

Some other miscellaneous information was also kept in the skims, as required. Elastic ep events
in terms of ¢ (in 0.2° bins) were kept for future exclusive background subtraction (Section 6.2.2), for
example. 1-D histograms in terms of various kinematic parameters were kept for reference, as well
as 2-D raster pattern histograms, but these had little future use in analysis aside from diagnostics.
For analysis of this data, two complete passes were made through each run set (outlined in Table
3.1). In the first pass, only runs and files passing all quality checks (that is, the RATE/ files described
in Section 3.3.7) were analyzed. These runs were needed for the calculation of the target length,
12C 15N modeling, packing fraction, difution factors, and other (unpolarized) background-related
calculations. The strict fiducial cuts (Section 4.4) were applied to all the inclusive data analyzed in
the first pass, and the resulting skims were stored in a permanent disk space.

In the second pass, only ammonia files were analyzed, specifically for the measurement of
asymmetries. These files were subject to less stringent cut criteria than those analyzed in the first
pass. Namely, no cuts were made on fluctuations in the count rate®® (that is, these files are those in
the ASYM/ directory described in Section 3.3.7). Strict fiducial cuts were not applied to these files.
No fiducial cuts were used at all for outbending (negative torus current) data, and only the “loose”
fiducial cuts were applied to inbending (positive torus current) data (see Section 4.4.4).

Data from these two passes are stored separately. The analysis steps in the following chapters
are then applied to the appfopriate data set(s). As a general rule, any analysis step requiring
different target types requires the first pass (RATE/) files, while any involving only asymmetries
uses the the second pass (ASYM) files.

Skim files for each run containing the crucial physics information were thus stored to disk and
used for the remaining analysis. The following chapters explain in detail how diluted double-spin

asymmetries were extracted from the essential physics data stored in the skims.

56 As previously noted, asymmetry measurements are not dependent on detector acceptance, so this is acceptable for
asymmetries only.
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Chapter 5

Dilution Factors: Removal of

Unpolarized Background

5.1 Calculation of Background-subtracted Asymmetries

At this point in the analysis, all kinematic corrections and PID cuts are in place, and counts (for each
beam helicity) and average kinematic values have been written in 300 x 40 arrays (representing
bins in W and Q?) to skim files for each run (see Section 4.6). All components are now in place for
the calculation of the double-spin asymmetry (Eqg. 3.1).

The inclusive asymmetry is still heavily contaminated with background. Only a small percent-
age of the asymmetry represents the scattering of electrons from the free polarized protons in the
target NH3. To find the actual physics asymmetry A;|, one must divide out the contributions from
unpolarized target materials (i.e. 15N, LHe, and target windows) in the form of an overall kinematics-
dependent dilution factor (Fpr). Also, since the polarizations of both the beam electrons are free
protons is incomplete, one must also divide out the total beamn polarization (P,) and target polariza-
tion (P;) from the asymmetry. This yields an actual double-spin asymmetry of

1 n- —nt

A= BBFprn +nt

(5.1)
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Here, n* and n~ are counts for each helicity normatized by the (livetime-gated) cumulative Faraday
Cup charge for the given helicity bucket. Here, and in the rest of this thesis, lowercase n is used to
denote Faraday charge-normalized counts, while capital N represents actual (unormalized) num-

bers of detected events. The procedure for removing unpolarized background is demonstrated in

this chapter.

5.2 Combining Data from Different Runs

The next analysis steps require the combination of run data by target type, separated into subsets
containing runs with similar characteristics (specifically beam energy, torus current, target polariza-
tion sign and half-wave plate status). For NHs, 2C and LHe runs, cumulative counts in each bin
were summed for each Q% and W bin in each of the 12 data “brackets” listed in Table 5.1. In addi-
tion, combined count skims were also written for 12C and 5N target runs in each of the 7 special
frozen nitrogen-carbon “brackets” listed in Table 5.2.

Table 5.1: “Brackets” of EG1 ammonia/carbon/empty target data, ordered in the sequence in which

runs were taken. The combinations of HWP/target polarization sign for NH3; data present for each
bracket are listed. See Table 3.1 for run, beam energy and torus current information on these sets.

| Set Label | Bracket | HWPAarget pol. present |

1.6+ 1 +4—,—+,——

1.6— 2 ++
576 3 4+, —+,——
5.73—- 4 +,+—,—,——

5.7+ 5 ++—,—+,——

2.3+ 6 ++,+—,——

56+ 7 ++,—+,——

1.7— 8 ++,+—,——

2.5— 9 ++,+—,—+,——

25+ 10 none {ND3, 1“C, LHe only)
4.2+ 11 ++,4+—,—+,——

42— 12 44—, —+,——

For NH3 runs only, separate counts, as well as cumulative raw asymmetries and their errors

(in each bin), were written for each individual half-wave-plate (HWP) and target polarization sign
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Table 5.2: “Brackets” of EG1 carbon/ffrozen nitrogen target data, ordered in the sequence in which
runs were faken. See Table 3.1 for run, beam energy and torus current information on these sets.
These brackets are marked with an apostrophe (') to avoid confusion with the main data brackets.

| Set Label | Bracket
2.3+ 1’
5.6+ 2
5.6— 3
4.2~ 4
4.2+ 5
1.7+ 6’
1.7— 7

combination (++, +—, —+, ——). Raw asymmetries were calculated as

CRNCT)
2y
Ara.w(VV,Q ) - (N—Fg‘gj_sz) + (N+§VV,Q22)

FC+

(5.2)

where N* represents the total count of each helicity per bin and FC* represents the total helicity
and livetime-gated Faraday Cup charge for the run. The statistical error bar can be calculated using

quadrature {103] as

94 \° 2% 94 \? 04 \?
aa(W, Qz) = J(gj—v—_—) O'i,_ + (.87\7—;) 0’%,4_ + <5P—,—C—_') U%‘C“ + (5-1-?—0—_;) 0’12;.0+ (5.3)

The error on the Faraday Cup counts is small compared to that of the total (Poisson distributed) de-

tector counts?, so the last two terms can be neglected. The positive and negative helicity cumulative

charges are approximately equal, so we can assume FC* =~ FC~, yielding

OAraw _ 1 0Argw _ 1
ON+ ~2N- '’ ON- = 2N+
1The Faraday Cup, once normalized for multiple scattering spread (Section 4.5), is nearly 100% efficient.

(5.4)




251
f o+ = VN (Characteristic of a Poisson distribution), the error becomes

- +
oAW, Q%) = || f 55)

The raw asymmetries are typically on the order of 10~2, so generally we can assume, for the

purposes of error calculation, N(W, Q2) ~ 2N+ ~ 2N ~,2 which yields

1

aa(W, Q%) = _—\/I—VT_VV_,T;)—

for the error bar on the asymmetry, calculated independently for each bin in the ammonia runs.

(5.6)

The cumulative asymmetry and error for several combined runs is added in the standard manner

of combining statistical errors:

Eruns Araw (I/V; Qz)/UA (W’ QZ)Z
Zruns 1/0A(v‘/’ Q2)2

Araunga(W, Q%) = (5.7)

~ 1
O o (W, @) = VYo rums 1/oA(W, Q%)2

In addition to the total summed bin-by-bin counts and the cumulative asymmetries for each “bracket”,

(5.8)

the averaged kinematic values of Q%, W, z, s, v, D, E', 0, ¢, 1, and «y are tracked for each run set,
weighted by the total counts in each bin. (See Section 1.1.3 for definitions of these variables.) That

is,

5 s vl X N(W, Q%)
5o N (W, Q%) (59)

is simply recorded in each bin for each of these 11 kinematic quantities val. Tracking of the aver-

val =

ages allows for easier calculations later, without having to worry about the relative weighting within
the bin.

For the purposes of accurate evaluation of the elastic asymmetry for beam x target polariza-
tion determination (Section 6.2), the average Q2, weighted by the calculated elastic asymmetry

2For bins with very small cumulative counts, this approximation breaks down. However, the net effect, summing over
many runs, is for these statistical effects in these bins to average out and cancel. To make sure this was the case, analysis
was done with both cumulative asymmetries and cumulative counts, with no significant discrepancies found between the
two methods.
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A (Q?, E) given by equation 6.22, is averaged over the runs, for both inclusive and exclusive ep

events:

2 _ Eruns Q'uzveightedAel (Q21 E)N(W1 QZ)
weiohtedon TS vuns Aa(@% E)N(W, Q)

(5.10)

where Q2 ; .4 is the similarly weighted Q? from each individual run.
For ammonia and carbon runs, the summed counts in A¢ particular to each target are also
recorded for elastic ep events only® for exclusive event background subtraction (see Section 6.2.2).
Finally, the cumulative Faraday Cup counts were recorded for each target label (in the case of
ammonia targets, for each HWP and target polarization combination). The checking of Faraday-
Cup normalized count rates is a valuable diagnostic tool. Comparative count rates for each target,

sampled at each beam energy, are shown in Figure 5.1.

5.2.1 Corrections to empty (LHe) target counts

Empty (LHe) target runs presented a special case, due to both the significant difference in mass
thickness compared to the other targets (and thus the need for differing external radiative correc-
tions), and the raster-related problems present in empty targets in Brackets 9-12 of the EG1 run
set (see also Section 3.3.4). Because of these factors, data in the empty (LHe only) target runs
presented additional complications when summing over the runs for use in statistical models.
Before explaining the corrections made to the LHe runs, it is useful to consider the purpose of
collecting the empty target data. Subsequent sections of this chapter explain two methods for the
calculation of the target length (L), ammonia packing fraction (£,4), and dilution factors (Fpr). One
involves bin-by-bin statistical averaging of the actual data, and the other uses a radiated cross-
section model to provide a definition of these quantities free from domination by statistical devia-
tions. (The latter, of course, is the favored method, where its applicability is valid. See subsequent

sections for a more complete explanation.)

3These were divided into 0.2° bins for all bins within 30° of A¢ =0.
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Figure 5.1: Inclusive count rates in W shown for NH; (red), 12C (blue) and empty LHe (green)
targets, for inbending data. The top two plots show the same Q? bin for 1.6 and 2.3 GeV data,
while the bottom plots show a higher Q2 bin at 4.2 and 5.7 GeV beam energy, respectively. NH;
counts are actual counts, while the other two targets are Faraday charge-normalized relative to
the ammonia target. Note the presence of the elastic peak (more prominent at lower energies) for
NH; counts, while empty (MT) target counts are much lower, corresponding to the much smaller
radiation length fraction t/X, of this target. Error bars, calculated as +N/FC (Poisson statistics
normalized by the Faraday Cup charge), are generally too small to see.
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Radiative corrections for empty target counts

The empty target is of considerably smaller thickness in terms of radiation length (t/X) (8] than
the carbon or ammonia targets, which were both designed with approximately the same mass
thickness [65]. The quantities mentioned in the preceding paragraph are dependent on count ratios
between the three targets (NH;, 12C, LHe). Because t/X, is similar for the first two of these, no
correction need be considered for any ratio between these two targets. However, empty target
counts require a count rate correction to account for external radiative effects. The corrections thus
generated should be applied to any model using the bin-by-bin averaging of statistical data (but
should not be applied to models using radiaied cross-sections, as such models already have the
radiative differences inherently built-in). Therefore, for the empty target, two 300 x 40 arrays of
summed counts were produced for each bracket, one representing uncorrected counts, and the
second incorporating (unpolarized) radiative corrections.

The model outiined in Section 2.8 was used to generate a 300 x 40 array of multiplicative
factors for each Q2 and W bin used at each beam energy in the experiment. 4 To calculate the
ratio, first, the total target length L is calculated as according to the radiated cross-section model
(see Section 5.3.2 for details on this procedure). Then, a length L, is calculated, representing
what the total length of the empty target would be if it had the same radiation length X, as the 12C
target. This length is calculated by subtracting the length of the carbon material ({c) and adding
back in a length of liquid helium with the same radiation length as the carbon. In other words, we
replace the fraction of a radiation length of carbon with the same fraction of a radiation length of

helium, using the relation

pHLHe  pclc
= 511
Xorey  Xo(o) G-11)

This results in

X,
Lgim = L — g + =289 PC 4 (5.12)
Xoc) PHe

Then, the total radiated cross-section (accounting for all contributions from LHe, Kapton, and alu-
minum listed in Table 2.1) is calculated for each material in the empty target configuration, the first

4This is indeed the exact same model used to calculate the target lengths and dilution factors in the inelastic regions
explained in later sections.
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time using L for the total target length, and the second time using L;,, for the target length. In both

cases, the total target radiated cross-section

omr = palaion + prlrok + pHelHeOHe (5.13)

is calculated. ® The ratio O MT(sim)/TMT (true) (USING values of £, equal to L, and L, minus the
foil thickness, in the numerator and denominator, respectively) was then wriften to an array for each
bin, to be multiplied by the raw empty target counts. This gives the corrected count appropriate for

unradiated model comparisons to carbon and ammonia targets. &

Raster pattern cuts for contaminated empty target runs

The second correction to empty target runs applly only to the last three data brackets. All the empty
runs in these brackets required a raster pattern cut to remove a bad part of the target (see Section
3.3.4). To evaluate the effect of the contamination in the lower half of the target, L was measured,
by both methods detailed in Section 5.3.1, for each of the last 4 data sets, using different cuts on
the raster pattern (shown in Figure 5.2). The results of the study are organized in Table 5.2.1. As
the table shows, the problem is more extensive than the whole pattern plot suggests. As pieces
of the raster are removed, the count ratio (and hence L) decreases, but it does not stabilize until
events correlating to the bottom half of the pattern are removed all together. Thus, for all empty
target runs from 27899 onward, we cut events scattered from the bottom target half, and double
the remaining (upper half) event count rate. Precise determination of the ratio between whole- and
half-targets resulted in a factor slightly different than 2.00, however.

To calculate the appropriate multiplicative factor for the empty target runs after the raster cut,
the same raster cut was employed on the (perfectly good) NH3, ND3 and 12C targets in these run
sets, and the remaining total counts were divided into the total (uncut) inclusive counts. The derived
carbon target factor was the corrective factor actually used, since the 12C target was closest on the
target stick to the empty target, minimizing the effects of any difference in position due to motion of

5The cross-section of Kapton is considered to be equal to that of carbon for the purpose of this analysis.
$The comection was typically small, ranging from ~0.97 below the elastic region to ~1.07 at high W, rising more quickly
in W for lower beam energies.
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Figure 5.2: Raster pattern for an empty (LHe) target run in the latter part of the EG1b run set
(shown also in Figure 3.10). A half-pattern (second figure) was decided as a final, stable cut on the
raster pattern to remove the anomaly in the bottom half. The 5 cut configurations analyzed in the
study of the counts are shown in the bottom figure.
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Table 5.3: Measured values of total target length L using the two different methods outlined in
Sections 5.3.1 and 5.3.2, labeled L. and L., .46, respectively. Different raster pattern cuts (shown
in Figure 5.2) were used. Measurements from the last 4 data sets, plus “good” 2.5— runs prior
to Run 27899 (for control purposes) are shown. Note the columns labeled “good only” remain
constant, while the others fluctuate, only stabilizing when half or less of the target remains. All
lengths are given in cm.

[Raster Fraction | Lrate(2.5—.g000 0Ny} | Lonodel(2.5—,0000 ONlY) | Lratel@.5—,al) | Lmoderl2.5—al) |
whole 1.95 1.86 2.61 2.49
3/4 1.95 1.86 251 2.39
top half 1.94 1.85 2.50 237
1/4 195 1.85 2.47 2.35
bad crescent | 1.93 1.81 ] 3.35 ‘ 3.13 i

LRaSler Fraction i Lrate(2-5+ ) i Lmodel(2-5+ ) ‘ Lrate(4—2+) ILmodel(4-2+) I chte(4-2—‘) —[ Lmodel(4-2_) l

whole 2.24 2.17 222 2.16 234 2.28
3/4 2.06 1.98 2.07 2.00 217 2.11
top half 1.99 1.92 2.04 1.97 2.17 2.11
1/4 1.99 1.0 2.02 1.92 208 2.02

bad crescent 3.45 3.20 3.44 3.05 4.08 3.86 ]

the target stick. The NH; values were used for a determination of the systematic errors due to this
problem (Section 7.2). These factors, which are close to the estimate of 2, are recorded in Table
5.4.

Table 5.4: Ratio for total vs. half-raster cut counts for three different targets in the last 3 brackets
of the EG1 data. The !2C ratio was used as the mulitiplicative factor for (raster-cut) empty target
counts in each given bracket. Note that some empty runs in Bracket 9 (2.5—-) were unaffected by
the anomaly, so bad runs in this set were simply removed, and no corrective factor was required.

Set Label/Bracket | NH; ratio | ND3 ratio | *“C ratio |
2.5+10 - 1.989 1.957
4.2+M11 1.904 1.896 1.866
4.2--112 1.80 1.904 1.871

5.3 Calculation of Target Length L

The total length of the target (i.e. the length of the whole LHe mini-cup, including all LHe and
aluminum, as well as the Kapton and target material in the target cell itself) was nominally 1.90
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cm (see Table 2.1). However, this cannot be taken as an exact measurement, due to variations in

target length due to unobservable factors that occur during the experiment. These factors include
+ Concavity of the aluminum target ends due to the negative pressure within the cryotarget
» Possible overflow of LHe from the target minicup (increasing the total length by up tp 0.2 cm)
o Slight variation vs. beam position due to curvature of the entrance and exit windows.

Accurate knowledge of the target length L is essential for the accurate calculation of dilution factors
(Section 5.6) for unpolarized background subtraction. It is desirabie to have a method for measuring
L that accounts for minute variations in the total target length.

Two separate methods were developed for calculation of L, both of which require use of inclusive
empty (LHe) and 12C target counts. The first (Section 5.3.1) utilizes only real EG1 data and a bin-by-
bin model in the high resonance and deep-inelastic regions to calculate L. The radiative correction
factor outlined in the previous section must be used for the empty target data in this method. The
second method (Section 5.3.2) uses a radiated cross-section model to calculate L, and thus can
use raw carbon and empty inclusive counts across both resonance and DIS regions. in practice,
both methods were compared for validity, and the radiated cross-section model method was used
for the actual measurement of L.

Because of possible variations over time, the value of L used for dilution factor calculations was
specific to each data bracket. For the purposes of 12C/*>N data analysis, which used a completely
different target insert, similar measurements of L were not possible for each individual set, because
there were no empty target runs during the carbon/nitrogen analysis phases. Instead, the error-

weighted average

L 2
Loy = et 1/71 (5.14)
> brackets 1/07,

was used as an estimate for the total target length in the carbon/nitrogen target runs, with an

appropriate systematic error included on any results from this target insert.
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5.3.1 Calculation of L from data

The normalized count rates for the empty and carbon targets can be expressed in terms of o¢
(12C scattering cross-section), oz, (*He scattering cross-section) and o (the averaged scattering

cross-section of the foil Kapton and aluminum) as
ng &« PCECU'C + pFKFO’F + pHe(L — fc)o’He (5.15)

nyMT X prlror + paeLoHe (5.16)
where the constant of proportionality is directly dependent on the acceptance and is assumed to
be the same for both targets. If we assume or/oc = prlr/pclc = f, then’ these reduce to

ne « (1+ flpcleoc + pre(L — €c)oHe (5.17)

nyr « fpclooc + paelone (5.18)

Dividing the first relation into the second and assuming o¢ = 3o g.,2 we get

nur _ 30+ flpclo + pue(L — £c)
nc 3fpclc + pael

(5.19)

r=

Solving for L then yields

L= (3pcellc[(1 + fir — f]
PHe

- rec) /1-r1) (5.20)

L was calculated each bin, with statistical error bars calculated for only one variable (r) [103] as

oL _ [N(l +f)—tc N[0+ f)r—1] —T‘fC] o (5.21)

UL_a'r 1—7 (1—-r)?

TThis is not strictly true, of course, but foil contributions are generally small compared to that of the carbon target, Kapton
approximates carbon in its cross-section, and the per nucleon cross-section difference between aluminum and carbon (i.e.
the nuclear EMC effect) is small. The cross-sectional model does not have the drawback of this assumption, but the
differences are minor, as the final plots of L, £ 4 and Fpr show.

8This is also not strictly true, due 1o the nuclear EMC effect, eic.; see previous footnote.
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where N = 3pclc/pu.. The error on r, o, is given in quadrature by

ar \? ar \?
oy = — 1} ng+{=——1 nyr (5.22)
Ing Onpr
Ir _ -1 -1
- /o (5.23)

Plots of L as a function of both W and @2, with the error-weighted average taken over the opposing

which yields

variable, are shown in Figure 5.3.
The determination of L for each run set was then determined by the error-weighted average

over the bins,
Yo rwl/d}

L= 2@2 Ywl/o}

(5.24)

with error®
1

T e o

Only ranges of W and Q? were used where the model was valid. Because of the nuclear EMC

(5.25)

effect (i.e. the breakdown of assumptions like N = 3pcfc/pre), the A(1232) region did not present
a completely “flat” measurement of L, so a lower cut of W=1.40 GeV was used. The higher cut on
W and selection of Q2 bins was beam energy dependent; the same boundaries used for dilution
factor modeling (Table 5.10) were employed here. Results for this method of determination of L are
listed in Table 5.5 under the “Method 1” heading.

5.3.2 Calculation of L from radiated cross-sections

L was also calculated using the radiated cross-sections contributed by each material in the *2C and
LHe targets. The model described in Section 2.8 was used. Because this model calculates radiated
cross-sections, which are dependent on the amount of material in each target, the cross-sections

for like materials must be calculated independently for each target. To resoive the ambiguity, a

91t is important to note that this eor is just the statistical error on L assuming statistical compatibility of the data, so that
it does not account for systematic variations of L{W,QZ), and therefore grossly underestimates the actual error on L. lts
only use in this analysis is as a weighting factor for calculating L, in 12C/'5N analysis.
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Figure 5.3: Total target length, L, calculated using EG1 data, shown as a function of Q? (top
two figures) and W (bottom figure). Note that below W ~1.4 GeV, the A-resonance affects the
measurement (bottom), so W values below this threshold are not used in calculating the average.
High-W values are avoided, as well, due to the extreme sensitivity of radiative corrections between
the two targets, as can be seen in a comparison of the top two plots. Shown are the 5.76 GeV
outbending data.
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subscript in brackets [ ] is used to label which target configuration was used to caiculate the given
cross-section.
Beginning with Eqs. 5.15-5.16, with the foil terms expanded into Kapton and aluminum cross-

sections:

nc o« palaio ac) + prlrocic) + poleocic) + pre(L — £c)onec) (5.26)
nur X pAAIO amT] + PREKTCIMT] T+ PHLOHMT] (5.27)

(where it is approximated o¢ = ok, and the constants of proportionality are equal for both targets),

defining W = paifaica1 + préroc and r = nMT/nC, and dividing, we find

Wiy + pHeLOHMT)

= 5.28
" Wici + pcleocio) + pre(L — €c)omelc (5.28)
Solving for L yields
Wi — W ¢ R
7= Wil ~Wimn + 7 clpcocic) — PHEOHAC]) (5.29)
pue(THIMT] — TOH C])

To calculate a statistical error bar, it was assumed that the foil contributions were small (so that W

could be neglected) and that o yejmT) = orejc), SO that

9L _ oL — £c(pcocic) — PHETHelC])

o, ~ or prrea o) (1 — 7)2 (5.30)

where the error o, is calculated using equation 5.23.

An apparent catch in the use of this method is that the amounts of all materials must be known
in order to calculate the radiated cross-sections (see Section 2.8), which means L must be kriown
to calculate the cross-sections! Fortunately, the radiative corrections are generally small compared
to the Born (unradiated) cross-section, so that only a very rough approximation of L is needed for
the radiative correction. In practice, an initial value of L = 1.90 cm is used, and when L is calculated
(and averaged over all valid bins), the new value of L is used to calculate the cross-sections again,
which are inserted back into the model. This process is repeated uniil L stabilizes. In practice, this
never required more than 3 iterations. Using different initial values of L ranging from 1.60 to 2.40

cm showed no change in the final measurement when the iterative method was used.
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Values of L were then combined for each bin just as in the first method (see Footnote 9),
but because phenemona like the nuclear EMC effect were included in the model, the A(1232)
resonance could be included, so a lower limit of W = 1.10 GeV was used instead, in this case.
Unfortunately, the heavy dependence on the model caused a large dip in the measurement of L
when higher W values were approached (see Figure 5.5), causing a systematic lowering in the
averaged value of L. For this reason, a more stringent cut on the high value of W was used.
Specifically,

W <110 GeV + %(W,,-m,-t ~1.10GeV) (5.31)

was used, that is, 2/3 of the inelastic region used for dilution factor calculation. The value of Wy;,,,;;
is defined as the appropriate value listed in Table 5.10.

The two methods yield approximately the same values for L, as can be seen in Table 5.5.

Table 5.5: Measured target length L using both methods outfined in the text. Errors shown are
statistical (i.e. for weighting purposes) only, and do not reflect systematical variations in terms of
W and Q2. Method 2 was used for the value of L in actual analysis. L,., is used only for 12C/*SN
analysis. Lengths are in cm.

| Set Label/Bracket | L (Method 1) | L (Method 2) |

1.6+/1 1.93 +0.0056 | 1.90 + 0.0038
1.6-/2 1.82 4+ 0.0109 | 1.85+ 0.0054
5.76—/3 1.79 + 0.0036 | 1.83 + 0.0045
5.73—/4 1.82 1+ 0.0023 | 1.87 + 0.0020
5.7+/5 1.93 +£ 0.0044 | 1.95+ 0.0065
2.3+/6 1.76 £ 0.0038 | 1.77 + 0.0035
5.6+17 1.77 £ 0.0044 | 1.78 + 0.0063
1.7-/18 1.87 +£0.0036 | 1.87 +0.0019
25-19 1.84 +0.0028 | 1.86 + 0.0022
2.5+/10 1.93 £ 0.0072 | 1.92 + 0.0070
4.2+11 2.01 +0.0060 | 2.00 + 0.0076
4.2-/12 2.04 +£ 0.0021 | 2.05 + 0.0022

I Lavg

[ 1.89 + 0.0010 | 1.90 + 0.00095 |
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Figure 5.5: Total target length, L, calculated using a radiated cross-section model, as a function of
W, averaged over 4 Q? bins. The top figure clearly demonstrates the inadequacy of the model in
the elastic region, as well as its failure, likely due to e*e~ pair production, at high W. The bottom
figure is the same data, showing only the region used to make the actual calculation of L. Data
shown are for the last bracket, the 4.2— data.
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5.4 Modeling '>C to !°N Data

Solid *2C was used in EG1 as an approximation to the 5N in 15NH;, scaled to the proper nuclear
mass per scattering center (see below), for purposes of non-polarized background removal. This
works well as a first-order approximation, but due to the likelihood of additional effects arising from
the unpaired neutron in the ®N nucleus, it is desirable to have a model relating the cross-section
ratios of these two elements.

Fortunately, a limited number of solid 1N runs, using a separate target insert {Section 2.4), were
interspersed with 12C runs for comparison. The original method of comparison of these data, seen
in Refs. [2] and [46], assumed that the frozen target length £y was well-known, and that the cross-
sections could be scaled as a function of the neutron-deuteron cross-section ratio (¢,,/04) and
two constant coefficients (labeled ¢ and b). Unfortunately, this method does not accord precision
measurements to the relationship, as the frozen nitrogen length ¢ is not known to better than ~0.1
cm, leading to large uncertainties in the relation coefficients. The development of a physical model

to relate the ratio of cross-sections of 1*N and 12C was needed in this experiment.

5.4.1 Development of the model

An in-depth analysis of the carbon-nitrogen subsets (contained in 7 beam energyfiorus current
brackets, see Table 5.2), was performed during the most recent EG1 analysis. Of these 7 data
sets, only the first (2.3 GeV inbending) contained enough data to be used to develop a precision
model of N cross-sections relative to 12C. The model outlined in Section 2.8 was used for the
cross-sectional data of 12C, LHe and Al (with Kapton approximated as 12C, as usual). A best fit of
the model parameters to the !N data generated a model that could reproduce the observed ratio
of nitrogen/carbon counts as a function of W and Q2. The other 6 brackets could then be used as
a test of the model. Ref. [95] contains a thorough description of the process used to develop the
model; only the basics are outlined in this section. To generate the model, the ratio of nitrogen-
carbon target inclusive electron counts was recorded as a function of Q2 and W in the standard

manner. "0 Because a different target insert was used for these runs, it was not possibie to directly

OPID cuts were somewhat different than those specifically outlined in the previous chapter, but comparison between the
ratios using varying PIDs showed no substantial discrepancies. See Ref. {95] for more details.
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Minicup draining during >N (27379)
and '2C (27380) runs

1 . . N " i s —— |
21800 21650 21700

Figure 5.7: An enlargement of a quality check plot of the 5.6 GeV outbending carbon-nitrogen run
set, showing FC-normalized count rate as a function of DST file number. (Normal 2C run files are
highlighted in green.) Note the decrease in count rate near the end of the set. Closer scrutiny of
the rate counts and log book entries showed that the LHe began draining during a frozen 5N run
{Run 27379) and had nearly completed draining by the beginning of the short (carbon) Run 27380.
This run was useful for comparison to find out the total contribution to the cross-section from LHe
scattering, and hence an approximation of the total farget length L.

measure L. However, it was known from physical measurement of the assembled target that the
total path length through the LHe in the target was ~1.80 cm, with the possibility of overflow of LHe
in the target minicup, which could potentially increase the effective target length to up to 2.10 cm.
To detect the presence of overflow, we analyzed a single data run containing carbon, throughout
which the LHe was draining (Run 27380). Observation of the file-by-file count rate of this run shows
that the target was (nearly) drained by the end of the run (see Figure 5.7). Comparing a “full” carbon
target run to the files near the end of Run 27380, and using a method very similar to that outlined
in Section 5.3.2,'1 an estimate of the total LHe length could be derived. It was indicated that the
minicup had not overflowed, so L = 1.80 cm was used in the analysis. 2 The possibility of H,0O
contamination was also investigated by a careful inspection of the elastic peak region of the count
ratio [95]. No tangible evidence of an elastic peak resulting from free hydrogen was found, so we

conciuded that water vapor contamination was not an issue.

'The only difference is that the term py (L — £c)o . for the “empty” target is replaced by pcfco¢ belore solving for L.
*2The value of 2.10 cm was used 1o estimate the systematic error. The remaining analysis in this thesis uses Lqayg ~1.88
cm, well within the systematic error.
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The count ratio could then be modeled as'®

ny _ palaioayn) + prlrocin) + pNENONIN + PHE(L — EN)PHN) (5.32)
nc  palaioac) + prliocic) + pcleocio) + pae(L — Lc)pHeC) )

TNC =

with ¢ determined by a minimization of

X = Z (rNC — TNCmodet)2 /025 (5.33)
w,Q2?
As in the case of using a model to determine L in the previous section, this must be done iteratively,
as initial knowliedge of the nitrogen/carbon model is not precise. For that reason, only values of
W >1.2 GeV were used in the fit, to avoid sensitivity to the peak structure in the inelastic range.
The model parameters (described in Section 2.8) used to determine the unknown oy were then
optimized with MINUIT to generate the new model.

Though there was not enough data to fit the model at the 1.7, 4.2 and 5.6 GeV beam energies,
the model could be extrapolated to these data sets to test the viability of the fit. Ratios of counts
between frozen nitrogen and carbon using the finished model and Eq. 5.32 are shown in Figure 5.8.
The model fits the data well, except for the quasielastic region when Q% becomes too low (bottom
figures).

The most obvious major systematic errors in this mini-analysis are the target material lengths
L and ¢5. However, there were a couple more significant discrepancies in the data which required

correction before an accurate model could be derived.

Scaling of '2C runs from different target inserts

This correction applies only to the 4.2 GeV outbending data. Most nitrogen-carbon data sets con-
tained an equal quantity of 2C and 5N data. The 4.2— data (bracket 4’), however, contained only
one (very brief) carbon run (Run 28500), which suffered a DC HV trip in Sector 3, making overall

count comparisons involving the (already meager amount of) data exceedingly difficult.

3 All cross-sections and count rates here are implicitly assumed fo be functions of W and Q2.
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quantity, showing only the 2.3 GeV data used in construction of the model. Extended W and Q2
ranges are shown. More information on the model can be found in Ref. [95].
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It was thus desirable to take advantage of the large number of '?C runs taken during the main
(ammonia) data collection of 4.2— runs (Bracket 11), taken not too long before the runs in bracket
4’. These carbon runs, however, used a different insert stick, and thus could not be trusted for
comparison unless some sort of normalization was made. For this purpose, the inclusive (charge
normalized) count rate in all 5 good sectors of Run 28500 was divided by the inclusive count rate
in the same 5 sectors for the Bracket 11 carbon runs.

An average of the ratio between the bracket 11/bracket 4’ counts yielded a value of 1.047. The
carbon insert used in the nitrogen-15 target stick was measured as 4.5% thicker than that used in
the regular target stick [65], so this is an expected result.

Thus, for the purposes of testing the fit, and further carbon-nitrogen analysis, the bracket 11
carbon runs were used for bracket 4’ analysis in place of Run 28500, and inclusive counts in every

bin were multiplied by 1.047.

Adjustment of Faraday Cup charges due to X, discrepancies

Initial plots of the ratios of ®N/*2C target counts showed overall offsets of indeterminate physical
origin. Though knowledge of the intracacies of the resonance structures in the two targets are not
obvious (and is, in fact, the goal of creating this model), we know the ratio in the deep inelastic (DIS)
region should be 1.00, assuming equal density xlength/X, for both targets, as the internal 3-quark
point structure is the same for all matter.

This was definitely not the case, however, for raw normalized count ratios between the two tar-
gets. In fact, there was an energy-dependent offset in the DIS ratio, highest at low (1.7 GeV) beam
energy, diminishing to nil at the high (5.6 GeV) beam energy. This phenomenon is consistent with
the failure to account for multiple scattering spread at the Faraday Cup aperture between targets of
differing radiation length (see Section 4.5). The ratio offsets (20.8%, 6.5%, 2.6%, and 0% for 1.7,
2.3, 4.2, and 5.6 GeV, respectively) are indicative of a larger frozen nitrogen target mass thickness
t/Xo than for the carbon target. 4

The source of the exira radiation length is unknown; visual investigation of the target found

1 The ratios were determined by the error-weighted average over the DIS region.
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no discernable difference between the nitrogen and carbon target cells. To account for the ex-
tra radiation length, normalization factors were multiplied by the overall 1%C target counts. These
normalization factors are listed in Table 5.6.

Table 5.6: Required normalization factors for nitrogen-carbon data to account for the differing ra-

diation lengths of the 2C and 5N targets. The factor was applied to the carbon inclusive electron
counts.

| Set Label/Bracket | Normalization factor
2.3+/1 1.065
5.6+/2° 1.000
5.6—/3 1.000
4214 1.026 x 1.047 =1.074
4.2+/5° 1.026
1.7+/6 1.208
1.7-I7 1.208

This may appear to be (and indeed is, to an extent) a “messy cleanup” of the target data. How-
ever, application of the normalized count rates to calculation of the target length £» (as described
in the remainder of this section) reveals a consistent value. This consistency is not present without
the proper normalization factors on the data. Without the normalizations, an obviously improper
correlation between between ¢ and the beam energy appears. Therefore, the normalization fac-
tors are testable for internal consistency, and are, in fact, a viable method for salvaging the validity
of the data as a tool to test the model. Sampie plots of the W-dependence of the model compared

to real data are shown for the other 6 data sets in Figure 5.9.

5.4.2 Comparison to the older fit method

To check the internat consistency of the model, it is useful to check it against the older fit method
cited in the introduction to this section. We begin by defining rn; « pcfcoc and n'y, x preone,
where the proportionality constant is the same as in Eqs. 5.17 and 5.18,' and insert these values
into these equations, to get

ne = (1+ fing + (L — bc)nly, (5.34)

'SThis gives the interpretation of n{; as the charge normalized counts scattered from the 2C slab only, and n’; as the
normalized count rate scattered per 1 cm of LHe.
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Figure 5.9: Extrapolations of the >N/'2C model from the 2.3 GeV data set to data sets at other
beam energies. The six plots correspond to brackets 2’-7°, in sequence. The three rows represent
5.6 GeV, 4.2 GeV and 1.7 GeV data, in descending order. Extension of the fit to the elastic region
at lower beam energies proved troublesome, due to the rapid change as a function of W and the
presence of the resolution-dependent elastic radiative tail.
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nuT = fng + Lny, (5.35)
Solving for n;, and n%;, yields
n& = Anc + Bnyr (5.36)
and
ng. = Cnyr + Dnc (5.37)
where
L L—¢c
A=-o" B=-— 5.38
T+ flc T+ flo (5:38)
IR LD S
L+ fec L+ féc

The inclusive count rate from a 15N target (using the notation of Eqs. 5.15 and 5.16) is given by

nn < pplrop + pae(L — €c)one + pnENON (5.39)

Using the definition of f, this becomes

ny X fpclcoc + pae(L — €c)ome + pNENON (5.40)
Using the above, we find
ny = fng + (L —€o)ny. + nly (5.41)
where
TLIN 0.4 pNENoN (5.42)

(same proportionality constant again assumed) is the only remaining term with unknowns, namely
£n and o . The value £ is just a number, but oy is a modeled function that varies with kinematics.

The simpie model assumed here is

oN = (a + b‘—’ﬂ) oc (5.43)

a4
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where o, /04 is the cross-section ratio of the neutron to the deuteron. Naively, a=7/6 and b=1/6,
with only very slight deviations. However, in reality, other inaccuracies in the model are “soaked up”

into the constants, as we will see. Inserting this into Eq. 5.41 and using the definition of n, yields

ny = fri + (L — £o)nly, + 2NN (a + bi'-’i) s (5.44)
pclc g4
or, using Eq. 5.35,
¢
nn = nayr — lonhy, + 28N <a + b”—") nl, (5.45)
pclc a4

In principle, then, using empty target, carbon and frozen nitrogen runs, one can make a best fit of
£n, a and b to the data. Because empty target runs were actually taken in separate sets from the

carbon/nitrogen data, the count ratios to carbon were actually used:'®

ny nyrT " pnen ( Gﬂ) "
— = —— —fonf. + a+b— jn 5.46
ng  nc e ™ Yot oa) ¢ (5.46)
with
nl, = A+ BMT (5.47)
ne
and
nlf,=CcMT 1 p (5.48)
ne

This way, carbon runs from the same bracket could be used in comparison to the other tar-
get,'”ensuring proper normalization between run sets separated across time.

In practice, MINUIT had difficulty fitting alt 3 unknown parameters £y, a and b at once; it was
just not possible to find a stable equilibrium in the fit without some more constraints on the data. In
practice, the model outlined in Section 5.4.1 was used, so that

at+b2 IV (5.49)
Od ac

6Because of the 0.1 mm difference in thicknesses of the 2 carbon targets used, a multiplicative factor of 1.047 was used
on the narp/ne count ratio. See Section 5.4 and Table 5.6.

17Pairings between carbon-nitrogen brackets to normal data brackets (for empty target data) were as follows: 1/ « 6;
2,3 « 3; 4,5 +— 12; 6,7 — 8. Outbending data sets were preferrable to inbending due to wider overall kinematic
coverage.
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in Eq. 5.46, then MINUIT was used to find a fit for £y. In other words, the histogram of LHe/*2C
counts (in terms of W and Q?) was fit to the histogram of 1°*N/12C counts, using the function in Eq.
5.46. The parameter £y was varied (with o /o read from an array determined by the model), until

the best fit, which minimized the value of

(5.50)

was found, where (%gﬁ)th is the result of Eq. 5.46. Values of £, determined for each set (after the
charge normalization process described in the previous section) can be found in Table 5.8, under
the heading “Method 1”.

To test the consistency of the old model, the same fit was repeated, except this time using the
£x just derived in the (unmodified) Eq. 5.46, to find e and b. Final values of a and b are printed,
along with their statistically weighted average, in Table 5.7. The precision of the fit can be seen in
Figure 5.10, in which the scaled 12C counts are compared to the (unmodified) *N counts. Average
values of a and & approximate 7/6 and 1/6, respectively, and the fit is good, showing a good degree

of internal consistency between the old fit model and the new.

Table 5.7: Values of the fit coefficients a and b relating the cross-sections of 12C to °N. The
weighted averages are also shown. These data are used for comparative purposes, and have
no direct bearing on the final derived value of 4; in this analysis.

| Set Label/Bracket | a ] b |
2.3+ 1.18 £ 0.0015 | 0.12 + 0.0036
5.6+/2° 1.04 £ 0.0186 | 0.47 X 0.0461
5.6-13 1.24 £ 0.0070 | -0.01 4+ 0.0155
4.2-18 1.20 +:0.0014 | 0.07 + 0.0031
4.2+/5° 1.12 £ 0.0187 | 0.28 1 0.0452
1.7+/6’ 1.12 + 0.0030 | 0.27 £ 0.0073
1.7-I7 1.08 + 0.0019 | 0.37 + 0.0047
average 1.16 £ 0.0008 | 0.15+ 0.0019
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Fit test for **N.\2C data.
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Figure 5.10: Fit of modeled '2C counts (i.e. , Eq. 5.45) to *N inclusive counts. The raw nitrogen
data are shown in red, the raw carbon data are shown in black, and the fit of the carbon to nitrogen is
shown in blue. The improvement of the fit over raw data is only seen when closer detail is revealed
(bottom). 1.7 GeV outbending data (Bracket 7°) is shown here.
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5.4.3 Direct determination of ¢y with the model

The previous subsection outlined the methodology of determining #x in terms of a best fit to the
cross-sectional model given by Eq. 5.46. As a test of internal consistency, it is useful to apply the
new °N cross-section model directly to derive £. We start with Eq. 5.15 for the carbon target and

the equivalent expression for the frozen nitrogen target:

ny X parlaio any + PrLrociN) + PNENONIN) + PHE(L — £N)OHe[N] (5.51)

Again, the proportionality constant is assumed to be the same for both equations, so that we can

divide them to get
Win + pnt + pae(L — eN)OHe
rve = ™ = Wim+ enlvonim + pr ( N)OHe|N] (5.52)
nc  Wig+ pcleocio) + pre(L — £c)omejc)
with W = p il a0 41 + prlixoc as before. Solving for £y then yields
oy = ™Wic1 — Winy +1pcleocio) — preLono Ny + TPH(L — L) He(c) (5.53)
PNON[N] — PHeTHe[N}

As was done for L, we calculate the error bar (for relative weighting only - see Fooinote 9) by

assuming the foil contributions are small (W —0) and ogen) = gx.c}, Yielding

9ty _pcleogic) + pre(L — £c)ondcy "

g = 2N, (5.54)
I = Ty Orne PNOININ] — PHeOHe|N]

NC

with
Ornc [ —1 -1
TNC ¢ N ( )

analogous to Eq. 5.23. These calcutations were made, using the model for the cross-sections, for

all W and Q? bins containing data. The error weighted mean and error

Novg EQz ZW 1/‘7th

(5.56)
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Figure 5.11: Solid 15N target length, averaged over Q?, shown as a function of W, calculated
using the radiated cross-section model and 5N/ 2C inclusive count ratios. The average remains
fairly constant so long as the elastic region (W <1.10) is avoided. The two piots show 2.3 GeV
inbending (Bracket 1) and 4.2 GeV outbending (Bracket 4’) data, respectively.

1

Otnaug =

were calculated, using all inelastic (W > 1.10) bins, with an upper W bound again used from Table

(5.57)

5.10. Plots of ¢5 as function of W are shown in Figure 5.11. Values calculated using the model
matched well with those made in the fit, and are listed for comparison in Table 5.8.

5.5 Calculation of Ammonia Target Length /,

Before calculating dilution factors, one more critical piece of information is required - the effective

length of the frozen ammonia target material 4. As detailed in Section 2.4, the actual target
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Table 5.8: Values of the nitrogen target length (£x), using the best fit of the radiated model to
different count ratios (Method 1) and a direct fit to cross-sections generated from the (Method 2).
All lengths are given in cm.

[ Set Label/Bracket | £ny(Method 1) [ £n(Method 2) l
2.3+/17 0.45 £+ 0.00015 | 0.46 + 0.00023
5.6+/2° 0.43 + 0.00066 | 0.44 4 0.00119
5.6-13 0.45 £+ 0.00028 | 0.46 + 0.00043
4.2-14 0.47 + 0.00008 | 0.47 + 0.00022
4.24/5 0.47 4+ 0.00086 | 0.48 + 0.00103
1.7+/6 0.44 + 0.00039 | 0.45 + 0.00057
1.7-17 0.45 4+ 0.00033 | 0.45 1 0.00056

| average ] 0.46 + 0.00007 | 0.46 + 0.00014 |

material consists of frozen NH; granufes immersed in a LHe bath. Only a particular fraction (known
as the packing fraction) of the cell length actually consists of frozen farget material at any given
time. The consistency of frozen material may even vary between locations in the cell (see Figure
3.8). We are interested in the effective overall target length, averaged over all the data. To first
order, the approximation £4 = 0.6 cm can be used for some calculations (see, for example, Section
4.2.4). However, for accurate background removal, a more precise figure is desired. Again, two
methods are accorded for deriving this quantity, one utilizing actual statistical data, and another (the
preferred method) using radiated cross-section data and the count ratio ny s, /nc. Both methods

are outlined in this section.

5.5.1 Calculation of ¢, from data

The same logic used to derive £y (the frozen nitrogen target length) can be applied to find £,4 (the
frozen ammonia target length), since both targets are constucted similarly. Thus, we start with
Eq. 5.45, using the simplification of Eq. 5.49 and changing the target label from N (nitrogen) to A

(ammonia):
palaos ,

ZAn 5.58
pctcoc © ( )

r
ny = nyr — bony, +
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Figure 5.12: NHj; target length, shown as both a function of W and @2, as calculated using the
method in Section 5.5.1. The top row shows 1.6 GeV inbending (Bracket 1) data. Low energies
were the worst-case scenario for this method, due to the narrow coverage in W. The center row
shows 5.6 GeV inbending (Bracket 7}, showing the broad, flat region characteristic of higher beam
energies. The bottom figure shows the sector-by-sector dependence of £,4 for 4.2 GeV inbending
(Bracket 11) data. When correct, the dependence should only show statistical fluctuations from
sector to sector, as shown.
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with all other notation the same as in Section 5.4.2. Assuming o4 = on + 30,, this yields

£
na =nymr —bcny, + de‘g (U—N + 3;—2) ng (5.59)

Now, making the assumption that the carbon nucleus is merely an assembly of 6 deuterons'®

Sop _Moa—on) 3 30 _1(; om (5.60)
oc ac 6 604 2 04
we get
. _ ’ pala onN l _On ’
na = nyr — bony, + oclc [UC + 5 (1 Ud)] ne (5.61)

where o,,/04 and o /o are functions of beam energy, @% and W determined by the models in this
chapter and Section 2.8. 20

Solving for £ 4 then yields

£a=(na -nMT)/ ( o [a + b:—z’ +0.5 (1 - :—:)} ng — n},e) (5.62)

This quantity can thus be calculated in all bins where the assumptions hold (i.e. higher W, away
from the realm of the EMC effect), just as L and £y were in previous sections of this chapter.

The error can be calculated in quadrature [103] (assuming o,, = +/n) as

ol ol s \?
agAz\/(gn_A;) A+(3nf;) ”CJ“(an;;T) nMT (5.63)

Calculation of the partial derivatives yields

N
T =19 (5.64)

ae (na —nur)(Z4A - D)
e ot =

*8This is a good assumption, considering the negligibly low energy bonding the free protons to the nitrogen atom in NH3.

19This is a more tenuous assumption, neglecting the nuclear EMC effect, avoided by the alternate (mode!) method.

2For a deuteron target, the calculation only differs in that the factor of 2 (1 —u) is instead simply 1 5. as substituting
op — 04 in Eq.5.60 shows.
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dtyr (7 + (na—nur)(54B +C))
BnMT - 92

(5.66)

where

_ PA 04 , ’
= - 5.67
z pclc oc "C T THe (567)

and o 4 /o¢ is defined by the quantity in square brackets in Eq. 5.61.
The fit region ranged from W =1.4 (safely above the A(1232) resonance) up to the maximum
value listed in Table 5.10, to avoid the high W -region where systematic errors (i.e. pion contamina-

tion, radiative corrections) dominate. 2! The weighted average and error

_ EQZ Ew EA/UAZA
eAa'Ug - qu EW 1/0_?[‘ (5.68)
! (5.69)

UeAavg =
V EQ2 ZW 1/0-12/1

were again used over this region to calculate the average £ 4 for each data set. Plots of £, derived

with this method as a function of W are shown in Figure 5.12.

5.5.2 Calculation of ¢/, from radiated cross-sections

The exact same formalism used to extract £, in Section 5.4.3 using radiated cross-section models
can be used to determine £4. The only difference is that N — A in every equation in this section,
and we use

15

3
oA = -i—éaN + 18 (5.70)

to account for the molar masses of the constituents of NH;. 2 This substitution yields

by = racWic) — Wiy +racecleocio) — preLoneia) + racpre(L — Lc)onec) (5.71)
pA(moN + %Gp[A]) — PHeOHe[A]
BT pCeCUC[C] + PHe(L £c)onec) —1 -1
A T o TAC + 5-72
T4 T Brac”4 T pa(B 180N4] + 150p4]) — PHCOHelA) m“c o7

2Zlynfortunately, this leaves a narrow region for measurement at beam energies below 2 GeV. The second (radiated
cross-section) method is clearly superior m this case as it allows inctusion of lower W bins.
22For ND3, the respective fractions are and 21 Of course.
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Figure 5.13: NHj target length, shown as both a funcition of W and @Q?, caiculated using radiated
cross-section models. The two data sets shown are the same as those shown in the top two rows
of Figure 5.12. Note the significant improvement in stability for the 1.6 GeV data.

with r4c = n4/nc. Combination of data points proceeds as in the preceding method for £ 4, except
that the lower limit in W is lowered to W=1.10 GeV. Because the model accounts for the nuclear
EMC effect, there are no assumptions relating the consistency of cross-section ratios going into
this calculation, making for a much smoother average over the resonance region (see Figure 5.13).
Calculations of the average value of £ 4 for each data set, using both the previous method (Method
1) and the radiated cross-section method (Method 2) are listed in Table 5.9.

5.6 Dilution Factors

With adequate knowledge of the total target length L, ammonia packing fraction £4, and with a
functional model for the scaling of the 2C cross-sections to 1°N in place, we can proceed to cal-
culate the dilution factor, Fpr(W, Q?). As usual, both the statistical, data-derived methodology (S.
Kuhn) and the radiated cross-section model (P. Bosted) were used to determine dilution factors. In
the end, it was determined that both methods have a kinematic region of applicability in the EG1b
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Table 5.9: Values of the ammonia target length (£4), using the best fit of the radiated model to
different count ratios (Method 1) and a direct fit to cross-sections generated from the model (Method
2). Once again, the error bar refiects only the error on the statistical fit, not the true uncertainty on
the value. Target refills occured before Brackets 3 and 6 and during Bracket 9 [63], explaining
the sudden changes in ¢4 at these points. All lengths are given in cm.

| Set Label/Bracket | £4(Method 1) | £4(Method 2) |

1.6+ 0.62 + 0.00054 | 0.63 + 0.00019
1.6-/2 0.64 £ 0.0019 | 0.65 + 0.00044
5.76—-3 0.60 4 0.00055 | 0.61 + 0.00026
5.73—/4 0.57 £+ 0.00047 | 0.57 + 0.00024
5.7+/5 0.55 + 0.00012 | 0.56 + 0.00056
2.3+/6 0.62 &+ 0.00060 | 0.63 + 0.00026
5.6+/7 0.55 + 0.0010 | 0.56 £+ 0.00048
1.7-/8 0.54 + 0.00072 | 0.55 £+ 0.00019
2.5-/9 0.56 £+ 0.00033 | 0.57 + 0.00017
4.2+11 0.59 £ 0.00093 | 0.59 + 0.00042
4212 0.58 + 0.00026 | 0.60 + 0.00014

analysis. To ensure internal consistency, the methods used to calculate L and £4 for a given Fppr
were always kept the same. That is, if the former (latter) method was used to calculate Fpr, then
the former (latter) method was used to derive L and £4.

To derive the dilution factor Fpr, one begins with the regular formula for Ay

n- —nt
A== (5.73)

where it is assumed the counts n* are FC normalized. We then assume that each count n*

contains a background %nbackz’ which must be subtracted to get the true asymmetry:

Ay = = 3ack) = (07— GPek) __ mT (5.74)
I (n'“ — %nback) + (n"’ — %nback) n-+nt — nNpgck :
If Fpr is defined as the ratio of the target proton scattered events to total events
Fpp = ot — Thack (5.75)
Niotal

AThat is, we assume that the asymmetry is relatively small, so that the contribution from each polarization state to the
background is approximately equal.
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(where of course, n;ote = n~ + nt), then
Npack = (1 — Fpp)(n™ +n™) (5.76)

Thus,

A= n- —nt _ n~ —nt
= = nt — (11— Fpr)(n— +nt) T nm4nt—n —nt 4+ Fppn— + Fppnt

(5.77)

which reduces to
A= (5.78)

Aside from the factor P, P;, this is the necessary equation for background removal from the double-
spin asymmetry. Fpy is a function of Q2 and W, as it is a description of the relative count rates for
the free protons and background. The effective response of the background varies as a function of
these parameters, particularly near the elastic peak, and to a lesser (but significant) degree, near

the resonances, as well.

5.6.1 Calculation of Fp from data

To find npecx, ONE simply reworks Eqs. 5.58 to 5.61, but this time omitting the contribution from the
free protons. That is, we omit the 30, term, as we are interested only the background cross-section.

The resulting replacement for Eq. 5.58 is

pataon (5.79)

'
Npgek = Nmr — Lany, + }EKE o ne

The dilution factor is thus given by Eq. 5.75:

1 palaon )
Fpp=1———{npp—fun’y + —n 5.80
DF " ( MT —Lante t o e (5.80)
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Table 5.10: Upper W limits (in GeV) on the data used for dilution factors (as calculated from data),
also used for limits on measurements of L, £4, and ¢x. Dilution factors generated from the cross-
sectional model (Section 5.6.2) do not need an upper limit, since they can be smoothly extrapolated
to higher W. Bins not listed do not contain enough data to be included.

[@°bin] @ |1xGeV|2xGeV | 4xGeV | 5xGeV |

10 0.050 1.65 - - -
11 0.059 1.556 — — —
12 0.071 1.50 — — -
13 0.084 1.50 — — —
14 0.10 1.50 — — —
15 0.12 1.50 1.90 — —
16 0.14 1.50 1.90 —- —
17 0.17 1.70 1.90 —
18 0.20 1.70 2.00 2.40 —
19 0.24 1.70 2.10 2.40 -
20 0.29 1.70 2.10 2.40 -
21 0.35 1.65 2.10 2.40 -
22 0.42 1.60 2.0 2.50 —
23 0.50 1.55 2.00 2.55 3.00

24 0.59 1.45 1.90 2.55 2.95
25 0.71 1.35 1.80 2.55 2.85
26 0.84 1.20 1.65 2.55 2.85
27 1.0 1.00 1.50 2.40 2.85
28 1.2 — 1.30 230 2.85
29 1.4 - 1.00 2.20 2.80
30 1.7 -~ -~ 2.05 2.75
31 20 — - 1.90 2.60
32 2.4 — — 1.60 2.50
33 29 - — 1.00 2.40
34 3.5 — — — 2.20
35 4.2 — — - 2.00
36 5.0 — - — 1.50

37 59 — — — 1.00




288

The error on Fpr is again calculated by quadrature:

8Fpr\? Fpr\’ 8Fpr\?
= .81
OFpp \/( oma ) na+ ( ne ) ne + Brinr nMT (5.81)

The partial derivatives can be calculated as

OFpFp

s = Npack/NY (5.82)
OFpr 1
= —— 4,(#A- D) (5.83)
67&(} nA

OFpr 1
= —[1—€4,(#BB-C 5.84
oo — L ta(@B - ) (5:84)

with
#B=-PL4 N (5.85)
pclc oc

Inclusive scattering dilution factors derived using this method, and the effects of background re-
moval, are shown in Figures 5.14, 5.15, 5.16, and 5.17. It is important to notice the dependence
as a function of W. This distribution makes sense, considering that the scattering response in the
elastic region (W ~0.938 GeV) is predominantly from the free protons, while in the the DIS region,

the effective response of all unpolarized matter is equivalent.

Dilution factors for elastic ¢p events

For use in P, P, derivation (Section 6.2), it is desirable to have dilution factors for both inclusive
electron scattering and elastic ep exclusive events, as both of these are used in calculation of beam
x target polarization. A much lower background is expected for ep events, as kinematic cuts are
relied upon for the separation of these events from background (see Section 3.5).

The principle for generating dilution factors Fpyr for exclusive events is exactly the same as
that outlined for inclusive events, except that the inclusive counts n 4, nge and nagr are replaced
by exclusive ep counts in the same W and @QZ bins. The target length £, derived from inclusive

scattering is used. For a model of ¢ — on, Eq. 5.43 was used?®, but with 5=0, as only elastic

2No exclusive model of the cross-section ratios for 15N to 12C was developed.
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Figure 5.14: Dilution factors as a function of W, shown at 4 different beam energies. These Fpr
values were generated bin-by-bin using data. Note the prominence of the elastic peak, followed
by fluctuations corresponding to the resonances, before a general flattening occurs in the W >2.0
GeV DIS region. Shown are the data from 4 outbending data sets (1.7— (top left), 2.5— (top right),
4.2— (bottom left) and 5.73— (bottom right)).
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Figure 5.15: Dilution factors as a function of W for 4.2+ data (Bracket 11), calculated individually
by sector (top) and by HWPfarget polarization (bottom). Separating the dilution factors by sectors
helped to identify problematic detector regions, while separating by polarizations helped isolate
acceptance changes over time.
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Figure 5.16: NH; data (black) showing the subtracted background (defined by (1 — Fpr)n4)(blue)
and the resulting free proton scattering spectrum (red). Shown are 2.3+ (Bracket 6) data (top) and
5.7+ (Bracket 5) data (bottomn).
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Figure 5.17: Fpr as a function of @2, shown for several different W bins, for the 5.76— set (Bracket
3). There is a slight but significant % dependence of the dilution factor which can easily be seen

here.
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scattering events from free protons were in present in the data.

Elastic ep events compared to their subtracted background are shown later, in Figure 6.6. In
the course of this analysis, it was seen that the background was low enough that a simpler model
using carbon-background subtracted events in ¢ was sufficient for removal of unwanted ep events
(Section 6.2.2), so this method was, in the end, employed only as a method of comparison for the

derivation of P, P;.

5.6.2 Calculation of ' from radiated cross-sections

Calculation of the dilution factors from radiated cross-sections is simple once all the target material
lengths and densities are known. According to Eqg. 5.75, one simply divides the sum of total counts

from the protons only by the sum of all counts in the target:

Ty Zpalaoy
na W pala(op+ Lon) + pue(L —La)one

Fpr = (5.86)

where, as usual, W represents the foil (Al and Kapton) confributions. All cross-sections here pertain
to the ammonia target, so no disambiguation is needed. Because this is a smooth-fitting model, no
statistical errors are caiculated, though sysiematic errors need to be handled properly (see Section
7.2).

Using a model for the dilution factor has two advantages over the statistical method:

1. It exploits the continuity in the dilution factor from bin to bin, so that artificially large statistical

fluctuations do not dominate the calculated asymmetry. 2

2. Extrapolation of the model can be made into kinematic regions where adequate data inside

fiducial regions is not available.

A comparison of the modeled dilution factors to the dilution factors calculated from the first method

are shown in Figure 5.18.

BIn other words, there are correlations between bins that the statistical errors in the first method do not use advama-
geously, thus having the net effect of underrepresenting our precision
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Figure 5.18: Dilution factors (statistical and modeled) as a function of W (left) and Q? (right) for
selected bins of the 1.6— (Bracket 2) and 5.6+ (Bracket 7) data. It is important to note that this is
not a direct fit to the data, but rather an independent model of cross-section data employing only
information about the target material quantities. Note that the elastic peak is not very well fit for the
lower beam energy, a point of concern addressed in the text.
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5.6.3 Application of dilution factors

Two methods have been demonstrated for calculating the inclusive dilution factors for the EG1 data.
As already explained, the model method is preferrable to use, assuming that its accuracy is verified,
because it is not governed by the statistical error of the data. 2 However, as seen in Figure 5.18,
and explained in Section 2.8, the model does not provide a very good fit to the data for the elastic
region, due to the dependency on detector resolution, which must be externally determined and
inserted into the model.

The model appears to fit quite well for the inelastic region, where the analysis of 4; and 4; is
of interest. In the elastic region, where the model is less accurate, there is plenty of data available,
with less statistical fluctuation than in the DIS region, even for high-energy data. Also, the only
use in this analysis for the elastic region dilution factors is for the determination of P, P;, where all
elastic data are averaged into a single bin, so statistical fluctuations are not a considerable problem
therein.

Therefore, the modeled dilution factors were used at W >1.08 GeV, above the inelastic thresh-
old, while the older (statistical) method was used at W <1.08 GeV. There was no guarantee of
perfect continuity of Fpr across this boundary, so values on the opposing sides of the boundary
were never used in the same integration or average. Finished dilution factor arrays were determined

for each data bracket and every bin for the removal of non-polarized background.

%1n previous analyses ([2] and [46]), a statistical averaging technique was used to “smooth over” the sparsely populated
bins at higher energies. Since the model is now used, this is no longer necessary.



Chapter 6

Removal of Polarized and Other

Target Background Events

6.1 e*e~ Background Correction

Analysis so far has assumed that detected electrons, after #— removal, are indeed exclusively
scattered electrons ¢’. However, it is possible that the detected electron originated from other

processes.
Inclusive ep scattering can produce 7° mesons at the event vertex. These mesons subsequently

decay, must commonly through Dalitz decay [118):
7% — etey {6.1)

where the pair-symmeitric decay of the neutral pion has a branching ratio of 1.2% [5]. Because the
=0 decays electromagnetically and thus has an extremely short lifespan, the e*e™ pair is effectively
produced at the event vertex. If the electron from the decay is accidentally detected as the event
trigger particle instead of the inclusive (e) electron, the inclusive cross-section will be contaminated
with invalid data.

While Eq. 6.1 is the most common decay mode that produces superfluous electrons, other
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decays are also possible, including the Bethe-Heitler process [119]
YN - ete™ N (6.2)
which is more prominent at forward angles [118], and

- Yy — ete e

e~ (6.3)

though contribution from the latter is minimal. Similar decays of of the (pseudoscalar) n mesons
also contribute to the pair symmetric background. Very smalf ete~ contributions from p, w and ¢
(vector) meson decays are also made [118]. 1

To correct for contamination from these events, we take advantage of the fact that a positron is
always produced with every electron (as required by charge and lepton number conservation) and

make the following assumptions:

1. The event reconstruction for positrons in outbending runs is identical to that of electrons for

inbending runs, and vice versa.
2. The detection efficiency of positrons is similar to that of electrons.

3. The overall contamination is small, so that slight differences in beam energy or acceptance

have little effect on the first two assumptions.

With this in mind, we realize that the rate of ¢~ contamination for an inbending run should be
identical to the rate of e triggers for an outbending run of the same beam energy (and vice versa,
of course). Using subsequently calculated et /e~ ratios and e* double-spin asymmetries, the effect
on the asymmetry can be calculated.

We look for a coefficient Cpqcx that can be multiplied by the uncorrected asymmetry Ay, to yield
the e*e~ background-corrected asymmetry. This changes Eq. 5.1 to

_ Crack 1~ — nt
P,PFpr n~ +nt
1 Non-pair-symmetric production can also occur from the decay of K — %~ v.. These electrons much more difficuit

to account for, since there is no et produced in the reaction. Fortunately, the K fifetime is long enough (and the K /x° ratio
is small enough) that the vertex contamination is negtigible [118].

4y (6.4)




298

We assume that the dilution factors are approximately equal for each data set (a valid assumption
for small contaminations. One can see from Figure 5.14 that these numbers are approximately
equal in the inelastic range). We also neglect P, P;, for now, as this factor is of the same magnitude
between data sets, and this is a small correction. We can thus apply the correction directly to the

raw asymmedtry:

n~ —nt

w4t (6.5)

Acorr = Cback

where nt and n— are the raw FC-normalized count rates for each helicity state. To find Cpocr, We
consider that the uncontaminated asymmetry can be found from the raw asymmetry by subiracting

the (as of now, unknown) pair production electron rates (n; and n’) from the sample:

_ (" —nj)—(n* —n3)

T (n —mp) + (nt —nf)

Acorr (6.6)

fwetake n =nt +n~ and n, = n; + n,,, and divide both the numerator and denominator by »,

we find
ot _ My
Acorr = —2 2 7
If R = n,/n, this can be written
_—n+
Ara,w - ""lﬁ_/ha
A== ©8)
Defining A, = (n, —n})/n, yields
Araw - RAp
Acorr = .
—R (6.9)
so that
_ 1—-RAy/Avow
Cback = 1-R (610)

Therefore, the asymmetry can be corrected if the contamination rate (R) and the pair-production
electron asymmetry (A4,) are known. The following sections provide information on the evaluation

of these quantities.
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6.1.1 Measurement of pair-production rates and asymmetries

The rate of contamination of pair-produced electrons in the inclusive electron data should be ap-
proximately equal to the rate of positrons detected at the same beam energy and opposite main
torus current. Events triggered by positrons, instead of electrons, were written to separate DST
files. To calcuiate the number of positrons, these files were analyzed in exactly the same manner
as the regular (electron-triggered) files. Similarly to the oppositely charged electrons, =+ contam-
ination was a possible issue. Therefore, the respective pion contamination and fiducial cuts were
applied, except that the parameters for the opposing torus current were used (see Sections 4.1 and
4.4), due to the reflected geometry of the positively charged particle tracks.

In a given bracket, charge-normalized counts were recorded for total inclusive (¢’) counts, along
with positron (e*) counts for an equal-energy bracket with opposing torus current. The counts were
rebinned in terms of § and momentum p. This binning scheme is outlined in Table B.2. Plots were
generated of the resulting e* /e~ ratio in terms of 8 and p. 2 Ratios were observed to diverge at both
low p and high 8, because a more homogeneous spread of the (randomly directed) pair symmetric
decays is expected than of the forward-scattered inclusive electrons.

In terms of p, the background ratio R = e* /e~ could be smoothly fit with

R(p) = e*Pr (6.11)

while, in terms of @, the fit
R() = C*P° (6.12)

was employed.

Some examples of isometric fits in terms of both p and 8 are shown in Figures 6.1 and 6.2, re-
spectively. Ultimately, a fit of R to both p and 8 simultaneously, for each beam energy, was required,
so that the contamination could be calculated for any kinematic value, including values extrapolated

outside the range of accurate ratio data. Because of the success of the above exponential forms in

2Emor bars, generafly 100 small to be noticed, but important for fit purposes, can be calculated by the suitable analog to
Eq. 5.23.
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parametrizing the contamination, a fit of the equation

R(6,p) = eo W0 teptdip (6.13)

was used for each beam energy. Given a value of 6,,, and p.., in €ach W and Q2 bin, the value of
R, to be applied to Eq. 6.10, can be calculated to appropriately modify the raw asymmetry.
The only piece of information still needed for this correction is the value of A,/Ayew. This

quantity, given simply by
(ny —nf)(n~ +nt)

(np +ng)(n~ —nt)

can be calculated by separately summing over electron and positron events in the DST . The

Ap/Araw = (6.14)

double-spin asymmetry for the contaminating electrons is, by definition, identical to that for the
positrons (for the opposite torus current). Plots of 4, as a function of momentum are shown in
Figure 6.3. As one can see from these plots,the pair-production asymmetry is very small, so that

its effects on Ay, are negligible. Thus, the approximation

019

is used in this analysis.

6.1.2 Application of pair symmetric correction

The pair symmetric correction is applied to raw asymmetries for each data set in the analysis. The
raw asymmetry is multiplied times a factor Cj, ;. determined using the smooth paramatrization of R
given by Eq. 6.13, with A, /A4 = 0.

Fit values for a, b, c and d, as well as the fit errors on each of these parameters, are listed in
Table 6.1. Note that this correction to the asymmetry is applied before the calculation of P, P;, so
that more accurate values of the raw elasitc asymmetry can be determined before evaluating the

polarization product.
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Figure 6.1: Ratios of et /e~ as a function of p, shown for various ¢ values, fit with the exponential
curve of Eq. 6.11. 2.5 GeV outbending positrons were used for the top plot, while 5.7 GeV inbend-
ing positrons were used for the bottom plot. The normalized counts were divided by the inclusive
electron counts. Note that the contamination is highest at low p and high 8. The “bump” in the
bottom plot near 3 GeV is pion contamination, above the Cherenkov detection threshold of p ~ 2.7
GeV.
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Figure 6.2: Ratios of et /e~ as a function of ¢, this time shown for various p values. The lowest
p-bin, where pair-production contamination dominates, is fit with the exponential curve of Eq. 6.12.

Note that the contamination rapidly diminishes at higher momenta.
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Table 6.1: Values for the parametrization of R = e* /e, as given by Eq. 6.13, shown for each data
bracket. These units apply to 6 in degrees and p in GeV.

Set/Bracket a b
1.6+/1 -5.96 £+ 0.067 0.131 + 0.0021
1.6-/2 -1.54 £ 0.016 | 0.0141 £ 0.00071

5.76—-13 -2.29 + 0.018 0.129 + 0.00087
5.73—/4 -2.31 £ 0.017 0.123 + 0.00084

5.7+/5 -1.07 £ 0.039 0.0799 + 0.0015
2.3+/6 -213 +£0.030 | 0.0442 1+ 0.00099
5.6+/7 -1.23 £ 0.040 0.0877 + 0.0016

1.7-/8 0.0798 + 0.015 | -0.0151 + 0.00068
2.5-9 -1.98 + 0.0097 | 0.0442 + 0.00044
42+11 -1.64 + 0.058 0.0868 + 0.0022
42-12 -2.45 + 0.024 0.118 £ 0.0012

| Set/Bracket c d ]
1.6+/1 -4.22 + 0.10 -0.0469 + 0.0033
1.6-/2 -6.40 £ 0.028 | 0.00492 + 0.0012
5.76—-13 -0.438 + 0.015 | -0.0932 + 0.00070
5.73-/4 | -0.434 £ 0.014 | -0.0896 + 0.00067
5.7+/5 -1.10 £ 0.029 | -0.0635 + 0.0011
2.3+/6 -3.95 + 0.042 | -0.00336 + 0.0014
5.6+/7 -1.02 £ 0.030 | -0.0681 + 0.0012
1.7-18 -6.56 £ 0.028 | 0.0216 + 0.0012
25-19 -3.91 + 0.016 | -0.0137 + 0.00068
4.2+11 -1.88 + 0.046 | -0.0538 + 0.0017
4.2-/12 -1.21 + 0.021 | -0.0837 + 0.00098
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Figure 6.3: Total integrated positron asymmetries for 5.7+ (Bracket 5) data, shown as both a func-
tion of p (left) and @ (right). Magnitudes are very small compared compared to the raw inclusive
electron asymmetries, showing that pair-production makes only a very tiny contribution to the mea-
sured asymmetry.

6.2 Beam x Target Polarizations

Dilution factors quantify non-polarizable target background, leaving only events scattered from the
free protons in the NH;. However, since we are interested only in measuring the double-spin asym-
metry, it remains to remove scattering data for which either the incoming beam electron or target
proton was not polarized. While the CEBAF electron beam maintains a fairly constant polarization
of approximately 70%, the polarization of the target protons can vary considerably. While the tar-
get NMR (see Section 2.4) makes a measurement of the polarization of the target, it is not well
understood how the polarization varies throughout the volume (both in thickness and radius) of the
target, nor is a precise manner of determining the error on the target NMR reading readily known.
To further complicate metiers, there are large stretches of target runs (particularly in the 1.6+ and
2.3+ data sets) with no NMR measurements.

To provide this polarization, we instead take advantage of the fact that the double-spin asym-
metry A can be easily calculated from the electric and magnetic form factors Gg and G, and is
well-understood for the proton in the elastic region, lower in W (i.e. higher in ) than the region of
interest of the measurement of A; and A,. Elastic scattering is a purely spin-% phenomenon, so

A; = 1 and A; is purely transverse [6], so that

|41 =1 (elastic)] (6.16)
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and

(elastic) (6.17)

A = ([R(ery =

Ggp
VTGM

where R is the value analogous to the structure function R in the elastic region (Eq. 1.66). 3

Substitution of these into Eq. 1.223, after applying Eqs. 1.19 and 1.66 yields

1- F'¢/E)(1 T
R €18

The number r¢ is the ratio of electric and magnetic form factors rq = Gp/GE for the proton. With

some algebra, this can be written

_ 1(1/e— E'/E)rd +ran/v/T)
Ay = 1+ réf/ € (6.19)

The numerator now contains terms proportional to 2 and r¢. Egs. 1.7, 1.15 and 1.44 can be used

to show
Q*=2M(E - E') =2Mv (elastic) (6.20)
Q? ,
T= e (elastic) (6.21)

Using these relations, application of Eq. 1.16 to the r2 terms, and application of Eq. 1.17 (with the
numerator and denominator divided by ¢E) to the r¢ terms yields a more mundane equation for A4,

in the elastic region [46]:

M M )
4y = 2rrg [ +ro(r 2+ (1+7)tan?($))] (6.22)
14r27/e
The form factors Gs and G g can be parametrized from world data [13] as
Gr(Q?) = . (6.23)
1+ 0.62Q + 0.68Q2 + 2.80@Q3 + 0.83Q4
Gm(Q%) = = (6.24)

1+ 0.35Q + 2.44Q2 + 0.50Q3 + 1.04Q° + 0.34Q5

3Refer back to Sections 1.2.2 and 1.4 for more information.
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where the proton magnetic moment is p, = 2.79.

A more recent parametrization of the form factors for the proton is given in Ref. [14]:
-1
Ge(@%) = [1+p2Q* + psQ* + ... + p12Q"7] (6.25)

Cu(Q%) = ity [1 + p2Q° + paQ* + ... + p12Q"] ! (6.26)

where the coefficients p,-p; are replicated in Table 6.2. Later in analysis, this parametrization was
used in place of the parameirization of Eqs. 6.23 and 6.24. The change in the resulting asymme-
tries was small, showing that knowledge of these form factors is not a limiting factor in the accuracy
of our measurement. 4

Table 6.2: Fit parameters for the Rosenbluth form factors Gg and G by J. Arrington. From Ref.
[14}.

{Parameter | Gg | Gu |

P2 3.026 3.19

Pa 1.508 1355
7o 03773 0.151

s 0611 00114
Pro Z0.1853 | 5.33x10 2
P12 0.01596 | -9.00x10-°

Knowing the proper value of the elastic asymmetry, one can then measure the actual background-
subtracted asymmetry of the real data, integrated over the elastic region. This asymmetry always
turns out smailer than the pure double-spin asymmetry calculated in Eq. 6.22, because, though
the non-proton background is already removed, not all the target protons and beam electrons are

polarized. Using Eq. 5.1, the product P, P, (beam x target polarizations) is

PP, = _;A"ﬁ“’_?_‘l (6.27)
Ay

where, in this case, A, is defined by the above equations and Ameasured iS the diluted experimental

asymmetry.

4This is considered in determination of the systematic errors. See Section 7.2.3.
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Knowledge of both detector behavior and the accuracy of the (dilution factor) is dubious at low
values of Q2. Therefore, a tower limit of Q% = 0.2 GeV? was used in all measurements of P,P,.
Both background subtracted inclusive data and exclusive ep events were used for the measurement
of Ameasured- These two methods are explained individually in this section.

It is important to note that measurement of P, P, (on average} incurs the largest systematic
errors of any of the individual contributions to the asymmetry (see Section 7.2.3), as the number of
elastic ep events is statistically limited. Also, as the final answer is a single number for each data
set (unlike the contnuous spectrum of dilution factors), great care was taken to cross-check the final
values using variations on the methodology, detailed in the following subsections.

6.2.1 Inclusive method

The first method of determining P, P, uses a cut on W to isolate events from the inclusive electron
scattering spectrum in the elastic region, and then uses their background-subtracted asymmetry to
evaluate Eq. 6.27 for each Q2 bin. The error-weighted average is then used for the final value of
P, P,. Using inclusive events is advantageous because it offers the most possible statistics (i.e. it
includes elastic events even when the recoil proton was not detected), but it has the disadvantage
of requiring a very large removal of background (see Figure 6.4), potentially leading to large sys-

tematic errors.

Isolation of true elastic events

First, the width of the elastic peak must be defined. Including the entire elastic peak is desirable
to minimize the statistical error. However, widening the cut by too much risks the inclusion of non-
elastic electrons. This can happen both at the high W end (if W — M + m,, allowing for radiative
inelastic tails) and at the low W end (where coherent nuclear scattering creates a tail at low W). For
lower beam energies, where elastic scattering events dominate over the inelastic scattering events,
the elastic peak is clearly discernable from the background. As beam energy increases, though, it
becomes more challenging to isolate the less visible elastic peak (see Figure 5.1, for example).
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The simplest way to determine the width of the elastic peak was to subtract away the back-
ground. Removal of the non-proton scattering events excises multiple-nucleon correlated events,
and the width of the elastic peak can then be more easily distinguished. The background removal
can be done one of two ways. The more exact method® is to use the dilution factors Fpr and Eq.
5.76. The other, simpler method, takes advantage of the fact that, in the low W tail, scattering
events involving “long-distance” (z > 1) correlations between nucleons dominate the event spec-
trum. At the relatively high beam energies of EG1, these event cross-sections are roughly equal
for 12C and '°N, so long as W is not too low (where z — Z, and unequal effects for nitrogen and
carbon are expected).

Given that the spectra of 12C and NH; should have the same shape in the low W region, apart
from an overall multiplicative “scaling factor” S accounting for slight differences in mass thickness,®
the total background can be found by scaling the counts in the low-W tail of the carbon target events
to the same magnitude as the NH; events. That is, one finds the factor S such that

> (nnE, — Snc) =0 (6.28)
0.40GeV<W <Wiipmit
by looping over small increments in S until the above quantity is minimized. Wy,,,;; was set low
enough to be safely far away enough from the elastic peak, as including the peak risks ‘under-
scaling’ of the carbon events. The quantity nyu, — Snc then yields the approximate background-
subtracted spectrum, when extended into the elastic region.

Accuracy can be improved if the subfracted spectrum of 12C is related to the predicted 1°N spec-
trum by a model. Once again, the model of Section 2.8 was used, specifically the newly-modeled
I5N/12C data, to predict the count ratio between the carbon target and the ammonia target, minus
the free proton contribution. The model is used with Eq. 5.32, with éy — £4 = 0.60 cm and
pn — p4, to account for the length and density of '°N in the ammonia target, respectively. 7
The array of numbers ryc (W, Q%) was then used as multiplicative factor on the carbon counts. The

resulting numbers (~ 0.87 in the elastic region) are very close to the scaling factors required when

5This assumes models for o, /o4 and o /o are precise, which was not the case during the early phase of the analysis,
hence previously necessitating another method.

SThis factor should be fairfy constant, with no more variations than those inherent in the ammonia target length 4.

"Naturally, -}% — ;_i' for ND3.
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no model is used. ® This lends further credence to the utility of the model. A summary of the
scaling integration limits and derived scaling factors S is recorded in Table 6.3.

Plots of background-subtracted spectra in the elastic region for inclusive events are shown in
Figure 6.4. Using these plots, one can easily find the boundaries of the elastic peak. However, in
no case was an upper limit of W = 1.00 GeV in the elastic peak range exceeded, in order to avoid
inelastic tail contamination (plainly visible in the lower energy background-subtracted W spectra).
Boundaries for inclusive elastic peaks (along with the upper limits used for the case of carbon
background subtraction) are listed in Table 6.4.

Table 6.3: Upper limit of integration for 12C scaling, as well as the weighted average of the scaling
factor S for carbon counts, with and without the use of the nitrogen/carbon scaling model. Two
examples of the model, one using a fixed ammonia target length £ 4, and another using the precise
value of £4 for each set (from Table 5.9), are shown. See the text for more details.

{ Set/Bracket | Wismi: | S (no model) | S (N/C model,f, = 0.6) | S (N/C model, exact £,) |

1.6+/1 0.86 0.86 1.06 1.04
1.6—-/2 0.86 0.88 1.09 1.05
5.76—-13 0.70 0.87 1.01 1.01
5.73—/4 0.70 0.85 0.98 1.01
5.7+/5 0.74 0.82 0.94 0.98
2.3+/6 0.82 0.90 1.07 1.04
5.6+/7 0.74 0.83 0.96 1.00
1.7-/8 0.86 0.82 1.01 1.06
2.5-19 0.82 0.83 1.01 1.04
4.2+/11 0.80 0.84 0.97 0.98
4.2-112 0.78 0.86 1.00 1.00

Table 6.4: Lower and upper limits of elastic W-bounds used for measurement of P, P, for the
inclusive method. All values are in GeV.

| Beam Energy (GeV) | Elastic Bound (lo) | Elastic Bound (hi) |

1.x 0.90 0.96
2.X 0.89 097
4.x 0.88 0.98
5.x 0.86 1.00

8This means that when the mode is incorporated, the resultant scaling factor becomes 1.00:+0.06.
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Figure 6.4: Background subtracted inclusive spectra, near the elastic region in W, for 1.6 GeV (top)
and 5.7 GeV (bottom) data. The left and right plots show the same data, and are only separated
for clarity. Shown are the total NH;3 counts (blue), the 12C counts scaled to the ammonia spectrum
{green), the remaining difference of these two (i.e. the elastic events)(black). The same subtracted
spectrum using the dilution factor Fipr to determine background is also shown (red).
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Integration over the eiastic peak

The background subtraction must not be improperly weighted by the relative counts in each bin.
There are two approaches one can take to handle this issue. The simplest method is to derive the
number of background counts bin-by-bin and integrate the remaining counts directly. The value of
npack iS calculated using either Eq. 5.76 (for proper dilution factors) or ny g, — Snc (for the carbon

scaling method). For the case of dilution factors, the error on np,. is given by

Y . PR P (6.29)
Mback anNHs NN, ) FDF a For R
This calculation yields
Orpack = \/ (1— Fpr)’nNm, + 0y, 05, (6.30)

For the carbon-subtraction method, the error is simply given by

Onsack = \/ STC(ads.) (6.31)

where ng (.4, is the carbon count with the minor carbon/nitrogen-model adjustment mentioned
above.

To apply these equations, the sums of the +/-— helicity NH3 counts between the elastic W limits
were calculated for each Q? bin. This integrated sum was then treated as a single bin. An overall

dilution factor, weighted by the error on the raw asymmetry in each W-bin, is calculated as

___ ZWNFDF

FDFtotaz - EW N (632)

1 (6.33)

UFDFcutal - m

This dilution factor is then applied to the sum of all the counts over the elastic region in Eq. 5.76 to

get npecx and Eq. 6.30to get oy, -
After ny.ox and its error are calculated (using either dilution factors or scaled carbon counts), the
background-subtracted asymmetry for the given Q2 bin is then given by Eq. 5.74, with the change
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Tivack — 2Nback- © Thus we have (with the n's this time representing the summed counts over W):

n~ —nt
= 6.34
A n~ +nt — 2npgex (6.34)

Using the usual method for statisticat errors, one gets

Ay \? aA\? o\’
GA”:\/(Bnback) og‘b"c"_‘-(@n‘) "t \Gnt nt (6.35)

where (approximately)

A  2(n” —-nt)

Onpack Y (636)

8AH _ 2(n+ — Tback)

I @ (6.37)

8A“ - 2(n’ — nback)

ant 7 (6.38)
with

Z=n" +nT — Mpack (6.39)

With the background-subtracted asymmetry and its error now calculated for every populated Q2
bin, Eq. 6.27 can then be applied in each bin. The weighted average over these bins is then the
actual P, P; value.

As a check on this method, a second method of background subtraction was applied, in which
the integrated dilution factor (Eq. 6.32) was applied to the averaged asymmeiry, summed over the
elastic W bins, as according to Eqs. 5.7 and 5.8 (but summed only over elastic W and not Q?).

The diluted asymmetry was then found in the standard manner, that is

1

Allsirates = 7

6.40
FbF,rm (6.40)

Hraw

9This is done because the Faraday Cup charge sum of both the plus and minus helicities is used to define the count rate
npack N this section, whereas the Faraday Cup of either +/— helicity was used in Section 5.6. This is a subtle and often
confusing point that must be remembered when doing charge-weighted background subtraction. Generally, appropriate
Faraday Cup charge weights are not expilicitly stated in this text, due to the heaviness of notation required to do so. Care
must be taken to include them when working out exact calculations for use in coding.
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Calculating the standard error yields

2 A2
oAy = \/——FDF i | (6.41)

Fpr,
N total
DFiotat

This method can also be used if carbon scaling is used for the background subtracting, by defining
the dilution factor according to Eq. 5.76, using the calculated scaled background. In this case, the

erroron Fpg, , . is

3
_ Tback Thack
OFprgum (n~+nt)? " (n- +;l+)4 (6.42)

with the remaining calculation of A, going just as for regular dilution factors. In summary, there are

4 (non-independent) methods for subtracting the background presented here:

1. Using an averaged dilution factor to subtract backgrounds from the summed counts over W,

then calculating the total asymmetry

2. Using scaled carbon to subtract the summed background, then calculating the total asymme-

try

3. Using an error-weighted dilution factor, averaged over the peak, to dilute the average asym-

metry

4. Calcuiating a primitive dilution factor from the scaled carbon counts, then error-weighting and

averaging it to dilute the average asymmetry.

In the end, all 4 methods were found to produce asymmetries with approximately equal error bars
for all data sets, with resulting P, P, values generally compatible within the resulting statistical error
bar. In the end, it was Method 3. that was used to do background subtraction for the inclusive case,
because dilution factors were developed to make the most accurate subiraction of background

possible.
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Averaging P, P; over ()2

The asymmetry calculated in Eq. 6.22 varies as a function of Q2. The asymmetry-weighted average

of Q2 in each of the 40 Q? bins over all elastic events was calculated as

o Doovens @2 A(QY)
@)= 2 events A11(Q7)

(6.43)

with A calculated in Eq. 6.22. Then, Eq. 6.27 was applied in each Q? bin, yielding a separate

measurement of P, P; in each Q? bin, with statistical error given simply by

This value should be constant for all Q2 (within a statistical error).
The inclusive method of calculating P, P, works well at low energies, where elastic peak statistics
are plentiful and background is (relatively) low, but it leaves much to be desired at higher energies.

For this reason, a second method was devised.

6.2.2 Exclusive ep method

Beam x target polarizations can also be calculated from exclusive elastic ep events (Eq. 3.6). Due
to the strict kinematic cuts used to identify these events, very little background remains to be sub-
tracted. The kinematic cuts on missing energy, & and ¢ used to identify these events are described
in detail in Section 3.5, while the PID cuts used to identify potential ep events are explained and
summarized in Section 3.4. Only a final cut on W remains to be defined in this section. The basic
strategy for finding a good W-cut is essentially the same as for inclusive electrons; only the method
of background subtraction differs.

Removal of remaining background

With only a slight difference in method as used for inclusive electrons (see Section 5.6.1), dilution
factors can also be calculated for elastic ep events. Scaling of 1?C events can also be used, but

since (practically) all coherent scattering events in the low-W tail are already removed from the
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spectrum by the kinematic cuts, a different strategy must be employed here.

A spectrum of counts in ¢ (in 0.1° bins) is produced for elastic ep events, with all the cuts in
Section 3.5 in place, except for the A¢ cut. This is done for both NH; and 12C runs. Using the
method of minimizing Eq. 6.28, except over bins in ¢, a carbon scaling factor .S can be found, using

the same reasoning as in the preceding section. A cut of
2° < |Ag| < 6° (6.45)
(with A¢ defined in Eq. 3.14) was used for the scaling region, so that

> (nwm,—Snc) (6.46)

2°<|Ag|<6°
was minimized. Figure 6.5 shows the scaled carbon counts in ¢, showing just how small the
remaining background actually is. Scaling factors for exclusive carbon events are listed in Table
6.5. Using the carbon scaling factor S and the exclusive ep dilution factors, plots analogous to
those in Figure 6.4, showing the background subtraction using each method, can be drawn (Figure
6.6). W-cut boundaries for elastic ep events are considerably wider than for inclusive events, as

listed in Table 6.6.

Table 6.5: Carbon scaling factors required for elastic ep events for each data set in the region of
2° < |A¢| < 6°. Details are given in the text.

| Set/Bracket | S |

1.6+4/1 1.16
1.6—-/2 1.52
57613 1.25
5.73—-/4 1.11
5.7+/5 0.99
2.3+/6 1.06
5.6+/7 1.31
1.7-/8 1.53
2.5—-/9 1.13
4.2+/11 1.23
4.2-/112 1.34
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] Counts in A¢ elastic e-p events 2.29 GeV inb. |
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$70 172 78 176 178 180_ 182 184 186 188 180

Figure 6.5: Elastic ep events in terms of ¢, — ¢. (blue) showing scaled carbon background (red).
Remaining background from exclusive events is very low if good kinematic cuts are used. Data
from Brackets 6 (2.3+) and 3 (5.76—) are shown.

Table 6.6. Lower and upper limits of elastic W-bounds used for measurement of P,P;, for the
exclusive method. All values are in GeV.

| Beam Energy (GeV) | Elastic Bound (lo) | Elastic Bound (hi) |

1.x 0.88 0.98
2. 0.87 0.99
4.x 0.86 1.00
5.x 0.84 1.02
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Figure 6.6: Background subfracted exclusive ep spectra, near the elastic region in W, prior to a
W-cut. The left and right plots show the same data, and are only separated for clarity. Shown
are the total elastic NHz counts (blue), the '2C counts scaled to the ammonia spectrum (green),
and the remaining difference of these two (i.e. the elastic events) (black). The same subtracted
spectrum using an elastic dilution factor Fpr to determine background is also shown (red, barely
visible behind the black on the right-hand plots). Brackets 6 and 3 are again shown.
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Applying the exclusive method

Application of the exclusive ep procedure of deriving P, P, can also proceed as according to the
four methods listed in the description of the inclusive method. In each case, the mathematical for-
malism, including error bars, is exactly the same as for the inclusive method, only the exclusive ep
counts, backgrounds and dilution factors are used.

Just as in the inclusive case, the four methods of deriving the exclusive F, P, yielded consistent
results. However, in this case, the carbon scaling method was applied to cumulative asymmetries
(Method 4) to generate P, P;. For exclusive events, the background subfraction was very small, so
there was little to gain in using a dilution factor in place of background subtraction, and the carbon-
scaling method provided greater overall kinematic coverage. °

Again, B, P; was evaluated in every @2 bin. These can be shown compared to the inclusive val-
ues in the figures on the following pages. Just as in the inclusive method, the A;-weighted Q* was
used to calculate the theoretical asymmetry. '' Because of the small background subtraction, the
exclusive method gave slightly smaller error bars than the inclusive at the highest beam energies,
but was less successiul at lower beam energies, where the less energetic proton recoil was not as
often detected.

However, even though the statistical error bar was larger in the exclusive case for low energies,
there are far fewer sources of systematic errors in the exclusive evaluation than in the inclusive
case, due to very small background subtraction in the former. Therefore, the exciusive F, P, values

were employed as the “official® measurements for the proton analysis.

6.2.3 Final determination of P, P. values

By this point, inclusive and exclusive P, P; values were calculated for each @2 bin. Values were
checked for constancy for each HWP and target polarization sign combination (Figure 6.7), for sep-
arate target polarizations only (Figure 6.8) and whole sets (Figure 6.9), for diagnostic purposes. In

every case, Q? bins where the asymmetry error was larger than 1.5 was excluded, to prevent the

oCaiculation of dilution factors in the elastic region relied upon empty LHe count data being present in every bin. Popu-
lated bins sometimes were sparse for the limited ep events in the imited numbers of these runs.

"This is actually more crucial in the exclusive case, where weaker statistics are more likely 1o result in an average Q2
away from the bin center.
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Table 6.7: P, P; values, inclusive and exclusive, for each half-wave-plate state and target polariza-
tion combination. Error bars on high-energy values are quite large. For this reason, asymmetry
data for separate HWP states and target polarizations are combined before finaily evaluating F, F;,
and these values are for diagnostics and reference only. The signs represent HWP/argetpol; e.g.
“++" is HWP out, positive target polarization.

[ Set/Bracket | ++ (inclusive) | ++ (exclusive) | —+ (inclusive) | —+ (exclusive) |
1.6+/1 0.551 + 0.0041 | 0.550 + 0.0063 | 0.634 + 0.0063 | 0.645 + 0.010
1.6-/2 0.561 + 0.012 0.567 + 0.041 - -

57613 0.443 + 0.023 0.449 4+ 0.023 0.415 4+ 0.027 | 0.502 + 0.028
5.73—/4 0.500 + 0.029 0.572 + 0.031 0.459 + 0.032 | 0.502 + 0.035
57+/5 0.582 4 0.056 0.473 + 0.030 0.468 + 0.070 | 0.489 1+ 0.038
2.3+/6 0.531 + 0.0056 | 0.556 L+ 0.0079 - -
5.6+I7 0.534 + 0.062 0.612 + 0.036 0.520 + 0.066 | 0.584 + 0.039
1.7-/8 0.586 + 0.0082 | 0.656 + 0.019 - -
2.5-19 0.511 +0.088 0.611 + 0.157 | 0.606 £+ 0.0080 | 0.630+ 0.014
4.2+111 0584 +0.027 | 0609 +0.019 | 0.5621+0.026 | 0.538 +0.018
4.2-112 0.538 + 0.034 0.600+ 0.042 | 0.563 +0.015 | 0.606 + 0.019

| Set/Bracket | +— (inclusive) | +— (exclusive) | —— (inclusive) | —— (exclusive)
1.6+/1 0.530 £ 0.0035 | 0.545 + 0.0054 | 0.515 1+0.0054 | 0.518 £+ 0.0086
1.6-/2 - - - -
57613 0.462 4+ 0.031 0.506 + 0.032 0.392 + 0.028 0.439 + 0.029
573-/4 0.470 + 0.030 0.571 +0.032 0.465 +0.033 0.505 + 0.036
5.7+/5 0.25+0.12 0.465 + 0.062 0.472 £0.036 0.488 + 0.020
2.3+/6 0.460 +0.0078 | 0.476 + 0.010 | 0.421 + 0.0051 | 0.451 + 0.0069
5.6+/7 - - 0.452 + 0.046 0.519 £+ 0.027
1.7-/8 0564 +0.043 | 0.4231+0.096 | 0.4891+0.0088 | 0.5264- 0.019
25-19 0.559 +0.0089 | 0.6051+ 0016 0.543 + 0.041 0.680+0.069
4.2+/11 0.459 + 0.025 0.498 + 0.019 0.572 +0.027 0.541 £ 0.019
4212 0.556 + 0.016 0.560 + 0.021 0.492 £+ 0.019 0.511 £ 0.023
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incorporation of non-Gaussian measurements. Final P, P; were calculated using exclusive asym-
metries for whole run sets, after asymmetries for opposing target polarizations were combined with
the appropriate weights (see Section 7.1). These final B, P; calculations cut out all Q? bins contain-

ing less than 10 events. 12

Table 6.8: P, P; values, inclusive and exclusive, for each target polarization combination.

| Set/Bracket | + (inclusive) + (exclusive) |
1.6+/1 0.574 £ 0.0034 | 0.577 + 0.0053
1.6-/2 0.559 £ 0.012 | 0.592 + 0.043
576-13 0.431 £ 0.017 | 0471 £0.018
5.73—-1/4 0.481 + 0.021 0.542 + 0.023
57+/5 0.539 +£ 0.044 | 0.480 £ 0.023
2.3+/6 0.530 + 0.0056 | 0.556 + 0.0079
5.6+/7 0.528 +0.045 | 0.600 £ 0.026
1.7-/8 0.582 +-0.0082 | 0.661 + 0.019
25-1 0.603 - 0.0080 | 0.633% 0.015
4.2+M11 0.572 £ 0.019 0.573 +=0.013
42-12 0.556 + 0.014 0.606 + 0.017
| Set/Bracket | — (inclusive) — (exclusive) |
1.6+ 0.524 4+ 0.0029 | 0.536 + 0.0046
1.6-/2 - -
57613 0.424 £+ 0.021 0.470 + 0.022
57314 0.467 +-0.022 | 0.542 1 0.024
5.7+/5 0.452 + 0.034 0.486 + 0.019
2.3+/6 0.432 4- 0.0042 | 0.458 + 0.0058
5.6+/7 0.452 + 0.046 | 0.520 + 0.027
1.7-18 0.489 £ 0.0086 | 0.526 + 0.020
2.5-19 0.557 +0.0087 | 0.612+ 0.016
4.2+/11 0.531 £ 0.013 | 0.531 £ 0.013
42-12 0.528 +-0.012 | 0.555+ 0.015

Final P,P; values as a function of Q2 bin for each data bracket are shown in Figure 6.9. A
tabulation of the weighted averages, for each combination of HWP and target polarization, are

listed in Tables 6.7 - 6.9.

12Specifically, any Q2 bins with a/(P, P:) < 1/(3A4,) were cut, where A} was modeled. This approximately corresponds
to 9 events or less. (Gaussian error combination is spurious for distributions containing less than ~10 events.) The differing
error bar cuts explains the difference in error bar sizes between the diagnostic and final exclusive P, P; values in Table 6.9.
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Figure 6.7: P, P, values as a function of the asymmetry-weighted average Q?, shown for the first
data bracket (1.6+). Both inclusive (blue) and exclusive (black) data points are shown. Data are
divided into 4 sets according the HWP status and target polarization direction. The red bar is the
average for the given HWP and target polarization.

Table 6.9: P,P; values for each whole data set, calculated using the properly weighted asymme-
tries (see Section 7.1). The final value is the exclusive value, recalculated with the asymmetries
weighted for target polarization (see Section 6.2.5).

| Set/Bracket inclusive exclusive | final
1.6+/1 0.547 £+ 0.0022 | 0.554 + 0.0035 | 0.556+ 0.0025
1.6-/2 0.561 +0.012 | 0.567 + 0.041 | 0.567 + 0.029
5.76—13 0.428 +-0.013 | 0471 +0.014 | 0.471 + 0.0098
5.73—/4 04751+ 0.015 | 0541 +£0.017 | 0.543 +0.012
5.7+/5 0.487 :0.027 | 0.483 +£0.015 | 0.484 + 0.010
2.3+/6 0.468 + 0.0034 | 0.493 + 0.0047 | 0.504 + 0.0034
5.6+/7 0.493 +0.032 | 0.560 +0.019 | 0.569 + 0.014
1.7—18 0.541 £ 0.0051 | 0.593 + 0.013 | 0.604 + 0.0097
25-19 0.584 £+ 0.0059 | 0.620 + 0.011 | 0.621 + 0.0076
4.2+/11 0.543 + 0.013 | 0.552 + 0.0093 | 0.553 + 0.0065
4.2-12 05424+ 0.0090 | 0.577 £0.011 | 0.579 + 0.0080
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Figure 6.8: P, P, values for two data sets (2.3+ (top two plots) and 4.2+ (bottom two plots)), split up
by target polarization direction. Opposing HWP data are combined, here. Note that statistics for
the elastic peak worsen as energy increases, but that the exclusive data (black) begins to span a
wider range in Q? with increasing energy.
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Figure 6.9: Tiles showing the final P, P, values for the first 6 NH; data brackets as a function of Q2
{(numbered left to right, starting in the top row). The red line shows the final weighted average of
the data.
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Figure 6.10: Tiles showing the final P, P; values for the last 6 NH; data brackets as a function of Q?
{continued from the previous figure. Bracket 10 is skipped because it contains no NH; data).
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6.2.4 Comparison to target NMR

Having evaluated the values of P, P; for each set and target polarization, it is useful to make at least
a qualitative check on the accuracy of this measurement by comparing it to another, mare external
measurement. The continuous wave NMR (see Section 2.4) provides an approximate reading of
the target polarization. This measurement cannot, however, be relied upon for an accurate deter-
mination of P, because the error is unknown, as is the consistency of the measurement throughout
the target volume. The beam polarization measurement P, is consistently around 70%, and can
be accurately determined by Maller runs (see Section 2.3.1). It is the target polarization that is the
limiting factor on the accuracy of P, P, measurement.

Both the Maller beam polarization and NMR target polarization readout were recorded for each
run in the DST files. While these are not employable for a primary measurement of BB, it is
informative to compare the elastic peak ratio method with the product of these two values in the
database. Unfortunately, there were large sections of runs where the NMR was definitely not work-
ing. Many earily (1.6+) runs, for example, did not properly record the value at all, while the logbook
noted that the NMR transducer broke down later, during part of the 2.3+ data set. Runs without
good NMR and Mailler information were excluded from this study.

Figure 6.11 shows the elastic peak ratio method of PP, determination for each run set (ex-
plained in the previous sections), separated according to target polarization direction, compared to
the DST Muller x NMR product for the entire EG1 data set. There is a definite correlation with the
database values and ratio-determined P, P, products. The accuracy of the comparison appears to
break down when the target polarization becomes too low, as the case with the third (5.76--) data
bracket, not all together an unexpected result (see Section 2.4). However, this quick study (and
a similar study completed for ND3 data, not shown) lends more confidence to the P, P, measure-

ments, and is useful as a general overall quality check.

6.2.5 F,F, for weighting purposes

Eventually, the point is reached where the asymmetries from various data sets must be combined

(Section 7.1). When the target polarization reverses directions (as it does over the course of several
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runs), the polarization magnitude changes 'suddenly’ to a new value, with minimal correlation to the
previous value. Raw asymmetries vary directly in magnitude with target polarization. For this rea-
son, asymmetries of opposite target polarizations were evaluated separately, and when combined,
required weighting by the target polarization value. An accurate target polarization is not needed
for this purpose; what is important is that the relative measurements (i.e. P;'/P;") have as much
precision as possible.

For this purpose, yet another P, P; measurement was made. This measurement uses the same
principle as the inclusive elastic peak ratio method, but instead of using the elastic data, a model
for the whole range of data in W, including the DIS region, was used to compare Ameasuwed and Ay;.
Models values (see Section 2.7) in the inelastic region (W >1.07 GeV) for A; and A,, along with
the tracked average for D and 7 in each bin, were used in Eq. 1.223 to calculate 4;;, and the ratio

was taken to generate a P, P; value in each bin:

PP, inat(W, Q%) = frow/ For (6.47)
It
F
inet (W, @) = P D (6.48)
The error-weighted average of all these was then taken to find the total P, P;:
>0z 2w PP inet/0?
(PyPs inet) = =L oo > (6.49)
ZQz Ywl/o
with
1
(6.50)

Oinel =
v/ EQz >Ywl/o?
The values of P, P; ;.1 were then statistically combined with the true (elastic) value of P, P; for each
target polarization, to yield a P, P, value for weighting purposes only:

PP, inel/aiznel + PI)Pt/U2

PP gt =
wet 1/01'27131 + 1/0.2

(6.51)

Twgt = 1/1/1/0%q + 1/ (6.52)
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Plots of P,P; ine: as a function of Q2 are shown in Figure 6.12. Note that P, P; generated in this

manner is not nearly as constant in Q? as that generated only from the elastic peak, mainly because

of our ignorance regarding the accuracy of the model, specifically at low Q2. The statistical efror

(for larger energies) is small, due to the larger amount of data incorporated into the calculation, but

the systematic errors imposed are very large. Simply put, it is a precise model, but not an accurate

model of P, P,. However, it is good for comparing the relative weights accorded to data of the same

beam energy/torus current but opposing target polarizations. The application of these P, P; values

to weighting of the data is described in Section 7.1. Values of P,P,; jn; and the final PP, .4 for

each data set are listed in Table 6.10.

Table 6.10: Values of P, P; ., used for the weighting of asymmetries from opposing target polar-
izations. The contribution from the inelastic region only (P, P; ;1) is also shown.

| Set/Bracket | Target Pol. | PoPiinet | Oine PyP; gt Owgt |
1.6+ + 0.562 | 0.0078 0.574 0.0029
1.6+/1 — 0.516 0.0092 0.528 0.0025
1.6-/2 + not needed
5.76—-13 + 0.429 0.0074 0.435 0.0066
5.76-13 - 0.470 0.0061 0.468 0.0058
57314 + 0.509 0.0081 0.509 0.0074
5.73—/4 — 0.473 0.0076 0.479 0.0070
5.7+/5 + 0.486 0.008 0.486 0.0073
5.7+/5 — 0.486 0.010 0.486 0.0086
2.3+/6 + 0.620 0.007 0.568 0.0042
2.3+/6 - 0.489 | 0.0095 0.451 0.0035
5.6+/7 + 0.562 0.011 0.567 0.010
5.6+/7 - 0.438 0.011 0.449 0.010
1.7-/8 + 0.570 0.028 0.595 0.0075
1.7-18 - 0.535 0.027 0.502 0.0078
25-19 + 0.666 0.015 0.620 0.0066
2.5-19 — 0.602 0.013 0.578 0.0068
4.2+/11 + 0.575 0.0076 0.574 0.0065
4.2+M11 — 0.538 0.0076 0.536 0.0066
4212 + 0.652 0.0076 0.634 0.0064
4.2—-/112 — 0.597 0.0086 0.574 0.0067
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Figure 6.12: Py P; ;¢ values for use in relative weighting of opposing target polarizations, shown for
4.2 GeV inbending (top two plots) and 5.7 GeV inbending (bottom two plots) data. Overall statistics
are much better here than for the standard elastic peak ratio method, but systematic errors (not
shown) are much larger.
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6.3 Polarized Nitrogen Correction

At this point, most significant backgrounds (remaining after PID cuts) have been removed from
the asymmetry. Non-polarized background with A > 1 is removed™ by dilution factors (Fpr);
unpolarized protons and electrons are removed by dividing out beam and target polarization (P, P,);
and pair-production electrons are accounted for by caiculating their contamination rates (Cpgck)-
The calculations so far, however, neglect the nonzero polarizations of A > 1 backgrounds. In
particular, >N also becomes partially polarized by DNP. While this particular isotope was chosen
for its minimal polarization relative to the free protons, the effects of this factor on the double-spin
asymmetry must be considered for an accurate calculation.

An in-depth treatment of the problem of the spin-polarization of nuclei is beyond the scope of
this thesis. We instead take advantage of the fact that this is a small correction, and use a simple
(nuclear shell) model application, along with empirical information regarding the relative polarization
(Pis v / Pp) of the target elements.

According to EST (Equal Spin Temperature) theory [121], when the target polarization is low
enough, the relative polarizations of two spin-interacting atoms in the same medium is given (to
lowest order) simply by the ratio of their magnetic moments:

Psy sy —0.264p,

= = = —0.0945 6.53
P, Uy 2.793u, (6.53)

As the polarization grows larger, however, dipole interactions of the electron spins become a non-
negligible factor in the polarization ratio, and the simple model shows deviations from the experi-
mental ratio [121]. To account for this, rather than using the complex formalism of higher-order EST
theory, we use an empirical relation based on a fit of NMR polarization values of the free protons
and 5N for 15NH; in the £143 experiment at SLAC [4]:

Pisy = 0.136P, — 0.183P7 + 0.335P2 (6.54)

A comparison of these parametrizations is shown in Figure 6.13.

13 A represents atomic mass, here.
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Figure 6.13: The E143 parametrization of nitrogen vs. proton polarizations in frozen **NH; (Eq.
6.54) compared to the simple ratio of magnetic dipole moments (Eq. 6.53).

According to the nuclear shell model,' the 8 neutrons in *>N pair in the s, 2 and p3/, shells with
opposing spins, as do 3 pairs among the 7 protons, leaving a single unpaired proton the p, , shell
to carry the spin of the nucleus [70].

To obtain the polarization contribution of this free proton, we must calculate the polarization
on the “free” nuclear proton relative to the (known) >N polarization. This can be done through
a separation of the p,/, “free” nuclear proton state' into substates of the intrinsic fermion spin
(ms = 41/2) and the remaining orbital angular momentum (m; = +1) using the standard method

of decomposition with Clebsch-Gordan coefficients:

1 2 1 .1 1 1 1

We see here that the second term is antialigned with the (spin-1) orbital spin. Squaring the ampli-
tude yields a % probability of the “free” proton being antialigned with the net nuclear spin.
Thus, for an equal number of protons and >N nuclei, the expected correction is approximately

—3Pisn/Pp. Of course, there are 3 free protons for every nitrogen nucleus, so another factor of 3

“The nuclear shell model requires that s, p, d, etc. orbitals are filled by nucleons as per the Pauli Exclusion Principie,
with protons and neutrons capabile of pairing in the same orbitals (as they have opposite isospin).
15This is the j=1, j,=1/2 state.
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is needed. Putting all this together, the effective nitrogen polarization correction is given by

1 1
Plyy = —3 - 5(0.136P, — 0.183P7 + 0.335P;) (6.56)

where P, = B, is the target polarization. ' This factor should be added to the target polarization
when calculating Ay;. (That is, to be specific, adding the negative value of Py lowers the effective

target polarization). That is,

PP, — Py(P: + Pisy) | (6.57)

in the final asymmetry measurement. All measured asymmetries that include nitrogen background
should have this correction - this includes inclusive elastic asymmetries used to measure P, P;. In
this case, since the asymmetry is used to scale PP, it is assumed P, = F; = 1 so that the raw
asymmetry is simply divided by (1 + P ,) (see Section 6.2.3). Exclusive ep events do not require
this correction, as nearly all nitrogen background is removed by the kinematic cuts.

This is only an approximate correction. However, a typical P, value of 0.75 yields a correction
of P, ~ —0.016, making it a very small correction, for which the minor details of our approxima-
tions have little bearing on the final asymmetry. To implement this correction, we use Eq. 6.56 and
assume P, = P, P,/ P,, where P, P, values are derived using the elastic peak method in Section 6.2
and P; is the average Maller polarization given for each run, weighted by the gated FC charge for

each run:

~ 2orun 7C % | Pomaten|
Zrun FC

Resultant P, values for each bracket, along with the final target polarization corrections Py, are

listed in Table 6.11.

16To be precise, this equation should be multiplied by an z-dependent factor to account for the nuclear EMC efiect [97).
However, the effect for 15N would result in a coefficient within several percent of 1.00 for the kinematic regions of concern in
this analysis. Because the nitrogen polarization has such a small {otal effect, we neglect the EMC factor in this analysis.

B

(6.58)
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Table 6.11: B, estimates for each data set, using the Maller polarization weighted by the NH;
Faraday cup counts. Also shown are the resulting target polarizations (P;) using the peak ratio

method (Section 6.2). The resulting polarized nitrogen correction Py, is also shown.

[SetBracket | P, | P, | Pay |

1.6+ 0.72 | 0.78 | -0.017
1.6—/2 0.69 | 0.82 | -0.019
5.76—-13 0.64 | 0.73 | -0.015
5.73—/4 0.71 1 0.76 | -0.016
5.7+/5 0.69 | 0.70 | -0.013
2.3+/6 0.72 | 0.70 | -0.013
5.6+/7 072 | 0.79 | -0.017
1.7-18 0.70 | 0.86 | -0.022
25-19 0.75 | 0.82 | -0.019
4.2+11 0.73 1 0.76 | -0.016
4.2-12 0.78 | 0.74 | -0.015

6.4 Radiative corrections

The basic goal of this analysis is the extraction of A; and A,, which can be expressed in terms of

the spin-3 and spin-3 final state virtual photon cross-sections o,,, and o3,2, and the longitudinal

single-photon interference term o1 (see Section 1.4). These quantities result from the cross-

section calculations of the simplest possible Feynman diagram, involving a single-photon exchange

between the proton and electron. 7 The sum of all the constituent cross-sections should then be

given by

oToT X

(6.59)

7In reality, the outgoing bold arrow represents the variety of scattering products X, not just a single proton, except in the

special case of elastic scattering.
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At high values of @2, the studied reaction ep — eX approximates this expression. However, as Q2
lowers, the validity of this approximation breaks down, and higher-order Feynman diagrams con-

tribute to the measured experimental cross-section:

These second-order corrections occur at the interaction vertex and are known as internal radiative

(6.60)

effects. Basically, given the measured asymmetries in terms of the experimental cross-sections
orxp,'8 the contributions from the second-order terms must be removed as a function of W and
Q? to extract oror. For example, the last shown term, which involves a 2-photon exchange, can
result in the production of spin-g resonances, which must be removed from the inclusive spectrum
if A; (which is dependent only on spin- and spin-3 states) is to be derived from the data. *

In addition to the internal radiative effects from the addition of higher-order Feynman diagrams,
electrons accelerating through the target and main torus fields, as well as those interacting with tar-
get and detector materials, can undergo Bremsstrahlung production of photons, which can slightly
alter the measured kinematics of the detected electron. Range straggling, the statistical effect of
a spread in the possible range of the target [8], is also an effect not yet accounted for, which must

be incorporated into the radiative corrections. 2 These effects, which occur after the measured

8gee the definitions of A; and As, in Section 1.4 to see the asymmetries written explicitly in terms of cross-sections.

9The 2-photon exchange term, in reality, makes only a very small contribution, because of the overwhelming likefihood, in
such a case, of one of the two photons transferring most of the energy (see Ref. {122}, page 4, for example). This example
is used here just to make a discernible point about the need for radiative corrections.

20The multiple scattering of electrons in matter is also a concern, but this issue (with the exception of the range straggling)
is handled separately in the kinematics cormrection package (see Sections 4.2.4 and 4.2.5). Range-siraggling effects are
most efficiently handled at the same time as radiative commections, because the probability of external Brehmssirahlung is
directly accorded to the penetration range in matter.
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reaction, and are dependent on the experimental configuration, are known as external radiative
effects, and must be accounted for as well.

This is clearly a complicated scenario. Fortunately, we can take advantage of the fact that both
internal and external radiative effects on A;; are small compared to the measured asymmetry. In
the case of internal corrections, this can be assumed due the small size of the QED coupling con-
stant «, because higher-order diagrams are proportional to higher powers of this small constant.
In the case of external corrections, a thin target and a large-scale homogeneous magnetic field
ensure that these radiative effects are small. 2! Thus, we can use older (less accurate) models of
Ay to calculate the higher order and external radiative terms, and subtract their contribution from
the overall asymmetry. In kinematic regions where the proportion of the radiative corrections to the
actual asymmetry is too high (that is, near the elastic peak and at high W), we can assume the
EG1 experiment provides litlle to no new information about the asymmetry; these points are then

excluded from the analysis. 2

6.4.1 Basic methodology of radiative corrections

The complete, detailed treatment of radiative corrections in ep scattering is a problem clearly beyond
the scope of this thesis. In this and the following subsections, a description of the iterative nature
of the radiative corrections is supplied, followed by a summary of internal and external radiative
corrections and references to the appropriate source materials.

To calculate the radiative corrections, the RCSLACPOL code developed by L. Stuart et al. [4] is
applied iteratively to calculate the radiative contribution to the polarized and unpolarized Born cross-
sections as a function W, QZ, and beam energy E. The total experimentally measured asymmetry

can be written

n"—nt o
n~+nt o

P

flewp =

(6.61)

where of and ¢® are the (radiated) polarization-dependent and polarization-independent cross-

sections, respectively. The goal is to calculate the corrective terms necessary to find the o? (lowest)

21gtill, the effects of external Bremstrahlung at momenta of several hundred MeV or higher are several times stronger
than the dE/dx correction for nuclear collisions [5], making this an important correction.

22This is done by according a reasonable systematic error proportional to the correction. This eror then “blows up” for
large corrections, defining a de facto boundary on the data (see Section 7.2.5).
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order Born asymmetry, that is, the solutions Arc and frc of

1 of

Alporn = 7~z + Arc (6.62)

The variable frc(E,W,Q?) includes all the unpolarized corrections and can be interpreted as a
“radiative dilution factor”, while Arc(E, W, Q?) accounts for (polarization-dependent) terms that
cannot be easily accounted for in frc. Corrections could, technically, be absorbed in a single coef-
ficient Apc. However, using a second correction fr¢ allows for simple rescaling of the asymmetry

error bars
OA..,

fre (6.63)

GABOM =

to the buik of the correction.

The RCSLACPOL code works by an iterative procedure. The elastic Born cross-section is de-
scribed by a Dirac é-function at W = M. The entire contribution of the long radiative elastic tail,
which contaminates the entire resonance region to some extent [91][122], must first be removed
from the cross-sectional spectra ¢ and o*. Radiative corrections to the inelastic resonances are
more complex, since, unlike the elastic peak, the resonances are characterized by a distinct struc-
ture across W, with peaks at 1232, 1525, and 1700 MeV dominated by many different resonances.
Fortunately, the radiative tails of the resonances are much smaller than the elastic tail, so that only
their effects on nearby resonances in W need be considered [122]. The peaking approximation,
that is, the assumption that the radiative tail is proportional to the non-radiative cross-section, is
used to iteratively derive the contributions of these peaks.

After the elastic tail, the next-largest resonance? is isolated from its radiative tail via calculations
of its internal and external radiative corrections (summarized in the following subsections). Then, a
neighboring resonance?* is given the same treatment, and so on, until all known resonance contri-
butions are analyzed. Then, the results are iterated over again. The contributions of the largest (A)
resonance are adjusted, again using the peaking approximation to calculate internal and external

radiative contributions, to account for the subtraction of the radiative tails of its nearby (i.e. P, et

BObviously, this is the A{1232).
24 Py, (1440) is the closest resonance in the inclusive spectrum.
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al.) resonances. This iterative procedure is repeated for all excited states up to the threshold of the
DIS region, until stable values for the magnitudes of the radiative contributions to ¢ and o° are
reached.

After the contributions of radiative tails for the elastic and resonance regions are “untangled”,
the radiative contributions from the continuum (DIS) region can be calculated. Using the peaking
approximation, it can be shown (Ref. [122], Appendix C) that the radiative contribution in the region
of a continuum of states can be calculated by an integration over the region bounded in W, if
only the Born cross-sections at the boundaries are known. Therefore, the calculation of radiative
cross-sections in the DIS (high-W) region is much less complicated than in the resonance region.

Once all the calculations are completed, the various contributions from the elastic and inelastic
radiative tails are absorbed into the corrective terms fre and Arc. The bulk of the contribution
comes from the elastic radiative tail, so we must ensure the error on Ay, is properly scaled by this
contribution, as well. Therefore, we are motivated to include this contribution in fro. However, the
polarization-dependent contribution to this term cannot be included in an overall “radiative dilution

factor”, so this (small) part of the correction is absorbed into Agc. Thus, we have

otal — (05 — 0F,
fre = Ttotat —(Ta ~ 9Ga) (6.64)
Ttotal

where ¢, — 0§, is the polarization-independent confribution of the elastic radiative tail and ;04
is the radiated (i.e. experimentally measured) cross-section. (Compare to Eq. 5.75 to see the
analogy to the dilution factor.) The remaining term Agc is then defined as the correction term for

the polarized elastic tail contribution, as well as all inelastic contributions to the total asymmetry.

6.4.2 Internal radiative corrections

Internal radiative corrections, that is, corrections based on the addition of higher-order Feynman
diagrams (as shown in Eq. 6.60), are based on the formalism of Kuchto and Schumeiko as outlined
in Ref. [123]. Of the various higher-order terms that must be calculated, the most important are

2Ret. [122] uses the kinematic values E and E’ instead of E and W, but at a given @2, the kinematics of inclusive
scattering can be expressed completely using any two kinematic variables, so the descriptions are equivalent.
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internal Brehmsstrahlung?®

(6.65)

and the vertex correction term

(6.66)

applied to the electron vertex. ¥ The Bremsstrahlung contribution oy is calculated as the sum

of polarization-dependent and independent cross-sections:
or(E,W,Q%) = 0%(E,W, Q") + 0% (E, W, Q%) (6.67)

These cross-sections are solved explicitly in terms of the kinematics in Ref. [123]. For the inclusive
scattering case, the whole phase space of the radiated photon is integrated over. This requires the
separation of the respective cross-sections into the sum of a finite and a.(renormalizab!e) infrared-
divergent term. The contribution of these terms, relative to the Born cross-section, can be used
together with the aforementioned peaking approximation to specify the magnitude of this specific
radiative effect.

The vertex correction contribution is calculated in terms of a vertex correction factor éy to the

2Here the radiated photon can be emitted from either the incoming or outgoing electron line, though the latter is shown.
27The much larger mass M of the proton makes the same effect, reflected to the hadronic line, negligibly small compared
to the like diagrams on the lepton line.
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Born cross-section g and the anomalous magnetic moment contribution g4MM:
oy (B, W, Q%) = 00(E, W, Q%) Zby + c*MM (E,W,Q?) (6.68)

Again, these are calculated explicitly and are detailed in Ref. {123]. Polarization-dependent terms
are all contained in o3. The correction term Jy includes a contribution from leptonic vacuum polar-
ization in the photon line.

The radiative tail from the elastic peak due to internal contributions o is also explicitly calcu-
lated as

o} (E,W,Q%) = = R(T) (6.69)

202 a / Tmes dT
V82 —am?M2 7 Jpy T
where s is the Mandelstam variable (Eq. 1.10) and T = ¢? = —Q?; R(T) and the integration limits
are functions of the leptonic response functions, explicitly calculated in Ref. [123].
Other contributions due to internal corrections are also considered. Vacuum polarization of the

virtual photon, for example

(6.70)

as well as emission of Bremsstrahlung photons by the hadron line, emission of multiple Bremsstrahlung

photons, and multiple-photon exchange

(6.71)
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have only very small effects on the asymmetry 4, except at z — 0 and y — 1 [123]. Values
of systematic errors atiributable to radiative corrections become prohibitively large for evaluation
near these limits.

The internally corrected cross-section can now be expressed in terms of the Born cross-section
and correction terms as

Oint = 00 - (1 +dvR) +0f +of (6.72)

where oF, is the finite contribution of the Brehmsstrahlung cross-section and éy 5 is defined to

absorb the vertex correction and aforementioned infrared divergence terms (denoted by o1%):%8
o0y r =~ ot + oy (6.73)

These corrections are done separately for the polarization-dependent and independent cross-

sections. The internally-corrected asymmetry can then be written

Aint — Tine _ 00 - (1 +dvr) +oi” +of” (6.74)
: w04 -(1+dve)+ ok +of° '

with the P and a superscripts noting the polarization-dependent and independent contributions, as

before.

6.4.3 External radiative corrections

External radiative corrections depend specifically on the experimental configuration, and manifest
themselves in the form of external Bremsstrahlung radiation and range straggling due to ionization.

Both effects are results of the interaction of the scattered electrons with matter in the target material
and shielding. The methods pioneered by Mo, Tsai et al. {91]{122] are used. The corrected

2BThis is fittle more than a manner of convenient notation involved in adoption of the peaking approximation, and contains
no polarization-dependent terms. See Ref. {123] for more details.
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polarization-independent cross-section can be expressed, if the probability of an electron having
final energy E; after passing through ¢ radiation lengths of material (written I,(E, E;, t)) is known,

by integration over the electron momenta:
E E:naz
ol (E,E',6) = / / (B, By, )0%,(E, B, O)I,(E', E}, t)dEydE’ (6.75)
E:nin E}"’

and E!

max

Here, E’

in are limits on E’ for elastic scattering, o5, is the cross-section after internal
radiative corrections, and t (¢') is the fraction of the radiation length X, passed through by the
incoming (outgoing) electron.

The calculation for the polarization-dependent cross-section is nearly identical, except that a
contribution due to the depolarization of the electron from Bremsstrahlung D(E, E’, Z) [124] must
be factored into the equation:

E Epas
OB, E',6) = f , [E - L(E, By, t)op, (B, B O)I(E', E},t)[1 - D(E, E', Z)|dEdE'
/2

(6.76)

min

The calculation of the energy loss probability function I (E, E¢, t) is complicated, due to the statisti-
cal nature of external Brehmsstrahlung radiation. Range straggling effects due to both Brehmsstrahlung
and ionization of matter must be taken into account. The statistical nature of energy loss phenom-
ena results not in a fixed range for the electron, but rather a variable range with an upper tail
described by a Landau distribution [5].

A full treatment of this problem requires solving integral equations of I(E, E¢, t) with boundary
conditions and is not treated here; the reader is hereby referred to Appendix B of Ref. [122] for an
in-depth look at the problem. Basically, straggling due to ionization affects the shape of discrete
peaks in the resonance distribution, while Brehmsstrahlung affects the subtraction of wider tails
from nearby resonances.

The result (from Ref. [122}) is®

(B, Ep:t) = 75— EFI;tI‘(l ) (E ;Ef K (E_;;&) 677)

ZEquations B.3 and B.43 are combined from Ref. [122] to get this result. Here I'(z) is the mathematical Gamma function.
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where

A[, 1(Z+1 1
b=3 [1 *3 (z ¥ n) (1n(183z~1/3))] (6.78)

In(1440Z-2/3)

— plass o) 6.79
In(183Z-1/3) (6:79)

and ¢(v) is the normalized distribution of the Brehmsstrahlung function. For a smail energy loss, as
is the case in this experiment,

d(v)y=1—v+ %vz (6.80)

These results are known to be good within 0.5% of the total cross-section, assuming a target of
thickness less than 0.1.X,, (definitely the case in EG1b).

Combining all the above, the external radiative corrections can then be calculated, with the only
necessary remaining input being the thickness, in radiation lengths, traversed by the incoming and
outgoing electrons. 3 The variable t is just a number (the incoming electron travels straight along
the beam line), while ¢’ = t/(6,¢) is a function of the scattering angle. The radiation length fractions
of target materials, including the solid angle distributions of the radiation thickness, are detailed in
the target description of Section 2.4 and in the unpolarized model description in Section 2.8. These
thicknesses are used for a given scattering angle in the above equations, filling in the last needed

parameters for the external corrections.

6.4.4 Application of radiative corrections

In practice, the external radiative corrections must be done first. The aforementioned iterative
procedure is used to numerically solve for a;,,; in Egs. 6.75 and 6.76 from the experimenta! cross-
section. Then, these results are substituted into Eq. 6.74 to get the Born cross-sections of and
og, the ratio of which yields the Born asymmetry A;.

As already explained, all correction coefficients are absorbed into a radiative dilution factor (fr¢)
and additive constant (Ar¢) to correct the asymmetry. These corrections are written to a 300 x 40

array for the mean Q2 and W values for each bin, at each of the 4 major beam energies. 3! After the

%0}t js important to note that dE/dx due to ionization energy loss is not included in these radiative corrections. See Section
424

31 At one point, it was considered whether it was necessary 1o generate asymmetry corrections for specific beam energies.
That is, for example, whether different comections were required for 1.606 GeV and 1.723 GeV energies. Because the
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asymmetry is calculated at each individual beam energy, and before division by the depolarization
factor D, Eq. 6.62 is applied to each A (W, Q?) to derive the proper Born asymmetry from the data.

Plots of the finail A for each beam energy are shown in the next chapter in Figure 7.5, with the
contribution specifically from radiative corrections shown shaded. As noted, in the inelastic region,
as long as W is not too large, or too close to the elastic region, the contribution from the corrections

is small compared to the total asymmetry.

corrections are so small, the difference turned out to be less the incumred systematic error due to the corrections themselves,
s0 only the nominal energies 1.6, 2.5, 4.2 and 5.7 GeV were used for correcting Aj;. This was desirable because of the long
amount of computing time required to run the code for polarization-dependent cross-section comections.



Chapter 7

Combination of Data Sets and

Calculation of Systematic Errors

7.1 Evaluation and Combination of A Values

We are now the position to accurately calculate the total proton double-spin asymmetry 4;,. Using
Eq. 5.1, and explicitly writing factors for e*e~ pair production, polarized nitrogen corrections, and

radiative corrections we have

Chack n —nt

Ay = 71
W= ForPo(Ps + Pag)fac n +nv Arc (7.1)

The statistical error is given by the properly scaled version of Eq. 5.6:

_ Chack _1__
FDFPb(Pt +P1‘;N)fRC \/N

oA (7.2)

The errors on all the correction factors are accounted for in the systematic error analysis of this
chapter (Section 7.2).

The raw asymmetry (Eq. 3.1) is first measured individually for every run, and then combined
together for a total raw asymmetry, for each combination of target polarization sign and HWP sign

344
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Figure 7.1: Raw asymmetries superimposed for each combination of HWP statusfarget polariza-
tion as a function of W, shown in a selected Q2 bin in two different data brackets. The 1.6 GeV
inbending (Bracket 1,top) and 4.2 GeV inbending (Bracket 11, bottom) data are shown, with 20
MeV and 40 MeV W-bins, respectively.

(see Section 3.3). Raw asymmetries for each HWP and target polarization state are shown for two
sets in Figure 7.1.

The goal of this section is to find a total value of 4, for each one of the 4 main beam energies, so
that A, and A; can be extracted (Section 1.4). Proper weighting of data and statistical compatibility
are important issues to consider when combining subsets of data. These issues are addressed at
each stage of data combination, later in this section.

Beginning with a total of 38 raw asymmetries for the present HWPRarget polarization states
{explicated in Table 5.1), the data were combined in the following sequence:

» Raw asymmetries from run sets of differing HWP status (but same bracket and target polar-
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ization) were combined, reducing the number of independent asymmetries from 38 to 21.

e Raw asymmetries of opposite target polarization sign were combined, weighted by relative
beam and target polarizations (Section 6.2.5), resulting in 11 raw asymmetries (one per
bracket).

e A; and its error was calculated using Egs. 7.1 and 7.2 (excluding radiative terms Agc and

fre) for each bracket.

e Ay values were combined for brackets with exactly the same beam energy, but opposite torus

polarity, resulting in 8 sets of A values.
» Radiative corrective terms Arc and frc were factored in, and A /D was calculated. 1

e A, /D values for similar beam energies were combined, resulting in 4 arrays in Q* and W for

each of the 4 main beam energies, the desired result.

Each of these stages is described in some detail in the first part of this section. Then, the develop-

ment of systematic error estimates is presented in detail.

7.1.1 Combining asymmetries from opposite HWP status

Combination of cumulative asymmetries from different half-wave-plate status proceeds first. No
relative weighting is needed, since the beam polarization magnitude does not change upon inser-
tion/removal of the HWP. So, raw asymmetries from each HWP state (A;n and Aoy ) are combined
by the standard method of weighting by their statistical errors [103]:

A Arnfod,, + Aour[o5 . (7.3)
1/0’311" + 1/o'lziouT
on 1 (7.4)

V0% +1/%00r

The quantity D is the depolarization factor, which is required for the calculation of A; and A,. It is defined in Section
1.1.3.
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The various average kinematic values that are tracked for each bin (Q2%, W, z, s, D, E’, 6, ¢, 1, v
and v) are also combined as weighted averages

val — 'va.lIN/a%m + ’U(IJOUT/O'%OUT
1/‘7%1»7 + 1/01240UT

(7.5)

In order to test that our assumption of statistical compatibility is correct, a mathematical Student’s

t-test is run on the data [125][126]. To run the compatibility test, we calculate

Aovr — Ain (7.6)

2 2
O Aour + OArn

HW,Q%) =

for each populated bin. We then find the mean and standard deviation of ¢:

t=Y t/N o= /ZtZ/N (7.7)
N N

where N is the number of populated bins in the sample. Good statistical compatibility is indicated
by £~ 0and o; ~ 1.00.

After the combination of opposing HWP states, two sets of data remain for each bracket, one
per target polarization sign. 2 Results of the t-test for each target polarization and data bracket are
listed in Table 7.1. Statistical compatibility was not an issue for opposing HWP states. (A similar
combination of data was made for exclusive ep asymmetries, for use in evaluating the P, P; values
for each total bracket.) An example of raw asymmetries combined between opposing HWP states

is shown in Figure 7.2.

7.1.2 Combining asymmetries from opposite target polarizations

Combining data from subsets with opposing target polarizations is similar to the case of HWP
set combination. However, now we must consider that the magnitudes of the target polarizations
of opposite signs can differ considerably. The relative weighting of the raw asymmetries is an

important procedure, in such a case.

2The exception is 1.6 GeV outbending, for which there is only data for + target polarization and HWP status.
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Figure 7.2: Raw asymmetries superimposed for each target polarization sign, after combination of
asymmetries from opposing HWP sets. The 2.5 GeV outbending data (Bracket 9) are shown, for a
chosen Q? bin as a function of W (top), and averaged over a small range in W as a function of Q2
(bottom).
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Table 7.1: Students t-test results for the combination of opposing HWP states over each target
polarization. Sets with only one HWP state available are listed as “n/a”.

| Set/Bracket | TargetPol. | ¢ | oy |

1.6+ + 0.15 | 1.10
1.6+/1 - -0.03 | 1.01
1.6—-12 + n/a n/a
5.76-13 + 0.00 | 1.00
5.76—13 - -0.05 | 1.01
573-/4 + -0.05 } 1.00
5.73-/4 — -0.01 | 1.01
5.7+/5 + 0.03 | 1.00
5.7+/5 — 003 | 1.01
2.3+/6 + n/a nfa
2.3+/6 - -0.02 | 1.00
5.6+/7 + 0.00 { 0.99
5.6+/7 - n/a nfa
1.7-/8 + n/a n/a
1.7-/8 — 0.03 | 1.00
25-19 + 0.02 | 1.00
25-9 — -0.02 | 1.00
4.2+/11 + -0.04 | 1.02
4.2+11 — 0.08 | 1.02
42-1H2 + 0.00 | 1.01
42-M12 - -0.04 | 1.02
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The calculated values of P, P, are used to weight the results. However, the P, P, values for some
of the (higher energy) data sets have particularly large statistical errors (see Table 6.8}, and thus
run the risk of improperly scaling the relative weights. Therefore, we use a second, more precise
calculation of the beam and target polarizations, using a model of 4;; in the inelastic W-region. The
process for deriving this factor (P, P; ;) Was detailed explicitly in Section 6.2.5. Values of P, P; g
for each target polarization are listed in Table 6.10.

To combine the data from opposite target polarizations, the P, P,-weighted average is taken:

Ao (PoPs wgt 1) Ar /0%, + (PoPiwg—)?A_[05_ (7.8)
(PoPy wgt+)2/”3x+ + (B wgt—)z/".zé—
and the error is
oa (Pb-Pt -wgt+)2 + (Pth wgt-—)2 (79)

"N BoPrugt)?/0%; + PoPrwgt—)? /0%
where the + and — subscripts denote the values from the respective target polarizations. Average

values of kinematics quantities are also combined as

val = (PP, wgt+)2val+/0,24+ + (PP wyt—)zval—/a,z‘i—
(PP wgt+)2/0124+ + (PP wot— )2/‘7,24—

(7.10)
Just as in the case with opposing half-wave-plate status (previous subsection), a students t-test
is again run on the data to ensure statistical compatibility, where ¢ is given by

Ay [PoPy wgty — A_ByP; gt
V7%, / (PoPiugis)? +0%_/(PoPs wge-)?

HW,Q?% = (7.11)

and t and o; are again given by Eq. 7.7. Again, if there is no systematic bias between the two
data sets, we expectt =~ 0 and g; ~ 1. A list of these values for raw asymmetries can be found in
Table 7.2. (Again, a similar combination of data was made for exclusive ep asymmetries, for use in
evaluating the P, P, values for each total bracket.) Data combined using this method for a sample

bracket are shown in Figure 7.3.
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Figure 7.3: Raw asymmetry as a function of W (using 40 MeV bins) for a chosen Q? range (two
standard bins combined), for the 5.7 GeV inbending data set (Bracket 5). The method of weighting
between opposing target polarizations, as described in the text, was used to generate the data.

Table 7.2: Students ¢-test results for the combination of opposing target polarization states. The set
with only one polarization state available is listed as “n/a”.

| Set/Bracket | ¢ o |
1.6+ 005 | 1.02
1.6-/2 n/a nfa
5.76—/3 -0.01 | 1.01
5.73-/4 002 | 1.00
5.7+/5 001 1 1.01
2.3+/6 0.00 | 0.99
5.6+/7 0.00 | 1.00
1.7-18 -0.02 | 1.00
25-19 -0.02 | 0.98
4.2+11 0.00 | 0.98
4.2—12 0.01 [ 1.01
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Figure 7.4: Values of A calculated from the background-corrected double spin asymmetry, as a
function of W, in a Q? bin for the 1.7 GeV outbending (Bracket 8, top) and 4.2 GeV outbending
(Bracket 12, bottom) data. Radiative corrections have not yet been added.

7.1.3 Combining asymmetries from opposite torus currents

At this point, the 11 raw asymmetries (from each data bracket) are converted to A;, values using
Eq. 7.1 (without radiative corrections, so that A = 0 and frc = 1 at this point). The backgrounds
PyP;, Fpr, Ceac, and Py for the whole bracket are used. Sample results of the value A, for two
brackets are shown in Figure 7.4.

Once the values are weighted by the backgrounds, there is no reason to expect that the magni-

tude of the physics quantity A;;(W, @) should have any dependence on torus current. 3 Therefore,

we can now combine values of A (and the average kinematics per bin) between inbending and

3The size of the error bar in a given bin, of course, wilf vary between opposite torus currents, as inbending and outbending
torus currents aiter the range of kinematic acceptance. This is why all combinations are weighted by their statistical errors.
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outbending torus currents, where the energies remain unchanged. Specifically, we combine Brack-
ets 1 and 2 (1.606 GeV), Brackets 4 and 5 (5.725 GeV), and Brackets 11 and 12 (4.238 GeV).

The equations for combining the data are exactly the same as in Section 7.1.1, except that the
subscripts IN and OUT denote inbending and outbending torus currents instead of HWP status.
Again, a student’s ¢-test is run for statistical compatibility; the resulis are listed in Table 7.3.

Once all data from identical beam energies are combined, radiative correction terms (Arc and
fre; see Eq. 6.62) are factored in. Radiative corrections are explained in detail in Section 6.4.
Combined data by energy, showing the effects of radiative corrections, can be seen in Figure 7.5.

Table 7.3: Students ¢-test results for the combination of 4 values between opposing torus currents.

| BeamEnergy (GeV) | & | o |

1.606 -0.02 | 1.06
4.238 0.06 | 1.00
5.725 0.12 | 1.07

7.1.4 Combining asymmetries from slightly differing beam energies

To calculate the desired asymmetries (A; and A;), we need values of A, /D for each of the 4 main
beam energies (see Section 1.4), where D is the depolarization factor, defined in Section 1.1.3.
The average running value of D in each W, Q2 bin has been tracked up to this point. The radiative
corrected value of Ay (see previous subsection) is simply divided by the tracked average of D in
each W, Q2 bin.

Ay /D, its error (0.4, /D), and the averages of all the kinematics values are then combined using
the exact same method used in the previous section. It is important to divide by D before combining
similar beam energies, because its value is dependent on E. In the particular case (5.x GeV) where
3 beam energies were combined, the two 5.7x GeV sets were combined first, and the resulting set
was combined with the 5.6 GeV data.

Again, to make sure that the imparted difference due to the beam energy discrepancy does not

cause a weighting issue, a student’s ¢-test is again used on the data. The resultant compatibility
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Figure 7.5: Values of A;; shown at 1.606 GeV, 2.286 GeV, 4.238 GeV, and 5.725 GeV respectively,
in selected Q2 bins, opposite torus current data combined. Radiative corrections have been added.
The radiative contribution (that is, Ajjuncorected — Ajjcomrected) i$ Shown in the cyan shading. Note that
radiative contributions blow up near the elastic region. The red line is the models comparison of
Ay = D(A; +n4s).
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test results are shown in Tabie 7.4.

Table 7.4: Students t-test results for the combination of A);/D values for slightly differing beam
energies. After this combination process, only 4 asymmetries for each (W, Q?) bin remain, one
for each major beam energy. The 5.73 GeV set is a temporary combination that is immediately
afterward combined with the 5.6 GeV data.

| Approx. Combined Beam Energy | set A (GeV) | setB(GeV) | or |
1.6 GeV 1.606 1.723 0.16 | 0.96
25 GeV 2.286 2.561 0.05 | 0.97
4.2 GeV 4.238 - n/a | n/a
5.73 GeV (temporary) 5.725 5743 0.00 | 1.01
5.7 GeV 5.615 5.73 0.00 | 0.98

After this combination of data, up to 4 values of A;;/D (and their statistical errors) remain per
W, Q? bin. These values can be used to derive values of 4, and in some cases, A2, as explained

in Section 1.4. Values of A;;/D, for all 4 beam energies, are shown in Figure 7.6.

7.2 Systematic error calculation

In addition to the statistical efrors in the analysis, which are rigorously calculated as according to
the formalism in the preceding chapters and sections, there are systematic errors resulting from
uncertainties in measured quantities. These must be determined in order make an appropriate
assessment of the accuracy of the measured asymmetries.

The basic strategy used to calculate systematic errors required identifying potential sources of
uncertainty (in physical quantities, models, etc.). We then altered the numerical value of the given
error source to the extent of the uncertainty, and reran the entire analysis from the start, keeping
all other parameters the same. The systematic error due to the particular cause could then be
estimated as the measured difference between the two analyses. The systematic errors on any
given quantity due to a particular source of uncertainty (models, kinematics, backgrounds, etc.) on
any quantity (A /D, A4, g1, efc.) can be calculated in this manner.

Systematic errors were divided into 8 total categories:

1. Target model errors (i.e. material thicknesses and densities)
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Figure 7.6: Combined values of A;;/D over the full range of Q2, showing the full kinematic expanse
of the EG1 data. Data for each beam energy are represented by different colors (yellow = 1.6 GeV,
green = 2.5 GeV, red = 4.2 GeV, blue = 5.7 GeV). Points with the largest error bars are removed
for clarity Regions where points overlap can be used to determine A, by linear regression (see

Section 1.4).
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2. Dilution factor model errors (i.e. unpolarized cross-section error)

3. Beam x target polarization errors (systematic)

4. Miscellaneous background errors

5. Kinematics errors

6. Charge normalization and false asymmetry errors (i.e. Faraday cup issues)

7. Errors on modeled asymmetries and structure functions
8. Beam x target polarization errors (statistical)

The total effects of these errors (for selected @? ranges at 2 different beam energies) on the mea-
surement of A; + 1A, are shown in Figure 7.7.

The sources and magnitudes of these individual errors are individually described in detail in the
following subsections. The analysis was rerun for each source of error (listed in Table 7.5), and
the various errors were combined in quadrature, as described in Section 7.2.10. Throughout this
section, parenthesized ( ) numbers are periodically inserted to correlate the described errors with
their error index label in Table 7.5.

7.2.1 Target model errors (1-9)

Accurate modeling of the lengths and densities of the materials in the target is essential for the
subtraction of unpolarized backgrounds (i.e. the dilution factors). There were, of course, physical
uncertainties in the measurement of the dimensions of the various materials in the target. Lengths
of the carbon, Kapton and aluminum, in particular, were used to derive the total target ilength L
and the frozen ammonia target length £4. Precise knowledge of the densities of all target materials
were needed to derive these quantities, and hence, the dilution factors Fpp.

Densities and lengths used in calculations

Reasonable uncertainties were included on each of these lengths and densities (1-8), recorded in

Table 2.1, and the analysis was rerun for each possible etror source, to determine the systematic



A /D: (proton) 0.317 < Q* < 0.645

0.5

.

-2

¥

-

1 1 1 i 1 | I 1 1 [ I

A
_‘_I|||llllllllllllllllfll

i1 ‘ L i
1.2 1.4 1.6 1.8
W (GeV)

A /D: (proton) 1.310 < Q% < 2.660

PN BTSN ST RIS S NI SEU NN NS ST NI SN S ST S N S SN N T A U S N

4
dl__lTl‘llllllllllllll[lIIT lllllllll

1.2 14 1.6 1.8 2 22
W (GeV)

28

358

Figure 7.7: Systematic errors on A; +nAs; for the 7 categories of error described in the beginning of
Section 7.2, shown for 2.5 GeV (top) and 4.2 GeV (bottom) data. Errors are multipiied by a factor
of 5 for visibility. Shown are the total errors for all 8 sources listed in the text, specifically, from top
to bottom, errors due 1o the target model (red), dilution factor models (light green), systematic er-
rors on P, P; (blue), miscellaneous backgrounds (vellow), kinematics (magenta), false asymmetries

(cyan), model errors (dark green), and P, P; statistical errors (purple).
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Table 7.5: Index key used for systematic error determination, with a brief summary of what param-
eters were varied in order to determine each error. Boldfaced numbers note major (average >2%)
contributions to the total asymmetry error. flaficized numbers did not (and were not expected to)
contribute to the error on Ay, at all, and were used only in 15N analysis or development versions of

analysis software.
Error index Alteration | Quantities Affected

1 1 He muitiplicative factor (12C factor — NHj factor), brackets 10-12 Fpr
2 pclo (FC density (+0.01 cm) x thickness (+2%)) Fpp
3 £y (Kapton thickness (+10%), 12C target only) Fpr
4 p4 (NH3 density (+1%) Fpr
5 pr e (LHe density (—4%])) Fpr
6 2% (Kaplon thickness (+10%)) For
7 2.41 (Al Toil thickness (+10%)) For
8 L averaging range in W (increased to £ 4 range) Fpp
9 £ 4 averaging range in W {decreased to L range) Fpr
10 O'N/a’c (15Ncross-secﬁon modei;changedtosimpfemncbonofa,./ap) PP, €N, 0, b
11 normalization offset for '°N target (—10%) £n.a, b
12 T5N density (—15%) In.a b
13 on [0 p cross-section ratio model (used oy, /o, =1 — 0.8x) PP, fxn,0, b
14 L (total target length) used in ®N/12C analysis (+0.3 cm) Iy, a, b
15 £y averaging range in W (3 of inelastic range removed) In,a, b
16 a + boy /op — o /oc modeling accuracy (combine 10, 13 for *°N/*=C) in.a, b
17 Q2 for B, D; avg. (decreased by 0.1 GeV?) P, P,
18 exciusive ep G scaling region in A¢ (shifted by 2°) PP
19 elastic peak width in W (10 MeV cut on each side) B P,
20 P, P; satistical error (not used; replaced by 41-59) Py P;
21 Ay, elastic asymmetry value {older G s, Gg fits used) PP
22 7 contamination (modeled - see Section 4.1) Chckgd
23 ete™ contamination {one std. dev. added to fit) Chekod
24 radiative comrections (5% variation assumed) Agc, fre
25 15N polarization (leading order EST theory used) P
26 14N contamination (2% contamination assumed) P+
27 deuteron contamination (0.5% contamination assumed) Ay
28 Fy, i models accuracy (determined by polynomial fit) Fpp
29 beam energy (F) (+2 MeV) all
30 radial momentum (p,.) (+1 MeV) alt
3t longitudinal momentum {p.){+1 MeV) all
32 bin smearing effects {(momenta p,-/p, randomly varied 117/20 MeV) all
33 accounting of possible false asymmetries (A4 = 10~ added) Ay
34 NOT USED (reserved for single-spin asymmetry tests) -
35 dead time emror in count ratios {10~ " n added to counts) all
36 DIS fit of A; model (1 std. dev. added) Ay
37 A3 model (increased 1o Soffer imit (Eq. 2.35)) Ay, A1, o1
38 resonance region fit of A; model (alternate fit used) Ay
39 F> model (1 std. dev. added) Au. a1
40 R model (1 sid. dev. added) Ay, o

41-52 P, P, statistical error; evaluated PP

independently for each bracket 1-12 (stat. err. added to P, P;)
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error as a result from variations in these measurements. Alternate measurements of the *2C target
thickness ¢ yielded 0.225 cm and 0.24 cm [72], so the original value of 0.23 cm was increased by
0.01 cm to calculate the error. The carbon density pc was checked against a SLAC measurement
of 2.2 g/cm3 [72]. The value of pc was thus increased by roughly 2% to determine the error. The
quantities pc and £c always appear muitiplied together as pcfc in dilution factor analysis, so this
systematic error was analyzed in a single pass of the data by increasing this quantity (2).

The total Kapton material length (£x) had an approximate uncertainty of 10%, due to perfora-
tion in the surface of the material [72], so the thickness was increased accordingly in reanalysis.
Perforations in the foil could affect either a single target (3) or all targets (6); both cases were con-
sidered. Varying the thicknesses ¢ for the radiated cross-section method of analysis was simple.
However, for the older (statistical) method of dilution factor analysis, the values of f and A, B, C
and D (defined in Sections 5.3.1 and 5.4.2) required appropriate atteration. Changing all foil thick-
nesses simultaneously was simple, and required only changing the overall value of f = ppfr/pclc
accordingly. To change the foil thickness exclusively on the carbon target required reworking the
equations for A through D in Sections 5.4.2, 5.3.1 and 5.5.1, using a separately calculated value
fc for the carbon target. This results in the substitutions

1+f—-1+4+ fe (7.12)

in all equations for L, £4 and Fpr, and the substitution

L+ffc—*L+flc+L(fc—f) (7.13)

in all the denominators of Eq. 5.38. While varying the thickness of the foils simultaneously (6) had
little effect on the count ratios (and hence the dilution factor), the possibility of a perforation in a
single foil (3) only was the largest single systematic error contribution resulting from target model
uncertainties.

The aluminum shielding thickness was also assumed to have an equivalent uncertainty (7) in
the (separate) determination of its related systematic error. This contributed very little to the overall
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error. 4

Due to possible expansion as a function of temperature, the LHe density was given a wider
margin of error. The density of LHe at 1.0 K is 0.145 g/cm3, and at its boiling point of 4.2 K, it rises
to 0.125 g/cm3. To approximate the density error for LHe, a linear relation between density and
temperature was assumed, along with a maximum temperature under 2.0 K, giving approximately
a 4% variance in the LHe density (5); this decrease was used in the error analysis. A similar rough
calculation of the density of solid NH; yields a density change of slightly iess than 1%. The density

p4 was thus given a variation of 1% to refiect the uncertainty (4).

Derivationof L and /4

The lengths of the NH; and LHe are derived quantities. Their systematic errors are directly corre-
lated functions of the other lengths and densities, so they are not varied independently to produce
systematic errors. Rather, they are recalculated with each iteration of the analysis. However, any
other factors of uncertainty that may affect the evaluation of L and £, must also be considered.
The values of L and £, are evaluated by averaging the results determined by the ratios of LHe/'?C
and NH3/*2C target counts, respectively, and the input from a radiated cross-section model (see
Sections 5.3.1 and 5.5.1), averaged over the inelastic kinematic region. The extent of the kinematic
region is chosen, somewhat arbitrarily, as the part of the inelastic region where the measured value
appears constant. Thus, we consider variations of the W-ranges over which L and £4 are mea-
sured.

The range given for the evaluation of L in the main analysis is 2 of the inelastic range between
W = 1.08 GeV and the upper limit chosen for the statistical evaluation of Fp . For the evaluation of
systematic errors, the whole inelastic region, up to the Fpr upper limit, was used instead (8). For
the regular evaluation of £4, the entire inelastic range (from W=1.08 to the upper limit) was used in

the average. This was shortened to % of this range for systematic error determination (9).

4The densities of solid Kapton and aluminum are very precisely known, so their uncertainty is not considered here.
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LHe correction error for Brackets 10-12

The last 3 brackets of data (2.5+, 4.2+ and 4.2—) required a raster-based correction to empty (LHe
only) runs due to the presence of unknown material contaminating the lower half of the target (see
Section 5.2.1). Accuracy in measurement of L critically depends on the ratio of LHe to *2C target
counts, so it is important to consider the error on the multiplicative factor used to correct the empty
target counts. To estimate this error, the multiplicative factor based on the 12C target cell raster was
replaced with the factor based on the ammonia (NH; and ND;) targets listed in Table 5.4 (1). Note
that this systematic error applies only to these last 3 brackets.

The systematic errors outlined above affect dilution factors. Both the modeled dilution factor
quantity (used for unpolarized background subtraction in 4);) and the statistical model used in the
elastic region (for inclusive method P, P; calculation) are affected. The various errors affect the two
regions differently, but the total ratio of the target model effects is approximately equal (~2.5%) for
both methods of dilution factor calculation (see Figure 7.8).

7.2.2 Errors in dilution factor model (28)

The dilution factor used for subtraction of unpolarized background material was generated using
a world data model of unpolarized cross-sections (see Section 2.8). Unfortunately, the systematic
errors on this model, as a function of Q2 and W, are not well-defined, so an external method is

required to estimate the veracity of this model.

Contrasting dilution factor modeis

Fortunately, a statistical construction of the dilution factors, using the actual data from the empty,
carbon and ammonia targets (with the more spurious assumption that o = 305.), was made us-
ing an older method (see Section 5.6). A comparison between two viable models is a good way
to estimate the magnitude of their systematic error. However, the older method of calculating Fpr
resufted in large statistical fluctuations from bin to bin. A mere subtraction of results using either
dilution factor model would result in an error dominated by these fluctuations. This behavior is not

characteristic of a proper systematic error. Also, since the modeled dilution factor was exirapolated
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Figure 7.8: Dilution factor for a selected Q2 range for 4.2 GeV outbending data, showing the relative
size of systematic errors related specifically to the target model. All shown error values bars are
mutltiplied by a factor of 25 for visibility. Different methods for calculating the dilution factor were
used below and above W=1.08 GeV; the sizes of the etrors change accordingly at this boundary.
From top to bottom are errors due to the empty target cosrection factor (red), carbon length/density
(light green), 12C target Kapton foil thickness (blue), NH; density (yellow), LHe density (magenta),
average Kapton foil thickness (cyan), Al foil thickness (dark green), L averaging range (purple) and
£ 4 averaging range (gray).
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to bins outside the fiducial region of the statistical dilution factor, another means of estimating the
error in these extended kinematic regions was required.

To remedy these issues, the “smooth” cross-section derived Fpp model used in analysis was
adjusted to the average levels of the older, statistically derived dilution factor by means of a fit
by a multiplicative factor. Fitting all inelastic regions simuitaneously proved difficult, especially
as the fit function approached the elastic region. Through frial and error, a polynomial (non-
phenomenological) fit was found that realized the differences between the two models, but re-
mained “weli-behaved” in the extrapolated regions. The difference between the fit function and the
modeled dilution factor defined the systematic error.

First, for each of the 11 data brackets, an overall multiplicative constant r was used to fit the
modeled Fpr to the statistically derived Fpr, from the range W=1.15 GeV to the end of the DIS
region. Data for Q% < 0.077 GeV? were excluded from the whole fit, due to unpredictable (and
obviously non-physical} behavior of the statistical dilution factor.

With this overalt factor (r) held constant, a second fit of the form

FpFays = (r+ sW +tW? + uW?)Fpr (7.14)

was used in the region 1.15 GeV < W < 1.80 GeV, where r-u were determined by a x? minimization
fit of Fipr,ys 10 the statistically derived dilution factor for each data bracket. Then, the extrapolated
fit function

Fpreys = (1 + sW +tW? + uW®)Fpr (W < 1.80GeV) (7.15)

FDFsys =rFpr (W > l.SOGeV)

was used in place of Fpp for the remainder of the analysis iteration to determine the systematic
error (28). Values of x? and fit coefficients for each bracket are shown in Table 7.6. Figure 7.9
shows sample bins comparing the (regular) systematic error to the (systematic error) fit dilution
factors for two different data sets.

Values of the error varied with the beam energy, with the highest errors in the resonance re-

gion at the lowest beam energies, as one would expect from knowledge of the unpolarized cross-
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Figure 7.9: Dilution factors fit to the data for 2.5 GeV outbending (top) and 4.2 GeV outbending
(bottom) data. The modeled dilution factor (blue line) is compared to the parametrized dilution
factor (black line), which is fit to the statistically-determined dilution factor (red) for an approximate
determination of the magnitude of the systematic error.
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sections. Typically, the total error amounted to ~3-4% of the dilution factor, and hence the measured
asymmetry. The magnitude of this error {x5) can be seen as the light green error bar in Figure 7.7.
Table 7.6: Fit parameters and x? values (per degree of freedom) for each data bracket for deter-

mining the (approximate) dilution factor cross-section model errors. See the text for more details.
To leading order, the value of r gives the ratio of agreement between the two models.

Bracket | Set T s t u X2 /ndf
1 1.6+ | 0.948 | -0.060 | 0.091 | -0.034 | 1704/435
2 16— | 0957 | 0.318 | -0.240 | 0.001 | 678/445
3 576— | 0.970 | -0.926 | 1.168 | -0.368 | 826/761
4 5.73— | 0.986 | -0.992 | 1.380 | -0.460 | 1370/765
5 57+ | 0984 | -0.711 | 0.861 | -0.262 | 494/529
6 23+ 10973 | -0516 0.784 | -0.284 | 692/571
7 56+ | 0983 | -0.693 | 0.858 | -0.263 | 552/542
8 1.7— |1 0971 | 0.224 | -0.056 | -0.082 | 2338/508
9 25— | 0962 | 0.362 | -0.342 | 0.070 | 1986/822

11 42+ | 0957 | -0.594 | 0.781 | -0.253 | 643/527
12 42— | 0955 | -0.109 | 0.167 | -0.059 | 2510/890

Correlation with other systematic emrors

The most major drawback to this method of determining the systematic error is the possibility of
correlations to other systematic errors {specifically, thase errors resulting from the target model,
outlined in the previous subsection). Should an error or shift in one of the target modeling param-
eters cause unequal shifts between the values of the dilution factors in the statistical and modeled
methods, then inclusion of this model error can cause a significant overcalculation of the systematic
error.

To rectify this issue, the fit factor r, which, to leading order, represents the overall ratio of the two
methods of finding the dilution factor, was recalculated for each of the first 9 error indices relating to
the target model (i.e. 1-9 in Table 7.5). In most cases, absolutely no significant shift could be seen
in the fit value of r when the parameters would change, indicating littie to no correlation to these
errors. However, varying the W-range of the averaging of the ammonia target length £4 (9) had
a very significant effect on the difference between the two models. This occurs mostly due to the

W-range sensitivity of the £, measurement in the older (statistical) model, a problem not seen in
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the smoother radiated cross-section model. In fact, varying the fit range for £ 4 between the decided
systematic error range could change the value of r by a few percent, in the most extreme cases.
Clearly, a large portion of the model error was correlated with the uncertainty in ammonia target
length, meaning that this significant source of error was propagated into the total error twice.

To remedy the situation, it was assumed that the variation of the overall differential muitiplicative
factor r can be attributed to this uncertainty in £4.This error is already accounted for (9), so the
averaging range of £, in W (for the statistical method only) was varied between 33% and 100% of
the inelastic region®, and optimized for each set so that » = 1.00 (or as close to possible to 1.00)
when the fit is made. (This is done for systematic error index (28) only - the normal range for ¢4 is
still used in the main analysis and in determination of other errors.)

Adding this constraint into the fit reduced the systematic error by an approximate factor of 2,
presumably by removing any correlation between this error calculation and that caused by errors in
the calculation of £4. The highest remaining errors are in the resonances at lower beam energies,

an observation consistent with the expected errors on the cross-sectional models.

7.2.3 Uncertainties in determination of beam x target polarization (10,13,17-
21)

The systematic errors due to uncertainties in the beam and target polarization products must also
be included in the final error estimate. By far, the largest contribution to the uncertainty of P,P; is
the statistical error on this quantity. To account for the statistical uncertainty, the final statistical error
is merely added to the value of P, P, for each data bracket, and the asymmetries are reevaluated
with the adjusted P, P, (20). This error is considered in more detail later. Though the statistical
uncertainty is the dominant contribution to the error on B, F;, other sources of systematic error
were also considered.

For inclusive data, the background subiraction in the elastic peak used the older (statistical) Fpr
model, which relied upon the *N/*2C cross-section model ratio for its calculation. To estimate the

systematic error due to the model used in background subtraction for the elastic peak, cross-section

5Recall that the range used for £4 calculation in this model was 66% of the inelastic region, with 100% of the range used
for systematic error estimation. An addiional 33% allows for a variation (roughly) consisient with the assumed systematic
error range.
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ratio substitution

ov _, 7, 1om (7.16)
oc 6 6op

was used to give a rough estimate on the background error (10). Apart from this, the o,,/op cross-
section made a minimal contribution of in determination the ammonia target length £4 used to
generate the elastic region dilution factor (see Eq. 5.62). As an estimate of the systematic error on

this modeled quantity, measured in the inelastic region only, the substitution

onfop —1— 08z (7.47)

(with = Q%/2Mv) served as a viable substitution for the neutron/proton cross-section ratio [127].

Assuming that the deuteron is just an n + p combination, this gives the approximation (13)%

onfop — (1+1/(1 —038z))! (7.18)

Both cross-section ratio models, which affect the background removal of inclusive events through

the elastic region dilution factor, made only a small contribution to the systematic errors (10, 13).
For exclusive data, the background subtraction was calculated by the scaling of exclusive ep

carbon to ammonia data in a A¢ region safely away from the elastic peak (18). For systematic error

calculation, this region was shifted 2° to the outside of the peak, so that Eq. 6.45 was changed to

4° < |Ag] < 8° (7.19)

This was shown to have small effects on P, P;, due {o the already small background for exclusively
selected ep events.

Other variations to parameters used to determine B, P, were tried, as well. Narrowing the width
of the W-cut on the elastic peak by 10 MeV on each side resulted in a measurable error at larger
beam energies (19). Other adjustments were considered, as well. Lowering of the minimum Q2 bin
used in evaluating the elastic asymmetry (from 0.2 to 0.1 GeV?) (17), and changing the theoretical

5This approximation serves well for inelastic events only. Elastic events, (which, for the £ 4 calculation, are inconsequential
to the final results) do not fit this approximation, due to Fermi smearing in the elastic peak.
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asymmetry within the (very narrow) uncertainty given by our knowledge of Gjs and Gg and the
kinematic accuracy of Q? (21)? produced negligible errors.

The comparative effects of the P, P; systematic errors (except for the statistical uncertainty) on
the measurement of A;; are shown in Figure 7.10. Because only exclusive P, P; values were used
in this analysis, only the ¢-scaling factor change (18} and W-peak width change (19) have any

significant effects in these plots.

7.2.4 Statistical uncertainty on P, P, (41-52)

Simply adding the statistical error to each P, P, product (20) produced only a rough estimate of
the effects of this uncertainty. This method was later replaced with a more thorough method of
evaluating this error. Because this error is purely statistical in nature, simply adding the upper bound
to all the P, P, values simultaneously creates a false additive correlation between these errors, likely
overestimating the error measurement on A4; + nA;. On the contrary, errors on measurements
between the data, such as linear regression for the determination of A,, can be underestimated. 8
Therefore, this crude estimate was replaced with a fengthier but more cautious evaluation.

Twelve new additional error indices (41-52) were defined, representing perturbations of P, P, by
a standard deviation for each individual bracket prior to combination. The analysis was then run 12
more times. Errors were added in quadrature to find the total systematic error due to this statistical
effect. Figure 7.11 shows the addition of statistical errors for 5.7 GeV data, and a comparison
between this and the more crude method (20) of evaluating the error. It is important to note that a
more exact evaluation of this particular error is possible because it the only source of systematic

uncertainty in this analysis than can be evaluated precisely, because of its purely statistical origin.

7.2.5 Miscellaneous background subtraction errors (22-27)

Effects due to the presence of other backgrounds also required consideration, including errors due

to the effects of =~ and ete~ contamination, radiative corrections, and etrors due to polarized

7Specifically, an older empirical fit of Gas and Gz [13] was used, and the bin median value of Q2 was substituted for the
asymmetry-weighted average of Q2.

8The latter underestimation can occur because the assumed comelation perturbs all asymmeltries in the same direction
for the error evaluation, whereas the statistical P, P; errors can move the true values in different directions.
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Figure 7.10: A; + nA, showing the effects of systematic errors on P,P, measurements, for 1.6
GeV (top) and 4.2 GeV (bottom) data. Systematic errors are multiplied by a factor of 25 for
visibility. Shown, from the top down, are the errors due to the >N/A2C cross-section model (red),
the n/D cross-section model (light green), low Q? limit (blue), A¢ exclusive background subtraction
range (yellow), elastic peak width (magenta), and the elastic asymmetry model (cyan). The B, P,
statistical errors, the largest individual systematic effect, are not shown here; see Figure 7.11 for

these.
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Figure 7.11: A, + nA, showing the effects of systematic etrors due to statistical errors in P, P; for
the 5.7 GeV data. Systematic errors are muitiplied by a factor of 25 for easy visibility. The
top plot shows, from top to bottom, the individual effects of the 5.76— (red), 5.73— (green), 5.7+
(blue) and 5.6+ (yellow) set P, P, errors, with the quadrature-added sum shown (at the bottom) in
magenta. The bottom plot shows a comparison bewteen the crude (red, top) and proper (magenta,
bottom) methods of error evaluation, demonstrating that the crude method (index 20) substantially
overestimates the systematic error.
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background and isotopic contaminations. The relative effects of these errors on the measurement

of A1 + nA; can be seen in Figure 7.12.

7~ and et e~ correction errors

The majority of =~ contamination was removed through the use of SC/CC track matching cuts (see
Section 4.1). The approximate remaining background was caicutated in bins of § and p as according
to Section 4.1.5, and a curve of the exact same form used for e*e~ background removal (Eq. 6.13)
was fit {o the remaining background to determine R,. The variation in the the asymmetry due to
this approximate background could then then be calculated as

_ Araw - R‘IIA‘K

Acorr = T (7.20)

just as for the e*e~ correction, with A, =~ 0. This asymmetry, now including a (very approximate)
“correction” for 7~ contamination, was subtracted from the normally-determined asymmetry to yield
the pion contamination error (22). °

To calculate the error for the pair-symmetric correction, the same correction described in Section
6.1 was applied, except that one standard deviation of a flat (slope = 0) linear fit to the contamination
across ¢ (Figure 6.2), determined individually in each p bin, was added to the overall contamination
at alt 8. The resuiting diffetence in the final asymmetries determined the systematic error (23).

Systematic error contributions from both of these sources were generally small. The total error

from both these sources was generally less than 1% of the total asymmetry. 0

Radiative correction errors

Radiative corrections (Section 6.4) on the asymmetry A;; remove higher-order radiative terms from

the desired Born asymmetry. A rigorous treatiment of the systematic efrors due to radiative correc-

9This correction is applied only as as a systematic error because there is no secure method of parametrizing the exact
number of remaining pions. This equation serves only as a rough approximation.
Ovalues for pion contamination error are somewhat higher in the resonance region at high Q2 - see Figure 7.12.
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tions requires rerunning of the RCSLACPOL software using differing target model dimensions and
alternate parametrizations of structure function models, just as is described in this section for the
main analysis. The resulting differences to the terms Arc and fre can then be added in quadra-
ture to determine the relative systematic errors on these corrective quantities.

At the time of the writing of this thesis, calculation of the systematic errors in the latest version
of the RCSLACPOL code was not yet complete, due to ongoing modernization of the models. Past
analyses ([2] and [46], for example) realized no more than about a 5% error in the total radiative
corrections. So, as a temporary solution, a factor of 1.05 was multiplied by Arc and (1 — fre) to
approximate the systematic error (24), until such time that upgraded models with more thorough
corrections can be included. It can be seen, with this estimate, that radiative corrections present
the largest error due to miscellaneous backgrounds, and, in fact, become the limiting factor in mea-
surement of the asymmeiries near the inelastic threshold (W = 1.077 GeV).

Contamination and background polarization errors

A polarization correction to Ay accounts for polarized 15N in the background material (Section
6.3). To estimate the magnitude of the error on this small correction, it was considered that the
SLAC parametrization might not accurately describe the polarization response in this experimental
configuration. The SLAC parametrization of the >N polarization (Eq. 6.54) was replaced by the
simpler model of leading order EST theory (Eq. 6.53) (25}. The resultant change in the correction
was small, but significant enough to warrant inclusion {~1% of the asymmeiry).

The effects of impurities in the 1>NH; material (specifically 4N and deuterium) were also taken
into account. The target material contamination was limited to <2% 4N/5N [65]. The residual
polarization of 14N cannot be measured as accurately as that of °N. Hts polarization response is

roughly 2%, give or take about a 10% error [70]. To account for this, we calculate

Preyys = Ppo(1.00 — ¢) + t(Prayy + o14p7) (7.21)
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where (=0.02 is the contamination, P.ax=0.02 is the N polarization, and 14 y=0.10x0.02 is the
uncertainty in the 1*N polarization. This value of Py, is substituted in place of Py to evaluate
the systematic error, which turns out to be a negligible contribution to the asymmetry.

The isotopic contamination of deuterium in the NH; was known to be considerably less than 1%
of the hydrogen content. To estimate the maximal effects of polarized deuterium, a contamination
of 0.5% p—d was assumed. The final value of A was then adjusted for this by assuming the

deuteron double-spin asymmetry was given by
AIED ~ Al(D)D (722)

where D is the depolarization (Section 1.1.3) and A, for the deuteron is modeled. The neces-
sary adjustment is then easily calculated by diluting the proper asymmeiry by the contamination
contribution and subtracting a term representing the contribution of the polarized deuterium: '

Au A Pp

A”sys = —i—:-x - (i—_—AS—ﬁt—A”D (723)

where the deuteron polarization Pp ~ .35, A=0.005 is the contamination, and P, is the target
polarization, calculated in Section 6.3. Again, the total error contribution is quite small (less than

1%).

7.26 Kinematics resolution errors (29-32)

Another source of error not yet considered is the error on the kinematics of identified particles. This
includes both errors on the accuracy of the electron energy and momenta, as well as “bin smearing”
effects, resulting from statistical uncertainties in measurement. To measure the approximate effects
of these errors (29-32), the entire analysis was rerun from the start for each of these efror index op-
tions, with the specified inaccuracies/uncertainties added to the quantity in question. The resulting

asymmetry differences naturally showed statistical variations, requiring averaging over bins (see

The ratio of polarizations in the latter arises due to the fact that the proton and deuteron have a differing polarization
response.
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Figure 7.12: A;+nA, showing the effects of miscellaneous background errors for 2.5 GeV (top) and
5.7 GeV (bottom) data. Systematic errors are multiplied by a factor of 25 for visibility. Shown,
from top to bottom, are the errors due to =~ contamination (red), e*e~ contamination (green),
radiative corrections (blue), 1°N polarization (yellow), 1*N contamination (magenta) and deuteron
contamination (cyan). Radiative correction uncertainties tend to dominate at lower beam energies,
while remaining pion contamination dominates at higher energies.
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Section 7.2.10) to obtain average systematic errors. '?

Errors on momenta and beam energy

As mentioned in Section 4.2.4, Hall A beam energy measurements provide an accuracy AE/E of
about 2x10~4 at 5.x GeV energies, implying an uncertainty of less than 2 MeV. '3 Thus, to deter-
mine the maximal uncertainty due to this factor, 2 MeV was added to the incident energy of the
electrons (29) (after all kinematic corrections).

The momenta p,, p, and p, were corrected with the kinematic corrections package (see Section
4.2 8) to, in most cases, an accuracy of ~1 MeV. To estimate the error caused by the remaining
(very small) inacurracy, 1.0 MeV was added to the momenta. Because of the symmetry in ¢ for
inclusive scattering, the = and y components of p could be tested together by adding 1.0 MeV to
Pr = m (30), while the 1.0 MeV inaccuracy was added to p, in a separate run of the analysis
(31). These tests attribute a small collective error due to inaccuracies in the measurement of the

electron kinematics.

Bin smearing error

With the approximate inaccuracies in kinematic measurement propagated through analysis to de-
termine systematic errors, it remains to determine the effects of inprecision in the momentum de-
termination, or bin smearing effects, caused by the fact that the measured momentum of a particle,
in actuality, forms a finite uncertainty distribution about the true momentum (32).

Proper analysis of bin smearing effects is a complicated process. For this analysis, where the
expected uncertainty from the effect is small compared to the sum of other errors, it suffices to
make an approximation resufting in an effect of simifar magnitude. To start with, the standard devi-

ations on (corrected) measurements of p., p, and p, were determined, by a standard Gaussian fit

120niy events used 1o construct asymmetries (those in the ASYM/ file list) were tested for ermors. Events used to determine
Fpr (those in the RATE!/ file list) were either fit or averaged over large numbers of bins, thus minimizing the effects of shifted
kinematics and/or bin smearing. The miniscule error on Fpr due to kinematic effects was not considered here.

13This factor becomes even smaller for lower beam energies.
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to elastic ep events, tobe A, ~ A, ~ 17 MeV and A, ~ 30 MeV. ™

To estimate the effects of the error, the data were reanalyzed, but this time, for each event, dif-
ferent randomly generated values ranging between —17 MeV and +17 MeV were added to each p,.
and p,, while a value between —20 MeV and +20 MeV was added to p.. This effectively “smears”
the data a second time by an uncertainty similar to the natural smearing of the CLAS detector. The
asymmetry A, is then recalculated, with the difference producing the approximate error due to bin
smearing.

Note that this is, of course, not technically a proper way to calculate the exact magnitude of the
effect, but if one makes the first-order assumption that the magnitude of the bin smearing effects
is linear with respect to the magnitude of the uncertainty, it provides a reasonable approximation of
this effect.

Because of the statistical nature of the binning process in W and Q?, these systematic errors
(29-32), more than any other, require “smoothing” over local bins (see Section 7.2.10), so that the
systematic effects of these errors can be separated from the statistical “forest” that results from
rebinning. The total effects of the kinematic uncertainty errors were small, but worth consider-
ing, amounting 2-3% of the measured asymmetry. Errors due to these effects, with and without

“smoothing” over the bins, are shown in Figure 7.13.

7.2.7 False asymmetry and Faraday cup errors (33,35)

A careful study of Faraday cup asymmetries (by S. Kuhn and N. Guler) ensured that there were no
correlations between the spin charge asymmetry (Eq. 3.2) and the measured double-spin asym-
metry {(Eq. 3.1). Such would imply a false single-spin asymmetry due to the Faraday charge
measurement. Final results of the study showed no correlation to a certainty |6A/A| < 1074 [64].
There are other possible sources of false asymmetries, such as the parity-violating electroweak
asymmetry in ep-scattering, though its magnitude (~10~5) [31] is considerably smaller than the
asymmetry uncertainty attributable to Faraday charge measurement. To estimate the maximum

possible error resulting from false (single-spin) asymmetries, we assume a raw asymmetry of 10—4,

14 These results are from an analysis of 4.2 GeV EG1 data by N. Guler. Optimal results cited in Ref. [115] are only slightly
smaller in magnitude (14 MeV and 20 MeV, specifically).
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Figure 7.13: A; + nA, showing the magnitudes of kinematic errors for 4.2 GeV data, before (top)
and after (bottom) bin “smoothing” by iteratively averaging over adjacent bins. Systematic errors
are shown actual size. Removing statistical fluctuations is essential before averaging errors of
this type. Shown, from top to bottom, are the errors due to beam energy determination (red), p,
determination (green), p, determination (blue), and bin smearing (yellow). Note the error is largest
where the asymmetry slope is steepest, as would be expected from a shifting of bin contents.
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divided by the dilution factor Fpr and B, P, (estimated as 0.4), and add it to the measured asym-
metry A}, yielding what would initially appear to be a 1-2% error on A;.

However, this is not the end of the story, as this is a single-spin asymmetry, meaning that states
of opposing HWP and target polarization will act to cancel the asymmetry. Thus, to estimate the
faise asymmetry contamination, we rerun the analysis, but assume all target polarizations to be
positive, and the half-wave-plate to be permanently removed (33). 5 This reduces resulting asym-
metry to considerably less than 1% of Ay}, due to the cancellation of opposing polarizations.

Another considered error source is the mathematical error that resulis from assuming the sum
of the ratios is equal to the ratio of the sums, when calculating helicity-independent count rates. In
other words, the analysis, particularly the calculation of backgrounds (see Eq. 5.74) has assumed

that
NSf+N; . N} N Ny

2FC-+A FC-+A  FC- (7.24)

n=2

where N, symbolizes background counts (of each helicity) and A is the difference between the
positive and negative helicity-gated Faraday cup counts. This tentative relation (=) is an equality so
long as no asymmetry exists in the background counts. If there is an asymmetry in the background,
then

N =N, +6N, (7.25)

Thus we have

__ 2(2N, +46Np) . N, +6N, + Ny

2FC-+A ~ FC-+A  FC- (7.26)

This difference A is small, so by working out a binomial expansion of the denominators of both

sides, one can easily calculate a difference

1 6N, A
ity (F—c—) (7.27)

5n other words, the sign of the asymmetry for runs with +— or —+ HWPAargetpol status is reversed.
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Defining ény = dN,/FC™ and realizing our false asymmetry is given by Afqee = dnp/ny, and
approximating FCtte! = 2 FC—, the difference in the tentative relation can be written

A
_.Tl.bAfalse (FCtOta’) (728)

A study of the Faraday counts between helicities of the various run sets yields a maximal vaiue of
A/FCt! < 0.001. '8 Given our maximal false asymmetry of 10~* and Eq. 5.74, accounting for
the background effects of the false asymmetry requires multiplying the raw asymmetry by a factor
of 1/(1 — npAgatse (Fmr)) = 1+ 10~ "np, making this source of error (35) completely negligible.
The effects of false asymmetries, in the end, account for a very small (<1%) fraction of the

asymmetry, as can be seen from the cyan error in Figure 7.7.

7.2.8 Models errors (36-40)

Finally, we consider errors due to the use of modeled asymmetries and structure functions. A
description of the fits used to determine the models for Fi, F, R, A; and A, is described in Section
2.7. Most of the errors on these quantities are determined by varying the fit parameters to the world
data by a standard deviation. The relative error effects due to uncertainties on these models is
shown in Figure 7.14.

In the derivation of A;;/D = A; + nA,, the most significant model errors appear due to the R
structure function ratio, which propagate into the depolarization D via Eq. 1.19. To find the error
due to the model of R, one standard deviation is added to the fit parameters for R (40) and the data
are reanalyzed.

The F; unpolarized structure function is required for calculation of the spin structure functions
(Egs. 1.235 and 1.236). The value of F; can be expressed in terms of R and F» by Eq. 1.79. To
calculate the systematic error on F3, then, a standard deviation is added to the fits of F; (39) and
R (40) in separate systematic error tests. We then recalculate F; in terms of the modified model of
F,or R

The models of A; and A; also make a very minor contribution to the derivation of Ay, /D, in that

16This figure represents the early (1.6 GeV) data, where the beam charge asymmetry was at its worst.
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Figure 7.14: A; + nAs showing the effects of models errors for 5.7 GeV data. Systematic errors
are multiplied by a factor of 10 for visibility. From top to bottom are shown the errors due to
the A; DIS fit (red), A; (green), 4; resonance region fit (blue), F; (yellow) and R (magenta). Only
the last error has any noticeable effects an the measurement of A; + nA,. Other errors, negligible
in this plot, become important later, in the evaluation of virtual photon asymmetries and polarized
structure functions.

they are used to model Ay, for the derivation of P, F; .,¢: Used only for the relative weighting of data
between target polarizations (see Section 7.1.2). It is important to show that our choice of models
for A; and A; has no significant effect on the final outcome of our measured Ay /D valués, so these
quantities are varied, as well, in separate error analyses. Specifically, the DIS fit to A, is varied by
one standard deviation (36), and an alternate fit of A; in the resonance region is also separately
applied (38). A, the most poorly known modeled quantity in this analysis, is varied by increasing
its value to the Soffer limit (Eq. 2.35) (37). It can be seen that varying the asymmetry models has
a negligible effect on the outcome of the A;; measurement.

It is essential to note, though, that while the asymmetry models {as expected) have negligible
effects on the value of Aj;/D = A; + n4;, that the A; model, will, of course, have a huge effect on
the extraction of A; from A;;/D, and that our knowledge of this asymmeiry is the limiting factor in

the accuracy of the measurement of A;. This topic is addressed in more detail in Section 8.1.1.
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7.2.8 Uncertainties with no effects on asymmetry analysis (11-12,14-16,20,34)

Several of the (ifalicized) indices in Table 7.5 have no effect at all on the derivation of the double-:
spin asymmetry. Most of these were used specifically for systematic error determination in 1°*N/12C
analysis. These error tests included aliering the density of frozen 1°N (12), varying the target length
L for the (separate) 5N target (14), changing the W-range used to determine £, (15), varying the
cross-section model used to fit the target length (16), and aitering the overall radiative multiplicative
offset on the >N target counts (11). The effects of systematic errors in this mini-analysis are sum-
marized in Ref. {95], and are not expounded in detail here.

It was useful to keep these efror indices as a debugging check, to confirm null results for vari-
ation of parameters unrelated to the double-spin asymmetry analysis. In alf the aforementioned
cases, an error of exactly zero was measured on A /D, demonstrating that the analysis code

produced consistent measurements, eliminating many possible sources of technical errors.

7.2.10 Combination of systematic errors

All these errors must be combined to produce a total estimate of the systematic error. In doing so,
it is assumed that, on average, the various systematic errors do not correlate with one another. 17

Therefore, we add the errors in quadrature:

asys(W, Q%) = /o1 (W, Q%) + 02 (W, Q%)% + ... (7.29)

Before combination, however, statistical fluctuations must be eliminated, lest statistical errors
propagate into the systematic errors. Systematic errors, unlike statistical errors, do not decrease
in magnitude when bins are combined and averaged. Thus, “freezing” statistical etrors in place
in a systematic error can produce a huge overestimation in the total error. This is an especially
important concern in the case of kinematic error evalution (29-32).

This problem can be solved by averaging over neigboring bins, in effect “smoothing” over the

7 This is not, of course, a guaranteed assumption, given the complexities of systematic error effects. For a large number of
efror sources, however, our only viable option is to assume that the correlations, constructive and destructive, approximately
cancel when all is done.
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Figure 7.15: Diagram showing local bins used for the smoothing process. All bins containing data
located within 2 perpendicular “steps” of the current bins are statistically averaged using Eq. 7.30,
and the current bin value is replaced with the new average.

error distribution until statistical fluctuations diminish. We are then left with the relatively flat, under-
lying average of the error. This is done for each W and Q? bin by averaging the systematic errors in
all bins located within two “steps” (see Figure 7.15) of the current bin, weighted by the asymmetry
statistical errors:

E:b' Osys/ C’Zt t
Onew “f, QZ — ins — Sy sta (730)
( ) Ebins 1/ o'gtat

This procedure is iterated for all data a total of 6 times, to ensure removal of the most egregious
statistical fluctuations. After the smoothing process is completed for each individual error, Eq. 7.29
is applied to calculate the total systematic error.

Typically, in the resonance region (away from the elastic peak) and DIS region, a total systematic
error in the range of 6-8% was found for A; + nA.. To provide reasonable statistical error bars, the
standard bins were combined into larger bins using the standard method of combining values with

statistical errors [103]:

> oins(A11/ D)/ 2tat (7.31)

A/ Dgyg(W, %)=
1/ Desg (W @) > bins 1/021a
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1
Caug (W, Q%) = —ee
¢ V Ebins 1/ as2tat

The systematic errors must also be combined into larger bins, using Eq. 7.31, with the systematic

(7.32)

error in place of A;/D. After bins are combined, the statistical and systematic errors can be

combined to find the total error on the measurement at a given kinematic value:

atoral(W, Q%) = v/osys(W, Q%) + agmar(W, Q2)2 (7.33)

Final values (and errors) for the asymmetry A;;/D = A; +nA; at each of the four nominal beam
energies can be found in Appendix Section B.4. Also shown are the average values of all tracked
kinematic values over events in each bin. In order that the tables could be reasonably contained
in a document of this size, the standard Q2 bins were quadrupled in size, and the W-bins size
was increased by a factor of 6 (o 60 MeV/bin). Bins with statistical errors of greater than 1.0 were
excluded from the tables. Values of A;/D = A; +nA; for all 4 beam energies are plotted in Figures
7.16 and 7.17.

At this point, extraction of double-spin asymmetries and kinematic values is complete. Final
values of physical importance can now be extracted from the data: the asymmetries A; and As,
structure functions g; and g,, and various moments of these structure functions. The final chapter
continues the propagation of errors, as described in this section, to final measured results for these

physical guantities.
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Figure 7.16: A; + nA2 showing total systematic errors for all 4 beam energies. Systematic errors
are multiplied by 5 for visibility. Note that since larger Q? bins are used here, the average Q?
in a given plot can vary between beam energies, causing wider apparent variations between two
energies than really exist at a given Q? value. (This is especially apparent in the bottom middle plot
at high W.) The yellow, green, red and blue represent 1.6, 2.5, 4.2 and 5.7 GeV, respectively.
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Figure 7.17: Same plot shown in Figure 7.16, but with systematic errors shown at their actual size.



Chapter 8

Final Results

In the final chapter of this thesis, the physical results (that is, the asymmetries A; and A,, as well as
the structure functions g; and g-) are exiracted and presented in detail, along with their moments
and several applications of the data. Extensive numerical data are printed in the tables in the Ap-
pendix Sections B.4-B.7. All data listed in the tables will also be listed in the CLAS Collaboration
Database [128]. In the case of structure functions and asymmetries, where bins have been com-
bined in the printed tables, the original, uncombined data will be provided in the online database.

Where possible, world data from Jefferson Lab, SLAC, DESY and CERN for the structure func-
tions and asymmetries (described in Section 1.5) are included in the plots of the final results. Unless
explicitly stated otherwise, symbols used to represent data from differing experiments correspond
to the key shown in Figure 8.1, for easy reference. In some cases where data points from the same
experiment were too crowded together in the same plot, the statistical average of the local point
was plotted instead, for clarity. Note that world data points include only statistical errors. A table of
specific references for the world data is given in Table 8.1.

Note that, by the completion of this thesis, there are a few unresolved issues with the data anal-
ysis requiring future atiention. These are explained in detail near the end of this thesis, in Section
8.5.1.

387
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Key to world data

e EG1b (JLab)

o EG1a (JLab)

o RSS (JLab)
E155 (SLAC)

. E155x (SLAC)

= HERMES (DESY)
E143 (SLAC)
SMC (CERN)

® EMC (CERN)

4 E130 (SLAC)
E80 (SLAC)

Figure 8.1: Key to the world data plots spread throughout this chapter. Details regarding specific
experiments can be found in Section 1.5.
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Table 8.1: Quick reference table of sources of world data for the proton double-spin asymmetries
and structure functions presented in this chapter, as given in the Bibliography. In the case of RSS
data, at the time of this thesis, only plots, not numeric data, are publicly available. The plotted RSS
values in this chapter are close estimates graphically interpreted from these plots, not exact data.
(The exception is the d, integral value (Section 8.3.3), which is published in Ref. [51].)

| Experiment | Source |

E80 [36]
E130 [129]
EMC [40]
SMC [130]
E143 [131]

HERMES | [132
E155/E156x | [133
RSS B1]
EGia [134]

8.1 Virtual Photon Asymmetry Results

8.1.1 Extraction of A;

At this point, the quantity A;/D = A, +nA; has been carefully extracted from the data, subtracting
contributions from all backgrounds, for the 4 different beam energies in the EG1 experiment. Now,
we extract the physics quantities defined in Chapter 1, namely, the virtual photon asymmetries A;
and A, defined in Section 1.4. The most precise way to measure A; from A;/D is to use Eq.
1.224, with a reasonable model (Section 2.7.2) employed for the relatively small contribution from
A,. As Section 1.4 points out, measurements of A; can be exiracted from these data, but the
measurements are of poor precision. Though they can be used to constrain future versions of the
model, a smooth-fitting (i.e. analytical, not statistical) curve is required for this subtraction to obtain
accurate results. The subtraction of A, imparts a substantial systematic error, due fo its inaccuracy.
(see Figure 8.2).

To solve for A;, Eq. 1.224 was applied in each W and @Q? bin, for the final 4 sets of Ay /D
cormresponding to each (1.6, 2.5, 4.2 and 5.7 GeV) beam energy. The statistically averaged values
of 1 in each hin were used to prevent weighting errors. Systematic errors were calculated as

described in in the previous chapter, and combined in quadrature, as usual. Values and errors
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[A:0187<Q°<0.379 ] LA: 0379<Q°<0770 |

3 H 2

Figure 8.2: Results for A, in terms of W for two neighboring Q2 bins, comparing the size of the
estimated systematic error from A, (red, top) to the effects of all other systematic errors (blue,
bottom). Error magnitudes are multiplied by 5 for visibility. Obviously, the error on A, is the
largest uncertainty in the extraction of A;.

were then combined for each beam energy as

Ay /a?
S s
o= ! (8.2)

\/ Eenetgies 1/‘72

A student’s t-test was again run on the combined data, though this time, with more spurious results
(see Table 8.2). This most likely results from systematic errors between data sets, including inaccu-
rate modeling of the poorly known A, value. The discrepancy should improve with newer models,
constrained by experimental knowledge of A» from this and future data sets.

Plots of the virtual photon asymmetry A, as a function of W, across the Q? range for EG1b, are
shown in Figures 8.3 and 8.4. Comparing these plois to Figure 1.8, one sees the negative (spin-%)
A resonance at W = 1.23 GeV, with a transition to a positive value in the higher resonance region,
which is dominated by the (spin-3) N* transitions (Eq. 1.238). The same quantity in terms of QZ, for
different W bins, is shown in Figure 8.4. It can be seen here that A, nearly uniformly increases with
Q2. This can be understood in terms of Figure 1.1, where we expect the virtual photon asymmetry
A, to be zero for DIS scattering at Q> — 0 (where scattering from the whole proton occurs), and

increasing at higher @2, where the model of Figure 1.5 becomes valid.
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Numeric data for these values are listed in Table B.10. ' Results for A; were also plotted in
terms of Bjorken z (Figure 8.5). When compared to a large Q% (10 GeV?) model of A; DIS re-
sults, one notices that the resonances (with the exception of the large, negative A resonance at the
higher z end) “oscillate” around the DIS curve, approximately conserving the area under the curve,
when compared to the (blue) DIS model. This phenomenon, shown qualitatively in this figure, is

known as quark-hadron duality, and is explained in greater detail in Section 8.4.3.

Table 8.2: Students t-test resuits for combinations of the A; data between beam energies. Results
are more suspect than in previous t-tests in this thesis, most likely due to varying systematic errors
between data sets, which are not included in the t-test error bar. The 4.2 GeV data show the worst
resuit.

| SetA SetB t | o |
1.6GeV | 25GeV | -0.004 | 1.01
1.6GeV | 42GeV | -0.135 | 1.39
1.6GeV | 5.7GeV | 0.126 | 1.04
25GeV | 4.2GeV | -0.090 | 1.31
25GeV | 5.7GeV | 0.138 | 1.02
42GeV | 5.7GeV | 0.039 | 1.18

8.1.2 Extraction of A,

A rudimentary measurement of A, can be made by using the linear regression method described
in detail in Section 1.4.2, explicily defined for each bin by Egs. 1.226 and 1.227. Using MINUIT
to fit a straight line to the plot of A /D vs. 7 in each bin, the value of A2(W,Q?) is given by the
resultant slope.

Since two or more data points at differing beam energies are required to make the linear fit,
kinematic coverage of this measurement is limited to the space where data from different beam
energies overlap {refer to Figure 2.52). Figure 8.6 shows the approximate kinematic coverage of
the linear fit between energies, in terms of W and Q?, showing sample linear fits of A;;/D vs. nin
the bins.

Before trusting the resulting values of A, in each bin, a consistency check was made of the

1 Again, these tables combine W (x6) and Q%(x4) bins, so that results can fit into printed tables. More finely binned
results will be compiled in Ref. [128].
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Figure 8.3: Final results for A; vs. W across the whole Q? range covered by the EG1b data. Data
from other experiments, summarized in Figure 8.1, are also shown. Gray background represents

total systematic errors, shown actual size.
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Figure 8.4: Final results for A; vs. @? across part of the inelastic W range covered by the EG1b
data, compared to other experimental data. Gray background represents total systematic errors.
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Figure 8.5: EG1b results for A; vs. z for selected Q2 bins. The blue line is a superimposed DIS
Q? = 10 GeV? model of A;. Note the oscillations of the resonances about the DIS model; this is a
manifestation of quark-hadron duality (Section 8.4.3).
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Figure 8.6: Approximate kinematic coverage of the linear regression method (top). The other plots
show the linear fit in terms of 5 for the highlighted (yellow) bins in the top figure, in order of increasing
W. Note that even though they are marked as valid bins, here, DIS (W > 2.0 GeV) values were
uitimately excluded from the regression analysis.
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Figure 8.7: A; vs. W, derived without using an A, model, as the y-intercept of A;;/D vs. 7.
Because the analytic structure of A, is not assumed in creating this plot, statistical error bars are
considerably larger than in Figure 8.3.
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resultant values of A,, determined by the y-intercept, that they match the expected values of A,
when a model is used for A,. Figure 8.7 shows some sample plots of A; (W, Q?), derived by the
linear regression method. The error bars are considerably farger than those in the plots shown
for the standard method of using the A, model (Figure 8.3), because the linear regression method
makes no assumptions regarding the nature of A,, not even its analyticity (i.e. “smoothness” across
bins). Therefore, statistical fluctuations in this plot are substantially larger than those in Figure 8.3.
However, the plotted values are statistically compatible, at least partially validating the method.

Corresponding values of the slope (A;) are shown in Figures 8.8 and 8.9. Bins have been
combined to improve the statistical resolution. The results show slightly higher values than those
predicted by the existing model in the resonance region, a result compatible with that found by the
Jefferson Lab Hall-C RSS experiment at Q?=1.3 GeV? [51].

Caution must be used in deriving A; and A, using this method. The results are very sensitive
to statistical differences in normalization factors between data sets of differing beam energy, par-
ticularly P, P, statistical errors. At values of W >2.0 GeV, in the DIS region, derived values of A,
were definitely not compatible with those in Figure 8.3, and derived values of A, exceeded the Sof-
fer bound (Eq. 2.35), a physical impossibility. Values derived from linear regression in this region
(correlated to large angle scattering, where results become more tenuous) are unreliable. Thus, a
cut of W < 2.0 GeV was placed on the A, data, and results were limited to the resonance region.

Current measurements of A, from the EG1b data can be found in Table B.5.

8.1.3 Refining Accuracy of A; and A, Measurements

The accuracy of the A; measurement is limited by our knowledge of the asymmetry A,. What little is
known about A, namely the Soffer bound, Burkhardt-Cottingham Sum Rule, and the more tentative
Wandzura-Wilczek relation, along with DIS constraints supplied by the SLAC E155x data,? is used
as the basis for the existing 4, model. Optimally, a new model must be developed, extending the
fit into the resonance region using both the EG1 data for A, and the precise data at Q2 =1.3 GeV?
from RSS [51]. Then, the new A; model can be used to more accurately calculate A,, as per

Section 8.1.1.
2Chapter 1 and Section 2.7 explain these constraints in more detait.
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Figure 8.8: A; vs. W, extracted from the EG1b data. While not as precise as RSS data (small biue
squares), EG1b extends the measurement to a wider Q? range.

The present limit in accuracy arises from the fact that, while the statistical information regarding
As is as good as it can get using the present data, the analytic information, that is, the continuity
of A, from bin to bin, is a necessary physical constraint unrevealed by the statistically independent
measurements in each bin. Fitting a new model to the A, data can help improve our picture of A,,
as well as provide a more accurate measurement of its contribution to A /D (and thus decrease
the large systematic error illustrated in Figure 8.2). At the time of completion of this thesis, a new fit
of the EG1 A, model is not yet completed, and attempts to exploit the analyticity of the model while
factoring in the new A, data yielded inconclusive results. ® A rigorous extension of the model fit
into the resonance region is necessary to improve the measurement in this way, a task that remains

outstanding (see Section 8.5.1).

8.2 Spin Structure Function Resuits

8.2.1 Results for g;

it is useful to point out that, due to the model uncertainty imparted by our lack of knowledge re-
garding A», the structure function ratio g,/ F3 is more precisely measured by 4, data than A; itself

3Tried methods included feeding A1 with the modeled A contribution back into the linear fit at 57 = 0, as well as averaging
A1 +nAz with the Ay /D results before the fit, and reweighting errors. Any increases in resolution thereby gained were
coupled to equivalently ambiguous systematic offsets.
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Figure 8.11: The spin-structure function g, vs. Bjorken z, in low-intermediate Q2 bins, extracted
from the EG1b data.
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from the EG1b data.
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Figure 8.13: The spin-structure function g; vs. Bjorken z, in the highest Q2 bins, extracted from the

EG1b data.
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Figure 8.16: The quantity zg; vs. Bjorken z, in high-intermediate Q? bins, extracted from the EG1b

data.
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Figure 8.17: The quantity =g, vs. Bjorken =, in the highest Q2 bins, extracted from the EG1b data.
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[155]. Using Egs. 1.223 and 1.235, one can easily derive

1[4y 2
50,0 = 75 (T + (1= 14e) Fil, @) ©3)
Combining Egs. 1.8, 1.17 and 1.14 yields
_ey(E-E')
T="E_Fe (84)

At small scattering angles, Eq. 1.16 implies ¢ — 1 and thus n — «. Even at the widest scattering

angles (i.e. high W) in EG1, ¢ is around 0.3; so that n ~ . 4 Therefore,
ly—ul < In| (EG1 data) (8.5)

so that the systematic error caused by A, is much smaller for an extraction of g; /F; than for A;.

The statistical error on A,/ D is propagated so that

1
= F .
R 8

Tgs

with the error from the A. contribution assumed as a systematic error, as usual. Values are calcu-
lated for each beam energy and statistically averaged. Final results for g; in terms of «, for various
@? bins, are shown in Figures 8.10 through 8.13. Also shown are plots of zg; vs. z (Figures 8.14
through 8.17), which more prominently feature the high = data measured in this experiment. Nu-
merical results in terms of Q% and W are listed in Table B.6.

Because the actual experimental measurement must be multiplied by a model of F; to derive
a1, it is customary to plot/publish results of the structure function ratio g; /F; in terms of z and Q2.
Plots of g1/ F; are good for showing the relative contribution of polarization-dependent components
to the overall scattering cross-section. A combined plot of g; / F}, statistically averaged over all @2,
also provides a great visual medium for resolving the fine structure of the resonances provided by

the EG1 experiment, minimizing the effect of energy-dependent A; model effects. A plot of this

4That is, they are positive numbers of the same order of magnitude.
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g/F,: averaged over all Q°
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Figure 8.18: g, /F, ~ A; vs. W, averaged over all Q2. Detailed resonance structure can be seen
when all data are combined. The solid line is the average of the model weighted by the statistical
error on the bins.

type, of g1/ F1 vs. W, is shown in Figure 8.18.

Plots of g;/F; vs. Q? in various z bins are shown in Figure 8.19. These plots serve as an
illustrative exampie of the level of experimental precision now available in spin-physics experiments
(compare to Figure 1.11). As another consistency check, measurements of g;/F; for each beam
energy were compared for compatibility in similar plots (Figure 8.20). A plot of zg; vs. z, emphasiz-
ing high Q? results, is shown in Figure 8.21, as an update to the HERMES data comparison shown
in Figure 1.12. Tables of ¢, /F; for the EG1b data are listed in Table B.6.

8.2.2 Results for g,

Unlike g;, the g, structure function contains a very large contribution from the A, virtual photon
asymmetry, a quantity poorly measured by the current experiment. However, because there is also
a sizeable A; contribution (Eq. 1.236), a reasonable reconstruction of g, in the resonance region

can be made from the EG1 data. As with the measurement of the g; structure function (Eq. 8.3),
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Figure 8.20: Plots of ¢, / F; for different z values by nominal beam energy. Shown are 1.6 GeV data
(yellow circles), 2.5 GeV data (green triangles), 4.2 GeV data (red inverted triangles) and 5.7 GeV
data (biue asterisks) compared to an older analysis of 1.6 GeV and 5.7 GeV data by Yelena Prok
(black open circles) [46]. These plots were useful for demonstrating compatibility between differing
analyses and beam energies.
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Figure 8.21: Measurements of zg; for Q% > 1 GeV?, extracted from the EG1b data, as compared
to other world data. Compare to Figure 1.12.

g2 can be written directly in terms of A;;/D and A;:

1
Y2+1

92(377 QZ) =

[G + 17) Ag — %} Fi(z, Q% (8.7)

as easily calculated from Eqgs.1.223 and 1.236. It is assumed that the statistical error from A,

dominates over the much smaller error from A,/ D, so that

1 1
Tg, = 7—217 (-’; +77) UA2F1 (88)

The structure function ¢, and its error were measured for each beam energy, and statistically com-
bined in the usual manner. Numeric results for g, in combined bins are listed in Table B.6. Plots of
g2 Vs. = averaged over 4 different Q2 ranges are shown in Figure 8.22. Similar plots of zg, vs. z are
shown in Figure 8.14. While precision is poor compared to the g, data, it does provide information
for the constraint of future models of g, particularly near Q? ~ 0.5 GeV? in the middle resonance

region, where the EG1 data are most plentiful. Averaging the data together over z reveals a definite
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trend. Figure 8.24 shows g% averaged over all available z in the resonance region (RR), as well as
a plot of z¢% vs. Q2. While these plots do not preserve the resonance shape, graphs of this style
are useful for viewing overall changes in g» with respect to virtual photon coupling strength, and
comparison to extrapolated DIS functions (a basic concept behind quark-hadron duality, Section
8.4.3). The same plot, split into different W-bins, thus showing localized regions of resonances, is

shown in Figure 8.25.

8.3 Spin Structure Function Moments

Now that the spin structure functions are evaluated, the moments of g; and g, in the Operator
Product Expansion can be calculated. We recall from Section 1.3.1 that the nth moment of a

structure function .%(z, Q?) is defined as

1
[nth moment of #)(Q?) = / "1 (z, Q%)dx (8.9)
(1]

Recall also that the even moments in the OPE are not physically significant, due to symmetry con-
siderations; they are thus not considered in these results (see Section 1.3.3).

Naturally, the finite detector acceptance and beam energy range in EG1b does not allow for
complete integration of physical data for =0 to 1. Therefore, where physical data from this experi-
ment are not available, contributions from the g; and g, models are used instead. Confidence in the
world data model behavior below £=0.001 is not good, so all moments are truncated on the lower
end at this value. This truncation is expected to cause litile to no change in the total integral value
(see Section 1.3.3).

8.3.1 Procedure for calculating moments

In practice, of course, completely smooth integrals over data are not possible. Instead, a sum over

bins is taken. Basically,

[nth moment of LNQ?) = Imodei(z1,0) (@) + Liata(Q7) + Imodei(ons,n) (@) (8.10)
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Figure 8.22: g, vs. Bjorken z for the proton, extracted from the EG1b data. A g, model (blue line),
based on the A; and A, models described in this thesis, is shown for comparison. (The “spike” in
the model at low z in the low Q? plots is an erroneous relic of fitting the resonance— DIS transition,

and is not physical.)
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Figure 8.23: Similar plots as shown in Figure 8.22, showing zg, vs. Bjorken z for the proton,
extracted from the EG1b data.
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Figure 8.24: Plots of ¢g¥ vs. @2 (top) and z¢% vs @2 (bottom) averaged over all available z in the
EG1b experiment. Note that only results in the resonance region (RR) are plotted.
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The contribution from the experimental data is given by

Idata(Qz) = Z Iau_gly(vv) Qz)[za - Ib] (811)

(W,Q?)
Here, x4, is the average value of z in each W and Q2 bin (tracked throughout the experiment) and
z, and z, are the z-values corresponding to the W-bin boundaries. Statistical errors are combined

in quadrature as

or= [ Y (z8ug)?0%[Ea — ms]? (8.12)
(W,2%)

Thus, bins with the largest statistical error bars were excluded, so as not to incur too large of a
statistical error on the final resuit (avoiding the possibility of a single bin with a huge statistical error
from dominating the uncertainty). Generally, only bins where the error on A;; was less than 0.6
(corresponding to a minimum of 400-500 events) were used in the integration.

After the calculation of I, the lowest and highest bin edges used in the summation for each
Q? bin were recorded, so that the remaining contributions, given by the models, could be added.
Reference tables were printed containing the modeled ¢;, ¢g- and median x values for every stan-
dard Q2 bin (from Q%=0.01 GeV? to 10 GeV?). The standard W-bin size (10 MeV) was used. All
bins with a median z of 0.001 or greater were printed to the reference table, from just below the
inelastic threshold (W =1.07 GeV) up to

W = /M?+Q2%/x — Q2 = /0.9382 + 10/0.001 — 10 = 99.5 GeV =~ 100 GeV (8.13)

The low and high end z-contributions were then summed over all bins not used in the experimental

sum in the same way:

Imodet(@) = Y Zn F(W,Q%)|za — =] (8.14)

(W,Q2;2>0.001)
All plots of integrals in this thesis chapter show two results - the experimental integral 1;,., {(Shown
in red with its systematic error, connected with a black line showing the expectations from the
model) and the fotaf integral (Eq. 8.10, shown in cyan, with its systematic error, connected with a
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blue line showing the model expectation). Systematic errors were calculated as usual; that is, each
of the systematic error indices defined in the previous chapter were enforced, and the experiment
was rerun from start to conclusion. The resulting differences were added in quadrature.

As a final note before moving on to the results, it should be clarified that conventions regarding
inclusion of elastic peak contributions in the moments vary in the literature. To avoid confusion, all
plots and tables of moments in this thesis include inelastic contributions only. Elastic values
are often plotted for comparison, but are not included in the plotted moments. Where necessary, it
is simple to calculate the elastic contribution. As noted in Figure 1.8, the (unradiated) asymmetry
contribution from the elastic peak is represented by a §-function. Therefore, integrating over this
point requires simply adding the contribution(s) from g; and/or g defined by Egs. 1.235 and 1.236,
where A; = 1 and Az = Gg/(\/TGum) for elastic scattering (see Section 6.2). The results for the

elastic contribution (where z=1) are

1 4 2
n—1 _ . Q Q GE 2
/; T =0 = G QR [1 e GM] Cu (8.15)
and
! Qo G
n—1 - _ E _ 2
/1 £ godT = gog = IMEAME 0P [GM l] Gy (8.16)

where Fi = MG%, /+2 (from Egs. 1.62 and 1.72) and v = 2M/+/Q? (for elastic scattering kine-
matics) are also employed. These terms, with G, and G parametrized as functions of Q2 in
Section 6.2,° can be added as necessary to the total integral when needed. Cases requiring the

elastic contribution® are treated as they individually arise.

8.3.2 Moments of g;

The nth moment of g; is denoted by the shorthand I';,. The first several moments of g; were
calculated for the EG1b data. Because = < 1, successive moments are progressively smaller in
magnitude (see Eq. 8.9), so that one eventually reaches a point at high enough n where the sys-

tematic error magnitude grows large compared to the moment. The first three physically significant

5The Bosted parametrization [13] is used in the plots in this thesis.
§Testing of the Burkhardt-Cottingham Sum Rule requires the elastic term.
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(i.e. odd) moments of ¢, (I'}, T'%, and T'Z, in Figures 8.26, 8.27, and 8.28) can be calculated with
some degree of accuracy from this data. Data for these moments are listed in Tables B.16, B.17
and B.18. As noted in Section 1.3.3, the analytic structure of the g, structure function can be recon-
structed through an inverse Mellin transform, at the cost of the resonance information, in terms of .
The reconstructed structure function serves as a baseline for the generation of parton distribution
functions (PDFs) and the testing of quark-hadron duality (Section 8.4.3).

The first moment I'}, in particular, provides a mechanism for the testing of various sum rules. At
the Q% — 0 and Q% — oo limits, physical conseguences of real photon QED and isospin conserva-
tion, respectively, can be tested, by virtue of the GDH and Bjorken Sum Rules {see Section 1.3.2).
The I'} vs. Q? results, over two different Q? ranges, are shown in Figure 8.26. The larger scale plot
shows the expected Bjorken limit I'? + ég 4 = 0.143, for testing comparison. 7 It can be seen that
the integral approaches this limit at large 2, a partial vindication of the data + model results. In the
low Q? limit (lower plot), the GDH sum rule line® is plotted against the data. This is the line that T}
is expected to follow as Q2 — 0. However, both the value and the slope of the moment change very
rapidly in this region. EG1b data do not extend to low enough values of Q? to serve as a concrete
test of the fundamental GDH sum rule. We can qualitatively see that the values of I'} fall within the
valid physical limit constrained by the GDH sum rule. It remains for analysis of future spin-physics
data at lower Q? to better confront the Q2 — 0 limit with data. °

Testing of the simplest forms of the Bjorken and GDH sum rules is not possible in the inter-
mediate Q? range. However, the data analyzed in this experiment provide a rich environment for
the testing of the generalized GDH integral (incorporating xPT corrective terms, Eq. 1.179) and
the modified Bjorken Sum Rule (incorporating pQCD corrective terms, Eq. 1.189). Application of
these extended sum rules is an involved process, requiring the analytic solution of dispersion inte-
grals [23] and knowledge of the Q? evolution of the strong coupling constant «, [20], respectively.
This subject is not investigated any further in this thesis, but data are provided in the applicable Q?
ranges? for future application of these theories.

7The value of I'? =~ —0.064 comes from SMC resulis [22].
8This line is defined by a slope of -0.456/GeV? intersecting zero at Q% =0
9The newer EG4 experiment in Hall-B serves exactly this purpose. See Section 8.5.2.

10These ranges cover up to ~0.1 GeV? for the generalized GDH integral [23], and greater than ~1.0 GeV? for the modified
Bjorken sum rule [12].
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| Integral I', for the proton |
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Figure 8.26: I'; vs. @2 for EG1b data. The high Q? limit (top plot) can be used (along with neutron
data) to test the modified Bjorken sum rule (Eq. 1.189). The low Q? limit (bottom plot) can be used
to test generalized GDH integrals (Eq. 1.179). See the text for details.
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Figure 8.27: The third moment of ¢; in the Operator Product Expansion, extracted from EG1b data.
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Figure 8.28: The fifth moment of g; in the Operator Product Expansion, extracted from EG1b data.
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8.3.3 Moments of g,

Moments of the g, structure function can also be measured for the EG1 experiment, albeit to much
less precision than those for g;. The first and third moments of g, (that is, [ godz and [ z%g.dz)
were calculated for the EG1b data. Results are shown for these integrals in Figures 8.29 and 8.30;
data‘ are given in Tables B.19 and B.20. A, errors were not included in the systematic error estimate
for the model, and were truncated at xz=0.1 for estimation of the overall systematic error, due to a
non-physical divergence of the error at low z. ' Measurement of the first moment of g,, in theory,
allows for an approximate test of the Burkhardt-Cottingham sum rule (Eq. 1.204). To test this sum
rule, the elastic contribution (Eq. 8.16) must be added to the total integral. This term is also shown
in Figure 8.29. Though error bars are large, it can be seen that the net contribution due to the
inelastic integral is slightly positive, and that the elastic contribution is slightly negative. Within the
limited accuracy of the data, this gives a net result compatible with zero at lower Q2. The data are
not good enough for a conclusive test of the Burkardi-Cottingham sum rule, though we can say
these results raise no immediate contradictions with its validity. 2

Though its application will not be explored in-depth in this thesis, the d,, matrix element integrals
(Eq. 1.203) serve as a useful probe of higher-twist'® effects, particularly the second order term

d3(@*) = 2/ z{g1(z, Q%) + §gg(z, Q?)dz = 3[ 22g,(x, @) (8.17)
0 ()

At this time, we pause to take note of a conflict between common notation in the source literature.
The d3 term, as defined by Eq. 1.203, and used in much of the literature [22], is now more commonly
refetred to as the d, term. In other words, there is a difference of 1 in the counting of the index n in

Eq. 1.203 and more recent references [136], so caution must be used:

|dz = ds (notation ambiguity!) | (8.18)

1 This further necessitates work on a better A2 model and a more accurate estimate of its eror.

12 The two higher Q2 paints present more of a quandary, but systematic errors are large here, and may not all be propetly
accounted for (especially the etror on the g> model, which is not added in, and known to be problematic at low x) and the
bins are very wide here, so we cannot to put too much stock into the net negative resuft at these values. Betterexpenments
in the fulure, such as SANE (see Section 8.5.2), will provide more precise results.

13gpecifically, they quantify twist-3 contributions [22].
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Figure 8.29: The first moment of g, for the proton in the Operator Product Expansion, extracted
from £EG1b data. Addition of the elastic (green) curve to the inelastic integral should total zero if the
Burkhardt-Cottingham sum rule is correct.

The remainder of this thesis uses the (now more common) d, definition for this quantity. Inelastic
values for this integral are listed in Table B.21; a plot is shown in Figure 8.31. * The elastic
contribution, which needs to be added to get the total integral, is also shown.

it is useful to note that [136]

1
/0 P02(, @) = 5 (@) (8.19)

so that the d; /3 gives the higher twist contribution to the integral plotted in Figure 8.30.

8.4 Applications

At this point, the measurements made from the EG1b data have been described in detail. Before
concluding the thesis, we explore some of the applications of ¢, and g, and their moments.

Keeping in mind that ep scattering probes the electromagnetic structure of the proton, we can

4Note the concern in Footnote 12.
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Integral f x2g,dx for the proton e EG1bdata (inel.)
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Figure 8.30: The third moment of g, for the proton in the Operator Product Expansion, extracted
from EG1b data. Very limited information is available for higher g, moments in the EG1b data set.

use this structure information to calculate the characteristic response of the proton to external
electromagnetic fields at different distance scales by measuring polarizabilities. We also look at
a totally different kind of application of the moment data in the realm of atomic physics, in the
calculation of the energy of hydrogen hyperfine splitting. Then, finally, we investigate the analytic
behavior of the resonances with respect to the extrapolated DIS structure through the study of
quark-hadron duality.

8.4.1 Forward Spin Polarizability ()

To introduce the concept of forward spin polarizability, we first refer back to Egs. 1.168 and 1.169.
Here, f(v) and g(v) represent the spin-independent and spin-flip forward Compton scattering am-
plitudes as Q% —0. We recall that the optical theorem allows expression of the ep scattering cross-
section in terms of these amplitudes, and consider the terms ap, 8y and g in these equations.

These variables are called polarizabilities.
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Figure 8.31: The matrix element d; (excluding elastic contributions) for the EG1b data, showing
two different Q2 ranges. The function d2(Q?), a matrix component in the OPE, is a useful probe of
higher-twist effects. (Note the notational ambiguity d, = d; explained in the text.) The elastic value
of d» (not included in the plotted sum of the data) is shown for comparison (green line).
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in Eq. 1.168, in f(v), the leading term —e?/(4mw M) is just a Thomson scattering term, which
appears in non-relativistic scattering [137]. Thus, the v2 term contains all the internat information
(i.e. excitation spectrum) for unpolarized scattering, in the form of electric (ag) and magnetic (8)
dipole polarizabilities. These variables characterize the “response” of the proton to an externally
applied electric or magnetic field. Note that this picture specifically applies to the Q% —0 limit. Anal-
ogous views of these quantities can be extended to shorter distance scates within the nucleon at
higher Q2.

Likewise, in Eq. 1.169, the terms in g(v) can be viewed in a similar manner. The first term
—e2s% /(8w M?)v is the leading-order term for polarized scattering; it is, in fact, exploited in the
derivation of the GDH Sum Rule. The next term, which contains o (the quantity of interest here),
can be interpreted (at Q% = 0) as the “forward spin-dependent electromagnetic response” of the
proton, or more conventionally, the forward spin polarizability. The GDH Sum Rule was derived by
applying Cauchy’s Theorem to the £(v) term in g(v). By applying the same process to the £(v°)

term containing o, one obtains a similar sum rule [12] for the forward spin polarizability:'°

1 [®asp()—01p() , ,
Yo = 1;2'/ 3 dv (8.20)

Vth

(compare to Eq. 1.172). We now refer to Eq. 1.230, which contains the equivalent photon energy,
v*. The definition of this value normalizes the total virtual photon cross-section to the lab frame

kinematics. The value of v* depends on convention. Most commonly, we see Hand'’s Definition

QZ
14 :V‘—W:V(l-—m) (821)
or the simpler Gilman’s Definition
vVi=v (8.22)

50Once again, a confusion in conventions arises, here. Some sources include a factor of -1 in this equation, and define
the polarizability (sometimes written v, sometimes ~o) as positive (e.g. Ref. [137]), while others leave the polarizability as a
negative number (e.g. Refs. [12] and [135]}. The latter approach is adopted here.
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The latter is used in this section. Converting the integration variable in Eq. 8.20 from v to z (by

using Eq. 1.11 and calculating dv = —Q?/(2Mz?)dz), one finds

2 Tth
R R L) (8.29)

Using Eq. 1.233, this can be more conveniently written

2 Tth
Yo = }Egﬁ_g/o = Ay (7, Q%) Fi (2, Q%)dz (8.24)

Results for the integral only of this equation (that is, without the factor of 16M2a/QS) are shown
in Figure 8.32. Like the other integrals in this chapter, both the experimental contribution (red)
and total integral {cyan) are shown, though, in this case, both are nearly equal for Q2 < 1 GeV?,
showing that this result is very accurately measured almost completely by the experimental data,
with litle magnitude contributed by unmeasured regions (models). We can see that -, is an ideal
quantity for measurement in the CLAS EG1b experiment.

Using a conversion factor of 1 fm—! = 5.07 GeV! [3], v, itself was found by muitiplying the
integral by 16M?2a/Q° (alf units in factors of GeV) and multiplying the final value by

1

1fm™* RS (e
0.06607

- 4_ 4
T X107 = [fm/10 GeV]* = 15.134[fm/10 GeV]*  (8.25)

[fm/10 GeV]* =

to convert to units of 10~ fm. This value of =y, is plotted in Figure 8.33. Due to the factor of
Q~8, this quantity, unlike the other moments and integrals in this chapter, does not diminish to zero
at small Q2. This means the forward spin polarizability integral is an exceflent testing ground for
xPT theories, which are only valid at Q? values around 0.1 GeV? and lower. So far, heavy baryon
and relativistic yPT theories have had little success at fitting the available data for the forward spin
polarizability at iow @ [135][138].

Results for v, at Q2 — 0 have been measured in the MAMI GDH experiment as [137]

4% = [—1.01 +£0.08 +0.10] - 10~ fm* (8.26)
0
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[_ Forward Spin Polarizability Integral for the proton |
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Figure 8.32: The forward spin polarizability integral, extracted from EG1b data. EG1b provides an
ideal measurement of this quantity, as very litile contribution from models terms is required.

EG1b data are unreliable for this integral below Q2 ~0.08 GeV?, though no substantial incompati-
bility with this Q% —0 result is seen, within the bounds of statistical and systematic errors. (Extrap-
olation of the experimental curve intersects the axis at this point, within the limits of our errors).

Prior to this point, analysis of global ep scattering data has provided ample opportunity for
measurement of the unpolarized dipole polarizabiliies ar and ), but not before the advent of
adequate spin structure function data in the resonance region arose in the form of EG1b, were
measurements of -y, possible for virtual photons [135]. Tables of both the forward spin polarization
integral [ 22 A, Fidz and v, are listed in Tables B.22 and B.23.

8.4.2 'H Atomic Hyperfine Splitting

Traditionally, the realms of nuclear physics and atomic physics are dealt with in completely sepa-
rate experimentat and theoretical applications, as the characteristic excitation spectra of nuclei and

atomic electron orbitals are separated by several orders of magnitude (MeV vs. eV, typically). How-
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Figure 8.33: Forward spin polarizability -y, calculated from the polarizability integral. New data
analysis in intermediate Q? regions (provided by 2.5 and 4.2 GeV analyses) yields new information

in the sensitive region around Q2 ~ 0.1 — 0.2 GeV2,
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ever, this treatment is not exactly correct, of course. lf one makes sensitive enough measurements
in either realm, the excited states within nuclei and electron orbitals are found to couple to one
another, albeit only very weakly. One can picture the 'H atom as the world’s smallest electron ac-
celerator,'® operating at an energy of 13.6 eV. Like any electron in an accelerator, the orbital energy
is determined by the electromagnetic field acting on the particle. This coupling is primarily electrical
in nature; the assumption of an electric field from a point-like proton results in the base 13.6 eV en-
ergy of the ground-state orbital. However, the proton and eleciron have spin, of course, too (a point
ceniral 1o this thesis!) - and thus act as tiny magnets, which also couple to one another through
their magnetic fields. Depending on whether the resultant dipoles are aligned or antialigned, this
coupling strength will perturb the total energy. Thus, the observed spectrum exhibits hyperfine spilit-
ting of the 13.6 eV ground state between these two spin-induced states, with an energy difference

AEyy given by [7]
Mme

i me(l+Kp) (8.27)

8
AEp; = —3-a4

where 1 + kp=p,=2.79 is the proton magnetic moment. This simple calculation is just an approxi-

mation which assumes m. < M. Removing this assumption, this expands to

8 M?2m2
AEps = 2o ——(1 )
hf =30 (M+me)3( + &p) (8.28)

Evaluation of the magnitude of this hyperfine splitting difference is one of the great achievements
of modern experimental precision measurement techniques. its value is known to 13 significant

figures, more precision than any other measured quantity [139]:

AEjy; = 1420.4057517667(9) MHz (8.29)

This level of precision necessitates a better model than that used to derive Eq. 8.28, which treats
the proton as a point particle, and does not account for the structure of the proton, higher order

radiative effects, vacuum polarization, proton recoil, or the effects of the weak interaction (i.e. Z°

5This analogy should not be taken too far - the electron in an atom is in a quantum stationary slate (and does not emit
synchrofron radiation, for example), so it isn't really “accelerated”, per se, unless an external perturbation is applied.
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boson exchange). All these must be taken into account at this level of precision. A more exact

relation is given by [139][140]

AEhf

8a4 M?m
i‘-’m(1+np)(1+AQED+ AR+ Dhop + Apop + Ageak + Asg) (8.30)

where the various corrective terms are related to the following respective physical phenomena:

Agep  QED radiative corrections
Ag recoil corrections
A hadronic vacuum polarization
! hop PO (8.31)
Doy muonic vacuum polarization

Aveak  wWeak Z0 virtual boson coupling

Ag proton structure corrections

The last of these terms has relevance to the quantities measured in this thesis. Subtracting out the

other terms, calculated theoretically, from the experimental value (Eq. 8.29) yields [140]

|As = Az + Aot = ~38.58(16) ppm | (8.32)

where the uncertainty is split into a term calculated by A.C. Zemach [141] in 1956, and a much
smaller polarization-dependent term. The Zemach term is given in terms of the proton form factors
as

(8.33)

8r =21 [7 92 [on(@n D) ]

where §7#¢ = 0.015(0) is an anomalous calculated higher-order contribution to the form factors
[140].
It is the other term in Ag that is of interest in this thesis; it is given by [140]

3/ Me
Apor = 2M{ (A1 + Ag) (8.34)
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where
9 [ dQ? 8M?
Ay = 1 A % {§§(Q2) + ~Q-2,—Bl(Q2)} (8.35)
and
00 dQ2
Ay = —24 M7 /0 —@—32@2) (8.36)

Here, £, is the Pauli form factor (defined in Section 1.2.2) and B; and B, are spin-structure function

integrals, specifically

B@)=5 [ (-ar+2r 42— VT D) alen @O ®37)
Ba@) = [ (1420 - 2/7 4 D) e P (8.38)

where z;;, is the threshold corresponding to inelastic pion production (W = 1.077 GeV) and 7 is the
kinematic factor defined in Eq. 1.15.

With these calculations, one can see the immediate application of the g; and g» structure func-
tion results to a physically measurabie quantity in atomic physics. Low Q? kinematics contribute the
bulk of the above integrals [140]. Evaluation of these siructure functions in the resonance region at
low Q? thus greatly increases the known accuracy of A,,;. The EG1b analysis supplies an excellent
resource for the g; structure function. The g, confribution presents a more difficult case, and is the
limiting factor in our knowledge of AEy ¢ [142]. Plots of these integrals are shown in Figures 8.34
and 8.35.

More accuracy can be obtained if we neglect the effect of HT corrections to g,. That is, we
assume g, = g&¥'W, as defined in Eq. 1.202. Thus, B, is decomposed into a leading order (B¥¥W)
and higher-twist (B3) term:

By=BYY 1 B, (8.39)
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Making the change g» — ¢¥'" in Eq. 8.38, it is possible to apply Eq. 1.202, and with some

maniputlation [142], derive

BYW(Q?) = /Ouh [4\/7(7' +1)—47 —2y/Thn ( /r{r +'rl) + \/7_—)} a(x, Q*)dx (8.40)

information regarding HT effects, given by B, would complete this picture. As explained in Section
8.3.3, the integral d»(Q?) (Eq. 8.17; note Eq. 8.18) quantifies the magnitude of higher twist effects
on g2 (see Eq. 8.19). Assuming only that d; is small at low Q2 and high @2,V it is possible to place
a limit on the magnitude of the higher twist effects [142]:

5 _ M2dx (@)

B:< 53 (8.41)

A plot of BY¥'W is shown in Figure 8.36. Values for all 3 of these integrals (B,, B, and BY¥'W) are
given in Tables B.24-B.26. Insertion of EG1 analysis values into the above sequence of equations
has yvielded a value of [142]

{ Apot = 1.8 £0.7 ppm (8.42)

A recent computation [143] gives

| Az = —41.01(49) ppm | (8.43)

Adding these numbers yields a value obviously compatible with the experimental value of Ag in Eq.
8.32, within the statistical precision of the data and calculation. The largest remaining uncertainty
is the constraint given by the value of d., offering an immediate future application for more accurate
g2 structure function data in upcoming experiments {see Section 8.5.2).

As a concluding remark to this section, we note that the forward spin polarizability of the pre-
ceding section can be directly related to the required corrections for HF spilitting at low Q2. In fact,

to generate the value of Eq. 8.42, the contribution of the lowest 2 value {where EG1b data were

T There is every indication that this is true, assuming only very basic constraints on the model for A,. See Section 2.7.2
for information on these constraints.
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unavailable) used the value of v, in Eq. 8.26 and

3 5M?
£q00,Q7 = [_Zr%,n?, + 18M?¢; — o 70} Q? (8.44)
and
22 _
Aofo, @3] = 20— ur) (6.45)

20

where ¢; =2.95GeV—4, 6,7 = 1.35x1074fm~*, r% ~ 0.81 fm is the Pauli proton radius squared {3}
and @, is the cutoff value of integration at low Q2. Use of this estimate, which exploits necessary
physical constraints as Q? — 0, is necessary to bridge the gap in available data at the lowest Q2

values.

8.4.3 Bloom-Gilman Duality

As noted in Chapter 1, theoretical descriptions of particle interactions differ at low and high Q?Z,
with quark-gluon degrees of freedom (e.g. the DGLAP equations and pQCD) used at high @2, and
hadronic/mesonic degrees of freedom (e.g. xPT and multipole expansions) used at low Q2. The
question ensues, then, as to whether these two approaches are equivalent. Bloom-Gilman duality,
a phenomenon first observed in 1970 in the unpolarized F, structure function, provides an experi-
mental test of this question [144]. The theoretical concerns that underpin duality are very involved,
and clearly beyond the scope of this thesis. Instead, a qualitative picture with some important defi-
nitions is presented here to convey the overall concept.

If duality between the quark-hadron pictures holds true, then there must be an equivalence be-
tween the resonance region structure functions, and an extrapolation of the structure functions from
the DIS region into the resonance region, described by functions generated solely by QCD (quark-
gluon) degrees of freedom. In this picture, the resonances can be viewed as parity-dependent
excitations superimposed on the basic (extrapolated) scaling function. The average of the structure
function over the resonances, then, should match up with the extrapolated function. The areas
under both the true (resonant) structure function and extrapolated DIS function should be equal.

Figure 8.5 shows a simple (and very qualitative) manifestation of duality in the asymmetry A;.
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Figure 8.34: The integral B;, shown at high (top) and low (bottom) @2. This integral is a required
calculation in the determination of higher order correction in *H hyperfine splitting, and is directly
dependent on the g; structure function.
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o - EG1b data (inel.)
EG1b + model (inel.)
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B data sys. err.

Hl total sys. err.
o

Figure 8.35: The integral B,, derived from the EG1b data. Though the EG1b experiment provides
little information on this quantity, it may help constrain the largest uncertainty in *H hyperfine splitting

measurement.
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Figure 8.36: B¥" from the EG1b data; that is, B, to leading-order twist only. Un upper bound of
higher twist effects can be derived from the d, integral (Eq. 8.17), making it a useful estimate in the
total value of B, = BY¥W 4 B,.
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8 Note that in the two higher Q2 bins, if one ignores the large, negative A-resonance at high-z,
that A; appears to “oscillate” around the blue fine (which represents the high-Q? extrapolation of A,
into the plotted region). The area under the Q2 = 10 GeV? line and the resonant siructure function
are approximately equal, until one approaches the neighborhood of the A-resonance. In addition
to not holding in the A region, the phenomenon begins to break down below Q? < 1 GeV? (i.e. the
top plot), as well. Keep in mind that the compared function is not a “properly” extrapolated QCD
function, as will be momentarily described, though it does, in this case, approximate an extrapo-
lated function enough to visually introduce the basic concept of duality.

Duality has, in fact, been shown to break down for the unpolarized structure functions at Q2 < 1
GeV? [145]. Above this value, resonances are dominated by magnetic multipole transitions. Below
this value, a more complex combination of electric and magnetic transitions complicates the corre-
lations of resonant states to quark-gluon parton degrees of freedom, and duality is not expected to
hold [146]. Duality is related to the cancelation of higher-twist effects in the summation of moments
in the OPE [146]. The constancy observed at higher Q2 in leading order moments (such as I'; (Q?)
at high Q?), which are primarily composed of lower-twist terms, implies a cancellation of the higher-
twist effects in summing over the resonances. Recent theoretical QCD studies predict that duality
should hold for the structure function g%, though not as precisely as for the unpolarized structure
functions, due to sizeable negative contributions in the polarized structure functions. *°

Before the analysis of EG1b data, no comprehensive test of quark-hadron duality for polarized
structure functions existed, as their resolution in the resonance region was too poor to discern their
structure in functions of both W and Q?, a necessary precursor to any tests of duality. The detailed
EG1b resonance-region data on g; fuffill the first requirement for the testing of duality. The other
requirement is a properly scaled and exirapolated DIS QCD function in the resonance region. An
exact extrapoiation for the comparison of polarized structure functions is considerably more com-
plex than the qualitative introduction given by Figure 8.5.

To show that duality is indeed a test of internal nucleon physics, and not kinematic phenemena,

we must account for the “recoil” of the target proton in the lab frame, which varies with z and Q2.

8This is not a structure function, but recall that A; can be expressed in terms of several structure functions, and is
dominated by the behavior of g; and F}, so it manifests aspects of duality.

195pin-2 suppression is related to the canceliation of higher-twist effects [146]; this suppression is definitely violated for
the A-resonance.
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Recall (see Footnote 13 in Chapter 1) that the conventional definition of the structure functions
does not account for the target recoil. This correction is given by a simple factor of E’/E for elastic
scattering cross-sections (see Eq. 1.34). However, for inelastic scattering, the corrections are con-
siderably more complicated. Detailed target mass corrections (TMC) are required to eliminate the
functional dependence on reference frames.

These effects can be approximated by replacing the Bjorken scaling variable = with a variable
that approximates the purely kinematic corrections in higher twist terms [147], known as the Nacht-

mann scaling variable:

(8.46)

£ = 2z
14+ +/14+4M222/Q?

A more exact TMC can be made using the prescription of Blumlein and Tkabladze [145][148]:

&
0, G7) = o6, @) + S [ ggen, g

2 - tdu [tdv

The extrapolated structure function ¢2°? is fit to next-to-leading order (NLO) QCD fits of parton
distribution functions (PDFs) above the resonance region. 2° Correcting for divergences in per-
turbative expansions at high = (where soft gluon production introduces compilications) presents a
more complex challenge [149]. This resummation at high z is most easily estimated instead of
calculated, with a suitable systematic error included in the PDF extension.

Using the NLO PDFs and the EG1b resonance data, the validity of duality can be tested. Fig-
ure 8.37 shows zg; vs. z against the extrapolated PDFs. Note that, with the exception of the
A-resonance, the ¢; data “oscillate” around the the exdtended DIS function. To make a final, com-
prehensive test of duality, both the extrapolated PDF and the data need to be averaged over the

evaluated range in z:

[ 91w, @)z

Thi — Tlo

(01(Q%) = (8.48)

2That is, one determines Au, Ad and As based on the available world data (see Section 8.5.2). The functional form of
g1 can then imterpreted in the form of Eq. 1.101.
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Figure 8.37: Values of zg; vs. z for g7, plotted against the extrapolated NLO PDFs, as described
in the text. The structure function data oscillate about the mean, except near the A resonance, an
effect of quark-hadron duality. This plot represents a full EG1b analysis extension of the similar plot
published in Ref. [145] (which included only 1.6 and 5.7 GeV data), courtesy of P. Bosted.

This average can be taken over the full range of resonance region data, or over a smaller range
in W for local tests of duality. If duality holds, both the averaged extrapolated function and data
should be equal. Figure 8.38 shows a test of global duality over the whole resonance region,?!
showing the averaged g; structure function data plotted against the NLO PDF extension. Note that
the elastic peak contribution (given by Eq. 8.15) must be added in for duality to be observed at the
low Q? values, showing that this state must be added in to counteract the effects of the negative A
resonance for duality to be complete. With the exception of the A region (at W <1.38 GeV), local
duality, where a sum is taken over only a limited range in W, appears to hold as well [145], showing
that higher twist effects and parity separation of resonances cancel locally in the g; spectrum.
Testing of quark-hadron duality is, unfortunately, not possible for g, from EG1b, due to the poor
resolution of this data. Whether or not this structure function exhibits similar behavior remains an

open question. 2

21The term global does not truly imply “global” in the sense that it includes a complete set of basis states, but “global” in
the sense that it covers the whole resonance region {1.08 < W < 2 GeV).
221t is also a pertinent question, due to the presumed dominance of HT effects in the g structure function.
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Figure 8.38: Statistically averaged values of Q2g; (dark circles) vs. Q? for the proton, plotted against
the extrapolated NLO PDF. When elastic contributions are added in (hollow circles), duality appears
to hold. Again, these plots are an extension of those in Ref. [145] for the newer, full analysis of
EG1b. The duality piots (and NLO PDFs) were generated by P. Bosted.
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8.5 Future Directions

8.5.1 Outstanding Details

As pointed out throughout this chapter, inclusive proton analysis for EG1b data is not yet 100%
complete. There are a few remaining issues with the polarization-dependent models that must be
resolved before “final” values of g; and g» for the proton are obtained.

Radiative corrections to A;, (Section 6.4) require updating and genuine error calculation. The
corrective terms Arc and fre used to determine the Born asymmetry do not include corrections
fit to the most recently available data, and while large changes are not expected, they should be
updated. Also, recalling Section 7.2.5, systematic errors due to radiative corrections were not
rigorously calculated (and were instead merely estimated). A more technical approach toward
determining these errors must be completed.

Also, as mentioned in Section 8.1.3, the A, model should be updated to include the finat EG1b
and RSS results, so that A; (and ¢;) can be more accurately determined. This could reduce
the effects of the single largest systematic error in the extraction of the spin-structure functions,
and provide a means to incorporate both the statistical A, values derived from EG1b data and the
physical/analytic constraints of the A, virtual photon asymmetry into the extraction of 4;. Note that,
while these details require attention before the analysis can be declared “finished”, that even in the
state presented in this thesis, this analysis presents the most precise measurements availabie of

spin structure functions of the proton in and above the resonance region.

8.5.2 Upcoming Experiments and Data

The EG1b data provide a comprehensive set of polarized structure function measurements in and
near the resonance region at 0.05 < Q% < 5 GeV2. However, in conclusion, we note that there are
still voids of physical interest for spin structure function measurements. Though EG1b data extend
to lower Q2 and = than any other (analyzed) wide acceptance spin experiment to date, the Q2 val-
ues are still not low enough to accurately test the GDH sum rule and other leading order Q? — 0

dispersion relations. Also, measurements of A, and g, are meager compared to those of 4; and g;.
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Clearly, an experiment using a perpendicularly polarized target (to measure A, ) would be desirable
(though a practical impossibility for the current configuration of CLAS). In this light, brief attention is
given to two other experiments, one already complete (and in early analysis phase), and the other
upcoming: the CLAS EG4 experiment [150] and the JLab Hall-C SANE experiment [136].

The EG4 experiment, which also utilized the CLAS detector, completed in 2006, used a po-
larized beam (from 1.0 to 3.0 GeV) and a longitudinally polarized target (nearly identical to that
used for EG1), collecting approximately 27 billion trigger events for NH; and ND; targets [151].
Experimental objectives were similar to EG1. However, the Q? range was considerably lower, rang-
ing from 0.015 < Q% < 1 GeV? in a lower = region than that covered by EG1b resonance region
data (see the empty space in the lower left corner of Figure 1.13). To facilitate better efficiency for
measuring the outbending data required to make these low @ measurements, a new Cherenkov
Counter [150] was constructed in one sector. One of the main objectives of the EG4 experimental
analysis is the extension of inclusive A4;; measurements made in EG1 to this new low @* kinematic
range. Combined together, EG1b and EG4 will provide a more global data set for the reconstruction
of structure function moments like I'Y, and allow for a true test of the GDH sum rule, better mea-
surements of forward spin polarizability v,, and H hyperfine splitting. (All these measurements
are heavily weighted by low Q2 data.) EG4 will also provide a more comprehensive data set for
the testing of generalized dispersion relations based on yPT, and detailed resonance information
near the @2 — 0 limit that is not currently available. Figure 8.39 shows a projection of expected
kinematic coverage for I'?, based on preliminary simulations and recent structure function models.

While EG4 provides valuable information regarding the g; structure function, it does little to
elucidate the poor data available for the g, structure function, which requires A; data to precisely
measure. As stated, the RSS experiment [51] completed this measurement for a very small Q2
range. Widening the kinematic acceptance is necessary to provide more detailed information over
a wide range of Q% and W. Unfortunately, the magnetic field configuration in CLAS impedes the
use of a perpendicularly polarized target, so one must look elsewhere for opportunities to make this
set of measurements.

Hall-C at Jefferson Lab, unlike Hall-B, supports a target configuration versatile enough to allow
A measurements. In late 2008, the SANE (Spin Asymmetries on the Nucleon Experiment) will run
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Figure 8.39: Projected experimental results for EG4 analysis (solid circles) of the first moment of
g, T%, plotted at low Q? values. (Here, “This experiment” refers to EG4, not EG1.) The hollow
circles show (approximate) limits of EG1b analysis for relative comparison. From Ref. [150].
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Figure 8.40: Region of kinematic coverage for the approved SANE experiment at Jefferson Lab,
compared to coverage of world data. Regions to be covered by SANE are pointed out by the
arrows. From Ref. [153]

in Hall-C, utilizing the University of Virginia polarized ammonia target system [152}% and the BETA
{Big Electron Telescope Array) detector [153], consisting of the BigCal lead glass calorimeter, a gas
Cherenkov detector and lucite hodoscopes. Operating at the higher end of CEBAF beam energies
(~4.6 and ~5.7 GeV), this experiment will measure both A;; and A, for 2.5 < Q* < 6.5 GeV? and
0.3 < z < 0.8 [136], providing the most precise measurements of both these quantities available
in the specified kinematic region (see Figure 8.40). Not only will SANE provide higher precision
measurements of g; in the intermediate Q? range, it will perform the first precision measurements
of g, over an extended acceptance, allowing for much better measurements of the d, integral and

probes of higher twist effects (see Figure 8.41).

8.5.3 Testing Quark Models

Future measurements of double-spin asymmetries stand to greatly improve our understanding of
QCD models and generalized parton distributions. Data from this experiment are merely a small
part of the larger set of world data that can be used in a global fit of parton distributions [154].
A global fit of the quark distribution functions Au, Ad and As (see Eq. 1.99) requires not only
measurements of g, for the proton, but neutron measurements (so that isospin conservation can

be exploited) and SIDIS (semi-inclusive DIS) data. Also, NN collision data from RHIC (Relativistic
2 This target was also used in the RSS experiment.
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Figure 8.41: Projected SANE results for the d. integral. Compare to Figure 8.31 for this experiment.
The RSS result is also shown. From Ref. [136].

Heavy lon Collider at Brookhaven)?* and uN scattering experiments from COMPASS (at CERN)

are needed to provide a means of extracting the gluon contribution Ag. The integral

1
AfHQ?) = /0 Af(z,Q%)dx (8.49)

measures the spin contribution any given parton f to the proton, making parton distributions and
their moments of high physical importance in QCD spin physics. The most up-to-date information
available (at the time of this thesis) on global analysis of these parton distributions can be found in
Ref. [154].

Even within Jefferson Lab, there are great strides to be made in the study of QCD models.
DIS measurements at high = provide valuable ground for the testing of pQCD models. The virtual
photon asymmetry A; must equal 1 at z = 1, as this is the elastic scattering limit. The pure SU(6)
{non-relativistic) constituent quark model gives a prediction of A; = g (Eq. 1.245). Resonance data
involves complexities that cannot be fit by pure pQCD modeis, but the smooth DIS data can be used

24This is measured in both the STAR and PHENIX detectors, collecting jet and #® data, respectively.
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to test the limit as z —1, where the asymmetry must smoothly transition from the (average) SU(6)
neighborhood to A; = 1, as dictated by symmetry-breaking processes. These processes inciude
one-gluon exchange hyperfine interactions between quarks, spin-—*;1 suppression due to helicity con-
servation, and/or connections to duality-based models [155]. These different symmetry-breaking
scenarios lead to differing predictions of the value of DIS A; values in the high « limit.

Using DIS (W > 2.0 GeV) data, from EG1b runs and world experimental measurements, a plot
of A; vs. z can be generated (Figure 8.42). % At energies lower than 6 GeV, the current limit at
JLab, maximum values of z ~ 0.55 can be reached. Previously published EG1b data for A4, at 5.7
GeV have already helped provide precise physical constraints on QCD medels at this kinematic
limit [155]. Clearly, better constraints could be yielded if precise higher = data were available. This
thesis concludes with a brief look of what the future of JLab Hall-B has to offer in this uncharted
realm of inclusive double-spin asymmeiry measurement.

Currently, upgrades are being planned to double the maximum beam energy at CEBAF to 12
GeV by c. 2014, with corresponding upgrades to the Hall-B detector, concentrating on the for-
ward (i.e. small-8) angle detection required in a large acceptance spectrometer at these higher
beam energies [156]. The new CLAS12 detector (which, incidentally, will also accomodate mea-
surements of A, ) is designed, in part, with the very purpose of obtaining high-z data for polarized
structure functions. A plot of expected A} measurements, after 40 simulated days of beam time
at 11 GeV beam energy in CLAS12, is shown in Figure 8.43. Comparing to Figure 8.42, one can
see that future data collection at higher energies wilt allow for higher-z extension of A; DIS mea-
surements. Combining this information with large acceptance measurements of A, at the same
energy will provide further versatility and precision in future asymmetry measurements in CLAS12.
Future expansions of JLab facilities will clearly enable more precise and expansive measurements
of nucleon spin phenomena, and lead to fuller descriptions of QCD physics through medium energy

accelerator experiments.

BEG1b numerical data in this plot are listed in Table B.12.
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Figure 8.42: World data of A,,, showing W >2 GeV and @? >1 GeV? values only. DIS measure-
ments of 4; at high Bjorken z provide an ideal test of pQCD models, which constrain the behavior

asz — 1.
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Figure 8.43: Projected precision of averaged A, DIS measurements for the proton at 11 GeV beam
energy, using CLAS12 simulation software. Operation at higher beam energies will enable the
collection of precision DIS asymmetry data at higher z values than currently possible below 6 GeV.
From Ref. [156].



Appendix A

Glossary of Acronyms

ADC Ampiitude—Digital Converter

BCDMS Botogna—CERN—Dubna—Mﬂnich-Saclay (experiment)

BCS Bardeen-Cooper-Schieffer (superconductivity theory)

BETA Big Electron Telescope Array

BPM Beam Position Monitor

CalDB (CLAS) Calibration Database

CC Cherenkov Counters

CEBAF Continuous Electron Beam Accelerator Facility

CERN Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Re-
search)

xPT Chiral Perturbation Theory

CLAS CEBAF Large Acceptance Spectrometer

CLAS12 CLAS at 12 GeV

CM Center-of-mass

CODA CEBAF Oniline Data Acquisition

COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy

DA®PNE An ee collider in Frascati, ltaly
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DAQ Data Acquisition {(System)

DC Drift Chambers

DESY Deutsches Elekironen Synchrotron (German Electron Synchrotron)

DGLAP Dokshitzer-Gribov-Lipatov-Altarelti-Parisi (pQCD evolution equations)

DIS Deep Inelastic Scattering

DNP Dynamic Nuclear Polarization

DOCA Distance of Closest Approach

DST Data Summary Tape

E80 Early polarized SLAC experiment

E130 Another early polarized SLAC experiment (after E80)

E143 Later, more comprehensive polarized SLAC experiment

E155 Yet another polarized SLAC experiment

E155x Subdivision of E155 experiment with perpendicularly polarized target

E665 Unpolarized scattering experiment at CERN

EB Event Builder

EC Electromagnetic Calorimeters

EG1 JLab Hall-B Experiment using electron (E) and photon (G) beam data. (Photon runs are
not studied in this thesis.)

EG1a First (preliminary) part of EG1 experiment; test run of the experiment

EG1b Second (main) part of EG1 experiment; electron beam/proton target data is the subject
of this thesis

EG4 Experiment similar to the previous EG1, but at lower Q2 values

ElO Extended Interaction Oscillator

EMC European Muon Collaboration

EPR Electron Paramagnetic Resonance

ER Event Recorder

ESR Electron Spin Resonance

EST Equal Spin Temperature

ET Event Transport
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FASTBUS A standard electronics for particle physics applications (successor to CAMAC and
NIM electronics)

FC Faraday Cup

FEL Free Electron Laser

FORTRAN Formula Translating System (progamming language)

FPACK FORTRAN package for input/output

GEANT Geometry and Tracking (Detector Description and Simulation Tool; describes passage
of elementary particles through matter)

GDH Gerasimov-Drell-Hearn (usually in reference to the sum rule)

GSIM GEANT Simulation package for CLAS

H1 Particle detector in operation at HERA (at DESY)

HeLP Helicity Pairing

HERA Hadron Elektron Ring Anlange (Hadron-Electron Ring Accelerator) at DESY

HERMES A particle detector in use at HERA (at DESY)

HMS High Momentum Spectrometer

HWP Half Wave Plate

HF Hyperfine

HT Higher Twist

HV High Voltage

LAC Large Angle Calorimeter

MAMI Mainz Microtron

MCC Machine Control Center (accelerator)

MINUIT Program for function minimization and error analysis

MIP Minimum lonizing Particle

MOPA Master-Oscillator-Power-Amplifier

MT empty (target cell)

MySQL Multi-user Structured Query Language (Swedish)

NIM Nuclear instruments and Methods

NLO Next-to-leading Order
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NMC New Muon Collaboration

NMR Nuclear Magnetic Resonance

OPE Operator Product Expansion

PID Particle ldentification

PDF Parton Distribution Function

PDIS Polarized Deep Inelastic Scattering

PERL Practical Extraction and Report Language (dynamic programming language)
PHENIX Pioneering High Energy Nuclear Interactions eXperiment (at RHIC)
PMT Photomultiplier Tube

pQCD Perturbative QCD (Quantum Chromodynamics)

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

RAID Redundant Arrays of Inexpensive Disks

RCSLACPOL SLAC Radiative Correction for Polarized Scattering
RECSIS Reconstruction and Analysis

RF Radiofrequency

RHIC Relativistic Heavy lon Collider

RLC Resistor-Inductor-Capacitor

RMS Root Mean Square

ROC Readout Controller

ROOT An object-oriented data analysis framework

RR Resonance Region

RSS Resonance Spin Structure

SANE Spin Asymmetries on the Nucleon Experiment

SC Scintillation Counters

SEB Simple Event Builder

SIDIS Semi-inclusive Deep Inelastic Scattering

SLAC Stanford Linear Accelerator

SLW Synchrotron Light Monitor



SMC Spin Muon Collaboration

SRF Superconducting Radiofrequency
STAR Solencidal Tracker at RHIC
TOF Time-of-Flight

TDC Time— Digital Converter

TMC Target Mass Correction

TS Trigger Supervisor

VME Virtual Machine Environment

ZEUS A particle detector in use at HERA (at DESY)
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Additional Tables

B.1 Kinematic Bin Tables
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Table B.1: Standard Q2 bins for EG1b. Both the geometric (integrated by relative weight) and

arithmetic averages are shown.

| Bin in | Qba: | Q@*(geometric ave.) | Q*(arithmetic ave.) |

0 0 0.00919 - -

1 10.00919 | 0.0110 0.0100 0.010
2 0.0110 | 0.0131 0.0120 0.012
3 0.0131 0.0156 0.0143 0.014
4 0.0156 | 0.0187 0.0171 0.017
5 0.0187 | 0.0223 0.0204 0.020
6 0.0223 | 0.0266 0.0243 0.024
7 0.0266 | 0.0317 0.0291 0.029
8 0.0317 | 0.0379 0.0347 0.035
9 0.0379 | 0.0452 0.0414 0.042
10 | 0.0452 | 0.0540 0.0494 0.050
11 0.0540 | 0.0645 0.0590 0.059
12 | 0.0645 | 0.0770 0.0704 0.071
13 | 0.0770 | 0.0919 0.0841 0.084
14 | 0.0919 0.110 0.100 0.10
15 0.110 0.131 0.120 0.12
16 0.131 0.156 0.143 0.14
17 0.156 0.187 0.171 0.17
18 0.187 0.223 0.204 0.20
19 0.223 0.266 0.243 0.24
20 0.266 0.317 0.291 0.29
21 0317 0.379 0.347 035
22 0.379 0.452 0.414 0.42
23 0.452 0.540 0.494 0.50
24 0.540 0.645 0.590 0.59
25 0.645 0.770 0.704 0.71
26 0.770 0.919 0.841 084
27 0919 1.10 1.00 1.0
28 1.10 1.31 1.20 1.2
29 1.31 1.56 1.43 1.4
30 1.56 1.87 1.71 1.7
31 1.87 2.23 2.04 20
32 2.23 2.66 2.43 24
33 2.66 3.17 2.91 29
34 3.17 3.79 347 35
35 3.79 4.52 4.14 42
36 452 540 4.94 5.0
37 5.40 6.45 5.90 59
38 6.45 7.70 7.04 71
39 7.70 9.19 8.41 84
40 9.19 10.97 10.0 10




Table B.2: 9 and momentum(p) bins for ete~ background removal.

| Bin ramzn l ama:c

2.0

5.0

5.0

10.0

10.0

15.0

15.0

20.0

20.0

25.0

25.0

30.0

30.0

35.0

35.0

40.0

40.0

45.0

ol @ o] | o | | af ho| =

45.0

49.0

[ Bin J Pmin l Pmaz

1 (003 ] 030
2 1030 | 060
3 | 060 090
4 1090 1.20
5 | 120 | 150
6 | 150 | 1.80
7 | 1.80 | 2.20
8 | 220 | 260
g | 260 | 3.00
10 | 3.00 | 3.40
11 | 3.40 | 3.90
12 | 3.90 | 4.40
13 | 440 | 4.90
14 | 490 | 540
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B.2 Pion Background Cut Parameters
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Table B.3: Pion background cut parameters for use in Eq. 4.1 - 4.4, Each sector and CC segment

has its own parameters.

Sectors 1 and 2, inbending only

| sector | segment | geenter | goifset | o, A°C-CC |
1 1 7.715 0 1.25 -10.06
1 2 9.435 | 1.61667 | 0.558811 -10.06
1 3 11.17 | 1.17703 | 0.710307 -11.42
1 4 12.925 | 1.25518 | 0.761159 -10.88
1 5 1469 | 1.29892 | 0.83303 -11.15
1 6 16.47 | 1.47686 | 0.799495 -10.6
1 7 18.29 | 1.67202 | 0.889586 | -11.42
1 8 20.15 1.8122 0.79602 -11.15
1 9 22.04 | 1.79007 | 0.765841 -11.42
1 10 24.01 | 1.75959 | 0.922235 | -10.88
1 11 26.05 | 1.70721 1.12133 -10.88
1 12 28.17 | 2.19133 | 1.09796 -10.88
1 13 30.475 | 2.28175 | 1.36657 -28.53
1 14 32935 | 297774 | 1.12487 -9.246
1 15 35.445 | 3.10636 | 1.02596 -6.531
1 16 37.97 | 3.03297 | 1.11458 -5.088
1 17 40515 | 24122 | 0.836312 | -8.67905
1 18 43.12 0 0 100
2 1 7.715 0 1.25 -9.518
2 2 9435 | 157819 | 0511605 | -8.975
2 3 11.17 | 1.11335 | 0.679164 | -10.06
2 4 12.925 | 0.978316 | 0.689107 | -9.518
2 5 14.69 | 0.949305 | 0.827985 | -9.789
2 6 16.47 | 1.13836 | 0.877119 -10.06
2 7 18.29 1.3449 | 0.742062 -10.6
2 8 20.15 | 1.54754 1.1438 -80
2 9 22.04 | 179137 | 0.758517 | -11.96
2 10 24.01 1.73608 | 0.912447 | -9.789
2 11 26.05 | 1.74283 | 1.11211 -10.88
2 12 2817 | 2.11168 | 1.03115 -11.69
2 13 30.475 | 2.34247 | 1.34492 -10.6
2 14 32.935 | 2.89912 | 1.09128 -9.246
2 15 35.445 | 2.89664 | 1.08348 -7.617
2 16 3797 | 2.83338 | 1.08412 -4.358
2 17 40.515 | 2.19807 | 0.880703 | -5.72487
2 18 43.12 0 0 100




Sectors 3 and 4, inbending only

[ sector | segment | geemier [ gofiset | o, | AtPC-CC |
3 1 7.715 0 1.25 -10.06
3 2 9.435 | 1.59668 | 0.531775 -10.88
3 3 11.17 | 1.09262 | 0.685662 | -11.96
3 4 12.925 | 1.12444 | 0.740032 -16.49
3 5 14.69 | 1.10406 | 0.765128 -16.31
3 6 16.47 | 1.1837 | 0.770151 -15.49
3 7 18.29 | 1.40898 | 0.791015 | -11.96
3 8 20.15 | 1.63203 | 0.88898 -11.96
3 9 2204 | 1.68464 | 0.688376 -7.346
3 10 24.01 | 2.04233 | 1.05516 -80
3 11 26.05 | 1.8272 | 1.05423 -23.91
3 12 28.17 | 2.04524 | 1.08444 -20.92
3 13 30.475 | 2.3309 | 1.41215 -20.65
3 14 32.935 | 3.09273 | 1.0571 -9.789
3 15 35.445 | 3.19737 | 1.01388 -7.889
3 16 37.97 | 297263 | 1.04351 | -3.815
3 17 40.515 | 2.24073 | 0.841379 | -5.52649
3 18 43.12 0 0 100
4 1 7.715 0 1.25 -8.432
4 2 9.435 | 1.68515 | 0.571923 | -8.703
4 3 11.17 | 1.27287 | 0.702654 | -9.518
4 4 12.925 | 1.25499 | 0.725934 | -13.32
4 5 14.69 | 1.21428 | 0.780379 -10.6
4 6 16.47 | 1.39868 | 0.847354 | -11.15
4 7 18.29 | 1.60879 | 0.880012 | -10.33
4 8 20.15 | 1.83014 | 0.798267 -12.23
4 9 22.04 | 1.80748 | 0.827193 -12.78
4 10 24.01 | 1.76519 | 0.887549 -11.15
4 11 26.05 | 1.63676 | 1.04132 -11.96
4 12 28.17 | 20624 | 1.16812 -10.88
4 13 30.475 | 2.04637 | 1.42806 -12.23
4 14 32935 | 2.8001 | 1.09894 -9.246
4 15 35.445 | 3.00113 | 1.1128 -6.802
4 16 37.97 | 3.05102 | 1.08308 -5.173
4 17 40.515 | 2.37987 | 0.866787 | -7.08273
4 18 43.12 0 0 100
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Sectors 5 and 6, inbending only

| sector | segment | geenter | goiiset | o ApC—CC]

5 1 7.715 0 1.25 -7.074
5 2 9.435 | 1.77528 | 0.531322 | -8.703
5 3 11.17 | 1.65381 | 0.889448 | -13.86
5 4 12.925 | 1.52975 | 0.829391 -16.03
5 5 14.69 | 1.36857 | 0.795689 | -10.33
5 6 16.47 | 1.46561 | 0.80882 -10.6
5 7 18.29 | 1.65247 | 0.89631 -9.518
5 8 20.15 | 1.90336 | 0.861988 | -11.42
5 9 2204 | 225316 | 0.968319 | -11.96
5 10 24.01 | 2.30237 | 1.01662 -10.6
5 11 26.05 | 2.73447 | 1.00332 -10.6
5 12 28.17 | 2.95056 | 1.14894 -13.86
) 13 30.475 | 3.05246 | 1.00229 -11.15
5 14 32.935 | 3.06401 | 1.03006 -8.703
5 15 35.445 | 3.12805 | 1.12716 -8.16
5 16 3797 | 3.1899 | 1.08879 -5.445
5 17 40.515 | 2.53884 | 0.838787 | -8.62813
5 18 43.12 0 0 100
6 1 7.715 0 1.26 -7.346
6 2 9.435 | 1.64922 | 0.531754 -10.6
6 3 11.17 | 1.18211 | 0.715696 | -10.33
6 4 12.925 | 1.22371 | 0.749207 | -9.789
6 5 1469 | 1.17344 | 0.738545 | -13.59
6 6 1647 | 1.28719 | 0.743982 | -11.15
6 7 18.29 | 1.30081 | 0.898898 | -11.96
6 8 20.15 | 16235 | 0.778548 | -14.95
6 9 2204 | 1.65107 | 0.788323 | -11.42
6 10 24.01 | 1.78634 | 0.95529 -10.6
6 11 26.05 | 1.74261 | 1.11471 -10.6
6 12 28.17 | 213715 | 1.06596 -11.15
6 13 30.475 | 2.41261 | 1.33136 -10.88
6 14 32.935 | 2.94335 | 1.18341 -8.16
6 15 35.445 | 3.31166 | 1.15398 -7.074
6 16 3797 | 337013 | 1.0801 -3.272
6 17 40.515 | 2.74791 | 0.744176 | -7.22474
6 18 43.12 0 0 100
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Sectors 1 and 2, outbending only

sector | segment | geenter [ gofise op AC-CC |
1 1 7.715 9.44136 0.882966 | -18.3827
1 2 9.435 9.78426 2.2021 -18.3168
1 3 11.17 5.11882 1.12383 | -16.3986
1 4 12925 | 2.38628 | 0.587813 -10.88
1 5 14.69 1.01974 | 0.419864 | -11.15
1 6 16.47 | 0.928088 | 0.718078 -10.6
1 7 18.29 | 0.897623 | 0.728103 | -11.42
1 8 20.15 0.85664 | 0.803771 -11.15
1 9 22.04 0.81016 | 0.814512 | -18.957
1 10 24.01 0.534905 | 0.808717 | -16.8534
1 11 26.05 | -0.0567701 | 0.830669 | -12.0472
1 12 28.17 | -0.0894648 | 1.20216 -10.88
1 13 30.475 | -0.476507 | 1.43163 -28.53
1 14 32.935 | 0512086 | 1.79071 -9.246
1 15 35.445 | -0.564243 | 1.88346 | -7.64864
1 16 37.97 -1.52835 2.55906 | -8.26228
1 17 40515 | 0.930158 | 1.11536 | -6.32124
1 18 43.12 | 0.0818546 | 0.856084 | -3.74568
2 1 7.715 9.70018 | 0.725683 | -21.08
2 2 9.435 9.30676 1.61795 | -22.6378
2 3 11.17 5.62216 0.945182 | -19.3352
2 4 12.925 3.8231 1.32925 -9.518
2 5 14.69 1.75844 0.358314 -9.789
2 6 16.47 | 0.727494 | 0.753471 -10.06
2 7 18.29 0.73484 0.71621 -10.6
2 8 20.15 | 0591899 | 0.684617 | -12.23
2 9 22.04 0.81292 1.04731 -80
2 10 24.01 0.566134 | 0.672787 | -9.789
2 11 26.05 | -0.0962878 | 0.849402 | -10.88
2 12 2817 | -0.314749 | 1.21073 -11.69
2 13 30.475 | -0.411599 | 1.41265 -10.6
2 14 32935 | -0.73257 1.7549 -9.246
2 15 35.445 | -0.728269 1.917 -7.617
2 16 37.97 -1.90306 2.58271 | -6.31366
2 17 40.515 | 0.873927 1.13948 | -3.92716
2 18 43.12 | -0.112584 | 0.947823 | -1.94926
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Sectors 3 and 4, outbending only

[ sector [ segment | geenter | gofiset 1 5, | APCCC |
3 1 7.715 9.34863 1.25515 | -19.3524
3 2 9.435 9.34325 217895 | -21.1789
: 3 11.17 4.72228 | 0.797899 | -14.7606
K 4 12.925 1.41506 | 0.875569 | -15.49
3 5 14.69 0.85164 | 0.687879 | -16.31
3 6 16.47 | 0.807327 | 0.698243 -15.49
3 7 18.29 0.765179 | 0.726155 -11.96
3 8 20.15 0.662392 | 0.704451 | -20.9295
3 9 22.04 0.771579 0.80965 | -8.80298
3 10 24.01 0.235635 | 0.765732 -25.54
3 11 26.05 | -0.605803 | 0.755947 -80
3 12 28.17 | 0.0507434 | 1.14428 -80
3 13 30.475 | -0.0564292 | 1.41699 -20.65
3 14 32.935 | -0.490215 | 1.78919 -9.789
3 15 35.445 | -0.454119 | 2.15891 | -21.4961
3 16 3797 -2.02456 3.03551 | -9.94321
3 17 40.515 1.12373 1.03818 | -4.15478
3 18 43.12 | 0.116346 | 0.842354 | -2.4432
4 1 7.715 9.44417 1.71035 | -16.8448
4 2 9.435 9.50459 2.76454 | -17.4693
4 3 11.17 461428 | 0.780718 | -9.518
4 4 12.925 1.53946 1.02494 -13.32
4 5 14.69 | 0.974502 | 0.794278 -10.6
4 6 16.47 | 0817862 | 0.724484 | -11.15
4 7 18.29 0.89449 | 0.762863 | -10.33
4 8 20.15 | 0.835993 0.8058 -12.23
4 9 22.04 | 0.877967 | 0.785631 -12.78
4 10 24.01 0.534746 | 0.846716 | -11.15
4 11 26.05 | -0.0503515 | 0.805624 -11.96
4 12 2817 0.17271 1.20144 -10.88
4 13 30.475 | -0.598793 | 1.39201 -12.23
4 14 32.935 | -0.732761 1.87927 -9.246
4 15 35445 | -0.596728 | 1.89874 -12.319
4 16 37.97 -1.98561 2.74207 -9.8736
4 17 40.515 | 0.897553 1.0876 | -22.7609
4 18 43.12 | -0.0168865 | 0.884155 | -32.4434
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Sectors 5 and 6, outbending only

[sector | segment | 627 | @7 | 5, | A7 ]
5 1 7.715 9.43056 0.902969 | -16.5621
5 2 9.435 9.66316 246374 | -19.5467
5 3 1117 4.48558 1.06914 | -15.9008
5 4 12.925 2.35348 0.574084 -16.03
5 5 14.69 1.06895 0.463329 -10.33
5 6 16.47 0.957842 | 0.682332 -10.6
5 7 18.29 0.873888 | 0.707929 -9.518
5 § | 20.15 | 0.843671 | 0.842153 | -11.42
5 9 | 2204 | 0898008 | 0.864229 | -11.96
5 10 24.01 0.758749 0.94682 -10.6
5 11 26.05 0.46833 1.14142 -10.6
5 12 28.17 0.359037 1.24246 -13.86
5 13 30.475 | 0.114843 1.513 -18.7278
5 14 32935 | 0.248881 1.52748 | -20.6778
5 15 35.445 | -0.461898 1.7839 -8.16
5 16 37.97 | -0.556424 | 2.38824 | -5.87629
5 17 40.515 1.21186 1.12693 | -5.06078
5 18 43.12 0.236514 | 0.871704 | -4.01868
6 1 7.715 9.55355 0.810562 | -17.9514
6 2 9.435 9.72445 1.98536 | -18.7144
6 3 11.17 5.3406 1.07633 | -20.7031
6 4 12.925 2.52474 0.511665 -9.789
6 5 14.69 1.48256 0.154967 -13.59
6 6 16.47 0.842704 | 0.694377 -11.15
6 7 18.29 0.823057 | 0.718335 -11.96
6 8 20.15 0.764655 | 0.748196 -14.95
6 9 22.04 0.749473 | 0.815529 -11.42
6 10 24.01 0.509091 | 0.739087 | -13.8422
6 11 26.05 | -0.0659918 | 0.846994 -10.6
6 12 28.17 | -0.105601 1.19791 -11.15
6 13 | 30475 | 0.354063 | 145182 | -10.88
6 14 32.935 | -0.283529 1.80117 -8.16
6 15 35.445 |1 -0.48233 2.08146 | -7.59534
6 16 3797 -1.04792 274191 | -6.12133
6 17 40.515 1.12619 1.15726 | -4.37422
6 18 4312 | -0.0166473 | 0.95124 | -2.87116
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B.3 Fiducial Cut Parameters

Table B.4: Inbending fiducial cut parameters, designated by the lower value on each momentum bin.
At all momenta higher than 4.2 GeV/c, the highest bin values are used, as there is little evolution of
the event geometry after this point.

Torus Current = +1500 A

Binpmin | A B C D E F | Omas |
0.15 36 (0281030 5 16.72 | 0.06 | 37
0.30 32 10281030| 85 | 1672006} 37
0.45 3251028 |030| 10 | 1672|006 | 35

028 10301051672 006} 33

0.60 33

0.75 33 1028030105 1672)006| 32
0.90 33 {028 |030| 105 16.720.06 | 32
1.05 33 10281030105 |16.720.06 | 31
1.20 34 [028]030]105]|16.72 | 0.06

1.35 35 1028 |030}105] 16.72 | 0.06

1.50 35 1028030105 16.72 | 0.06

1.65 35 (028 |030]| 105 16.72 | 0.06

180 |[355(0.28 030|105 ]| 16.72 | 0.06
1.95 36.5 1028 1030|105 16.72 | 0.06
2.10 36.5|0.28 | 030 | 105 | 16.72 | 0.06
2.25 36 {028}030]105 ] 16.72 | 0.06

)3 B3| B B/ B 8




Torus Current = +2250 A

[Binpmin | A | B ] C | D] E | F |6
0.15 36 |028[030] 0 [16.72]006] 4t
0.30 36 |028|030| 6 |1672|006| 40
0.45 32 |028/030| 8 |16.72]0.06| 39
0.60 30 |028]030| 95 | 1672|006 | 34
0.75 32 1028 | 0301051 16.72 | 0.06 | 32
0.90 32 |028]030]| 105 16.72 | 0.06 | 32
1.05 32 | 028030105 16.72 | 0.06 | 32
1.20 32 | 0281030105 ] 16.72 | 0.06 | 32
1.35 32 028 030|105 16.72 | 0.06 | 32
1.50 32 | 0281030105 | 1672 | 0.06 | 32
1.65 32 [028|030| 105 16.72 | 0.06 | 32
180 [325/028|030|105( 1672|006 | 32
195 [325/028[030| 1051672006 | 32
210 33 |028]030)105]| 1672|006 | 32
225 1335/028/030] 1051672006 32
2.40 34 [028]/030| 1051672 | 0.06 | 32
255 34 | 0280301051672 006 | 32
2.70 34 [028[030]105]|16.72 | 0.06 | 32
2385 34 (028 030|105 | 16.72 | 0.06 | 32
3.00 34 (028030105 ] 16.72 | 0.06 | 32
315 34 {028 030|105 1672|006 | 32
3.30 34 (028030105 16.72 | 0.06 | 32
345 34 | 028030105 16.72 | 0.06 | 32
3.60 34 [028]030]|105]1672]006| 32
375 34 |028/030|105(1672[0.06 | 32
3.90 34 {028/030]105|16.72 | 0.06 | 32
4.05 34 [028|030]105 (1672|006 | 32
4.20 34 028030 105] 16.72 | 0.06 | 32
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Table B.5: Outbending fiducial cut parameters, designated by the lower value on each momentum
bin.As for inbending cuts, all momenta greater than 4.2 GeV/c use the highest bin values.
Torus Current =—1500 A, Sector 1

(B pmin | A [ B [ C [ D[E] F | Cugper [ Fugper |

0.15 44 1077 | 017 | 12 1.46 1 1
0.30 38 (055027 ]| 5 1.46 0 0
0.45 365 {044 1022 |55 1461 0.1 -0.11
0.60 31 103302255 146 | 0.1 0.1
0.75 295(028 1022 |55 146 | 0.2 0.5
0.90 29 102802258 146 | 0.1 -12
1.05 29 1028]02258 146 | 03 0
1.20 30 1028 022]|6.2 146 | 0.2 0

1.35 31 102802263
1.50 31 1028102265
1.65 31 102802272
1.80 30 102802272
1.95 28 1028022172
2.10 32 1037 (02275
2.25 34 1043022 8

2.40 34 1043102283
2.55 34 1043(022|86

1.46 | 0.06 -0.12
146 ;1 03 -0.02
146 | 0.2 -0.04
146 | 0.22 -0.06
146 | 0.22 -0.06
1.46 | 0.18 -0.06
146 | 0.18 -0.06
146 | 0.18 -0.06
146 | 0.18 -0.06

CO[ QO] O W] W] W W] W W] W] LI W] W] | W] W] W

| BiN pmin | Giower | Hiower | Oupper | Oiower | innerof fset | outerof fset |
0.15 1. i 23 23 2 0
0.30 0.15 -0.1 13 18 20 1.5
0.45 0.1 -0.11 13 19 1.7 0.4
0.60 1. 0.5 14 19 15 1
0.75 06 0.5 15 20 14 0.8
0.90 0.1 -12 15 19 1.2 0
1.05 0.3 0. 14 18 1.2 0
1.20 0.2 0 13.5 17 1.2 0
1.35 0.12 -0.09 13 16 1.2 0
1.50 0.1 -0.01 12.5 15 1.3 0
1.65 0.2 -0.04 12 14 1.2 ]
1.80 0.22 -0.04 14 13 0. 0
1.95 0.22 -0.04 17 13 -0.4 0
2.10 0.18 -0.04 18 14 -0.4 0
2.25 0.18 -0.04 19 15 -0.4 0
2.40 0.18 -0.04 19 15 -04 0
255 0.18 -0.04 19 15 -0.4 0




Torus Current =—1500 A, Sector 2

I Bin pmin A ! B [ C D l E l F Gupper | Hupper
0.15 44 10771017 |12 | 3 | 1.46 1 1
0.30 38 [0551028! 5 | 3| 146 0.1 -0.07
0.45 38 [044 |022 55131146 0.025 -0.13
0.60 32 1033i{022{5513]|146| 0.14 0
0.75 30 (02802255 3| 146 0.2 1
0.90 30 102810221551 31146 005 -0.11
1.05 30 028022583146 0.6
1.20 30 (0281022158 | 3| 146 0.6 1
1.35 3051028 1022 58| 3| 1.46 0.4 1
1.50 32 {028{022163| 3] 146 0.2 0.1
1.65 325{0281{022{67| 3| 1.46 0.2 0.1
1.80 32 10281022173 ]| 3| 146 0.2 0.1
1.95 305(028(022{ 8 | 3| 146 0 0.1
210 28 ;02810221883 ] 146 0 0.1
2.25 30 1034|022} 9 |3 1146 O 0.1
2.40 30 10341022953 1|146 0 0.1
255 30 103402295 3| 146 0 0.1

| BiN Pimin | Giower | Hiower | upper | Btower | innerof fset | outerof fset |
0.15 1. 1 23 23 2 0
0.30 0.1 -0.07 12 17 1.5 0
0.45 0.04 -0.13 13 16 1.6 0
0.60 0.14 0 14 19 1.2 0
0.75 0.35 1 15 20 1.2 0
0.90 0.6 2 15 19 1 0

1.05 0.6 2 14 18 .8 0

1.20 0.6 1 13.5 17 .8 0

1.35 04 1 13 16 .8 0

1.50 0.2 0.1 125 15 .8 0

1.65 0.2 0.1 12 14 .8 0

1.80 0.2 0.1 12 12 4] (4]

1.95 1.2 1 13 13 -0.5 0

2.10 0 1 15 14 -0.5 0
2.25 0 1 15 14 -0.5 0
2.40 4] 1 15 14 -0.5 0
2.55 0 1 15 14 -0.5 0
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Torus Current =—1500 A, Sector 3

[ Bin pymin l A i B l C D [ FE l F [ Gupper | Hupper l
0.15 44 10771017 |12 | 3 | 1.46 1 1
0.30 39 10551028 5 31| 146 0 0
0.45 39 |044 | 022} 5 3| 1.46 1 1
0.60 34 10361022 5 31146 0.15 0.1
0.75 31 03 022553} 146 0 0.1
0.90 30 0281022553} 146 1 1
1.05 30510281022} 55]31}146 0 0.1
1.20 31 028 10221573146 0 1
1.35 3151028102257 3| 146 0 1
1.50 32 0281022} 6 | 31| 146 0 1
1.65 32 1028(022| 6 {31146 0. 1
1.80 31 102810221633 146 0.5 1
1.95 29 |0281022({66 )| 3| 1.46 05 1
2.10 31 0351022} 7 {3 ]|1.46 0.2 1
225 32 (035022174 3| 146 0 1
2.40 32 04 1022|781 3] 1.46 0 1
2.55 32 04 10221 8 [ 3 ]1.46 0 1

| Bin pmin | Glower | Hiower | Gupper | Glower | innerof fset | outerof fset
0.15 1. 1 23 23 2 0
0.30 05 0.1 12 17 1.8 1
0.45 1.5 1. 12 17.5 1.8 1
0.60 0.15 0.1 12 18 1.4 0
0.75 0 1 13 20 1.2 0
0.90 1 1 13 19 1.2 -1

1.05 1 1 13 18 13 0

1.20 0 1 13.5 17 1 0

1.35 0. -0.10 125 16 0.7 -0.9

1.50 0. 1 12. 15 0.7 -0.9

1.65 0. 1 12 14 0.7 -0.9

1.80 0.5 1 13 13 -1 -0.9

1.95 05 1 14 13 -1.5 -0.9

2.10 0.2 1 155 13 -15 -0.9

2.25 0 1 17 14 -15 -0.9

2.40 0 1 18 15 -1.5 -0.9

2.55 0 1 18 18 -1.5 0.9
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Torus Current =—1500 A, Sector 4

L Binpmin | 4 | B | C | DIE| F | Gupper | Hupper
0.15 44 10771017 |12 | 3 | 1.46 1 1
0.30 40 (0551029 | 4 3| 146 0.5 1
0.45 35 1044 102845 3 | 1.46 0.2 -0.08
0.60 335{035[{023|149| 3| 146 1.7 1
0.75 29 (028 022|51| 3} 146 0.07 -0.11
0.90 31 028 02215131 146 2 1
1.05 31 028102215313} 146 05 1
1.20 32 1028102262 3| 146 04 1
1.35 32 (0281022} 6 3| 1.46 0.25 0
1.50 32 10281022583} 146 0.2 -0.02
1.65 3t 102810225813 146 022 -0.04
1.80 31 028102216313 146 0.22 -0.06
1.95 2751028 1022|6531 146 0.22 -0.06
2.10 29510341022} 7 31146 | 0.22 -0.06
2.25 34 |043 (022|753 | 146 0.22 -0.06
2.40 385 05 {02279 ] 3| 146 0.22 -0.06
2.55 3851 05 (02218313146 0.22 -0.06

I Bin pmin ! Grower | Hiower 9upper Grower | innerof fset t outerof fset l
0.15 1. 1 23 23 2 0
0.30 05 1 10.5 16.5 25 05
0.45 0.08 -0.12 12 19 1.8 0
0.60 0.03 -0.11 11 17 1.8 0.5
0.75 0.07 -0.11 15 20 1.2 0
0.90 0.2 -0.08 15 19 1.2 0
1.05 0.25 -0.06 14 18 1.2 -0.40
1.20 0.1 -0.11 13 16 1.0 04
1.35 0.35 0 13 16 1.0 -0.4
1.50 0.25 -0.02 115 145 1.0 0.6
1.65 0.1 0 12 14 1.0 0.6
1.80 0.1 0 12 15 1.0 -0.6
1.95 01 0. 13 15 1.0 04
210 0.1 4] 14 16 0.6 04
225 0.1 0 15 17 0.6 0.4
2.40 0.1 0 15 17 0.6 0.4
2.55 0.1 0 15 17 0.6 -0.4
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Torus Current =—1500 A, Sector 5

[ Bin p,m-nT A T B C D | F l F Gupper | Hupper I
0.15 44 10771017 | 12 | 3 | 1.46 1 1
0.30 39 0551029} 4 31146 0 0
0.45 34 1038022146 ]| 3| 1.46 4] 0
0.60 32 0.34 | 0.22 5 31146 0 0
0.75 30 (02810221} 5 31146 0 0
0.90 2951028 1022153 | 31146 0.1 -0.1
1.05 2951028102255} 3] 146 0.1 -0.1
1.20 305{028 02257 |3 ]| 146 0.1 -0.1
1.35 31 028 1022157131146} 0.09 -0.1
1.50 31 0281022 6. | 3 {146 0.09 -0.1
1.65 32 102810221 6. | 31146 0.1 -0.09
1.80 29 |028  022165]3 | 1.46 0.18 -0.08
1.95 2751028 | 02269 3 | 146 0.19 -0.06
2.10 2051034 1022176 |3 )|146 | 0.19 -0.06
2.25 34 10431022178} 31| 1.46 0.19 -0.06
2.40 385| 05 [022183] 3] 146 0.19 -0.06
2.55 385 05 (0228713} 146 ] 0.19 -0.06

| BiN pmin | Giower | Hiower | Oupper | Biower | innerof fset | outerof fset |

0.15 1. 1 23 23 2 4]
0.30 0 0 11 18 2.7 1
0.45 0 0 13 19 25 25
0.60 - 4] 0 14 19.5 2.1 0.8
Q.75 ¢} 0 145 19.5 1.8 0.8
0.90 0.05 0.1 15 19 1.5 0

1.05 0.05 -0.1 14 18 1.2 0

1.20 0.15 0.1 13.5 17 1.2 0

1.35 0.15 -0.09 13 16 1.2 0

1.50 0.15 -0.09 125 15 1.2 0

1.65 0.13 -0.09 13 16 1. 0

1.80 0.18 -0.08 15 13 -0.5 0

1.95 0.22 -0.04 18 14 -0.5 0

2.10 0.22 -0.04 20 18 05 0
2.25 0.22 -0.04 20 18 -0.5 0
2.40 0.22 -0.04 20 18 -0.5 0
2.55 0.22 -0.04 20 18 -0.5 0
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Torus Current =—1500 A, Sector 6

(Britmm | A [ B [ C [DE] F | Cuper [Hampwr

0.15 4 10771017 | 12 { 3 | 1.46 1 1
0.30 39510551027 5 | 3| 1.46 0. 0
0.45 36 [0401022| 5 | 3146 0.17 0
0.60 32 1033]022|53(3i 146 0.2 0
0.75 30 (02810221573 ] 146 0. 0
0.90 3151028 1022157 | 3| 146 0 0
1.05 3150281022157 1311.46 03 1
1.20 33 10281022 |6.1| 3] 146 0.2 0.
1.35 33 {028 022|161 ]| 3| 1.46 0.2 -0.06
1.50 33 [|028]022165} 3146 03 -0.06
1.65 33 {0281022|65| 3] 1.46 03 -0.03
1.80 31. |0281022(69| 3146 022 -0.08
1.95 29 102810221731 31146 022 -0.06
2.10 32 1036102217913 |146| 022 -0.06
2.25 36 (0430221833146 022 -0.06
2.40 38 |[047 1022863146 022 -0.06
2.55 38 [047 10228913146 0.22 -0.06
[ BiN Prmin | Giower | Hiower | Qupper | Olower | innerof fset | outerof fset |
0.15 1. 1 23 23 2 1.5
0.30 0. 0 13 20 38 2
0.45 .17 0 13 20 3.4 05
0.60 0.1 0 14 21 2.8 0.2
Q.75 0. 0 14 20 2.4 0.2
0.90 0 0 15 19 2.2 0
1.05 0.3 1 14 18 2.2 19
1.20 0.2 0 13.5 17 2.2 1.9
1.35 0.2 -0.06 13 16 22 1.
1.50 0.2 0 12.5 15 23 0.3
1.65 03 -0.03 12 14 1.2 0.6
1.80 0.20 -0.08 14 13 0.4 0.6
1.95 0.22 -0.07 18 14 0. 0.6
2.10 0.22 -0.04 19 15 0 0.6
225 0.22 -0.04 19 15 0 0.6
2.40 0.22 -0.04 19 15 0 0.6
2.55 0.22 -0.04 19 15 0 0.6
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Torus Current =—2250 A, Sector 1, p < 2.55 GeV

[Binpnin | A | B | C | DIE] F | Gupper | Hupper |
0.15 24 102810301 5 |3 ]146 0 0
0.30 24 102810301 5 |3 ]146 0 0
0.45 35 0551030 5 |3 1146 0 0
0.60 3651044 1022|5513 1146 0 0
0.75 31 0330221551 3| 146 0.5 0.1
0.90 28 [0281022:55]| 3| 146 0.5 0.5
1.05 290 10281022155 ]3 ] 146 0.4 1
1.20 29 02810221581} 31} 146 0.03 -0.135
1.35 29 [0281022]| 6 31146 0.08 -0.13
1.50 31 0281022 6 31146} 0.11 -0.12
1.65 31 0281022 6 31146 033 -0.02
1.80 31 102810221633 {146 022 -0.04
1.95 31 102810226313 (146 022 -0.06
2.10 31 [0281022(65]3 146 022 -0.06
2.25 31 0281022653146 022 -0.06
2.40 31 102810221673 |146] 022 -0.06

BiN pin | Giower | Hiower | Oupper | Oiower | innerof fset | outerof fset |
0.15 1.0 0.1 25 25 1.8 1
0.30 1.0 0.1 24 17 1.8 1
0.45 1.0 0.1 13 18 1.8 1
0.60 0.7 0. 13 19 25 25
0.75 13 0.5 14 19 1.2 0.8
0.90 0.6 0.5 15 20 1.2 038

1.05 0.4 1 15 19 1.2 0

1.20 0.025 | -0.135 14 18 1.2 0

1.35 0.07 -0.13 13.5 17 1.2 0

1.50 0.15 -0.09 13 16 1.2 0

1.65 0.30 -0.01 12.5 15 13 0

1.80 0.22 -0.04 12 14 1.2 0]

1.95 0.22 -0.04 12 13 1.2 0
2.10 0.22 -0.04 11.5 13 1.2 0
2.25 0.22 -0.04 11 13 1.2 0
2.40 0.22 -0.04 115 13 1.2 4]
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Torus Current =—2250 A, Sector 1, p > 2.55 GeV

‘ Bin p.,.in ] A [ B C DI{\F F l Gupper | Hupper
2.55 31 0281022168} 3146 ] 0.22 -0.06
270 205102810221 69] 3146 022 -0.06
2.85 28 10281022 7 |3 (146 0.22 -0.04
3.00 53 06 10221733146 | 0.22 -0.04
3.15 53 106010221731 31146 0.22 -0.04
3.30 53 (0651022773146 0.18 -0.04
3.45 53 |063(022| 8 {3146 0.18 | -0.04
3.60 53 106610221833 ] 146 03 0.1
3.75 53 | 066 10221851 3146 0.3 0.1
3.90 53 {069 (022|883 |146| 025 0.1
4.05 53 1073022} 9 3146 025 0.1
4.20 53 10731022192 3| 1.46 0.25 0.1

{ Bin pin | Giower | Hiower | Oupper | Oiower | inmerof fset | outerof fset
255 0.22 -0.04 12 13 0.8 0
270 0.22 -0.04 13.5 13 -0.5 0
2.85 022 | -004 | 145 13 -05 0
3.00 022 | 004 | 135 13 -0.3 0
3.15 022 | -004 | 135 13 0.3 0
3.30 0.18 -0.04 14 14 -0.6 0
3.45 0.18 -0.04 145 14 -0.6 0
3.60 03 0.1 15 15 -0.6 4]
3.75 0.3 0.1 15 15 -0.6 0
3.90 0.25 0.1 15 15 -0.6 0.1
4.05 0.25 0.1 15 15 -0.6 -0.1
4.20 0.25 0.1 15 15 -0.6 0
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Torus Current =—2250 A, Seclor 2, p < 2.55 GeV

[(BiNpmin [ A | B [ C | D |[E] F [ Gupper | Hupper |

0.15 25 |0281030} 5 |3}1146 ] 0.05 -0.13
0.30 25 |10281030] 5 {31146 ] 005 -0.13
0.45 37 |0551030} 5 {3146 005 -0.13
0.60 38 (0441022553 (146 0.025 | -0.13
0.75 3051033022553 146 0.08 -0.12
0.90 2851028022553 |146 0.2 1
1.05 2850281022553 (146| 06 2
1.20 2951028102255 3 146 0.6 2
1.35 295,028 | 022 58| 31146 0.2 -0.05
1.50 295102802258 | 3| 1.46 0.2 -0.05
1.65 30502802258 3] 1.46 0.2 0.1
1.80 305028022 ,58| 3| 146 0.2 0.1
1.95 305(028;022158| 3 | 146 0.2 0.1
2.10 325028022 6 | 3| 146 0 0.1
2.25 3251028 (022163 | 3] 146 o 0.1
240 3251028102265 3 | 146 0 0.1
! Bin Pmin Glower I Hlower 0upper ! elower l innerof f set O‘U.teTOf f set l
0.15 0.04 -0.13 25 25 0.5 0
0.30 0.04 -0.13 24 24 0.5 0
0.45 0.04 -0.13 12 17 15 0
0.60 0.04 -0.13 13 16 1.6 o
0.75 0.14 -0.11 14 19 1.2 08
0.90 0.35 0 15 20 1.2 08
1.05 0.6 2 15 19 1.2 Y
1.20 06 2 14 18 05 0
1.35 0.2 -0.05 13.5 17 0.8 0
1.50 0.2 -0.05 13 16 1.1 0.6
1.65 0.2 0.1 125 15 1.1 0
1.80 0.2 0.1 12 14 1.1 0
1.95 0.2 0.1 12 13 1.1 0
2.10 1.2 1 115 13 1.1 0
225 0 1 11 13 1.1 0
2.40 0 1 11 13 11 0
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Torus Current =—2250 A, Sector 2, p > 2.55 GeV

(BiNpmin [ A]| B | C | D [E| F | Gupper | Hupper |
2.55 33028022} 7 31146 0 0.1
2.70 3110281022} 73 |3 | 146 0 0.1
2.85 31 /028022 78 |3 |1.46 ) 0.005 | -0.152
3.00 2910281 022| 82 |3 146 | 0.005 | -0.152
3.15 271028022 86 |3 1146 | 0005 | -0.16
3.30 2610281022 9 3 |146 0 -0.16
3.45 451053022 | 9 3 ]1.46 0 -0.16
3.60 451056 {022 | 93 {3 146 0005 | -0.16
3.75 451056022 97 |3 |146| 0005 | -0.16
3.90 451056 | 022 { 101 | 3 | 1.46 0 -0.16
4.05 451058 {022 ] 101 |3 | 146 0 -0.16
4.20 4510581022 |10.1 | 3 | 1.46 0 -0.16

| BiN pmin | Glower | Hiower | Bupper | Giower | innerof fset | outerof fset
2.55 0 1 11 12 0.6 0
2.70 0 1 13 12.5 0 0
2.85 0.005 | -0.152 14 12.5 -0.5 0
3.00 0.005 | -0.152 | 13.5 13 -0.5 0
3.15 0.005 | -0.16 13.5 13 -0.5 0
3.30 0 -0.16 14 14 -0.5 0
3.45 0 -0.16 14.5 14 -0.5 0
3.60 0.005 -0.16 15 15 -0.5 0
3.75 0.005 -0.16 15 15 -0.5 0
3.90 0 -0.16 15 15 -0.5 0
4.05 0 -0.16 15 15 -0.5 0
4.20 0 -0.16 15 15 -0.5 0




Torus Current =—2250 A, Sector 3, p < 2.55 GeV

Bin prin | A4 B C D |E| F | Gupper | Hupper |
.15 24 10281030]| 5 3] 146 (o] (0]
0.30 24 10281030 5 | 3| 146 c 0
0.45 37 {0551030; 5 3| 146 0 0
0.60 38 (0441022 5 31146 1 1
0.75 34 1036022553146 0.65 0.1
0.90 29 10281022 |55| 3] 146 0 0.1
1.05 28 102810225513 | 146 0 0.1
1.20 29 |[0281022|55}{3] 146 0 0.1
1.35 2951028102255 3] 146 1 1
1.50 2950280221553 1| 146 1 1
1.65 2951028022551 31| 146 1 1
1.80 3051028022573 ] 146 03 1
1.95 30510281022 6 31| 146 0 1
2.10 32 (0281022 6 | 3| 146 0 1
2.25 33 [|028 02263 3| 1.46 0 1
240 335|028 1022163 3| 146 0 1
| BiN pmin | Glower | Hiower | Oupper | Biower | innerof fset | outerof fset |
0.15 1.0 0.1 25 25 1.8 0
0.30 1.0 0.1 24 24 1.8 0
0.45 1.0 01 12 17 1.8 0
0.60 1 1. 115 17 1.8 1
Q.75 0.65 0.1 11 17 1.8 4]
0.90 2 1 15 20 1.2 0.8
1.05 1.5 1 15 19 1.2 0.8
1.20 1.5 1 14 18 1.3 0.8
1.35 0.08 -0.12 13.5 17 13 0
1.50 0.06 -0.10 13 16 1.3 -0.9
1.65 0.3 1 12.5 15 1.3 09
1.80 0.3 1 12 14 13 0.9
1.95 o 1 12 13 1 09
2.10 0 1 115 13 1 09
2.25 0 1 11 13 1 -0.9
2.40 0 1 11 13 1 0.9
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Torus Current =—2250 A, Sector 3, p > 2.55 GeV

I Bin p,.in [ A B I C T D | FE T F ] G upper L Hypper I
2.55 3251028102263} 3| 146 0 1
270 3151028102263 | 3] 146 0 1
2.85 30 10281022167 3| 146 0 1
3.00 28 10281022167} 31146 0 1
3.15 26 102810221 7 |31} 146 4] 1
3.30 40 1048102274 | 3 | 146 0 1
3.45 37 104810221773 }1.46 0 1
3.60 37 10481022 | 8 { 31146 0 1
3.75 42 10551022 8 | 3] 146 0 1
3.90 48 106210221853 | 1.46 .0 1
4.05 48 1062 10228513 1.46 0 1
420 48 10621022185 | 3| 146 0 1

[ BiN prmin | Giower | Hiower | Qupper | Olower | innerof fset | outerof fset
2.55 0 1 11 12 0.5 -0.9
2.70 0 1 13 125 -0.5 0.9
2.85 0 1 14 125 -13 -0.9
3.00 4] 1 13.5 13 -1.6 09
3.15 G 1 13.5 13 -1.6 -0.9
3.30 o 1 14 14 -1.2 -0.9
3.45 0 1 14.5 14 -1.2 -0.9
3.60 0 1 15 15 -1.2 -0.9
3.75 0 1 15 15 -1.2 0.9
3.90 4] 1 15 15 -1.2 09
4.05 0 1 15 15 -1.2 -0.9
4.20 0 1 15 15 -1.2 -0.9
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Torus Current =—2250 A, Sector 4, p < 2.55 GeV

l Bin pin ] A ] B | C D{E|] F l Gupper | Hupper ]
0.15 2410281030} 5 | 31146 0 0
0.30 24 10281030} 5 {3146 0 0
0.45 30/040(030| 5 | 3146 0 0
0.60 33044 (030|533 1}146 0.2 -0.08
0.75 321 035(02253|31|1.46 0.5 0
0.90 2910281022 533|146 0.6 0.5
1.05 2910281022155 ] 31| 146 0.4 1
1.20 2910281022551 31146} 003 -0.13
1.35 2010280225513 }]146] 0.12 -0.11
1.50 3010281022 |55 3} 1.46 0.3 0
1.65 31028022} 6 | 3146 033 -0.02
1.80 3110280221633 146 0.22 -0.04
1.95 310281022 {63|3|146| 022 -0.06
210 3110281022633 (146 ] 022 -0.06
2.25 310281022163 3| 146 | 0.22 -0.06
2.40 311028{022{63|3 (146 ] 022 -0.06

[ Bin prin | Giower | Hiower ] Oupper | Blower | tnnerof fset | outerof fset
15 1.0 0.1 25 25 2.5 1
0.30 1.0 0.1 24 24 2.5 1
0.45 1.0 0.1 12.5 24 25 1
0.60 0.08 -0.12 12 18 1.8 0
0.75 05 0 13 21 1.8 0
0.90 06 04 15 20 1.2 0
1.05 04 1 15 19 1.2 0
1.20 0.025 | -0.13 14 18 1.2 0
1.35 0.12 -0.11 135 17 1.0 -0.4
1.50 0.45 4] 13 16 1.0 -0.4
1.65 0.33 -0.02 12.5 15 1.0 0.6
1.80 0.22 -0.04 12 14 1.0 -0.6
1.95 0.22 -0.04 12 13 1.0 -0.6
2.10 0.22 -0.04 11.5 13 1.0 -0.6
2.25 0.22 -0.04 11 13 0.6 -0.6
2.40 0.22 -0.04 11 13 0.6 -0.6
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Torus Current =—2250 A, Sector 4, p > 2.55 GeV

[Binpmin | A ] B | C | DIE] F [ Gugper | Hupper |
2.55 31 02810221633} t1t46 | 0.22 -0.06
2.70 2951028022633 |146| 022 -0.06
2.85 28 10281022633 }|146| 022 -0.06
3.00 57 06 1022 7 |3 1146 | 022 -0.04
3.15 57 106010221 7 13146 022 -0.04
3.30 56 |067 1022|1741 31146 0.18 -0.04
3.45 54 10631022178 |3 (146 0.18 -0.04
3.60 53 1066 1022|783 | 146 03 0.1
3.75 53 | 0661022 8. | 3 | 146 03 0.1
3.90 53 10691022833 1}1146| 025 0.1
4.05 53 107310221853 }146| 025 0.1
4.20 53 10731022187 (3146 | 025 0.1

{ Bin prin | Glrower | Hiower | Bupper | Gtower | innerof fset | outerof fset |
255 0.22 1 11 12 0.6 0.6
2.70 0.22 1 13 12.5 0.3 -0.6
2.85 0.22 1 14 12.5 0.3 -0.6
3.00 0.22 -0.04 13.5 13 -0.3 0.5
3.15 0.22 -0.04 13.5 13 -03 0.5
3.30 0.18 -0.04 14 14 -0.6 0.5
3.45 0.18 -0.04 145 14 -0.6 0.5
3.60 0.3 0.1 15 15 -0.6 05
3.75 0.3 0.1 15 15 -0.6 0.5
3.90 0.25 0.1 15 15 -0.6 05
4.05 0.25 0.1 15 15 -0.6 05
4.20 0.25 0.1 15 15 -0.6 0.5
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Torus Current =—2250 A, Sector 5, p < 2.55 GeV

[BiNpnmin | A | B | C | D]IE|] F | Guper | Hupper
0.15 24 102810301 5 | 3] 146 0 0
0.30 24 10281030} 5 | 31| 146 0 0
0.45 25 102810301 5 |3 |1.46 0 0
0.60 34 {1038{022| 5 |3 1|1.46 0 0
0.75 30 10341022 5 | 3| 146 4] 0
0.90 28510281022} 5 3| 146 4] 0
1.05 28 102810221533 ]| 1.46 0 0
1.20 29 10281022155 3] 1.46 0.02 -0.1
1.35 20 1028102216713 |146] 025 -0.06
1.50 31 02810221571 31146} 009 -0.1
1.65 31 028 022157 3| 146 0.2 0
1.80 31 02810221593 1146 | 0.03 -0.13
1.95 31 1028102216013 }146} 022 -0.08
2.10 31 (02810221623 |146 022 -0.06
2.25 31 028102216313 |146| 0.22 -0.06
2.40 31 02810221633 ]|146 | 022 -0.06

BiN pmin | Giower | Hiower | Oupper | Giower | innerof fset | outerof fset

0.15 4] 0 25 25 1.8 1

0.30 4] 0 24 24 18 1

0.45 0 0 14 24 1.2 1

0.60 0 0 12 22 2 2.5

0.75 4] 0 15 21 1.8 0.8

0.90 0 ) 15 20 14 08

1.05 4] 0 15 19 1.2 4]

1.20 0.015 -0.1 14 18 1.2 0

1.35 0.15 0 13.5 17 1.2 0

150 | 0.08 -0.09 13 16 1.2 0

1.65 0.2 0 125 15 1.3 0

1.80 0.03 -0.13 12 14 1.2 0

1.95 0.20 -0.08 12 13 1.2 4]

2.10 0.22 -0.04 115 13 1.2 0

2.25 0.22 -0.04 11 13 1.2 0

2.40 0.1 -0.12 11 13 1 0
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Torus Current =—2250 A, Sector 5, p > 2.55 GeV

| Bin prin A | B | C ] D T E l F [ Gupper | Hupper ]
2.55 31 102810221633 ]|146] 022 -0.06
2.70 2050281022633 ]146 | 0.22 -0.06
285 28 102810221683 (146 | 022 -0.04
3.00 55 06 [022]73] 3146 | 022 -0.04
3.15 54 10601022173} 3146 022 -0.04
3.30 56 10671022177 |3 }146 | 0.18 -0.04
3.45 52510631022 8 | 3146 | 0.18 -0.04
3.60 53 {066 022|183 |3 ] 146 03 0.1
3.75 52 [0661022 88! 3| 146 0.3 0.1
3.90 53 10691022 9 {31146 0.25 0.1
4.05 53 1073|0221 9 |3 |146 | 025 0.1
4.20 53 i 0731022 9 |3 |146 025 01
[ Bin prin | Glower | fIgwer Oupper | lower | tnnerof fset | outerof fset
2.55 0.36 -0.04 11 12 0.5 0
2.70 0.32 -0.04 13 125 -05 4]
2.85 0.22 -0.04 14 125 -0.8 0
3.00 0.22 -0.04 13.5 13 -0.8 o
3.15 0.26 -0.04 13.5 13 -0.3 ]
3.30 0.18 -0.04 14 14 -0.6 0
3.45 0.18 -0.04 145 14 0.6 0
3.60 0.39 0.1 15 15 -0.6 0
3.75% 0.45 01 15 15 -0.6 0
3.90 0.45 0.1 15 15 -0.6 -0.1
4.05 0.45 0.1 15 15 -06 -0.1
4.20 0.45 0.1 15 15 -0.6 0
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Torus Current =—2250 A, Sector 6, p < 2.55 GeV

| Binpnin | A [ B [ C | D l E| F | Gugper [ Hypper ]
0.15 24 10281030 5 |31} 146 0 0
0.30 24 [028|030| 5 | 3] 146 0 0
0.45 31 |042:030| 5 | 3] 146 0.2 0
0.60 3651040 (0221 5 | 3 | 1.46 0.2 0
0.75 32 103310221533 ] 146 0.2 0
0.90 30 {0281022|53| 3] 146 0.2 0
1.05 30 102810221533 146 0 0
1.20 29 1028102257 ]3] 146 0 -0.1
1.35 32 102810225731 146 0 -0.06
1.50 32 (02810225713 1}1146 | 0.04 -0.13
1.65 32 102810225713 ]146 ] 0.15 0
1.80 32 1028022591 31146 002 -0.13
1.95 32 {028|1022{60]3|146| 0.22 -0.08
2.10 33 1028102262 31461 022 -0.06
2.25 34 102810221633 |146| 022 -0.06
2.40 34 [0281022{63]3]146] 0.26 -0.06
Bin prmin | Giower | Hiower | Oupper | Oiower | innerof fset | outerof fset |
0.15 0 0 25 25 28 2
0.30 0 0 24 24 28 2
0.45 0.2 0 13 24 28 2
0.60 0.2 0 14 18 2 0
0.75 0.1 0 14 21 2.8 0
0.90 0.1 0 14 20 24 0
1.05 0 0 15 19 2.2 1
1.20 0 -0.1 14 18 2.2 1
1.35 0 0 13.5 17 22 1
1.50 0.04 -0.11 13 16 2.2 1.5
1.65 0.15 0 12.5 15 23 1
1.80 0.02 -0.13 12 14 22 1
1.95 0.20 -0.08 12 13 2.2 1
2.10 0.22 -0.07 11.5 13 22 1
2.25 0.22 -0.04 11 13 22 0
240 0.1 -0.12 11 13 2 0
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Torus Current =—2250 A, Sector 6, p > 2.55 GeV

[BiNpmin [A| B | C [ D [E]| F | Gupper | Hupper |

2.55 3410281022163} 3 146 022 -0.06
2.70 321028[(022(673]146 | 0.22 -0.06
2.85 2010281022 7 31146 | 022 -0.04
3.00 58] 06 [022173}13}]146 | 022 -0.04
3.15 5610600221771 31146] 0.22 -0.04
3.30 601067 {022} 8 |3 |146] 0.18 -0.04
3.45 5510631022182} 3 1146 0.18 -0.04
3.60 551066 |022{85| 3] 146 0.3 0.1
3.75 5310661022883 ]1.46 03 0.1
3.90 541069022 9 [ 3146 025 0.1
4.05 5310731022 9 31146 0.25 0.1
420 53107310221 9 31146 0.25 0.1
{ Bin prmin Giower | Hiower Oupper | Blower | innerof fset | outerof fset
255 0.36 -0.04 11 12 5 Q
270 0.32 -0.04 13 12.5 0.5 1
2.85 032 | -0.04 14 125 -0.3 1
3.00 036 | -0.04 | 135 13 0.2 1
3.15 036 | -0.04 | 135 13 0.3 1
3.30 0.36 -0.04 14 14 0 1
3.45 036 | -004 | 145 14 0 1
3.60 0.45 0.1 15 15 0 1
3.75 0.45 0.1 15 15 0 1
3.90 0.45 0.1 15 15 0 09
4.05 0.45 0.1 15 15 0 0.9
420 0.45 0.1 15 15 o 0.9
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B4 A, +1nA; Results
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Table B.6: Values of A; + nA, for E=1.6 GeV data, with statistical and systematic errors. Average
kinematic values in each bin are also shown.

Q2 bin | Wbin | Ay + 142 | 0stat Tsys Tavg Qi% Waug
3 19 -0.346 0223 | 006 | 0.14 ! 0.06 | 1.13
3 20 -0.286 0.051 | 0.021 | 0.11 | 0.06 | 1.18
3 21 -0.333 0.027 1 0.018 1 0.09 | 0.06 | 1.23
3 22 -0.145 0.031 10017 1 007 | 0.06 | 1.29
3 23 -0.016 0.035 | 0007 | 006 | 0.06 | 1.35
3 24 -0.091 0.03 10008 }005] 006 141
3 25 -0.089 0.023 | 0.006 | 0.04 | 0.06 | 1.47
3 26 -0.058 {0.0231{0005|0.04 {006 1.53

Qz bin | W bin Savg | D avg | Tlavg | €avg | Yavg E‘,L‘:Lq aavg
3 19 4041016 | 09 |[098 1106 144 | 09
3 20 404 | 021 {069 | 097 1082 | 1.38 | 0.69
3 21 4041 025 1056 1096|068 | 1.31 | 0.56
3 22 404 03 (10451094 1055124 | 045
3 23 4051 037 {036 {092 046 | 1.15 | 0.36
3 24 4051043 10291089039 | 1.06  0.29
3 25 4051049 {024 | 085034 | 097 | 0.24
3 26 4051055 02 [{081]029 089 0.2




QZ bin | Wbin | 4; + nA2 Ostat Osys ZTauvg (qu Wm,g
4 19 -0.228 0.144 | 0063 | 022 | 0.11 | 1.13
4 20 -0.334 0.033 | 0.023 | 0.18 | 0.11 | 1.18
4 21 -0.346 0019 | 0.019 | 0.15} 0.11 | 1.23
4 22 -0.148 1002310013 1013|011 | 129
4 23 0.019 0.027 { 0007 | 0.11 | 011 | 1.35
4 24 0.033 0.023 ;| 0.008 | 0.09 | 0.11 | 1.41
4 25 0.024 0.017 | 0.007 | 008 | 012 | 1.47
4 26 0.015 0.037 | 0.007 | 0.08 | 0.12 15

Q°bin | W bin Savg | Davg | Navg | €avg | Yavg E(_’;_ug Oovg
4 19 405} 0.19 1 096 | 1.25 | 1.42 1
4 20 405|023 ] 08 | 095 1 136 | 0.8
4 21 406 | 027 ({066 | 094 | 084 | 1.3 | 0.66
4 22 4051033 |054 10921071} 1.22 | 0.54
4 23 4051038 1044 09 | 06 | 1.13 | 044
4 24 405 | 044 | 036 | 086 | 0.51 | 1.03 | 0.36
4 25 404 05 03 10821045094 | 03
4 26 4041054 1027 10791042 ] 088 | 0.27
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Qz bin | W bin A]_ + T}Ag G stat Tsys Favg zvq Wavgg
5 19 -0.319 10.084 10058 | 0.38 | 0.24 | 1.13
5 20 -0364 [0.018 | 0.023 | 031 | 0.24 | 1.18
5 21 -0.353 001 [00191027 | 024 | 1.23
5 22 -0.111 0012 [ 0.011 | 023 | 0.24 | 1.29
5 23 0.071 0014 001 | 0.2 | 0.24 | 1.35
5 24 0.146 0013} 001 {017 | 0.23 | 1.41
5 25 0.195 0.01 | 0011 {015 | 0.23 | 1.47
5 26 0.21 0.008 { 0.012 | 0.14 | 0.23 | 1.53
5 27 0.156 |0.009 | 0.013 | 0.12 | 0.23 | 1.59
5 28 0.048 | 0.008 | 0.014 | 0.11 | 0.23 | 1.65
5 29 0.026 0.013 | 0.016 | 0.1 | 0.22 | 1.69

Q2 bin | W bin Savg D, avg | Tlavg €avg Yavg E;vq 0a’ug
5 19 3951026 11031092145 ] 1.3 | 1.03
5 20 1395|031 }1085(091]|121]123]085
5 21 394 | 0350731089 |1.04 | 117 | 0.73
5 2 1394} 04 061087083 1.09 | 0.61
5 23 (3931045 | 05 {083 077 1 0.5
5 24 1393051042079 ]067 | 091|042
5 25 1393056034074 }059]| 081|034
5 26 3831062029068 053]| 072029
5 27 393|069 | 023061048} 0.62 | 0.23
5 28 3920751018 10521043 | 052 | 0.18
5 29 392 08 015]045}| 0.4 | 0.45 | 0.15
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Q2 bin | Wbin | A; + 742 | 0sa Osys Zavg Q?guq Wavg
6 19 -0.184 0.079 | 0.056 | 053 | 045 | 1.13
6 20 -0.359 0.016 | 0.023 | 046 | 045 | 1.18
6 21 -0.311 0009 10018041} 045 | 1.23
6 22 -0.085 0012 | 001 {036 | 045 | 1.29
6 23 0.203 0.014 | 0012 1032 | 044 | 135
6 24 0.255 0.014 | 0.011 | 028 | 0.44 | 1.41
6 25 0.378 0012 | 0013 | 024 | 0.41 | 1.47
6 26 0.397 0.01 0.014 | 0.22 | 0.41 1.53
6 27 0.277 0.015 | 0.015 1 0.18 ; 0.37 | 1.59
6 28 0.173 0.026 | 00151016 | 035 | 164

QZ bin | W bin Savg Da.vg Navg | €avg | Yavg E(qu oavg
6 19 392,038 09 1084|149 117 | 09
6 20 3921043 (0781082} 13 | 1.11 1 0.78
6 21 3821047 | 0681 08 | 1.16 | 1.04 | 0.68
6 22 392|051 0581077102 097 { 0.58
6 23 3920551049072 09 | 0.88 | 0.49
6 24 392 06 |041 {067 08 | 0.79 | 0.41
6 25 3911064 {034 (063 ] 07 | 0.71 | 0.34
3] 26 391} 07 10281056064 | 062 | 0.28
6 27 39 107410231 05 [ 05710541023
6 28 3891077 1019 (044 | 052 ) 046 | 0.19
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Q2 bin | Whbin | A; + 7]A2 Ostat Osys Zavg zt_)g Wavg
7 19 0.188 0.161 | 0.057 | 066 | 0.74 | 1.13
7 20 -0.203 0037 10023 1059073 | 1.18
7 21 -0.233 [0.0250016 | 053} 07 | 123
7 22 -0.032 0032} 001 047 | 0.7 1.29
7 23 0.339 0054 001 043 | 069 | 1.34

Qz bin | W bin Savg | Davg | Mavg | €avg | Yavg E{;yq Gavg
7 19 39 {053 (071107211431} 1.01 | 0.71
7 20 39 | 057 {063 0.7 {129 ] 095 ] 0.63
7 21 389 06 05710681118 | 089 | 0.57
7 22 389,064 [ 049063 ]1.07 | 082 {049
7 23 389|067 104210591097 | 0.75 | 0.42
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Table B.7: Values of A1 + nA, for E=2.5 GeV data, with statistical and systematic errors. Average
kinematic values in each bin are also shown.

Q2 bin | W bin Al + ’:"]Az Tstat T sys Zavg i,vq Wavg

19 -0.195 10471 10064 1027 | 0.14 | 1.13
20 -0.389 | 0.098 | 0027 | 021 ] 0.14 | 1.18
21 -0.277 10047 10023 | 018 0.14 | 1.23
22 -0.162 005 {0017 ;015 | 0.14 | 1.29

23 -0.036 |0.052]0013]|0.13 | 0.14 | 1.35
24 0.012 0.042 | 0.008 | 0.11 | 0.13 | 1.41
25 0.042 0.031 | 0.007 | 0.09 | 0.13 | 1.47
26 0.068 0.026 | 0.007 | 0.08 | 0.13 | 1.53
27 0.055 0.027 | 0.005 | 0.07 | 0.13 | 1.59
28 -0.046 | 0024 | 0.004 | 0.07 | 0.13 | 1.65
29 -0045 | 0.022 {0005 006 | 0.13 | 1.71
30 0.033 0.024 10007 | 006 | 0.13 | 1.77
31 -0.036 | 0024 | 0006 | 005 | 0.13 | 1.83
32 -0.035 [0028 [ 0007 | 0.05| 0.13 | 1.88

IR RS YNSRI NN N -8




Q2 bin | W bin Saug Davg Navg | €avg | Yavg E;,vq 6009
4 19 568 1 013 | 1.13 10981133 | 227 | 1.13
4 20 5681 0.15 1091 1098 | 1.07 | 221 | 0.91
4 21 568018 | 077 1097 | 09 | 215 | 0.77
4 22 568|021 106410971076 | 207 | 064
4 23 568 | 024 | 0531096064 ] 1.98 | 0.53
4 24 568 | 028 1045109410551 189 | 045
4 25 568 (031 | 038093048 | 1.8 | 0.38
4 26 5680351033091 1043 ] 1.71 | 033
4 27 568 | 04 [0291089 038 161 0.29
4 28 568|044 [025108561034 | 15 | 0.25
4 29 568 05 | 021083031 ] 14 | 0.21
4 30 568 (055 {019]1079 (029|129} 0.19
4 31 568| 06 10161074 1026 | 1.17 | 0.16
4 32 568|065 014 07 1024 | 1.07 | 0.14
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Q2 bin | Whin | 4; + NAs | Ogat Osys LTavg ¢2yvq Wavg
5 19 -0.412 0192 | 0066 | 037 | 0.24 | 1.13
5 20 -0.426 004 {0027 | 031 | 024 | 118
5 21 -0.385 0.022 {10022 | 027 |1 024 | 1.23
5 22 -0.109 0.026 | 0014 {023 024 | 1.29
5 23 0.123 003 (0012 02 | 024 | 1.35
5 24 0.136 0027} 001 ] 017 ; 023} 1.4
5 25 0.201 0.02 001 {015 | 0.23 | 147
5 26 0.246 0016 | 001 {014 | 023 | 1.53
5 27 0.152 0.017 {0008 { 0.12 | 0.23 { 1.59
5 28 0.077 00151 0006 | 0.11 | 0.24 | 1.65
5 29 0.07 0014 1 0007 | 0.1 | 0.24 | 1.71
5 30 0.094 0.014 | 0.008 | 0.09 | 024 | 1.77
5 31 0.058 0014 10007 {003 | 024 | 1.83
5 32 0.012 0.013 [ 0.007 | 008 | 025 | 1.89
5 33 0.024 0.013 | 0.006 | 0.08 | 0.25 | 195
5 34 0.072 0.014 {0007 | 008 | 0.26 | 2.01
5 35 0.072 0023 | 0008 | 007 | 0.27 | 207
5 36 -0.046 0.075 |1 0.009 | 0.06 | 0.24 | 2.11
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Q2 bin | W bin Saug D avg | Tavg | €avg | Yavg E‘-',"‘L? gavg
5 19 562|016 | 1.17 | 097 1145 | 219 | 117
5 20 5611019 1097 1096 | 121 | 212 | 0.97
5 21 561021 {0841096]104 206 | 0.84
5 22 56 | 024 {071 1095|089 198 | 0.71
5 23 5581027 | 06 |094}077 188 | 0.6
5 24 5591031 0511092067 | 179 | 0.51
5 25 558034 1044 | 09 [ 059 ] 163 | 044
5 26 557038 |039/088 053} 1.6 | 0.39
5 27 556 042 | 034 085048 | 149 { 0.34
5 28 5551046 | 029 082|043 ] 138 | 0.29
5 29 5541051 0251078 04 | 1.27 | 0.25
5 30 5521057 ]0221073(036 ] 1.15 | 0.22
5 31 5491 063 [ 018067 | 034 | 1.01 | 0.18
5 32 544 1 069 [ 0151 06 032 | 087 | 0.15
5 33 539076 {012 05 | 03 | 0.71 | 012
5 34 537({082{ 01 042 {028} 058 | 0.1
5 35 5551084 | 003038027053 009
5 36 568 | 085 {0.08 038|024 | 054 |0.08
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Q2 bin W bin Al + 7714-2 L Ostat Tsys Tavg Q?}vq Wa’ug
6 19 -0.117 0.146 | 0.06 | 054 | 047 | 1.13
6 20 -0.3 0.03 10.024 | 047 | 046 | 1.18
6 21 0327 | 0017} 002 | 042} 046 | 1.23
6 22 -0.099 0.02 | 0.011 1037 | 047 | 1.29
6 23 0.265 0.024 | 0.012 | 033 | 047 | 1.35
6 24 0.323 0.022 | 0.014 | 0.29 | 0.47 | 1.41
6 25 0.433 0.017 | 0.017 | 0.26 | 0.47 | 1.47
6 26 0.432 0.014 | 0017 | 024 | 047 | 153
6 27 0.346 0.015 100131022 | 047 | 1.59
6 28 0.234 0.013 | 0.01 02 | 046 | 1.65
6 29 0.257 0.011 | 0.011 | 018 | 047 | 1.71
6 30 0.24 0.011 | 0.011 | 017 | 046 | 1.77
6 31 0.151 0.011 | 0.008 | 0.16 | 0.46 | 1.83
6 32 0.091 0.011 [ 0.008 | 0.14 ; 045 | 1.89
6 33 0.099 0.011 | 0.007 { 0.12 | 042 | 1.95
6 34 0.1 0.017 | 0.007 | 0.11 | 0.38 2
6 35 0.087 003 {10008 009|035 | 206
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Q2 bin | W bin Saug Davg Tavg €avg | Yavg E:“_,g 6«1)9
6 19 5371024 | 1.07 |1 093 | 149 | 1.93 | 1.07
6 20 536 027 {094 | 092 1.3 | 1.87 | 094
6 21 537 03 (083091116} 1.81 | 0.83
6 22 537|033 073} 09 | 102|173 | 0.73
6 23 537|036 | 0631088 09 | 1.64 | 0.63
6 24 536 | 039 | 0551086 |081 155 | 055
6 25 535|042 | 048 1083 | 072 | 1.45 | 048
6 26 535|046 | 042} 08 | 066 1.35 | 042
6 27 5341 05 |0361076} 06 | 1.25 | 0.36
6 28 533} 053 10311072055 1.14 | 0.31
6 29 533058 | 0271067051 | 103|027
6 30 5331064 {0231061{047 092|023
6 31 533|069 | 0.19 1 055043 | 0.81 | 0.19
6 32 5321074016048 04 | 069 | 0.16
6 33 533 079 | 013|041 | 036 | 059 | 0.13
6 34 5351083 01 |037033]052; 0.1
6 35 5621083 | 01 1038} 03 {055} 0.1
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Q2 bin | W bin Al + UAZ Ostat Osys Tavug qu Wa'vg
7 19 0.136 0.145 | 0.057 | 0.69 09 1.13
7 20 -0.232 0.033 | 0018 | 063 | 09 1.18
7 21 -0.221 0.019 |1 0017 | 058 | 09 1.23
7 22 0063 |[0022 0011053} 09 1.29
7 23 0.366 0.027 | 0.014 | 047 | 0.84 | 1.35
7 24 0.443 0026 { 0.018 1 043 | 084 | 1.41
7 25 0.556 002 [0021 1039 | 084 | 1.47
7 26 0.564 0019 002 [ 035 0.78 | 1.53
7 27 0.476 0.022 | 0.015 {032 | 0.77 | 1.59
7 28 0.378 0022 {0012 {029 | 074 | 1.65
7 29 0.382 0024 | 0013026 | 0.7 1.71
7 30 0.384 0024 1 0012024 | 0.7 1.77
7 31 0.336 006 | 0011023 07 1.8

Q2 bin | W bin Saug Davg Navg | €avg | Yavg Ec’u)g gav_q
7 19 5281039 1085084138 166 | 0.85
7 20 5291042 | 077 083|126 | 16 | 077
7 21 5321044 | 07 (0811161 155 | 0.7
7 22 533047 | 063 1 0.79 | 1.06 | 1.48 | 0.63
7 23 533|047 | 0571078096 | 1.42 | 0.57
7 24 532 | 05 05 (075088133 | 05
7 25 5321054 1044072} 08 | 1.24 | 0.44
7 26 5321 056 | 04 0.7 10741118 | 04
7 27 532 06 1035066 068} 1.08 | 0.35
7 28 5321062 | 03 062|063 1 0.3
7 29 533|065 | 026058 057)] 091026
7 30 5314071 1022051053079 022
7 31 531,074 | 019 1047 | 051 | 0.72 | 0.19
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Table B.8: Values of A; + 4, for E=4.2 GeV data, with statistical and systematic errors. Average

kinematic values in each bin are also shown.

Q2 bin | Whin | A; + ?}Ag Ostat Osys Lavg gﬂg Wm,g
5 24 0077 | 0476 0023021 ] 031 | 1.43
5 25 -0207 0172 [ 0027 1 0.19 | 0.31 | 1.48
5 26 0.256 0.105 10.024 | 0.17 | 0.31 | 1.54
5 27 0.29 0074 | 00191016} 03 | 159
5 28 0.166 0.054 10014 {014 | 03 | 165
5 29 0.155 0039 [ 0016 | 013 | 03 | 1.71
5 30 0.066 0034 | 0011 | 011 { 029 | 1.77
5 31 0.08 0.029 | 0007 01 { 029 | 1.83
5 32 0.012 0.023 { 0.006 | 0.09 | 0.28 | 1.89
5 33 0.054 002 [0006 009|028 | 195
5 34 0.073 0.018 | 0.006 | 0.08 | 0.27 | 2.01
5 35 0.058 0.016 [ 0.005 | 0.07 | 0.26 | 2.07
5 36 0.066 0.014 | 0.005 1007 | 0.26 | 213
5 37 0.077 0.013 | 0.005 | 0.06 | 0.25 | 2.19
5 38 0.048 0.012 | 0.006 | 006 | 0.25 | 2.25
5 39 0.11 0.012 | 0.006 | 005 | 0.25 | 2.31
5 40 0.069 0011 10005005 | 025 | 237




Q2 bin | Wbin | s avg D avg | Tlavg | €avg | Yavg E:wq Bavg
5 24 883 0.18 | 061 | 097 | 0.72 | 3.45 | 0.61
5 25 883| 02 [ 0551096 065|338 055
5 26 883022 {049 | 096 | 0.58 | 3.28 | 0.49
5 27 8831023044 1095{053]3.19 044
5 28 8831025 (039094048 | 3.09 | 0.39
5 29 883028 035093044 ] 298 | 035
5 30 883031 |0311092] 04 | 288 | 0.31
5 31 88310331028 09 (036|276 | 0.28
5 32 883036 {025,089 033} 265 (025
5 33 8831039 0221087031253 1|022
5 34 883043 | 02 10851028241 0.2
5 35 8831047 10181082026 | 228 | 0.18
5 36 883 05 [{0.16] 08 | 024 | 215 | 0.16
5 37 883|054 {014 0.76 | 0.23 ; 2.01 | 0.14
5 38 883058 (0131073021 | 187 |0.13
5 39 8831062 0111069 ] 02 | 1.73 | 0.11
5 40 883 | 066 | 0.1 064 {019 | 158 | 0.1
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QZ bin | Whin | A, + NAz | Ostat Tsys Zavg (2;1)3 Wavg
6 19 -0.308 0293 | 0055 ] 057 | 0.52 | 1.13
6 20 -0.459 0.05510032| 05 | 052 | 1.18
6 21 -0.227 003 10016 | 044} 051 | 1.23
6 22 -0075 {0.035{00141039] 05 | 1.29
6 23 0.245 0.039 | 0.018 | 0.34 | 049 | 1.35
6 24 0.37 0034 10022} 03 | 048 | 1.41
6 25 0.479 0.024 | 0.027 | 027 | 0.48 | 1.47
6 26 0.502 002 {0026 1024 047 | 1.53
3] 27 0.38 0.021 1 0021 | 022 | 047 | 1.59
6 28 0.255 0018 | 0015 02 | 046 | 165
6 29 0.303 0.015 |1 0017 | 0.18 | 046 | 1.71
6 30 0.255 0.016 | 0.012 | 0.17 | 046 | 1.77
6 31 0.125 001510008 | 0.16 | 046 | 1.83
6 32 0.099 0014 { 0008 | 0.14 | 0.46 | 1.89
6 33 0.123 0013 10007 1013 | 045 | 1.95
6 34 0.161 0.013 | 0.007 | 0.12 | 045 | 2.01
6 35 0.138 0012 | 0006 | 012 | 044 | 2.07
6 36 0.13 0.011 | 0006 | 0.11 | 045 | 213
6 37 0.144 0011 {0006 | 0.1 | 045 | 2.19
6 38 0.159 0.011 | 0007 | 0.1 046 | 225
6 39 0.141 0.011 | 0.006 | 0.09 | 0.45 | 231
6 40 0.101 001 {0006 { 009§ 045 | 237
6 41 0.149 001210006 | 009 ] 05 | 243
6 42 0.13 0012 |1 0007 | 009 | 05 | 249
6 43 0.139 0019 | 0008 [ 0.09 | 055 | 254
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Q2 bin | Whin | s avg | Davg | Navg | €avg | Yaug E;‘uq gavg
6 19 883013 1221098 | 148 3.75 | 1.22
6 20 883015 (108|097 13 | 3.68 | 1.08
6 21 883016 | 097 {097 ] 117 | 3.63 | 0.97
6 22 8831017 | 086 {097 | 1.03 | 3.56 | 0.86
6 23 8831019 | 076 | 096 | 0.91 | 3.47 | 0.76
6 24 883 02 (067 {096 081 | 338|067
6 25 8831022 (059095073} 3.29 | 0.59
6 26 8831023 |0541095(0661| 321|054
6 27 8831025 (048094 06 | 3.11 | 0.48
6 28 883 026 | 0430931055 3 0.43
6 29 883029 1033092 05 29 (039
6 30 883032035 09 [047 | 279|035
6 31 8831034 [0321089{043 | 267 | 0.32
6 32 8830371029087 04 | 255|029
6 33 883 04 (026085037244 | 0.26
6 34 8831044 10231082035 231|023
6 35 883|048 |02t ] 08 (032} 218 | 0.21
6 36 883|051 1019077 | 03 | 205 | 0.19
6 37 883 (0551017 10731029 1| 191 | 0.17
6 38 8831059 01510691027 1.76 | 0.15
6 39 883|063 {0.141 065026 | 1.62 | 0.14
6 40 883|067 012 06 {024 | 147 | 0.12
6 41 883107210111 0541024 | 1.29 | 0.11
6 42 883|076 | 009|048 023 1.14 | 0.09
6 43 883 08 (0081042023098 |008
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QZ bin | W bin Ay + 'I'[Az Ostat Osys Taug qu Wavg
7 19 -0.314 0201 {0054 ] 0.7 | 096 | 1.13
7 20 -0.281 0.044 1 0027 | 064 | 093 | 1.18
7 21 -0.195 10026 {0014 | 059 | 093 | 1.23
7 22 0.159 003 |0.015}054 | 083} 1.29
7 23 0419 0034 {0019 | 05 | 094 | 1.35
7 24 0.557 0.031 10023 | 045 | 094 | 1.41
7 25 0.685 0.023 | 0029 | 042 | 0.94 | 147
7 26 0.726 002 | 003 |039] 094 | 1.53
7 27 0.61 0.021 1 0025|036 | 093 | 1.59
7 28 0473 0.018 | 0021 | 034 | 095 | 1.65
7 29 0.528 0016 | 002 [ 031 ] 094 | 1.71
7 30 0.4 0.016 | 0.017 {029 | 0.94 | 1.77
7 31 0.334 0.016 | 0014 | 027 | 0.93 | 1.83
7 32 0.284 001500131026} 094 | 1.89
7 33 0.29 0.014 | 0013 | 024 | 095 | 195
7 34 0.318 0013001210231 095 | 2.01
7 35 0.31 0.012 | 0.012 | 0.22 | 095 | 2.07
7 36 0.32 0011 | 0011 | 0.2 | 095 | 2.13
7 37 0.275 001 {0011} 02 | 096 | 2.19
7 38 0.264 0.01 001 1019 | 096 | 225
7 39 0.261 0.009 | 0.01 | 0.18 | 0.96 | 2.31
7 40 0.252 0.009 | 0.009 | 0.17 | 0.95 | 2.37
7 41 0.183 0.009 | 0.008 | 0.15 | 0.87 | 243
7 42 0.179 0.009 | 0.007 | 0.14 | 0.83 | 249
7 43 0.123 0018 {0008 | 0.12 ] 0.74 | 253
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Q2 bin | W bin Savg Dgyg | Navg | €avg | Yavg E;,vq gavg
7 19 883 0.2 {1.05]1095] 136 | 3.52 | 1.05
7 20 883021 |097 095|125 3.46 | 097
7 21 8831023 09 j095|115) 34 | 09
7 22 883024 | 081]094 | 105 3.32 | 0.81
7 23 883|025 0741093096323 074
7 24 8831027 |067 1092088 | 3.14 | 0.67
7 25 8831028 | 061091 081 | 305|061
7 26 883| 03 [0561 09 [0.75] 296 | 056
7 27 883|032 0511089} 0.7 | 286 | 0.51
7 28 883|034 | 046 1088 {065 274 | 0.46
7 29 8831036 042086 | 06 | 264 | 042
7 30 8831039 1039|084 | 057253039
7 31 883|041 |035]1082]053| 242|035
7 32 883|044 |1032) 08 | 05 | 23 | 032
7 33 8.83 1048 {029 1077047 | 217 | 0.29
7 34 883052 10271074044 | 204 | 0.27
7 35 883056 0241071 1042| 191|024
7 36 883} 06 1022|1068 039|178 | 0.22
7 37 883|064 10191063037 | 164 | 0.19
7 38 883|068 |017 10591035 15 | 017
7 39 883|072 01510541034 | 135 0.15
7 40 8831076 01310491032} 12 |0.13
7 41 8831078 0111045} 03 | 1.09 | 0.11
7 42 883|081 {009} 04 028096 009
7 43 (8831083 [008{038{026| 089|008
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Q2 bin | Whbin | 4; +n42 | 0ga: Tsys Lavg qu Wavg
8 19 -0.717 026510071082} 179 | 1.12
8 20 -0.382 0063 | 0029 | 0.77 | 1.77 | 1.18
8 21 -0.062 004 [ 00191073 ] 179 | 1.23
8 22 0.251 0.038 1 0017 | 069 | 1.82 | 1.29
8 23 0.64 0.037 1 0.026 | 066 | 1.85 | 1.35
8 24 0.668 0034 10026 | 062 | 1.88 | 1.41
8 25 0.813 0026 | 0029 { 058 | 1.84 | 147
8 26 0.896 0022 100331055 186 | 1.53
8 27 0.721 0022 | 0029 | 053 | 1.87 | 1.59
8 28 0.647 001810024} 05 | 1.88 | 1.65
8 29 0.712 0016 | 0024 | 047 | 188 | 1.71
8 30 0.654 0016 | 0022 1045 | 186 | 1.77
8 31 0.506 0.016 | 0.019 | 042 | 1.83 | 1.83
8 32 0.41 001510017 ] 04 | 1.78 | 1.89
8 33 0.455 0.015 10017 | 037 | 1.73 | 195
8 34 0.444 0.015 {0016 { 035 | 1.7 2.01
8 35 0.486 0015 0016 {032 159 | 207
8 36 0.405 001510013 | 03 | 1.67 | 2.13
8 37 0.393 0016 | 0013 |1 028 | 1.53 | 2.19
8 38 0.399 0019 10012025 143 | 225
8 39 0.299 0032 (0012|024} 141 | 229
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Q°bin | Wbin | saug | Davg | Mavg | €avg | Yavg | Erng | bavg
8 19 [883|032| 08 [089}|1.16 | 3.08 | 0.8
8 20 883|033 1075088 1.1 3.02 | 0.75
8 21 8830351071087 104|294 | 0.71
8 22 8831037 1066086097 | 285 | 066
8 23 883 | 04 06 08410911275 06
8 24 883|042 105510831086 264 | 055
8 25 883|042 | 0521082081} 257 | 052
8 26 (883|045 (048] 08 |0.77 | 247 | 0.48
8 27 8.83| 049 [ 044 10.7810.73 | 236 | 0.44
8 28 1883|051 (0411075069} 225 ]| 041
8 29 |883]053(037](0.73|065/| 214 | 0.37
8 30 [ 8831055103 ]071]062|204 035
8 31 8831057 1032/068]053] 194032
8 32 8831059 102901066105 185|029
8 33 883|062 | 027|064 053] 1.76 | 0.27
8 34 8831066 1024061} 05 | 164 | 0.24
8 35 8831068 02210591047 | 157 | 0.22
8 3 [883(072| 02 {055|045|1.45| 0.2
8 37 883|075 )0.18 052|043 | 1.34 | 0.18
8 38 |883|077 (016049 04 | 1.24 | 0.16
8 3 /883|079 0151045039} 1.15]0.15
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Q2 bin | Whbin | A; +nd2 | ostat Osys Zavg 21_;& Wavg
9 19 -0493 (0495 008 | 088 | 288 | 1.13
9 20 -0.512 0.218 | 0.042 | 085 | 288 | 1.18
9 21 0.046 01 0029 1082 | 288 | 1.23
9 22 0.497 0095 | 002 {079 288} 129
9 23 0.638 0.084 | 0.029 { 075 | 288 | 1.35
9 24 0.716 0.078 | 0.027 1 0.72 | 288 | 1.41
9 25 0.823 006 | 003 [ 069 | 287 | 1.47
9 26 0.849 0.058 | 0.034 | 066 | 286 | 1.52
9 27 0.661 0.063 ] 003 {064 | 286 | 1.58
Q2 bin | W bin Savg | Davg | Navg | €avg | Yavg E:]uq Bavg
9 19 883 | 046 | 056|077 | 097 | 249 | 0.56
9 20 883|047 {054 | 076 1094 | 243 | 0.54
9 21 883 | 05 05110741091} 236 | 0.51
9 22 8831054 [ 048 1073|087 228|048
9 23 883058 [045 1071 1083 | 22 | 0.45
9 24 883 06 {042,069 08 | 2.1 | 042
9 25 883 06 039067 |0.77 | 202 | 0.39
9 26 883 | 061 (0371065074 | 1.84 | 0.37
9 27 8831066 034062071 ] 185034
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Table B.9: Values of A; + 4, for E=5.7 GeV data, with statistical and systematic errors. Average

kinematic values in each bin are also shown.

Q2 bin | Wbin | Ay + 14> | 0sta Osys Zavg gz_)g Wavg
6 30 0.2 0343 | 0022 | 022} 063 | 1.78
6 31 0.133 01521 002 | 0.2 | 062 | 1.84
6 32 0.122 0.092 | 0.018 | 0.18 | 0.61 1.9
6 33 -0.03 0062 100151017 | 06 | 1.95
6 34 0.088 005 | 0014 | 0.16 | 0.58 | 2.01
6 35 0.1 0.038 1 0.014 { 0.14 | 057 | 2.07
6 36 0.18 0.032 | 0.014 | 0.13 | 0.56 | 2.13
6 37 0.156 0.028 1 0.013 1012} 055 | 219
6 38 0.206 0.025 | 0.012 | 0.12{ 055 | 2.25
6 39 0.163 0022 | 001 §0.11 | 055 | 231
6 40 0.127 002 {0008} 01 | 054 | 237
6 41 0.145 002 {0007 | 01 | 054 | 2.43
6 42 0.119 0.018 10.008 | 009 | 054 | 249
6 43 0.115 0.018 | 0.008 | 0.09 | 0.54 | 2.55
6 44 0.156 0.018 | 0.007 | 0.08 | 0.54 | 2.61
6 45 0.133 0.017 | 0007 | 0.08 | 0.54 | 267
6 46 0.118 0017 | 0006 | 008 | 054 | 273
6 47 0.107 0.017 { 0.007 | 007 | 0.54 | 279
6 48 0.136 0.017 1 0007 | 007 | 054 | 285
6 49 0.132 0.017 | 0.007 | 007 | 054 | 291
6 50 0.101 0.021 | 0.004 | 0.06 | 0.52 | 2.96




QZ bin | W bin Saug Davg Tavg | €avg | Yavg E;wq aa'ug
6 30 1162 |1 024 1041 1094 | 051 | 416 | 0.41
6 31 1163 | 0.26 | 0.38 | 0.93 | 0.47 | 4.07 | 0.38
6 32 1163 | 0.27 {035 1092 | 0.44 | 3.96 | 0.35
6 33 1163 | 029 | 0321091 | 041 | 3.85 | 0.32
6 34 11631032 1029 09 {038 3.73 | 0.29
6 35 1163 | 034 | 027 {089 | 035 | 3.61 | 0.27
6 36 1163 | 037 024 1088 | 033|348 | 0.24
6 37 1163 04 (1022 1086 1{031 ]| 335 0.22
6 38 11631042 | 0.2 1084 10291} 321 | 0.2
6 39 1163 | 045 | 0191082 | 028 | 3.06 | 0.19
6 40 1163} 048 |0.17 ] 0.8 1026 | 291 | 0.17
6 41 1163 ] 051 {016 | 0.77 | 025 | 276 | 0.16
6 42 1163 | 054 014 1074|024 | 26 | 0.14
6 43 11631057 [ 0131071 (022 | 244 | 0.13
6 44 1163 | 06 [0.12 068 | 0.21 | 228 | 0.12
6 45 11631064 {011 1064 | 0.2 | 2.11 | O.11
6 46 1163 | 067 | 0.1 06 [ 019|194 | 0.1
6 47 1163 | 0.7 {008 | 055|018 | 1.76 | 0.08
6 48 11631074 {007 | 05 {018 | 1.58 | 0.07
6 49 11631077 |006 1045|017 | 1.4 | 0.06
6 50 1163 08 |006| 04 [0.16 | 1.24 | 0.06
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Q2 bin | Whbin | A; + nA2 Ostat TFsys Tang Q;'_’.‘L Wavg
7 19 -1.483 0468 {0099 1 073 ] 1.06 | 1.13
7 20 -0.397 0122 | 0021 | 067 | 1.04 | 1.18
7 21 -0.264 0.071 10026 | 062 | 1.03 | 1.23
7 22 0.154 0.076 {0026 | 057 | 1.03 | 1.29
7 23 0.327 0084 | 0024 | 052 1.02 | 135
7 24 0.566 0071 10034 | 048 | 1.04 | 1.41
7 25 0.743 0.055 | 0.039 | 044 | 1.01 | 1.47
7 26 0.574 0.045 { 0.020 | 041 | 1.01 | 1.53
7 27 0.589 0.044 | 0029 [ 038 | 1.01 | 1.59
7 28 0.529 0039 [ 0026 | 035 1.01 | 165
7 29 0.469 0033 (0025 {032 093 | 1.71
7 30 0.378 0031 10024 | 03 | 099 | 1.77
7 31 0.293 0029 | 0.02 ;028|097 | 183
7 32 0.216 0.027 {0018 { 026 | 0.96 | 1.89
7 33 0.309 0.023 {0016 {025 | 096 | 1.95
7 34 0.281 0022 | 0016 | 0.23 | 0.95 | 2.01
7 35 0.317 0.019 | 0016 | 0.22 | 0.94 | 2.07
7 36 0.291 0.018 | 0015} 0.2 | 094 | 213
7 37 0.274 0017 { 0013} 0.19 | 093 | 2.19
7 38 0.245 0016 10013 /018 | 094 | 225
7 39 0.255 0.015 { 0.012 | 017 | 0.94 | 231
7 40 0.208 0015 001 {016 { 093 | 2.37
7 41 0.225 0014 | 0009 | 016 { 0.94 | 243
7 42 0.2 0.014 | 0009 | 0.15 | 0.94 | 249
7 43 0.214 0.014 {0009 1 014 ] 094 | 255
7 44 0.223 0.013 0009 | 0.14 | 095 | 2.61
7 45 0.218 0.013 | 0009 1013 | 094 | 267
7 46 0.2 0.013 100091013 1095 | 273
7 47 0.174 0012 | 0009 1012 | 096 | 2.79
7 48 0.175 0.015 {0009 | 0.12 | 096 | 2.84
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Q2 bin | W bin Savg Davg Tavg | €avg | Yavg E:;uq 00119
7 19 1164015} 1.1 1097 1331496 | 1.1
7 20 1163 ] 0.16 | 1.01 {097 | 1.23 | 49 | 1.01
7 21 1163 ] 017 1094 1097 | 1.14 | 484 | 0.94
7 22 11631 0.18 1086 | 096 | 1.05 | 4.77 | 0.86
7 23 11631 0.18 1079 | 0.96 | 0.96 | 4.68 | 0.79
7 24 1163 02 10721096088 | 458 | 0.72
7 25 1163 | 0.2 {066 095082 45 | 0.66
7 26 1163 [ 022 { 061 | 095 | 0.76 | 441 | 0.61
7 27 1163} 023 {056 | 094 | 0.71 | 431 | 0.56
7 28 1163 ] 024 { 052093 | 0.66 | 4.21 | 0.52
7 29 1163 ] 0.25 | 048 { 093 | 0.61 | 4.11 | 0.48
7 30 1163 { 027 | 044 | 092 | 0.57 4 0.44
7 31 11631 029 | 041 | 091 | 053 | 3.89 | 0.41
7 32 1163031 {038 09 05 | 3.78 | 0.38
7 33 1162 | 0.33 | 035 {089 | 047 | 3.66 | 0.35
7 34 1162 | 0.36 | 0.32 | 087 | 044 | 353 | 0.32
7 35 11621039 | 03 | 086 | 042 | 3.41 0.3
7 36 1162 | 042 1027 {084 | 039§ 3.27 | 0.27
7 37 1162 ; 045 [ 0251082 (037 | 3.14 | 0.25
7 38 1162 {048 | 023 | 08 (035|299 | 0.23
7 39 1162 | 051 1021 1078|033 285 | 0.21
7 40 1162} 054 {019 1075032 27 | 0.18
7 41 11621057 1018072} 03 | 254 | 0.18
7 42 1162 | 06 }0.16 | 069 | 0.29 | 238 | 0.16
7 43 1161 {063 0150651028 | 222 | 0.15
7 44 1161 | 066 | 0.13 ] 061 026 | 205 | 0.13
7 45 1161 {069 012 |057 {025 1.89 | 0.12
7 46 1161 1072 1011 {053 024 1 1.71 | 0.11
7 47 1161 { 0.76 | 0.09 {048 | 0.23 | 1.53 | 0.09
7 48 116 |1 0.78 | 008 | 043 | 0.22 | 1.37 | 0.08
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Q2 bin | Whin | Ay + 142 | 0stat Tsys Lavg ﬁvq Wavg
8 19 -0.438 041510175 1083 ] 191 | 1.12
8 20 -0.16 0.119 10033 | 0.77 { 1.77 | 1.18
8 21 -0.172 0068 | 0.022 | 073 | 1.79 | 1.23
8 22 0.317 0067 { 003 069 | 182 | 1.29
8 23 0.36 0.064 | 0027 | 066 | 1.88 | 1.35
8 24 0.692 0.059 1 0.034 | 062 | 1.87 | 1.41
8 25 0.8 0.044 1 0037 | 058 | 1.86 | 1.47
8 26 0.768 0.038 1 0031 | 055 ] 184 | 1.53
8 27 0.601 0037} 003 | 052 1.83 | 1.59
8 28 0.631 0032 10028 | 05 | 1.86 | 1.65
8 29 0.696 0.028 1 0029 1 047 | 1.85 | 1.71
8 30 0.633 0.028 | 0.028 | 045 | 1.86 | 1.77
8 31 0.499 0.027 | 0024 1 043 | 1.87 | 1.83
8 32 0.436 0025 002 | 04 | 186 | 1.89
8 33 0.438 0023 | 0.019 {039 | 1.87 | 1.95
8 34 0.409 0.021 | 0.019 | 037 | 1.87 | 2.01
8 35 0.456 0019 | 0019 1 035 | 1.88 | 207
8 36 0.425 0.019 | 0.018 | 033 | 1.86 | 2.13
8 37 0.425 0.017 | 0.016 | 032 | 1.87 | 2.19
8 38 0.439 0.017 | 0016 | 031 | 188 | 225
8 39 0.393 0.016 | 0.0151 029 | 1.88 | 2.31
8 40 0.388 0.015 | 0.014 | 028 | 1.89 | 237
8 41 0.375 0.015 {0013 | 027 | 19 2.43
8 42 0.374 0.015 {0013 | 026 | 1.89 | 2.49
8 43 0.341 0.016 | 0012 1 023 | 1.73 | 255
8 44 0.333 0017 | 0012 | 022 | 1.66 | 2.61
8 45 0.287 0.017 | 0011 | 02 | 158 | 267
8 46 0.284 0.017 | 0.011 { 019 | 1.57 | 273
8 47 0.291 0029 | 0009 [ 0.17 | 143 | 2.78
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Q2 bin | W bin Saug Dm:g Navg | €avg | Yovg Eévq ea'vg
8 19 116 | 023 10871094 114 | 449 | 087
8 20 116 | 023 085094 | 1.1 45 |} 085
8 21 116 | 025 {079 1093 | 1.03 | 442 | 0.79
8 22 11.6 | 026 {0.74 1093 | 097 | 433 | 0.74
8 23 116 | 028 | 068 1092 | 091 | 421 | 0.68
8 24 116 {029 |064 091|086 412 | 0.64
8 25 116 | 03 06 | 0.9 081|404 | 06
8 26 1159 | 031 {056 | 09 | 0.77 | 3.95 | 0.56
8 27 116 | 034 | 0531089073 | 3.86 | 0.53
8 28 1159 1036 10491088 | 069 | 3.73 | 0.49
8 29 1159 | 0.37 {046 | 0.87 | 0.65 | 3.64 | 0.46
8 30 11591039 1043 | 085 | 0.62 | 3.52 | 0.43
8 31 11591041} 04 1084 059 34 04
8 32 1159 | 042 {037 ] 082 | 0.56 | 3.28 | 0.37
8 33 1159 | 045 | 035 | 0.8 {053 3.15]035
8 34 1159 | 049 {032 1079 | 0.51 | 3.03 | 0.32
8 35 11.59 1052 | 0.3 10761048 | 289 | 0.3
8 36 11.59 | 0.55 {028 | 0.74 { 046 | 2.77 | 0.28
8 37 1159 | 059 | 025 072044262 025
8 38 11591 062 {023 {069 {042 | 248 | 0.23
8 39 1159 | 065 10211066 | 04 | 233 | 0.21
8 40 1159 068 | 0.19 |1 062 | 039 | 2.17 | 0.19
8 41 1159 |1 071 | 018 | 059 | 037 | 2.02 | 0.18
8 42 11591 074 {016 | 055|036 ;| 1.87 | 0.16
8 43 11591 075101570531 0331| 179 | 0.15
8 44 11581077 {013 | 05 (032 166 | 0.13
8 45 1159 | 0.78 | 0.12 ] 047 | 03 | 1.53 | 0.12
8 46 1159 1081 | 0.1 | 042 029|136 | 0.1
8 47 1159082 {009 04 (027 13 | 0.09
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Q2 bin | Wbin | A; + Az | Ogat Osys Lavg ?ﬂ,g Wavg
9 19 -1.762 0448 | 0.185 1091 | 414 | 112
9 20 -0.404 0.193 | 0.171 { 0.89 { 3.94 | 1.17
9 21 0.298 0.125 | 0.039 | 085 | 3.74 | 1.23
9 22 0.194 0.1 0043 | 082 | 363 | 1.29
9 23 0.411 0.084 { 0055 | 0.79 | 3.76 | 1.35
9 24 0.691 0.074 1 0.038 | 0.76 | 3.67 | 1.41
9 25 0.667 0.06 | 0.036 {074 | 3.72 | 1.47
9 26 0.804 0.056 {0.033 ] 0.7 | 3.42 | 153
9 27 0.729 0.056 | 0.031 | 067 | 3.38 | 1.59
9 28 0.596 0.043 | 0020 | 065 | 343 | 165
9 29 0.729 0.038 | 0.034 | 062 | 341 | 1.71
9 30 0.658 0038 003 | 06 | 341 | 1.77
9 31 0.651 0038 | 0.027 | 058 | 3.4 | 1.83
9 32 0.588 0036 | 0023 | 056 | 343 | 1.89
9 33 0.535 0.034 | 0.023 | 053 | 331 | 1.95
9 34 0.57 0033 | 002 051 | 328 | 201
9 35 0.626 0.032 | 0022 | 048 | 3.17 | 2.07
9 36 0.549 0029 | 002 | 046 | 3.15 | 213
9 37 0.549 0.031 | 0018 | 0.44 | 3.08 | 2.19
9 38 0.476 0.038 | 0.018 | 041 | 289 | 225
) 39 0.524 0.034 | 0.017 | 0.39 | 289 | 2.31
9 40 0.511 0.036 | 0.015 | 038 | 288 | 2.37
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Q2 bin | Whin| s avg D, avg | Tlavg | €avg | Yavg E:;-vq 9a‘ug
9 19 1158} 042 {052 077 085 | 33 |0.52
9 20 1159 | 041 10521079 | 0.85 | 3.35 | 0.52
9 21 11.58 | 042 | 052 {0.79 | 0.83 | 3.37 | 0.52
9 22 116 | 047 1 0511 0.79 | 0.81 | 3.36 | 0.51
9 23 1158 | 0.52 1047 | 0.77 | 0.78 | 3.19 | 047
9 24 1159 1 053 {045 | 0.77 | 0.75 | 3.16 | 0.45
g 25 1157 1 052 1043|1074 | 0.72 | 3.03 | 043
g 26 1158 | 05 1043|1076 |0.71 ] 3.1 | 043
9 27 1158 1 055 {041 1075069 | 3.02 | 0.41
9 28 1158 | 0.58 | 038 | 0.73 | 0.66 | 289 | 0.38
9 29 11158 | 06 [0361072 063 28 | 0.36
9 30 1158 | 0.61 | 034 1 069 | 061 | 269 | 0.34
9 31 1158 | 063 | 0.31 | 067 | 059 | 257 | 0.31
9 32 1158 | 0.65 1029 1065057 | 244 | 0.29
9 33 1158 | 066 | 028 | 064 | 0.55 | 238 | 0.28
9 34 1158 | 069 1026 | 062 | 053|228 | 0.26
9 35 1158 | 0.71 | 0.24 | 0.6 | 0.51 22 1024
9 36 1158 | 0.73 | 0.23 | 057 | 049 | 2.07 | 0.23
9 37 11591 075 | 021 | 055|047 | 1.98 | 0.21
9 38 1157 1 076 | 02 | 055(045]193 ] 0.2
9 39 11591 0.78 10181051 [ 043 ] 1.79 | 0.18
9 40 1159 | 081 [ 0.16 | 047 | 042 | 1.65 | 0.16
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B.5 Virtual Photon Asymmetry Resulits
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Table B.10: Values of A; for the proton from the EG1b data, showing errors (statistical and system-

atic) and averaged kinematics in each bin.

Q2 bin | W bin Al Ostat Osys Lavg Q?wg Wavg
3 23 -0.051 1 0.035 10052 | 006} 006 | 1.35
3 24 -0.12 | 0.03 {0046 | 0.05 | 0.06 | 1.41
3 25 -0.105 | 0.023 | 0.047 | 0.04 | 0.06 | 1.47
3 26 -0.068 | 0.023 | 0.009 | 0.04 | 0.06 | 1.53
QZ bin | W bin Ay Ostat Osys Lavg qu Wavg
4 19 -0.471 {0137 {0389 | 0.23 | 0.11 | 1.13
4 20 -0445 10.032 | 012 10.18 ] 0.12 | 1.18
4 21 -0.407 { 0.017 } 0.09 | 015} 0.12 | 1.23
4 22 0212 {0.021 | 009 | 013} 0.12 | 1.29
4 23 -0.053 { 0.024 | 0116 | 0.11 | 0.12 | 1.35
4 24 0028 | 002 0116 | 01 | 0.12 | 1.41
4 25 -0.004 | 00151 0.112 1 0.08 | 0.12 | 1.47
4 26 0022 10021 | 0097 | 008 | 0.13 | 1.52
4 27 0.029 | 0.027 | 0.113 | 0.07 ; 0.13 | 1.59
4 28 -0.055 {0024 | 0.103 | 0.07 | 0.13 | 1.65
4 29 -0.05 {0022 [ 0.139 1 0.06 | 0.13 | 1.71
4 30 0019 10024 | 0212|006 | 0.13 | 1.77
4 31 -0.056 | 0.024 | 0023 | 0051 0.13 | 1.83




Q2 bin | W bin A Ostat Tsys Taug czwq chg
5 19 -0516 1 0077 1 0286 | 0.38 | 0.24 | 1.13
5 20 -0.454 | 0.017 | 0.078 | 0.31 | 0.24 | 1.18
5 21 0416 1 0009 | 004 {027 | 024 | 1.23
5 22 -0.169 | 0.011 1 0047 | 023 | 0.24 | 1.29
5 23 0014 [ 0013|0078 02 | 024 | 1.35
5 24 0.073 | 0.012 | 0.088 | 0.17 | 0.23 | 1.41
5 25 0.149 | 0.009 | 008 | 0.15] 023 | 1.47
5 26 0.176 | 0.007 | 0.095 { 0.14 | 023 | 1.53
5 27 0.12 10008} 0.12 ;012|023 | 1.59
5 28 0041 {0007 10109 ] 011 | 0.23 | 165
5 29 004 (00090151} 01 1023} 1.7
5 30 0.061 | 0013|0118 | 0.1 | 025 | 1.77
5 31 0024 [ 0012 0063 | 0.09 | 0.25 | 1.83
5 32 -0.018 | 0.012 | 0.046 009 | 0.25 } 1.89
5 33 0.018 { 0.011 [ 0.044 | 0.08 | 0.26 | 1.95
5 34 0.069 | 0.011 | 0.1151 008 | 0.26 | 2.01
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Q?bin | W bin Ay Ostat | Tsys | Tavg e | Wavg
6 19 -0.249 | 0.068 | 0.171 | 0.54 } 0.46 | 1.13
6 20 -0.361 | 0.014 | 0.054 | 0.47 | 0.46 | 1.18
6 21 <0311 10.008 10022 {041 | 046 | 1.23
6 22 -0.105 1 0.01 100331037} 046 | 1.29
6 23 0.181 [ 0.012 | 0054 | 032 | 045 | 1.35
6 24 0228 | 0.011 | 0064 | 029 | 0.45 | 1.41
6 25 036 [0.009 | 008 | 025 ]| 044 | 1.47
6 26 0.368 [ 0.008 {0096 023|043 | 1.53
6 27 0262 {0009 | 0.114 | 021 | 0.43 | 1.59
6 28 0.191 001 10104 ] 0.13 |1 045 | 1.65
6 29 0236 {0009 0121 | 0.18 | 046 | 1.71
6 30 0.193 | 0.009 | 0.083 | 0.17 | 0.46 | 1.77
6 31 0081 | 000910053016 1046 | 1.83
6 32 0038 {0008 | 0042 | 0.14 | 045 | 1.89
6 33 0.074 { 0.008 | 0.046 | 0.13 | 043 | 1.95
6 34 0.13 0.01 {0099 012043 | 2.01
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Q?%bin | W bin Ay Ostat | Osys | Tavg | Qo e | Wavg
7 19 {-0019/0093 0105|068 | 0.86 | 1.13
7 20 -0.207 { 0.021 | 0.051 | 062 | 0.86 | 1.18
7 21 -0.186 { 0.013 1 0.026 | 0.57 | 0.86 | 1.23
7 22 0074 10.015 10031 | 052 ] 087 | 1.29
7 23 0347 {0019 | 0051 | 047 {086 | 1.35
7 24 0447 1 0.019 | 0.056 | 044 | 0.8% | 1.41
7 25 0579 | 0.015 | 0.065 | 0.41 | 0.89 | 1.47
7 26 0.572 {0.013 | 0.068 | 0.37 | 0.87 | 1.53
7 27 047 |0014 | 0091 | 034 | 0.87 | 1.59
7 28 0398 | 0013 10081032088} 165
7 29 0429 | 0.012 {0076 { 03 [ 088 | 1.71
7 30 0329 100120079 | 0281|088 | 1.77
7 31 0244 {10014 | 0056 | 0.27 | 093 | 1.83
7 32 0.169 | 0.013 10059 | 026 | 095 | 1.89
7 33 0239 10012 | 0.147 {024 | 096 | 1.95
7 34 0.288 | 0.011 | 0232|023 | 095 | 2.01
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Q2 bin | W bin Ay Ostat Tsys Tavg Qg‘uq Wavg
8 19 -0636 | 0.224 | 0135 | 082 | 1.82 | 1.12
8 20 -0.303 | 0.055 | 007 | 0.77 | 1.77 | 1.18
8 21 -0.068 | 0.034 [ 0.055 | 0.73 | 1.79 | 1.23
8 22 0241 {0033 0065|069 | 182 | 1.29
8 23 0506 [ 0032|0128 {066 | 1.86 | 1.35
8 24 0606 { 0.029 | 0109 1 062 | 1.88 | 1.41
8 25 0.756 {0023 | 0123 | 058 | 1.85 | 1.47
8 26 0.794 1 0019 { 0.146 | 0.55 | 1.85 | 1.53
8 27 0612 | 001910135053 | 1.86 | 1.59
8 28 0.6 0016} 0.18 { 05 | 187 | 165
8 29 0665 | 0.014 {0143 {047 | 1.87 | 1.71
8 30 0606 {0014 [ 0164 | 045 | 1.86 | 1.77
8 31 0458 | 0014 10.151 | 042 | 1.84 | 1.83
8 32 0348 ;100130148 | 04 | 1.81 | 1.89
8 33 0414 | 0013 10248 | 037 | 1.77 | 1.95
8 34 0412 [ 0012 10229 1 035 | 1.75 | 2.01
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Q2 bin { W bin A} Ostat Osys Zavg ‘2")0 Wavg
9 19 |-1187 103320817 | 09 | 357 | 1.13
9 20 |-044510.144 | 0612 | 087 | 3.48 | 1.17
9 21 0.129 | 0.078 | 0.327 | 0.83 | 3.21 | 1.23
9 22 0299 [0.069 [0274]| 08 | 3.24 | 1.29
9 23 0.456 | 0.059 1 0.3568 | 0.77 | 3.33 | 1.35
9 24 0638 {0054 | 0281074329 ] 1.41
9 25 0694 | 0043 0282|071 | 33 | 1.47
9 26 0773 | 004 0332 |0.68 3.15 | 1.53
9 27 0.648 | 0.042 | 0.224 | 0.66 | 3.15 | 1.59
9 28 0.566 | 0.043 { 0259 | 0.65 | 343 | 1.65
9 29 0.708 | 0.038 | 0.211 | 0.62 | 3.41 | 1.71
9 30 0.633 100380213 | 06 | 341 | 1.77
9 31 0624 | 0.038 0172|058 | 3.4 | 1.83
9 32 | 0562 | 0036|0153 | 056 | 3.43 | 1.89
9 33 051 10034} 024 [ 053|331 ] 195
9 34 0.551 | 0.033 | 0.192 | 0.51 | 3.28 | 2.01
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Table B.11: Values of A5 for the proton from the EG1b data, showing errors (systematic and statis-
tical) and averaged kinematics for each bin.

QZ bin | W bin Ay Ostat Osys | Lavg (2wg Wa"’.‘?
0.756 [ 0.735 1 0.081 | 0.18 | 0.14 | 1.23

21

22 -068 (0884} 008 {015 014 | 1.29
23 -0.972 {0996 | 0.106 | 0.13 | 0.14 | 1.35
24 -0.177 10823 | 0.115 1 0.11 | 0.13 | 1.41
25 -0.173 ] 0.608 | 0.107 | 0.09 | 0.13 | 1.47

LRI N N

QZ bin | W bin Ay Tstat Osys Zavg qu Wavg
20 -0529 | 036 | 0078 | 032 025 | 1.18
21 -0.249 | 0213 1 0037 |1 028 | 0.25 | 1.23
22 0017 [ 0276 | 0044 : 024 1 0.25 | 1.29
23 0.537 10336 | 00750211025 1.35
24 -0.098 | 0.305 | 0.084 | 0.18 | 0.24 | 1.41
25 -0.084 | 0.219 | 0079 | 0.16 | 0.25 | 1.47
26 0.287 | 0.175 | 0096 | 0.14 | 025 | 1.53
27 0025 | 0.17 {01191 013 | 0.25 | 1.59
28 0.239 ] 0.143 { 0.111 | 0.12 | 025 | 1.65
29 0.044 | 0201 | 0.149 | 0.11 | 0.26 | 1.69
30 0874 | 046 0096 0.11 | 029 | 1.77
31 -0.175 10376 | 006 | 0.1 | 0.28 | 1.83
-0.09 {0301 | 0045009 | 028 | 1.89
0.191 10254 10044 | 009} 027 | 1.95
0.251 | 0.328 | 0.116 | 0.08 | 0.27 2

ooyt opagi oo
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Q%bin | W bin Ag Ostat | Osys | Tavg | Qrva | Wavg
6 19 0209 10662 |0.158 1056 | 05 1.13
6 20 -0.05 {0143 0053 049 05 1.18
6 21 0.103 | 0.085 | 0.022 { 044 { Q5 1.23
6 22 0038 10107 | 00321039 | 049 | 1.29
6 23 0.173 1 0.129 | 0051 | 034 | 043 | 1.35
6 24 0345 [ 0.121 1 0063 | 03 | 049 | 1.41
6 25 0196 | 0104 | 008 {026 | 045 | 1.47
6 26 0279 {0087 | 0096 | 0.23 ;| 0.44 | 1.53
6 27 0.158 {01151 0114} 0.2 | 041 | 1.59
6 28 0.028 {1 0.149 | 0.105 ] 0.19 | 044 | 1.65
6 29 0.477 10158 | 0.116 1 0.19 | 0.49 | 1.71
6 30 0.169 { 0.158 | 0.082 | 0.18 | 0.48 | 1.77
6 31 ©0.151 10.144 10053 ] 0.16 | 0.48 | 1.83
6 32 -0.011 1 0.134 | 0.041 | 0.15 | 0.47 | 1.89
6 33 -0.034 1 0.139 | 0.047 | 013 1 043 | 1.95
6 34 0.361 | 0243 | 0.098 | 0.11 | 0.39 2
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Q2 bin | W bin Ay Ostat Tsys Zavg Q(zwq Wavg
7 19 -2178 1 0624 1 0105 | 068 | 0.86 | 1.13
7 20 -022 10149 10051 | 062 | 0.84 | 1.18
7 21 -0.075 1 0.103 1 0.025 1 056 | 0.84 | 1.23
7 22 0325 [ 0.128 | 0.031 | 051 | 0.84 | 1.29
7 23 0.175 | 0.187 | 0.047 | 0.46 | 0.81 1.35
7 24 0518 10222 | 0.055 1044 | 0.89 | 1.41
7 25 0582 10171 | 0064 | 04 | 0.88 | 1.47
7 26 0322 | 0.18 | 0.068 | 0.36 | 0.81 | 1.53
7 27 0.401 | 0.201 | 0.091 | 0.32 | 0.79 | 1.59
7 28 0327 {0213 10078} 03 | 0.77 | 165
7 29 0191 {0226 | 0079 | 026 | 0.74 | 1.71
7 30 068510217 | 0081|025 0.74 | 1.77
7 31 -1406 {1 0411 | 006 | 025 ]| 084 | 1.82
7 32 -1.479 | 0.562 | 0.068 | 0.27 1 1.89
7 33 0.182 | 0.494 | 0.166 | 0.25 1 1.95
7 34 -0.697 | 0647 | 0.272 | 0.24 | 1.01 2

523



Q2 bin | W bin Az Ostat Osys | Tavg é& Waug
8 21 -164 [ 091210053 1074 | 1.85 | 1.23
8 22 0385 [ 08920071 0.7 | 1.88 | 1.29
8 23 -3.358 | 0.869 | 0.141 | 067 | 1.95 | 1.35
8 24 0413 {0809 [ 0.121 | 063 | 1.96 | 1.41
8 25 0293 | 0621 1 0133} 06 | 1.94 | 147
8 26 -1596 | 053 [ 0.166 | 0.56 { 1.93 | 1.53
8 27 -1.284 { 0529 | 0.144 | 053 | 1.94 | 1.59
8 28 -0.275 10449 { 0.193 | 0.51 | 1.96 | 1.65
8 29 0221 10391 10.154 | 048 | 195 | 1.71
8 30 03 (038701721046 | 195 | 1.77
8 31 -0.142 | 0.378 1 0.155 { 044 | 195 | 1.83
8 32 0.143 10363 | 0.148 | 041 | 1.89 | 1.89
8 33 -0.17 (0372 | 0249 | 037 {1 1.76 | 1.95
8 34 0034 {0495 10272036 1.74 2
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Table B.12: A, values for the proton, DIS (W > 2 GeV) only, rebinned in z. These data are plotted

in Figure 8.42.

Al(x) l Tstat

Tsys 1

0.125

0.1798

0.0198

0.014

0.175

0.2620

0.0079

0.016

0.225

0.2960

0.0056

0.022

0.275

0.3709

0.0062

0.028

0.325

0.4273

0.0074

0.030

0.375

0.4711

0.0115

0.030

0.425

0.4842

0.0167

0.031

0.475

0.5831

0.0231

0.033

0.525

0.6157

0.0387

0.036

0.575

0.4057

0.151

0.036




B.6 Structure Function Results

Table B.13: Values of ¢, for the proton, from the EG1b data.

shown, as well as averaged kinematic data in each bin.

526

Errors (statistical and systematic) are

Q2 bin | W bin g1 Ostat Osys Tavg 3vq Wa'vg
3 23 -0.002 { 0022 | 0054 | 006 | 0.06 | 1.35
3 24 -0.062 | 0.023 | 0.055 | 0.05 | 0.06 | 1.41
3 25 -0111 | 0.03 {0051 {0.05] 0.06 | 147
3 26 008 (0035 001 [ 004} 006 | 1.53

Q2 bin | W bin 91 Ostat Osys | Tavg (qu Wa'vg
4 18 0042 | 0009 | 0764 03 | 0.12 | 1.07
4 19 -0.003 | 0.006 | 0.723 | 0.26 | 0.12 1.1
4 20 0108 1 0.013 | 0.133 | 0.2 | 0.12 | 1.17
4 21 -0.245 1 0.013 10089 | 0.16 | 0.12 | 1.23
4 22 -0074 {0012} 009 | 013} 0.12 | 1.29
4 23 0013 {0012 0112 | 011 | 0.12 | 1.35
4 24 0032 0013|0125} 01 | 012 | 1.41
4 25 004 (0015 011 003 | 012 | 1.47
4 26 0073 [ 0.024 | 0096 | 0.08 | 0.13 | 1.52
4 27 0.069 [ 0.028 | 0.114 | 0.07 | 0.13 | 1.59
4 28 -0.049 | 0.028 | 0.101 { 0.07 | 0.13 | 1.65
4 29 0.054 {0028 |0.139 ] 006 | 0.13 | 1.71
4 30 0047 | 0029 | 0.212 | 0.06 | 0.13 | 1.77
4 31 0029 | 003 10023005 0.13 | 1.83




QTbin W bin g1 Ostat Tsys Zavg zuq Wa'vg
5 18 0.029 {0.003 10851047 | 025 | 1.07
5 19 -0.008 {0003 | 0548 { 042 | 0.24 | 1.1
5 20 -0.088 {1 0.005 1 0.106 | 0.34 | 0.25 | 1.17
5 21 -0.197 10005 | 0037 (028 | 0.25 | 1.23
5 22 -0.035 100050047 {024 | 025 | 1.29
5 23 0.043 | 0005 0.0751021 | 025} 1.35
5 24 0082 10.005]/0089 018 024 | 1.41
5 25 0.159 | 0.006 | 0.076 | 0.16 | 0.24 | 1.47
5 26 0.212 [ 0.006 | 0.095 | 0.14 | 0.24 | 1.53
5 27 0.152 {0006 | 0.12 | 013 ] 024 | 1.59
5 28 0.072 10007 | 0.109 | 0.11 | 0.24 | 1.65
5 29 0071 {0009 {0152 [ 0.11 1 024 | 1.7
5 30 0.102 | 0012 | 0114 | O.1 025 { 1.77
5 31 0.089 | 0.012 10.063 | 009 ; 0.26 | 1.83
5 32 0.038 {0.012 10046 | 0.09 | 0.26 | 1.89
5 33 0052 001210044 10081 026 | 1.95
5 3 0.087 10012 0.11510.08 | 0.27 | 2.01
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Q2 bin | W bin g1 Tstat Tsys Lavg zvq Wa'c)g
6 18 0.015 { 0.001 | 0368 | 063 | 049 | 1.07
6 19 -0.007 { 0.002 | 0.256 | 0.58 | 0.48 1.1
6 20 -0.06 | 000310075 05 | 048 | 1.17
6 21 -0.116 | 0.003 | 0.022 | 043 | 048 | 1.23
6 22 -0.018 { 0.003 | 0033 (038 | 048 | 1.29
6 23 0.061 1 0.003 10.052)034 ] 048 | 135
6 24 0091 1000310064 03 | 048 | 1.41
6 25 0.195 | 0.004 { 0.077 1 0.26 | 0.46 | 1.47
6 26 0253 | 0.004 ; 0.095 1 0.24 | 046 | 1.53
6 27 0.192 [ 0.005 1 0.113 | 022 | 046 | 1.59
6 28 0.158 1 0.006 | 0102 | 02 | 047 | 1.65
6 29 0.206 | 0.006 { 0.115 ] 0.19 | 0.49 | 1.71
6 30 0.184 | 0.006 | 0.083 | 0.18 | 048 | 1.77
6 31 0132 | 0.006 [ 0053 | 0.16 | 0.48 | 1.83
6 32 0.111 [ 0.006 | 0.041 | 0.15 ] 047 | 1.89
6 33 0.116 | 0007 | 0046 | 0.13 | 045 | 1.95
6 34 0.131 | 0.009 10099012 ] 045 | 2.01
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Q2 bln w bin g1 Tstat asys xm}g zvq Wa'vg
7 18 0.008 | 0.001 {0188 | 0.77 | 096 | 1.07
7 19 -0.001 1 0.001 {0143 1 0.74 | 096 | 1.1
7 20 -0.022 | 0.002 | 0.06 | 066 | 096 | 1.17
7 21 -0.042 | 0.002 | 0027 | 06 | 096 | 1.23
7 22 0.012 1 0.002 | 0034 | 0551096 | 1.29
7 23 0.051 {1 0.003 j0.055]049 ] 093 | 135
7 24 0.078 | 0.003 | 0.057 { 0.46 | 0.95 | 1.41
7 25 0.149 | 0.004 | 0.063 | 042 | 0.95 | 1.47
7 26 0.2 0.004 10066 | 039 | 093 | 1.53
7 27 0.163 | 0004 | 009 {036 | 0.94 | 1.59
7 28 0.161 {0004 {0081 | 034 | 095 | 1.65
7 29 0.213 {0005 0.074 1031 1 095 | 1.71
7 30 0.167 {0005 0077 | 03 | 096 | 1.77
7 31 0.148 | 0.005 | 0057 | 0.28 | 099 | 1.83
7 32 0.142 | 0.006 ; 0.067 | 0.27 1 1.89
7 33 0.157 1 0.006 { 0.166 | 0.26 | 1.01 | 195
7 34 0.168 [ 0.006 { 0.24 {024 | 1.01 | 2.01
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QZ bin | W bin g1 Tstat Osys Taug 31"; Waug
8 19 -0.001 | 0.001 | 0.273 | 0.86 | 2.07 1.1
8 20 -0.007 | 0.002 | 0.097 | 081 | 205 | 1.17
8 21 -0.005 | 000210089 | 076 | 208 | 1.23
8 22 0014 | 00020093072 206 | 1.29
8 23 0.03 0.002 | 0.157 | 0.68 | 2.06 | 1.35
8 24 0043 [ 0002 10139 1065 | 207 | 1.41
8 25 008 [ 000210154 | 0.61 | 204 | 1.47
8 26 0.107 | 0.002 {0193 1 058 | 2.04 | 1.53
8 27 0.083 [ 0.002 | 0.155 1055} 2.04 | 1.59
8 28 0.101 | 0.002 10206 | 0.52 | 2.04 | 1.65
8 29 0.138 | 0.003 {0164 | 049 | 204 | 1.71
8 30 0.124 1 0.003 {0.178 1 047 | 2.02 | 1.77
8 31 0.107 | 0003 {0.158 | 044 | 199 | 1.83
8 32 0.109 {0003 0149 | 042 | 195 | 1.89
8 33 0.126 {0003 10246 { 039 | 1.88 | 1.95
8 34 0.131 | 0.004 | 0228 | 0.37 | 1.87 | 2.01

530



Q2 bin | W bin g1 Tstat Osys | Zaug 31,4 Wa'ag
9 20 -0.001 10.001 | 0892 | 09 | 435 | 1.16
9 21 0.002 | 0.001 | 0453 | 0.86 | 4.09 | 1.23
g 22 0.005 | 0001 | 0.331 | 083 | 391 | 1.29
9 23 0009 {0001 0432} 08 1399 ] 1.35
9 24 0.016 | 0.001 | 0.312 | 0.77 | 3.81 | 1.41
9 25 0023 | 0.001 10291 1 0.75] 3.94 | 1.47
9 26 0.042 | 0.002 1 0344 | 0.7 3.5 1.53
9 27 0037 {0002 | 0229 | 067 | 34 1.59
9 28 0.034 100030267 | 067 | 3.7 1.65
9 29 0.056 10003 0212 064 | 3.65 | 1.71
9 30 005 (0003102161062 1| 365 | 1.77
9 31 0.055 10003 [0.174 | 059 | 3.64 | 1.83
g9 32 0056 | 0003 10.153 | 057 | 3.65 | 1.89
9 33 0063 {0004 | 0238 | 054 | 3.52 1 1.95
9 34 0.075 [ 0.004 | 0.198 | 0.52 | 345 | 2.01

531



532

Table B.14: Values of g;/F; from the EG1b data. Errors (statistical and systematic) are shown, as
well as averaged kinematic values in each bin.

Q2 bin | W bin g1 / Fy Tstat Tsys Lavg .2,,;(, Wa'vg
3 23 0004 | 0.029 { 0.069 | 0.06 | 0.06 | 1.35
3 24 -0.069 | 0.026 | 0.056 ; 0.05 | 0.06 | 1.41
3 25 0074 | 0.02 ] 0.034 { 0.04 | 0.06 | 1.47
3 26 -0.049 | 0.021 | 0.006 | 0.04 | 0.06 | 1.53
Q2 bin | W bin a / Fy Ostat Osys Tavg zvq Wa’vg
4 19 -0.06 { 0.053 13324 | 0.23 | 0.12 | 1.12
4 20 -0.152 1 0.016 | 0.145 | 0.19 | 0.12 | 1.18
4 21 -0.184 | 0.01 10066 { 0.16 | 0.12 | 1.23
4 22 -0.089 | 0.014 { 0.099 | 0.13 [ 0.12 | 1.29
4 23 0.019 | 0.017 | 0.157 | 0.11 | 0.12 | 1.35
4 24 0.039 | 0.016 | 0.15 0.1 0.12 | 1.41
4 25 0.035 {0013 10089 | 0.09{ 012 | 1.47
4 26 0052 10018 007 {008 0.13 1 1.52
4 27 0056 | 0023 0094 | 007 ] 013 | 159
4 28 -0.038 | 0.021 [ 0076 | 0.07 | 0.13 | 1.65
4 29 0.039 ] 002 0099|006 0.13 | 1.71
4 30 0037 | 002310.164 1006 | 0.13 | 1.77
4 31 -0022 {0023 10017 { 0.05]| 0.13 | 1.83




Q2 bin | W bin 91/ F Ostat Osys Zavg g)q Wm)g
5 19 -0.085 | 0.025 | 25751038 | 0.24 | 1.13
5 20 -0.138 [ 0.007 | 0.112 | 0.32 | 0.24 | 1.18
5 21 -0.161 | 0.004 | 0.031 028 | 0.24 | 1.23
5 22 -0.049 | 0.006 | 0.057 | 0.24 | 0.24 | 1.29
5 23 007 (0008 {0125} 02 | 024 | 135
5 24 0.126 | 0.008 | 0.1351 0.17 | 0.24 | 1.41
5 25 0.167 {0006 | 0.08 | 015 0.24 | 1.47
5 26 0.195 1 0006 | 0.088 | 0.14 | 0.23 | 1.53
5 27 0.155 {1 0.006 | 0.124 | 0.12 | 0.23 | 1.59
5 28 0.063 {0.006 | 0.099 | 0.11 | 0.23 | 165
5 29 0057 {0008 0127 | 01 024 | 1.7
5 30 0.095 | 0.011 | 0.11 01 | 025 | 1.77
5 31 008 |0011}10059 009025 1.83
5 32 0.033 1 001 {0041 1009026} 1.89
5 33 0.043 §{ 001 10037 1008|026 | 195
5 34 0.071 | 0.01 {0094 [ 008 026 | 2.01
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Q2 bin | Wbin | g / 31 Ostat Tsys ZTavg Q?}Uq Wavg
6 19 -0.045 1 0021 | 1.847 | 054 | 046 | 1.13
6 20 -0.129 { 0.005 | 0.107 | 0.47 | 046 | 1.18
6 21 -0.133 1 0.003 | 0.024 | 042 | 046 | 1.23
6 22 -0.039 {0.005 | 0056 | 0.37 | 0.46 | 1.29
6 23 0.136 | 0.006 | 0.118 | 0.33 | 046 | 1.35
6 24 0.197 {0007 | 0.138 |1 0.29 | 0.46 | 1.41
6 25 0293 {0006 | 0113 [ 025 044 | 1.47
6 26 033 1000510123023 044 | 1.53
6 27 0279 [ 0.007 | 0.165 | 0.21 | 043 | 1.59
6 28 0.2 0008 10131 ] 02 | 045 | 1.65
6 29 0237 { 0007 | 0137 | 019 | 047 | 1.71
6 30 0.233 { 0.008 | 0.106 | 0.17 | 0.47 | 1.77
6 31 0.162 | 0.007 | 0.066 | 0.16 | 0.46 | 1.83
6 32 0.127 | 0.007 { 0048 | 0.14 ] 0.46 | 1.89
6 33 0.122 | 0.007 {0.049 | 0.13 ] 044 | 195
6 34 0.134 {0009  0.101 ; 0.12 | 043 | 2.01
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Q2 bin | Whin | ¢ / Vi Tstat Tsys Laug Q?wq Wavg
7 19 0001 | 0032|2147 (068 | 085 | 1.13
7 20 -0.099 [ 0.008 | 0.186 | 0.62 | 0.84 | 1.18
7 21 -0.1083 ;| 0.005 | 0.057 | 057 | 0.85 | 1.23
7 22 003 {0007 01031052} 086 | 1.29
7 23 0.204 ; 0.01 02 (048 | 086 | 1.35
7 24 0293 | 0011 | 0206 1 044 ! 09 | 1.41
7 25 0389 | 0.009 1 0.155 | 041 | 0.89 | 1.47
7 26 0431 | 0.008 | 0.141 [ 037 | 087 | 153
7 27 0.403 | 0.01 022 034088 | 1.59
7 28 0336 { 0.009 | 0.166 | 0.32 | 0.89 | 1.65
7 29 0374 | 0009|0132 03 [ 089 | 1.71
7 30 0329 | 0009 0.15 { 0.28 | 0.89 | 1.77
7 31 0285 [ 0011} 0.11 [ 027 094 | 1.83
7 32 0254 | 0.01 {01151 026 | 095 | 1.89
7 33 0266 | 001 0268|0251 096 | 195
7 34 0.269 10009 1037810231096} 2.01
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Q2 bin | Wbin | o1 / F Tstat Tsys Tavg ¢2wq Wavg
8 19 -0.273 1 0.095 | 15.244 | 082 | 1.77 | 112
8 20 -0.157 1 0.025 | 0979 | 077 | 1.74 | 1.18
8 21 -0.048 | 0.017 | 0541 | 0731176 | 1.23
8 22 014 {0017 0776 {069 1.79 | 1.29
8 23 0327 {0017 1441 [ 066 | 1.84 } 1.35
8 24 0.407 | 0.017 1.08 062 1.87 | 1.41
8 25 0.505 | 0.014 0.78 058 | 183 | 1.47
8 26 0565 | 0.012 | 0841 | 055 ] 185 | 1.53
8 27 048 10012} 0794 | 052 | 186 | 1.59
8 28 0.455 | 0.011 | 0.833 05 | 1.87 | 1.65
8 29 0516 | 0.01 0548 [ 047 | 1.87 | 1.71
8 30 0.49 0.01 0656 | 0451186 | 1.77
8 31 0399 | 0.01 0556 | 042 | 185 | 1.83
8 32 0358 | 001 | 0477 | 04 | 181 | 1.89
8 33 0.374 | 0.01 0709 1038 1.78 | 1.95
8 34 0359 | 0.1 0604 | 035 1.76 | 2.01
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Q’bin [ Wbin | ¢:/F1 | ostas Osys Zavg t2we Wavg
9 19 -0.621 | 0.181 | 987.269 ; 0.89 | 3.45 | 1.13
9 20 -0.252 | 0.08 7114 {087 | 338 | 117
9 21 0.085 | 0044 | 13415 {083 | 3.16 | 1.23
9 22 0.227 | 0.04 10.68 08 | 319 | 129
9 23 0348 | 0036 12011 | 077 | 3.27 | 1.35
9 24 0471 {0034 7003 (074326 | 1.41
9 25 0.507 1 0.027 475 071326 | 1.47
9 26 0568 {0026 | 4187 | 068 | 3.13 | 1.53
9 27 0.499 | 0.028 2.914 065} 3.14 | 1.59
9 28 0.431 0.03 2975 0.65 | 3.41 1.65
9 29 0531 {0027 | 1868 [062 | 3.4 | 1.71
9 30 0.494 | 0028 | 1.986 06 | 34 | 1.77
9 31 05 0028 | 1487 | 058 3.4 | 1.83
9 32 0464 10027 | 1.182 | 056 | 3.43 | 1.89
9 33 043 (0026 | 1573 053|331 ] 195
9 34 0461 ! 0026 | 1.143 | 051 ] 3.28 | 2.01
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Table B.15: Values of g, for the proton, from the EG1b data. Errors (both statistical and systematic)
are shown, with averaged kinematics in each bin.

Q2 bin | W bin g2 Ostat Osys Taug 201; avg
4 19 -0.442 | 0423 | 0.754 | 0.3 | 0.14 1.1
4 20 084 | 0902 {0128 | 022 | 0.14 | 1.17
4 21 1.263 1 008 [ 018 ] 0.14 | 1.23
4 22 -0.653 | 0.955 | 0.081 | 0.15 | 0.14 | 1.29

Qz bin | W bin g2 Ostat Osys Lavg Q(_zn;q Waug
5 19 -0.018 1 0.086 | 0.545 | 043 | 0.25 1.1
5 20 -0.17 10.182 0108 1 035 | 0.26 | 1.17
5 21 -0029 1021510035029 | 026 | 1.23
5 22 0.041 1021110044 ([ 025]| 026 | 1.29
5 23 0324 | 0228 | 0072 021 ] 026 | 1.35
5 24 -0.182 { 0.259 | 0085 |1 019 | 0.26 | 1.41
5 25 0242 | 031 [ 0075 017 | 0.26 | 1.47
5 26 0306 | 0306 {0096 | 0.15 | 0.26 | 1.53
5 27 -0.011 {0295 01191014 | 0.26 | 1.59
5 28 0431 [ 0311 | 0111 | 013 | 0.26 | 1.65
5 29 0051 | 0514 | 0149 | 012 ] 0.27 | 1.69
5 32 0243 10947 | 0045 |1 009 | 028 | 1.89
5 33 0628 | 092 §0.044 1009 ] 028 | 195




Q2 bin | W bin g2 Tstat Osys | aug 42;_119 Wavg
6 19 0027 10027 {0229 | 06 | 0.5 1.1
6 20 0.039 | 0.046 | 0.073 | 052 | 0.52 | 1.17
6 21 0.149 | 0.051 | 0.022 | 045 | 052 | 1.23
6 22 0017 {0047 |0032 | 04 | 052 ] 1.29
6 23 0.008 | 0.05 005 {035 ] 052 | 1.35
6 24 0.062 | 0.056 | 0.063 1 0.32 | 0.52 | 1.41
6 25 0032 {0.083 10077 1027|048 | 1.47
6 26 0076 | 009 0095024 | 046 | 1.53
6 27 -0.003 10.125 { 0.114 1 0.21 | 0.44 | 1.59
6 28 -0.089 10193 {0101 | 0.2 | 047 | 1.64
6 29 0616 [ 02350108 02 | 051 | 1.71
6 30 0.129 {0232 1 0082 | 0.18 | 0.51 | 1.77
6 31 -0.258 | 0.236 | 0053 | 0.17 | 0.51 | 1.83
6 32 -0.111 [ 0.258  0.041 | 0.16 | 0.5 1.89
6 33 -0261 { 0.334 | 0047 | 0.13 | 045 | 195
6 34 1.021 | 0.704 | 0.097 | 0.11 | 0.39 | 199

539



Q2 bin | W bin g2 Tstat T sys Taug qu Wa'vg
7 19 -0.059 [ 0.014 | 0.143 | 0.73 | 0.94 1.1
7 20 -0.019 1 0.026 | 0.061 | 0.65 | 0.93 | 1.17
7 21 0027 10034 | 0027 | 059 | 0.95 | 1.23
7 22 0.058 [ 0.032 1003305410951} 1.29
7 23 -0.016 | 0.046 [ 0.049 | 047 | 085 | 1.35
7 24 0.045 | 0061 | 0.056 | 045 0.92 | 1.41
7 25 0.082 | 0.076 | 0.062 | 042 | 0.92 | 1.47
7 26 -0.015 | 0.108 | 0.067 | 0.37 | 0.84 | 1.53
7 27 0.067 1 0.117 | 009 ;033 ) 082 | 1.59
7 28 0.138 | 0.16 [ 0.078 | 0.31 { 0.81 | 1.64
7 29 0446 | 0.231 | 0078 | 027 | O0.77 | 1.71
7 30 -0.82 [ 0217 | 008 | 025 0.78 | 1.77
7 31 -1421 | 0394 | 006 | 027 | 092 | 1.82
7 32 -1539 10543 | 0078 | 028 106 | 1.89
7 33 -0.161 { 0.544 | 0.185 | 0.27 { 1.07 | 1.95
7 34 06851 0.78 {0279 1025 1.07 | 1.99
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Q2 bin | W bin gz Tstat Tsys Zavg qu Wa'vg
8 19 -0.021 { 0.03 0284 | 086 213 | 1.1
8 20 0047 10076 | 0.1 0.81 ] 206 | 1.17
8 21 0144} 008 {0094 | 076 | 213 | 1.23
8 23 -0.268 1 0072 101731069 | 214 | 1.35
8 24 0034 [ 0084 | 0.151 1 066 | 214 | 1.41
8 25 -0.179 ; 0.104 | 0.169 | 0.62 | 213 | 1.47
8 26 0435 | 0.11 {0213 | 059 | 212 | 1.53
8 27 -0273 10107 | 0164 1 056 | 2.11 | 1.59
8 28 -0.156 | 0.122 | 0.218 | 053 | 213 | 1.65
8 29 0199 {0138 1 0174 | 05 | 212 | 1.71
8 30 -0.245 | 0.134 | 0.185 1 048 | 211 | 1.77
8 31 -0.188 | 0.145 { 0.162 | 0.46 | 2.11 | 1.83
8 32 -0084 [ 0.167 | 0.15 | 043 | 205 | 1.89
8 33 -0.193 [ 0222 1 0247 | 038 | 1.83 | 1.95
8 34 -0.012 { 0.329 | 0.269 | 0.37 | 1.81 2
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Q% bin | W bin g2 Ostat | Osys | Tavg v | Wavg
9 19 0052100230854 | 09 | 288 | 1.09
9 20 0.019 | 0074 [ 0451 | 086 | 288 | 1.16
9 21 0.113 {0083 0285|082 288 | 1.24
9 22 -0.195 | 0.066 | 0.241 | 0.79 | 288 | 1.29
9 23 0168 | 007510323 | 075 288 | 1.35
9 24 0034 | 0093 {0265 (072288 | 1.41
g 25 011210103 | 0258 1 069 | 288 | 1.46
9 26 0212 | 011510327 1 066 | 287 | 1.53
9 27 0.003 { 012 0217 | 064 | 287 | 1.58
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B.7 Moments and integrals

Table B.16: Values of the moment I'} from the integration of g,. Values and systematic errors are
shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases.

l bin ! Q?wq(Gevz) l I'1(d) l o'sys(d) lrl(d"'m) o'sys(d"'m) Tstat

10 0.051 -0.0122 | 0.0005 | -0.0097 0.0020 | 0.0026
11 0.060 -0.0121 | 0.0009 | -0.0087 0.0019 | 0.0019
12 0.071 -0.0157 | 0.0012 | -0.0118 0.0019 | 0.0017

13 0.084 -0.0188 | 0.0013 | -0.0144 0.0019 | 0.0018
14 0.101 -0.0144 | 0.0015 | -0.0093 0.0020 | 0.0019
15 0.121 -0.0153 | 0.0018 | -0.0095 0.0022 | 0.0020
16 0.144 -0.0115 | 0.0023 | -0.0051 0.0026 | 0.0019
17 0.174 -0.0114 | 0.0027 | -0.0045 0.0030 | 0.0016
18 0.206 -0.0064 | 0.0030 | 0.0011 0.0034 | 0.0014
19 0.246 0.0019 { 0.0034 | 0.0109 0.0037 | 0.0014
20 0.291 0.0072 | 0.0038 | 0.0179 0.0041 0.0011
21 0.346 0.0171 | 0.0042 | 0.0297 0.0045 | 0.0010
22 0.413 0.0261 | 0.0045 | 0.0408 0.0049 ! 0.0010
23 0.493 0.0326 | 0.0049 | 0.0499 0.0052 | 0.0010
24 0.588 0.0416 | 0.0051 | 0.0620 0.0055 | 0.0010
0.702 0.0495 | 0.0052 | 0.0736 0.0056 | 0.0010
0.837 0.0575 | 0.0051 | 0.0861 0.0056 | 0.0010
1.002 0.0601 | 0.0047 | 0.0943 0.0055 | 0.0009
1.195 0.0618 | 0.0042 | 0.1023 0.0052 | 0.0009
1.423 0.0625 | 0.0037 | 0.1104 0.0050 | 0.0008
1.702 0.0595 | 0.0032 | 0.1165 0.0049 | 0.0007
31 2.033 0.0544 | 0.0027 | 0.1215 0.0047 | 0.0007
2.417 0.0454 | 0.0023 | 0.1240 0.0047 | 0.0006
2.875 0.0353 | 0.0019 | 0.1265 0.0046 | 0.0006
3.418 0.0256 | 0.0015 | 0.1282 0.0046 | 0.0005
3.985 0.0176 | 0.0013 | 0.1290 0.0046 | 0.0006
4.720 0.0070 | 0.0011 | 0.1302 0.0046 | 0.0005
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Table B.17: Values of the moment I'}; from the integration of g;. Values and systematic errors are
shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases. All values except Q? are multiplied by a factor of 100.

(B [ QZog(GeVY) | Ta(d) | 00yl | To(0+M) | 02gal@M) | 0tar |
10 0.051 -0.0059 | 0.0001 | -0.0053 0.0002 | 0.0018
11 0.060 -0.0083 { 0.0002 | -0.0069 0.0003 0.0018
12 0.071 -0.0164 | 0.0003 | -0.0144 0.0005 0.0024
13 0.084 -0.0283 | 0.0005 | -0.0254 0.0008 0.0032
14 0.101 -0.0323 | 0.0009 | -0.0284 0.0013 0.0045
15 0.120 -0.0496 | 0.0016 | -0.0444 0.0022 0.0063
16 0.143 -0.0511 | 0.0031 | -0.0443 0.0040 0.0080
17 0.173 -0.0936 | 0.0054 | -0.0877 0.0066 0.0084
18 0.204 -0.1193 | 0.0083 | -0.1123 0.0097 0.0096
19 0.244 -0.1149 | 0.0121 | -0.1070 0.0135 0.0113
20 0.291 -0.1451 | 0.0176 | -0.1364 0.0189 0.0122
21 0.346 -0.1229 | 0.0264 | -0.1139 0.0275 0.0133
22 0.414 -0.0895 | 0.0373 | -0.0802 0.0382 0.0145
23 0.492 -0.0479 | 0.0505 | -0.0385 0.0512 0.0156
24 0.588 0.0462 | 0.0631 { 0.0560 0.0636 0.0168
25 0.700 0.2158 | 0.0741 | 0.2264 0.0746 0.0181
26 0.831 0.4026 | 0.0822 | 04153 0.0825 0.0212
27 1.002 0.4979 | 0.0851 0.5176 0.0853 0.0234
28 1.193 0.6833 | 0.0825 | 0.7105 0.0827 0.0216
29 1.416 0.8458 | 0.0761 | 0.8886 0.0764 0.0220
30 1.699 0.9557 | 0.0688 | 1.0245 0.0693 0.0217
31 2.031 1.0104 { 00618 | 1.1203 0.0626 0.0190
32 2.419 0.9903 | 0.0560 | 1.1659 0.0572 | 0.0168
33 2.877 0.9175 | 0.0520 ;| 1.1964 0.0536 0.0156
34 3.419 0.7833 | 00473 | 1.1916 0.0492 | 0.0164
35 4.035 0.6266 | 0.0446 | 1.1861 0.0467 0.0200
36 4,751 0.3245 | 0.0411 | 1.1653 0.0436 | 0.0193
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Table B.18: Values of the moment I': from the integration of g;. Values and systematic errors are
shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same
in both cases. All values except Q? are multiplied by a factor of 104.

[ bin | Q2,,(GeV?) | Ts(d) [ gsys(d) | Ts(d+m) | gsys(d+m) | ostar |

10 0.051 -0.0036 | 0.0001 | -0.0026 0.0001 0.0015
11 0.060 -0.0072 | 0.0001 | -0.0042 0.0001 0.0023
12 0.071 -0.0202 | 0.0004 | -0.0141 0.0004 | 0.0043
13 0.084 -0.0502 | 0.0004 | -0.0384 0.0004 | 0.0076
14 0.101 -0.0779 | 0.0009 | -0.0568 0.0009 | 0.0143
15 0.120 -0.1625 | 0.0019 | -0.1258 0.0019 | 0.0267
16 0.143 -0.2052 | 0.0051 | -0.1442 0.0052 | 0.0442
17 0.173 -0.5542 | 0.0137 | -0.4832 0.0139 | 0.0654
18 0.204 -0.9701 | 0.0327 | -0.8668 0.0332 | 0.0921
19 0.244 -1.2384 | 0.0653 | -1.0950 0.0666 | 0.1356
20 0.291 -2.1775 | 0.1149 | -1.9893 0.1178 1 0.1824
21 0.346 -2.6968 | 0.2084 | -2.4677 0.2136 1 0.2377
22 0.414 -3.3930 | 0.3594 | -3.1255 0.3672 | 0.3121
23 0.492 -3.9101 | 0.6224 | -3.6165 0.6323 | 0.3904
24 0.588 -4.1312 | 0.9745 | -3.8185 0.9860 | 0.4835
25 0.700 -1.3321 | 1.3950 | -1.0199 1.4073 | 0.5810
26 0.829 22229 | 1.8515 | 2.5305 1.8637 | 0.7454
27 1.001 3.2824 | 22448 | 3.7143 2.2557 | 0.9430
28 1.193 9.2125 | 2.4667 | 9.6268 24760 | 0.9242
29 1.414 15.0471 | 24596 | 155934 | 24685 | 0.9571
30 1.698 20.7525 | 2.3036 | 21.4205 | 2.3163 1.0450
31 2.031 24.6403 | 2.0892 | 255637 | 2.1119 | 0.9346
32 2419 278380 | 1.9030 | 29.1144 1.9392 | 0.8333
33 2.880 29.2122 | 1.7945 | 31.4584 1.8413 | 0.7285
34 3.417 28.1168 | 1.6856 | 32.0632 1.7441 0.7354
35 4.066 25.2141 | 1.6358 | 32.2644 1.7010 | 0.8681
36 4.787 15.7258 | 1.5672 | 31.6886 1.6412 | 0.8819
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Table B.19: Values of the moment f g»dz from the integration of g.. Values and systematic errors
are shown for the data contributions (d) and for the data + model (d+m}). Statisticatl errors are the
same in both cases.

{ bin | Q2, (GeV?) | [ godar(d) | 0eye(d) | [ gada(d+m) | osys(d+m) | ot
2 0.071 0.0489 | 0.0926 0.0780 0.0971 0.0466
3 0.112 -0.0249 | 0.0447 -0.0076 0.0468 | 0.0585
4 0.246 -0.0084 | 0.0180 -0.0000 0.0288 | 0.0283
5 0.434 . 0.0040 | 0.0128 0.0181 0.0234 | 0.0157
6 0.935 -0.0310 | 0.0104 -0.0098 0.0155 | 0.0174
7 2.102 -0.0605 | 0.0083 -0.0423 0.0093 | 0.0113
8 3.451 -0.0238 | 0.0077 -0.0175 0.0082 | 0.0085

Table B.20: Values of the moment [ z?g,dz from the integration of g». Values and systematic errors
are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the
same in both cases. All values except Q2 are multiplled by a factor of 100.

l bin [ ngq (GeV?) f z°goda(d) l Tsys(d) [ f x°godz(d+m) T sys(d+M) Tstat
2 0.071 0.0047 0.0116 0.0295 0.0492 | 0.0047
3 0.085 0.0031 0.0116 0.0396 0.0492 | 0.0215
4 0.225 -0.1461 0.0242 -0.1457 0.0325 0.1923
5 0.483 0.1037 0.1553 0.1018 0.1556 0.1451
6 0.851 -0.0616 0.1792 -0.0736 0.1797 0.1742
7 1.929 -1.8138 0.2491 -1.9515 0.2498 0.3812
8 3.273 -1.4575 0.3404 -1.8756 0.3420 0.3967
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Table B.21: Values of the integral d, from the integration of g, and g, data. Values and systematic
errors are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are
the same in both cases.

| bin | @2,,(GeV?) | da(d) | ouys(d) | do(d+m) | 05ys(d+m) | ostar |

3 0.134 -0.0046 | 0.0049 | -0.0042 0.0109 | 0.0106
4 0.222 -0.0073 | 0.0028 | -0.0068 0.0041 0.0065
5 0.482 0.0002 | 0.0091 | 0.0005 0.0092 | 0.0056
6 0.806 -0.0132 | 0.0125 | -0.0129 0.0126 | 0.0085
7 2.095 -0.0451 | 0.0203 | -0.0527 0.0222 { 0.0149
8 2.879 -0.0334 | 0.0323 | -0.0612 0.0395 | 0.0145
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Table B.22: Values of the spin polarizability integral [ z2A4,Fid=. Values and systematic errors are
shown for the data contributions (d) and for the data + model (d+m). Statistical errors are the same

in both cases. All values except (2 are muitiplied by a factor of 100.

[Bin | Q2,,(GeV?) [ [ 2741 F1da(Q) | 05y5(@) | [ 22 A1 F1da(0+M) | 0ol @ M) | Oprar |
10 0.051 -0.0097 0.0001 -0.0105 0.0001 0.0018
11 0.060 -0.0164 0.0003 -0.0154 0.0003 0.0018
12 0.071 -0.0306 0.0003 -0.0286 0.0004 0.0024
13 0.084 -0.0521 0.06006 -0.0491 0.0006 | 0.0032
14 0.101 -0.0707 0.0010 -0.0663 0.0010 0.0045
15 0.120 -0.1097 0.0017 -0.1036 0.0017 | 0.0063
16 0.143 -0.1420 0.0031 -0.1336 0.0031 0.0080
17 0173 -0.2267 0.0053 -0.2173 0.0053 0.0084
18 0.204 -0.3012 0.0080 -0.2893 0.0080 0.0096
19 0.244 -0.3460 0.0115 -0.3314 00115 0.0113
20 0.291 -0.4189 0.0169 -0.4017 0.0169 0.0122
21 0.346 -0.4199 0.0255 -0.4007 0.0256 0.0133
22 0.414 -0.3895 0.0365 -0.3687 0.0366 0.0145
23 0.492 -0.3184 0.0498 -0.2967 0.0499 0.0156
24 0.588 -0.1754 0.0626 -0.1533 0.0627 0.0168
25 0.700 0.0764 0.0739 0.0985 0.0740 | 0.0181
26 0.831 0.3558 0.0821 0.3788 0.0822 0.0212
27 1.002 0.5441 0.0852 0.5766 0.0852 | 0.0234
28 1.193 0.8228 0.0826 0.8605 0.0827 | 0.0216
29 1.416 1.0529 0.0762 1.1073 0.0765 0.0220
30 1.699 1.2133 0.0688 1.2933 0.0695 0.0217
31 2.031 1.2920 0.0618 1.4133 0.0630 0.0190
32 2.419 1.2683 0.0561 1.4543 0.0577 0.0168
33 2.877 1.1732 0.0522 1.4667 0.0542 0.0156
34 3.419 1.0030 0.0476 1.4344 0.0502 0.0164
35 4.035 0.7967 0.0450 1.3947 0.0479 0.0200
36 4.751 04162 0.0418 1.3407 0.0452 0.0193
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Table B.23: Values of the forward spin polarizability v¢. Values and systematic errors are shown for
the data contributions (d) and for the data + model (d+m). The values of o and its errors are given
in units of 10— tm. Statistical errors are the same in both cases.

l bin l ngq(Gevz) l 'YO(d) Usys(d) ! Tﬂ(d‘["m) Usys(d'H'n) [ Tstat l

10 0.051 -1.1381 | 0.0090 | -1.2346 0.2799 | 0.2170
11 0.060 -1.1975 ] 0.0324 | -1.1275 0.1250 | 0.1335
12 0.071 -1.3482 | 0.0267 | -1.2578 | 0.0433 | 0.1049
13 0.084 -1.3557 | 0.0254 | -1.2774 0.0294 | 0.0828
14 0.101 -1.0816 | 0.0229 | -1.0153 0.0233 | 0.0691

15 0.120 -0.9800 | 0.0199 | -0.9254 0.0199 | 0.0565
16 0.143 -0.7509 | 0.0154 | -0.7068 0.0154 | 0.0421
17 0.173 -0.6858 | 0.0123 | -0.6573 0.0123 | 0.0254
18 0.204 -0.5486 | 0.0094 | -0.5269 0.0094 | 00174
19 0.244 -0.3720 | 0.0082 | -0.3564 0.0082 | 0.0121
20 0.291 -0.2639 | 0.0069 | -0.2531 0.0069 | 0.0077
21 0.346 -0.1577 | 0.0056 | -0.1505 0.0056 | 0.0050
22 0.414 -0.0856 | 0.0043 | -0.0810 0.0043 | 0.0032
23 0.492 -0.0415 | 0.0030 | -0.0386 0.0030 | 0.0020
24 0.588 -0.0134 | 0.0020 | -0.0117 0.0020 | 0.0013
25 0.700 0.0035 | 0.0012 | 0.0045 0.0012 | 0.0008
26 0.831 0.0097 | 0.0006 | 0.0103 0.0006 | 0.0006
27 1.002 0.0084 | 0.0003 | 0.0089 0.0003 | 0.0004
28 1.193 0.0075 | 0.0002 | 0.0079 0.0002 | 0.0002
29 1.416 0.0058 | 0.0001 | 0.0061 0.0001 0.0001
30 1.699 0.0038 | 0.0000 | 0.0041 0.0000 | 0.0001
31 2.031 0.0024 | 0.0000 | 0.0026 0.0000 | 0.0000
32 2.419 0.0014 | 0.0000 | 0.0016 0.0000 | 0.0000
33 2.877 0.0008 | 0.0000 | 0.0010 0.0000 | 0.0000
34 3.419 0.0004 | 0.0000 | 0.0006 0.0000 | 0.0000
35 4.035 0.0002 | 0.0000 | 0.0003 0.0000 | 0.0000
36 4.751 0.0001 | 0.0000 | 0.0002 0.0000 | 0.0000
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Table B.24: Values of the integral B; used in hyperfine splitting calculations. Values and systematic
errors are shown for the data contributions (d) and for the data + model (d+m). Statistical errors are
the same in both cases.All values except > are multiplied by a factor of 100.

[bin | Q2,,(GeV?) | Bi(d) | ouyeld) [ Bi(d+m) | ouyald+m) | optar |
10 0.051 -1.1234 | 0.0567 | -0.8820 | 0.1825 | 0.2350
11 0.060 -1.1006 | 0.0904 | -0.7707 | 0.1661 | 0.1654
12 0.071 13984 | 01118 | -1.0224 | 0.1661 | 0.1518
13 0.084 -1.6416 | 0.1249 | -1.2123 0.1704 0.1550
14 0.101 12146 | 0.1442 | -0.7268 | 0.1830 | 0.1618
15 0.121 -1.2489 | 0.1721 | -06983 | 0.2071 | 0.1668
16 0.144 -0.9164 | 0.2080 | -0.2951 | 0.2428 | 0.1634
17 0.175 -0.8008 | 0.2421 | -0.1314 | 0.2760 | 0.1427
18 0.206 -0.2072 | 0.2749 | 0.4327 | 0.3093 | 0.1195
19 0.247 0.4430 | 0.3046 | 1.3325 | 03390 | 0.1170
20 0.291 0.9690 | 0.3323 | 2.0210 | 03667 | 0.0937
21 0.346 1.8602 | 0.3616 | 3.1063 | 0.3962 | 0.0869
22 0.413 26523 | 0.3884 | 4.1176 | 04235 | 0.0842
23 0.493 32290 | 04158 | 49445 | 04525 | 0.0833
24 0.588 4.0000 | 04372 | 6.0281 | 04774 | 0.0846
25 0.703 46522 | 04478 | 7.0522 | 04949 | 0.0853
26 0.838 5.3477 | 0.4414 | 82006 | 05003 | 0.0855
27 1.003 55875 | 04194 | 89899 | 04956 | 0.0809
28 1.196 57131 | 03821 | 9.7424 | 04837 | 0.0767
29 1.424 57682 | 0.3397 | 105415 | 04723 | 0.0743
30 1.703 54995 [ 0.2940 | 11.1617 | 04631 | 0.0657
31 2.033 5.0401 | 0.2513 | 11.6950 | 0.4575 | 0.0602
32 2.417 42019 | 0.2104 | 11.9954 | 04541 | 0.0549
33 2.875 3.2675 | 0.1795 | 12.2948 0.4535 0.0517
34 3.418 2.3663 | 0.1402 | 125185 | 0.4540 | 0.0501
35 3.983 16263 | 0.1233 | 12.6399 | 0.4551 | 0.0598
36 4719 0.6392 | 0.1057 | 12.7991 | 04569 | 0.0429
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Table B.25: Values of the integral B, used in hyperfine splitting calculations. Values and systematic
errors are shown for the data contributions (d) and for the data + model (d+m}. Statistical errors are
the same in both cases. All values except Q2 are multiplied by a factor of 100.

bin szjL(Gevz) By (d) Tsys (d) B, (d"’m) Tsys (d"'m) Tstat

0.071 0.0571 | 0.1386 | 0.3023 0.4825 0.0567
0.086 0.0178 | 0.1372 | 0.3050 0.4753 0.2100
0.244 -0.3096 | 0.1753 | -0.3057 0.1824 0.4459
0.505 0.0706 | 0.1383 | 0.0714 0.1404 0.1660
0.906 -0.1096 | 0.1209 | -0.1197 0.1218 0.1310
2.096 -0.6326 | 0.0719 | -0.6922 0.0725 | 0.1282
3.442 -0.2927 | 0.0907 | -0.3982 0.0911 0.0842

WO N W
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Table B.26: Values of the leading twist integral B¥'" used in hyperfine spiitting calculations. Values
and systematic errors are shown for the data contributions (d) and for the data + model (d+m).
Statistical errors are the same in both cases. All values except Q? are multiplied by a factor of

100.
bin | Q2,,(GeV?) [ BY7(d) | 0sys(d) [ BY 7 (d+m) [ 04ys(d+m) | outar |
10 0.051 0.0551 | 0.0003 0.0512 0.0070 | 0.0162
11 0.060 0.0636 | 0.0025 0.0556 0.0084 | 0.0128
12 0.071 0.1010 | 0.0034 0.0920 0.0107 | 0.0134
13 0.084 0.1388 | 0.0046 0.1285 0.0119 | 0.0145
14 0.101 0.1279 | 0.0064 0.1166 0.0133 | 0.0167
15 0.120 0.1569 | 0.0090 0.1449 0.0145 | 0.0187
16 0.143 0.1336 | 0.0121 0.1209 0.0160 | 0.0190
17 0.172 0.1876 | 0.0151 0.1790 0.0177 | 0.0157
18 0.204 0.1878 | 0.0179 0.1794 0.0197 | 0.0148
19 0.244 0.1404 | 0.0218 0.1325 0.0229 | 0.0143
20 0.291 0.1336 | 0.0267 0.1264 0.0274 | 0.0128
21 0.346 0.0746 | 0.0323 0.0681 0.0327 | 0.0116
22 0.414 0.0156 | 0.0368 0.0098 0.0371 0.0106
23 0.492 -0.0293 | 0.0399 -0.0347 0.0401 0.0097
24 0.588 -0.0995 | 0.0407 -0.1049 0.0408 | 0.0090
25 0.700 -0.1757 | 0.0392 -0.1813 0.0393 | 0.0084
26 0.832 -0.2374 | 0.0348 -0.2440 0.0348 | 0.0085
27 1.002 -0.2468 | 0.0291 -0.2559 0.0291 0.0079
28 1.193 -0.2713 | 0.0228 -0.2829 0.0229 | 0.0065
29 1.417 -0.2781 | 0.0175 -0.2940 0.0176 | 0.0059
30 1.700 -0.2631 | 0.0134 -0.2851 0.0136 | 0.0049
31 2.031 -0.2357 | 0.0106 -0.2654 0.0109 | 0.0038
32 2.419 -0.1954 | 0.0086 -0.2358 0.0090 [ 0.0030
33 2.876 -0.1534 | 0.0073 -0.2074 0.0078 | 0.0025
34 3.419 -0.1110 | 0.0061 -0.1773 0.0067 | 0.0023
35 4.025 -0.0755 | 0.0055 -0.1520 0.0062 | 0.0024
36 4.743 -0.0330 | 0.0049 -0.1291 0.0057 | 0.0020
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