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ABSTRACT OF DISSERTATION

EFFECTIVE FIELD THEORY APPLICATIONS: FROM DARK MATTER TO
NEUTRINO NUCLEON SCATTERING

Weakly-interacting-massive-particles (WIMPs) are a large class of viable dark matter
candidates. We compute cross sections for electroweak-doublet WIMPs scattering
on atomic nuclei, at leading and subleading order using heavy WIMP effective field
theory. Neutrino-nucleon charged current elastic scattering is an important process
in the detectors of long baseline accelerator neutrino oscillation experiments. We
compute QED radiative corrections to this process employing soft-collinear effective
field theory.
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Chapter 1 Introduction

Among the most prominent unresolved puzzles in physics are dark matter nature [1]
and neutrino mass origin [2, 3] problems. We will briefly introduce these two problems
and effective field theories for particles in this chapter. We will employ effective field
theory methods to study particle scattering processes relevant to these two problems
in the following chapters.

1.1 Introduction of Effective Field Theories

Effective field theories are constructed to describe physics at low energies and long dis-
tances where underlying higher energy scale physics can be integrated out. For exam-
ple, heavy particle effective field theory is useful to study atomic bound states, heavy
meson decays [4-7], particularly when we cannot perturbatively solve low energy QCD
but could establish an effective theory based on the power counting Aqep/m, < 1
for heavy quark systems.

The idea of integrating out the mass M of a heavy particle can be applied to
construct an effective theory at a scale A that we are interested in, with A/M < 1,
when we lack of information from the high energy scale M. We will apply it to
compute dark matter nucleon elastic scattering cross section, treating the dark matter
particle as a heavy particle compared to any Standard Model particles. So even if
we do not know the specific physics beyond Standard Model, we could study its low
energy effects by integrating out the high energy scale M. The high energy scale
information will be encoded in a small set of parameters (Wilson coefficients), like a
multipole expansion of a charge distribution if we measure from a distance.

Soft-collinear effective field theory (SCET) [8-15] like heavy quark effective the-
ory, also originated from heavy meson decays, now has been widely applied to pro-
cesses with energetic or massless final states, including collider jet events [16-18],
electroweak radiative corrections at colliders [19, 20] and in dark matter annihila-
tions [21]. In these problems, the final state energetic particles move along a partic-
ular direction (collinear direction). The transverse momentum p, perpendicular to
this collinear direction is small compared to the hard scales energy E, heavy particle
mass M or momentum transfer () in the problem. This is an intermediate scale com-
pared to the lowest energy scale in the problem, the soft scale. If we define a power
counting small parameter k ~ p, /E, then the soft scale is ~ k?E. The physics can be
factorized into soft (~ k?E) scale, collinear (~ kE) scale and hard (~ E) scale, three
parts [22-28]. When we are interested in lower scale physics, we can integrate out the
hard scale and the hard scale physics will serve as Wilson coefficients in the effective
soft-collinear theory. SCET allows for perturbative resummation of large logarithms
using standard operator methods when fixed order calculations are insufficient. Long
baseline accelerator neutrino beams interact with a nucleus target in the detector
producing energetic charged leptons. We will apply SCET to compute the radiative
correction in this process integrating out the non-perturbative hadronic physics.



1.2 Introduction to Dark Matter

There has been a missing-mass problem in astronomy observations since 1930s when
F. Zwicky found that a lot more mass than the luminous mass in the Coma clus-
ter needed to bound the individual galaxies with large velocities [29]. It manifests
the need of non-luminous mass to explain the observed curves of rotational veloci-
ties versus distance from the core of the rotational galaxies [30] in the framework of
Newton’s gravity. The existence of the non-luminous mass which we call “dark mat-
ter” is further supported by gravitational lensing effects seen in the optical images of
clusters and quasars [31-33]. The observation of Bullet clusters collision [34] strongly
favors the dark matter existence over the alternative theories such as MOND [35] to
modify the Newtonian gravity, since it exhibits a clean separation of electromagnetic-
interactive matter and gravitationally-interactive matter, and the latter is evidently
the dark matter. From cosmological microwave background (CMB) observation [36],
we can determine the abundance of dark matter is about 26.5% of the whole Uni-
verse’s energy density at current time.

A natural question to ask: what is it? From astronomy evidence, we could infer
that it has some basic properties. First, it must be massive instead of massless.
Second, it doesn’t interact electromagnetically, or could be at most extremely feebly
charged. Third, it should be cold, which means it has a small velocity compared
to the speed of light in order to form gravitational wells such as dark matter halos
around galaxies to hold the luminous matter in. Last, it should be stable and doesn’t
decay within a Hubble time that we could observe about 10! s.

With the known properties, we still cannot pin-down the exact nature of dark
matter. People investigate the nature of it by studying the phenomenology of a
certain class of dark matter candidates at a particular mass range usually with some
theoretical motivation [37, 38]. It can be as tiny as a fundamental particle, or as
large as a macroscopic stellar object and its mass can vary from 10722 eV to 107! eV
(38, 39], see Fig. 1.1.

Particle Macroscopic
102 eV keV GeV 100 TeV 10'%|GeV 10 eV 1071 eV
| # | | |
[ I [ [
“Ultra light” “light” WIMP M, PBH Dwarf
Bosonic DM P

Figure 1.1: Dark matter candidates mass spectrum.

Among all the candidates, the Weakly Interacting Massive Particle (WIMP) has
long been considered as a well-motivated dark matter candidate [1, 37, 40-48]. If dark
matter is a fundamental particle and was in thermal equilibrium with other particles
in the early universe annihilating to each other Yy < 1), we can estimate the
thermal average of cross section times the relative velocity (ov) ~ N 10726 cm3s™!
by solving the thermal equilibrium equation of dark matter particles annihilation-



creation against the expansion of our Universe, see details in Ref. [49], where p, is the

critical energy density of the Universe, m, is the dark matter particle mass and n,, is

the dark matter number density. The quantity —f~ = (Qth)_l can be determined
XX

from astronomical observation of CMB, which tells us Q,h* ~ 0.12 [36]. Then we can
infer that (ov) ~ 107%° cm®s~!. If the dark matter particle is a WIMP, by definition it
interacts with the Standard Model particles via weak gauge bosons by weak coupling
a ~ 0.01 and yields (ov) ~ a?(100GeV)™? ~ 107*cm?3s™!, which coincidentally
provides the exact correct order of magnitude for the thermal cross section that we
determined before by astronomical observation data. This is called a WIMP miracle.

Thus, there are many experiments searching for WIMPs and mainly three types:
collider searches, direct detection experiments and indirect detection experiments.
Collider searches look for signals of dark matter production from standard model
particles via exchange of Standard Model or beyond Standard Model mediators, or
UV-complete models such as supersymmetry or models with rich dark sectors [50].
Indirect detection experiments use astronomy telescopes to detect the stable final
products of dark matter annihilation processes, such as Gamma rays, neutrinos or
cosmic-ray anti-matter [51-55]. Direct detection experiments are fixed targets waiting
for dark matter particles traveling to them and to scatter on them [56-65].

However, with all kinds of experiments going on, WIMPs still remain unde-
tected [66, 67] so far. WIMPs naturally fit in the paradigm of supersymmetric ex-
tensions of the Standard Model [49] yet we have not found evidence at the LHC
for supersymmetric particles at the electroweak scale [68, 69]. Within the WIMP
paradigm, the situation is suggestive that new particles are somewhat heavy com-
pared to the electroweak scale, and in particular, Mwmp > M+, Mzo. In addition,
in order to produce the observed dark matter abundance, the processes of WIMPs
annihilating into Standard Model particles thermally in the early universe require the
WIMPs’ masses to be at TeV scale [70]. In this mass regime, heavy WIMP effec-
tive field theory becomes a powerful method to study the universal behavior in low
energy WIMP-nucleus scattering processes [71-73], predicting cross sections for dark
matter direct detection experiments that are minimally sensitive to unknown ultra-
violet (UV) physics. In the following chapter 2, we will use heavy WIMP effective
field theory to parameterize the possible interactions of an important class of WIMP
candidates with the Standard Model and compute the cross sections in the direct
detection experiments.

1.3 Introduction to Neutrino Oscillation

Neutrinos are massless in the Standard Model. However, in the late 1990’s and early
2000’s, discovery of neutrino flavor changing with time as propagating in space (oscil-
lation) from atmosphere and solar neutrinos experiments [74, 75] provides compelling
evidence that they are massive and a certain flavor neutrino is a mixed state of dif-
ferent neutrino mass eigenstates. It stimulates more experiments to measure the
neutrino oscillation and determine the parameters of its flavor-mass mixing matrix,
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [76, 77], including long baseline



accelerator experiments [78-84] and reactor experiments [85-89].

Analogous to the quark CKM matrix [90, 91], PMNS matrix is parametrized by
mixing-angles and phases in the leptonic sector. For three flavor neutrinos, there are
three mixing-angles 6,2, 023, 013 and a CP-violating phase dcp in the PMNS matrix,!

C12 C13 S12 €13 sige "o
_ i i
U= | —s12¢c23 — c12513 523 €"°°"  C12 Ca3 — S12 513 Sa3 €'°CF C13 523 . (1.1
is is
S12 893 — C12 813 C23 €°°F  —CoCa3 — S12 813 C23€°°F 13 Co3

where ¢;; = cos6;; and ¢;; = sinb,;, 0;; € [0, 7/2] and ocp € [0, 27].

According to current experimental data, there could be two types of mass ordering
for these three states, normal ordering (NO): m; < mg < mg and inverted ordering
(I0): mg < my < my. Mass hierarchy is defined by Am;; = m? —m?. The experimen-
tal measurement of these parameters has entered a precision era. The parameters 65,
0,3, mass hierarchies Am2, and |Am2,| have been well determined. However, mass
ordering is still unknown, fy3 and dcp have large uncertainties [98]. We yet need
to narrow down uncertainty to determine whether there is non-zero CP-violation or
not. Precise measurement of neutrino oscillations is crucial for us to understand the
physical leptonic sector which is beyond Standard Model. CP-violation information
in the leptonic sector also could help us understand matter anti-matter asymmetry
in our universe.

We will focus on the long baseline accelerator neutrino oscillation experiments and
compute the radiative correction in the detectors. The accelerator neutrino beams are
produced by colliding protons into pions and pions decaying into muon neutrinos at
the source. After the neutrino beam travels a long distance about kilometer order, we
measure the beam at the far detector. The probability of the original muon neutrino
oscillating to an electron neutrino is approximately [99]

22 2 2 )
o A2 . 9 sin® A Ale .9 9 sin“ AA
P, sv. (5,—00) = 4sin 013 sin 923<1 AP (Am?’l) sin“ 2015 cos 02gT
Am3 sin AAsin (1 F A)A
85 JOp cos (A £6 1.2
T8 R, ep cos (A Fdop) = (1.2)
where
Am2. L 2F,V

Jopt = 012812023823033813 , A= 31 A= (1.3)

AE, AmZ,’

with L being the baseline distance, V' being the effective earth matter potential, the
upper sign in “4+” or “F” denoting neutrino process and the lower sign denoting
anti-neutrino process.

We measure the muon neutrino and electron neutrino numbers arriving at the far
detector by their event rates and compare with the conversion probability Eq.(1.3)

!Majorana neutrinos have two other phases in addition to écp compared to Dirac neutrinos, but
they don’t contribute to the neutrino oscillations [92-97].



to determine the PMNS matrix parameters. In order to obtain precise results from
the neutrino oscillation experiments, it is important to compute the cross sections
and cross section ratios between different flavors of events correctly, thus obtaining
correct fluxes of different flavor neutrinos from their event rates. The charged cur-
rent neutrino nucleon elastic scattering is the dominant process in the detector for
accelerator beam energy at about GeV order. The charged lepton final state particles
like electrons radiate and the energetic photons will form a cone around the charged
lepton, resulting jet-like events. These jet observables exhibit large logarithms as
alog?® (E,/m) where E, is neutrino energy ~ GeV scale and m is electron mass. We
will apply soft-collinear effective field theory to separate scales in this problem and
evolve from high scale to low scale by renormalization group evolution to account for
leading logarithms at all orders, reducing uncertainty of fixed order calculations.

1.4 HQET and SCET Construction

A particle is a representation of our spacetime symmetry Poincaré group. The little
group [100] of Poincaré group is the three dimensional rotation group for a massive
particle and the two dimensional Euclidean group for a massless particle. It leads to
the heavy particle effective theory parametrized by a timelike vector v* with v? = 1
for a massive particle with momentum p# = Muv#, and soft-collinear effective field
theory parametrized by a lightlike vector n#* with n? = 0 for a massless particle with
momentum p* = En.

We can construct Lorentz-invariant effective theories on the particle fields trans-
formation properties under their little groups from a bottom-up approach [101] if we
do not know the UV theory.

To give a sketch of how these effective theories look like, we provide the follow-
ing derivation for heavy quark effective Lagrangian (HQET) and collinear fermion
effective Lagrangian (SCET) from known relativistic Lagrangians.

For a heavy fermion field ¢ with mass M and velocity v, it is useful to do the
decomposition

¢ - e—in~z(¢U + \Ijv) ) (14)

with 91, = ¢, and y¥,, = —V,, which allows us to expand the Lagrangian in powers

of 1/M.
The relativistic Lagrangian £ = 1) (i) — M), with the covariant derivative D, =
Oy — igG;‘tA where G, is a gauge field, becomes

(o + W) [M(p = 1) + D] (0 + 0,). (1.5)

We decompose the covariant derivative as D* = v*v - D 4+ D' | along and perpen-
dicular to velocity direction, and Eq. (1.5) reduces to

Uo(iv - D)y + 0yiID | Uy + UilD  1py — U, (2M + v - D)V, . (1.6)
Equation of motion of ¥, field yields

imev

= 1.
" 2M+iv-D’ (1.7)



which is suppressed by the heavy mass M.
Taking the solution of ¥, Eq.(1.7) back to the Lagrangian Eq. (1.6), we obtain
the heavy fermion effective Lagrangian

Luqrr = y(iv - D)y, + yilp | DY, . (1.8)

2M +iv - D

In this way, we have integrated out the anti-particle component ¥, and at 1/M
order the effective Lagrangian is

J}v (ZU D — lDL) djva (19)

where ]Di =D? + Sou M.

We can work in this low energy effective theory Eq. (1.9) in terms of the field #,
and all the high energy M-scale physics will be suppressed by powers of 1/M.

For a massless particle with momentum p, decomposing it into n-direction with
n* = (1, 0, 0, 1), n-direction with n* = (1, 0, 0, —1) and a direction perpendicular
to n and n.

1, 1 B
p=g@-pn+o(n-ph+pr, (1.10)
where n? =72 =0,n-n = 2.

We decompose the original field ¢ into collinear (n-direction) and anti-collinear
(n-direction) components,

=&+, (1.11)

where the collinear and anti-collinear fields statisfy

Mi
W/ﬁ

6 =0,
=&, & =0. (1.12)
The Lagrangian becomes
Gilbu
~ (6t [% (n-iD)+ L (- iD) +um} (€0t €0)

2

Taking equation of motion of &; from Lagrangian Eq. (1.13), we obtain

%n iD& = —ilp &, (1.14)



Multiply with 7 on both sides of Eq.(1.14), and we have the solution of &, in
terms of &,,
i)y

Plug Eq.(1.15) back in Eq.(1.13), we obtain the effective Lagrangian for the
collinear field &,

-, . o
Lscer =&, §(n~zD) —UDLmUDL &n - (1.16)

We can work in the effective theory Eq. (1.16) for the collinear fermion, and the
anti-collinear field has been integrated out. The gauge bosons are also massless and
we could also construct an effective collinear Lagrangian for them, which we leave
the detailed discussions to Chapter 3.



Chapter 2 Heavy WIMP Nucleus Scattering

2.1 Introduction

As discussed in chapter1, WIMP is a well-motivated candidate and likely has a
heavy mass compared to the electroweak scale. Explicit calculations in heavy WIMP
effective theory [72, 73, 102] for WIMP nucleon elastic scattering reveal an amplitude
level cancellation [71, 102, 103] that results in cross section predictions for electroweak
triplet (Wino-like) and electroweak doublet (Higgsino-like) WIMPs that are below the
sensitivity of current direct detection experiment [104]. Such particles thus remain
as viable dark matter candidates but it is important to understand whether naively
subleading effects could alter the predicted cross section and hence their experimental
observability.

To improve the leading order calculation and to compare with next-generation
experiments [56-58, 105] approaching the neutrino background which is unavoidable
in these direct detection experiments [106], we consider subleading effects from the
following sources. First, 1/M power corrections in the heavy WIMP expansion de-
pend on the specific representation of electroweak SU(2)y, x U(1)y symmetry, and
on the detailed UV completion of the WIMP theory. For the case of electroweak
triplet, power corrections for the pure Wino-like case were themselves found to ex-
hibit a surprising level of cancellation [107], yielding a cross section prediction for
low velocity WIMP-nucleon scattering of o ~ 107%" cm?, for M > 500 GeV. Given
that Higgsino-nucleon scattering suffers an even more severe amplitude cancellation
compared to the Wino case [73], it is important to study the power corrections in
this case. We also explore the consequences of structure beyond the pure Higgsino
limit. Second, a complete accounting of nuclear effects can potentially alter the pre-
dicted direct detection event rate compared to simple models that apply a nuclear
form factor to the single nucleon cross section. Since the cancellation occurs between
single nucleon matrix elements of scalar and tensor currents, nuclear effects could
be effectively enhanced by impacting the scalar and tensor currents differently. We
estimate the impact of such nuclear effects for both triplet and doublet cases, employ-
ing a recent model that incorporates constraints of chiral symmetry and multibody
interactions [108, 109].

2.2 Heavy WIMP Effective Field Theory

2.2.1 Electroweak Symmetric Heavy WIMP Effective Lagrangian

Heavy WIMPs with mass M large compared to the electroweak scale my, may be
described using an effective theory expanded in powers of 1/M. Each order is con-
structed from Lorentz and gauge invariant operators built from Standard Model fields
and the heavy WIMP field; the latter transforms as an SU(2)y x U(1)y multiplet and
is denoted by x,. We consider the WIMP to be a self-conjugate particle here versus



a Dirac fermion which is disfavored by phenomenology. For a heavy self-conjugate
particle the Heavy WIMP Effective Theory (HWET) Lagrangian up to 1/M order
takes the following form in the one-heavy particle sector (cf. Refs. [71, 107]):

D f(H) g(W.B)
oM M M

EHWET:X’U w-D—o0m — + ... Xv s (21)
where v* is the heavy WIMP velocity with v2 = 1. The covariant derivative is
D, = 0, —1igY B, —igsW;t* and D = D* —v*v - D. Dimension five operators
Xof (H)x,» and x,g9(W, B)x, describe WIMP interactions with the Higgs field H and
with the electroweak field strengths W, and B,,,, respectively. dm is a residual mass,
which can be chosen by different field redefinitions for convenience.

Let us consider a Standard Model extension whose particle content consists of a
Dirac fermion WIMP 1) transforming as an SU(2) doublet with hypercharge Y = 1/2.
This situation may arise in models with supersymmetry [49, 110, 111] and extra
dimensions [112]. Related models involve scalars [113, 114].

We anticipate the splitting of mass eigenstates into Majorana components af-
ter electroweak symmetry breaking, and construct the higgs interaction term in the
Majorana basis. Explicitly, Higgs field H and left-handed Dirac fermion 1;, are fun-
damental representations of SU(2) with hyper charge ¥ = 1/2 under U(1) denoted
as (2, 1/2), and 1} is a conjugate representation (2, —1/2). They transform under
SU(2)w x U(1)y as follows,

H — eia'TeifBYH,

v, = €T

vy > e g

Y — €T

Uy - i Y g (22)

where 7 = 1o% with ¢ being Pauli matrices, a; and 3 are real parameters and we

2
o= () w= (k). (23)

have notation
and Yp = ic*}, % = ic*i. Note that the explicit 0% acts as a generator in the
Lorentz group, not to be confused with the gauge group generator 2.

Thus,

i1 i8Y R1 o 0

where

eia-‘reiﬁY 0
U= ( 0 71'05-1'*672‘63/ (25>



The Higgs SU(2)y x U(1)y gauge- and Lorentz-invariant interaction term should
be
1 ¢
Ly = M(HTH)(CHZJEIDL + C2¢RTw/L)

ﬁ%h@ﬂﬂ@%g+awHMH%D (2.6)

s (W HS)(HYr) + co(v H) (H )

+h.c. terms,

where c1, ¢, c3, ¢4, c5 and cg are complex coefficients.
Express the interaction Lagrangian Ly in terms of ¢ and ¢°,

TH _ _
to = S5 @ ) a(l), .7

where the matrix A is

A (ch+icyYHHT (¢ + cy®)HHT 2.8)
@& - g &+ idyrnr) '

and ¢}, ¢y, ¢, ¢, are real numbers, ¢; and ¢ are complex coefficients.
Let us introduce two Majorana fermions

xlz%ww% Yo = (i) — ), (29)

(QZD) B % G _ZZ) (;;) : (2.10)

where y = (Xl, XQ)T is the relativistic field mapping onto the heavy particle field
X» in Eq. (2.1).

Note that the original SU(2)y x U(1)y generators 7% in the (1), 1°) basis and the
new generators T in the Majorana (x1, x2) basis are related as follows,

11 ™ 0\ 1 /1 =i\ _ 1/ 7%—7T  —i(r®+7T) (2.11)
Vo \i —i)\o0o —rT). p\1 ) 2\i(r*+7T) r*—71T T

Define

<
Sl

and we have

S = % G 7) : (2.12)

o [T¢ 0
T = <0 —TaT) , (2.13)
o1 e — gl (7 4 79T
T = 5 (Z'(Ta + TaT) 7O _ 7_aT ) (214>



where a = 0,1,2,3, 7° = %1 and 7° = %ai, o' are Pauli matrices. Note that T° is the

generator for U(1),, and we combine it with SU(2),,, generators for compactness of
notation.

Then express the Higgs interaction Ly of Eq. (2.7) in the Majorana basis (Xh XQ)T,
and the Higgs interaction term f(H) in Eq. (2.1) takes the form

iy _ (9Re(HH') + Re(pHH") + cH'H  aIm(HH') — Im(bHH")
f(H) = ( —aIm(HH") — Im(bHHT) aRe(HH') — Re(bHHT) + cHTH) )
(2.15)

where the real parameters a and ¢, and the complex parameter b, can be determined
by matching with a specific UV theory.

Generally, the gauge invariant and Lorentz invariant Lagrangian for field strength
term should be

Ly = %[CMXWSVTA“U“”X + cwg)_ge“”p”W;fUT‘lapgx] , (2.16)
where Wl‘fVT“ =i[D,,D,] and D, = 0, — z'glVVBTO — iggWZTi.

It can be checked that for Majorana fields x;0""x; = X{o""X§ = —X;0"Xi, s0
the diagonal terms in the first term of Eq.(2.16) vanish, which means we can omit
a = 2 term that has nonzero diagonal elements. Then the Lagrangian is C-invariant.
If we keep a = 2 term, by the property of Majorana fields y;0""x; = 0, they still
vanish. Meanwhile, we have y;7°c#"x; = Xffa‘“’xj = \;7° 0" x; for the second term
of Eq.(2.16), which means the off diagonal terms should vanish so the only surviving
terms is a = 2 term.

Then explicitly, by charge conjugation invariance, the field strength interaction
Lagrangian is

Loy = [cwl Y (W,SVTO + WL T + WjVT3> oMY+ CunX €W 1200 X

S

X [cwlawj (WS,,TO + Wilﬂ'l + W3V7'3) ® 72
+ e o, WE @1, (2.17)

and the 1/M field strength interaction term is

g(W,B) =
< chE“”p“ap0W3V72 —z'cwla“"(Wl?l,TO + VV/}VT1 + W3V73))
icun ot (W0, 0+ W, ' + W3 7?) Cun€7 0, W2, T2 ’
(2.18)
where ¢, and ¢, are complex coefficients to be determined by UV theory.
The g(W, B) term contains o, and therefore contributes to the spin-dependent

process of WIMP nucleon scattering. Although the spin-independent amplitude suf-
fers a severe cancellation at leading order in 1/M expansion, the spin-dependent

11



amplitude vanishes at leading order. Since it lacks the coherent enhancement of
the spin-independent amplitude, this contribution is expected to remain numerically
subdominant in the total direct detection rate. In the following, we focus on the spin-
independent process and neglect the field strength interaction term ¢g(W, B), which
only contributes to spin-dependent scattering.

2.2.2 Mass and Charge Diagonalization after Electroweak Symmetry Break-
ing

After electroweak symmetry breaking, the Higgs field acquires its vacuum expectation
value

(H) = % ((1)) . (2.19)

Let us write down the SU(2) doublet components of the Majorana fields

X1 = Gé) . Xe= GZ) . (2.20)

In the basis of x = (A1 Ao A2 X)), plug Eq. (2.19) into Eq. (2.15) and we obtain
the mass matrix

(c 0 0 0
v? 0 c+a+b 0 —by
0 —bg 0 c+a— bl

where we have defined b = b, + iby and by, by are real parameters.
Diagonalize the mass matrix Eq. (2.21) and we get eigenvalues

2

v
Amid = 0 —C, 2.22
d My + QMC ( )
02
Ahigh, low = Amid + m(a +10]), (2.23)
and eigenvectors
1 0 0 0

0 0 —cos ¢ sin ¢
Ilnid = 0l g’lid = 11> ghigh = 0 2 ) flow = 0 2 s (224)

0 0 sin ¢ cos ?

2 2

where we have the parametrization of by = |b| cos @ and by = |b| sin 6.
The diagonalization transformation matrix is

P:(grlnid Enigh frznid §low) (2-25)
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so that

P7dm + f((H))]P = diag (Amid; Mnighs Amids Mlow ) - (2.26)

Then P~y is the mass eigenstate basis. Let’s convert it into an electric charge
eigenstate basis by transformation

G;) - % C —12) (Z+) ' (2.27)

Then the diagonal basis of both mass and charge is

hgigh
[
=] (2.28)
h_
where
Ao\ _ [—cosf sin®\ (hge"
<)\6) - < sing cosg hiow ) (2:29)
Explicitly,
hgigh 0 —cos g 0 sin g A
low 0 sin 2 0 cos?
Lo P io (2.30)

The Lagrangian of the heavy field x, after electroweak symmetry breaking is in
the basis h,

L=h,|iv-0+eQu-A+ J2 U-Z(TS—SiHQQWQ)+£U-(W+T++W_T_)

cos Oy, NG
2
—5M—£\2+f](\f)+g(%z)+...]hv, (2.31)

where v is the velocity.
In the diagonal basis h,, by field redefinition we could set the residual mass d M
for the lightest neutral constituent h{™ to be zero, which will be the WIMP. Then

2

v .
IM = 2—Md1ag (2[6],0, |b] — a,|b] —a) , (2.32)

Q = diag (0,0,1,-1) , (2.33)
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Figure 2.1: Feynman rule for 3-point interaction vertex involving the physical Higgs
boson h (dashed line) and the lightest electrically neutral Majorana fermion compo-
nent of the Higgsino field, h{™ (double line). The encircled cross denotes insertion of
a 1/M effective theory vertex.

0 1 0 0
~ 1 1 0 0 0
3 o2 _ !
T=siow@=351 o o 1—-2sin20y 0 ) (2.34)
0 0 0 —1+ 2sin? Oy
L, (0 0 01
- ez 0 0 0 ¢
T = Al-1 —io0 o] (2.35)
0 0 00
, (00 —-10
- e 10 0 ¢ 0
oo o of (2.36)
1 —i 0 0
where 6 is an arbitrary phase.
Introduce the fluctuations of the Higgs field
55 (01 + i)
H=(H)+ |} . : 2.37
H (%(hmsg) (2:57)

which we denote their interaction as f(¢) in Eq.(2.31) and we obtain the interac-
tion between the WIMP and the higgs boson. Particularly, we have the three point
interaction in Fig. 2.1, where ¢y = —(a + ¢ — |b]).

Loop radiative corrections also modify the tree-level mass matrix Eq. (2.32). We
consider one-loop radiative correction Fig. 2.2 to the mass of each mass eigenstate by
Feynman rules of effective Lagrangian Eq. (2.31),

-y dip - i —i ,
s ) = —uad [ 5 Ehd ;

v-(p+k)—0+i0p>—m?+i0 "

d
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Figure 2.2: FElectroweak radiative correction self-energy diagram for heavy WIMP
mass eigenstates.

LA +e) —2(0—v-k)
2y192<4) Em' {

€

o—v-k T
2 ) 2
+4\/mi—(5—v‘k>2_20 [arctan<\/m?_(5_v'k)g_i0) _2]

—4(6—v-k)+ O(e)} “hIhd . (2.38)

where j labels the external particle state, i = W, Z, v labels different gauge bosons
and 0 is the tree-level residual mass of the internal propagator. The gauge group
factor y; for each type of gauge boson is

yw = (%)2 <T+T— + T—T+) = J(J+1)-Y?,

1 ~ 2 1
_ 73 _ gin? ) —  — (V —sin?0 2
YZ = cos? Oy ( sin” O Q cos? 9W< Sin” 0w Q)"
y, = sin® Oy Q* (2.39)

where J is the isospin for a certain SU(2)y, representation and Y is the hyper charge
of U(1)y. For the Higgsino-like doublet case, J = 1/2 and Y = 1/2. For the Wino-like
triplet case, J =1 and Y = 0.

The mass correction Am; to a mass eigenstate h? with residual mass d; is given

by
Am;hihd = $3(5;) . (2.40)

Explicitly, for a Higgsino-like particle, evaluating Eq. (2.38), making use of |0 —
§j| < mw,z and we find that the mass correction to the lighter neutral state A" is

Al = =22 [ (0 ) (= 1o 3+ 1) + S

i ow m
F A — o) (<107 +1) + Fma)

M 2
— [ (w4 1) 2 (s 57 1)) 3
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(&%)

- j(ywmw +yzmz), (2.41)

where yi = 1/2 and yz = 1/(4 cos? Oy).
The mass correction to the charged states h. is

Q2 [YW / clow high myz Qg
Ami = —? [7(5(1) + 50 g _ 2(5:|:) <— log ﬁ + 1)] — E(ywmw + yzmz)
a m v«
= —?Qywa (- log WZ + 1) A é(ywmw +yzmyz), (2.42)
where yy = 1/2 and yz = (1 — 2sin?0y)? /(4 cos? Oy ).

. . high .
The mass correction to the heavier neutral state hy'®" is

high (%)

= | B0 — ) (—log T+ 1) 4y (3 = 0") (~log TF + 1) |

2

«
- —2(?/me +yzmyz)

2
2
_®ywe o N oe T _ oe 12 v
= [2( |b| a)( log i +1> 2yz|b|< logM +1>] i
a
- f(ywmw +yzmyz), (2.43)

where yyr = 1/2 and yz = 1/(4 cos® Oy).

The 1/M order terms in the mass corrections Eq. (2.41), Eq. (2.42), Eq. (2.43) are
suppressed compared to the gauge boson mass terms and the charged states receive
a higher mass correction relative to the neutral states,

1
AT — AV = 5042 sin? Gyymy (2.44)

and the neutral lightest state remains the lightest state.

W/Z [~

S

Figure 2.3: Electroweak radiative correction self-energy diagram for WIMP mass
eigenstates at UV scale.

We can also compute the radiative correction at UV scale before matching onto
a low energy effective field theory, which modifies the mass matrix at leading order.
These radiative corrections are mainly contributed by electroweak gauge interactions
and we compute the self-energy diagram Fig.2.3. The result is

| L[ diL VAP + L+ M)y,
_zEg(ﬁ) = —Yigs / (27T)d [(p + L)2 — M2+ z’O] (L2 — m? + ’iO)

(2.45)
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The mass correction to each state is

« ! m?
Am; = (M) = —M?Q ' yi/o dz2(1 + z)log {f + (1= x)M2:| : (2.46)

For neutral states,
yw =1/2, yz=1/(4dcos’Oy), y,=0. (2.47)

For charged states,
yw =1/2, yz = (1-2sin’0y)?/(4cos’Oy)), vy, =sin’Oy . (2.48)

The charged states gain a higher mass correction over the neutral states by

. 2
Ai_AOZM% 5sin29w+sin29w/o dz2(1 + z)log [xQ—I—(l—x)%” >0.

(2.49)

When my < M, A* — A is positively approaching zero. Since AT — A? ~ ay, M,
it is still much greater than 1/M order tree level correction (|b| — a)v?/(2M), which
is of order a3v?/M, as we will see in the Section 2.3. Thus, the state hi"™ remains
the lightest state.

2.3 Illustrative UV Completion

To investigate the impact of additional UV structure from coupling ¢y, we consider a
simple illustration where, in addition to the Dirac doublet ) of mass M, the Standard
Model extension includes another SU(2) multiplet with a mass greater than M [102,
115]. For example, consider an SU(2) triplet Majorana fermion x’ with mass M’ >
M. The renormalizable Lagrangian is

Loy = Lsm + (i) — M)y + %X,(U? — M)y - %)\F(H))\, (2.50)

where A = (X, X1, XQ)T7 with x1 = (¢ +¢°)/v/2 and x3 = i(¢) — 1°)/v/2 and c.f.
[72]

. 03 H'o — H'¢ i(—H'¢ — H'o)
F(H)=--| -6H*+0oH 0, 0,
p 03 i(H'¢ + H'o) H'o — H'&
+-2 | —i(cH + &H") 0, 0, : (2.51)
\/5 —oH* + oH 02 02
where o = (d!, 02, 0%) and & = —(0'T, 0%, o37).
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?‘?ﬁ? %?«3 éf%

Figure 2.4: Matching condition for the coefficients in the EFT for UV theory con-
sisting of the Standard Model plus SU(2),,-doublet Majorana fermion x and another
Majorana multiplet x’. Solid black lines denote x and blue line denotes y’ (propa-
gator of the third diagram on the L.H.S) , dashed lines denote SM Higgs doublet,
zigzag lines denote SU(2),,, x U(1),  gauge fields. Matching is performed in the elec-
troweak symmetric theory. Double lines on the R.H.S denote heavy WIMPs y, and
the encircled cross denotes insertion of a 1/M effective theory vertex.

Another interesting case is the Majornana fermion x’ being an SU(2) singlet with
interaction

) 0 H'+ HT i(HT — HY)
F(H)=~--| H+H* 0, 0,
V2 \im—my o, 0,
. 0 —i(HT — HY) HT + H
+ 22 i - HY 0, 0, . (2.52)
V2 mym 0 0

By matching the UV theory Eq. (2.50) to the effective theory Eq.(2.1) , we can
determine the 1/M order coefficients in the effective theory. It’s convenient to do the
matching in the electroweak symmetric phase and we show the matching diagrams
in Fig. 2.4 for a singlet x’ case. In the electroweak symmetric phase, we could choose
om =0 in Eq. (2.1) and the loop diagrams on the EFT side (RHS) vanish in dimen-
sional regularization since they are scaleless but dimensionful. The only surviving
diagram on the EFT side is the last diagram.

Let us do the matching for the operator )‘(?XIBHZ-T Hj, where o, 8 = 1, 2 are indices
for two Majorana fermions x; or xo, m, [ = 1, 2 are indices for two components of
each Majorana fermion x,, and ¢, 7 = 1, 2 are indices for the two components of
Higgs doublet. On the L.H.S, when the first diagram contains two W fields exchange,
it gives a group factor

- oo \ml
(7) " (o ), = %J(J - 1)8us6midis (2.53)
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where T* and 7@ are defined in Eq. (2.14),a,b=1, 2, 3.
When the first diagram of L.H.S contains one W and one B exchange, it gives a
group factor

o~ ml - . ml
{(T“T()) + (TOTa> } (7’“7’0 + TOT“) .
(0% 045 1)

B

1
= Z(Sag( mlO'w + O'mZO' )—|- 40' 0'2 (_5041552 + 5a2551) s (254)
where a, b=1, 2, 3.

When the first diagram of L.H.S contains two B fields exchange, it gives a group
factor

o~ \ml Y2
(TOTO> (7’07'0 + TOTO) = 75aﬁ5m152~j ) (2.55)
af
Thus, working out all the Feynman rules and the first diagram of L.H.S contributes
to the operator Y™/ HTH a coefficient

1
9 5ml61] 5aﬁ Iloop

9192( mlo—z] + O—mlo—z]) + 8

1
{3 45mu23+—4

_Zg%gg 7,2] Omi ( 5&1562 + 60{2561) [loop ) (256)

where Ij,0p is the loop integral for the first diagram on the L.H.S and

[ d% VP +d+ M)y BN N RO P
IIOOP / (Zﬂ)d [(p—i— q)2 — M2 —1—2'0] (p2 4 i0)2 - (47-‘-)276 M 1+2¢ <3 2 )7 (2'57)
with d =4 — 2e.

Similarly, for the second diagram on the L.H.S, we can work out the group factors
for different W and B fields exchange cases, but the loop integral for this diagram
vanishes, explicitly

dp PP+ g+ M)y
Hoop = g/ Kp+q) — M2+ 0] (p? + i0)3

5 [ aM + 21— 2)] 2+ 22(2 — 2) M?
| 12 — 22 M2 +40]"
et l— (i+4> o (5 4) s
=0. (2.58)

For the third diagram on the L.H.S, we could fix « = = 1 and when Y’ is a
triplet, this diagram and its crossed diagram (not shown in Fig. 2.4 ) give a coefficient
for X7 XIHTH operator,

i

. 2.
M — M’ (2:59)

1 _
5(’*@% + K3 (OmiGji + Oy - O4)
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and for )Z’Q”XZIHJ H; operator, the coefficient is

1

— 2.
M =M’ (2.60)

5(%% + m%)(&mié'jl — o-mj . Uil)
On the R.H.S for the operator )ZTXllHiTHj, we could choose m =1l =i=j=1

for simplicity and the coefficient is

i

——(a+c), (2.61)

and for the operator )Zg’lxllHJ Hj;, the coefficient is

2N (6m352l 5mi51j) (262)
Let us match L.H.S with R.H.S for the operator )ZTXllHZ-THj when m =1 =1 =
j =1, considering Eq. (2.56), Eq. (2.59) and Eq. (2.61) and we obtain

1

— | — (x? H__—— 2.63
260849W) </€1+H2)M’—M’ (2.63)

3
ax—i_C_ZOCQ 1+

where ay = ¢g5/(47), and Oy is the weak mixing angle.
Considering Eq. (2.56), Eq.(2.60) and Eq.(2.62), we obtain the matching for
X2X1HTH when m=j=1andl =17 =2,

3 2sm 2 Oy 5 o M
“= 5% g, T TR (2:64)
Then plug Eq. (2.64) into Eq. (2.63) and we obtain
3 sin? Oy 1 M
=-as(1-2 —2(K] + K3) . 2.65
¢ 4042 < cos? Oy, 2cos? HW) (k1 + @)M’ - M (2.65)

Now let us consider the matching for another operator Y7'x} H H; to extract the
parameter b. The first two diagrams vanish on the L.H.S and the third diagram yields
a coefficient

1 . _ _ {
5(/{3 — K} + 2ik1K) (Omi0 1 + Umjo'il)m : (2.66)
On the R.H.S, the effective operator yields

i b

M 9 (6m26l] + 6m]61l) (267)

Identify Eq. (2.66) and Eq. (2.67) and we obtain

M

—_—. 2.
T (2.68)

b= (—/ﬁ?% + /ﬁ?g + 2i/€1/€2)
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Thus, after matching we obtain all parameters a, b and ¢ and the relevant coeffi-
cient

3 1 M
Gy = — )= —Sa2 (14— ) 22— 2.
¢n = —(a+c— b)) 40‘2( +2cos4ew)+ MM (2.69)

We can do the similar matching for the case when Y’ is a singlet and the results
are

3 5 1 2 2 M
a = 5042 (COS2 0W - 1) - (/‘il + Hg)m, (270)
b = T ks +2i M 2.71

3, 2 1
= - 3— 2.72
¢ 1% ( cos? Oy, T ot HW) ’ (2.72)
and again

cu (a+c—1b]) 102 ( + —2COS4HW) 2 (2.73)

2.4 Weak Matching

In order to compute the cross section for dark matter direct detection at the nuclear
level, we need match and evolve the electroweak scale effective theory of the WIMP
specified in Eq. (2.1) to lower energy scales. In a first step we integrate out weak scale
particles W+, Z° h, t and Nambu-Goldstone bosons where we work in the Feynman
t’Hooft gauge, and match to an effective theory consisting of five-flavor QCD, and
the following effective interactions of the WIMP with quarks and gluons:!

g g

c=nrnpd S [A00 + .00 + 400

q=u,d,s,c,b

©) 4 0(2)11”2],,0?)‘“’} (2.74)

where the spin-0 and spin-2 quark and gluon operators are

_ v 1 = F Y g/“/ ,
O((IO) = myqq, 052)“ = 5‘] (7{“2D} T Zw) 4
1
0O = (GA)?, O — _qAmGAv | 4 ng((;ﬁﬁ)? (2.75)

We neglect operators of higher dimension that are suppressed by powers of hadronic
scales times 1/my, where myy, is the mass of W= bosons. Here d = 4 — 2¢ is the
spacetime dimension, D_ = D — %, and curly brackets around indices denote sym-

metrization. We collect the Feynman rules of effective field theory Eq. (2.1) for
matching to the five-flavor QCD Eq. (2.74) in Appendix A.

'We restrict attention to elastic scattering. Inelastic scattering [116] could be investigated by
highhlow
o o -

considering operator structures h
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(al) ““ (a2) (@3) W
(a4) ”“ (45) W (q6) g:?
(a7) g (a8) % (q9) ;gi%j
(q10) § (q11) ? (q12) g
(a13) g (q14) § (q15) §

Figure 2.5: Diagrams contributing to up to 1/M quark matching, with the same
notation as in Fig. 2.4 except that the zigzag lines are symmetry broken gauge bosons.

2.4.1 Quark Operators Matching

The matching diagrams for quark operators are shown in Fig. 2.5. Note that all
the diagrams involving Nambu-Goldstone bosons are suppressed compared to the
diagrams present in Fig. 2.5. All other particles are treated as massless except the
weak scale particles W*, Z°, h, t.

Let us compute each diagram of Fig. 2.5 explicitly. First, notice that except for
diagram (q2), the other diagrams contain two gauge bosons and they give universal
loop integral results with different group factors by different electroweak multiplets
(J,Y') with isospin J for SU(2),,, and Y being hyper charge.

For two W* bosons exchange diagrams, the group factor is

<T+T— + T—T+> —2(J(J+1) = Y?) = 2fy . (2.76)

WIMP WIMP

For two Z° bosons exchange diagrams, the group factor is

~ 2
(T3 ~ sin? QWQ> —Y2={,. (2.77)
WIMP WIMP

Particularly, for a Wino-like particle fiy = 2, fz = 0, and for a Higgsino-like particle,
fw=1/2, f =1/4.



We neglect small corrections from |Vi4|? and |Vis]?, v and ¢ quarks have the same
coefficients, as do d and s quarks through all the weak matching calculations.

The diagram (q1) with two W+ bosons yields

ddp 7 low Zg? i Zg?

(@)yw = 2fW/W 0 (%’qu D — Om= + i0 Evu) he™

—i 950 ., i _<_,%>
(p2—mgv+z‘0> 2 7 T\ )1

2

—i s -
— (2 2 .hlowhlow (0) 9.
(2w =2 T ) o) (2.78)

The diagram (q1) with two Z° bosons yields
dip - 192 i 192
1 — hlow : 5 hlow
(ab)z fz/ (2m)d 0 (cos GWU“v - p — ombieh 4+ 40 cos OWU 0
_ . 2 .
i) ot ()
p> —my +10/) 2cos?by” —mj +i0 v

_iQQ i 7.low 7 low
h

The diagram (q2) is

- v 7 m
2) = i Lt (™)
. 6H 7 low 7. low
— (_ZMm%L> < hg™hg™ O (2.80)

The diagram (q3) with two W* bosons is

dip - iga 1 i igo
3) =2 hlow Iz 5 7, N Ve 7 2, hlow
(q ) fW/ (27T)d 0 (\/EQMp (g vtv )’U p— omE + 40 \/§U 0

—1 ? [ m
— . q
_’l_
<p2—mlz/v+i0) —m%—i—ioq( v)q

—0, (2.81)

where we used (g" — v*v")v, = 0.

Similarly, the diagram (q3) with two Z° bosons vanishes. The diagram (q4)
vanishes for the same reason.

The diagram (q5) with two W* bosons is

A —ow [ige , —i (PP — (p-v)?\ ige
-9 hlow Iz I v hlow
(@)ww fW/(Qw)d 0 [\/5 oM (<p-v>2+z'o> ﬁ] 0

2im?, —i S’ ,< ,mq)
v . . —l—
v p? —m3, + 140 —m,21+10q v )1
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2,42 :
Gy 4 3 F(l + 6) low 7 low (0)
=12 -—2) — h hy O 2.82

[ fWQMUQmi (4m)2—e (e ) m2s (282)

The diagram (q6) with two W= bosons is

dip - i g3
(@O = 2w [ G HhE 5 R (g o

(2m)d " 2M 2
—i 2 2im2, i ( mq>
’Z/_
p? —mi, + 10 v I —mh—HO A
2,9 :
goMyy ¢ 3 F<1 + 6) low 7, low
— |2 -—2) —— h hy O 2.83
{ fW2Mv2m,21 (47)2—¢ (e > mis (2:83)

Thus, we have (q5)y,, + (d46) -y = 0, and similarly, (g5),, + (46),, = 0 for two
Z° bosons diagrams. So diagram (q5) and (q6) cancel each other.

The diagrams (q7) to (ql15) contribute to the quark spin-2 operator. Since there
is a quark in the loop, we need to distinguish the situations whether the loop quark
is top quark or not.

For diagrams (q7) and (q8) with two W bosons exchange , when the external
quark is a bottom quark, the internal quark is a top quark whose mass should be
taken into consideration. When the external quark is not a bottom quark, the internal
quark is considered massless.

When there is a top quark in the loop,

top dd low |:@gg 1 igo :| ow < ——Z )2
(q7) fW/ 2 )dho /32 uv p—i—ZO\/_ hy 2 —ml%v—}-@'(]
| 192 w1 1 292 (1

and the crossed diagram (q8) with top quark in the loop is

d’p igs i g —i 2
top hlow hlow
e = v [ b | v e 9 ()

192 m i Zg2 v A5
|- ) ). (285)

and the sum of them after loop integration is

igs ml(1+¢)
= Jw (47m)%< 8 myf*

| 4(2+ 3xy) 1 Ty
q{gm o0t -
+6[

+ &

()" ww + (a8) Py [1+2(1 —log 2)e] hg™ hg™

85 — 18x% + 4z} + 92} + (97, — 212}) log
_5 (172—]_)3 (UCD%
1 — 1822 + 823 + 9z} — 24x3 log x;) — 9xy(wy — 1)3
182 —1)3 4
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}(1 "), (2.86)

where we have neglected quadratic suppressed terms ¢* = mg for small external quark
mass m, and define x; = m;/my .

For the diagram without top quark in the loop, we set the top mass m; to be zero
in Eq. (2.84) and Eq. (2.85), and their sum is

igh 7T(1+¢)

7 topless 8 topless —
(q ) WW + (q ) WW fW (47-‘-)276 8 m%),/‘jQ(;

{35 o] foor-]

—i—g-O(e)}(l -7")q. (2.87)

7 low 7. low
hO hO

Similarly for two Z° bosons exchange,

dip - 192 i ig2 i 2
7 _ hlow , hlow -
(a7) 22 fZ/ (27)d 0 LOSQWU“U.p+z’OCOSHWU 0 p? —m3 +140

_ igz 1 i92 v
. [ H(el, — i) (- cm] .

4(3059W7 g—p—mq—i-z'()élcos@w,y
(2.88)
and
d'p - ig2 i ig2 —i 2
8 — hlow 3 hlow
(a8) 2 fZ/ (2m)d° [cosewvﬂ—v-p—l—z’OcosQWv O \p?—m% +i0
_ 192 w4 4.5 i ig2 vid _ 4.5
q LCOSQWV (cf =y )g—p—mq+z‘04cos9W7 (¢ =y )] q,
(2.89)
where cg,U) =1- % sin? Oy, cng) = —1—1—‘5l sin? Oy, c(AU) = -1, c(AD) = 1 with U denoting
up-type quarks, D denoting down-type quarks and the sum after loop integration is
fZ ZF(]' + 6)94 ™ 7 low 7 low
A7)z +(a8) 4z = = 2 31 2¢ h%) h%}

4 (4m)re cost Oymy
q_{ E +€ (% — Z%log 2)} (c&fﬂ + Cg])z) {(v Q)Y — é%}
N g <C<Vq>2 B Cg)z) N O(e)g}q. (2.90)

The diagram (q9) with two W= bosons and with top quark in the loop is

dp -, . ig? —1 2
top -9 hlow_2 L — 3 hlow
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_| %92 m 5 4 292 v 5
- 1-— . 2.91
P AU e e SR PHNCTD
The diagram (q9) with two W* bosons and without top quark in the loop is
equivalent to setting the top quark mass zero in Eq.(2.91) and evaluate the loop
integral.
The diagram (q9) with two Z° bosons exchange is

dip - ig3 —i 2
9 — 2 thW 2 e L thW
(49) 22 fZ/ (2m)d " 2M cos? Oy, (9w = vt ) g p? —m% +i0

- ig2 (g _ 45 i 19> v _ 4.5
q Lu:osevﬂ (e — v )g—p—mq+z’04cosew7 (¢ — v )1 q.
(2.92)

The diagram (q10) with two W= bosons and with top quark in the loop is

00— [ L (B B
B\g} - )ng th—i—z(J 22\9/2— (1 75)} q
(i) 20

The diagram (q10) with two Z° bosons exchange is

d'p 5 g2 i ig>
10 — hlow —n, . 5 hlow
(q )ZZ fZ/(27T)d 0 [COSQWUH—U'p+i02MCOSQW[ p +(p U)U] 0
_ 192 wi 4 4.5 i 192 vida 4.5
q [400801/‘/7 (e — 4y )g+p—mq+i04cosﬁwv (cv — 4y )] q
. 2
—1
(m) - (2.94)

The diagram (q11) with two W= bosons and with top quark in the loop is

ddp Tlow | 192 i 192
q top & plow | 772 . low
( 11) WW fW / (2 )dho |:\/§UVU - i0 2\/57‘ r [pu (p U)U#] hO

—i ig i
(—2 ; ) { =7"(1-7") .
p? —mé, +i0 2\/_ q-+p—my+i0

ZgQ v 5
Akl w}q. (2.95)

The diagram (q11) with two Z° bosons exchange is

(@102 = fs [ gt [ Lt tp, (pwpu]| m
v y— (p-v)v,
WHzz =12 (2m)d | cosBy “v-p 490 2M cos Oy P 0
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2
—! ~| 192 vid _ 4A5 v
<p2—m%+i0) q[llcosﬁwfy (& =iy )g+p—mq+i0

9 (el — 2.96
40030‘;{/7 (cy = iy )}q (2.96)

The diagram (q12) with two W# bosons and with top quark in the loop is

d’p iga i ig2
top — hlow o . hlow
(@12)"P fW/ (2m)d 0 [2\/—]\/[ [=pu+ (p-v)v,) . »+i0 \/—

. 2
—1 g i
<2 5 ) { (1 —7°) :
P —my+i) 23’ g +p—m+i0

292 v 5
: 2.97
S 1-)|g (2.7
The diagram (q12) with two Z° bosons exchange is
dp igs i igs
12 hlow o . hlow
(a12)7 fZ/ (2m)d 0 |:2MCOS¢9W =P+ (p-v)v,] —v-p+10 COSHW

2
! |92 g a5 v
(pz—mQZ—I—Z'O) C"Lcosew7 (v C”)g+p—mq+z'0

1g y
2w — cm]q. (2.98)

4 cos Oy

The diagram (q13) with two W¥ bosons and with top quark in the loop is

dip - 19 7 Zgg
top — hlow o . hlow
(Q13) wWwW fW/ (271_)65 0 [2\/_M [pu (p U)U ] 10 b1 0 \/_

. 2
—i ig i
(—2 5 ) { Z (1 - 7°) :
P -mi+i0) 122" g+ p—m+1i0

292 v 5
Wk 7(1 'y)]q. (2.99)

The diagram (q13) with two Z° bosons exchange is

dd Zgg ) Zgg
1 hlow o . hlow
(al3)77 fZ/ (2m)d° {2M cos Oy P = (p-v)uy] v-p—+10cos 0W

2
—i 1ot o4 a5 i
(pQ—m2Z+iO) q[4<:0$01/y7 (v CAV)g%—p—mq%—iO

92 (el — P 2.100
Teoso (e — iy )}Q- (2.100)

The diagram (q14) with two W= bosons and with top quark in the loop is

d%p ig2  —ip*—(p-v)iga
top hlow hlow
(al4) fW/( ) {\/50”2M(p-v) 2502
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<p —77;;—1‘10) Q[Z\Q/Q_W(l_f)g—jﬁ—imm%o

192, 5
Wkl V(1 7)}1- (2.101)

The diagram (q14) with two Z° bosons exchange is

dd igp  —ip—(p-v)® gy
14 hlow , hlow

2
—i | i a0 as i
(p2—m2z+i0) q|:4COSQW7 (v = )g—p—mq—i-i()

192 v o np 2.102
T (e - ) (2.102)

The diagram (q15) with two W= bosons and with top quark in the loop is

top dp ow Zg? —1 p2_( ) Zg? ow
(@15) Py = e [ (5537 {7”“21\4 oo ri0ya)

(p?—n:%iﬂ()f lzlgfz s wwﬁ—zmtﬂ'o

292 H 5
ok (1 7)}6]- (2.103)

The diagram (q15) with two Z° bosons exchange is

dip - igy =i p’—(p-v)’ gy
15 _ hlow hlow
(q )ZZ fZ/ (27r)d 0 {cos Ow Y 2M (p . v) + 10 cos QW

2
—? ~| 192 v _ 4 A5 v
<p2—m22—|—i0> qLLcosew7 (& =iy )g+p—mq+¢0

19
> (el — c‘m]q. (2.104)

4 cos Oy

The sum of (q9) to (q15) with two W= bosons exchange is

15

fW igé‘ F(1+€>—1 1 /1 (1_@2
hOWh ow _2 d
Zi_g () v 2 (dm)2emEM 0 0 (=2+¢) o O a1 )it

q ((v Q)Y — %%) (1=7")g+ O(e)quQ:| Spb

— (1= 0pb)q {(v Q) — ég} (1- 75)61}

_fw i95 F(l +€) 4 Db
8 (4m)2—cmit* M (22 —1)3

[4:13?(1 — 2} + 42} log 7;)
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+ 8ex?(1 — 7 + 227 log x; — 27 log? xt)} }
7, low 7 low ~ 1 5
he"he™ @ | (v-a)p — | (1 =")a, (2.105)

where dpy, is a Kronecker delta to indicate whether the down quark is a bottom quark.
The sum of (q9) to (q15) with two Z° bosons exchange is

— 4 cost Oy (4m) e mEPM

] 1
(7% + PRy g™ g [(v Q) — Zﬂ] (1=7")q. (2.106)

2.4.2 Gluon Operators Matching

The matching for gluon operators are shown in Fig. 2.6. We have gluons attached to
quark loop substructure in all these diagrams and this substructure can be separated
out as a tensor IT"(L) with the loop momentum L, shown in Fig.2.7. This tensor
can be calculated in the back-ground gluon field [72, 117], which we review here for
comprehensive understanding of the whole matching process.

(g1)

RN

RN

g2) (23) (g4) (g5) g6)

TiE

=

—

(g7) (28) (29) (g10) (g11)

Figure 2.6: Diagrams contributing to up to 1/M order gluon matching, with the
same notation as in Fig. 2.5 and curly lines denote the gluons. Diagrams with both
gluons attached to the upper quark line or with one gluon attached to each of the
upper and lower quark lines are not shown.
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Figure 2.7: Background-field quark loops with three types attachment of two gluons
onto the quark loop, (a): both gluons attached to the lower quark line, (b): both
gluons attached to the upper quark line, (c): one gluon attached to each of the upper
and lower quark lines.

The quark loop with two external sources J(z) and J'(0) is a two-point function
and in momentum space, it is

(L) = — / d?xe™ (T {J(2)J'(0)})
— / ddxeiL'“Tr{Fz’S(Q)(:c,O)F’iS(q')(O,x)} , (2.107)
where iS@ (z,0) = (T {q(z)g(0)}), and T, " are notations for general Dirac struc-

tures.
After Fourier Transform, we have

/ddxeip'xs(q) (z,0) = S (p), (2.108)
/ddxeip/'xg(q')(o,x) = Sy, (2.109)

The two-point function tensor can be expressed as

(L) = — / (;liz))dTr {rz‘s@)(p)r’z's(q’)(p - L)} . (2.110)

In momentum space, the fermion propagators in Eq. (2.110) can be perturbatively
solved in terms of the background field A with a small coupling g as in Fig. 2.8,

) o d’q 7 ; i
iS(p) —p—_m+g/ @mip—m A@p_g;_m
, [ diq dlq, i . i ) i
+yg /(27r)d/(27r)dp—mA(ql)p—— _mA(%)p_q/l_qé_m
+ (2.111)




iS(p) p P P—q p P—q1— @
— - + - - + + ...
gq gfhg(p
iS(p) p p+q p p+aqi+q p
_——————— = —|—

+ + ...
gq gmgfh

Figure 2.8: Momentum space fermion propagators in a background field, which is
denoted by a curly line attached to a circled cross.

o [ d'qi d’qy i . i ; i
+9g / (27)d / (Qﬂ)d¢+ G+ ¢ — mlA(Q1)p—+ % —m A(%)p o
T (2.112)

where in Fock-Schwinger gauge (z — y)Af.(z) = 0, and
Aq) = t“/dda:eiq'xAZ(x)

iq-x 1 a
= t“/ddxe’q [ﬁxpr(O) + }

(Qg)dagﬂ(o)ié(d)(q) . (2.113)

= —it®
dg,

where higher order terms are in the ellipsis and propagators are expressed in terms
of derivatives of gauge-invariant field strength G, in this way.
Explicitly, for the three types of gluons attachment, we have

dp o0 0

2
: _ Y9 A;B\ A B
ill, (L) = " Tr(t™t )GPQ(O)GJT(O)/ 22 94, B

1 1 L 1
T |1 a T I )
pomi p—g—m p—d—g —m ZZ’_L_quq'O
) d
. __9 Ay B\ A B d'p i 0
i, (L) = 1 Tr(t"t )GPQ<O)GUT(O)/ (2m)d dq, 0¢’,

Tr

r 1 r 1 o 1 . 1

pomi poLrgrd—m gL —m p—b—m]
ddpi(()

(2m)4 dq, 0q’,

ill.(L) = —ngTr(tAtB)Gfa(O)GfT(O) /
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1 1 1 1
Tr |T a I g ,
p—mﬂp—g—ml p—L+g’—m27p—L—m2]q:q,zo
(2.114)

where t4 is an SU(3) generator, g, is strong coupling, m; and msy denote the lower
line quark mass and upper line quark mass respectively.

As a special case, the background gluon field quark loops in the first line of Fig. 2.6
can be computed by setting I' =1 =1 and L = 0,

dp i 0
(2m)4 dq, Oq,

) 93 A,;BY A B
i(0) =~ T(117) G2, (006, (0) /

1.1 1
e p—gf—m”zﬁ—g—sz’—mhzq,zo

2 .
9g; 2 1 16 6—-7e I'(1+¢
= —2Tr(t"tP) (G45(0)) (1+¢)

4 (4m)2= 3 d(d — 1) mlt*
2 .
_ 9t b oaa gy
=S G, (GQB(O)) , (2.115)

and it vanishes when the quark is massless.

Let us make use of this background field quark loop result by inserting it into the
full diagrams g(1) to g(6) of Fig.2.6 and evaluate these diagrams.

The diagram (g1) with two W= and two Z° bosons are readily found by plugging
in quark diagram (ql) result.

. —i02 ™M —ia2 ™m
g(l):h%)ow |:(2fW 42m2 t )+(f 2 t ):| h%)ow

z
My 2 cos® Oy mimy

(-%) o (G20’

2

=igpigts (o + ol ) B (G500 2116

i
24mi, 3 cos3 Oy

The diagram (g2) refers to the quark diagram (q2) and yields,

_ c 2 1 9
2) — low [ _ mCH low _g_s - A
8(2) = ho ( "Mm2 g 3 ) (dm)2m, (Gas(0)

. O éH 7. low 7. low A 2

The diagram (g3) and g(4) vanish due to the same reason as vanishing quark
diagrams (q3) and (q4). The sum of diagrams (gb) and g(6) vanishes due to the same
reason as vanishing sum of quark diagrams (q5) and (q6).

Now we proceed to evaluate (g7) to (gll), which contribute to both spin-0 and
spin-2 gluon operators. We project the background gluon field quark loop tensors
Eq. (2.114) into spin-0 and spin-2 components,

2
ill(L) = =% |01 (L) + O 1)

e (L) + | (2.118)
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where k = a, b, c and “...” denotes components orthogonal to the spin-0 and spin-2
components, irrelevant for our matching.

To identify I ,go)(L) and [ ,E%(L) separately, consider the tensor G;‘aGfT, which is
symmetric under p <+ o, a <> 7, anti-symmetric under p <> « and o <> 7. When it
projects to the spin-0 operator Oéo), it has to be proportional to (¢ gar — 9prJac). By
contracting with g??g®7, we find the proportionality is 1/(d* —d). When it projects to
the spin-2 operator 052)“ “_ it has to be proportional to (— ngOéz(iT—i— ngOUE,QClg—gMOS(,Qp)J

+ga00§237) and the proportionality is 1/(d—2) by contracting with v”v7¢g*". Thus,

1
G/I?QG?T = M(gpﬂga‘r - nggacr)OéO)

1
+ d—9 (_9900520)47- + gPTOg(;2t3)¢O' - gaTOéZp)U + gaUOéZp)T)
L (2,119

We apply the decomposition Eq.(2.119) to contract the loop integral tensor in
Eq. (2.114) and obtain the corresponding /. ,EO)(L) and [ gy(L), which will be integrals
of a Feynman parameter x,

(0) . 1 iF(l + E) ! (0)

1 iT(1+e) [* 2
12 (L) = / dzN>®) (L). 2.120
()= 55 e [ ANELD) (2.120)

The diagrams in Fig.2.6 involve two W* or two Z° bosons exchange currents
entering I'* and I"# in Eq. (2.114). We can work out the specific N} # expressions in
Eq. (2.120) for these two currents exchange cases and list them explicitly here,

o (1-=)° (I+e)(l—¢) 4
Ny (L) = o043 - 2€)m? T g
2+e)(1+¢ a o

— e x(1 —x) (2L°L° — L?¢*P) |,

N (L) =0,

b(W+W+)
(14 €)(3 — 2¢) B
2A1+e
1+e 2(1 —26)L*LP + (1 + 26)[/290‘5}

N (L) = 2(1 = 2)64(1 — ¢) {

+ z(1—x) Ao

o (1—x)3 m?2 N
NO(L) = = -82(3 — 20 3 (CE;”Z +c§§”2> (1— &)1+ €)Ag™?

— (2+3€)z(1 — z) (2L°L° — L*¢*") ]

— (cg)2 - C(X)Z> [(2 —e)(1+e)A—(2+ 36)]72[/2} go"g} ,
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NoO(L) = 532(3 - 26)A3j€{ (A7 + 72 [(1 — )1+ )Ag™?
— (2+3e)z(1 — z) (2L*LP — L?¢*7) ]

— (d?* =) [2 - 91+ A = 2+ 30)(1 - 2)°L? gaﬁ} ,

o 32 1 .
NG (D) = rarer(l = x){ (C<Vq>2 + c§3>2) (1—e¢) [5(3 —2€)(1+ ) A%

+ (1 —2) {(1 — 2¢)L°LP + %(1 + 2e)L2gaﬁ] (1+ e)A]

+ (cgfq)Q — C(X)2> g (3—2¢)(1+ e)mgAgaﬁ} :

aB(2) (1 _95)3 asp ash 1
Nomlt ) (D) = ——7=128(1 =€) (2—6) (9307 + 3207) 57z
1 +e€ o o
+ o |(mi — 2L @55 +6240)

+ (2= )a(1 —2)(65LP + 6P L)L, — 2(2 — = — @LHL,,gaﬁ]

— (34 2¢)z(1 —x) [(mfgo"g 2x2LaL6)LﬂLV

2712 arf Boc
— (m? — L)L+ L] s

buv(WHw+ 31 vu
1+e€

A2+

— (2= €x(6L” + /L)L, + (1 +x — (—:)L#Lygaﬁ}

3
Naﬂ (2) )(L) _ —128(1 _ 6){(2 — 6) (5‘155 + (50‘(56)A1+6

(1-2)[(1- x)L%(éfjéf + 6287

2(2 4 3¢ N N N
—%m—x) [ L*L°L,L, gLk 5 (9% LP + 60 L*)L ] }
@ 1 (0% (0%
chy((?WWﬂ(L) = 128z(1 — x){ — 51 =90 - 205 2(5 8 + 6287)
l+ex(l—2x) B
e G

1
+ (1= 26) (G L7 + L)Ly — (1= 200 LS (550) + 5355)] } ,
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_(-a)?
3!

2 2 L LV o
64(1 — e){ — (2 + 3¢) (cgf) — cg]) > meg—A”HE g’

11
(@)2 | (a)2 asB | saspB
+ (e 4 %) [(z—e)AHeg((sufsu + 8267

1+e 1 . o
+ A2+6 [<m3 - $2L2)§(5M5V/B + 5V 6,5)

+(2—ex(l —x)(05L° + 6 L)L, + x(2 — v — €)L,L,g*"

x(l—x) a 21
— (2439 | (mig™ = 20°LoL) LL,

q

— (m? - 2?L%) (65L° + 55L“)LVH } :

a 563 2 L LU a
Nyl (L) = 5:64(1 - e){ — (2436 (d?® = ) (1 - a)Pm2 Z44g™

11, o
+ (e 4 %) [(2 — )Xo 5000 + 6567

1+¢ I, o
+ S [(mg — (1= 2)"L%)5 (3507 + 0557)

+ (2= (1 = 2) (05 L7 + 5L Ly + (1 = 2)(1+ 2 = €) L, Lug™

z(l—x
—(2+ 3@% [ (m2g*" —2(1 — 2)’L*L°) L, L,

— (m2 - (1 —2)2L?) (05L° + 55L"‘)LVH } ,

a m? 1 o
N (L) = 64z (1 — x){ — (A=) 49— ) xate 5 000 + 07,)

1 11
# (07 ) | = 0= 0 - 20 g 0302 + 0200

2
.1’(1 —SL’) af arpf BT
e [eLuLVg +(1—26)(82L° + 6P L)L,

1 . o 1+4+¢
— (1= 21255507 + 07 55)] AM] } , (2.121)

where A = (1 — z)m} + xm3 — x(1 — z)L*> — i0 and Nli*?%v_w_)([/) = N,E?I)/V+W+)(—L)
with spin S =0, 2.

The spin-0 gluon matching of the diagram (g7) with WTW* and W-W~ ex-
changes is

d . . . .
(0) — d'L Blow L92 ! ! t92 hlow
<g7)ww fW/ (2m)d 0 _\/ﬁva L} L1140 + " L—i—i()} _\/5% 0
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(1) (o) (D)o 5 e

m[C(1+6)]gag:  fw 1
(4m)i—2e 12m}?’;}46 (14 24)?

where N; = 2 is the number of massless generations of quarks.
The spin-0 gluon matching of the diagram (g7) with ZZ exchange is

dL _ . . .
(g7)(ZZ) f /(;iﬂ-)dh%)ow 192 Ua[ (4 4 :| 3% Uﬁh%]ow

+ Nl} he™hg™ O (2.122)

cos Oy v-L+10]| cos by
. 2 . 2
192 ) ( —1 ) ( ) Z [aﬁ (0)
2 _ 2 ZZ)
(4 cos Oy L? —my, e
7 [C(1+€)] 9292 fz (D)2 | (D)2y (02 (0)2)[8
- s 4 [_
! (Am)2 64 cost GymS (v "+ )+ (e " +ey™) 3

3297 (8y7 — 7) > A(48y; — 2y + 9y — 1)
+ W arctan(y/4y; — 1) — my, + 347 — 1)° }

4(144y5 — 70yt + 9y? — 2
+(c§/U)2—c£‘U)2)[37rt— (144y; Yy + Yy )

3(dy; —1)3
32y4(24y* — 2192 + 5 .
- ((4 . 1)7@//5 5 avetan(/2y7 - 1)”héowhé°w0§0)~ (2.123)
Y —

The spin-2 gluon matching of the diagram (g7) with W*W* and W~W ™ exchange
is

hlow

; , , . .
2 _ d'L plow 192 ¢ ! 192
(87)ww fW/ (27)¢ 0 \/5% L;.L+@'O - - L—HO} \/_ v8

. 2 . 2
o) () (9o 5 o
2 _ 2 k V(w+w+
(2\/5 L mW k=a,b,c !

T[T +e)]gags fw [ 16 284 32 32, ~ 23z +2)1
B (4m)=2¢ 2mPfte |  9e ST x4+ 1)3 €
8(6x% — 1828 + 212} — 32?2 — 2)
1 1
9(z7 —1)3 og (z: +1)
4(3z} — 2123 2+ 322 + 9z — 2) log 2
9(x7 —1)3
4(1228 — 3628 + 392} + 1423 — 92?7 — 62, — 2)
— 5 3 log x;
9(xf — 1)

- 14daf + 7227 — 312z — 10527 — 407 + 47z, + 98
27(x7 — 1)2(xy + 1)
he™ g™ v,0,0 1. (2.124)
The spin-2 gluon matching of the diagram (g7) with ZZ exchange is

d*L low 1 1 1g ow
(g7)(Z2Z) :fz/( dh%) 2 vOt|: . :| : U/Bh%)

27) cosby = |v-L+1i0] cosfOy
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. 2 . 2
192 —1 ) pv ]aﬂ
(4COSQW> <L2—m22) < > Z kv ( ZZ

k=a,b,c

T+ e)ghg? famy* ™ [ W2, (U2 (D)2, (D)2 16
= s 8 12 ] [ 2
! (4r)d-2e 64 cost Oy (ev ™+ ey ™) + 120 + i) O¢

284 n 32 log ]
27 9

2 @2 [32(24yF — 21yP — 4y + 5yP — 1) Y4
+ 4(cV +cy )[ 91,7 — 1) arctan(y/4y? — 1) — 5

A(48yP + 62y} — ATy + 9)] 440 _ 02 [43/?(6243/;* — 538y2 + 103)

9(dyz — 1) v 4 9(dyf — 1)
13my,  32y2(104y8 — 91y + 35y2 — 5) >
- + 3(1ye — 1772 arctan(/4y; — 1)]
he™ h™ v, 0,02 (2.125)

The spin-S gluon matching of the diagram (g8) with W*W* and W-W~
change is

( ) f / ddL hlow 292 <g V) )hlow 1 (192)2 ( —1 )2
w af — Yalp al = T 9
(2m)d" 2M o 2\\2) \P—my,
( ) DN SN 2 (2.126)

k=a,b,c

The spin-S gluon matching of the diagram (g8) with ZZ exchange is
d’L ig2 —i 2
hlow 2 ws — Vo hlow
( ) fZ/< )d 0 2MCOS28W<gﬁ vaﬁ) 0 (LZ—TTLZZ—FZO)

. 2 2
192 Js S ap ()
—= )09 > "1 L). 2.127
(4COSQW> < 8) 9 = k(ZZ)() ( )

The spin-S gluon matching of the diagram (g9) with WHTW+* and W-W~
change is

ddL ow Zgg 1 292 ow
( ) fW/< )dhlo {EUQ—U-L—F@OQ\/_M [—L5+(L~U)UB]:| hg

. 2 . 2
—q 1 (igs ) < ) 0 ()
~ 5 3 I . (2.128)

<L2—m124/—|—20) 2 <\/§ kac k(W+W+

The spin-S gluon matching of the diagram (g9) with ZZ exchange is
ddL 7 Zg? 1 Zgg

hlow o —L . hlow

Z/(QW)d ’ [COSQWU —U-L—i-z'O?Mcos@W[ o+ (p-v)vs]| o

o=
; 7 ige \°( g Al
2
) ol Iy 2.129
(LQ—m2z~|—iO> (4COS9m/) ( ) Z ( )

k=a,b,c

(29)7
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The spin-S gluon matching of the diagram (gl0) with W*W* and W~W~—
change is

d*L G2 i g2
1 low _La I - N 2 hlow
@10 = fr [ e | S L ”>“]_U.L+z-oﬂﬁ ;

. 9 N
—1 1 Z92) ( ) aB(S)

) (2 I . (2.130)

(LQ—m%vHO) 2 (ﬁ kz,, v

The spin-S gluon matching of the diagram (gl0) with ZZ exchange is

ddL - Zgg 1 7/g2
1 hlow _La . o hlow
(€10)22 fz/ (2m)d [cos Ow | -Vl —v-L+i02Mcosby
—i (e (4 O S~ 1oL (2.131)
L2 —m2 +i0 4 cos Oy 8 g K22V .

k=a,b,c

The spin-S gluon matching of the diagram (gl11) with W+W* and W-W~
change is

d . . 19 2 s ) 2
(S) d°L 710y [ig2 =i L* = (L-v)* igo low —
11 — hg™ | —=va —=vs|h L2 —m2. +40
(1) fW/ (27T)d 0 [\/ﬁv 2M (L-v)2+i0 \/§Uﬂ ©\L2 = mpy + 0

The spin-S gluon matching of the diagram (gl1) with ZZ exchange is

dL g2 —i L2 — (L-v)?* igy |
11 hlow N low
(e11)27 fZ/( 2m)d 0 LOSQWU 2M (L - v)2 + 10 cos Oy P

. 2 . 2
! 192 0) 18 2.133
(LQ—m2Z+Z'O) (40059W) ( ) k§c vz (2.133)

The sum of all 1/M order spin-0 gluon matching with WW exchanges vanishes

as
0
(28) Wy + (29)\hy + (£10)5% + (211)%,

1
x {(U.L)gaﬁ—i(uaLﬁjung } S (D) =0, (2.134)
k=a,b,c

Similarly, the sum of the exchange of ZZ diagrams for 1/M order spin-0 gluon
matching is zero,

(@8)5y + (29) 5y + (210)5) + (g11)5)

1 a
o (0 Dgun = gloakact st 3 ENDI=0. (2139

k=a,b,c
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So there is no contribution to spin-0 gluon matching from 1/M order.
The spin-2 gluon matching of 1/M order diagrams with WW exchange is

(28)w + (29)\hy + (210)00 + (g11)h,

P+ Lo’y Caad | (i _ 1)
(4m)i—2e ™™™ 3¢ 3
2(—1+4 3 4ot 1 14327 -8z 4 16
(=1 +4a7 — 3ay + 4ay log zy) * th 5 Tt —r?z? + —x (log z;)?
3(z2 — 1)3 e 3(7-1) 9 3

4 (14622 — 18z + 428) logzy,  8a? :
3@ g (el - Sal - ad)Lis(1 - )
B}Jowhg)wv“vyo!(ﬁ) uv (2 136)

The spin-2 gluon matching of 1/M order diagrams with ZZ exchange is

2 2
(88)5) + (g9)()+(g10)(z)z +(g11)5),

m[[(1+ 6)]29492 2 my 2 D)2 p)2\] /4
T 24cw o2 2 )+3(()+c§1))}(g—1)
(D7 4 oy [1 18y7 + 36y, 8(1 — 4y} + 3y; + 18y;) log ys
v (4y? — 1)? (4y7 — 1)
16y2(2 — 13y2 + 32y1 — 188 1
+ i Zét + 7% vi) [2 arctan (—2 ) log v,
(4y; — 1) 42 =1
—ImLi (1_i i - 1)]]
’ 297
DR ) [ 8 —59y7 + 108y, (29 — 128y7 + 108y;) log y,
' 4 (4y7 — 1) (4y? — 1)3
2(—7 + 38y2 — 82y + 1089 1
( 4yt2 — 232 e) [2 arctan <—2> log v,
(dyi — 1) 42— 1
1— /42 — 1
_ ImL12< ! QyQyt )]H . (2.137)
t

For all the gluon operators matching diagrams, we reduce them to integrals with
two Feynman parameters x and y, then do the double integrals analytically and check
the analytic results by numerical double integrals.

We collect all the results for quark and gluon operators matching and list the bare
matching coefficients

—3—2¢ —3—2¢
o (14 €)g; _my fz\ | fzmy W2 _ 02y o
vo = (4m)2—< 202 (Fw + W) * 8ciy (ev ca )+ 00
9 ~
_ CH 2.138
M a2’ ( )
—3—2¢ —3—2¢
om0 og [ my oy fomg 0 on o
Cp (47T)276 21’}% (fW + C?/V) * 80%1/ ( v “ )
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Lt m_2 CH

= oy fw g5 + 06 — 5 2.139

DYy fW8(.’Et—|—1)3 + O(e) M ( )
(1 2402 (=34 1 5

0 — T[['(1 + €)]*ga9; {mW { (fW n fz my . )

— il Jz _ 2 mw.
g (47 )d—2e 6 |2 s, adrM

famz> T oy | o2y 1, e | wp [8
2(@—#1)4}4— woc, [ e ) TRl T ey

32y, (8y; —7) 5 A(48y) — 2y} +9y7 — 1)
+ (4P — 177 arctan(y/4y; — 1) — my, + 3y 1) ]
4(144yS — 70y} + 9y? — 2)

3(dy; — 1)

3204 (2494 — 2192 + 5
_ 2% ((45275 — 1)7‘% ) arctan(y/4y? — I)H + 0(6)} ; (2.140)
t

@ _ mT(1+e)gs o
Cy = e [fwmw -

_l’_
fz2m7>7> e N2y Mz fwmw g o
= A - T 0 (2.141)
W

2 _ (1 +¢€)gy Cgeae  f2mZPTE o (p2gql, 110 2
B = e i+ S @ ) [+ (5 - gros2

+ fw [1—1—

1
+ Z—l(cg/U)2 — c(AU)Q) [Z’myt =

fam7 7% e el 112
ﬁ(cv + CA ):| |:§ (3 — §10g 2)€:|

—3-2¢
_ f;;%wmwgze _ fZZZ;lV (P2 C(AD)2>7TTH_]\Z
fomy 21 3z +2 2 my 2?1 — a2} + 4x?log ay)
[3@ +13 3 oM (22 — 1)
2,(72? — 3) 2(3z, + 2) 2(250% — 27, — 11) 22 4
( 3(x2 - 1y 3z +1)3 log2 — 9(x2 - 1)2(z, + 1)) Ty Tglos?
_ myy 227(1 — @} 4 27 log a, — 217 (log xt)2)>€} N 0(62)} |
M (z7 —1)3
s - T+ 6))’9293 { fwmy ™ {_ 16284 32 log2 — 23z, +2)1
I (47r)d—2e 2 9 27 9 9(xy +1)3 €
8(6x% — 1828 + 212} — 327 — 2)
9(z? —1)3
4(3x} — 21x} + 3a} + 9z, — 2)
9(x? —1)3
4(122% — 3628 + 39z + 14} — 927 — 61y — 2)
— 9027 — 1) log
14428 + 7225 — 3122} — 10523 — 402? + 47z, + 98
- 31— 1w 1) |
—3-2¢

Jzmy (U)2 (U)2 (D)2 , (D)2 16 284 32
+W |:2(CV +CA )+3<CV +CA )][—§—7+310g2

log x; —

(2.142)

log (z;: + 1)

log 2
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(U)2 (U)2 32(24y8 — 2198 — 4yt + 5y? — 1)
+ (¢ "+ ¢y )[ L 9(4y% — 1);/2 : arctan(/4y? — 1)
my | A(A8YP 4+ 62yF — ATy + 9)}

3 9(4y? —1)3

n (C(U)Q B C(U)z) [4%2(6243/;1 — 538y? + 103) 137y,
v A 9(4y? —1)3 3
32y2(104y¢ — 91y} + 35y2 — 5) 5
+ 317 — 1) arctan(y/4y; — 1)]
3 g MW [ (4 1) 2(—1+ 4x? — 3z} + 4x}logxy) 1
!

~1430p -8} 4,5, 16 ,
t t

3(x? —1)3 €

2

(log z:)

3(z2-12 9 3
4 (14 62?2 — 182} +42%) logz,  8a? ,
_§< d (952:1)3 ) log t+?t(—1+41‘§—3xf+$§)L12(1—xf)
t
—3—4e
m mz U)2 U)2 D)2 D)2 4
+ fz ZZcév m“2(c§,) + A7) 1 3(P2 4 D) )] <E_1>
IHCE gt [1 — 18y + 36y, | 8(1 — 4y + 3y, + 18y7) log s
v 4 (4y7 —1)? (4y7 — 1)
167 (2 — 13y + 32y, — 18y;) [2arctan ( > log y
(497 — 1)7/? A7 — 1 '

iy (A=)

2y}

(e 0 [ 8597 +108y, (29 — 128y; + 108y;) logy,
e A (4yf — 1)° (4y7 — 1)
2(—7 + 38y? — 82y + 108y¢
(=7+ ytz ‘gj;L ) [2 arctan (—) log v,
(dyf — 1) 42 — 1

_ImL12<1_iv4yg_1>}H +O(e)}. (2.143)

2y7
2.5 Renormalization

The quark and gluon operators will mix through renormalization, and operators be-
longing to the same spin class will remain closed in that class under renormalization.
We review their renormalization and running following procedures in Ref. [73]. For
an operator OZ(S) with Wilson coefficient c§5) for a certain spin class, we have renor-
malization matrix Z) by

O™ = ZE (O™ (), el () = 287 ()l (2.144)

L J
where S = 0, 2 for our purpose here.
We work out the renormalization matrix Z;; in the MS scheme. For spin-0 opera-
tors, the renormalization factors can be obtained to all orders in perturbation theory
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[118-120] and the result is

7(0 7(0
tgq) L, «gg) 0,
2, B
(0 _ 2Im 0 _1_ =
Zyy = p Zy) =1 ot (2.145)

where v, = dlog m,/dlog  is the anomalous dimension of quark mass, 5 = dg/d log p
is the QCD beta function, and detailed perturbative expansion in «y series are in
Appendix B.

Let us compute the spin-2 operators renormalization to 1-loop order.

The quark self-energy diagram result is

—iXs(p) = / (;Z ?d igt®y L_i gt“”fy”(p_i—g“L”)2
- _549?—(;;2(6) . /O dz [(1—z)*mZ] " [(2 — d)xp + dm,] | (2.146)

where Cy(r) = 4/3 for SU(3) .
The quark field strength renormalization factor is
dXs(p) g 1
=1-C -.
dp 2(r) (4m)2 €

p=myq
We use background-field method for gluons and the gluon field strength renor-
malization factor is

Z,=1+

(2.147)

Zi—1+ (ir) ! [ (G —gnfc(r) , (2.148)

where Cy(G) = 3 and C(r) = 1/2 for SU(3) .

Before we compute the spin-2 renormalization factor Zég), let us define a null
vector Y for convenience and we compute the scalar quantity YMYVOS)“ ” instead of
the direct tensor quantity O'”" for renormalization of spin-2 operators.

The diagrams contributing to renormalization factor Zg) are shown in Fig.2.9.

ANV SNV ANVAN

Figure 2.9: Diagrams contributing to renormalization factor qu .

The first diagram in Fig. 2.9, i.e. O" contracted by Y,Y, yields
1 Z
YuYuéq <V{HiDV} - %UD> q
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= (q(Y - q)Y ¢)"™*. (2.149)

The second diagram in Fig. 2.9 multiplied with YY), is

ddp 7 —1Qu
qigt®YY *—igy t*—* ¢
/ (m)d 9T e G )

2

_ cg<r>JTP§<q<Y Vo). (2.150)

The sum of the third and fourth diagrams in Fig. 2.9 multiplied with YY), is

dp 1 1 —1ig
2 qigt*y"—(Y - p)Y —igt® m

2

= —Cy(r) (4g7r)2

ol N

@Y - q)¥Yq) . (2.151)

Thus, we have

Z3) =27, [1 + (% — 2) Cy(r) (49;)2%}
_ - 202(7“) (49;)2% (2.152)

The diagram contributing to Zég) is shown in Fig. 2.10. The spin-2 operator Of)“ v

contracted by Y,Y, in momentum space is

1

1
=Y, Y, A {go‘ﬁk“k‘” 5 (g”ak‘“kﬁ + g”ﬁk‘o‘k’”)
1 k2
_ 5 (g”ﬂk’“‘ka + g“o‘kjﬁk”) + 3 (guagVB + guﬁgva) }A%
= —2A% [¢" (Y - k)* + KYIYY — (K'Y + YY) (Y - k)] A2, (2.153)

Figure 2.10: The diagram contributing to renormalization factor Zég).

The diagram in Fig. 2.10 is then evaluated as

/ddkit“ L g _—iQ
(27T)dq g 7M¢ _ %, _mq g ’Yl/ kf2
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(=2) [¢" (Y - k)2 RPYRYY — (RPYY 4 YR (Y - F)] }q

= SO i A - )Y ) (2,154

Thus, combing with Z,, we obtain

2) _
Zéq)_g

(2.155)

The diagrams contributing to Zég) are shown in Fig.2.11. Their sum yields

dk "
—/(QW)dAMTr

Ab

(zgt“’y yo" %zgtb’y”ﬂgtbv” i+ e ) %Y( )%

4 g 1 2
==-C —AY [=2g" (Y - k)" = 2K2YPYY + 2 (K*YY + YFEY) (Y - k)] A%,
(2.156)
+
Figure 2.11: Diagrams contributing to renormalization factor ng,).
Thus, we obtain
4 g* 1
72 = —C -, 2.157
qg 3 (r) (47T)2 € ( )

We compute the diagrams in Fig.2.12 to derive the renormalization factor ng).

Figure 2.12: Diagrams contributing to renormalization factor Zgﬁ).

The fist diagram in Fig. 2.12 contracted by Y}, Y, has been calculated in Eq. (2.153).

44



Table 2.1: Renormalization factors for quark and gluon operators.

Operator Renormalization factors

0 0
qu’) = g Z(gg) =0,
0y, Oy

0 m 0
Zg(q):%Ta Zég)zl_ﬁ-

28 = (1= 28) 0,y + 0(a?), 2 =22+ 0(a?),
o, o

2 Qs 2) s 2n
Zéq) = E?g;_z + 0(0@ ) Zggg) =1- Eg_ef + 0(043) .

Employing background-field Feynman rules, the second diagram in Fig. 2.12 yields

2

1
205(G) Ly oA [_ZQW(y.k)Q_gkzwywz(kwuwm (Y.k)] Ar

(4)? 3
(2.158)
The sum of the third and fourth diagram is
| 1 1
205(Q) L A% 6g (Y - k) + 102y 17 (K"YY +YFEY) (Y - k)| A%,
(4m)2 e 3 3
(2.159)

Thus, combining with the gluon Z, factor Eq. (2.148), the sum of all diagrams in
Fig.2.12 gives the renormalization factor

11 ¢* 1
2 _ |1 = g -
Zsq [1 3 Co (@) )7 e Zy
4 ¢* 1
=1-= - 2.160
S1C0) (2.160)

Now we have all the Z factors from Eq. (2.145), Eq. (2.152), Eq. (2.157), Eq. (2.155)
and Eq. (2.160) for spin-0 and spin-2 operators in Eq. (2.144), and we list them in
Table 2.1.

The renormalized Wilson coefficients for the quark and gluon operators are given
by Eq. (2.144), plugging the renormalization factors in Table2.1 and we obtain

C((]O)ren(,u) — C((JO)bare + O(Oé?) ’
céo)re“(,u) _ Cgo)bare + O(ai) :
C((]2)ren('u) _ c((]Q)bare + O(Oés> 7
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ren

_ 1&6 2) bare (2)bare + O(Oég> . (2161)
€ 6m 1 %

Explicitly, the renormalized Wilson coefficients are

(0 1 Iz fz )2, Mw CH
W) = g (fw+ 2 )+ 5@ =) - T

(D)2 _ D)2y _ 5 Ty _ mw Cg
+ (ev ) DbfWS(xt +1)3 M adri’

1 fz> Nl 1 mw CH
4 {6 {xh <fW * ey +fw l 3 " 2(xy +1)2 Y 3asa?

fz (P2 (D)2 L w2 | w2 [4(483/?—2y?+9yf—1)

8 32y8(8y? — 7 1
+ 3 + % arctan(y/4y? — 1)] + Z(CE/U)Q — cf4 ) [37ryt
P

32yt (24yt — 21y? +5)
_ (EEnE arctan(y/4y? — 1)
 4(144y] — 70y + 9y7 — 2)}
3(4y7 — 1) ’
w7 w2 fz m
3 6W<CV +cy ) - 42(0 +Cy )W_fW—ZM’
v s

6CW

(P2 4 (P2 4f§ (P 2+C;D)2)mW myw

5Db[ 3z + 2 2 my 21—z} + 4zt logxy)
3

T S 3 aM @ =13 ’

. Qg 4 14 1 2 + 3wy I
D (p) = 4(:) {wa {Ne (—§logm—w - 5) - 9((1 n il?t))3 log o (11 20)
(1227 — 36z + 3627 — 1227 + 3z, — 2)
B 9(z; — 1)3 1+,
 2a4(=3 + Taf) log2 — 4828 + 24xP — 104z} — 3523 + 2027 + 13z + 18}
o@Z—1p ° 36(27 — 1)°(1 + 1)
1
+fw2 V |:Ng (glogm—y;v - %) + #bg@log%

x7 — 1) w
4(3x2 — 1) log M 4(4af — 1627 + 627 + 1)

Tt

log

1622
+ Tt log? z

- - 1
3212 Py 3 3022 — 1) 08 L1
82 (xf — 32xf‘ +4x? — 1) Lin(1 — 22) + Am’a?  Sat —27x? +1

3(x7—1)3 9 3z —1)2
fz U)2 U)2 D)2 D)2 32 1%
+ T6c [2(0&,) —|—c(A) )—|—3(c§,) +C(A) )] [— EIOgm_Z —4}

32(24y8 — 2195 — 4yt + 5y? — 1
7 oy [P T = EE D anctan i 1)
t
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Comye | A(d8yp + 62y, — 4Ty} + 9)]

3 9(4y? — 1)
2 4 2
2 (U2 [4% (624y; — 538y; + 103)
RN ST
137y, 32y2(104y° — 91y* + 3542 — 5
-3 Ly il 375(4?;2 — 1)7/2 ! ) arctan(\/4y? — 1)]
t
fZ mw U)2 U)2 D)2 D)2 %
2 I [2(c§/) —|-CE4 ) ) —1—3(0%/ ) —|—CE4 ) )] <810gm—Z — 1)
U [1 — 18y7 + 36y, | 8(1 —4y; + 3y, + 18y7) log
v 4 (4y7 —1)? (4y7 —1)°
16y2(2 — 13y? + 32y — 18y9)
2 arct < ) 1
+ (g2 — 1772 [ arctan 1 0g Yt
1—iy/42 — 1
~ I Lip (—4 ]|
2y;
a2V 0] 8 — 59y; + 108y, (29 — 128y; + 108y,) logy,
yCV —Cy 4y2_13 4y2_13
t t

2(=T + 38y, — 82y, + 108y}) [2 arctan <;> log
717 W1

—ImL12<1_iV4yg_1>]H}, (2.162)

2y}

where the reduced coefficients égs)

by cgs) = (Wag/mf’/v)él(-s), where ¢ = u,d, s, ¢, b, g is the index for quark or gluon and
U denotes up-type while D denotes down-type. The strong coupling is denoted by
as(p). The mass ratios are defined as x; = m;/my and y; = m;/my where my is
the mass of Z° boson, and j is the index of the specific particle, e.g. j = t stands for
top quark, j = h for Higgs boson. Lis(z) = Y 7=, 2F/k? is the dilogarithm function.
N, = 2 is the number of massless Standard Model generations. For electroweak
scale matching, light quarks u, d, s, ¢, b are treated as massless. Also neglecting small
corrections from |Vig|* and |Vis]?, v and ¢ quarks have the same coefficients, as do d
and s quarks. We note that our results obey the correct formal limit at small top
quark mass m; — 0 for top quark and gluon coefficients relation c.f. Eq.(2.195) and
Eq. (2.200):

are given in terms of the original Wilson coefficients

0)
|mt4>0 Cé 27,f =6 12 E ng= =6 + O( )
(2)

Plne = €0 = 5 log el o+ 0ad), (2.163)
()

where ¢, ._¢ denotes the massless 6- flavor top quark operator coefficient and ¢, 1)1 =6

for gluon operator coefficient, by setting N; = 3 in Eq. (2.162) and treating top quark
as massless in all the loop calculations. Explicitly the reduced 6-flavor coefficients
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40,y = 2 [fw (%) - E’CTZW (72 + P2+ % 4 cff”)] ,
s =~ (o 32 ) + e ) - T
é_fzz)nffﬁ = Oéjl(:) [QfWNl <—310gL - %) + fW;—]V(}Nz <§ IOgnf_W - %)
i uf—czw [N + )+ NP2 4 ) (_% o8~ 4)
24%% [N + )+ NP2 ) (8 8 s ™ 1) } |
ryes = B+ L+ ) = L AP — e as

where N; = 3.

2.6 Renormalization Group Evolution

Now by taking scale derivatives of Eq.(2.144), we obtain the renormalizaiton group
evolution equations in terms of anomalous dimension ~;;,

d
(1) = ~iics 21
legI[LCZ(M) Y;5iCj (N) ) ( 65)
where
d
Vi - (2.166)

=L =T
J delOg/I, kj

In the MS scheme, the anomalous dimension is given by taking coupling derivative
of the coefficient of 1/e term in Z;;,

(n)
0 Zij

1
Yij = _ga_gZi(j) C Zi=05+ ) . (2.167)
n=1

and we tabulate the results in Table 2.2.
Let us solve the renormalization group evolution equation Eq. (2.165), for spin-0
coefficients,

dlog 1 = YgaCg T VaaCq = —2V1Cq s (2.168)
dc ~
dloéu = YggCq + qugcq = ey, (2.169)

q

where we have defined 7/ = %’g”g, 8= f/g and B = E;(%égg)‘
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Table 2.2: Anomalous dimensions for quark and gluon operators.

Operator Anomalous dimension

0 0
’Yéq/) :Oa ’ngg) _07

oy, 05
0 m
’Ys(lq) - _Qaalzg g’ 759) - 3(5)/;9) :
2 Qs 2 — Qs
%(,q? = E%‘Sqq’ + O(ag) ) 7(9) = —g%f + O(‘ﬁ) )
o, 05

Eq. (2.169) yields

deg B 0f 0Ologu
/ N dloggdlog'u_ 810gu810ggd10 ’
:>/dlogcg /aiiuédlog,u:/logg,
B
= () = 655)) (). 2.170)

Eq. (2.168) yields

/dcq / —2,.¢,d1og p

OV €
= [ —2—" 241
/ Dlogpu o

:CNQ(’uh)/ -2 Dt dlog i1
B (k) Olog

Cq\Hn
= () = eqfom) — 228 b ) — ()] (2.17)
B(pn)
For spin-2 coefficients,
dc 64 o 64 o
dlogz;]u = Y9qCg T VaaCq = T a5 + 9 470 (2.172)
de 4 g 4 Qg
dlogu = YggCg T zq:%gcq =3y % T 30, zq: Cq - (2.173)
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Summing over all flavors of quarks on both sides of Eq.(2.172) and combining
with Eq. (2.173), we obtain

|
deCq L6 dey (2.174)

Take derivative of d/dlog u on both sides of Eq. (2.173), plug in Eq. (2.174) and
we obtain

d*c, 4 dog /4w 4 64\ a5 dc,
= Z(nse, — T ) s . 2.175
dlog p? 3(nfcg ;Cq) + (3nf+ 9 ) 4m dlog ( )

Let us denote dcy/dlog v by shorthand notation f;(u) and we solve Eq. (2.175)

obtaining
dfi (1) / 1 daog 4 64\ oy
= — - — | —|dl 2.176
filu) a dlogp  \3" T 0 ) ax| VOB (2.176)
where
dog 2gdg 9 1 dlog oy
_ — 998 = —9 P . 2.177
dlogp  dlogpu 95 focvs = “ 25y dlog ( )
Plug Eq. (2.177) into Eq. (2.176), and we obtain
felpm) { 1 (4 64)} as ()
lo =1——\(=zng+— )| lo . 2.178
S g~ L 28 3" 0 ) ) (2178)
Thus, we get
3 e gy () = Sy ca(m)] {as(uz)}la%(g"ﬁ%‘) . (2.179)
s [y (1) — 2, cq(mn)]  Las(un)
Combining Eq. (2.179) with solution of Eq. (2.174)
16
Z[cq(ﬂl) — cq(pn)] + ?[ g(p) = cg(pn)] =0, (2.180)
q
we obtain
3ns + 167 (ny) 16ns(1 —r(nys))
= 2.181
calm) = P e )+ A e ) (281)
3(1 —r(ny)) 2nsr(ng) + 16
= —"" —_— 2.182
cq(u) 30 + 16 cq(pn) + 16+ 3n, cg(pin) (2.182)

where function r(t) = (as(,ul)/as(,uh))_%(%Jr%t)‘
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Table 2.3: Renormalization group evolution equation solutions, where B = (/g and
1
function r(t) = (as(ﬂl)/as(ﬂh))_%<%2+§t)_

Operator RG running matrix

0 0
Réc} = 0qq', Rég) - (ih) [ (pn) = ()]

=Y

oy, 05

0 0 3
R

2 16r(ns)+3n
Ry = it [t = (0] 4 (003, +003)

0?2 o R@ — 1lren] | o ge)

16+3n¢

2 3|1—r(ny) 2 16+3nsr(n
R = [16+—3n};] +0(a?), Ry = Wn(ff) +0(a3).

Thus, we obtain the relation between high-scale p;, and low-scale p; Wilson coef-

ficients
ci(p) = Rij(p, pn) i (pn) (2.183)

and the results are listed in Table 2.3.
In order to make predictions about the low-energy dark matter direct detection

experiments, we need to evolve and match the 5-flavor quark and gluon effective
field theory with Wilson coefficients Eq. (2.162) at weak scale to another effective
field theory at a lower energy. At a first step, We evolve the Wilson coefficients
Eq. (2.162) from weak scale about top-quark mass scale ~ i, to the next lower scale
about bottom-quark mass scale ~ i, by the running matrix R in Eq. (2.183).

2.7 Heavy Quark Threshold Matching

Now we are at the bottom-quark mass scale with an effective field theory consisting
of only quarks and gluons. For the WIMP-nucleus spin-independent scattering, we
could simplify the picture by considering the coherent contribution of WIMP-nulceon
scattering and leave the nucleus effect discussion to Section. 2.9. Each nucleon could
be treated as a combination of light quarks and gluon. We consider the light quarks
to be u, d, s three flavors and integrate out the heavy quarks ¢ and b, thus eventually
we match the 5-flavor quarks and gluon effective theory to a 3-flavor quarks and gluon

effective theory.
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When we integrate out a heavy quark with mass mg in an (ny + 1)-flavor to an
n¢-flavor theory, we do the following matching

qnf+l an

1
> A0S + SO = IO + S0 + O(m—Q), (2.184)
q9=q1 9=q1

where the bracket (...) represents taking matrix elements over a nucleon state |N).
We can find a solution to Eq.(2.184), expressing ns-flavor theory in terms of
(ng + 1)-flavor theory at the matching scale pg,

s s s s S S
¢t (1a) = M (1) (10) . (017 (ng)) = M (1o)(0;” (ng)) . (2.185)
where i = q1, ..., Gn;, 9 and j = q1, ..., @n;41,9, 50 M is an (ny +1) x (ny +2) matrix.

The matrix elements <O§S)> are constrained by sum rules of QCD energy-momentum
tensor T". By Noether’s theorem, we can derive the energy-momentum tensor,

1 v
T — Z QQV{MiD,}q _GqAmGA Y
q

(i 1 nae
- g [;q (ézD_ - mq> q— ZGg‘ﬁGA 8 (2.186)
and
. 1 11
=[S jom s (- 1) o)
q
+) (0P + (0P, (2.187)

q

Particularly, after renormalization of Eq. (2.187), the trace of energy-momentum
tensor constrains the spin-0 matrix elements as

(00 (2.188)

and

nstl fFlns+1)

= (1 - 752”*”) (00) + =—(0,"). (2.189)
q

The traceless part of the renormalized energy-momentum tensor Eq. (2.187) re-
lates the spin-2 matrix elements of ns- and (ny + 1)- flavor theory as

nyg nf+1
Z<Oé2)MV> 4 <052)uV> — Z (O;(Q)“”) + <O;(2);w> _ (2.19())
q q
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Combining Eq. (2.185) and Eq. (2.189), we obtain the constraints among entries
of the spin-0 matching matrix M©),

n n N(nf+1)
=i = (1= a8 D) [(@ = ng)g + g — 1) MY + M) - BTMg) ~0,
B(nf) (ny+1) 0 ©) B(nf-i-l) o
— = (1987 (M + MQ) - =M =0, (2.191)

[APwhi

where the subscript “@Q)” denotes the (n;+ 1)-th heavy quark and “q
quark.

Combining Eq. (2.185) and Eq. (2.190), we obtain the constraints among entries
of the spin-2 matching matrix M),

denotes a light

a9
2 (2) 2) _
1—n; M — M) — M2 =0. (2.192)

1—[(2 = np)dgy +np — M) — MG — M@ =0,

The matching matrix M can be expanded as a series of strong couping o, at heavy
quark scale pg,

s (ny+1) "
M = Z (%—W) M) (2.193)

n
T
n=0

and we can solve Eq. (2.185) order by order through this expansion.
At leading order, we have solution to Eq. (2.185),

S)
M, = Oqq’ ; Mé;g)zl,

qq’

M(g) — M = M) = M‘f} —0. (2.194)

q q9 g

We take higer order results for M q%) and M 5(,22) from Ref. [121], applying constraints
from Eq. (2.191) and we obtain the following M® matrix at NNNLO,

qq’ >

(ny+1) ‘T 89 20 8
yO (o (o)) [89,20, (o 8, »fha
9 ( T 54 + 9 08 meo 3 08 meo ’

0) —
M,/ =0,

ne+1 netl 2
M(o>__04§ Mug) (ol Pug) ) 11 1 e
9Q — — —log | —
127 s 48 36 mq
. 3
o)\ 1 2821 3 o\ 1. (o
—|—— Sl5ag —glog(— )+ log” | —
m 121 288 8 mq 9 mq
N, _1 L
—f-nf[ 96+3 og(mQ)]]7

23

) _
MY =6




'11 11 1
— — —log Ho ~log? ro
_36 6 mgq 9 meq

(564731 2821, [pg) . 3 ho
il 2
A1472 288 ® (mQ) MR (mQ

82043 2633 67
———C(3)+ns| — ——=+ —log Ho
9216 10368 96 me

(mQ)H | 199

where ((s) =Y 2, n~* is the Riemann zeta function.
For spin-2 matching matrix M@, we could consider the heavy quark to be an
inactive quark and integrate it out in loops of ny + 1-theory to obtain an ns-theory

with ns active quarks. Matching for M;é) is shown in Fig. 2.13.

+
/\
:
3
i
\—/\_/v

Figure 2.13: Diagrams contributing to matching matrix element M Q, with “Q”
denotes the heavy quark.

The diagrams in Fig. (2.13) yield the same loop integrals as that by Fig. (2.11)
and the result is

2« u?
2 og O/(2 2.196
34m Q ( )

The matching from n; 4 1-theory to n¢-theory is

2 a 2
(P — @ 28 o0 _c A (2.197)
3dr °md
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Matching for Még) is obtained by integrating out the heavy quark ) loop in the
external gluon line, shown in Fig. 2.14.

Q Q

Figure 2.14: Diagrams contributing to matching matrix element Mg(f,), with “Q”
denotes the heavy quark.

The loop diagrams in Fig.2.14 yield the same loop integral as the quark loop
integral computation for the background-field gluon field strength renormalization
factor Z4 Eq. (2.148) and the result is

2 a, 2
200y, 12

O/@nv (2.198)
3 4 me g

The matching from n; + 1-theory to ns-theory is

2« 2
@ _ [ 2% 100 F | p@u
cg M = <1 . log mg) A (2.199)
Thus, we obtain the NLO results for spin-2 matching matrix M@, which also
satisfy the constraint Eq. (2.192).
) ) o ug), (1o
qu/ :5qq’; Mgg :1_3—7(‘10g (m—Q),
)
@ o ey (e
9¢ 3m mgq 7
2) _ g2 _ 2@ _
MB = M2 =M =0. (2.200)

2.8 WIMP Nucleon Elastic Scattering Cross Section

To compute the cross section for WIMP nucleon scattering from the 3-flavor quarks
and gluon effective theory, we need the Wilson coefficients and nucleon matrix ele-
ments for the operators. The nucleon matrix elements are non-perturbative at GeV
scale, and we will take results from Lattice QCD calculation. The 3-flavor effective
theory Wilson coefficients are obtained by renormalization group evolution and heavy
quark matching from the 5-flavor quarks and gluon effective theory Wilson coefficents
Eq. (2.162).
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2.8.1 Light Flavors Effective Theory

We use the R-matrix Table 2.3 to evolve the coefficients from a high scale to a low
scale and the M-matrix Eq. (2.195) and Eq. (2.200) to integrate the heavy quarks at
a threshold scale. The low energy 3-flavor effective theory Wilson coefficients are

¢j(po) = [R(po, pe) M (pie) R(pic, p1n) M (po) R(pw, b)) cipue) (2.201)

where p is about GeV scale, pi, is a scale about the quark mass scale m,, ¢ =
u,d, s, c,b, g, j = u,d, s, g, and R(up, ;) is a 6 x 6 matrix, M () is a 5 X 6
matrix, R(u., p) is a 5 X 5 matrix, M (p.) is a 4 x 5 matrix, R(uo, i) is a 4 x 4
matrix. Specifically, we take p; = (m;+my)/2 =126 GeV, up = 4.75 GeV, u. = 1.4
GeV, and py = 1.2 GeV, as in Refs. [73, 107].

To evaluate Eq. (2.201) and obtain ¢;(j) numerically, we expand the S-function
and mass anomalous dimension 7, in series of (i, nf) in Appendix B. Here we
illustrate how we evaluate o,(u,ny) at 4-loop order by an iterative method from

Ref. [121],

Bl (BoL)* ~ (BoL)?

1 3 3 D, o 1
+ (o) [bl( log L—|—210g L+ 2log L 2)

as(p,nyg, A) :47r{ bi(log® L —log L — 1) + bs)

where L = log (u?/A?), b, = B,/B and B3, can be found in Appendix B.
In order to determine the scale A in Eq. (2.202), we match the 5-flavor a; to its
value at Z° boson mass scale which is 0.118, and solve equation

as(my, 5,A) = 0.118, (2.203)

which provides a solution for 5-flavor scale A5 = 0.208365, as(my, 5, A5) = 0.107688.
Then for 4-flavor scale A4 is obtained by solving

as(mp, 5, As) = as(myp, 4,A4), (2.204)

and Ay = 0.292968, a(my, 4, A4) = 0.216634.
Similarly, for 3-flavor scale A3, we solve

as(me, 4, M) = as(me, 3,A3), (2.205)

and Az = 0.337109, a(m,, 3, A3) = 0.371843.
We obtain o, (p, ns, Ay, ) for ng-flavor theory at a scale p by plugging in A, that
has been determined and evaluating Eq. (2.202).
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2.8.2 Nucleon Matrix Elements

Now that we have 3-flavor theory Wilson coefficients Eq. (2.201) at ug ~ GeV scale,
in order to compute the scattering cross section, we need the nucleon matrix elements
for the corresponding operators.

For spin-0 quarks and gluon operators, we have nucleon matrix elements at zero
momentum transfer definitions, c.f. Ref. [73]

E
mafun = 5 ANRIOPING))

0 _  9as(p) Ex
N 9N B 8T mpy

(N (k)|O|N(K)), (2.206)

where ¢ = u, d, s, and |N(k)) is a nucleon (proton or neutron) state, N = p, n, nor-
malized by uy(k)uy (k) = my/Ex, and —9a,(p)/(87) is a convention by definition.
We usually determine the scalar nucleon matrix elements fé?])v and f 570]2, from scale-
invariant quantities,
Son = WW\M + dd|N),
Y = (mg —my)(Nl|uu — dd|N). (2.207)

Solving Eq. (2.207) in a parametric way, we obtain the scalar matrix elements for
u and d quarks,

(0) Ruq YN (0) 1 XN
1+ Ryg >
= 2.2
=1 R (2.208)

where R,q = m,/mg.

In practice, we take ¥,y = 40(4) MeV and R,; = 0.49(2) from lattice results
in Ref. [122] averaged from Refs. [123-127]. 2 We take ©_ = 2(2) MeV for proton,
and ¥_ = —2(2) MeV for neutron from Ref.[131]. For the s-quark scalar matrix

element, we take fs(% = 0.056(8) from Ref.[122]. We tabulate the spin-0 quark
matrix elements fq(ozz, in Table 2.4.

Recall the constraint among quarks and gluon scalar matrix elements from Eq. (2.188),
and we derive the gluon spin-0 matrix element by quarks scalar matrix elements,

© _ a9 (0)
fon = " i L= (1 =7m) Y fin] (2.209)

q=u,d, s

where o, and /3 are taken at to ~ GeV scale and for ny = 3 theory.

2There is tension between the lattice result [122] X,y = 40(4) MeV, and phenomenological
extractions X,y = 59.1(3.5) MeV and ¥,n = 58(5) MeV from pionic atoms [128] and low energy
pion-nucleon scattering [129], see also Ref. [130], which found ¥,n = 59(7) MeV. Since the scalar
matrix elements of v and d quarks represent a small contribution to the total cross section [71], our
results would be essentially unchanged if a larger value, ¥y &~ 60 MeV, were used.
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Table 2.4: Scale independent spin-0 nucleon matrix elements for proton and neutron
for light quarks u, d, s. The first,second and third uncertainties are from >y, R.q
and Y _ respectively for u and d quarks.

q | £ | fin

u | 0.0150(14)(10)(4) | 0.0130(14)(10)(3)
d | 0.0265(29)(21)(4) | 0.0307(29)(21)(3)
s 0.056(8) 0.056(8)

Table 2.5: Spin-2 nucleon matrix elements from lattice QCD calculation at different
renormalization scales.

Scale p (GeV) | £ | fin() | F90) | finw
1 0.404(9) 0.217(8) 0.024(4) | 0.356(29)
1.2 0.383(8) | 0.208(8) | 0.027(4) | 0.381(25)
1.4 0.370(8) | 0.202(7) | 0.030(4) | 0.398(23)
2 0.346(7) | 0.192(6) | 0.034(3) | 0.419(19)

For spin-2 quarks and gluon operators, we have nucleon matrix elements defini-
tions,

Ey

v _ (g _ 9
2L (N wioPmIN ) = (e - i) 13
Ek’ (2)pv — 1.V g#’/ 2 2)
SN ROP N () = (B~ T ) £ (2.210)

The energy momentum conservation constraint Eq. (2.190) requires
2 2
SR+ =1 (2.211)
q=u,d, s

We take lattice calculation results from Ref. [132] for spin-2 matrix elements as
in Ref. [73] and list them in Table 2.5 for relevant renormalization scales. Shown in
Table 2.5 are for proton matrix elements For neutron matrlx elements, neglecting
iso-spin breaking, we have fﬁ% = faps un fdp, and fsn = fsp

2.8.3 Nucleon Level Cross Section

Let us compute the low-velocity limit of the WIMP-nucleon spin-independent scat-
tering cross section, as a standard benchmark process. The cross section is c.f. [133]

d_O' _ ZSpins |‘/\/l|2 |p|
dQ 2EA2EB‘UA — UB| (27T>24Ecm
B AM24m2 M) + Mﬁ?P M0
B 2M2m v (2m)24(M + my)
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2
m, 0 2
= 5IMY M (2.212)

Thus, we have

2
on = MY+ MY, (2.213)

where N = n,p is a nucleon, m, = myM/(my + M) =~ my is the reduced mass of
the WIMP-nucleon system, and the scattering amplitude is

M =37 ¥ (1) (N0 (o) INY (2.214)

1=q,g

where S =0, 2.

For our default matching scales p, up, pe and pg, and with the central values
of all nucleon matrix elements at scale pg, we find the spin-0 and spin-2 ampli-
tudes for Higgsino-like WIMP-proton scattering are (normalized by spin-2 amplitude

Mz(oz)‘M%oo = 1)

0 — _1.05— 0.50° 2 "W @ _ 1 _o.54"W
M7 = —1.05 0.50@5 i M7 =1-0.54 U (2.215)
At M — oo, Eq. (2.215) exhibits a remarkable cancellation at the level of ~ 5%
(compared to ~ 20% in the triplet case [107]). At order 1/M, the pure Wino case
also exhibited a strong cancellation between the power corrections of spin-0 and
spin-2 amplitudes [107]. For the pure Higgsino case we have ¢y = —(3a3/4)[1 +
1/(2¢4,)], and MY = ~1.05 + 0.69 my /M. Owing to the severity of the leading
order cancellation, the total 1/M correction can compete with the leading order for
moderate M. These features can be seen in the central value curve of Fig. 2.15. The
sign of the power correction relative to leading power further suppresses the cross
section as M decreases from the heavy WIMP limit.

As usual when evaluating the nucleon-level amplitude, we have two sources of
uncertainties: Wilson coefficients and hadronic matrix elements. Perturbative uncer-
tainty in the matching coefficients is estimated by varying the matching scales within
the ranges m?, /2 < p? < 2m?, m2/2 < p? < 2m?, m?/2 < p? < 2m?, and 1.0 GeV <
po < 1.4GeV, as in Ref. [73, 107]. Uncertainties from neglected 1/M? and higher or-
der power corrections are estimated by shifting MS? — M |0 o012 (myy /M)?] as
in Refs. [73, 107]. Uncertainties from nucleon matrix elements are propagated to the
observable cross section [73, 123, 127, 131, 132]. We add in quadrature the errors from
different sources for each of the spin-0 and spin-2 amplitudes. Then the maximum and
minimum of all possible values of the combination |M1(90) + ./\/léz)\ sets the boundaries
of the cross section curves depicted in Fig. 2.15.3 Also shown n Fig. 2.15 are current
dark matter direct detection experimental exclusion limits (solid lines) [59, 104, 134],

3We combined errors in this way at the amplitude level since the cross section can be zero for
some parameter values.
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10%

10.0

Figure 2.15: Scattering cross section for Majorana SU(2) doublet (Higgsino-like)
WIMP on proton. Corrections to this limit are parameterized by dimensionless Higgs
coupling ¢y as discussed in the text. The pure Higgsino limit (¢ = —(3a3/4)[1 +
1/(2¢3)] = &%) is shown as the lower violet band and dashed central value curve.
The impact of non-decoupled states in the UV completion are illustrated with ¢z =
&% +0.01 g5 (middle, dark blue band) and ¢z = ¢ + 0.1 g3 (upper, light blue band).

future projected detectors’ sensitivities (dotted lines) [56-58, 105], and neutrino floor
(dash-dotted line) for Xenon detectors [106].

For the lower, violet colored, region in Fig. 2.15, the limit M’ > M has been
taken to decouple heavier states in the pure Higgsino limit for the coefficient ¢y
in Eq. (2.215). Before taking this limit, we may use Eq. (2.69) to investigate the
impact of non-decoupled states in the UV completion. Away from the pure-state
limit, we have ¢y ~ 2k*M/(M’' — M). For weakly coupled theories we consider a
range of values ¢g/g2 = 0.01 — 0.1 in Fig. 2.15. For TeV mass WIMPs, the cross
section is within the detectable range of next generation detectors [56, 57, 105] when
¢r/g93 ~ 0.1, and is close to the neutrino floor when ¢y /g5 ~ 0.01. In the pure
Higgsino limit, the cross section upper limit remains at or below 10~*® cm? for masses
above a few hundred GeV.
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2.9 Nuclear Effect

Finally, we note that the actual scattering process in experimental searches takes place
on compound nuclei versus on isolated nucleons. A standard practice for treating
nuclear modifications is to apply a nuclear form factor to the free-nucleon result [135,
136]. At the same time, a distribution in WIMP velocities is assumed present in our
local galactic halo, and the event rate ansatz is a convolution of halo velocity profile,
nuclear form factor, and single nucleon cross section [136].

—_
(=}

9
—_
(=}

4

Wino

— -8 . .
10 Higgsino

E 107

o [ Standard [ Standard

ChEFT-constrained ChEFT-constrained

/dE (TeV - (kg -day -keV) ™)
2 S =z =

107 |

50 100 150 200 ) 50 100 150 200
E (keV) E (keV)

Figure 2.16: Event rate (times WIMP mass) versus recoil energy for Xenon target, for
Higgsino-like (left panel) and Wino-like (right panel) WIMP. The “Standard” rate
uses the standard halo model, dark matter velocity distribution and Helm nuclear
form factor [136]. The “ChEFT constrained” rate replaces the Helm form factor by
the model of Refs. [108, 109]. Dashed curves are central values and shaded regions
represent perturbative matching uncertainty. Nucleon matrix element uncertainties
are not displayed.

The severe cancellation in the single-nucleon cross section, cf. Eq. (2.215), suggests
that nuclear corrections could potentially have a larger than expected impact. We
investigate this possibility here, using the model presented in Refs. [108, 109] which
includes effects from multi-nucleon interactions. In general, the differential event rate
versus recoil energy takes the form

dR p 2112 /OO f(V) 3
—_—_ = — 2.21

where p ~ 0.3GeV - ecm™ [136] is the dark matter mass density, ¢ = (2myE)"/? is
the momentum transfer with E being recoil energy, F(¢?) is the nuclear structure
factor [108, 109] and f(v) is the WIMP velocity distribution function. Explicitly, the
velocity distribution function is [136],

,(V+VE)2 2
f(v) = (7r3/2v3k)’1e %0 (Vese — |[V+VE]), k=erf(z) — \/—2_622 , (2.217)
T
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Figure 2.17: Different nuclear response channels contributing to do/dg* versus mo-
mentum transfer ¢, for Higgsino-like (left panel) and Wino-like (right panel) WIMPs
of velocity v/c = 1072 scattering on a Xenon nucleus. Curves are normalized to
unity for the sum of all contributions at ¢ = 0. R, denotes the one-body isoscalar
response (denoted (¢} FY)? in Ref. [108]). R, and R, denote one-body/two-body
interference terms (denoted 2 cY ¢, FMF, and 2 cY ¢, FY F, in Ref. [108]). Numbers
in parentheses are the percentage contribution for each nuclear response channel to
the total integrated cross section. Other subdominant channels are not displayed.

where z = ves. /v0, V9 & 220 km/s is the galactic rotation velocity for a galaxy with
a flat rotation curve, v &~ 600 km/s is the local galactic escape velocity, v is dark
matter velocity onto the target, vy ~ 232 km/s is Earth’s velocity relative to the
dark matter.

Equation (2.216) reduces to the “Standard” treatment under the replacement
|F(q*)|? — A% F(¢*)|*monM/m?, where

F(qz):3' ez, (2.218)

is the Helm form factor [135, 136], j;(z) is the first-order spherical Bessel function, r,,
is an effective nuclear radius with r2 = (1.23A4'3 —0.6)2 +772a%/3 — 552, a ~ 0.52 fm,
s ~ 1 fm [137] is a measure of the nuclear skin thickness and A is the mass number
of the nucleus. Figure 2.16 compares the event rate for Xenon detectors (3% Xe)
from our “Standard” computation, to the “ChEFT constrained” computation with
nuclear model from Refs. [108, 109]. For discussion of nuclear corrections see also
Refs. [138, 139].

The rate is multiplied by the WIMP mass to make the curves on the plot indepen-
dent of WIMP mass. For the purpose of illustrating nuclear effects, we focus on the
heavy WIMP limit, neglecting small corrections to both curves when my, /M # 0. In
order to perform an “apples to apples” comparison in Fig. 2.16, we have employed the
same input values for nucleon-level matrix elements in our “Standard” nuclear model
as in Ref. [109], except for the spin-0 gluon matrix element, which was evaluated in
Ref. [109] using a leading order perturbative QCD relation. Higher order perturbative
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Table 2.6: Spin-0 nucleon matrix elements used for nuclear effect analyses.

q| £ | 5
u | 0.0208 | 0.0189
d | 0.0411 | 0.0451
s | 0.037 | 0.037

Table 2.7: Spin-2 nucleon matrix elements used for nuclear effect analyses.

i| £
u | 0.346 | 0.192
d | 0192 | 0.346
s | 0.034 | 0.034
g | 0.419 | 0.419

Table 2.8: A table of different channels’ contributions to the total cross section with
percentage greater than 1%, Higgsino case, normalized to a single nucleon.

Channel | (' Fy)?* | 2 e, F By | 2 e FLFy | 20 FyFy
Percent | 86.0% 55.7% -39.6% -12.8%
Channel | (¢, F)? (coFr)? | 2MMFLF

Percent 9.0% 4.6% -2.7%

QCD corrections turn out to be significant [102, 140], and we have included correc-
tions through NNNLO by Eq. (2.209) in both “Standard” and “ChEFT-constrained”
analyses. We tabulate the nucleon matrix elements central values from Ref. [109]
explicitly in Table 2.6 and Table 2.7.

We have also implemented the “ChEFT constrained” nuclear model for the triplet
case studied in Ref. [107]. For both doublet and triplet cases, a breakdown of do /dg*
into separate nuclear response channels is displayed in Fig. 2.17 for an illustrative
WIMP velocity v/c = 1073, Considering up to two nucleons interaction, the differen-
tial cross section do /dg? for our Majorana WIMP-nucleus spin-independent scattering
takes the form in the notation of Refs. [108, 109] ,

do 1 M q2 <M M 2 2 2112
da? -3 o . 2.219
dg? 4“2'2 (CI - Fi (@) + e Fr(q”) + o Fo(q”)] (2.219)

Converting the notations of Refs. [108, 109] to ours, we have the following relations
w1 3 (1@ 4 @
Cx =35 fpifn+1(fp + )|,

2 . .
Cf = %(fp + fn) 5
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Table 2.9: A table of different channels’ contributions to the total cross section with
percentage greater than 1%, Wino case, normalized to a single nucleon.

Channel | (M F,)? | 2cY e, Fy Fy | 2 e FyFr | 2ce: By Py
Percent | 104.0% | -16.7% | 127% | -1.0%

Table 2.10: A table of different channels’ contributions to the total cross section with
percentage greater than 1%, Higgsino case, for Xenon.

Channel | ({'F.)? | 2céMF} | 2 FLF, | 2 e FL F,
Percent 92.5% -23.6% 77.8% -45.2%
Channel 2 CbCTI'FbFT( (Cbe)2 (Ci/[F_i_)Z 2 C‘J_beF_;,_Fb
Percent -19.7% 17.9% 3.2% -12.0%
Channel | 2¢Y ¢, F F, | (¢ Fr)? | 2AMFF-

Percent 6.0% 5.6% -2.4%

Table 2.11: A table of different channels’ contributions to the total cross section with
percentage greater than 1%, Wino case, for Xenon.

Channel | (M F,)? | 2V e, FyFy | 2 e, FyFr | 2ce: By Fy | 2 FE | (F)?
Percent | 1023% | -212% | 132% | -14% | 61% | 12%

1
Cr = fﬂ' + 2f7? - §f7(r2) ;

1
o= fl+ 32, (2.220)

where

q=u,d,s 9045
. 1-— 1
v = c&o) 5 iy c&o) 5 7 + cgo)as,
2) _ 2 2
1 =y | 3 i)
q=u,d,s
8w
0 0 0
Fozme 3 (4 5740) 10,
q=u,d
£ =ma [Z e [+ cf)f;%r] ,
q=u,d
0 = _pp, ST 0) (2.221)
T "9q, 9 '
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Table 2.12: Pion matrix elements for light quarks used for nuclear effect analyses.

a| fin | £i7

w | 0.32 | 0.298
d | 0.68 | 0.298
s| 0 |0.055
gl 0 |0.341
where N = n, p for neutron or proton, r = (mg — my)/(mg + m,) = 0.37(3),

6 = 0.27(1)GeV™! &, = 0.3(2) GeV™', the pion matrix element fl(i) are listed in
Table 2.12.

Contributions to the total integrated cross section from different channels are
tabulated in Table 2.8 ,Table 2.9 , Table 2.10 and Table 2.11. In the terminology
of Ref. [108], isoscalar one-body scattering (corresponding to the “Standard” nuclear
form factor treatment) remains the dominant contribution to the direct detection rate.
As the comparison of Higgsino-like and Wino-like cases in the figure illustrates, the
more severe cancellation of the Higgsino one-body amplitude, Eq. (2.215), leads to an
effective enhancement of one-body /two-body interference terms in the Higgsino-like
cross section. An interesting feature of these plots is a partial cancellation between
the different two-body contributions, R, and R.. This cancellation is not directly
related to the cancellation between spin-0 and spin-2 one body amplitudes (2.215).
The ratio of the relevant two-body nuclear response coefficients can be expressed in
our basis as

(0) £(0) (0) (2) £(2)
_ C © — 8mc 9as —(1/2 i=ud,s,g Ci Jix
C_7r — qulhd q fq’ g /( ) ( / )Z =u,d,s,g f, ) (2222)

o 81l /(90) + (1/4) Tias g 2 12

(O

) and 052) enter with different weights in the two-body responses, com-
o f((])\), +

2y

Coefficients ¢

pared to the one-body response which involves ¢} oc 33 Nepm 2o
3.(2) £(2)
16 f zN]

However, for both doublet and triplet cases, the considered nuclear modifications
do not qualitatively impact the cross section, and are comparable in magnitude to

other sources of uncertainty.

i=u,d,s,g [

2.10 Summary

We have computed subleading corrections to the cross sections for Wino-like and
Higgsino-like WIMP particles scattering on nuclear targets. The doublet result shows
that order 1/M corrections do not significantly enhance the small leading order cross
section. The upper limit for the pure doublet is less than 1078 cm? in the TeV
mass regime, consistent with the leading order estimate [73, 102], and lower than
the estimated Xenon neutrino floor [106]. We also investigated the impact of nuclear
effects by employing a modern EFT-based model in place of the standard nuclear
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form factor. Although individual nuclear response channels have significant contribu-
tions, cancellations occur in the total nuclear response. The overall effect of the new
nuclear model is comparable to other uncertainties for both Wino-like and Higgsino-
like WIMP candidates, leaving the TeV scale pure Wino within striking distance of
next generation experiments, and the pure Higgsino well below the neutrino floor.
The small cross section in the pure Higgsino limit can be modified by non-decoupled
states in the UV completion. For WIMP masses of order M = 500 GeV, current
experiments constrain the dimensionless Higgs-WIMP-WIMP coupling as ¢g < 0.04.

Copyright© Qing Chen, 2021.
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Chapter 3 Radiative Correction to Neutrino-Nucleon Elastic Scattering

3.1 Introduction

The accelerator neutrino oscillation experiments [78, 80, 82-84] have entered a preci-
sion stage to determine the mixing parameters of different neutrino mass eigenstates
and the ordering of neutrino masses. For the accelerator neutrino beams with energy
about ~ GeV scale, the neutrino nucleon charged current elastic scattering in Stan-
dard Model is an important process in the detector contributing to the measurement
signals of muon neutrinos (v,) oscillating into electron neutrinos (v,) and anti-muon
neutrinos (7,) to anti-electron neutrinos (7).

The radiative corrections to this charged current elastic scattering process for
different lepton flavors could be different due to the differences in muon and electron
masses. [t is imperative to compute this radiative correction and obtain the correct
cross sections corresponding to the measured event rates in order to determine the
precise fluxes of muon neutrinos and electron neutrinos incident on the far detector,
comparing with the flux of muon neutrinos at the near detector. Compared to other
works [141, 142], we base on the factorization theorem to compute the radiatively
corrected cross section which is a product of hard, collinear and soft scales physics
up to O(k) corrections, with a small parameter x ~ m?/A%, where m is the charged
lepton mass and A is a hard scale. The hard scale physics is hadronic model-dependent
but insensitive to the lepton masses and its effect would be largely canceled out when
we take ratio of the electron and muon processes cross sections, and the ratio is what
we need to determine the oscillation. By integrating out the hard scale physics, we
obtain a soft-collinear effective field theory (SCET) with the hard function serving
as a matching coefficient. The lepton mass-dependent soft and collinear functions,
which contribute to the main cross section bias between electron and muon flavors,
can be computed perturbatively. There appear large logarithms in this perturbation
calculation, which we will employ renormalization group (RG) evolution to resum
and estimate a reliable radiative corrected cross section result. We use a physical
tree level amplitude with dipole form factors fitted from the experimental data and
the radiative corrected cross sections ratio is the physical one for factorizable jet-like
observables.

In the experiments, there could also occur non-factorizable observables containing
non-collinear hard photons emission . Therefore, instead of ignoring the hard function
contribution to the radiative corrected cross sections ratio, an illustrative hadronic
model is considered [143], with the nucleon form factors taken from experimental data
fits. For the non-factorizable observables with non-collinear hard photons emission,
we focus on a simplified case here, which is the heavy nucleon mass limit, and the
hadronic physics only depend on vector and axial vector coefficients ¢y and ¢4 and
can be computed analytically. It provides a prototype for computing the radiative
corrections for inclusive observables in a more sophisticated setting as [143], and an
estimate for the size of the radiative correction in real experiments.
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3.2 Tree Level
The tree level (anti)neutrino-nucleon quasi-elastic scattering processes involve:

vi(k) +n(p) — 17 (k) +p@)

(k) +p(p) = 17 (K) +n(p) (3.2)
as shown in Fig. 3.1.
Z 1= Uy I+
n D P n

Figure 3.1: Neutrino neutron scattering and antineutrino proton scattering at tree
level.

The amplitudes for neutrino neutron scattering and antineutrino proton scattering
are

iM, = cr(l” ()14, (0) v (k) ()T (0)In(p)) , (3.3)
iMy = cp(mi(k)|j, (0)[17 (k) (n(p")|J~*(0)p(p)) -
where cp is a coupling and the leptonic currents matrix elements are

(K17 (0| (k)) = - (K)yu (1 = 9wy (k) = - (K)Teun, (k)
(@R )T (K)) = 05, (k)3 (1 = 7")vus (k') = 0y (k) Ty (). (3.6)

—
w
Ot

The hadronic currents matrix elements may be formally written as

{p(p)1T(0)In(p)) = tp(p)fun(p)
(n(p)1J*(0)p(p)) = tn(p") L up(p) -
Thus, the amplitudes can be expressed as
iMz/ - CFEZ— (k/>rl,uu1/l (k> & ap<p/)rl}iun(p) ) (39>
iM,j = CFT),jl(k’)FmUH(k’/) X ﬂn(p')FZup(p) . (310)

We know the leptonic T; basis is {v*, ¥*4°}, and by Lorentz-invariance, the
hadronic I', should be a Lorentz-vector or pseudo-vector. Then all the possible vector
and pseudo-vector ingredients in this problem form a basis

propro gt q”5
v, 77aM MV’MM
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, where M is nucleon mass, P = p+ p' and ¢ = p’ — p. Along with the I'; basis
{+*, v*~4°}. The combination basis for I'; ® '}, is

Iz I 5£ 1£ 5£ 1l 5 AHAD
{7 & Yy Y ®’7;/7>M®aM®7aM®>M®7777®%A7

P
Mv5®1, Mv5®v5, %v%@l, £75®75 : (3.11)

JT) 5
VYWY M

The six operators in the hadronic basis I';, correspond to the general hadronic six
form factors structure in notation by Llewellyn-Smith [144],

TH — AREL(2 ﬂFﬁ 2 HAB B (2 QMVSF 2
ho= VE() + 2M v(¢°) + 7€)+ Fal@) + 5 Fr(d)
P“V

7 F3(¢), (3.12)

where for on-shell Dirac particle, identity ic*”q, = 2M~* — P* has been applied and
the pure P* in the hadronic basis has been replaced by combination of o#*¢, and ~*.
The spin-averaged squared amplitude for neutrino neutron scattering is

53 IMP

spins

=B | (8 © 0,610 (4) © 5,6 o)

spins
2

2

{A B+ C- <81\_4f)1 , (3.13)

where Mandelstam variables expression s — u = 4ME, + ¢*> — m? in the laboratory
frame with E, being neutrino energy, m being the final state charged lepton mass
and A, B, C are functions of momentum transfer ¢ [144],

2 2 2 2
A=8(m? — ¢*) M* {(4_W>‘FA|2 <4+—>\F11/\2 e <1+4M2)|F\2/|2

4 2 2
—%Re(F&*F‘Q/) e (4 - q—) I {\F‘l/ + F2% + |Fy + 2Fp)?

2
q
+ (W — 4> (V1 + IFPIZ)} } : (3.14)
B = 32M* Re|Fi(FL+ F2)] + 7 | e ( (73 + C52) g2
B —WGA(V+ 2|+ i |Re (i e ) 4

_Re(<py jﬂi)p& } (3.15)
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2 2
0:8M4{\F¢|2+1FA|2—fW\Faﬁ—%erP}. (3.16)

Similarly, the spin-averaged squared amplitude for antineutrino proton scattering
is

>3 M

spins

— ) Z Uy, (K)Tyvp+ (') @ 1 ()T huy(p)
2

spins

*

[vw (k)Dyo+ (k) @ un(p/)Fhup(p)}

2

_ s—u (s —w)?
- {AJrB e } (3.17)

Combing with the phase space integration in Appendix D Eq.(D.2) to Eq.(D.3),
the differential cross section is

doy, () 1 1 2

d¢?| ~ AE,M 167E,M 2

{A¢B.3%u+c-@&?1. (3.18)

3.3 Virtual Radiative Correction

Let us consider the heavy nucleon limit situation, when we have m; < F, < M. In
this limit, we treat nucleon as a point-like Dirac particle and proton has a unit of
positive charge +e, neutron being neutral. The effective Lagrangian for the heavy
nucleon in the electromagnetic sector is c.f. Eq. (1.9)

Lhcavy = hy iV -0+ QV - A) b, (3.19)

where ) = +e for proton and ) = 0 for neutron.

Y [~

n p

Figure 3.2: Virtual radiation correction to neutrino neutron scattering.

For one-loop virtual radiative correction, wre work in Feynman gauge and we have
the bare result

—1
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o dL .
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(0%
47

1 2 A 2V - K 2V -k
——|—2+5i+4log—log(v >—210g2(v )
€ 3 m m

A A , o
+4log( - )—mog( - )]w)nuzy(m®up<p>rhun<p>,

(3.20)

where V' = p//M, X is photon mass as an IR regulator, « is QED coupling at renor-
malization scale u, we drop the imaginary part which doesn’t contribute at O(«) and
V-k=E,—m?/(2M).

Combining with the tree level diagram, the bare result is

52 A 2F,
—+2+l+4log—1og( —ﬁ)
€ 3 m m

2 a1
(/dHZ|MV| )t {1+247T i

2F, 2E, 2E, ’
—210g2(m —%)+4log(m —%)—ﬂog( —i> } (3.21)

po pM
Consider the field strength renormalization of the charged lepton and proton c.f.
Appendix C,

a 1 m? m?
Zi=1+—| —=—+2log— +log— — 4 .22
! +47T< c T 2log g +log ) (3.22)
and
a (2 u?
Z, =14+ —|—-+2log—|. .2
» +47T<6+ og>\2> (3.23)

The renormalized virtual radiation corrected result is

(/dHZ!MVP> - (/dHZM/lV‘z) %E+ 0

virtual tree
2F m A 2F m 2F m
—41og? L log — |1 L) —1| 441 L
ot (5 ) oo (5 ) =1 v (502 57)

—6log T] , (3.24)
i

where UV divergence 1/¢ is expected to be cancelled by coefficients in the hadronic
part.
Specifically, in the heavy nucleon limit, the hadronic structure reduces to

Ty = vy + cavy®, (3.25)

and plug it into loop diagram calculation Eq. (3.20), combining with the field strength
renormalization factors \/Z;Z,, and we obtain



_ (1 4 §&1> hare. (3.26)
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where 1 = V, A and so ¢y and ¢4 have anomalous dimension

0 3« 3o
J— — — — = — — .2
T9¢7 (247r) in’ (3:27)

which will cancel the divergence in eq.(3.24), and explicitly they evolve as

dclfgvu = (345 + 0@ e (3.28)
dfgu = (— 1. T Ol )) ca - (3.29)

Finally the total of tree level and one-loop virtual correction to neutrino neutron
scattering is

1072 m 2E, m
/dHZM/l |m{ E[ ; M+4log<m M)

—4log? (25; — %) + SIOg% [bg (25'/ — %) — IH } ; (3.30)

where ¢y (p) and ca(p) are hadronic coefficients in the tree amplitude, and in the
heavy nucleon limit, the tree level amplitude is

2 9 9 ) )
Z Mo (1) [Free = 98 (¢ (1) + A (n)] MPE? [1 X CQA(M) C\Q/(M) m°+Q ] ’
A

2 () + ci(p)  4E7
(3.31)
where Q? = —¢? is the momentum transfer and the total tree level cross section is
(% - /Q?nax dQ2 Z ‘My(/'l'”?ree
e Jor  167E,M  4E,M
2 2 2
r8 o o 2 Ly —cy
=——-F 1+ = 3.32
22+ (145955 ) (3.32)
where
E2 [ 2 E 2 2 2-
?nin:—l' 2_m_ 1+22) -2 1 — m _m ’
1+2E,/M E? M 2E,M E?
E? m? E m2 \*> m?
2 = 12— (1+ L) +2q/(1- - = 3.33
Cinae 1+2E,/M E? ( + M + 2E, M E2|’ (3:33)




P n

Figure 3.3: Virtual radiation correction to anti-neutrino proton scattering.

and we take the limit m < £, < M for Eq. (3.32).
Similarly, for anti-neutrino proton scattering, the virtual radiative correction is

d’L i —i
v — R = 1 _AD AN ——————
ZM’UZT‘ CF/ (27T>dUVl(k,)’7H< Y )L _ I%/ i+ Z.OUlJr(k )ZQ17 L2 — X240

®ﬂn<p,)rlij_v L+ .OiQpVaup(p)
1 2 2V -k 2V - K
:cFa +2—|—5—+410gilog( )—210g2( )
4 3 m m

+MgGﬂf)-Mng”ﬂ ()T rv1s (K) @ (1) ity ()

(3.34)
where V' = p/M, we neglect the imaginary part and V - k' = E, — Q?/(2M).

Thus, similarly, the total of tree level and one-loop virtual correction to anti-
neutrino proton scattering is

1072 28, O
/dHZ|M ‘tree{ E[ 3 2( m _TTLM)

A 2E17 Q2 2El—, Q2 m
log — |1 — —1 41 — — 6log — 3.3
—|—80gm{og<m mM) ]4— og(m — og,u (3.35)

where the tree level amplitude is the same as neutrino neutron scattering in the heavy
nucleon limit,

b 2 2 72 cilp) — () m* + @
S M) = F128 [5G0 + 0] a2 1+ FE T LT,

(3.36)
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Figure 3.4: Real radiation correction to neutrino neutron scattering.

3.4 Real Radiative Correction

3.4.1 Real Radiation Amplitudes

We consider one real photon radiation correction to the tree level process, i.e. 2-to-3
process v (k) +n(p) — I (k') +p(p') +~(k,) and 7,(k) +p(p) = [T (K')+n(p') +~(k,).
We will work in the heavy nucleon limit and neglect all 1/M order corrections.

For real radiation emission of neutrino neutron scattering, we have the following
leading order diagrams:

iMy = cFal—(—ie)e/*,;Flul, ®athun
F+k, —m

7
+crpu-Thu, ® u,(+ie)d ———=1'hu, , 3.37
Fu-1; ol )Gfﬁp,_i_kw_Mh ( )
where the polarization vector € satisfies €,€; = —gap. In the limit M — oo, define

p* = MV* and we have

) (MV +k,+M 1

R _ MY+ M) 14V (3.38)
p—i—}éV—M 2MV -k, 2V -k,

Thus, the amplitude becomes

F+k +m Ve

ok’ - kv INu, ® aprhun — mﬂl—rluy X uthun] (339)

’iMu = €Cp [Ulﬁﬁ

Taking T = v*(1 —~°) and T} = ey ()" + ca(p)y*y°, we have

12 IM,|? = 198022 (F+c) B — L
2 spins ’ 2 v . Y (V ) k7)2 V. kvk, ’ kV
V-k, m? 2 1,, K-k
TER ok wE vk 2 ) e
LKk mAK k) kB, BK-k o Ekek
Kk CESE b V. Vekk k  V-kk -k,

(3.40)
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Similarly, for anti-neutrino proton scattering,

7 It 7 [+

p n p n

Figure 3.5: Real radiation correction to antineutrino proton scattering.

iIMy = cpoply (—ie)%vH &® ﬂthup

B —

‘|‘CF1717F1’UZ+ ® ’ELth (-'-Z@)E/‘un (341)

7
p- %“/ - M
In the heavy nucleon mass limit, we also define the proton velocity to be V', then

F+k, -

‘ _ m _ Ve _ _
IMy =ecp| — U1 oWk dus ® unpuy, + mv;l“nw ® uplpu, | (3.42)

Taking I'Y' = (1 — 7°) and I} = ey (u)v* + ca(p)y#~°, we have

! Z M| = é128@21\42 (4 +c4)-E2| — ! + 2E;
2 spins ’ 2 v 4 Y (V ’ k’y)Z V. k’Yk/ ’ k’Y
V.k, m? 2 1., K-k
YRR L W R | T2 @A) e
LKk W k) ok B, Bk Bk,
Kk, (K k)2 b V. VK k Vk K-k,

(3.43)

Note that the real radiative correction amplitude is the same in the heavy nucleon
limit for both neutrino and antineutrino scattering processes when the incoming neu-
trino and antineutrino carry the same energy, outgoing (anti)leptons and photons
have the same momenta.

3.4.2 Phase Space Integration for Real Radiation

Let us introduce a cut § to do the phase space integration for the real radiation,
where § < E,,.
For the integrals in the ¢}, + ¢% part, we have

75



/Oadﬂ:—Eﬁm: = —ﬁ;)g :—1+log2—f] (3.44)
/JE" dH_—Efﬁ_ = —ﬁ;)g __1+10g%] (3.45)

/06 dIl QES(V - k;,y)l(k/ . kv>_ = % — ;T—; - llog2 2511
+log 2—;5 log 25” (3.46)
/fy Al 26 k:fy)l(k’ : /%): - ﬁi)?} %2+ logE(; log 2% (3.47)
/Oa dIl E,,Z, ]/: = 0(2—;) (3.48)
/f“ o Ekv Z: B ﬁ;)s - Z t %bg 25” (3.49)
/06 dI1 — nﬂ#ﬁ = —ﬁ;)g — log % + log 2—;5] (3.50)
/ju dIl B m2E3W_ = —ﬁ;)g B 1 +log %] (3.51)
/06 dIl —2E) 1% - O(Ei) (3.52)
/61;” dIl : —2F? 7 lkv: = —2%;)3 —1+log #] (3.53)

where the phase space in the heavy nucleon limit is

/( d’p’ /( d°K’ /( &’k @ SO W + K 4k —p— k)

2m)32E,, 27)32E) 2m)32E),
&K’ &k, (27)
= §(Ey + By — B,)., 3.54
/ (27)32Ey / (27)32Ey, 2M (i + B, ) (3:54)

and the lower and upper limits in the integrals represent the energy range of the
emitted photon. The general 2-to-3 phase space can be found in Appendix D.

For the integrals in the (c?, — %) part, we can write them in terms of the integrals
we have performed for the (¢} + %) part, explicitly,

E -k E? E
—— = N—— — I— .
[ oy [ ey 1K e (3.55)
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Kok E? Vo k
n> " fan 2 [ang, ™ .

/d Wk /d Mok /d Ek (3:56)

/dH m2(k + k) - k:/dn m2E? _/dnmwjgv-k7

(kl ) k’y)2 (k/ ’ kv)Q (k/ ) kv)Q

m2E? m2E2V - K

N A )| LA

- f g -

m2E?
= [ an 3.57
[ 0
E, E,
I1 .

/ kv / v (3.58)

QBN - k 23 2E?
Y ) S ' R )| e 3.59
/ Vokh -k / ka’~k7+/ Mok (3.59)

Ek-k E?

Y U L B ) 3.60
/ V. kv]{/ . k’y / k. k ( )

The sum of the integrals in the (i, — %) part, Eq. (3.55) to Eq. (3.60) is identical
to that in the (3 + ¢%) part with a minus sign and we can write down the cross
section for the process of one real photon emission as

dil 1 dIl  cp PRI 9 1cV—cA
128¢*M2E -
/4EVM2S;S| /4EM2 SEME, (e +¢4) 23+ &
L, 28, Vek m? 2
V k)2 Ve k@ Bk -k (K-k)2 K-k

(3.61)

Summing over phase space integrals Eq. (3.45), Eq. (3.47), Eq. (3.49), Eq. (3.51)
and Eq. (3.53), we obtain the total energetic real radiation with photon energy greater

than 6
E, > 2F,

4 2,
/dHZ|M|m€4 [13—§7r —|—810gT<

The soft radiation comes from the terms with photon energy less than §, cor-
responding to phase space integrals Eq. (3.44), Eq. (3.46), Eq. (3.48), Eq. (3.50) and
Eq. (3.52), and their sum is

7 26 28, °H,  ,2E,
/dHZ|M|tme ll—g—ﬂogy(l— ) - — log -

(3.62)

(3.63)

It is also confirmed by the eikonal method calculation for the soft radiation,
/ il M|} /6dHZ\M|2 / 4k, L e (K - k)2
soft 0 tree (27T)32Ek7 (/{:’ . k7)2 Y
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e? 20 2F,
- /dHZ \M!?WGW(—@ [2 logT <1 — log - )

2F, 2F, 2
—log + log? + 1] : (3.64)
m m 6
where k, = k. /1/k,% + A2,
The total real radiation result is
« 2F, 2F,
/dﬂz |./\/l|f,,eeE [17 —21% — 2log e 41og? -
2F, 2F,
+ 8log log —1]]. (3.65)
A m

Summing up the virtual radiative correction Eq. (3.30) and real radiative correc-
tion Eq.(3.65), we obtain the total radiative corrected cross section in the heavy
nucleon limit,

1 « 4 2F
= dIl 2 |1+ — 17+ =7*-61 Y
o 4E,,M/ Z|M|tree{ t ( 7-|—37T 6 log . )]

4 9F,
= Otree |:1 + % (17 + §7T2 - 610g 1 ):| ) (366)

where 0y, is provided in Eq. (3.32).

Note that this result doesn’t depend on the final state lepton mass, thus flavor-
independent, which means the radiative correction effect doesn’t affect the muon-
neutrino oscillation result that is being measured as an inclusive observable in the ex-
periments in the heavy nucleon limit with m < F,, < M except for small mass power
corrections of order m?/E?. This is also a result of the Kinoshita-Lee-Nauenberg the-
orem [145, 146], which states that there is no mass singularity for inclusive QED
scattering processes in the massless limit.

3.5 Sterman-Weinberg Cone Observable

We have computed inclusive observable in previous sections. Jet observables are
another type of observables more common in high energy experiments. To study
jet observables, We consider an observable defined by Sterman and Weinberg [147].
Define a cone along the outgoing lepton direction with half angle § and assume that
(1 — B)E, is deposited within this cone, where § < 1, 5 < 1. There are three
scenarios for possible photon emission, as analogs of those in [147]:

(a) one “hard” photon (energy > SE,) being emitted within the cone;

(b) one “soft” photon (energy < SE,) being emitted in or not in the cone;

(¢) no photon emission (virtual process).
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Senario (a): We can replace the cutoff ¢ in Section 3.4.2 by SFE, and restrict the
photon phase space integration within the cone, i.e. the angle between photon and
outgoing lepton momenta ranges from (0, 6).

Collecting contribution from each term, we have

Ey,
/ dHcone
BEY
Ey
/ dHcone a
BEL

1 1] 1 B3 @2
_ZE? —_o__w Ty .

1
—log (1 +7%)log 8 + 1 log? (1 +7?) (3.68)
E, i 3 _ _ A2 -1 _
/ dIL, 1 EVV Bl_1 By | _3-20-05" tan [(1 = B)n]
BE, 4 "p-k 42M (27)3 4 n

1

+= (1 -5 - %) log(1 +7°) (3.69)

W

1 + 2
log (1+ (1= 5)*p%) N tan~! [(1 — ﬁ)n]]

-(1-5) -

1221]:1]33 log. 5

" R T T 42M(2n)?

E,
/ dHcone
BEy

2(1+7?) (1+7%)n
(3.70)
E 3 ~1
v 1 1 FE tan™" [(1 — 5)n]
dHcone EQ_ = — 3 - -1
L “p k:] e | T
1-p 2,2
+ = Llog 1+ (1- p)P) |, (3.71)
where n = 0F, /m, the phase space integrals for the (c¢3, — ¢%) part terms are power

terms of small angle # and have been neglected.
The total energetic photon radiation in the cone is

4(2 + 7]2) -1 —1 \2 772 AFE
/dHZM/l ]tm% [ mtan n—4 (tan""n) +41+n210g o

log (1 + n?) log(l—l—n )
3 + 2
n 1+ n?

AE
— 4log ( = ) log (1+n?) +1log® (1 +7°) + 2Lig(—772)] :

(3.72)

—3log (1 +n*) —
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When m < 6F,, i.e. n > 1, the above results reduce to:

1, 1 |

ATV k2
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1" Ry
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/ﬁEu

_EEQL
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(3.76)

(3.77)

Scenario (b): We consider “soft” emission with photon energy less than SFE,
but without restriction of direction. Then we only need to replace ¢ in Sec. 3.4.2 by
BE,, keeping the entire phase space and readily have,

B 1 1 1 3 GBE
dll| - -F>——| = —= v 141 v
/0 1V k)2 1oM(2n | TR Ty
sE, [ ] 1 B3 2 1. _9E,
/ dI| B | = ot _ T Cog?
0 2" (V-k)(p-k) 22M(27) 12 m
28E 2F
+log OE, log —~
A
BE. [1 v k] 1 B |1 2F
dll|~E, = = v —3%1 v
/0 1k 12020y |27 108
BEy 1 1] 1 B | Bm
dll| — =m*E? = — v log =—
/0 R 12M(2r) | 8N
BE. 1,1 ] B[ 9E
dif| — F2— | = = v ] v
/0 27Dk 2oy |V 108
The sum of the above terms is the total soft emission
2 28E, 2F, 2F,
/dHZ |M(M)|§ree% [1 - % - 210g 5 (]— - lOg " ) + lOg m - 1Og

80

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)




Scenario (c): There is no real photon emission. The result is given by Eq.(3.24).

10 5 2F, A 2k, 2E,
/dHZM/l |me4 [%—41 og? —+810gE (logﬁ—1> +4logﬁ

— 6log @] : (3.84)
0

The sum of hard real emission in the Sterman-Weinberg cone, soft real emission
and virtual process is the total radiative correction cross section over tree level ratio
is

1 1 1 2 1
505V = 2 iy (—?) + -2 (1 3 m(
o - 212(77)+4n(+77)+4 e 772 n( —|—77)
31 +13+27r (t tan"1n
—n— — + — — (tan™
4 3 77 n
n2
(1+n2—2—ln(1+n —|—21n—> (3.85)

In the small mass limit, i.e. n > 1, it goes to

1 4r? e 6
50;?&0:%{1(6111 a +i+13>—§lnz—<1+ln—>1nﬁ} (3.86)

2k, 3 4

In the small angle limit, i.e. n < 1, it goes to
@ 2F, 3 212
509_>0—W{Z(lnﬁ—l)lnﬂ—i——ln——i—l—&—T} (387)

3.6 Soft-Collinear Effective Theory

In light of the cone observable which is along a certain direction, we take the charged
lepton direction to be n* = (1,0,0,1) and define another direction n#* = (1,0,0, —1).
We have

n?=0,n"=0,n-n=2, (3.88)

and we call n—direction collinear and n-direction anticollinear.
A vector p* can be decomposed as

Py Pn

; St (3.89)

=

where p'/ is the component perpendicular to n# and 7* directions.
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In the basis of two light cone directions n, n, and a perpendicular direction, we
can write the components of a vector in this basis as

P =(p,p", IpL]) . (3.90)

where pt =p-n, p~ =p-n, [pL* = —p? and p* = pTp~ +pi.

Since we are studying the radiative corrections, we can decompose the radiated
photon momentum into the above basis. For photon with different energy scales,
it shows different scalings. A hard photon momentum scales as p ~ E,(1, 1, 1), a
collinear photon with p ~ E,(k, 1, v/k) and a soft photon with p ~ E,(k, k, k),
where k < 1 and k ~ O(m?/A%,,,), where Ayqq is a hard scale in the problem. We
still work in the heavy nucleon limit, where formally we have m < F,, < M.

The cross section can be factorized into a product of hard, collinear and soft
functions, o ~ H(E,/u) - J(m/u,0,E,/m) - S(AE/u, E,/m) up to O(y/k), where
AFE is a photon energy threshold that could be resolved by the detector resolution
and we regard photons with energy less than AFE as soft photons, and 6 is an angle
parameter that describes the collinear jet’s cone size.

We can construct an effective Lagrangian for collinear lepton, collinear photon and
soft photon in QED systematically, which is similar to that for quarks and gluons
in [9].

For a fermion ¢ (x) with a collinear scaling momentum p, we can decompose it
into collinear and anticollinear components &, and &, and explicitly, we have

_ 1
4

€n , &= %%. (3.91)

Decompose the gauge field A into soft and collinear components A, and A,,,
A= AL 4 Al (3.92)

Similar to the derivation in chapter 1 but with fermion mass in, the soft-collinear
effective lagrangian is

Lo=Ep|n-iDy+Qn- A, + (uz)i - m) (7i-iD,) " (ilﬁi + m) gign L (3.93)

where Dl = 0, — 1Q A% is the collinear derivative and () is the electric charge of the
collinear fermion. The collinear fermion and collinear gauge boson interact gauge
invariantly within this Lagrangian Eq. (3.93) with the Wilson line for collinear gauge
fields [10, 148]

W, (z) = Pexp {—iQ /_zo dsn - A, (sn + :c)} : (3.94)

where P denotes path-ordering for gauge fields from left to right with parameter s
decreasing. Thus, W/, is a gauge-invariant collinear fermion and WIiD:W,, is a
gauge-invariant gauge field. The soft gauge field is an independent field interacting
with the collinear fermion and doesn’t play in a role in the collinear gauge invariance.
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Figure 3.6: From above to below, collinear fermion propagator, soft photon coupled to
collinear fermion vertex, collinear photon coupled to collinear fermion vertex, effective
current from heavy fermion to collinear fermion with collinear photon.

Radiative corrections to collinear fields involve the Feyman rules in Fig. 3.6.

Soft radiation will be treated in heavy particle effective field theory as in eq. (3.19)
and Feynman rules are given in Fig. 3.7.

In the following, we will compute soft function and jet function using these two
effective field theories, at « order.

3.7 Soft Function

We first consider soft virtual radiative correction diagram Fig. 3.8 for neutrino neutron
scattering, treating nucleons and charged lepton as heavy particles, and making use
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1 TV k+i0

— iQV*

Figure 3.7: From above to below, heavy particle propagator with V' being the velocity
of the heavy particle and k is a dynamical momentum, soft photon coupled to heavy
particle vertex with () being the electric charge of the heavy particle.

of Feynman rules in Fig.3.7.
The amplitude is

. ddL , ik, —i
. vir RS ]. — AP v k To o
a Z
@ PV L+¢0FZ“"(p)
al 2 2V - K/ 2V - K .
— CFE _ — E log ( - ) — 410g ( m ) IOg X:| Uj—- (k/)rluul(k?)
® @, (p")Chten (p)
al 2 2F, m 2F, m ni_
— CFE - — E log ( - — M) — 410g ( m — M) log X:| Up— (k,)rluuz(k)
& (¢ )Tt (p) (3.95)

where V = p'/M, V - k' = E, —m?/(2M) in the heavy nucleon limit.
The field strength renormalization factors for the soft virtual radiative correction
diagram are

c s a (2 >
Zl:Zp:1+E<g+210gF>. (3.96)

The interference of the virtual one loop diagram with tree level diagram gives the
radiative correction to the tree level neutrino neutron scattering cross section,

/dHZM/l 2.2 {log 5 [1 —log (%i E)]} . (3.97)
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Figure 3.8: Soft virtual radiative correction to the neutrino neutron scattering.

Uy I+

Figure 3.9: Soft virtual radiative correction to the anti-neutrino proton scattering.

Similarly for anti-neutrino proton scattering, the soft virtual radiative correction
shown in Fig. 3.9 is

iM? — ¢ /dd_Lv (k) (1- 5);1‘:/@ (K)iQ e
vir = CF | (gyd e K (—L)+i0 e T TN g
— N\ e
® U (p )Fh V. L T Z.OZQpV up(p)
Q@ 2 2V -k 2V - K
= CF47r { - log ( - ) — 4log < p- > log g] Uy, (k)T v+ (K)

where V = p/M and V - k' = E, — Q*/(2M).
The interference of the virtual one loop diagram with tree level diagram gives the
radiative correction to the tree level anti-neutrino proton cross section,

/dHZlM I {log v {1 —log (25 - 22?\4)]} . (3.99)

The soft real radiative correction to neutrino neutron scattering consists of real
emissions from both charged lepton and charged nucleon as in Fig. 3.10.
The amplitude of photon emission from the lepton line is

ek

M = e (0T () © (1)U ) (3.100)
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Figure 3.10: Soft photon emissions from charged lepton and charged nucleon.

The amplitude of photon emission from the hadron line is

; rea eV _ _
iMS = —eo e () (k) © (0 Dhin (p) (3.101)
v
The total amplitude of real soft photon emission is
. rea € k:/ eV _ ~
M = (/c7 K k- v) - (k' )Ly, (k) @ 1, (p") Dt (p) (3.102)
/dH'Mreal 2 /dH/ d3k 1 _62 Ve B vl 2 ‘M |2
k0<AE 27T (27m)3 2/{}0 k’y .V k"y Ve Vlitree s
(3.103)

where V = p//M and V' = k'/m.
The integral is, c.f. [149]

/ Pk, 1 [ VF v\
k:?ygAE (27]')3 2]€0 k . V kry . VI
1 2AE
— ~ 92log [wf( ) — 1] +G(w, VO, V) b (3.104)
472 DY

where w =V - V', k) = /K2 + )2,

1
F(w) = ———log(w.),
w? — 1
G(w, VO, V") = —VO log V) + —/0 log V°
(VO)Q -1 (V/O)Q -1

VO
log” V) — log® V° + Lis (1 — —*1 (wp VO — V’O))

w2 —

VO

2—_1 (w+vo _ V/O))
/0
— Li (1 S (Vv — w_V’O))
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10
— Li (1 S (v — wV’O))
w? —1

, (3.105)
and for any quantity x > 0, we define
re=x+Va?-1. (3.106)
The kinematics yield
2
0 _ 1 Q
V + SIVER
V/O — & . Q2
m  2mM’
E, m
v 3.107
m  2M ( )

In the heavy nucleon limit, neglecting all 1/M terms, V° — 1, V° — E,/m and
w — E,/m, and the soft real radiative correction to the tree level neutrino neutron
scattering is,

= — +log log

6 m

2 2F, 2F,
/ dTIMeel 2 = / anm, 2,2 [1— il log?
’ v

2AFE 2F,
— 2log 3 (1 — log )
m

Similarly, the soft real radiation for anti-neutrino proton scattering is shown in
Fig.3.11 and the result is
Ik, 1 Ve v\
/de’;gl\? = /dﬂ/ T —62( — )
’ kggAE (27T>3 2k’(}]/ kfy . V kfy . V/

-/ dng{mog (ZATE) [uf(w) 1] + Gw, v, v’%}wyﬁm,

(3.109)
where V = p/M and V' = k' /m.
Explicitly, the kinematics are

(3.108)

‘Mﬂﬁree

VO =1,
E; Q2
VIO _ -V
m  2mM’
E; Q?
w:E— S (3.110)

In the heavy nucleon limit, neglecting all 1/M terms, V° — 1, V" — E,/m
and w — E,/m, and the soft real radiative correction to the tree level anti-neutrino
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Figure 3.11: Soft photon emissions from charged lepton and charged nucleon.

proton scattering is,

2 2FE; 2F;
[amazsp = [, [ y ~ log?
’ m

2AFE 2L
— 2log 3 (1 — log )
m

(3.111)

Combining virtual and real emission, the total soft-radiative corrected cross sec-
tion called soft function in the heavy nucleon limit is

dlIl p? dll «
_/4EVM {H_l 8% <1_ )}Z‘M liree + /4EVM% !
2, 2, IAE

2 (1_ ) Z|M‘tree
/ dlIl ] + « 2 2F, e 2F,
AE, M 6 & "m
1 _
+210g<2AE)<1 log )HZW ... (3.112)

3.8 Jet Function

7T2

The collinear virtual radiative correction is depicted in Fig. 3.12 and the amplitude is

. vir ddL LLL—i—m %J_ m %l—mLL—i-m_
M _/(QW) -k )ZQ’[H’” AL aw T TR oL

—1

%iﬂ o anQ " Va1 = 72wy, (k) @ i, (p ) Tnin (p) -

202 —m2Pa- (L—k) (L — k)2 — N2
all 2 U w2 ,
=1 6—2+E 1+logE +4+E+4log—+210g - (K", (k)
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Figure 3.12: Collinear virtual radiative correction to neutrino neutron scattering.

% ) ; i
Figure 3.13: One real collinear photon emission from neutrino neutron scattering.

Q1 (p") T htin (p) - (3.113)

Collinear diagram field strength renormalization factor is

3
Zl_1+i(———4—6logﬁ>. (3.114)
47 € m

The interference with the tree level diagram gives the leading order collinear vir-
tual radiative correction

dll «
= — 11
o /4E,,M7r +

where we have subtracted the 1/¢* pole, which will be canceled by that from hard
function and the 1/e pole is canceled by coefficients ¢y and cy.

The real collinear radiation involves the two diagrams in Fig. 3.13. The amplitude
for collinear emission from charged lepton is

Lk/L_i_%/L_i_ %/J__ |
n- (k" +ky) n-k f
K =m)F+ ks +m) ] (K +ky)
AWk W k) — ()
Ry (p") 't (p) - (3.116)

The amplitude for collinear emission from heavy-to-light effective operator is

2

1
— —10g— + log® ] D M) e (3.115)

24 2

Mreal — Uz (]{7/) _|_¢

n-e / - /
/\/erej‘{lc = —e— ’ - (K", (k) @ a,(p") T hun(p) - (3.117)

n - Ky
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2 _
real real |2 _ € k’y 'n ( . m > . m K -n

> w-Tow, ® @,0yu, | : (3.118)

where the outgoing lepton carries a fraction &"-n/(k" - n + k. - n) of the total electro-
magnetic energy which is the energy of the tree level lepton.
The jet function is
2

a 1
LA IV | 2
J = /4EM{ 1+24+2 og - £ 1 log? ”ZIM(M)IW
+/ dll  Arna k:w-n<1_ m2>_ m? +2k"-ﬁ+2
4EMk’ ky | K -7 k' k, k' -k, ky-n
A1
TL—’-]C -0 Z |M ‘tree? (3 9)

where if we specify the phase space as emitted energetic photon (energy greater than
a threshold AFE) within a cone relative to the charged lepton with cone angle 0, it
reduces to

72 1
J = /dH 1+ 214+ o + log & +10g2 &
s 24 2 m m

4(2—|—n) 1 n? AE
—|9——F—5t 4 (t 4—— l
+47r 9 D) an~ 77 (an 77) + I og E, = Q%/(2M)
log (1 2 | 1

—4log (Ey — 25(21\4)) log (14 n*) + 2Liy(— ] } Z IM(W)2.., (3.120)

where n = 0[E, — Q*/(2M)]/m. Note that the terms involving AFE are soft limit
terms of this jet function, and we could subtract them, moving them to soft function.
However, we will not differentiate collinear and soft scales in this problem or evolve
from one scale to another. It is no difference keeping them here in the jet function.
For anti-neutrino proton scattering, the format of jet function is the same and

we just replace E, by F; and tree level amplitude by anti-neutrino process tree level
amplitude in Eq. (3.120).

3.9 Hard Function
The hard function describes hard photon contributions and depends on the hadronic

physics, which requires the knowledge of a full theory. It is related to the matching
coefficient when we match the full theory to the soft-collinear effective theory.
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The one-loop diagram Fig. 3.2 computed in the full theory has an amplitude result
c.f. Eq.(3.20)

a |1 572 A 2F m 2F m
Mpt = cp— | =+ 2+ — +4log—1 Y — — ) —2log? v_
M Tl e+ * 3 * Ongg(m M) °8 (m M)
2F, 2F, 2
ptog (22 - 1) 2105 (22 - /T_M)]“l(k')rluzy(k) @ 0! Pt (1).
(3.121)
Field strength renormalization factors are
« 1 m? m?
Zi=14— —=+4+2log— +log— — 4 3.122
l +47T< €+ Og)\2+0g/1/2 >7 ( )
and
a 2 2
Z,=14+—| -+2log—|]. 3.123
P + 4 (e +2log )\2> ( )

By doing one-loop matching, we obtain

66 : Mtree

=V ZlZthree + Ml]::)lji - ZZSZ;Mtree + Mfoop + V ZlCMtree + Mlcoop]

_ Mfull M — c 3.124
loop loop loop 1 ( : )

where dc = ¢ — 1 and ¢ is the matching coefficient.
Explicitly, we use eq. (3.121) to subtract eq. (3.95) and eq. (3.113) and obtain

o 1972 2K m2 2F m2
de=—|—2 21 Y ) —2log? A 3.125
‘ 4%[ LTI Og( Il MM) % < p uM>]’ (8125)

where we subtracted the 1/e? pole which cancels that from the jet function and 1/¢
is canceled by poles in coefficients ¢, and cy.
The neutrino neutron scattering hard function is given by

) dIl
1) = [ gl e

[ dl )
- / 4EUM (1 - 266) ‘MV(/’LHtree ' (3126)

The anti-neutrino proton scattering hard function is

) ATl o 1972 28,
H" () = P 14+ —| =2 21 r_ X
) = [ M <u>|m{ T Rt og( - MM)

— 2]og? (25” - %)] } . (3.127)
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3.10 Hard Function Resummation

Hard function has large double logarithms such as log® (E,/p) at a low energy scale
i ~ me, while soft and collinear functions have large logarithms at high energy scale
about the neutrino energy scale E,. In order to avoid large logarithms, we evolve the
hard function from high energy scale to low energy scale and the product of hard, soft
and collinear function at low energy scale has controlled logarithms perturbatively,
which yields a reliable cross section.

The hard function evolves as

d
dlog

H(N) - 2FcuSpH(M) ) (3128>

where the cusp anomalous dimension is given by [149-151]

Mu
1—‘cusp = _’Ycusp(a) log (m) + ’Yh(a) + ’Yw(a) ) (3129)

and 7eusp is massless cusp anomalous dimension function, ~" is massive one-particle
anomalous dimension, ¥ is massless one-particle anomalous dimension and explicitly,

[ee} n+1
o cus cus cus 80
Yeusp(@) =Y (E) WP AT =4 AT = =y (3.130)
n=0
oo n+1
« 40
) =>" (E) oW =2 =g (3.131)
n=0

00 n+1
oY — @ " v
v(a)—Z(AJ) W, W =-3,

n=0
3 130 2
Y = —5 270 = 24G (o + 3. (3.132)

Explicitly,

a 2myw 5 a?
Tewsp = — |1 ( )—— 81+ 10872 — 1296
- {Og 0 ] * 8647r2[ s s

2
my (500 + 3672 — 480 log ( ”:Zw>) ] (3.133)

where m; denotes the charged lepton mass with [-flavor, in the heavy nucleon limit
myw = E, for neutrino neutron scattering and myw = E,—Q?/(2M) for anti-neutrino
proton scattering, and the relation between onshell and MS coupling is

0 QO n+1
1+ =, (—) ] . (3.134)
o 4

a=a(p) = o
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The solution of Eq. (3.128) is

Hpu) % () 10" ) 1 Zruw)? | aopu)

o8 H(uw)  bBo [l 5 ao(in) - } 260 {1 & 1 ! gOéO(Mh)
L[ 4r (0 col) o co() no_ B 0g ao(pn) | aolpu)
+50 Lﬁo(ﬂh) ( - o (fur) o gOéO(Mh)) " (”YSHSP 50) (1 o (fur) " o (fin)

—1> 26610 2%}+} (3.135)

13 2

where denotes power suppressed terms, yo = Y + 7(? , Bo and f; are defined by
the QED beta function

dlogu ZB”( >n+1’

4
50 = —5nhy, Bl = —477,f . (3136)

3
For electron-flavor neutrino scattering, final state charged lepton is electron. We
consider muon mass, hadronic scale are much heavier than electron mass and can be
integrated out. The only dynamical fermion for computing coupling «(u) is electron
and the light flavor number ny = 1, in d = 4 dimensions we have

8 64
o=log 2= 2102 E 4 8log X 415, (3.137)
3 m 9 m m

Explicitly, the solution of eq.(3.128) is

H () Qg { > ul ul (2mw)®
log = log +log—= [ 2log——— -5
H(pn) dm 1, I 1,
040>2 3 :Ul 4. 5 uf m® 50, o ﬂz
— lo + - log” =1 —_— —1
+<47T {9 2 T3 my ) T 9
88 3
— log* - 1
#(32) [t ] 139

where we do the power counting considering large logarithm alog® (2 /u?) ~ 1 and
“..” denotes the terms with order higher than o', which are numerically suppressed
and can be ignored.

For muon-flavor neutrino scattering, the final state charged lepton is muon. The
dynamical fermions in the loop are electron and muon, and heavier particles have
been integrated out. In this case, ny = 2, and coupling () is

o % n+1
L ()
—~ 47

a=a(p) =a
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20 3 og memu>
64 2
21 = log? — + log? =— ) +8log +30. (3.139)
9 me my, memmy,
The running for muon hard function is
H () @0 [ 2 Nz T ( (2mw)®
log = — |—log —|—log 2log ————5
H () A 1, uh ui
Qo 16, ul 8. Nz oo, 5
— ) |——=log =1 1 =
+ (47r> { 9 e 3 ©8 we ©8 Mmemy, * 3 -
16 u?
log" =L+ ..| . 3.140
+<47r> {27 8zt } (3.140)

Conversely, we could evolve soft and jet functions to high energy scales by renor-
malization group running to obtain the resummed cross section. The soft function
evolves as

d
dlog

S(p) =2TsS(n), (3.141)

where the cusp anomalous dimension for soft function to o? order is [149]

Iy = {%Jr (%)2%7@,«] {1—\/%1@; (w+M>] . (3.142)

The virtual jet function evolves as

d
dlog

Ju(p) = 205 Jy (1) , (3.143)

where the cusp anomalous dimension for virtual jet function to o? order is

a |l W w
e 1 Vi —1)—2
w[4+°g(2wml)+og(w+ w )m}

2 3 10 2 80
+<ﬁ> {——+27r2—24C3+nf[ + =7 4+ —log a

2 27 3 9 mel

+ %O log (w VR - 1) (3.144)

w
Vw? — 1] } '
3.11 Collinear Real Radiation Resummation

Besides the double large logarithms from the difference between hard scale and soft
scale, there are also double large logarithms from real collinear terms which is mani-
fested in Eq. (3.86). Thus, we need to sum all double large logarithms from all orders
in perturbation theory.
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3.11.1 Multiple Collinear Photons Emission Summation

In the massless charged lepton limit, we could work out the leading logarithms of
collinear photons radiation by the splitting method. First, consider one collinear
photon emission case, if the outgoing lepton carries a fraction of the total electro-
magnetic energy (1 — z) and the collinear photon carries the other fraction z, then
Eq. (3.118) becomes

2 1 —
M = — e
Z(l_z)Ez,[l—(l—ﬂw)cose] z 1—2z
(1 - Z)|M’§ree ) (3145>
and
2 Zmax _ 2 1
/dH\MP - 6_2/ dz {—H d-2) }/ dcosf
87T Zmin z cos 0 [1 — (1 — m_@'w) COS 9]
[, (3140

where the phase space derivation can be found in Appendix D.

For a jet with cone size 0, and we have integration limits z,;, = AE/E,, Zmae =
1 —m/FE,, then

200 E, 0LE, 3 0F, 5 m?
olvn = dpy) = == Jlog | 5 Jloa (7% | = Jloe | 08 )+ = 5

-«o(vn — lp), (3.147)

and we compare it with the accurate result of this real collinear radiation, i.e. the

sum of Eq. (3.74), Eq. (3.75), Eq. (3.76) and Eq. (3.77)

2a b, 0F, 3 OF, 1 B,
a(un—)lpy):? log NG log - —Z—llog - —Elog NG

9 7

+= — —] ~o(vn — Ilp). (3.148)

8 6

The massless limit splitting treatment result Eq. (3.147) produces the correct lead-
ing double logarithm as in Eq. (3.148) when we set the Sterman-Weinberg observable
parameter 3 to be AE/E,. However, it loses subleading logarithm terms such as
log (E,/AE), but they are suppressed compared to the leading double logarithms.
It is reasonable and computationally economic to sum only the leading double log-
arithms using the splitting treatment, where we consider the virtual fermions are
approximately on-shell compared to the radiated photons’ transverse momenta [133]
about #F, and for multiple collinear photon radiation process we have

o(vn — IpNv) = {%/dz {#_Z)Q] /0;9 [1 1 _Cj(coi—f)cose} }

17z)2E12),
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Figure 3.14: Two collinear photons emission diagrams.

«o(vn — Ip). (3.149)

When the inner photon electron cone angle is wider than the outer one, which is
equivalent to the condition that the virtual fermion is on-shell compared to the first
photon it emits since the transverse momentum integration is equivalent to the cone
angle integration, the N-cone angle integration becomes

1 1 1
/ dcos@l/ dcosQQ.../ dcosfy , (3.150)
cos 01 cos 02 cosOn_1

where 0 = 0, > 6,..., then it gives a factor of 1/N.
The leading logarithm from N-collinear photons radiation Eq. (3.149) is

1 [2a E, 0B, \1"
N [? log <AE> log( - )] . (3.151)

When we sum over all collinear photons leading logarithms, we get an exponential

Z o(vn — IpN~) = exp {2?& log (fg) log <9£V) } o(vn —Ilp)  (3.152)

N=0

We explicitly compute two collinear photons radiation using SCET Feynman rules
and show it confirms the exponentiation result. The two collinear photons radiation
diagrams are shown in Fig. 3.14.

The diagrams are evaluated by soft-collinear effective theory Feynman rules and
explicitly they are

=wi(—e)|n- € P rd tm P —m l_pL_m.pL—'—gL—’—m

(a) = il ){ L W pra) ﬁ@)% n-p  n-(ptq
| n-(p+q) , * Lp¢+g¢+kl+m

«nfﬂ]?§@+@y—wﬂ+w'“ﬂ»n'Q+% n-(p+q+k)

_¢L+¢L_m_pL+¢L+%l+mﬁ'€* ﬁ
n-(p+q)  n-(pt+gtk) °]12

+q, —m
_’_p{ %L €/<2L
n-(p+4q)

A Ve )
= -
2(p+q+k)2—m2+1i0

T, ® 4,1"u,, (3.153)
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o |7 n-(p+q) n- €

<n'61>}§l§(p+q)2—m2+i0(_6)n kFluV(g)uthun

_ ﬁ'é’{._e —_ LpL""%L"’_kL"i_m p,td, —m
tal-eg qZ< )[ s+ 4 n-(p+q+k) n-(p+q) %
_pj_—i_gj__m_pj_—i_gj_—'_kl—i_m ]ﬁ ZVL n-(ptqtk) Ly

i-(p+q) n-(p+q+k) 2|2 2(p+q+k) —m2+i0"
@, Mu, , (3.154)

1 1 N 1 1
n-kn-(¢g+k) n-qn-(¢g+k)

The momenta of collinear fermions and photons are denoted as

(© = - - )|

] My, @ 1,1 ", .(3.155)

p = (1-y)p+aq) (

¢ = ylp+q +aqu (
ptqg = (1-2)p+q+k)=(1-2) (3.158

k= z2(p+q+k)+kL=2p+ky, (

with 2z and y are splitting fractions.
The sum of amplitude squared is

Y 1@+ +() P=e' ) | uliu, © alntn fhe

1+ (1—y)? 1
2y (1—2)z

23 +1—Z|: 2(1—2) N 22
(p-k+p-gtq-k)? pqlpk+pagtak pk+pagt+qk

'(1_1? k+p q+q kﬂ} 1—2)(p@Z)Qp-ker%quq-k{{zs
|

z(1— z) ]

o k+p q+q 2 (1—2){2(1—,2)—1—22(1

P-q 1
_ + 3.160
p-k+p- q+q-k>” 2(19-@1) pk+tpgtaqk (3.160)
In the massless charged lepton limit and considering the transverse momentum
of the second emission is much smaller than the first one (i.e. the outgoing lepton
is onshell, while the intermediate lepton is less on-shell, also see argument in Peskin

and Schroder [133] Eq.(17.108) and surrounding discussion), which is p-q¢ < k- (p+q)
here explicitly, we have

o(vn — lpyy) = /dHZ\ ()
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Figure 3.15: Electron-positron pair production process.

1/ a)? dcost’ dcosf
_ (= . 5 dydz
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y z

] ~o(vn — lp), (3.161)

which renders a leading logarithm

1 2x 2 2 Ez/ 2 GEI/

and numerically is of O(1) contribution.

3.11.2 Collinear Pair Production Summation

Lastly, we estimate another higher order process, the e*e™ pair production, which is
shown in Fig. 3.15.

L@ AR M) (P, —m) | (P -m)(p KL m)

D=l W e T mptRRs
%@%n 2(]])9; k)va(l — 75)% ® ﬁaei(_e) [n# + ,yuLgLn—'_q?n
(bo=g, =m) 0 =g —m, —m) J§
* n-(k—q) i-(k—q)i-q }23+® pLntn, . (3.163)
(e) = ay™(1 —7°)uy(—e) AT ti(—e) {n“+wlu
n-k k2 — \2 n-q

(=g =m) 0 (=g, =), = m>ﬁu} % © 4, Dhtn . (3.164)

n-(k—q) n-(k—qn-q

We define the following relations for momenta by splitting parameters x and z.

P = p+k (3.165)
p = ap (3.166)
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k= (1—x)p +kt (3.167)
= zk (3.168)
¢ = (1—2)k+q, (3.169)
up to order O(m/E, ) corrections.

In the massless charged lepton limit, the amplitude squared is

-1

DI +(e) P = [iju —2)(1 — cos 9)1 B [Egzu — 2)(1 — cos 9')1

.1ix{(1+x2) [(1 —2)2—1—,22] + 4 (1 —z)Z}

| wlw, @ w0y, | (3.170)

The cross section of pair production is
2 dcost’
o(vn — lpete” :<g>/ d(l —z [1—22—1-22]
o) = (5) [ g0 = [0 )
4x(1 — 2)z / 1+ 22 / dcosf
4+ — dx -o(vn — lp).
1—|—x2} 11—z 1—(1——;”2 ) cos 6 ( 2

The leading logarithm is

200 2 Ey 2 QEV
(?> log (AE) log ( - ) : (3.172)

which is numerically O(a'/?) and suppressed compared to the two collinear photons
emission leading logarithm O(a®) ~ O(1) contribution. Therefore, we neglect pair
production contributions in the jet resummation.

3.12 Jet Observable Cross Sections

3.12.1 Electron and Muon Observables

Let us consider a jet observable which is defined as in Sec. 3.5. The total cross section
including energetic photon in the cone and collinear virtual photon emission which is
captured by jet function J(u), soft photon inside and outside of the cone and virtual
soft photon emission captured by soft function S(u), and energetic virtual photon
emission captured by hard function H(u), is proportional to

H(p)J (1)S (1) , (3.173)

where H is taken from Eq.(3.126), J taken from Eq.(3.120), and S taken from
Eq. (3.112).
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Table 3.1: A table of parameters taken for neutrino nucleon scattering jet observable.

cv | ca | E, (GeV) | 8 (Degree) | AE (MeV)
1[-127] (051) | 10 | 20

Hard function H(p) contains double logarithms log® (E,/u), jet function J(u)
contains double logarithms log (E,/AE)log (0E,/m), log® (m/u) and soft function
S(u) contains double logarithms log (AE /i) log (E, /m), log* (E,/m). In the massless
limit, the mass divergences in soft function and jet function cancel, and this jet
observable only contains double logarithm log (E,/AE)log 0, see Eq. (3.86) .

However, they live at different energy scales, varying renormalization scale p for
the product of the three functions Eq. (3.173) directly from soft scale to hard scale
would yield large perturbative uncertainty. In order to obtain a cross section with a
higher precision, we use renormalization group evolution to bring the hard function
down to a low scale p;, the soft and collinear scale AE ~ 0F,. Then the product
of the resummed hard function with jet and soft function at low scale p; does not
suffer large logarithms, yielding a cross section with small perturbative uncertainty.
Explicitly,

=

H ()
(pn

(fin
(M

H () J () S () = H(M) J () S () (3.174)

=
=

where we first bring the hard function from a scale M to a high scale u; ~ E,, and
from the high scale uy, to a low scale y; using the hard function ratio between different
scales Eq. (3.138) for e-flavor and Eq. (3.140) for mu-flavor. We also exponentiate jet
function by Eq.(3.152) for real collinear photons resummation. The soft function
does not have large logarithms numerically from real soft photon emission at this low
scale .

We take cy (1) = 1, ca(py)=-1.27 and the jet cone size € to be 10°, soft photon
threshold AE to be 20 MeV and the incoming (anti)neutrino energy ranging from
0.5 to 1 GeV for quasi-elastic process for relevant experiments such as T2K [80] and
DUNE [84], all tabulated in Table 3.1.

For electron-flavor cross section, we use Eq. (3.138) to evolve the hard function
from heavy mass scale M to a hard scale u, and then evolve from p; scale to a
low scale p;, where we take El,/\/§ < i < V2E,, and Min(&E,,,AE)/ﬂ < <
V2Max(0E,, AE).

For muon-flavor cross section, we use Eq.(3.140) to evolve the hard function
from heavy mass scale M to a hard scale u, and then evolve from p; scale to a
low scale p;, where we take E,,/\/§ < pn < V2E,, and Min(mM,AE)/\/ﬁ <y <
\/§Max(m“, AFE). In experiments, the muons can be separately measured from their
energetic photon radiation. So the muon-flavor process final state observable is the
cross section in Eq. (3.173) with the jet function J(u) being replaced by the virtual
jet function J,(p) in Eq. (3.115).
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Figure 3.16: Left: Comparison of resummed and unresummed soft radiatively cor-
rected cross section over tree level cross section ratios for electron-flavor process.
Right: Comparison of resummed and unresummed soft radiatively corrected cross
section over tree level cross section ratios for muon-flavor process. Yellow dashed
line is unresummed result, green solid line is resummed to O(a!'/?) and blue dotted
line is resummed to O(a'). The bands show uncertainties from varying the scales as
described in the text.

3.12.2 Resummation Effect

To show the convergence of resummation, we compute the ratio of cross section with
one virtual photon radiative correction and one soft real photon over the tree level
cross section, as a function of the incoming (anti)neutrino energy FE,. When we
evolve the hard function from a high scale to a low scale, we use different orders of
large logarithms power counting in the evolution equation Eq. (3.138). We compare
the resummed results at O(a!/?) and O(a!') with unresummed result (denoted by
O(a?)) in Fig. 3.16 for incoming neutrino energy range (0.5, 1) GeV. Explicitly, the
observable is proportional to HJ,S, where H is taken from Eq.(3.126), S is from
Eq. (3.112) with AE = 20 MeV being taken for relevant neutrino experiments., and
Jy is the virtual part of jet function Eq. (3.120),
2

o ™ 1o 2 M / 2
=1+ = |1+ 5+ 5log = +log” = dII - (31
o { +— |1+ 5+ 5log~ +log m”( > IM(w) - (@am)

We see that the O(a'/?) result already converges well, and O(a!) result has almost
the same upper and lower bound on top of it. The resummed calculations vary
renormalization scales at the soft scale from AE/ V2to V2AE , while the unresummed
result varies scale from soft scale AE to hard scale E,,.

3.12.3 Jet Observable Cross Sections in the Heavy Nucleon Limit

Neglecting lepton mass power corrections compared to nucleon mass M and neutrino
energy E, in the heavy nucleon limit, the resummed to O(a!) jet observable total cross
section for different incoming neutrino energies has been plotted in Fig.3.17 and it
is the same for both neutrino neutron scattering and anti-neutrino proton scattering.
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We resum the Eq. (3.173) to obtain a jet observable cross section and show its ratio
by tree level cross section. The difference of radiative correction to electron-flavor and
muon-flavor scatterings is presented by the ratio of the two observables cross sections,
and they share the same tree level cross section in this limit, shown in Fig.3.18. We
list the ratios with their perturbative uncertainties for neutrino energies at 0.55 GeV,
0.75 GeV and 0.95 GeV in Table 3.2.
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o/oLo

0.5 0.6 0.7 0.8 0.9 1.0
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Figure 3.17: The resummed jet observable is shown by the ratio of jet cross section
over tree level cross section. Left: electron-flavor process. Right: muon-flavor process.
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Figure 3.18: Ratio of electron-flavor jet cross section over muon-flavor cross section.

Table 3.2: A table of e-flavor and p-flavor observable cross section ratios at the heavy
nucleon limit m < F, < M, neglecting all power corrections, with perturbative
uncertainty in parentheses for last digit.

E, (GeV) | 055 |

0.75 | 095

ocfo, | 0.9922(1) | 0.9966(2) | 1.0009(3)
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Figure 3.19: Left: Ratio of electron jet differential cross section over tree level differ-
ential cross section. Right: Ratio of muon observable differential cross section over
tree level differential cross section. Upper: Ratios for neutrino neutron scattering
process. Lower: Ratios for anti-neutrino proton scattering process.

The ratio of electron flavor jet and muon flavor cross sections determines the
muon-neutrino oscillation net result. We find the difference of these two observables
is below ~ 1% in the energy range 0.5 GeV to 1 GeV in the heavy nucleon limit.

3.12.4 Differential Cross Sections

Since the ratio of different flavor jet observables does not depend on the hard func-
tion, which is flavor-independent and will cancel out, let us compute the ratio using
a more physical tree level model with the universal soft function derived S¢ from
Eq. (3.97), Eq. (3.99), Eq. (3.103), Eq. (3.109) for ¢-flavor lepton, and jet function J*
from Eq. (3.120) for ¢-flavor lepton. Specifically, the ratio is

do®/d@Q” _ d [HyreeS(pn) T (111)] /dQ?
dor/dQ*  d[HyeeS"(pn)Jb ()] /dQ*

where we neglect a order hard function, since it is the same for e-flavor and p-flavor
processes and numerically small at p,. The uncertainty of this procedure will be
controlled by varying p, from E,/v/2 to v2E,.

The jet and soft functions suffer large logarithms at yu;, and we use renormalization
group evolution to bring the low energy soft and jet functions (free of large logarithms)

(3.176)
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Figure 3.20: Ratio of electron jet differential cross section over muon observable
differential cross section. Left: Ratios for neutrino neutron scattering process. Right:
Ratios for anti-neutrino proton scattering process.

to high energy scale,

S (1) T (1) = ﬁfjgse(mr(m), (3.177)

with H(p)/H (up) for electron-flavor taken from exponentiation of Eq. (3.138), elec-
tron flavor real radiation jet function exponentiated by Eq. (3.152) and

H(Mz)
H (pun)

with H(u;)/H (up) for muon-flavor taken from exponentiation of Eq. (3.140).
Explicitly, we use a phenomenological dipole form factor tree level model,

S* (k) JE (pn) = S* () T3 () (3.178)

" pV 2 0"y v w5 2 e 2
Ly = A"Fy () +i TR (¢%) + "y Falq®) + i Fela), (3.179)
where
FY(¢*) = F{(¢*) — Fi'(¢%) (3.180)
FY (%) = F3(¢*) — F3'(¢%) (3.181)
Falg)) = — (3.182)
_ a
(1-%)
M2
2 2
Fp(q”) = 2WFA(Q ), (3.183)
and
GN (2 iQGN 2 N2\ N{2
PN () = SO = anOuld) vy Oul@) = Gi(@). (3.184)
l-ap 1-4r
N N
e P LC) e ) S (3.185)



Table 3.3: A table of integrated e-flavor and p-flavor observable cross section ratios
including radiative corrected cross section ratios and tree level ratios with dipole form
factors tree level model, with perturbative uncertainty in parentheses for last digit.

E, (GeV) ‘ O /0,- ‘ 039/059 ‘ Ot [0+ ‘ UGLP/UII;?
0.6 1.0141(6) | 1.0246 | 1.0119(7) | 1.0202
1 1.0059(8) | 1.0088 | 1.0094(8) | 1.0096
2 1.018(2) 1.0032 1.021(2) 1.0039

Table 3.4: A table of integrated e-flavor and p-flavor observable cross section ratios
including radiative corrected cross section ratios and tree level ratios in the heavy
nucleon limit with lepton mass power corrections, with perturbative uncertainty in
parentheses for last digit.

E, (GeV) ‘ Oe/ou ‘ Jl“o/aﬁo
06 | 1.010(3) | 1016

1 1.008(3) | 1.006
2 1.020(3) | 1.001
2\ 2

GL(0)=1, G&0)= M (rg) = —0.1161 fm? (3.186)

1—4.6:5
Gh,(0) = p, = 2.793, G4,(0) = p,, = —1.913, (3.187)
M = (939.57 + 938.27)/2MeV, m, = 139.57 MeV , (3.188)
Ay =1GeV?, A*=0.71GeV?, g4=—127, (3.189)

where the parameters are taken from Ref. [152].

We plot the ratio d‘% / d;ég between radiative corrected differential cross section
over leading order differential cross section in Fig. 3.19, where the leading order cross
section is the tree level cross section with hadronic model Eq. (3.179). The ratio of
electron jet differential cross section over muon observable differential cross section
is shown in Fig. 3.20. The tree level ratio of electron-flavor process over muon-flavor
process also varies with momentum transfer 9%, which is shown in Fig. 3.20 as a solid
line for comparison with the radiative corrected results, the bands. Neutrino energy
is taken at £, = 2 GeV, cone size § = 10° and soft energy threshold AE = 20 MeV.

We compute the integrated cross sections from these differential cross sections,
still for the cone size § = 10° and soft energy threshold AE = 20 MeV but for a few
different energies £, = 0.6, 1, 2 GeV, tabulated in Table 3.3.

We also compute the integrated cross sections from the differential cross sections
in the heavy nucleon limit, with tree level cross section taken from Eq. (3.32) and all
lepton mass power corrections in the endpoints Q2. , Q2 retained. The results are
listed in Table 3.4. We find that the lepton mass power correction m?/E? at tree level
can be as large as percent level for small neutrino energy. However, if we subtract
the tree level ratio from the radiative corrected ratio, the pure radiative correction
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agrees with that in Table 3.2, which has a tree level ratio identical to 1. The difference
between Table 3.4 and Table 3.2 represents the lepton mass power correction effects.

3.13 Conclusion

We have applied factorization theorem and soft-collinear effective field theory to in-
vestigate the radiative correction to the neutrino nucleon elastic charged current
scattering. The soft function and jet function do not depend on hadronic physics,
but are flavor dependent via different charged leptons’ masses. For a jet observable,
the hard function relies on hadronic physics but will be canceled when we consider the
ratio of electron and muon neutrino charged current elastic scattering cross sections
since it is flavor-independent.

To determine the neutrino oscillation signal in the long baseline experiments, the
ratio between electron and muon flavor neutrinos interaction cross sections in the
detector is needed. For jet-like observables, it could be computed perturbatively,
insensitive to hadronic physics. For jet-like observables, e-flavor observable contains
double logarithm log (E, /AFE) log 6 and does not suffer lepton mass logarithm, while
p-flavor observable exhibits lepton mass logarithm log (E,/m)log (E,/AFE). In the
heavy nucleon limit, the ratio of electron and muon jet observables is about 0.99 to
1 for incoming neutrino energy range from 0.5 GeV to 1 GeV. For physical tree level
processes, the radiative corrected jet observable differential cross sections ratio has
been computed and the integrated cross section ratio is about 1.01 to 1.02 for incoming
neutrino energy range from 0.6 GeV to 2 GeV. The ratio being close to 1 is the
accidental cancellation between e-flavor and u-flavor different double logarithms with
similar numerical values. For an inclusive observable, radiative correction contributes
equally to electron and muon flavor processes in the heavy nucleon limit, causing no
effect except lepton mass power corrections.

Copyright© Qing Chen, 2021.
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Appendix A Feynman Rules for HWET

We list relevant Feynman rules of heavy wimp effective theory Eq. (2.1) after elec-
troweak symmetry breaking.

l

:p-v—dm—i—z’O

_ i pP—(p-v)’
2M (p-v — om + 10)2

. G2 > .
Z,u = ’Lm <T3 — QS]H2 0W> Uy,

T go =
Wi = W%Ti [(Pu+ qu) —v - (p+ q)v]

i 92 ~ .
7 o JL ( 3 2 ) o
g 2M cos Oy T @ sin” Oy [(pu + qu) v (p+ Q)Uu]

YYYY 1
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95 L (P 1) (g — )
2M 2 " K

@ ! (T3—Qsin29w)2(g —v,0,)
2M cos? Oy, ! #
= iLéy
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Appendix B QCD (-function and Quark Mass Anomalous Dimension

The ns-flavor QCD theory has a S-function expansion in «y series as follows, c.f.
Ref. [73],

ﬁ dlogg n+1
g dlogp ; )
where
2
ﬁo =11 — gnf,
38
B =102 — e
8 — 2857 5033 N 325n2
= —— — —n _
2 2 18 s
149753 1078361 6508
= 4 - 3
B3 + 3564 ¢(3) ( 62 T 27 ¢( )) ny
50065 6472 , 1093 .
et Wik 3 B.2
+( 62 8l C(?’)) i g (B2)

The quark mass anomalous dimension is expanded as, c.f. Ref. [73],

_ dlogmy ( >n+1
. = - _ , B.3
where
Yo' =8,
w404 40
B A

4432 320 280
5 = 2498 — | —— + —((3 — ——n?
T2 ( o7 + 3 ¢( )) AT

4 271360 183446 68384
g = 60831055 + 57 ¢(3) — 17600 ¢(5) + ( T T g ¢(3) +1760¢(4)
36800 10481 1600 320
—C( )) (gJFTC()——C( ))
664 128
+(~om+ o o ) i (B.4)
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Appendix C Field Strength Renormalization in SCET

S 3

Figure C.1: QED self-energy diagram for a massive fermion.

For a relativistic QED massive fermion, the one-loop self-energy diagram Fig. C.1
yields

. o [ dL V(P + L +m)y,
—i3(p) = (—ie) / @) [(p + L)® — m2 1 i0] (L% — X% 1 i0)
A A v+ (1= 2)(2 — d)p+ md
/ / (l2 _ A)2 ’ (Cl)

where A = (2% — x)p* + am? +(1—a:)/\2 and d = 4 — 2e.

dzdzzi L_ . / dx/ dil [1—95)(2A>—2d)

[1-0)2—d)+d] , _x)]

—4m

2 _A)3
G .
a 1 m? A2
— A —C2410g ™) —o (14 10g 2
4 {< € o8 #2) <+Ogm2)}
a 1 m? m?
O 42108 f10g T 2
47r[€ + ogA2+ogM2}, (C.2)

where we have used the bare coupling and renormalized M .S coupling relation

1+ g (%)"“] | (C.3)

Therefore, the field strength renormalization for a relativistic QED particle is

2
Chare

€ _—YE€ 2€
i (Am)e 7B = Qpgre = P

™

o 1 m? m?
Zl:1+4—<—z—l—210gﬁ+logﬁ—4>. (C4)

For a heavy non-relativistic QED (NRQED) particle, the one-loop self-energy
diagram Fig. C.2 yields

» ., [ dL MW+ D
—iXs(p) = —e / (2m)4 [M(v2 — 1) + 20 - L+ i0] (L2 — X2 + 40)
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I T

Figure C.2: QED self-energy diagram for a heavy particle.

/ ds/ a'L 7W+ ))2 | (C.5)

where p = Mv and A = v?s? + 3]\/[(1 —v?) 4+ A%

dEg( / ds/ dl { 2—d n 8(52—3M)H
Md¢ M A)? (13 —A)3 y=1
o2
= ——4I'(1 ds—————
(47-(-)276 ( + E) /0 S( + )\2)1+6
a (2 2
21 . C.6
- (B romsly) ()
Therefore, the field strength renormalization for a heavy NRQED particle is
a (2 2
Zp=1+—|—-+2log— ) . .
h +47T (€+ og)\z) (C.7)

For the soft function calculation in the SCET, we treat the fermion heavy and the
field strength renormalization for it is the same as NRQED result

2

s _ s a (2 Z

£y

Figure C.3: QED self-energy diagram for a collinear fermion.
For a collinear fermion in the SCET, we have the one-loop self-energy diagram

_iEQ(p):/(;iW[)’di(_e) iLi—i_pL—i_m po—m |

T

TR L) np
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o) | e S T e ”]

R

2

_6@ P L)L) -m? PP (nep)(@p) —m?
2 {(d =L -0 T o) (- e 2

4—2d)[L-p—L(n- L) — = L 2dm?2
P Gt DI s(n P2 L) S(n- L)(n - p)] + 2dm .
(L2 —=m?)(L —p)*(n - p)
The definition of field strength renormalization factor Z, is
. 7
?ip2—m2Z ﬁl 2m ) (C.10)
2 np _22( ) 2 nap
and
hon-p -
%= 1= g e (C.11)
d(n - pXs(p)) el i
- 75 = ——= I — — 92 . ) — N1
dp? ? 2 (dr)2—< () = (d=2)(n-p)(n-p)la+ (d—2)[L
—(n-p)(A-p)ls] + (4 —=2d) [y + (4 = 2d) [m® — (n-p)(nn - p)] I + 2dm*I;
% Y 3 o
o 1q \ ¢ HAtGlog- 12
san \ ¢ TAT0los ) (C.12)
where

1 3
/ drz(l —z) 2 m 2 =m™* (5 + 56) ) (C.13)

0

/ do(—e)x(a® — x) [(1 — 2)?m?] ™ " = —m 22 (% + ;e) , (C.14)

0

Iy = /0 do(—e) (2 — 2) [(1 — 2)?m?] "~ = —m =22 (% + e) . (C.15)

At one-loop order, the collinear field strength renormalization factor is

7

3
Zf:1—i<—+4+6logﬁ) , (C.16)
4 € m

where we appplied &, #4&,/4 = &,&, for a collinear field &,.
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Appendix D Phase Space Integration

D.1 Tree Level Phase Space Integration
The tree level process is

/

v(k) +n(p) = 1" (K) + p(p),
(k) +p(p) = U (K) +n(p). (D.1)

The phase space of 2-to-2 process is

d3p/ d3k/ o /
/dH N / (2m)32Ey / (27)32E} (2m)" 0 (0" + K —p — k). (D.2)

We define the momentum transfer ¢ = p’ — p, in the laboratory frame for fixed

nucleon target, dp’ = dq, Ey = M — %, @ = —% and we have
d3q d3k/ q2
/ = / (27)%2E, / @nyiaEy, (2 0By = By + )i +a - k)
P
d3 27 q*
= E,— FE. + —
/ (27)32E, 2Ek/5( v = Bw+ o5

/ la|?d|q|d cos ad (E,, — /B2 —2E,|q|cosa + |q2 + m? + %)

27T~2<E,,+%)~2<M—%>

_ / |ald|q]
8TE, (M Ui )

T 2M
d|q’|
= | =1 D.3
/ 16nE, M’ (D-3)
where « is the angle between vector q and k/, and m; is the final lepton mass.

D.2 Collinear Phase Space Integration
We define momentum of each particle as

v(py) +n(pn) = p(P) + e(p) + (k) (D.4)

The three-final-states phase space is defined as

d*P A3k d*p
dil - = 21)'6(Ep + E, + Ex — B, — E,,
/ / (27T)32Ep / (277)32Ek / (27T)32Ep( 7T) ( p+ P + Lo )

0P +p+k—p,—pn) (D-5)
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In the collinear limit, call the sum of electron and photon momenta p’, and intro-
duce a splitting ratio z so that

pP=p+k (D.6)
where

Ip| = (1 —2)E, (D.7)

k| ~ zE, (D.8)

up to order O(m/E,) corrections.
Then the phase space of electron contains (choosing the direction of p to be the
z-axis in the spherical coordinate)

d’p = |p|*d|p|dQ
= (1= 27pa|(1 - 2)lp'| |
= (1= 2)’Ip'PdIp'|a2 — (1 — 2)*|p'dzde2 (D.9)

The phase space of photon contains (photon has a relative angle 6 to z-axis, which
causes a perpendicular momentum k| .)

P’k = dk*dPk,
- d(z|p'|)d21q
= zd|p'|d*k, + |p/|dzd’k . (D.10)

where d?k | = E?d cos0dg is the area element of a small disk perpendicular to Z-axis.
Then we combine the phase space of electron and photon Eq.(D.9) and Eq.(D.10)
(considering wedge product property dz; A dx; = —dx; A dx;)

Ppdk (1 —2)3 4+ 2(1 — 2)?||p'd|p|d2dzd?k |
= = = D.11
2E 2B, 2E 2B, (D-11)
(1 —2)3+ 2(1 — 2)?||p/|PE3d|p'|dQdzd cos Odd
- 28,2,
= wcﬂ 1dQ| E%2(1 — 2)dzd cos@ -
- |28,P v
p
3/
= d—pEi,z(l — z)dzdcos @ - (D.12)
2E,

The original phase space Eq.(D.5) becomes

dll = °P v E%2(1 - 2)dzdcosf -7 - (2n)*5(Ep + E, — E, — E,)
= (27r)32Ep2Ep/(27r)6 7 z)dzacost - m ™ P D v n

§®(P+p —p, — pn)
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&P B! \ , o /
- 2n)2Ep | (2n)2E, (2m)*0(Ep + E, — B, — £,)0” (P +p' — p, — pn)
D

72(1 — 2)E%dzd cos §
. / (2m)3

(D.13)

where we recognize the phase space in the bracket [...] is exactly the 2-to-2 phase
space.
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