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Probabilistic Model for the Simulation of Secondary Electron Emission
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We provide a detailed description of a model and its computational algorithm for the secondary
electron emission process. The model is based on a broad phenomenological fit to data for the
secondary emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values
for the parameters by fitting our model to two particular data sets, one for copper and the other

one for stainless steel.
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I. INTRODUCTION.

The existence of the electron cloud effect (ECE) [1, 2],
whose first and most prominent manifestation is beam-
induced multipacting [3, 4], has been firmly established
experimentally at several storage rings [5-8]. Generally
speaking, the ECE is a consequence of the strong cou-
pling between a charged-particle beam and the vacuum
chamber that contains it via a cloud of electrons in the
chamber. The ECE is detrimental to the performance of
modern storage rings, which typically make use of intense
beams, closely spaced bunches, and/or vacuum chambers
of small transverse dimensions.

For the past several years we have been studying the
ECE by means of multiparticle simulations with a code
that includes a detailed probabilistic model of the sec-
ondary emission process [9, 10], which is one of the crit-
ical contributors to the ECE. The input ingredients of
the model are the secondary emission yield (SEY) ¢ and
the emitted-energy spectrum of the secondary electrons
dd/dE. The main result from our construction is the set
of probabilities for the generation of electrons. This set
of probabilities is embodied in a Monte Carlo procedure
that generates simulated secondary emission events given
the primary electron energy and angle. We represent §
and dd/dE by fairly general phenomenological fits con-
structed to obtain good agreement with a broad range
of data. An additional virtue of the model is that it is
mathematically self consistent; by this we mean that the
event generator is constructed so that: (1) when averag-
ing over an infinite number of secondary emission events,
the reconstructed ¢ and dd/dE are guaranteed to agree
with the corresponding input quantities; (2) the energy
integral of d§/dFE is guaranteed to equal J; (3) the en-
ergy of any given emitted electron is guaranteed not to
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exceed the primary energy; and (4) the aggregate energy
of the electrons emitted in any multi-electron event is
also guaranteed not to exceed the primary energy. The
main challenge is the construction of the joint probability
distributions for events in which two or more secondary
electrons are generated in such a way as to satisfy these
constraints.

The main purpose of this article is the description of
the model and its computer implementation in the larger
ECE simulation code. We also provide sample fits to
existing data on the SEY and emitted-energy spectrum.
With regards to this latter quantity, we provide here a
correction to a previously used [9, Eq. 4.5] expression
that was conceptually incorrect. Although the emitted-
energy spectrum is not computed nor used directly in
the ECE simulation code, it is used to extract param-
eters from the data which are then fed as input to the
simulation. Recent work has shown, in some cases, an
unexpectedly strong sensitivity of the overall simulation
results on low-energy details of the SEY and the energy
spectrum [11, 12] that remains to be fully characterized
and understood. Motivated by this, we have paid partic-
ular attention to the above-mentioned low-energy details
in our model. Therefore, although the model involves a
fair number of adjustable parameters, and some of them
cannot be uniquely pinned down by presently available
data, its mathematical consistency and its good over-
all agreement with secondary emission data ensure that
the above-mentioned sensitivity cannot be attributed to
mathematical artifacts of the model nor to inadequate
representation of the data.

The Monte Carlo technique has been used before for
the description of the secondary emission process. In
a more traditional approach, the main ingredient is a
microscopic model for the secondary-emission material,
typically specified by the electron and ion distributions,
and by the elastic and inelastic cross sections for the col-
lision of the primary and secondary electrons with the
ions and with the other electrons in the material [13].
In this approach, one may infer microscopic properties
of the material by comparing measured data for § and
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do /dE with the corresponding quantities computed from
the model. On the other hand, in the approach we
present in this article, as mentioned above, the main in-
gredient is the measured data for 6 and dé/dE, and the
main result is the set of joint probability functions for
the emission of secondary electrons. Thus our model is
essentially phenomenological, and does not afford a di-
rect insight into the properties of the material or the
theory of secondary emission. In particular, some of our
fitting formulas are of different form from those based on
the theory of metals. However, although our formula for
the true-secondary yield (Sec. IIID 1) is different from
the conventional one [14], it does incorporate the well-
established range-energy relation [15].

In Sec. IT we describe the secondary emission process
by first briefly recapitulating the basic phenomenology
and then providing the probabilistic description of the
emission process in terms of the “most differential prob-
abilities” P,,, which constitute the basic building blocks
for our model. This probabilistic description is quite gen-
eral, and we believe its validity to be rooted in general
principles of the quantum theory for the secondary emis-
sion process. In Sec. II C we define a specific phenomeno-
logical model for the P,,’s by following the principle of
maximum simplicity consistent with the data. In partic-
ular, we strictly enforce the condition that the energy of
any secondary electron may not exceed that of the inci-
dent (primary) electron, a fact that is clearly exhibited
by secondary energy spectrum data. In addition, we also
impose the same restriction on the aggregate secondary
energy. Although we are not aware of experimental data
supporting this latter restriction, we believe it to be true
on account of general physical principles. In Sec. ITI we
continue the definition of our model by providing detailed
parametrizations for each of the three components of the
SEY based on various reviews of the theory and phe-
nomenology of the subject [14, 16-18]. In Sec. IV we
carry out the analytic calculation of the energy spectrum
within our model. In Sec. V we provide the algorithmic
description of the probabilisitic model just constructed,
as implemented in our ECE simulation code. In Sec. VI
we use the energy spectrum, along with the three compo-
nents of the SEY, to fit the data and extract the various
parameters of the model. In Sec. VII we summarize our
conclusions. The various Appendices provide A: mathe-
matical details of the analytic calculation of the energy
spectrum. B: a simplified alternative model for the P,’s
that does not respect the above-mentioned constraints
on the secondary energy, but offers a simplified calcula-
tion of the spectra that is approximately valid for high
enough primary energy. C: definition of the “jet” energy
spectrum. D: the Monte Carlo method of computing the
energy spectra. E: alternative parametrizations of as-
pects of the SEY.

II. MODEL OF SECONDARY ELECTRON
EMISSION.

A. Basic phenomenology.

The two main quantities used in the experimental
study of the secondary emission process are the SEY §
and the emitted-energy spectrum dé/dE [17, 18]. To de-
fine these, we consider a steady mono-energetic electron
beam impinging on a surface. The SEY is defined by

§=22 (1)

where I is the incident electron beam current and Iy is
the secondary current, i.e., the electron current emitted
from the surface. The yield is a function of the kinetic en-
ergy Ey of the incident electron beam, its incident angle
0o, and the type of surface material and its state of condi-
tioning.! For applications to the ECE, we are primarily
interested in incident energies Ey below a few keV’s, al-
though the framework presented here is formally valid for
all energies.

By applying a retarding voltage V' in front of the sec-
ondary current detector one can select those electrons
that are emitted with individual energies F, > E = eV.
The cumulative emitted-energy spectrum S(Ep, E) is
then defined to be

I;(E)
Iy

S(Eo, E) = (2)

where I(E) is the secondary current that overcomes the
retarding voltage (for notational conciseness we suppress
a dependence of S on 6y). The emitted-energy spectrum
dd/dE is defined to be

ié _ _8S(E07E) (3)
dE oE

where the — sign ensures that dé/dE > 0 (the emitted-
energy spectrum dé/dE can also be measured directly by
means of a magnetostatic or electrostatic energy analyzer
[19, 20]). Note that I4(0) in Eq. (2) is what is simply
called I in Eq. (1), so that S(Ey,0) = §(Eyp), hence

/dE % = §(Ey). (4)

For more detailed descriptions of the secondary emis-
sion process one may require additional variables or mea-
sured quantities. For example, if the surface has an
anisotropy defined by a preferred direction such as a

1 We adopt the convention that g is measured relative to the
normal of the surface.



crystal axis or grooves arising from the fabrication pro-
cess [21], one may need to specify an azimuthal inci-
dent angle ¢ in addition to the polar angle 6y. If the
secondary electron detector is capable of detecting the
emitted-angle dependence of the secondary electrons, an
appropriate emission-angle dependence should be incor-
porated into S(Ey, E) [17, Secs. 7.1-7.2]. If the incident
electron beam is polarized, one may need to define the
yield and emitted-energy spectrum separately for each
spin polarization state. In this article, however, we are
not concerned with such additional details: we consider
only homogeneous materials, unpolarized incident elec-
trons, and undetected (hence averaged over) polariza-
tions of the emitted electrons. In addition, we wholly
neglect the contribution of Auger electrons [22] to dd/dE,
as well as the “characteristic energy loss” mechanism [18,
Sec. 4.1.3], as these effects are expected to contribute neg-
ligibly to the electron-cloud effect.

B. Probabilistic description.

We now provide a microscopic, i.e., event-by-event, de-
scription of the secondary emission process, where an
“event” is a single electron-surface collision. This pro-
cess is quantum mechanical hence probabilistic in na-
ture; thus an electron with kinetic energy Ej striking a
surface at an angle 6y will yield n secondary electrons
with a probability P, (Eg,0), n =1,--- , 00, as sketched
in Fig. 1. The P,’s obviously satisfy

> Po=1, P,>0 (5)
n=0

where Py is the probability that the incident electron is
absorbed without emission. In terms of the P,’s, the
SEY defined in Sec. IT A is simply the average electron
multiplicity in the collision,

0= (n)= ZnPn. (6)

Although much is known experimentally about the en-
ergy spectrum and angular distribution of the secondary
electrons, the knowledge of §, dd/dE and the P,’s is not
enough for an event-by-event simulation of the secondary
emission process. Such a simulation requires the knowl-
edge of the “most differential probability”

b dp,
" dE A0 dEydQ; - dE,dQ,

(7)

for 1 < n < oo, i.e., the joint probability for the n elec-
trons in the final state to be emitted with kinetic ener-
gies Eq, Es, ..., FE, into the solid angles 1 = (61, ¢1),
Qo = (02, 92), ..., = (0, ¢r) when an electron strikes
the surface at a given energy Ey and angle 6.

The phase-space probabilities IP,, contain all the infor-
mation relevant to the secondary emission process. They

Eg Ep

FIG. 1: A single electron with energy FEy strikes a surface
yielding n secondary electrons with energies E1, Es, ..., E,.

correspond to the transition probabilities |S fi\Q, where
S¢; is the quantum transition amplitude from an initial
state ¢ to a final state f. In our case the initial state ¢ rep-
resents the incident electron, characterized by its energy
Ey and angle 6y, while the final state f represents the n
emitted electrons, and is characterized by their energies
and emission directions. The P,,’s are in principle calcu-
lable from the quantum theory of the surface material,
and in principle measurable. We are not aware, however,
of any such calculations or measurements, which must
surely be very challenging. The construction of a phe-
nomenological model for the P,’s is the central goal of
this article. Although such a construction is not unique,
we shall be guided by the principle of maximum simplic-
ity consistent with available data for § and dd/dE.

If we define the n-body volumes of kinetic energy and
solid angle, respectively, as (dE), = dE1dFEs - - - dE, and
(dQY)y, = d01dQs - - dQy,, then P, = dP,/(dE),(dQ)y,.
The probability P, is obtained by integrating P, over
the entire phase space of the secondary electrons,

P, = /(dE)n(dQ)n]P’n, n>1, (8)

and the absorption probability is then given by

Py=1-— i P, (9)
n=1

(again, we suppress a dependence of the P,’s on Fy and
6y for notational clarity).

The cumulative secondary energy spectrum S(Ey, F)
is then given by

S5, 2) =Y [@E) @), 2.3 08 - B) (0
n=1 k=1

where the f-functions ensure that only those electrons
emitted with an energy > FE are counted, and that the
count is precisely equal to the number of such electrons.



Finally, Eq. (3) yields 2

= i /(dE)n(dQ)n Pr zn: 6(Ey — E). (1)
n=1 k=1

C. Model for P,.
1. Emission angles.

For simplicity we assume that P, is of the form

dpP,

HDn:An(le"' m

;) X (12)

where Q) = (0, ¢x) is the emission direction of the kth
secondary electron, and dP, /(dE), does not depend on
Q. This formula implies that the emission energy is un-
correlated with the emission angle. Experimentally, it
is known [17, Sec. 7.1] that the true secondary electrons
have a ~ cosf distribution in angle, which is fairly in-
dependent of the primary incident angle 6y and incident
energy Ey. This is not quite true of the elastically re-
flected and rediffused electrons (see below), which have
a more complicated angular distribution. Nevertheless,
following the simplicity principle, we assume the same
emission-angle distribution for all electrons, regardless of
the physical mechanism by which they were generated.
Thus we assume

Ay, ) = (O‘“) Hcos 0, (13)

where « is an adjustable parameter expected to be close
to 1. This form for A,, also implies that the emission an-
gles are fully uncorrelated from each other (the azimuthal
emission angle 0y, is defined relative to the normal to the
surface at the point where the primary electron strikes).
The normalization is such that

[, an@ne 00 =1 (14)

so that the energy part of the distribution is given by

(j?)Ln = /(dQ)n P,. (15)

The above normalization for A, and Eq. (8) imply that
dP,/(dE),, satisfies

/ (e, L _p,. (16)

2 The Dirac delta functions appearing in the sum over k in Eq. (11)
should not be confused with the SEY.

2. Emission energies.

We now make the assumption that dP, /(dE),, is of the
form

dPn n n
(dE), =608~ k§1Ek) k,l;ll Fn(B) (B

)0(Eo — Ek)

(17)
where f,,(Ej) is the energy distribution of the kth emit-
ted electron in an event with a total number n of sec-
ondary electrons. The f-function in front ensures that
the aggregate energy of the emitted electrons does not
exceed the primary electron energy. Physically, this con-
straint means that the secondary electrons are emitted in
an almost uncorrelated fashion: they “know” about each
other just enough that they will not extract energy from
the surface material. The functions 0(Ey — Ej) ensure
that the energy of any given emitted electron does not
exceed the primary electron energy either, a fact that
is well supported by experimental data on the emitted
energy spectrum.

In App. C we consider, as a simplified alternative,
a fully uncorrelated model defined by an expression
for dP,/(dE), similar to (17) without the # functions
(Eq. (C1)). This model has the advantage of simplicity
over (17), but if suffers from the deficiency that the en-
ergy of any given secondary electron has a nonzero prob-
ability to exceed Ej, contrary to experimental results.
Nevertheless, if the functions f,(F)’s vanish at large E,
the 6 function in (17) may be effectively neglected for
large Ep, hence the results obtained from (17) must co-
incide with those from (C1) in this limit.

Eq. (16) implies

/f[ {dEy fn(Er)} 0(Eo — zEk) Pu(Ey)  (18)

which we will later use to normalize the f,’s to the P,’s.
Note that Eq. (18) implies the sum rule
Eyp
4B £uBIPas (B0~ B) = Po(B)  (19)
0
where the term P, appearing in the integrand for the

choice n = 1 must be interpreted, not as the absorption
probability (9), but rather as 6(Ey — E).

III. THE THREE COMPONENTS OF THE SEY.
A. The basic assumption.

The conventional picture of secondary emission, which
we base on various reviews of the subject [14, 16-18],
can be summarized as follows: when a steady current
Iy of electrons impinges on a surface, a certain portion



I, is backscattered elastically while the rest penetrates
into the material. Some of these electrons scatter from
one or more atoms inside the material and are reflected
back out. These are the so-called “rediffused” electrons,
and we call the corresponding current [,.. The rest of
the electrons interact in a more complicated way with
the material and yield the so-called “true secondary elec-
trons,” whose current we call I;s. The yields for each
type of electron are defined by 6, = I./Iy, 6, = I,./Io,
and ;s = I/ 1o, so that the total SEY is

6= (Ie + I + Its)/IO (203‘)
=8¢ + Oy + Oss (20b)
=P +2P,+3P;+--- (20C)

where (20c) follows from (6). There is no fundamen-
tal distinction between the backscattered and rediffused
mechanisms, and we treat them on an equal footing in
our model. However, we have found it advantageous, for
the purposes of phenomenological fits, to separate them
into two components. At the quantum level, of course,
the distinction between the three types of electrons is
unphysical. Nevertheless, in practice there exists a con-
ventional criterion [17, 18], which we follow, that leads
to this distinction, and hence to the separate measure-
ments of J., J, and d;s. The criterion is based on the
three main regions, in secondary energy FE, exhibited by
dd/dE. As an example, Fig. 2 shows the contributions of
the three components for the case of an incident electron
beam of energy Ey = 300 eV impinging on a stainless
steel surface.

0.08 I I I I I |
Secondary energy spectrum
St. St., Eg=300 eV
0.06 normal incidence —
TA true secondaries
> (area[0,50]1=1.17)
[0
0.04 backscattered N
5 (area[295,305]=0.12)
)
T 0.02 rediffused —
(area[50,295]1=0.75)
0 00 — \: e

0 50 100 150 200 250 300

Secondary electron energy [eV]

FIG. 2: A sample of the measured energy spectrum dé/dFE for
an unconditioned sample of stainless steel at Ey = 300 eV,
normal incidence. The three components of the secondary
yield are given by the values of “area|E1, E2],” each of which
represents the integrated spectrum between F; and F». Thus
for this case, §;s = 1.17, 4, = 0.75 and d. = 0.12, for a total
SEY § = 2.04. The upper energy cutoff for the true secon-
daries is somewhat arbitrarily, but conventionally, chosen to
be 50 eV. Data courtesy R. Kirby.

In order to assign the three components of § to the

P,’s, we now make a simplifying assumption, namely:
the elastic and rediffused electrons are only produced in
one-electron events (n = 1), while the true secondary
electrons are produced in events with any number of sec-
ondary electrons (n > 1). Therefore, in our model, this
assumption means that in any given event backscattered
and rediffused electrons are never accompanied by true
secondaries, and conversely, when two or more true sec-
ondary electrons are produced, they are never accompa-
nied by either backscattered or rediffused electrons. This
assumption of mutual exclusion appears to be consistent
with the experimental data on the emitted energy spec-
trum for incident energies above ~ 50 eV; however, it
is not required by the data, and we have no good argu-
ments for it in general. We adopt it here for all energies as
it offers perhaps the simplest (but not the only) math-
ematically consistent characterization of the secondary
emission process. The basic picture is sketched in Fig. 3.
In terms of the P,’s, this assumption implies

Py =P+ P+ P (21a)
Py=Poy, n>2 (21b)

which implies an absorption probability

[e'e) oo
Po=1-Y P,=1-Pio~Pi,— Pu (22)

n=1 n=1
and also
5& = PL@ (23&)
O = Pr (23b)
Ots = Y nPots- (23c)
n=1
In terms of the f,’s, we have
fl = fl,e+f1,r+f1,ts (24&)
fn = fn,ts;, n>2 (24b)
To Ie

Ir
Tts

AN

U

FIG. 3: Sketch of the currents that are used to define the dif-
ferent components of secondary emission. The blob is meant
to emphasize a nontrivial interaction yielding true secondary
electrons. This sketch embodies a mutual-exclusion property
of the three types of emission processes, spelled out in the
text.



where the functions f1¢, fir, fnts, Pre, P1,r, and Py ts
remain to be specified.

Should more detailed data on secondary emission in-
validate the mutual-exclusion assumption, Egs. (21), (23)
and (24) would have to be modified accordingly. Note
that our construction does not guarantee that §.+6, < 1,
a condition that must be satisfied in our model. This
condition must be enforced by appropriate parameter
choices, although this is rarely a problem in practice.
Note also that there is no safeguard that prevents P;
from exceeding unity nor Py from becoming negative.
These conditions must also be enforced by appropriate
parameter choices, but this might be problematic in cer-
tain cases of practical interest. A construction of the P,’s
that does guarantee P, < 1 and Py > 0 is presented in
Sec. III D 2 below.

B. Model for backscattered electrons.

Experimental data [17, Sec. 3.7], [18, Sec. 4.1.2.2] sug-
gests that a sensible form for é.(Ep,6y) at normal inci-
dence (0y = 0) might be given by

66(E070) = Pl,e(OO)
+(Pre — Pre(00))e” (B=EBl/W) /b (95)

This function peaks at an energy FEy = E, provided
Py o > P .(00), which we assume to be the case. For the
energy probability function f; . we assume a form that
roughly matches the elastic component of the spectrum
dd/dE, as it can be seen in Figs. 5 and 7, namely

fi,e =0(E)0(Ey — E) de(Eo, 00)
9¢—(E—Eo)?/202

X 26
V2ra, erf(Ey/v/20.) (26)
which is normalized so that it satisfies
Ey
/dE fr.e(E) = 0.(Ep) . (27)
0

The fact that § # 0 for Fy = 0 implies that expres-
sion (26) for f; . diverges as Ey — 0. This divergence
is not unphysical, however, because it is integrable, viz.
Eq. (27).

C. Model for the rediffused electrons.

Experimental data [17, Sec. 3.7], [18, Sec. 4.1.3] sug-
gests that a sensible form for 4, at normal incidence
(8o = 0) might be given by

6,(Fo,0) = Pup(00) [1 = e B/E] (28

For fi, we assume

q+ 1)E1
fir = 0(E)0(Eo — E)é,-(Eo, 0) ( E3+)1 (29)
which satisfies the normalization condition
Ey
/ dE f1.,(E) = 6,(Eo) . (30)
0

D. DModel for the true secondary electrons.
1. Yield and energy distribution function.

The energy and angular dependence of §;, is well fit
experimentally [14, 16, 17] by an approximately universal
[23] scaling function D(x) such that

8ts(Eo, 00) = 8(60) D(Eo/E(60)) (31)

so that all dependence on the surface and incident angle
is contained in & and E. The scaling function D(x) is
defined so that it satisfies the conditions D(1) = 1 and
D’(1) = 0, which are, of course, chosen to ensure that
85 reaches a peak value 0 at an energy E. We have
chosen the simplest form [9] for D(z) that satisfies the
above-mentioned conditions and that allows good fits to
the data [21, 24], namely
ST

s—14xas
where s is an adjustable parameter that must be > 1. In
the literature one finds other parametrizations for D(z),
discussed in App. F. We have found, however, that some
of these parametrizations do not fit actual data for tech-
nical surfaces as well as (32). We note that this formula
implies §;5 ~ Eéfs at large Ey, showing that it satisfies
the conventional range-energy relation including scatter-
ing effects [15]. Further details are described in App. F.

As for the energy spectrum function we make the as-
sumption

D(x) = (32)

fops = 0(E)F, EPr—t e~ B/en (33)

where p,, and €, are phenomenological parameters (the
finiteness of 0(Ep,0y), however, demands p, > 0).
Egs. (18) and (A5) yield

an _ - Pn,ts (EO) (34)

(En F(pn))np(npnv EO/en)

where P(z,x) is the normalized incomplete gamma func-
tion (see App. A). The emission probability P, ;s is de-
fined below in terms of d;5; a dependence on the incident
angle 6 is contained in P, ;5.

While Eq. (33) does not correspond to the expression
derived from the theory of metals [16], it fits the data
quite well (see Sec. VI), and allows many of the integrals
to be carried out analytically, hence it is quite appropri-
ate for our phenomenological approach.




2. Emission probability.

Probability per incident electron. The final ingredi-
ent that must be defined in the model is the probability
P, +s for emitting n true secondary electrons, given d;s,
0. and d,. Once we choose P, 5, the overall probabilities
are given by Egs. (21-22-23), namely

P0:P07t3—6e—67~, (353)
P = Pl,ts + 0¢ + 6y, (35b)
P,=P,is, n>2. (35¢)

Since P, ;s satisfies the unitarity condition

oo
Y Pui=1, (36)
n=0

so does the overall probability P,. A simple choice for
P, is is a Poisson distribution,

on

ts —0ts
Pn,ts - | ! )
n

0<n<oo (37)

which satisfies the requisite property (n) = d;s. Another
possible choice is a binomial distribution,

Pn,ts = ({:{) pn(l - p)M—n7 0 S n S M (38)

where p = (n)/M = 0;5/M. This distribution limits the
number of emitted secondary electrons to a maximum
M. Although this limitation is not physical, it is in gen-
eral quite innocuous for sufficiently large M, and it has
the advantage that it leads to more controllable compu-
tations than the Poisson distribution. The parameter p
must be constrained to be < 1 which implies, in turn,
an upper limit on the acceptable value of ;5. In prac-
tice we have found that M = 10 gives sufficient accuracy
for most simulations, and sets an upper limit ;s = 10,
which is more than adequate for all practical materials.

Probability per penetrated electron. As mentioned
in Sec. IIT A, it is clear from Eq. (35) that P; can ex-
ceed unity and Py can become negative even if d, and
0, are constrained to satisfy J, + 6, < 1. For example,
these violations of basic probability properties can oc-
cur when ;s 2 1.2 and 0. + d, 2 0.5, a situation that
can readily arise in practice. An alternative definition
of the emission probabilities that guarantees Py > 0 and
P, <1 follows from considering the probabilities per unit
penetrated electron current rather than per unit incident
electron current. Referring to Fig. 3, it is clear that the
current available for the production of true secondary
electrons is Iy — I, — I.. Thus the yield in terms of this
penetrated current is

Its — 5ts
Io—I.—I1, 1-—6.-6,"

Ot = (39)

Although this definition is less practical from an exper-
imental point of view, it allows a mathematically more
consistent definition of the probabilities P,, as we now
show. We express the SEY component d;, as

525 = Z nPT/L,ts (40)
n=1
where P, ;. is the probability, to be specified, for gener-

ating n true secondary electrons relative to the available
penetrated current Iy — I, — I.. This probability must
satisfy the unitarity condition

> P =1 (41)
n=0

A comparison of Egs. (23c) and (40) suggests the relation

Ot
Pn7t5 = T;P;L,ts
S
Although this relation is not implied by the comparison,
we adopt it as the definition of the probability per inci-
dent electron P, ;5. With this definition, Eqs. (21-22-23)
determine the overall emission probabilities

=(1-5.—08,)P,

n,ts

n>1. (42)

Py=(1-6.—08.)P,,, (43a)
Py =(1—=0,—08,)P| ;s +dc +6r, (43b)
Py=(1—-6.—6,)P,;,, n>2, (43c)

which should be compared with Eq. (35). It is easy to
see that, if the condition §, + 6, < 1 is satisfied, the
above expressions do guarantee that Py <1 and Py > 0,
the equality holding only in the extreme case d. + d, =
1. Note, however, that, in contrast with Eq. (36), the
probabilities P, ;s defined in this way satisfy

an,ts:]-*(se*(sr (44)
n=0

which is, in general, < 1 (we have extended Eq. (42) to
n = 0). This lack of unitarity is as it should be: the
deficit from unity in this sum represents precisely the
fraction of incident electrons that yield backscattered and
rediffused electrons, and hence is unavailable, according
to our mutual-exclusion assumption, for true secondary
production.

As in the examples above, we may choose for P, ;. a
Poisson distribution,

§n
/ _ ts —&5
n,ts n! ’

0<n<oo (45)

which satisfies (n) = d;,, as it should in order for §;, to
have the required meaning of being the average number of
true secondary electrons emitted per penetrated electron.
We can also choose the binomial distribution,

Po=()rra-p osnsy o)

where p = (n)/M = §,,/M. Since p must be < 1, M
must be chosen > dy,.



E. Incident-angle dependence.

In our fits to data for vacuum chamber materials
(non-crystalline metal with a rough surface) we have
found that the incident-angle dependence of the total
SEY is well fit by a multiplicative factor of the form
14 a1(1 — cos®6p) for incident angles in the range
0 < 6y < 84° [21, 25]. Not surprisingly, this depen-
dence is much milder than the inverse power of cos#fy
that is found in the literature for smooth surfaces [16, 26].
For our purposes, we have assumed the same form for
all three components of the SEY. Specifically, for the
backscattered and rediffused components we set

(Eo,0) x
(Eo, 0) x

while for the true secondary component we assume

[14e1(1 —cos™bp)] (47a)

Je
Oy [1+7r1(1—cos™ 6p)] (47b)

8(00) = Sts X
E(0y) = Eys x

(48a)
(48b)

[1+t1(1—cos™ bp)] ,
[1+t3(1 — cos™ 6p)] .
A more complete discussion of other possible forms

for the incident-angle dependence is presented in Ap-
pendix F.

IV. THE EMITTED-ENERGY SPECTRUM.

In order to extract more information from the data, we
need a formula for the energy spectrum. From Eq. (11)
and the model for P,, described in Sec. II C we obtain

= n fn {dEy f(E)}
O/k_2 k k
x0(Ey— E— 3 Ey) (492)
k=2
_ann P,_1(Ey—E) (49D)

where the term Py(Ey — F) appearing in the n = 1 term
in (49b) must be interpreted not as the absorbtion prob-
ability but rather as §(Eo— E). Using Eq. (19), it is clear
from Eq. (49a) that dd/dE obeys the sum rule

Ey

/dE— ZnP = §(Eo) (50)

0

as it should.
For the model described in Sec. III for the three com-
ponents of the SEY we obtain

d dbss

fle+f1r 7E (51)

where

d(sts > nPn’ts(Eo) (E/En)pn_le—E/en

dE = e l'(pn)P(npn, Eo/e€n)
xP((n—1)pn, (Eo — E)/en)  (52)

where we have used Eq. (A5). Here P(z,x) is the
normalized incomplete gamma function, which satisfies
P(0,z) =1 (see App. A).

In the limit when Ey > E, €, we obtain the simplified
formula

déts >

pnfl —E/en
ann ts EO) (E/e )

enl'(pn)

(53)

which shows that each component peaks at £ = (p,, —
1)en. Furthermore, if all the p,’s and all the €,’s are
equal, we obtain the simple result

déts
dE

(E/E)pflefE/e
el'(p)

where p = p, and € = ¢,. This result shows that the
function f,(F) can be identified with the energy spec-
trum if the energy Ej is sufficiently high and the f,’s are
independent of n. Note that, in this case, dd;s/dF peaks
at E = (p—1e.

The cumulative spectrum can be similarly computed.
Using Egs. (10) and (17) we obtain

= ts(FEo) (54)

S(Eo, E Z /dElfn B) [ dEy---dE,
n=1 0

< Ful o) Fu(B)O(ED - 3 Ev)

Eo
> n /Elfn Eqy)Po-1(Eo — E)
B

n=1

dE{ f1,e(E1) + fir(E1)} + Ses(Eo, E) (55)

U‘J\gj

where the true-secondary component is given by

o0

nPn ts EO)
Sts(Fo, E
! 0 EZ: nmeO/€n)
E(]/En
X / dyyP~te Y P((n — 1)pp, Eo/en —y) . (56)
E/en

It is easily seen that this expression yields (52) upon tak-
ing 9/0F and reversing the sign. Unfortunately, it does
not appear possible to express it in terms of conventional
special functions.



V. COMPUTATIONAL ALGORITHM.

The model defined in Sections IT-IIT is implemented, in
practical simulations [9, 10], by the following algorithm:

1. When an electron strikes the vacuum chamber wall,
record its incident energy Fj and the collision point
(z,y, z); compute the angle 6y between the incident
electron and the normal to the surface at (x,y, z).

2. Compute 6.(Ep,0p) according to Eqgs. (25-47a),
0r(Eo,00) according to Egs. (28-47b), and
0ts(Fo, o) according to Eqs. (31-48).

3. Compute P, for n = 0,1,---, M according to the
model chosen 2 in Sec. IIID 2.

4. Generate a random integer n € [0, M] with proba-
bility distribution {P,}; this is the actual number
of secondaries generated.

5. If n = 0, delete the incident electron from computer
memory.

6. If n = 1, generate the electron energy E € [0, Fo]
with probability density fi o(E)+ f1,-(E)+ f1,s(E)
(see App. D1).

7.1f n > 2, generate the energies FEp € [0, Ep],
k=1,---,n, with probability density f, +s(F) such
that >, _, Ex < Ey (see App. D2).

8. Generate n independent polar angles 0y € [0, 7/2]
with probability density cos® 6, and n independent
azimuthal angles ¢ € [0, 27] with uniform proba-
bility density. These are the emission angles of the
secondary electrons relative to the local coordinate
system that is centered at the collision point and
whose “z” axis is along the inward normal to the
chamber surface.

9. From the knowledge of the vacuum chamber geom-
etry, the location (z,y,2), and (FE, 0, ¢), compute
the momentum (p, py, P )i for each of the n emit-
ted electrons.

10. Continue with the next incident electron at Step 1.

VI. FITS TO EXPERIMENTAL DATA.

For illustration purposes, we have carried out a fit to
experimental data at normal incidence for stainless steel
and copper. The stainless steel data was obtained from

3 In the computer calculation, we limit the number of secondary
electrons generated in any given event to a maximum value M,
even for the case of the Poisson distribution; typically we set
M = 10.

a sample of SLAC standard 304 rolled sheet chemically
etched and passivated but not conditioned [21, 25]. For
our fits we have used measured values of §(Fp) in the
range 0 < Fy < 1100 eV (Fig. 4), and of d§/dE at Ey =
300 eV (Fig. 5) and 1100 eV (not shown). The copper
data was obtained at CERN from a chemically cleaned
but not in-situ vacuum-baked sample [24]. We have used
for our fits data for 6(Fp) in the range 0 < E; < 1000
eV (Fig. 6), and for dj/dE at Ey = 10, 30 and 300 eV.
(Fig. 7).

When fitting the backscattered peak, as seen in Figs. 5
and 7, we deliberately tried to double the height of the
experimentally-measured peak. The reason is that our
fitting curve for dd/dE stops exactly at the maximum of
the peak (viz. Eq. (26)), hence by doubling the height we
ensure that the area under the peak, which we believe to
be a better measure of §., matches the measured value.

We have obtained the parameters pertaining to
incident-angle dependence ey, ey, 71, ro and ty, - ,t4,
appearing in Egs. (47-48), from other sets of data
for TiN-coated aluminum and for uncoated aluminum
[21, 25]. The parameter «, which controls the angu-
lar distribution of the emitted electrons, is not deter-
mined by the above data. However, the value a = 1 is
well supported by data for the true secondary compo-
nent elsewhere [17, Sec. 7.1], hence we have adopted it.
The angular distribution of the backscattered and redif-
fused components, however, differs substantially from a
cos 6 distribution [17, Sec. 7.2]. Nevertheless, we have set
a = 1 for these components as well for the sake of expe-
diency, as we have noted that electron-cloud simulations
do not appear to be very sensitive to the exact value of a.
An improved parametrization of the angular dependence
of these components is clearly necessary, and we intend
to carry it out in the future [27]. Tables I and II list the
values of our fitting parameters.

The value of the SEY at low incident energy deserves
special attention. At primary energies below a few eV
no secondary electrons are created. In our model, only
the backscattered component contributes to §(0), with
5(0) o Py .. The value P, . ~ 0.5 (see Table I), which we
obtained by smoothly extrapolating the above-mentioned
data down to Ey = 0 for both the copper and stainless
steel samples, is also supported (for stainless steel) by
comparing recent observations for the decay time of the
electron cloud in the Proton Storage Ring [28, 29] with
simulation results based on the SEY model described
here. This parameter, which is sensitive to the potential
field at the metal surface, may be a function of the surface
composition, state of conditioning, and dpyax. Previous
analytic work [18, 30, 31] yields estimates for §(0) ~ 0.07
or lower for the case of smooth crystalline surfaces.

It is interesting to note that Eq. (39) implies that J;,
becomes large when §. + 6§, approaches unity, hence so
does (n) (unless, of course, d;; is correspondingly small).
Therefore, as implied by Eqgs. (43) combined with either
(45) or (46), the distribution of the P,,’s will be bimodal,
with a prominent peak at n = 1 and a secondary peak at



some larger value of n. An example of this situation is
shown in Fig. 8 for the case of stainless steel at 300 eV in-
cident energy. Since, for the binomial distribution choice,
1, must be < M, this kind of consideration must be used
to determine an acceptable lower value for M. For the
Poisson distribution choice it is desirable to truncate it
at n = M > §;,, otherwise the truncated distribution
may lead to significant numerical errors.

2.0
SEY for stainless steel
1.5 normal incidence ]
o)
1. data —
ée (fit)
]
6r (fit) —
0. o, (fit) _

O,+0, 40, (fit)

0 200 400 600 800
(eV)

Incident electron energy

FIG. 4: (Color) The SEY for stainless steel for SLAC standard
304 rolled sheet, chemically etched and passivated but not
conditioned. The parameters of the fit are listed in Table I.
Data courtesy R. Kirby.

0.08 T T T T T T
Secondary energy spectrum
0.06 St. St., Eg=300 eV -
TA I normal incidence
>
L
0.04 —
3 — fit
S + data
©0.02 _
0.00 : : 1 1 I*
0 50 100 150 200 250 300

Secondary electron energy (eV)

FIG. 5: The emitted-energy spectrum for stainless steel at 300
eV incident energy and normal incidence, for SLAC standard
304 rolled sheet, chemically etched and passivated but not
conditioned. Data courtesy R. Kirby.

VII. DISCUSSION AND CONCLUSIONS.

We have presented a mathematically self-consistent
phenomenological probabilistic model for the secondary
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Pe) data
1.0 — & (fit)
I 5r (fit) SEY .forICu
6ts (fit) normal incidence
0.5 O +0,+8,, (fit) |
0.0 L | L | L | L

0 200 400 600 800
Incident electron energy (eV)

FIG. 6: (Color) The SEY for copper. The parameters of

the fit are listed in Table I. Data courtesy N. Hilleret for

chemically cleaned but not in-situ vacuum-baked samples.

emission process. The basic mathematical building block
of the model is the most differential probability IP,, for the
emission of n electrons when an incident electron strikes
a surface at a given energy and angle. The inputs to
the model are the three components of the SEY and
the secondary energy spectrum. From these four phe-
nomenological quantities we have constructed an event-
by-event probabilistic description of the secondary emis-
sion process suitable for multiparticle simulations of the
ECE. The mathematical self-consistency of the model en-
sures that these four input quantities are recovered upon
performing a statistical average over a large number of
events.

The main assumptions in the model are the follow-
ing: (1) The n secondary electrons are generated in-
stantaneously when a primary electron hits a surface.*
(2) The backscattered and rediffused electrons are gen-
erated only in single-electron events (n = 1). (3) The
true secondary electrons are generated in events for ar-
bitrary n > 1 with a distribution in n whose mean is the
true-secondary component of the SEY. (4) The emission
energies of the n secondary electrons generated in any
given event follow an almost uncorrelated distribution
such that: (a) the energy of any given emitted electron
does not exceed the incident energy Fy, and (b) the ag-
gregate energy of the emitted electrons does not exceed
Ey either. (5) The emission angles of the n secondary
electrons generated in any given event are: (a) fully un-
correlated, (b) independent of the incident energy and
angle, and (c) uncorrelated with the emission energies.

The model contains a fair number of adjustable para-

4 This assumption is well justified, since the time lag of secondary
emission [14, Sec. 20] is estimated to be 10713 — 107 5 i.e.,
much shorter than any time scale relevant to the electron-cloud
effect.
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FIG. 7: The emitted-energy spectrum for copper at 295, 30
and 10 eV incident energy and normal incidence on chemically
cleaned but not in-situ vacuum baked samples. Data courtesy
N. Hilleret.

maters, more than can be unambiguously determined
from the data at present. Consequently, many of the
parameters cannot be uniquely pinned down, although
some are more robustly constrained by the data than
others. The parameter set we have presented in Tables I
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FIG. 8: (Color) The probability for emitting n secondary elec-
trons when a 300-eV electron strikes a surface at normal in-
cidence, computed according to Egs. (43-46) using the fit pa-
rameters listed in Table I assuming a binomial form (Eq. (46))
for P} ;. with M = 10. The large relative value of P; for
stainless steel is due to the large value of e + ;.

and II gives a good overall representation of the data for
the particular samples we have analyzed, but it is possi-
ble that other data sets may be equally acceptable. The
parameters 5;&3, E‘ts, S, Oc, 151,6, Py .(00), and Py (00)
are robustly determined by the data. For copper, the
€n’s and p,,’s are reasonably well pinned down for n < 4,
and for stainless steel for 4 <n < 8.

As mentioned in the Introduction, we had previously
used, incorrectly, the formula for the jet energy spec-
trum (App. B) to extract the model parameters from the
data [9, Eq. 4.5]. Although the parameters so extracted
are somewhat different from those presented in Sec. VI,
the overall features of the model, and the electron-cloud
simulations obtained from it, remain qualitatively un-
changed.

The model allows for certain flexibility without re-
linquishing its self-consistency. Specifically, the model
accepts almost arbitrary parametrizations for the three
components of the SEY (backscattered, rediffused and
true secondary) as functions of incident energy and an-
gle. The energy spectrum, on the other hand, is more
restricted: while its backscattered and rediffused compo-
nents are almost arbitrary, its true secondary component
is constrained to be of the form (viz. Eq. (52))

> Cu(E,Eg)EPr—te P/ (57)

where F is the secondary energy. Here the parameters
pn and €, are freely adjustable (as long as they are posi-
tive) independently of the SEY. The functions Cy,(E, Ey),
however, are determined by the true secondary yield and
by the p,’s and €,’s. The form (57) is determined by
that of the f,’s, Eq. (33), which was, in turn, chosen be-
cause the data for the spectrum looks qualitatively like



TABLE I: Main parameters of the model.

Copper Stainless Steel
Emitted angular spectrum (Sec. IIC1)
o 1 1
Backscattered electrons (Sec. III B)
Py o(c0) 0.02 0.07
P 0.496 0.5
E. [eV] 0 0
W [eV] 60.86 100
D 1 0.9
oe [eV] 2 1.9
el 0.26 0.26
ez 2 2
Rediffused electrons (Sec. IIIC)
Py (c0) 0.2 0.74
E, [eV] 0.041 40
T 0.104 1
q 0.5 0.4
1 0.26 0.26
9 2 2
True secondary electrons (Sec. IIID)
dts 1.8848 1.22
Eys [eV] 276.8 310
s 1.54 1.813
t1 0.66 0.66
to 0.8 0.8
t3 0.7 0.7
ta 1 1
Total SEY*
B, [eV] 271 292
o 2.1 2.05

aNote that E; ~ Eps and 6; ~ 6¢5 + Py e(00) + Py (00
that Evs > Ee, Er.

) provided

EP~le=E/¢ and also because it allows many of the in-
tegrals in our analysis to be carried out analytically. It
is possible that other parametrizations may give a bet-
ter representation of details of present or future data. In
a future publication we intend to analyze the sensitivity
of electron-cloud simulations against various parameter
dependencies in our model [27].

As more measurements of the SEY and the energy
spectrum become available, we expect to steadily im-
prove our model, and to better pin down the parameters.
As an example, we have recently found that the fits to
the copper data in Sec. VI require a dependence of o,
on the incident energy Ey. The three data sets in Fig. 7
require a monotonically increasing dependence of g. on
Ey which we have parameterized in the form

0o(Ey) = 0e1 — 1.88 + 2.5 tanh((Ey — 150)/100)  (58)
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where all the numerical constants are in units of eV, and
0e1 is specified in Table I as o.. Obviously this fit is far
from unique, and we do not know how it extrapolates
to Fy > 300 eV. Furthermore, we do not know the de-
tection resolution of the apparatus used to measure the
elastic peaks in Fig. 7. It is reasonable to assume that
the resolution varies with Fy, so this effect would have
to be unfolded from the data in order to obtain a more
faithful dependence of o, on Ey. As another example of
further refinements, we have noted a dependence of s on
6o for aluminum samples [21], of the form

s = 1.43 — 0.00336, (59)

where 6y is in degrees. However, owing to the limited
character of the fits presented here, we cannot disentan-
gle this dependence from others in our model, hence we
have assumed, for the purposes of this article, that s is
independent of 6, as specified in Table I. As an example
of potential future improvements, we find it reasonable
to expect that the parameter a, which controls the shape
of the angular distribution of the emitted electrons, may
well depend on both n (the number of electrons emit-
ted in the event), and on Ey. Our model can be readily
augmented to accommodate any of the above-mentioned
dependencies without disturbing its self-consistency.
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APPENDIX A: MATHEMATICAL DETAILS.

Here we provide a list of useful multidimensional inte-
grals used in the calculations above. The basic integral

1 o0
Iy(z,p) = () /d$1 codag ()Pt
)

X0(x —x1 — - —xy)
= 9(:1:)11;(;0) , p>0 (A1)

is easily proved by induction in n. Note that I, obeys
the recursion formula

b

fa(@.p) " I(p)

/dyyp Uooi(z —y,p) (A2)
0

where consistency demands the definition Iy(z, p) = 6(z).
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TABLE II: Additional model parameters for the true secondary component.

Copper

Stainless Steel

P 2.5,3.3, 2.5, 2.5, 2.8, 1.3, 1.5, 1.5, 1.5, 1.5
1.5, 1.75, 1, 3.75, 8.5, 11.5, 2.5, 3, 2.5, 3

en [eV]

1.6,2,1.8,4.7, 1.8, 2.4, 1.8, 1.8, 2.3, 1.8
3.9, 6.2, 13, 8.8, 6.25, 2.25, 9.2, 5.3, 17.8, 10

Integrating I,,(z,p) with respect to x yields

/dxl a:p F" /dxl dajn n) -1

x0(x —$1—~--—xn)
i 0 A3
> 0.
=0 ) Tnp+1)’ p (A3)
Another related integral is
n\4, Fn(p) / 1 n\L1 n
Xef(mﬁ"*“)é(xfxl — =)
o( )xnpil - 0 (A4)
— ) -
I'(np) P

which is obtained in a straightforward way from (A1l).
Integrating this with respect to x yields

o0

Gy, ( 7p) Fnl( )/d$1~'~d$n($1...$n)P—1
0

xe~ @t ten) g gy —
= 0(z)P(np,z),

where P(z,z) is the normalized incomplete gamma func-
tion, defined, in general, by

Wew) 1o
I(2) ‘Ha!“t

where £ > 0 and Rez > 0, and where v(z,z) is the
ordinary incomplete gamma function [32]. Note that G,
obeys the recursion formula

=)

z,p >0, (A5)

P(z,z) =

(A6)

oo

= % /dy yp_le_yanl(fU - yvp) (A7)

0

Gn(z,p)

where consistency demands the definition Go(z,p) =

O(z). In terms of the P-function, this recursion formula

implies

= —— [dyy? e VP((n —1D)p,z —y) (A8
7 / ((n—1p.w—y) (AS

0

where n > 1, 2 > 0 and p > 0 (in the right-hand side of

this formula we must use P(0,z) = lim,_g+ P(z,2) =1

for the case n = 1).

P(np, )

APPENDIX B: THE “JET” ENERGY
SPECTRUM.

A spectrum that has been confused [9, Eq. 4.5] with
dd/dE is the “jet energy spectrum,” defined to be the
secondary energy spectrum that would be obtained by
a detector able to measure the number of emitted elec-
trons n and their aggregate energy £ = E1 + --- + E,
on an event-by-event basis. This spectrum is analogous
to the differential jet cross-sections of certain final states
obtained in collisions of high energy particles. For the
secondary emission process, this type of measurement is
in principle possible but probably impractical as it re-
quires event-by-event measurements.

In the context of our model, the spectrum that such a
detector would measure is given by the expression

(@)
dE jet
which should be compared with Eq. (1
obeys the sum rule

T
iE ()
0/ dE jet

namely the same as dé/dE. Assuming the model de-
scribed in Sec. IIT for the three components of the SEY
and using Eq. (A4) we obtain

= nz::l n/(dE)n(dQ)n P, 0(E — k;Ek) (B1)

1). This spectrum

(B2)

:inpnzdv
n=1

d(5 d(;ts
(dE) fl,e+f1,r+(dE)_ (B3)
Jjet jet
where
ddys (E/ey)Pn=te=B/en
P ts(E B4
( dE >jet Z e ts O) EHV(npna EO/GTL) ( )

and where y(z,z) is the ordinary incomplete gamma
function, defined in Eq. (A6). This result should be
compared with Eq. (52) for the emitted-energy spectrum.
Note that (dd.s/dE);jet is broader than dé.,/dE, as each
of its components peaks at E = (np,, — 1), in the for-
mer rather than £ = (p, — 1)e, in the latter. There-
fore, the measurement of (dds/dE)jes, if it were possible,
would provide knowledge about P, ;s for higher values of
n than do;s/dFE, which would add valuable information
about the secondary emission process.



APPENDIX C: FULLY UNCORRELATED
MODEL FOR P,.

In this simplified model we assume that dP,/(dE),, is
given by

P,
(dE)n

I £ (Ex)o(E) . (C1)
k=1

The absence of correlation among the Ej’s embodied in
Eq. (C1), as opposed to Eq. (17), simplifies the calcula-
tion because it allows one to deal with the emitted elec-
trons independently of each other. On the other hand,
the fact that the energies Fj are not subject to any
constraint other than being positive implies a nonzero
probability that energy is not conserved because there is
nothing to prevent the sum of the Ey’s, or, indeed, any
individual Ff, from exceeding Ey. Eq. (C1) represents
an approximation relative to (17) that is valid when Ey
is large compared with the typical values for the emitted
energies a situation that is sometimes realized in practice.
If the function f,(F) is assumed to be of the form (33)
we obtain
iy = el (2)
(en"T(pn))™
which is the high-Fy limit of Eq. (34), as it should be.
To derive this result we used

oo

/ dE f,(E) = P (E) (C3)

0

which follows from Eq. (8). In this fully uncorrelated
model the emitted-energy spectrum is given by

- “1/n
T = Y nfuss(E)P, " (Eo)

n=1

- Z nPn,ts(EO) (
n=1

E/e,)Prte Blen
Enr(pn)

(C4)
Similarly, the jet energy spectrum is

dys = (E/en)mn—leElen
= Pn s E .
(dE >jet ;n 15 Bo) = (C5)

Expressions (C4) and (C5) are the limiting forms of (52)
and (B4) when Ey > E,¢,, as it should be expected
according to the discussion above.

APPENDIX D: MONTE CARLO GENERATION
OF SECONDARY ELECTRONS.

1. The case n=1.

The energy E of an emitted electron in an event in
which only one electron is generated is determined prob-
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abilistically according to the distribution density

N (E) = frolB) + fur(E) + fros(E).

5 (D1)

If the standard accept-reject method is applied to the
function fi(F), it is easy to encounter conditions for
which this technique is very inefficient owing to the
prominent peaks of f1(F) at £ 2 0 and E < Fy, particu-
larly when Fy > 100 eV. Since the inverse of the cumula-
tive distribution for f;(FE) cannot be found in closed form
in terms of conventional functions, it is not practical to
use the inversion technique either. However, it is easy to
find the inverse of the cumulative distribution of each of
the three functions fi ¢(E), fi(E), and fis(E) sepa-
rately, in which case an efficient technique (the so-called
“composition rule”) does exist [33] 5.
The problem is re-stated as follows: generate a random
number E € [0, Fy] with distribution density
P(E) = acpe(E) + arpr(E) + arsprs(E) (D2)
where the p’s are probability densities with unit normal-
ization, defined by

pe(E) = fr,e(E)/de(Eo) (D3a)
Pr (E) fl,r(E)/ér(EO) (D?’b)
pes(E) = fl,ts(E)/Pl,tS(EO) (D3c)

and the weights a;’s satisfy a; > 0 and ae + a, +a¢s = 1.
Referring to Sec. III, these weights are given by

ae = 0c(Eo)/01(Eo) (D4a)
A, = (5T(E0)/(51 (Eo) (D4b)
ars = P1ys(Eo)/61(Ep) (D4c)

where (Sl(Eo) = (Se(EQ) + 6T(E0) + Pl,ts(EO)- The algo-
rithm to generate E is, then, the following:

1. Generate a random number u» uniformly distributed
in [0, 1].

2. If 0 < u < ag, generate E with probability density
pe(E), ie., E = Ey — 0. |g|, where g is a Gaussian
random number with zero mean and unit standard
deviation (reject it if E < 0).

3. If ae < u < ae + a,, generate E with probability
density p.(E), ie., E = Eou}/(lﬂ), where u; is
another random number uniformly distributed in
[0, 1].

4. If ac + a < uw < 1, generate E with proba-
bility density pis(E), i.e., E = et P~ (p1,u2P),
where P~1(py, x) is the functional inverse (in x) of

5 We are indebted to M. Blaskiewicz for bringing this technique to
our attention



P(p1,x), uz is another random number uniformly
distributed in [0,1], and Py = P(p1, Ep/e€1). Here
P(p, z) is the normalized incomplete gamma func-
tion, Eq. (AG).

This algorithm has the added benefit that it identi-
fies the generated electron as backscattered, rediffused,
or true secondary, hence it allows the use of distinct
emitted-angle distributions, in better agreement with the
phenomenology [17, Secs. 7.1-7.2].

2. The case n > 2.

The determination of the energies E1,---, E, of the
true secondary electrons emitted in an event in which n
electrons are generated is formally equivalent to the fol-
lowing mathematical problem: stochastically generate an
n-dimensional vector x = (1,2, -+ ,x,) with probabil-
ity density

N n
d—ocH(xo—xl c— 1y, H ab e on (D5)

dn

subject to z > 0. In the above expression the compo-
nents of x are the normalized energies, x; = Ej/e,, the
power p is what we called p, in the main body of this
article, and xg = Ep/€,. These parameters must satisfy
the conditions g > 0 and p > 0.

If it were not for the constraint z1 + -+ + z, <
Tg, the problem would factorize into n elementary one-
dimensional weighted random number generations. The
first step to factorize the distribution density is to define
an auxiliary vector y via zx = y7. In order to preserve
the one-to-one correspondence between x and y, we re-
quire that y; > 0. With this change of variables, the
problem reduces to the stochastic generation of a vector
y in the first “quadrant” with probability density

dN 2T 2
o Oyo — y)e ™ [T

D6
ary 1 (D6)

where y = |y| and yo = x(l)/z. The next step consists in
going over to n-dimensional spherical coordinates for y,

namely

y1 =ycosby,
Yo = ysin by cos by,

y3 = ysin 6y sin 5 cos O3,
(D7)

Yn—1 = ysinbysinfs ---cosb,_1,

Yn = ysinfby sinfs - - -sinf,_4
In the general case, when y is allowed to range over all
space, the range for the angles is 0 < 0, < 7 for k =
1,---,n—2,and 0 < 0 < 27 for k = n—1. In our
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particular case, however, the restriction y; > 0 implies
that 0 < 0 < w/2 for all k = 1,--- ,n — 1. Using the
volume element

n—1
d"y =y dy [ ] (sin6y)" " dby (D8)
k=1
we obtain
dN o~ O(yo )y2”p716792dy

H sin 0;,)2* ! (cos 0y )** " 1d), (DY)

where u = p(n — k) and v = p. This distribution density
is of the desired fully factorized form.
The angle 0y, is distributed with the probability density

dN
— o (sin@g)** 1 (cos ;)2 !

o (D10)

hence, with the change of variables t = sin? ), we obtain

— x "1

_tV—l
dt )

0<t<1 (D11)
whose cumulative distribution is the normalized incom-

plete beta function,

Bla, p,v) = Im/dtt“l(l —pl (D12)

0

hence the angles ) are stochastically generated by the
formula

0, = arcsin \/ 3~ (ug, p, v) (D13)
where (37!
¢ (x, , V), the uy’s are independent random numbers uni-
formly distributed in [0, 1], and the arcsin function is re-
stricted to the interval [0, 7/2].

The variable y is distributed with the probability den-
sity

(z,p,v) is the functional inverse (in z) of

dN 2np—1 —y2

— o O(yo — y)y e

i (D14)

By making the change of variables = y? this yields

dN
—— o O(xo — )"l

— (D15)

where xg was previously defined. In this case the cumu-
lative distribution is the normalized incomplete gamma
function P(np,x), Eq. A6, with x restricted to the range
0 < x < xp, hence the variable y is stochastically gener-
ated by the formula
y=1/P~

Hnp, uPy) (D16)



where P~1(np,z) is the functional inverse (in x) of
P(np,z), u is a random number uniformly distributed
in [0,1], and Py = P(np, xo).

To summarize, the algorithm for generating the ener-
gies Ej, is the following:

1. Compute zg = Ey/e, and Py = P(np,xg).

2. Generate n — 1 independent random numbers
ug, k=1,--- ,n—1, uniformly distributed in [0, 1],
and compute the angles 6}, according to Eq. (D13).

3. Generate one more random number w uniformly
distributed in [0,1] and compute y according to
Eq. (D16).

4. Compute the vector y according to Eq. (D7).

5. Compute the energies using F = €,z = eny,% for
k=1, n.

The only potential difficulty to this algorithm is
the need to evaluate the functions ﬁ_l(x,u, v) and
P~l(np,x). However, computer libraries for statistical
analysis typically have them available.

It may be convenient, for checking the validity of the
numerical calculation, to obtain the one-dimensional pro-
jection of the distribution (D5). Using the integrals in
App. A we obtain

AN 2P e "1 P((n — 1)p,z0 — 1)

R o< <
dy I'(p) P(np, o) Coo s
(D17)
where we have chosen the normalization
T AN
do; — =1 D18
/ 1 dl‘l ( )

0

(for the case n =1 we use P(0,z) =1).

APPENDIX E: MONTE CARLO COMPUTATION
OF THE SPECTRA.

Besides the analytic expressions (52) and (B4), the en-
ergy spectra dd;s/dE and (déis/dE)je; can be computed
using the Monte Carlo technique by stochastically simu-
lating the generation of secondary electrons and appro-
priately binning their energies. The main benefit of this
Monte Carlo technique is to validate the computational
algorithm for the secondary emission process described in
Sec. V, which is used in our main ECE simulation code.

The technique consists in obtaining a secondary energy
histogram in F. For this purpose we fix all model pa-
rameters and then use the algorithm in Sec. V for a large
number Ny of incident electrons, all of which have the
same incident energy Ey and incident angle 6. We de-
fine the histogram by dividing the energy interval [0, Eo]
into a certain number B of bins of size AE = Ey/B.
Let N; be the number of events in bin 4, where the index
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i=1,2,---, Blabels the bin corresponding to the energy
interval [(i — 1)AE,iAFE].

To compute dd;s/dE we generate secondary electrons
for each incident (primary) electron according to the al-
gorithm in Sec. V, except that we add the following in-
structions ¢ immediately following step 7:

7a. For the kth secondary electron, compute the bin
number i corresponding to its energy Ey.

7b. Increment N; by 1.

For the computation of (dd.s/dE);er the appropriate
steps replacing (7a) and (7b) are:

7a. Compute the total secondary energy Fioy = F1 +
Es+---+ E,.

7b. Compute the bin number i corresponding to Fiot.

7c. Increment N; by n.

The histograms are then normalized by multiplying
N; by 6(Eg)/(NsAFE), where N; is the total number of
secondaries generated by the Ny primary electrons, and
d(Ep) is the SEY.

The Monte Carlo calculation also yields in a straight-
forward manner the probabilities P, by simply tallying
the events with n emitted electrons, then dividing by the
total number Ny of incident electrons. This computation
can be used as a check of the validity of the technique,
since the P,’s thus obtained must agree, within statis-
tical errors, with the input values given by Eqs. (35) or
(43), depending on the model chosen.

The above procedures (except for the trivial normaliza-
tion of the histograms) are implemented by the following
section of FORTRAN code:

do 1 np=1,nprim

call secelec(EO,theta0,nsec,energ,ang)
iPn_hist(nsec)=iPn_hist (nsec)+1

if (nsec==0) go to 1
nstot=nstot+nsec
Etot=0
do ns=1,nsec

En=energ(ns)

Etot=Etot+En

ien=En/desec+1
idde_hist(ien)=idde_hist(ien)+1
end do

ien=Etot/desec+1
iddejet_hist(ien)=iddejet_hist(ien)+nsec
1 continue

6 For the purposes of obtaining the energy spectra, steps 8 and 9
are skipped.



where iPn_hist, idde hist and iddejet_hist are the
histograms for P,,, dd/dE, and (dé/dE);e, respectively,
nprim is the number Ny of primary electrons, desec is
the energy interval size AFE, nstot is a counter that
tallies the total number N of secondary electrons, and
the rest of the variables are fairly obvious. The main
ingredient, of course, is the event generator subroutine
secelec(EQ,thetal,nsec,energ,ang) that creates sec-
ondary electrons for a given incident electron. This sub-
routine embodies steps 1-7 of the algorithm described in
Sec. V. It takes as inputs the incident electron energy Ey
(variable EO) and the incident angle 6y (variable theta0),
in addition to all the parameters listed in Table I. The
outputs are: the number of secondary electrons gen-
erated n (variable nsec), their energies F;, FE,---,
E,, contained in the one-dimensional array energ, and
their polar and azimuthal angles contained in the two-
dimensional array ang.

Figure 9 shows the two kinds of spectra, computed
both by the analytic and Monte Carlo techniques, for
a sample case in which §. = 6, = 0 and § = & =
1.877. Figure 10 shows the result of the calculation of the
emission probabilities P, for the same conditions for the
energy spectrum. The agreement between the analytic
and the Monte Carlo methods supports the validity of
the subroutine secelec.

APPENDIX F: ALTERNATIVE FITS FOR THE
TRUE SECONDARY YIELD.

Eq. (32) is qualitatively similar to a more conventional
form for the universal scaling function, namely [14]

D(x) = ax*™* (1 - e_bzs> (F1)

where a, b and s are constrained by the conditions D(1) =
1 and D'(1) =0, i.e.

1 1—e7®

= = F2
l—et "T1—-(1+bet’ (F2)

a

which leaves only one independent parameter. Eq. (F1)
is obtained from the semi-empirical theory of secondary
emission [17, Ch. 6], [23, 34]. In this framework the true-
secondary yield is

Bra /R az £(2) (—‘ff) (F3)
J

where dE/dz is the energy loss rate of the primary elec-
tron in the material, f(z) is the probability that a sec-
ondary electron created at depth z will make it to the
surface, and R is the range of the primary electron. The
effects from scattering of the primary electron in the ma-
terial are taken into account [14] by replacing dE/dz by
its effective value, —Ey/R. Assuming f(z) = exp(—z/\),
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FIG. 9: (Color) The two kinds of secondary energy spectra
for normal-incident electrons of energy Fo = 300 eV for the
parameter choices p, = 3, ¢, = 20 eV, § = 6, = 0 and
6ts = 6 = 1.877 assuming a Poisson distribution for P, s
truncated at n = 10. The two curves vanish identically be-
yond FEjp, and are normalized so that the area under either of
them in 0 < F < FEy equals §. The analytic curves are given
by Egs. (52) and (B4), respectively. For the Monte Carlo
method we used No = 10° incident electrons and we divided
the energy interval [0, Fo] into 10% bins of width AE = 0.3
eV. The values chosen for €, and p, are not meant to be re-
alistic; we use them here for illustration purposes only. Note
that dé/dE peaks at E ~ (p—1)e = 40 eV in agreement with
the discussion in Sec. IV, while (d6/dE)jet is much broader,
as each of its components peaks at £ = (np—1)e, as discussed
in App. B.

where A is the absorption length of a secondary electron
in the material, Eq. (F3) yields

8y o % (1 - e*R/A) . (F4)

Furthermore, assuming the validity of the energy-range
relation R < E§, (F4) yields (F1) upon trading off all pro-
portionality constants for E and § , and imposing the con-
ditions D(1) = 1 and D’(1) = 0. The parameter s may
be obtained from measurements of the range-energy re-
lation for Al;Os, yielding s = 1.35 [15], whence a = 1.11
and b = 2.28. Another example of an alternative form for
D(zx) that differs from (F1) but satisfies, nevertheless, the
range-energy relation, is found in Ref. 26. Fig. 11 shows
Egs. (32) and (F1) plotted for s = 1.35.

It is straightforward to verify that our Eq. (32) can
be obtained in the same way by simply assuming f(z) =
(1+ 2/2X\)~2 instead of exp(—z/)\). Note that both (32)
and (F1) have the same power-law behaviors at small and
large Ey, namely

asx — 0

D(z) x {xl_s (F5)

x as r — o0

on account of the validity of the energy-range relation.
Since (32) provides a better fit to the SEY data than
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FIG. 10: (Color) The probability for emitting n electrons,
P, for the same conditions as in Fig. 9. The “Poisson” curve
is Eq. (37), extended analytically to continuous values of n.
The analytic results were obtained by numerically integrating
dd+s /dE, given by Eq. (52), over E in the range 0 < E < Ey
separately for each value of n. The Monte Carlo results were
obtained concurrently with the energy spectra shown in Fig. 9,
according to the computer algorithm described in App. E.
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FIG. 11: (Color) The true secondary emission yield scaling
functions, Egs. (32) and (F1), for s = 1.35.
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(F1) for the samples we have analyzed, it would appear
that the secondary electron escape probability function
(1 + 2/2X)~2 describes the escape process better than
exp(—z/A). However, due to the limited energy range of
our fits, and the number of other fitting parameters, we
cannot draw this conclusion with certainty. Nevertheless,
such a possibility might be worthy of further investiga-
tion.

For materials with smooth surfaces, the incident-angle
dependence of § and F are often parameterized as

3 6(0) : £(0)
d(60) = (o8 B) E(6o) = (cos o) (F6)
with ay and ag are O(1) [16, 26]. The samples we have
analyzed [21, 35], however, correspond to amorphous ma-
terials with rough surfaces and we have found that the
above power laws give a much too strong dependence on
0. As described in Secs. III B, III C and ITID, we have
found that polynomial fits of the form 1+ a4 (1 — cos®26y)
represent the data quite well for the range 0 < 0y < 84°,
particularly for §(6,)/5(0). However, a good alternative
fit for this ratio, which is more conventional than the
polynomial fit, is given by [17, Sec. 7.3]

5(60) = 6(0) exp[y(1 — cosbp)] . (F7)

Actual fits to the data yield values for 7 in the range
~ 0.2 — 0.7 depending on the type of material, its state
of conditioning, and the incident energy Ey [21]. For
the values in Table I, with (a1, a2) representing any of
the pairs (e1, ea), (r1,72), (t1,t2) or (t3,t4), the following
substitutions work adequately:

(a1,a2) = (0.26,2.0) — ~=0.33, (F8a)
(a1,a2) = (0.66,0.8) — =049,  (FSh)
(a1,a2) = (0.70,1.0) — v =0.56. (F8c)
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