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Probabilistic Model for the Simulation of Secondary Electron Emission
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We provide a detailed description of a model and its computational algorithm for the secondary
electron emission process. The model is based on a broad phenomenological fit to data for the
secondary emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values
for the parameters by fitting our model to two particular data sets, one for copper and the other
one for stainless steel.
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I. INTRODUCTION.

The existence of the electron cloud effect (ECE) [1, 2],
whose first and most prominent manifestation is beam-
induced multipacting [3, 4], has been firmly established
experimentally at several storage rings [5–8]. Generally
speaking, the ECE is a consequence of the strong cou-
pling between a charged-particle beam and the vacuum
chamber that contains it via a cloud of electrons in the
chamber. The ECE is detrimental to the performance of
modern storage rings, which typically make use of intense
beams, closely spaced bunches, and/or vacuum chambers
of small transverse dimensions.

For the past several years we have been studying the
ECE by means of multiparticle simulations with a code
that includes a detailed probabilistic model of the sec-
ondary emission process [9, 10], which is one of the crit-
ical contributors to the ECE. The input ingredients of
the model are the secondary emission yield (SEY) δ and
the emitted-energy spectrum of the secondary electrons
dδ/dE. The main result from our construction is the set
of probabilities for the generation of electrons. This set
of probabilities is embodied in a Monte Carlo procedure
that generates simulated secondary emission events given
the primary electron energy and angle. We represent δ
and dδ/dE by fairly general phenomenological fits con-
structed to obtain good agreement with a broad range
of data. An additional virtue of the model is that it is
mathematically self consistent; by this we mean that the
event generator is constructed so that: (1) when averag-
ing over an infinite number of secondary emission events,
the reconstructed δ and dδ/dE are guaranteed to agree
with the corresponding input quantities; (2) the energy
integral of dδ/dE is guaranteed to equal δ; (3) the en-
ergy of any given emitted electron is guaranteed not to
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exceed the primary energy; and (4) the aggregate energy
of the electrons emitted in any multi-electron event is
also guaranteed not to exceed the primary energy. The
main challenge is the construction of the joint probability
distributions for events in which two or more secondary
electrons are generated in such a way as to satisfy these
constraints.

The main purpose of this article is the description of
the model and its computer implementation in the larger
ECE simulation code. We also provide sample fits to
existing data on the SEY and emitted-energy spectrum.
With regards to this latter quantity, we provide here a
correction to a previously used [9, Eq. 4.5] expression
that was conceptually incorrect. Although the emitted-
energy spectrum is not computed nor used directly in
the ECE simulation code, it is used to extract param-
eters from the data which are then fed as input to the
simulation. Recent work has shown, in some cases, an
unexpectedly strong sensitivity of the overall simulation
results on low-energy details of the SEY and the energy
spectrum [11, 12] that remains to be fully characterized
and understood. Motivated by this, we have paid partic-
ular attention to the above-mentioned low-energy details
in our model. Therefore, although the model involves a
fair number of adjustable parameters, and some of them
cannot be uniquely pinned down by presently available
data, its mathematical consistency and its good over-
all agreement with secondary emission data ensure that
the above-mentioned sensitivity cannot be attributed to
mathematical artifacts of the model nor to inadequate
representation of the data.

The Monte Carlo technique has been used before for
the description of the secondary emission process. In
a more traditional approach, the main ingredient is a
microscopic model for the secondary-emission material,
typically specified by the electron and ion distributions,
and by the elastic and inelastic cross sections for the col-
lision of the primary and secondary electrons with the
ions and with the other electrons in the material [13].
In this approach, one may infer microscopic properties
of the material by comparing measured data for δ and
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dδ/dE with the corresponding quantities computed from
the model. On the other hand, in the approach we
present in this article, as mentioned above, the main in-
gredient is the measured data for δ and dδ/dE, and the
main result is the set of joint probability functions for
the emission of secondary electrons. Thus our model is
essentially phenomenological, and does not afford a di-
rect insight into the properties of the material or the
theory of secondary emission. In particular, some of our
fitting formulas are of different form from those based on
the theory of metals. However, although our formula for
the true-secondary yield (Sec. III D 1) is different from
the conventional one [14], it does incorporate the well-
established range-energy relation [15].

In Sec. II we describe the secondary emission process
by first briefly recapitulating the basic phenomenology
and then providing the probabilistic description of the
emission process in terms of the “most differential prob-
abilities” Pn, which constitute the basic building blocks
for our model. This probabilistic description is quite gen-
eral, and we believe its validity to be rooted in general
principles of the quantum theory for the secondary emis-
sion process. In Sec. II C we define a specific phenomeno-
logical model for the Pn’s by following the principle of
maximum simplicity consistent with the data. In partic-
ular, we strictly enforce the condition that the energy of
any secondary electron may not exceed that of the inci-
dent (primary) electron, a fact that is clearly exhibited
by secondary energy spectrum data. In addition, we also
impose the same restriction on the aggregate secondary
energy. Although we are not aware of experimental data
supporting this latter restriction, we believe it to be true
on account of general physical principles. In Sec. III we
continue the definition of our model by providing detailed
parametrizations for each of the three components of the
SEY based on various reviews of the theory and phe-
nomenology of the subject [14, 16–18]. In Sec. IV we
carry out the analytic calculation of the energy spectrum
within our model. In Sec. V we provide the algorithmic
description of the probabilisitic model just constructed,
as implemented in our ECE simulation code. In Sec. VI
we use the energy spectrum, along with the three compo-
nents of the SEY, to fit the data and extract the various
parameters of the model. In Sec. VII we summarize our
conclusions. The various Appendices provide A: mathe-
matical details of the analytic calculation of the energy
spectrum. B: a simplified alternative model for the Pn’s
that does not respect the above-mentioned constraints
on the secondary energy, but offers a simplified calcula-
tion of the spectra that is approximately valid for high
enough primary energy. C: definition of the “jet” energy
spectrum. D: the Monte Carlo method of computing the
energy spectra. E: alternative parametrizations of as-
pects of the SEY.

II. MODEL OF SECONDARY ELECTRON
EMISSION.

A. Basic phenomenology.

The two main quantities used in the experimental
study of the secondary emission process are the SEY δ
and the emitted-energy spectrum dδ/dE [17, 18]. To de-
fine these, we consider a steady mono-energetic electron
beam impinging on a surface. The SEY is defined by

δ =
Is

I0
(1)

where I0 is the incident electron beam current and Is is
the secondary current, i.e., the electron current emitted
from the surface. The yield is a function of the kinetic en-
ergy E0 of the incident electron beam, its incident angle
θ0, and the type of surface material and its state of condi-
tioning.1 For applications to the ECE, we are primarily
interested in incident energies E0 below a few keV’s, al-
though the framework presented here is formally valid for
all energies.

By applying a retarding voltage V in front of the sec-
ondary current detector one can select those electrons
that are emitted with individual energies Ek ≥ E = eV .
The cumulative emitted-energy spectrum S(E0, E) is
then defined to be

S(E0, E) =
Is(E)

I0
(2)

where Is(E) is the secondary current that overcomes the
retarding voltage (for notational conciseness we suppress
a dependence of S on θ0). The emitted-energy spectrum
dδ/dE is defined to be

dδ

dE
= −∂S(E0, E)

∂E
(3)

where the − sign ensures that dδ/dE > 0 (the emitted-
energy spectrum dδ/dE can also be measured directly by
means of a magnetostatic or electrostatic energy analyzer
[19, 20]). Note that Is(0) in Eq. (2) is what is simply
called Is in Eq. (1), so that S(E0, 0) = δ(E0), hence

∞∫

0

dE
dδ

dE
= δ(E0). (4)

For more detailed descriptions of the secondary emis-
sion process one may require additional variables or mea-
sured quantities. For example, if the surface has an
anisotropy defined by a preferred direction such as a

1 We adopt the convention that θ0 is measured relative to the
normal of the surface.
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crystal axis or grooves arising from the fabrication pro-
cess [21], one may need to specify an azimuthal inci-
dent angle φ0 in addition to the polar angle θ0. If the
secondary electron detector is capable of detecting the
emitted-angle dependence of the secondary electrons, an
appropriate emission-angle dependence should be incor-
porated into S(E0, E) [17, Secs. 7.1–7.2]. If the incident
electron beam is polarized, one may need to define the
yield and emitted-energy spectrum separately for each
spin polarization state. In this article, however, we are
not concerned with such additional details: we consider
only homogeneous materials, unpolarized incident elec-
trons, and undetected (hence averaged over) polariza-
tions of the emitted electrons. In addition, we wholly
neglect the contribution of Auger electrons [22] to dδ/dE,
as well as the “characteristic energy loss” mechanism [18,
Sec. 4.1.3], as these effects are expected to contribute neg-
ligibly to the electron-cloud effect.

B. Probabilistic description.

We now provide a microscopic, i.e., event-by-event, de-
scription of the secondary emission process, where an
“event” is a single electron-surface collision. This pro-
cess is quantum mechanical hence probabilistic in na-
ture; thus an electron with kinetic energy E0 striking a
surface at an angle θ0 will yield n secondary electrons
with a probability Pn(E0, θ0), n = 1, · · · ,∞, as sketched
in Fig. 1. The Pn’s obviously satisfy

∞∑
n=0

Pn = 1 , Pn ≥ 0 (5)

where P0 is the probability that the incident electron is
absorbed without emission. In terms of the Pn’s, the
SEY defined in Sec. II A is simply the average electron
multiplicity in the collision,

δ = 〈n〉 =
∞∑

n=1

nPn . (6)

Although much is known experimentally about the en-
ergy spectrum and angular distribution of the secondary
electrons, the knowledge of δ, dδ/dE and the Pn’s is not
enough for an event-by-event simulation of the secondary
emission process. Such a simulation requires the knowl-
edge of the “most differential probability”

Pn =
dPn

dE1dΩ1dE2dΩ2 · · · dEndΩn
(7)

for 1 ≤ n < ∞, i.e., the joint probability for the n elec-
trons in the final state to be emitted with kinetic ener-
gies E1, E2, . . . , En into the solid angles Ω1 = (θ1, φ1),
Ω2 = (θ2, φ2), . . . , Ωn = (θn, φn) when an electron strikes
the surface at a given energy E0 and angle θ0.

The phase-space probabilities Pn contain all the infor-
mation relevant to the secondary emission process. They

E0

EnE2

E1

..

FIG. 1: A single electron with energy E0 strikes a surface
yielding n secondary electrons with energies E1, E2, . . . , En.

correspond to the transition probabilities |Sfi|2, where
Sfi is the quantum transition amplitude from an initial
state i to a final state f . In our case the initial state i rep-
resents the incident electron, characterized by its energy
E0 and angle θ0, while the final state f represents the n
emitted electrons, and is characterized by their energies
and emission directions. The Pn’s are in principle calcu-
lable from the quantum theory of the surface material,
and in principle measurable. We are not aware, however,
of any such calculations or measurements, which must
surely be very challenging. The construction of a phe-
nomenological model for the Pn’s is the central goal of
this article. Although such a construction is not unique,
we shall be guided by the principle of maximum simplic-
ity consistent with available data for δ and dδ/dE.

If we define the n-body volumes of kinetic energy and
solid angle, respectively, as (dE)n ≡ dE1dE2 · · · dEn and
(dΩ)n ≡ dΩ1dΩ2 · · · dΩn, then Pn = dPn/(dE)n(dΩ)n.
The probability Pn is obtained by integrating Pn over
the entire phase space of the secondary electrons,

Pn =
∫

(dE)n(dΩ)n Pn , n ≥ 1 , (8)

and the absorption probability is then given by

P0 = 1−
∞∑

n=1

Pn (9)

(again, we suppress a dependence of the Pn’s on E0 and
θ0 for notational clarity).

The cumulative secondary energy spectrum S(E0, E)
is then given by

S(E0, E) =
∞∑

n=1

∫
(dE)n(dΩ)n Pn

n∑

k=1

θ(Ek − E) (10)

where the θ-functions ensure that only those electrons
emitted with an energy ≥ E are counted, and that the
count is precisely equal to the number of such electrons.
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Finally, Eq. (3) yields 2

dδ

dE
=

∞∑
n=1

∫
(dE)n(dΩ)n Pn

n∑

k=1

δ(Ek − E) . (11)

C. Model for Pn.

1. Emission angles.

For simplicity we assume that Pn is of the form

Pn = An(Ω1, · · · , Ωn)× dPn

(dE)n
(12)

where Ωk = (θk, φk) is the emission direction of the kth
secondary electron, and dPn/(dE)n does not depend on
Ωk. This formula implies that the emission energy is un-
correlated with the emission angle. Experimentally, it
is known [17, Sec. 7.1] that the true secondary electrons
have a ∼ cos θ distribution in angle, which is fairly in-
dependent of the primary incident angle θ0 and incident
energy E0. This is not quite true of the elastically re-
flected and rediffused electrons (see below), which have
a more complicated angular distribution. Nevertheless,
following the simplicity principle, we assume the same
emission-angle distribution for all electrons, regardless of
the physical mechanism by which they were generated.
Thus we assume

An(Ω1, · · · , Ωn) =
(

α + 1
2π

)n n∏

k=1

cosα θk (13)

where α is an adjustable parameter expected to be close
to 1. This form for An also implies that the emission an-
gles are fully uncorrelated from each other (the azimuthal
emission angle θk is defined relative to the normal to the
surface at the point where the primary electron strikes).
The normalization is such that

∫
(dΩ)n An(Ω1, · · · , Ωn) = 1 (14)

so that the energy part of the distribution is given by

dPn

(dE)n
=

∫
(dΩ)n Pn . (15)

The above normalization for An and Eq. (8) imply that
dPn/(dE)n satisfies

∫
(dE)n

dPn

(dE)n
= Pn . (16)

2 The Dirac delta functions appearing in the sum over k in Eq. (11)
should not be confused with the SEY.

2. Emission energies.

We now make the assumption that dPn/(dE)n is of the
form

dPn

(dE)n
= θ(E0 −

n∑
k=1

Ek)
n∏

k=1

fn(Ek)θ(Ek)θ(E0 − Ek)

(17)
where fn(Ek) is the energy distribution of the kth emit-
ted electron in an event with a total number n of sec-
ondary electrons. The θ-function in front ensures that
the aggregate energy of the emitted electrons does not
exceed the primary electron energy. Physically, this con-
straint means that the secondary electrons are emitted in
an almost uncorrelated fashion: they “know” about each
other just enough that they will not extract energy from
the surface material. The functions θ(E0 − Ek) ensure
that the energy of any given emitted electron does not
exceed the primary electron energy either, a fact that
is well supported by experimental data on the emitted
energy spectrum.

In App. C we consider, as a simplified alternative,
a fully uncorrelated model defined by an expression
for dPn/(dE)n similar to (17) without the θ functions
(Eq. (C1)). This model has the advantage of simplicity
over (17), but if suffers from the deficiency that the en-
ergy of any given secondary electron has a nonzero prob-
ability to exceed E0, contrary to experimental results.
Nevertheless, if the functions fn(E)’s vanish at large E,
the θ function in (17) may be effectively neglected for
large E0, hence the results obtained from (17) must co-
incide with those from (C1) in this limit.

Eq. (16) implies

E0∫

0

n∏

k=1

{dEk fn(Ek)} θ(E0 −
n∑

k=1

Ek) = Pn(E0) (18)

which we will later use to normalize the fn’s to the Pn’s.
Note that Eq. (18) implies the sum rule

E0∫

0

dE fn(E)Pn−1(E0 − E) = Pn(E0) (19)

where the term P0 appearing in the integrand for the
choice n = 1 must be interpreted, not as the absorption
probability (9), but rather as θ(E0 − E).

III. THE THREE COMPONENTS OF THE SEY.

A. The basic assumption.

The conventional picture of secondary emission, which
we base on various reviews of the subject [14, 16–18],
can be summarized as follows: when a steady current
I0 of electrons impinges on a surface, a certain portion
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Ie is backscattered elastically while the rest penetrates
into the material. Some of these electrons scatter from
one or more atoms inside the material and are reflected
back out. These are the so-called “rediffused” electrons,
and we call the corresponding current Ir. The rest of
the electrons interact in a more complicated way with
the material and yield the so-called “true secondary elec-
trons,” whose current we call Its. The yields for each
type of electron are defined by δe = Ie/I0, δr = Ir/I0,
and δts = Its/I0, so that the total SEY is

δ = (Ie + Ir + Its)/I0 (20a)
= δe + δr + δts (20b)
= P1 + 2P2 + 3P3 + · · · (20c)

where (20c) follows from (6). There is no fundamen-
tal distinction between the backscattered and rediffused
mechanisms, and we treat them on an equal footing in
our model. However, we have found it advantageous, for
the purposes of phenomenological fits, to separate them
into two components. At the quantum level, of course,
the distinction between the three types of electrons is
unphysical. Nevertheless, in practice there exists a con-
ventional criterion [17, 18], which we follow, that leads
to this distinction, and hence to the separate measure-
ments of δe, δr and δts. The criterion is based on the
three main regions, in secondary energy E, exhibited by
dδ/dE. As an example, Fig. 2 shows the contributions of
the three components for the case of an incident electron
beam of energy E0 = 300 eV impinging on a stainless
steel surface.
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true secondaries
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rediffused
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FIG. 2: A sample of the measured energy spectrum dδ/dE for
an unconditioned sample of stainless steel at E0 = 300 eV,
normal incidence. The three components of the secondary
yield are given by the values of “area[E1, E2],” each of which
represents the integrated spectrum between E1 and E2. Thus
for this case, δts = 1.17, δr = 0.75 and δe = 0.12, for a total
SEY δ = 2.04. The upper energy cutoff for the true secon-
daries is somewhat arbitrarily, but conventionally, chosen to
be 50 eV. Data courtesy R. Kirby.

In order to assign the three components of δ to the

Pn’s, we now make a simplifying assumption, namely:
the elastic and rediffused electrons are only produced in
one-electron events (n = 1), while the true secondary
electrons are produced in events with any number of sec-
ondary electrons (n ≥ 1). Therefore, in our model, this
assumption means that in any given event backscattered
and rediffused electrons are never accompanied by true
secondaries, and conversely, when two or more true sec-
ondary electrons are produced, they are never accompa-
nied by either backscattered or rediffused electrons. This
assumption of mutual exclusion appears to be consistent
with the experimental data on the emitted energy spec-
trum for incident energies above ∼ 50 eV; however, it
is not required by the data, and we have no good argu-
ments for it in general. We adopt it here for all energies as
it offers perhaps the simplest (but not the only) math-
ematically consistent characterization of the secondary
emission process. The basic picture is sketched in Fig. 3.

In terms of the Pn’s, this assumption implies

P1 = P1,e + P1,r + P1,ts (21a)
Pn = Pn,ts, n ≥ 2 (21b)

which implies an absorption probability

P0 = 1−
∞∑

n=1

Pn = 1− P1,e − P1,r −
∞∑

n=1

Pn,ts (22)

and also

δe = P1,e (23a)
δr = P1,r (23b)

δts =
∞∑

n=1

nPn,ts . (23c)

In terms of the fn’s, we have

f1 = f1,e + f1,r + f1,ts (24a)
fn = fn,ts, n ≥ 2 (24b)

I0

Ir

Ie

Its

FIG. 3: Sketch of the currents that are used to define the dif-
ferent components of secondary emission. The blob is meant
to emphasize a nontrivial interaction yielding true secondary
electrons. This sketch embodies a mutual-exclusion property
of the three types of emission processes, spelled out in the
text.
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where the functions f1,e, f1,r, fn,ts, P1,e, P1,r, and Pn,ts

remain to be specified.
Should more detailed data on secondary emission in-

validate the mutual-exclusion assumption, Eqs. (21), (23)
and (24) would have to be modified accordingly. Note
that our construction does not guarantee that δe+δr ≤ 1,
a condition that must be satisfied in our model. This
condition must be enforced by appropriate parameter
choices, although this is rarely a problem in practice.
Note also that there is no safeguard that prevents P1

from exceeding unity nor P0 from becoming negative.
These conditions must also be enforced by appropriate
parameter choices, but this might be problematic in cer-
tain cases of practical interest. A construction of the Pn’s
that does guarantee P1 ≤ 1 and P0 ≥ 0 is presented in
Sec. III D 2 below.

B. Model for backscattered electrons.

Experimental data [17, Sec. 3.7], [18, Sec. 4.1.2.2] sug-
gests that a sensible form for δe(E0, θ0) at normal inci-
dence (θ0 = 0) might be given by

δe(E0, 0) = P1,e(∞)

+(P̂1,e − P1,e(∞))e−(|E0−Êe|/W )p/p . (25)

This function peaks at an energy E0 = Êe provided
P̂1,e > P1,e(∞), which we assume to be the case. For the
energy probability function f1,e we assume a form that
roughly matches the elastic component of the spectrum
dδ/dE, as it can be seen in Figs. 5 and 7, namely

f1,e = θ(E)θ(E0 − E) δe(E0, θ0)

× 2e−(E−E0)
2/2σ2

e√
2πσe erf(E0/

√
2σe)

(26)

which is normalized so that it satisfies

E0∫

0

dE f1,e(E) = δe(E0) . (27)

The fact that δe 6= 0 for E0 = 0 implies that expres-
sion (26) for f1,e diverges as E0 → 0. This divergence
is not unphysical, however, because it is integrable, viz.
Eq. (27).

C. Model for the rediffused electrons.

Experimental data [17, Sec. 3.7], [18, Sec. 4.1.3] sug-
gests that a sensible form for δr at normal incidence
(θ0 = 0) might be given by

δr(E0, 0) = P1,r(∞)
[
1− e−(E0/Er)r

]
. (28)

For f1,r we assume

f1,r = θ(E)θ(E0 − E)δr(E0, θ0)
(q + 1)Eq

Eq+1
0

(29)

which satisfies the normalization condition
E0∫

0

dE f1,r(E) = δr(E0) . (30)

D. Model for the true secondary electrons.

1. Yield and energy distribution function.

The energy and angular dependence of δts is well fit
experimentally [14, 16, 17] by an approximately universal
[23] scaling function D(x) such that

δts(E0, θ0) = δ̂(θ0)D(E0/Ê(θ0)) (31)

so that all dependence on the surface and incident angle
is contained in δ̂ and Ê. The scaling function D(x) is
defined so that it satisfies the conditions D(1) = 1 and
D′(1) = 0, which are, of course, chosen to ensure that
δts reaches a peak value δ̂ at an energy Ê. We have
chosen the simplest form [9] for D(x) that satisfies the
above-mentioned conditions and that allows good fits to
the data [21, 24], namely

D(x) =
sx

s− 1 + xs
(32)

where s is an adjustable parameter that must be > 1. In
the literature one finds other parametrizations for D(x),
discussed in App. F. We have found, however, that some
of these parametrizations do not fit actual data for tech-
nical surfaces as well as (32). We note that this formula
implies δts ∼ E1−s

0 at large E0, showing that it satisfies
the conventional range-energy relation including scatter-
ing effects [15]. Further details are described in App. F.

As for the energy spectrum function we make the as-
sumption

fn,ts = θ(E)FnEpn−1 e−E/εn (33)

where pn and εn are phenomenological parameters (the
finiteness of δ(E0, θ0), however, demands pn > 0).
Eqs. (18) and (A5) yield

Fn
n =

Pn,ts(E0)
(εpn

n Γ(pn))nP (npn, E0/εn)
(34)

where P (z, x) is the normalized incomplete gamma func-
tion (see App. A). The emission probability Pn,ts is de-
fined below in terms of δts; a dependence on the incident
angle θ0 is contained in Pn,ts.

While Eq. (33) does not correspond to the expression
derived from the theory of metals [16], it fits the data
quite well (see Sec. VI), and allows many of the integrals
to be carried out analytically, hence it is quite appropri-
ate for our phenomenological approach.
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2. Emission probability.

Probability per incident electron. The final ingredi-
ent that must be defined in the model is the probability
Pn,ts for emitting n true secondary electrons, given δts,
δe and δr. Once we choose Pn,ts, the overall probabilities
are given by Eqs. (21–22–23), namely

P0 = P0,ts − δe − δr , (35a)
P1 = P1,ts + δe + δr , (35b)
Pn = Pn,ts , n ≥ 2 . (35c)

Since Pn,ts satisfies the unitarity condition

∞∑
n=0

Pn,ts = 1 , (36)

so does the overall probability Pn. A simple choice for
Pn,ts is a Poisson distribution,

Pn,ts =
δn
ts

n!
e−δts , 0 ≤ n < ∞ (37)

which satisfies the requisite property 〈n〉 = δts. Another
possible choice is a binomial distribution,

Pn,ts =
(
M
n

)
pn(1− p)M−n, 0 ≤ n ≤ M (38)

where p = 〈n〉/M = δts/M . This distribution limits the
number of emitted secondary electrons to a maximum
M . Although this limitation is not physical, it is in gen-
eral quite innocuous for sufficiently large M , and it has
the advantage that it leads to more controllable compu-
tations than the Poisson distribution. The parameter p
must be constrained to be < 1 which implies, in turn,
an upper limit on the acceptable value of δts. In prac-
tice we have found that M = 10 gives sufficient accuracy
for most simulations, and sets an upper limit δts = 10,
which is more than adequate for all practical materials.

Probability per penetrated electron. As mentioned
in Sec. III A, it is clear from Eq. (35) that P1 can ex-
ceed unity and P0 can become negative even if δe and
δr are constrained to satisfy δe + δr ≤ 1. For example,
these violations of basic probability properties can oc-
cur when δts & 1.2 and δe + δr & 0.5, a situation that
can readily arise in practice. An alternative definition
of the emission probabilities that guarantees P0 ≥ 0 and
P1 ≤ 1 follows from considering the probabilities per unit
penetrated electron current rather than per unit incident
electron current. Referring to Fig. 3, it is clear that the
current available for the production of true secondary
electrons is I0 − Ie − Ir. Thus the yield in terms of this
penetrated current is

δ′ts =
Its

I0 − Ie − Ir
=

δts

1− δe − δr
. (39)

Although this definition is less practical from an exper-
imental point of view, it allows a mathematically more
consistent definition of the probabilities Pn, as we now
show. We express the SEY component δ′ts as

δ′ts =
∞∑

n=1

nP ′n,ts (40)

where P ′n,ts is the probability, to be specified, for gener-
ating n true secondary electrons relative to the available
penetrated current I0 − Ie − Ir. This probability must
satisfy the unitarity condition

∞∑
n=0

P ′n,ts = 1 . (41)

A comparison of Eqs. (23c) and (40) suggests the relation

Pn,ts =
δts

δ′ts
P ′n,ts = (1− δe − δr)P ′n,ts , n ≥ 1 . (42)

Although this relation is not implied by the comparison,
we adopt it as the definition of the probability per inci-
dent electron Pn,ts. With this definition, Eqs. (21–22–23)
determine the overall emission probabilities

P0 = (1− δe − δr)P ′0,ts , (43a)

P1 = (1− δe − δr)P ′1,ts + δe + δr , (43b)

Pn = (1− δe − δr)P ′n,ts , n ≥ 2 , (43c)

which should be compared with Eq. (35). It is easy to
see that, if the condition δe + δr ≤ 1 is satisfied, the
above expressions do guarantee that P1 ≤ 1 and P0 ≥ 0,
the equality holding only in the extreme case δe + δr =
1. Note, however, that, in contrast with Eq. (36), the
probabilities Pn,ts defined in this way satisfy

∞∑
n=0

Pn,ts = 1− δe − δr (44)

which is, in general, < 1 (we have extended Eq. (42) to
n = 0). This lack of unitarity is as it should be: the
deficit from unity in this sum represents precisely the
fraction of incident electrons that yield backscattered and
rediffused electrons, and hence is unavailable, according
to our mutual-exclusion assumption, for true secondary
production.

As in the examples above, we may choose for P ′n,ts a
Poisson distribution,

P ′n,ts =
δ′nts
n!

e−δ′ts , 0 ≤ n < ∞ (45)

which satisfies 〈n〉 = δ′ts, as it should in order for δ′ts to
have the required meaning of being the average number of
true secondary electrons emitted per penetrated electron.
We can also choose the binomial distribution,

P ′n,ts =
(
M
n

)
pn(1− p)M−n, 0 ≤ n ≤ M (46)

where p = 〈n〉/M = δ′ts/M . Since p must be < 1, M
must be chosen > δ′ts.



8

E. Incident-angle dependence.

In our fits to data for vacuum chamber materials
(non-crystalline metal with a rough surface) we have
found that the incident-angle dependence of the total
SEY is well fit by a multiplicative factor of the form
1 + a1(1 − cosa2 θ0) for incident angles in the range
0 ≤ θ0 . 84◦ [21, 25]. Not surprisingly, this depen-
dence is much milder than the inverse power of cos θ0

that is found in the literature for smooth surfaces [16, 26].
For our purposes, we have assumed the same form for
all three components of the SEY. Specifically, for the
backscattered and rediffused components we set

δe(E0, θ0) = δe(E0, 0)× [1 + e1(1− cose2 θ0)] (47a)
δr(E0, θ0) = δr(E0, 0)× [1 + r1(1− cosr2 θ0)] (47b)

while for the true secondary component we assume

δ̂(θ0) = δ̂ts ×
[
1 + t1(1− cost2 θ0)

]
, (48a)

Ê(θ0) = Êts ×
[
1 + t3(1− cost4 θ0)

]
. (48b)

A more complete discussion of other possible forms
for the incident-angle dependence is presented in Ap-
pendix F.

IV. THE EMITTED-ENERGY SPECTRUM.

In order to extract more information from the data, we
need a formula for the energy spectrum. From Eq. (11)
and the model for Pn described in Sec. II C we obtain

dδ

dE
=

∞∑
n=1

nfn(E)

∞∫

0

n∏

k=2

{dEk fn(Ek)}

×θ(E0 − E −
n∑

k=2

Ek) (49a)

=
∞∑

n=1

nfn(E)Pn−1(E0 − E) (49b)

where the term P0(E0 −E) appearing in the n = 1 term
in (49b) must be interpreted not as the absorbtion prob-
ability but rather as θ(E0−E). Using Eq. (19), it is clear
from Eq. (49a) that dδ/dE obeys the sum rule

E0∫

0

dE
dδ

dE
=

∞∑
n=1

nPn = δ(E0) (50)

as it should.
For the model described in Sec. III for the three com-

ponents of the SEY we obtain

dδ

dE
= f1,e + f1,r +

dδts

dE
(51)

where

dδts

dE
=

∞∑
n=1

nPn,ts(E0) (E/εn)pn−1e−E/εn

εnΓ(pn)P (npn, E0/εn)

×P ((n− 1)pn, (E0 − E)/εn) (52)

where we have used Eq. (A5). Here P (z, x) is the
normalized incomplete gamma function, which satisfies
P (0, x) = 1 (see App. A).

In the limit when E0 À E, εn we obtain the simplified
formula

dδts

dE
=

∞∑
n=1

nPn,ts(E0)
(E/εn)pn−1e−E/εn

εnΓ(pn)
(53)

which shows that each component peaks at E = (pn −
1)εn. Furthermore, if all the pn’s and all the εn’s are
equal, we obtain the simple result

dδts

dE
= δts(E0)

(E/ε)p−1e−E/ε

εΓ(p)
(54)

where p = pn and ε = εn. This result shows that the
function fn(E) can be identified with the energy spec-
trum if the energy E0 is sufficiently high and the fn’s are
independent of n. Note that, in this case, dδts/dE peaks
at E = (p− 1)ε.

The cumulative spectrum can be similarly computed.
Using Eqs. (10) and (17) we obtain

S(E0, E) =
∞∑

n=1

n

E0∫

E

dE1fn(E1)

∞∫

0

dE2 · · · dEn

× fn(E2) · · · fn(En)θ(E0 −
n∑

k=1

Ek)

=
∞∑

n=1

n

E0∫

E

dE1fn(E1)Pn−1(E0 − E1)

=

E0∫

E

dE1{f1,e(E1) + f1,r(E1)}+ Sts(E0, E) (55)

where the true-secondary component is given by

Sts(E0, E) =
∞∑

n=1

nPn,ts(E0)
Γ(pn)P (npn, E0/εn)

×
E0/εn∫

E/εn

dy ypn−1e−yP ((n− 1)pn, E0/εn − y) . (56)

It is easily seen that this expression yields (52) upon tak-
ing ∂/∂E and reversing the sign. Unfortunately, it does
not appear possible to express it in terms of conventional
special functions.
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V. COMPUTATIONAL ALGORITHM.

The model defined in Sections II–III is implemented, in
practical simulations [9, 10], by the following algorithm:

1. When an electron strikes the vacuum chamber wall,
record its incident energy E0 and the collision point
(x, y, z); compute the angle θ0 between the incident
electron and the normal to the surface at (x, y, z).

2. Compute δe(E0, θ0) according to Eqs. (25–47a),
δr(E0, θ0) according to Eqs. (28–47b), and
δts(E0, θ0) according to Eqs. (31–48).

3. Compute Pn for n = 0, 1, · · · , M according to the
model chosen 3 in Sec. III D 2.

4. Generate a random integer n ∈ [0,M ] with proba-
bility distribution {Pn}; this is the actual number
of secondaries generated.

5. If n = 0, delete the incident electron from computer
memory.

6. If n = 1, generate the electron energy E ∈ [0, E0]
with probability density f1,e(E)+f1,r(E)+f1,ts(E)
(see App. D 1).

7. If n ≥ 2, generate the energies Ek ∈ [0, E0],
k = 1, · · · , n, with probability density fn,ts(E) such
that

∑n
k=1 Ek ≤ E0 (see App. D 2).

8. Generate n independent polar angles θk ∈ [0, π/2]
with probability density cosα θ, and n independent
azimuthal angles φk ∈ [0, 2π] with uniform proba-
bility density. These are the emission angles of the
secondary electrons relative to the local coordinate
system that is centered at the collision point and
whose “z” axis is along the inward normal to the
chamber surface.

9. From the knowledge of the vacuum chamber geom-
etry, the location (x, y, z), and (E, θ, φ)k, compute
the momentum (px, py, pz)k for each of the n emit-
ted electrons.

10. Continue with the next incident electron at Step 1.

VI. FITS TO EXPERIMENTAL DATA.

For illustration purposes, we have carried out a fit to
experimental data at normal incidence for stainless steel
and copper. The stainless steel data was obtained from

3 In the computer calculation, we limit the number of secondary
electrons generated in any given event to a maximum value M ,
even for the case of the Poisson distribution; typically we set
M = 10.

a sample of SLAC standard 304 rolled sheet chemically
etched and passivated but not conditioned [21, 25]. For
our fits we have used measured values of δ(E0) in the
range 0 ≤ E0 ≤ 1100 eV (Fig. 4), and of dδ/dE at E0 =
300 eV (Fig. 5) and 1100 eV (not shown). The copper
data was obtained at CERN from a chemically cleaned
but not in-situ vacuum-baked sample [24]. We have used
for our fits data for δ(E0) in the range 0 ≤ E0 ≤ 1000
eV (Fig. 6), and for dδ/dE at E0 = 10, 30 and 300 eV.
(Fig. 7).

When fitting the backscattered peak, as seen in Figs. 5
and 7, we deliberately tried to double the height of the
experimentally-measured peak. The reason is that our
fitting curve for dδ/dE stops exactly at the maximum of
the peak (viz. Eq. (26)), hence by doubling the height we
ensure that the area under the peak, which we believe to
be a better measure of δe, matches the measured value.

We have obtained the parameters pertaining to
incident-angle dependence e1, e2, r1, r2 and t1, · · · , t4,
appearing in Eqs. (47–48), from other sets of data
for TiN-coated aluminum and for uncoated aluminum
[21, 25]. The parameter α, which controls the angu-
lar distribution of the emitted electrons, is not deter-
mined by the above data. However, the value α = 1 is
well supported by data for the true secondary compo-
nent elsewhere [17, Sec. 7.1], hence we have adopted it.
The angular distribution of the backscattered and redif-
fused components, however, differs substantially from a
cos θ distribution [17, Sec. 7.2]. Nevertheless, we have set
α = 1 for these components as well for the sake of expe-
diency, as we have noted that electron-cloud simulations
do not appear to be very sensitive to the exact value of α.
An improved parametrization of the angular dependence
of these components is clearly necessary, and we intend
to carry it out in the future [27]. Tables I and II list the
values of our fitting parameters.

The value of the SEY at low incident energy deserves
special attention. At primary energies below a few eV
no secondary electrons are created. In our model, only
the backscattered component contributes to δ(0), with
δ(0) ∝ P̂1,e. The value P̂1,e ' 0.5 (see Table I), which we
obtained by smoothly extrapolating the above-mentioned
data down to E0 = 0 for both the copper and stainless
steel samples, is also supported (for stainless steel) by
comparing recent observations for the decay time of the
electron cloud in the Proton Storage Ring [28, 29] with
simulation results based on the SEY model described
here. This parameter, which is sensitive to the potential
field at the metal surface, may be a function of the surface
composition, state of conditioning, and δmax. Previous
analytic work [18, 30, 31] yields estimates for δ(0) ∼ 0.07
or lower for the case of smooth crystalline surfaces.

It is interesting to note that Eq. (39) implies that δ′ts
becomes large when δe + δr approaches unity, hence so
does 〈n〉 (unless, of course, δts is correspondingly small).
Therefore, as implied by Eqs. (43) combined with either
(45) or (46), the distribution of the Pn’s will be bimodal,
with a prominent peak at n = 1 and a secondary peak at
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some larger value of n. An example of this situation is
shown in Fig. 8 for the case of stainless steel at 300 eV in-
cident energy. Since, for the binomial distribution choice,
δ′ts must be < M , this kind of consideration must be used
to determine an acceptable lower value for M . For the
Poisson distribution choice it is desirable to truncate it
at n = M À δ′ts, otherwise the truncated distribution
may lead to significant numerical errors.
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FIG. 4: (Color) The SEY for stainless steel for SLAC standard
304 rolled sheet, chemically etched and passivated but not
conditioned. The parameters of the fit are listed in Table I.
Data courtesy R. Kirby.
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FIG. 5: The emitted-energy spectrum for stainless steel at 300
eV incident energy and normal incidence, for SLAC standard
304 rolled sheet, chemically etched and passivated but not
conditioned. Data courtesy R. Kirby.

VII. DISCUSSION AND CONCLUSIONS.

We have presented a mathematically self-consistent
phenomenological probabilistic model for the secondary

2.0

1.5

1.0

0.5
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Incident electron energy (eV)
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 δe (fit)
 δr (fit)
 δts (fit)
 δe+δr+δts (fit)

SEY for Cu
 normal incidence 

FIG. 6: (Color) The SEY for copper. The parameters of
the fit are listed in Table I. Data courtesy N. Hilleret for
chemically cleaned but not in-situ vacuum-baked samples.

emission process. The basic mathematical building block
of the model is the most differential probability Pn for the
emission of n electrons when an incident electron strikes
a surface at a given energy and angle. The inputs to
the model are the three components of the SEY and
the secondary energy spectrum. From these four phe-
nomenological quantities we have constructed an event-
by-event probabilistic description of the secondary emis-
sion process suitable for multiparticle simulations of the
ECE. The mathematical self-consistency of the model en-
sures that these four input quantities are recovered upon
performing a statistical average over a large number of
events.

The main assumptions in the model are the follow-
ing: (1) The n secondary electrons are generated in-
stantaneously when a primary electron hits a surface.4
(2) The backscattered and rediffused electrons are gen-
erated only in single-electron events (n = 1). (3) The
true secondary electrons are generated in events for ar-
bitrary n ≥ 1 with a distribution in n whose mean is the
true-secondary component of the SEY. (4) The emission
energies of the n secondary electrons generated in any
given event follow an almost uncorrelated distribution
such that: (a) the energy of any given emitted electron
does not exceed the incident energy E0, and (b) the ag-
gregate energy of the emitted electrons does not exceed
E0 either. (5) The emission angles of the n secondary
electrons generated in any given event are: (a) fully un-
correlated, (b) independent of the incident energy and
angle, and (c) uncorrelated with the emission energies.

The model contains a fair number of adjustable para-

4 This assumption is well justified, since the time lag of secondary
emission [14, Sec. 20] is estimated to be 10−13 − 10−14 s, i.e.,
much shorter than any time scale relevant to the electron-cloud
effect.
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FIG. 7: The emitted-energy spectrum for copper at 295, 30
and 10 eV incident energy and normal incidence on chemically
cleaned but not in-situ vacuum baked samples. Data courtesy
N. Hilleret.

maters, more than can be unambiguously determined
from the data at present. Consequently, many of the
parameters cannot be uniquely pinned down, although
some are more robustly constrained by the data than
others. The parameter set we have presented in Tables I

0.8

0.6

0.4

0.2

0.0

Pn

1086420

No. of secondaries, n

Probability for emitting
n secondary electrons

 (E0=300 eV, normal incidence)

 Cu

 St.St.

FIG. 8: (Color) The probability for emitting n secondary elec-
trons when a 300-eV electron strikes a surface at normal in-
cidence, computed according to Eqs. (43-46) using the fit pa-
rameters listed in Table I assuming a binomial form (Eq. (46))
for P ′n,ts with M = 10. The large relative value of P1 for
stainless steel is due to the large value of δe + δr.

and II gives a good overall representation of the data for
the particular samples we have analyzed, but it is possi-
ble that other data sets may be equally acceptable. The
parameters δ̂ts, Êts, s, σe, P̂1,e, P1,e(∞), and P1,r(∞)
are robustly determined by the data. For copper, the
εn’s and pn’s are reasonably well pinned down for n . 4,
and for stainless steel for 4 . n . 8.

As mentioned in the Introduction, we had previously
used, incorrectly, the formula for the jet energy spec-
trum (App. B) to extract the model parameters from the
data [9, Eq. 4.5]. Although the parameters so extracted
are somewhat different from those presented in Sec. VI,
the overall features of the model, and the electron-cloud
simulations obtained from it, remain qualitatively un-
changed.

The model allows for certain flexibility without re-
linquishing its self-consistency. Specifically, the model
accepts almost arbitrary parametrizations for the three
components of the SEY (backscattered, rediffused and
true secondary) as functions of incident energy and an-
gle. The energy spectrum, on the other hand, is more
restricted: while its backscattered and rediffused compo-
nents are almost arbitrary, its true secondary component
is constrained to be of the form (viz. Eq. (52))

∑
n

Cn(E,E0)Epn−1e−E/εn (57)

where E is the secondary energy. Here the parameters
pn and εn are freely adjustable (as long as they are posi-
tive) independently of the SEY. The functions Cn(E,E0),
however, are determined by the true secondary yield and
by the pn’s and εn’s. The form (57) is determined by
that of the fn’s, Eq. (33), which was, in turn, chosen be-
cause the data for the spectrum looks qualitatively like
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TABLE I: Main parameters of the model.

Copper Stainless Steel

Emitted angular spectrum (Sec. II C 1)

α 1 1

Backscattered electrons (Sec. III B)

P1,e(∞) 0.02 0.07

P̂1,e 0.496 0.5

Êe [eV] 0 0

W [eV] 60.86 100

p 1 0.9

σe [eV] 2 1.9

e1 0.26 0.26

e2 2 2

Rediffused electrons (Sec. III C)

P1,r(∞) 0.2 0.74

Er [eV] 0.041 40

r 0.104 1

q 0.5 0.4

r1 0.26 0.26

r2 2 2

True secondary electrons (Sec. IIID)

δ̂ts 1.8848 1.22

Êts [eV] 276.8 310

s 1.54 1.813

t1 0.66 0.66

t2 0.8 0.8

t3 0.7 0.7

t4 1 1

Total SEYa

Êt [eV] 271 292

δ̂t 2.1 2.05

aNote that Êt ' Êts and δ̂t ' δ̂ts + P1,e(∞) + P1,r(∞) provided

that Êts À Êe, Er.

Ep−1e−E/ε, and also because it allows many of the in-
tegrals in our analysis to be carried out analytically. It
is possible that other parametrizations may give a bet-
ter representation of details of present or future data. In
a future publication we intend to analyze the sensitivity
of electron-cloud simulations against various parameter
dependencies in our model [27].

As more measurements of the SEY and the energy
spectrum become available, we expect to steadily im-
prove our model, and to better pin down the parameters.
As an example, we have recently found that the fits to
the copper data in Sec. VI require a dependence of σe

on the incident energy E0. The three data sets in Fig. 7
require a monotonically increasing dependence of σe on
E0 which we have parameterized in the form

σe(E0) = σe1 − 1.88 + 2.5 tanh((E0 − 150)/100) (58)

where all the numerical constants are in units of eV, and
σe1 is specified in Table I as σe. Obviously this fit is far
from unique, and we do not know how it extrapolates
to E0 > 300 eV. Furthermore, we do not know the de-
tection resolution of the apparatus used to measure the
elastic peaks in Fig. 7. It is reasonable to assume that
the resolution varies with E0, so this effect would have
to be unfolded from the data in order to obtain a more
faithful dependence of σe on E0. As another example of
further refinements, we have noted a dependence of s on
θ0 for aluminum samples [21], of the form

s = 1.43− 0.0033θ0 (59)

where θ0 is in degrees. However, owing to the limited
character of the fits presented here, we cannot disentan-
gle this dependence from others in our model, hence we
have assumed, for the purposes of this article, that s is
independent of θ0, as specified in Table I. As an example
of potential future improvements, we find it reasonable
to expect that the parameter α, which controls the shape
of the angular distribution of the emitted electrons, may
well depend on both n (the number of electrons emit-
ted in the event), and on E0. Our model can be readily
augmented to accommodate any of the above-mentioned
dependencies without disturbing its self-consistency.
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APPENDIX A: MATHEMATICAL DETAILS.

Here we provide a list of useful multidimensional inte-
grals used in the calculations above. The basic integral

In(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn(x1 · · ·xn)p−1

×δ(x− x1 − · · · − xn)

= θ(x)
xnp−1

Γ(np)
, p > 0 (A1)

is easily proved by induction in n. Note that In obeys
the recursion formula

In(x, p) =
1

Γ(p)

∞∫

0

dy yp−1In−1(x− y, p) (A2)

where consistency demands the definition I0(x, p) = δ(x).
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TABLE II: Additional model parameters for the true secondary component.

Copper Stainless Steel

pn 2.5, 3.3, 2.5, 2.5, 2.8, 1.3, 1.5, 1.5, 1.5, 1.5 1.6, 2, 1.8, 4.7, 1.8, 2.4, 1.8, 1.8, 2.3, 1.8

εn [eV] 1.5, 1.75, 1, 3.75, 8.5, 11.5, 2.5, 3, 2.5, 3 3.9, 6.2, 13, 8.8, 6.25, 2.25, 9.2, 5.3, 17.8, 10

Integrating In(x, p) with respect to x yields
x∫

0

dx In(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn(x1 · · ·xn)p−1

×θ(x− x1 − · · · − xn)

= θ(x)
xnp

Γ(np + 1)
, p > 0 . (A3)

Another related integral is

Fn(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn(x1 · · ·xn)p−1

×e−(x1+···+xn) δ(x− x1 − · · · − xn)

= θ(x)
xnp−1e−x

Γ(np)
, p > 0 (A4)

which is obtained in a straightforward way from (A1).
Integrating this with respect to x yields

Gn(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn(x1 · · ·xn)p−1

×e−(x1+···+xn) θ(x− x1 − · · · − xn)
= θ(x)P (np, x) , x, p > 0, (A5)

where P (z, x) is the normalized incomplete gamma func-
tion, defined, in general, by

P (z, x) =
γ(z, x)
Γ(z)

=
1

Γ(z)

x∫

0

dt tz−1e−t (A6)

where x ≥ 0 and Re z > 0, and where γ(z, x) is the
ordinary incomplete gamma function [32]. Note that Gn

obeys the recursion formula

Gn(x, p) =
1

Γ(p)

∞∫

0

dy yp−1e−yGn−1(x− y, p) (A7)

where consistency demands the definition G0(x, p) =
θ(x). In terms of the P -function, this recursion formula
implies

P (np, x) =
1

Γ(p)

x∫

0

dy yp−1e−yP ((n− 1)p, x− y) (A8)

where n ≥ 1, x ≥ 0 and p > 0 (in the right-hand side of
this formula we must use P (0, x) = limz→0+ P (z, x) = 1
for the case n = 1).

APPENDIX B: THE “JET” ENERGY
SPECTRUM.

A spectrum that has been confused [9, Eq. 4.5] with
dδ/dE is the “jet energy spectrum,” defined to be the
secondary energy spectrum that would be obtained by
a detector able to measure the number of emitted elec-
trons n and their aggregate energy E = E1 + · · · + En

on an event-by-event basis. This spectrum is analogous
to the differential jet cross-sections of certain final states
obtained in collisions of high energy particles. For the
secondary emission process, this type of measurement is
in principle possible but probably impractical as it re-
quires event-by-event measurements.

In the context of our model, the spectrum that such a
detector would measure is given by the expression

(
dδ

dE

)

jet

=
∞∑

n=1

n

∫
(dE)n(dΩ)n Pn δ(E −

n∑
k=1

Ek) (B1)

which should be compared with Eq. (11). This spectrum
obeys the sum rule

E0∫

0

dE

(
dδ

dE

)

jet

=
∞∑

n=1

nPn = δ , (B2)

namely the same as dδ/dE. Assuming the model de-
scribed in Sec. III for the three components of the SEY
and using Eq. (A4) we obtain

(
dδ

dE

)

jet

= f1,e + f1,r +
(

dδts

dE

)

jet

(B3)

where
(

dδts

dE

)

jet

=
∞∑

n=1

nPn,ts(E0)
(E/εn)npn−1e−E/εn

εnγ(npn, E0/εn)
(B4)

and where γ(z, x) is the ordinary incomplete gamma
function, defined in Eq. (A6). This result should be
compared with Eq. (52) for the emitted-energy spectrum.
Note that (dδts/dE)jet is broader than dδts/dE, as each
of its components peaks at E = (npn − 1)εn in the for-
mer rather than E = (pn − 1)εn in the latter. There-
fore, the measurement of (dδts/dE)jet, if it were possible,
would provide knowledge about Pn,ts for higher values of
n than dδts/dE, which would add valuable information
about the secondary emission process.
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APPENDIX C: FULLY UNCORRELATED
MODEL FOR Pn.

In this simplified model we assume that dPn/(dE)n is
given by

dPn

(dE)n
=

n∏

k=1

fn(Ek)θ(Ek) . (C1)

The absence of correlation among the Ek’s embodied in
Eq. (C1), as opposed to Eq. (17), simplifies the calcula-
tion because it allows one to deal with the emitted elec-
trons independently of each other. On the other hand,
the fact that the energies Ek are not subject to any
constraint other than being positive implies a nonzero
probability that energy is not conserved because there is
nothing to prevent the sum of the Ek’s, or, indeed, any
individual Ek, from exceeding E0. Eq. (C1) represents
an approximation relative to (17) that is valid when E0

is large compared with the typical values for the emitted
energies a situation that is sometimes realized in practice.

If the function fn(E) is assumed to be of the form (33)
we obtain

Fn
n =

Pn,ts(E0)
(εpn

n Γ(pn))n
(C2)

which is the high-E0 limit of Eq. (34), as it should be.
To derive this result we used

∞∫

0

dE fn(E) = P 1/n
n (E0) (C3)

which follows from Eq. (8). In this fully uncorrelated
model the emitted-energy spectrum is given by

dδts

dE
=

∞∑
n=1

nfn,ts(E)P 1−1/n
n,ts (E0)

=
∞∑

n=1

nPn,ts(E0)
(E/εn)pn−1e−E/εn

εnΓ(pn)
. (C4)

Similarly, the jet energy spectrum is
(

dδts

dE

)

jet

=
∞∑

n=1

nPn,ts(E0)
(E/εn)npn−1e−E/εn

εnΓ(npn)
. (C5)

Expressions (C4) and (C5) are the limiting forms of (52)
and (B4) when E0 À E, εn, as it should be expected
according to the discussion above.

APPENDIX D: MONTE CARLO GENERATION
OF SECONDARY ELECTRONS.

1. The case n = 1.

The energy E of an emitted electron in an event in
which only one electron is generated is determined prob-

abilistically according to the distribution density

dN

dE
∝ f1(E) = f1,e(E) + f1,r(E) + f1,ts(E) . (D1)

If the standard accept-reject method is applied to the
function f1(E), it is easy to encounter conditions for
which this technique is very inefficient owing to the
prominent peaks of f1(E) at E & 0 and E . E0, particu-
larly when E0 > 100 eV. Since the inverse of the cumula-
tive distribution for f1(E) cannot be found in closed form
in terms of conventional functions, it is not practical to
use the inversion technique either. However, it is easy to
find the inverse of the cumulative distribution of each of
the three functions f1,e(E), f1,r(E), and f1,ts(E) sepa-
rately, in which case an efficient technique (the so-called
“composition rule”) does exist [33] 5.

The problem is re-stated as follows: generate a random
number E ∈ [0, E0] with distribution density

ρ(E) = aeρe(E) + arρr(E) + atsρts(E) (D2)

where the ρ’s are probability densities with unit normal-
ization, defined by

ρe(E) = f1,e(E)/δe(E0) (D3a)
ρr(E) = f1,r(E)/δr(E0) (D3b)
ρts(E) = f1,ts(E)/P1,ts(E0) (D3c)

and the weights ai’s satisfy ai > 0 and ae + ar + ats = 1.
Referring to Sec. III, these weights are given by

ae = δe(E0)/δ1(E0) (D4a)
ar = δr(E0)/δ1(E0) (D4b)
ats = P1,ts(E0)/δ1(E0) (D4c)

where δ1(E0) ≡ δe(E0) + δr(E0) + P1,ts(E0). The algo-
rithm to generate E is, then, the following:

1. Generate a random number u uniformly distributed
in [0, 1].

2. If 0 ≤ u < ae, generate E with probability density
ρe(E), i.e., E = E0 − σe |g|, where g is a Gaussian
random number with zero mean and unit standard
deviation (reject it if E < 0).

3. If ae ≤ u < ae + ar, generate E with probability
density ρr(E), i.e., E = E0u

1/(1+q)
1 , where u1 is

another random number uniformly distributed in
[0, 1].

4. If ae + ar ≤ u < 1, generate E with proba-
bility density ρts(E), i.e., E = ε1P

−1(p1, u2P0),
where P−1(p1, x) is the functional inverse (in x) of

5 We are indebted to M. Blaskiewicz for bringing this technique to
our attention
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P (p1, x), u2 is another random number uniformly
distributed in [0, 1], and P0 = P (p1, E0/ε1). Here
P (p, x) is the normalized incomplete gamma func-
tion, Eq. (A6).

This algorithm has the added benefit that it identi-
fies the generated electron as backscattered, rediffused,
or true secondary, hence it allows the use of distinct
emitted-angle distributions, in better agreement with the
phenomenology [17, Secs. 7.1–7.2].

2. The case n ≥ 2.

The determination of the energies E1, · · · , En of the
true secondary electrons emitted in an event in which n
electrons are generated is formally equivalent to the fol-
lowing mathematical problem: stochastically generate an
n-dimensional vector x = (x1, x2, · · · , xn) with probabil-
ity density

dN

dnx
∝ θ(x0 − x1 − · · · − xn)

n∏

k=1

xp−1
k e−xk (D5)

subject to xk ≥ 0. In the above expression the compo-
nents of x are the normalized energies, xk = Ek/εn, the
power p is what we called pn in the main body of this
article, and x0 = E0/εn. These parameters must satisfy
the conditions x0 ≥ 0 and p > 0.

If it were not for the constraint x1 + · · · + xn ≤
x0, the problem would factorize into n elementary one-
dimensional weighted random number generations. The
first step to factorize the distribution density is to define
an auxiliary vector y via xk = y2

k. In order to preserve
the one-to-one correspondence between x and y, we re-
quire that yk ≥ 0. With this change of variables, the
problem reduces to the stochastic generation of a vector
y in the first “quadrant” with probability density

dN

dny
∝ θ(y0 − y)e−y2

n∏

k=1

y2p−1
k (D6)

where y = |y| and y0 = x
1/2
0 . The next step consists in

going over to n-dimensional spherical coordinates for y,
namely

y1 = y cos θ1 ,

y2 = y sin θ1 cos θ2 ,

y3 = y sin θ1 sin θ2 cos θ3 ,

...

yn−1 = y sin θ1 sin θ2 · · · cos θn−1 ,

yn = y sin θ1 sin θ2 · · · sin θn−1





. (D7)

In the general case, when y is allowed to range over all
space, the range for the angles is 0 ≤ θk ≤ π for k =
1, · · · , n − 2, and 0 ≤ θk ≤ 2π for k = n − 1. In our

particular case, however, the restriction yk ≥ 0 implies
that 0 ≤ θk ≤ π/2 for all k = 1, · · · , n − 1. Using the
volume element

dny = yn−1dy

n−1∏

k=1

(sin θk)n−k−1dθk (D8)

we obtain

dN ∝ θ(y0 − y)y2np−1e−y2
dy

×
n−1∏

k=1

(sin θk)2µ−1(cos θk)2ν−1dθk (D9)

where µ = p(n− k) and ν = p. This distribution density
is of the desired fully factorized form.

The angle θk is distributed with the probability density

dN

dθk
∝ (sin θk)2µ−1(cos θk)2ν−1 (D10)

hence, with the change of variables t = sin2 θk, we obtain

dN

dt
∝ tµ−1(1− t)ν−1 , 0 ≤ t ≤ 1 (D11)

whose cumulative distribution is the normalized incom-
plete beta function,

β̂(x, µ, ν) =
Γ(µ + ν)
Γ(µ)Γ(ν)

x∫

0

dt tµ−1(1− t)ν−1 , (D12)

hence the angles θk are stochastically generated by the
formula

θk = arcsin
√

β̂−1(uk, µ, ν) (D13)

where β̂−1(x, µ, ν) is the functional inverse (in x) of
β̂(x, µ, ν), the uk’s are independent random numbers uni-
formly distributed in [0, 1], and the arcsin function is re-
stricted to the interval [0, π/2].

The variable y is distributed with the probability den-
sity

dN

dy
∝ θ(y0 − y)y2np−1e−y2

. (D14)

By making the change of variables x = y2 this yields

dN

dx
∝ θ(x0 − x)xnp−1e−x (D15)

where x0 was previously defined. In this case the cumu-
lative distribution is the normalized incomplete gamma
function P (np, x), Eq. A6, with x restricted to the range
0 ≤ x ≤ x0, hence the variable y is stochastically gener-
ated by the formula

y =
√

P−1(np, uP0) (D16)
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where P−1(np, x) is the functional inverse (in x) of
P (np, x), u is a random number uniformly distributed
in [0, 1], and P0 = P (np, x0).

To summarize, the algorithm for generating the ener-
gies Ek is the following:

1. Compute x0 = E0/εn and P0 = P (np, x0).

2. Generate n − 1 independent random numbers
uk, k = 1, · · · , n−1, uniformly distributed in [0, 1],
and compute the angles θk according to Eq. (D13).

3. Generate one more random number u uniformly
distributed in [0, 1] and compute y according to
Eq. (D16).

4. Compute the vector y according to Eq. (D7).

5. Compute the energies using Ek = εnxk = εny2
k for

k = 1, · · · , n.

The only potential difficulty to this algorithm is
the need to evaluate the functions β̂−1(x, µ, ν) and
P−1(np, x). However, computer libraries for statistical
analysis typically have them available.

It may be convenient, for checking the validity of the
numerical calculation, to obtain the one-dimensional pro-
jection of the distribution (D5). Using the integrals in
App. A we obtain

dN

dx1
=

xp−1
1 e−x1P ((n− 1)p, x0 − x1)

Γ(p)P (np, x0)
, 0 ≤ x1 ≤ x0

(D17)
where we have chosen the normalization

x0∫

0

dx1
dN

dx1
= 1 (D18)

(for the case n = 1 we use P (0, x) = 1).

APPENDIX E: MONTE CARLO COMPUTATION
OF THE SPECTRA.

Besides the analytic expressions (52) and (B4), the en-
ergy spectra dδts/dE and (dδts/dE)jet can be computed
using the Monte Carlo technique by stochastically simu-
lating the generation of secondary electrons and appro-
priately binning their energies. The main benefit of this
Monte Carlo technique is to validate the computational
algorithm for the secondary emission process described in
Sec. V, which is used in our main ECE simulation code.

The technique consists in obtaining a secondary energy
histogram in E. For this purpose we fix all model pa-
rameters and then use the algorithm in Sec. V for a large
number N0 of incident electrons, all of which have the
same incident energy E0 and incident angle θ0. We de-
fine the histogram by dividing the energy interval [0, E0]
into a certain number B of bins of size ∆E = E0/B.
Let Ni be the number of events in bin i, where the index

i = 1, 2, · · · , B labels the bin corresponding to the energy
interval [(i− 1)∆E, i∆E].

To compute dδts/dE we generate secondary electrons
for each incident (primary) electron according to the al-
gorithm in Sec. V, except that we add the following in-
structions 6 immediately following step 7:

7a. For the kth secondary electron, compute the bin
number i corresponding to its energy Ek.

7b. Increment Ni by 1.

For the computation of (dδts/dE)jet the appropriate
steps replacing (7a) and (7b) are:

7a. Compute the total secondary energy Etot = E1 +
E2 + · · ·+ En.

7b. Compute the bin number i corresponding to Etot.

7c. Increment Ni by n.

The histograms are then normalized by multiplying
Ni by δ(E0)/(Ns∆E), where Ns is the total number of
secondaries generated by the N0 primary electrons, and
δ(E0) is the SEY.

The Monte Carlo calculation also yields in a straight-
forward manner the probabilities Pn by simply tallying
the events with n emitted electrons, then dividing by the
total number N0 of incident electrons. This computation
can be used as a check of the validity of the technique,
since the Pn’s thus obtained must agree, within statis-
tical errors, with the input values given by Eqs. (35) or
(43), depending on the model chosen.

The above procedures (except for the trivial normaliza-
tion of the histograms) are implemented by the following
section of FORTRAN code:

do 1 np=1,nprim
call secelec(E0,theta0,nsec,energ,ang)
iPn_hist(nsec)=iPn_hist(nsec)+1
if(nsec==0) go to 1
nstot=nstot+nsec
Etot=0
do ns=1,nsec
En=energ(ns)
Etot=Etot+En
ien=En/desec+1
idde_hist(ien)=idde_hist(ien)+1

end do
ien=Etot/desec+1
iddejet_hist(ien)=iddejet_hist(ien)+nsec

1 continue

6 For the purposes of obtaining the energy spectra, steps 8 and 9
are skipped.
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where iPn hist, idde hist and iddejet hist are the
histograms for Pn, dδ/dE, and (dδ/dE)jet, respectively,
nprim is the number N0 of primary electrons, desec is
the energy interval size ∆E, nstot is a counter that
tallies the total number Ns of secondary electrons, and
the rest of the variables are fairly obvious. The main
ingredient, of course, is the event generator subroutine
secelec(E0,theta0,nsec,energ,ang) that creates sec-
ondary electrons for a given incident electron. This sub-
routine embodies steps 1–7 of the algorithm described in
Sec. V. It takes as inputs the incident electron energy E0

(variable E0) and the incident angle θ0 (variable theta0),
in addition to all the parameters listed in Table I. The
outputs are: the number of secondary electrons gen-
erated n (variable nsec), their energies E1, E2, · · · ,
En contained in the one-dimensional array energ, and
their polar and azimuthal angles contained in the two-
dimensional array ang.

Figure 9 shows the two kinds of spectra, computed
both by the analytic and Monte Carlo techniques, for
a sample case in which δe = δr = 0 and δ = δts =
1.877. Figure 10 shows the result of the calculation of the
emission probabilities Pn for the same conditions for the
energy spectrum. The agreement between the analytic
and the Monte Carlo methods supports the validity of
the subroutine secelec.

APPENDIX F: ALTERNATIVE FITS FOR THE
TRUE SECONDARY YIELD.

Eq. (32) is qualitatively similar to a more conventional
form for the universal scaling function, namely [14]

D(x) = ax1−s
(
1− e−bxs

)
(F1)

where a, b and s are constrained by the conditions D(1) =
1 and D′(1) = 0, i.e.

a =
1

1− e−b
, s =

1− e−b

1− (1 + b)e−b
, (F2)

which leaves only one independent parameter. Eq. (F1)
is obtained from the semi-empirical theory of secondary
emission [17, Ch. 6], [23, 34]. In this framework the true-
secondary yield is

δts ∝
R∫

0

dz f(z)
(
−dE

dz

)
(F3)

where dE/dz is the energy loss rate of the primary elec-
tron in the material, f(z) is the probability that a sec-
ondary electron created at depth z will make it to the
surface, and R is the range of the primary electron. The
effects from scattering of the primary electron in the ma-
terial are taken into account [14] by replacing dE/dz by
its effective value, −E0/R. Assuming f(z) = exp(−z/λ),

0.03

0.02

0.01

0.00

d
δ/
d
E
 
(
e
V
-
1
)

300250200150100500

Secondary electron energy (eV)

E0=300 eV, δ=1.877
true secondaries only 

 sp. (analytic)
 sp. (Monte Carlo)
 jet sp. (analytic)
 jet sp. (Monte Carlo)

FIG. 9: (Color) The two kinds of secondary energy spectra
for normal-incident electrons of energy E0 = 300 eV for the
parameter choices pn = 3, εn = 20 eV, δe = δr = 0 and
δts = δ = 1.877 assuming a Poisson distribution for Pn,ts

truncated at n = 10. The two curves vanish identically be-
yond E0, and are normalized so that the area under either of
them in 0 ≤ E ≤ E0 equals δ. The analytic curves are given
by Eqs. (52) and (B4), respectively. For the Monte Carlo
method we used N0 = 106 incident electrons and we divided
the energy interval [0, E0] into 103 bins of width ∆E = 0.3
eV. The values chosen for εn and pn are not meant to be re-
alistic; we use them here for illustration purposes only. Note
that dδ/dE peaks at E ' (p− 1)ε = 40 eV in agreement with
the discussion in Sec. IV, while (dδ/dE)jet is much broader,
as each of its components peaks at E = (np−1)ε, as discussed
in App. B.

where λ is the absorption length of a secondary electron
in the material, Eq. (F3) yields

δts ∝ E0

R

(
1− e−R/λ

)
. (F4)

Furthermore, assuming the validity of the energy-range
relation R ∝ Es

0 , (F4) yields (F1) upon trading off all pro-
portionality constants for Ê and δ̂, and imposing the con-
ditions D(1) = 1 and D′(1) = 0. The parameter s may
be obtained from measurements of the range-energy re-
lation for Al2O3, yielding s = 1.35 [15], whence a = 1.11
and b = 2.28. Another example of an alternative form for
D(x) that differs from (F1) but satisfies, nevertheless, the
range-energy relation, is found in Ref. 26. Fig. 11 shows
Eqs. (32) and (F1) plotted for s = 1.35.

It is straightforward to verify that our Eq. (32) can
be obtained in the same way by simply assuming f(z) =
(1 + z/2λ)−2 instead of exp(−z/λ). Note that both (32)
and (F1) have the same power-law behaviors at small and
large E0, namely

D(x) ∝
{

x as x → 0
x1−s as x →∞ (F5)

on account of the validity of the energy-range relation.
Since (32) provides a better fit to the SEY data than
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FIG. 10: (Color) The probability for emitting n electrons,
Pn, for the same conditions as in Fig. 9. The “Poisson” curve
is Eq. (37), extended analytically to continuous values of n.
The analytic results were obtained by numerically integrating
dδts/dE, given by Eq. (52), over E in the range 0 ≤ E ≤ E0

separately for each value of n. The Monte Carlo results were
obtained concurrently with the energy spectra shown in Fig. 9,
according to the computer algorithm described in App. E.
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FIG. 11: (Color) The true secondary emission yield scaling
functions, Eqs. (32) and (F1), for s = 1.35.

(F1) for the samples we have analyzed, it would appear
that the secondary electron escape probability function
(1 + z/2λ)−2 describes the escape process better than
exp(−z/λ). However, due to the limited energy range of
our fits, and the number of other fitting parameters, we
cannot draw this conclusion with certainty. Nevertheless,
such a possibility might be worthy of further investiga-
tion.

For materials with smooth surfaces, the incident-angle
dependence of δ̂ and Ê are often parameterized as

δ̂(θ0) =
δ̂(0)

(cos θ0)α1
, Ê(θ0) =

Ê(0)
(cos θ0)α2

(F6)

with α1 and α2 are O(1) [16, 26]. The samples we have
analyzed [21, 35], however, correspond to amorphous ma-
terials with rough surfaces and we have found that the
above power laws give a much too strong dependence on
θ0. As described in Secs. III B, III C and III D, we have
found that polynomial fits of the form 1+a1(1−cosa2θ0)
represent the data quite well for the range 0 ≤ θ0 . 84◦,
particularly for δ̂(θ0)/δ̂(0). However, a good alternative
fit for this ratio, which is more conventional than the
polynomial fit, is given by [17, Sec. 7.3]

δ̂(θ0) = δ̂(0) exp[γ(1− cos θ0)] . (F7)

Actual fits to the data yield values for γ in the range
∼ 0.2 − 0.7 depending on the type of material, its state
of conditioning, and the incident energy E0 [21]. For
the values in Table I, with (a1, a2) representing any of
the pairs (e1, e2), (r1, r2), (t1, t2) or (t3, t4), the following
substitutions work adequately:

(a1, a2) = (0.26, 2.0) → γ = 0.33 , (F8a)
(a1, a2) = (0.66, 0.8) → γ = 0.49 , (F8b)
(a1, a2) = (0.70, 1.0) → γ = 0.56 . (F8c)
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