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Abstract

In this dissertation we present cosmic microwave background likelihood tools for the

Planck and BICEP3 data, and constrain extensions to the Big Bang ΛCDM cosmo-

logical model using Planck in combination with current and upcoming ground-based

experiments. We begin with an overview of the current Standard Model of cosmol-

ogy and the CMB. We present CosMOPED, a compressed likelihood code for Planck

data at ℓ ≥ 30, which uses the Massively Optimized Parameter Estimation and Data

compression technique (MOPED) method to reduce the dimensions of the data space

to one number per cosmological parameter of interest. We then construct a binned

likelihood for the Planck low-ℓ temperature and E-mode polarization, called Planck-

low-py. We fit the bandpowers in two temperature bins and seven polarization bins

with shifted log-normal distributions, and use these bins in a differentiable Python

likelihood to facilitate ease of use of the Planck 2018 large-scale data. The ΛCDM

parameters recovered with CosMOPED and Planck-low-py are consistent with the

uncompressed Planck likelihoods, and a 7-parameter extended model is similarly well-

constrained. We also examine some of the foreground modeling choices made in the

BICEP/Keck primordial gravitational wave analysis (BK18) and estimate foreground-

marginalized CMB B-mode bandpower amplitudes in the BICEP3 sky region. We use

these bandpowers to construct a marginalized likelihood with no nuisance parameters.

The tensor-to-scalar ratio inferred from this BK18-lite likelihood matches that using

the public BK18 likelihood. Additionally, we use data from the Atacama Cosmology

Telescope, the South Pole Telescope, and the Planck satellite to constrain different

types of initial conditions. First we explore an adiabatic model with a broken power

law instead of a single power law, and then we look at a model with both adiabatic

and isocurvature fluctuations, allowing the isocurvature to vary independently in five

bins. Finally, we forecast the upcoming Simons Observatory’s ability to improve on

our binned isocurvature constraints at small scales.
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Chapter 1

Introduction

At least I know I’m bewildered about the really fundamental

and important facts of the universe.

Terry Pratchett Equal Rites

Cosmology is “the science or theory of the universe as an ordered whole” (Simpson

& Weiner, 1989). In this chapter I will describe the current widely accepted model of

the universe, the ΛCDMmodel, discuss some of the ways that we can study cosmology,

including with the cosmic microwave background (CMB), and give an update on the

state of CMB observations.

1.1 Cosmology

1.1.1 ΛCDM model

Copernicus proposed in the sixteenth century that Earth orbits the Sun, suggesting

that the universe does not revolve around humans and our planet. The Copernican

principle as applied to cosmology states that there are no special observers: the uni-

verse as observed from Earth is a fair sample of the universe as a whole, the same

scientific laws apply everywhere, and the conclusions reached by studying the uni-
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verse from Earth would be consistent if repeated at any location in the universe. In

other words the universe is isotropic and homogeneous on large scales. The observed

near-isotropy of the cosmic microwave background (Smoot et al., 1992) and the ho-

mogeneity of galaxy surveys on large scales (Scaramella et al., 1991; Davis, 1997;

Martinez et al., 1998) provide observational support for the cosmological principle.

Another key foundation to our understanding of the universe is Einstein’s general

theory of relativity, which relates the energy and momentum of matter and radiation

to the geometry of spacetime (Einstein, 1915). This relationship is described by the

Einstein field equations:

Gµν + Λgµν =
8πG

c4
Tµν . (1.1)

The geometry of spacetime is encapsulated by the Einstein tensor Gµν , which depends

on the spacetime metric gµν . Λ is a cosmological constant which was introduced by

Einstein to produce a static universe (Einstein, 1917), but is now understood as a

vacuum energy that causes the accelerated expansion of the universe. Tµν is the

stress-energy tensor, which is taken to be that of a perfect isotropic fluid with energy

density ρ and pressure p.

Measurements in general relativity use the metric tensor gµν to transform from

time and space coordinates to the spacetime interval ds2 = gµνdx
µdxν , where dx0 =

cdt is the time coordinate and dxi, i ∈ {1, 2, 3} are the three spatial coordinates.

The Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric for a homogeneous and

isotropic universe is given by (Friedmann, 1922; Lemâıtre, 1931; Robertson, 1935;

Walker, 1937)

ds2 = −c2dt2 + a2(t)
[
dχ2 + f 2

K(χ)(dθ
2 + sin2 θdϕ2)

]
, (1.2)

where χ are spatial comoving coordinates (which are fixed for a comoving observer

who sees the universe as isotropic and homogeneous at any given time t), a(t) is the
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scale factor relating the comoving separation between two observers to the physical

distance between them, c is the speed of light, and fK(χ) depends on the curvature

of the universe,

fK(χ) =


K− 1

2 sin(K
1
2χ) K >0 (closed universe)

χ K = 0 (flat universe)

(−K)−
1
2 sinh((−K)

1
2χ) K <0 (open universe)

(1.3)

Applying Einstein’s field equations to the FLRW metric allows us to study the

evolution of the scale factor a(t) and therefore the expansion history of the universe.

Each component x of the universe is described by an equation of state relating the

pressure of that component to its energy density: p = p(ρ) = wρc2. Radiation r

and relativistic matter have w = 1
3
, non-relativistic matter m has w = 0, and the

cosmological constant Λ has w = −1. The energy density of each component can

be converted to a fraction of the critical density ρc required for the universe to be

spatially flat: Ωx(t) =
ρx(t)
ρc

. The Hubble parameter H(t) ≡ ȧ
a
, then evolves as

H2(t)

H2
0

= Ωr(t) + Ωm(t) + ΩK(t) + ΩΛ , (1.4)

where the energy density of each component evolves according to its equation of state

and the Einstein field equations as: Ωr(t) =
Ωr,0

a4(t)
for relativistic matter, Ωm(t) =

Ωm,0

a3(t)

for dust, ΩK =
ΩK,0

a2(t)
for curvature and the energy density associated with the cosmo-

logical constant ΩΛ is, as the name suggests, constant. The radiation energy density

decays the fastest because the wavelength of light is stretched with the expansion of

the universe in addition to the number density reducing as the volume of the universe

increases with expansion as n ∝ a−3. Because the energy density of the different com-

ponents evolves differently with time, the universe was radiation dominated at early

times, then matter dominated, and now dark energy is the dominant component.
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The curvature of the universe can be constrained by studying the observed angular

scale of baryon acoustic oscillations, which imprint a physical scale on the cosmic

microwave background power spectrum and galaxy clustering. CMB data and baryon

acoustic oscillation measurements both prefer a K=0 spatially flat universe (Spergel

et al., 2003; Planck Collaboration et al., 2020c; Alam et al., 2021).

Observations of distant galaxies show that they are receding from us, with more

distant galaxies retreating faster, i.e., the universe is expanding. This was predicted

by Lemâıtre (1927) and observed by Hubble (1929) using Cepheid variable stars to

calculate distances. In a matter or radiation dominated universe this expansion would

be decelerating with time. However in a universe dominated by the cosmological con-

stant the expansion is exponentially increasing, with a(t) ∝ eHt. Type Ia supernovae

can be used as ‘standard candles’ to compare their observed redshifts to the distances

inferred by their standardized luminosities. Riess et al. (1998) and Perlmutter et al.

(1999) showed that the expansion of the universe is accelerating, in a way that is

consistent with a cosmological constant dominating the current expansion of the uni-

verse. This cosmological constant is interpreted as being dark energy, i.e. an energy

associated with the vacuum whose density remains constant even as the universe

expands.

Zwicky (1933) studied velocity dispersion of galaxies in the Coma cluster and

found that there was more mass present than could be accounted for by normal

‘baryonic’ matter such as stars, gas and dust. The presence of this dark matter com-

ponent explains the observed shapes of galaxies (Ostriker & Peebles, 1973), rotation

curves of galaxies (Rubin & Ford, 1970), gravitational lensing measurements (Clowe

et al., 2006), and constraints on the total and baryonic matter density from the CMB

(Spergel et al., 2003). This mysterious component of the universe interacts gravita-

tionally, but does not seem to emit or absorb radiation, leading to the term ‘dark

matter’. Most of the mass in the universe is therefore in the form of dark matter.

4



The components of the ΛCDM model of the universe include dark energy in the

form of a cosmological constant (Λ), cold dark matter (CDM) which is ‘cold’ because it

is non-relativistic, and baryons. Radiation and three light neutrino species dominated

the total energy density early on but the radiation component is very small now as

it falls off quickly with expansion. The expansion rate of the universe in the ΛCDM

model, shown in Equation 1.4, is determined by general relativity in a homogeneous

and isotropic universe.

1.1.2 Perturbations to the smooth background

Although the universe is homogeneous on very large scales, galaxy redshift surveys

show that it is irregular and clumpy on the scales of galaxy clusters and below (Davis

et al., 1982). The structures that we see today developed from very small density

fluctuations at early times, which grew through gravitational collapse (Peebles, 1982;

Peebles & Yu, 1970). Overdense regions of dark matter gravitationally attracted more

dark matter while the universe was so young and hot that baryons were still coupled

to photons. After recombination the baryons were free to fall into the dark matter

overdensities, and eventually they formed stars and galaxies. With time this grew

into the cosmic web of dark matter halos and filaments populated by galaxies that

we see today.

Suppose we have some perturbations around a smooth background (the next sec-

tion will explore theories about how these perturbations came about). The metric

tensor and the stress-energy tensor can be broken down into an unperturbed back-

ground value (denoted by a bar) and a small perturbation (denoted by δ):

gµν = ḡµν + δgµν (1.5)

T µ
ν = T̄ µ

ν + δT µ
ν . (1.6)
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The metric perturbations propagate into perturbations to the Einstein tensor

Gµ
ν = Ḡµ

ν + δGµ
ν . (1.7)

At early times the perturbations and their derivatives are small so we can neglect any

nonlinear terms. To study the evolution of these perturbations, we use a combination

of the Einstein, Boltzmann and fluid equations. The Einstein field equations capture

how the stress-energy perturbations and the geometric spacetime perturbations affect

one another, and the fluid and Boltzmann equations describe the evolution of the non-

relativistic (baryons and cold dark matter) and relativistic (photons and neutrinos)

components respectively in phase space.

The perturbations can be divided into scalar, vector and tensor modes, based on

how they transform under rotations (Ma & Bertschinger, 1995). These scalar, vector

and tensor modes evolve independently in linear perturbation theory, so we can exam-

ine them separately. Scalar perturbations are important for structure formation, and

tensor perturbations come from gravitational waves and are relevant for constraining

early universe models. Vector perturbations decay with time so we ignore them.

The stress-energy tensor perturbations include density, pressure and velocity per-

turbations that retain the form of a perfect fluid for the stress-energy tensor, and

anisotropic stress that stop it from being a perfect fluid. The metric and the stress-

energy tensor each have four scalar, four vector, and two tensor degrees of freedom.

Some of these degrees of freedom correspond to a choice of coordinates, or gauge.

Bardeen (1980) tackled this by constructing quantities that are invariant under gauge

transformations called the Bardeen potentials Φ and Ψ. The source of gauge freedom

is that for a given coordinate system in the unperturbed background spacetime, there

are multiple possible coordinate systems in the perturbed spacetime. For example

the synchronous gauge is a choice of coordinates in which freely falling observers have
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their coordinates remain constant. However because there are different ways to assign

these coordinates some gauge freedom remains which can lead to terms in the density

perturbations that change depending on this choice (Ma & Bertschinger, 1995). The

conformal Newtonian gauge (Mukhanov et al., 1992) is a useful choice for studying

scalar perturbations, although it can be generalized to incorporate vector and tensor

perturbations. In the conformal Newtonian gauge there are two scalar potentials ϕ

and ψ that describe the perturbations, appearing in the line element for a flat universe

as follows

ds2 = a2(η)[−(1 + 2ψ)dη2 + (1− 2ϕ)δijdx
idxj] , (1.8)

where η denotes conformal time. The metric gµν is diagonal in the conformal New-

tonian gauge, and the potentials ϕ and ψ correspond to the gauge-invariant Bardeen

potentials so there are no spurious gauge dependent modes as in the synchronous

gauge. These potentials are also interpretable: in the Newtonian limit ψ is the gravi-

tational potential, and ϕ is the perturbation to the spatial curvature (Dodelson, 2003).

If there is no anisotropic stress in the stress-energy perturbation (i.e., the perturbed

components are still a perfect fluid) then the two potentials are equal, ψ = ϕ, and

the Newtonian potential is the only scalar perturbation.

Evolution of scalar perturbations and structure formation

Consider a universe containing baryons, cold dark matter, photons, massless neutrinos

and dark energy. The total energy density is

ρ = ρb + ρc + ργ + ρν + ρDE . (1.9)

The pressures are given by pb = 0 = pc, pγ = ργ
3
, pν = ρν

3
and pDE = −ρDE. We

assume no perturbations in the dark energy. Different Fourier modes k⃗ of linear per-

turbations evolve independently, so we can treat each mode separately and work with

7



the density contrast δk⃗ =
δρ

k⃗

ρ̄
and velocity vk⃗ of a specific wavenumber k, dropping

the subscript k⃗ for convenience.

The cold dark matter perturbations only interact through gravity, and their evo-

lution can be described by the conservation equations of a pressureless perfect fluid

δ′c = −kvc + 3ϕ′ (1.10)

v′c = −Hvc + kϕ, (1.11)

where H ≡ a′

a
is the conformal Hubble parameter and x′ ≡ dx

dη
denotes a derivative

with respect to conformal time, while ẋ ≡ dx
dt

denotes a derivative with respect to

coordinate time. The conformal Hubble parameter is related to the Hubble parameter

H ≡ ȧ
a
byH = aH. The conformal time η is related to the coordinate time by dη = dt

a
.

The photons and baryons are coupled to one another by Thomson scattering:

δ′b = −kvb + 3Φ′ + (collision term) (1.12)

v′b = −Hvb + kΦ + collision term (1.13)

δ′γ = −4

3
kvγ + 4Φ′ + (collision term) (1.14)

v′γ =
1

4
kδγ + kΦ + collision term. (1.15)

The collision terms in brackets can also be neglected, as the only collision effect

that turns out to be important is momentum transfer between photons and baryons,

captured in the collision terms in the velocity equations (Ma & Bertschinger, 1995).

We can neglect interactions between the neutrinos and other components, such that

δ′ν = −4

3
kvγ + 4Φ′ (1.16)

v′ν =
1

4
kδγ + kΦ. (1.17)
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The conservation equations of fluid dynamics are sufficient to describe the evolution

of dark matter (collisionless, Equations (1.10-1.11)) and baryons (collisional, Equa-

tions (1.12-1.13)). The Boltzmann equations are needed to capture the phase-space

behaviour of the relativistic photons and neutrinos (Equations (1.14-1.17)). In addi-

tion to these equations for the evolution of the density contrast and velocity of each

component, we also use the Einstein Field Equations.

For cold dark matter, the density contrast δc remains constant on superhorizon

scales k ≪ H. As the comoving Hubble scale H−1 increases, modes enter the horizon

and begin to grow, at first slowly in the radiation dominated era as δNc ∝ ln(a) and

then more rapidly when matter begins to dominate, as δNc ∝ a. The superscript N

specifies the conformal Newtonian gauge.

Matter power spectrum

The amplitude of perturbations on different spatial scales can be studied in harmonic

space. The Fourier transform of the matter density contrast δm = δρm
ρ̄m

gives the

amplitude as a function of wavevector k⃗:

δm(k⃗) =

∫
d3x⃗e−ik⃗·x⃗δm(x⃗) . (1.18)

The power at this wavenumber is obtained by squaring the amplitude and taking an

expectation value:

⟨δm(k⃗)δ∗m(k⃗′)⟩ ≡ (2π)3δ3D(k⃗ − k⃗′)Pm(k) , (1.19)

The matter power spectrum Pm(k) depends only on the amplitude, not the direction

of wavevector k⃗. δ3D is the three dimensional Dirac delta function. We can also take
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the power spectrum of the gravitational potential

⟨ϕ(k⃗)ϕ∗(k⃗′)⟩ ≡ (2π)3δ3D(k⃗ − k⃗′)Pϕ(k) . (1.20)

δm and ϕ are related by the Poisson equation

k2ϕ(k) = 4πGρ̄ma
2δm(k). (1.21)

The primordial power spectrum is assumed to be a power law (and this is later

shown to be a good fit to the data).

P initial
m (k) = Amk

ns , (1.22)

where ns = 1 for a scale-invariant Harrison-Zel’dovich-Peebles power spectrum with

equal power in equal log bins in k (Harrison, 1970; Sunyaev & Zeldovich, 1970; Peebles

& Yu, 1970). From the Poisson equation,

k3P initial
ϕ (k) ∝ kns−1, (1.23)

so k3Pϕ(k) is constant for a scale-invariant potential power spectrum (Dodelson,

2003).

In this section we focus on adiabatic initial conditions, which are the dominant

fluctuations in the early universe. Adiabatic perturbations have cold dark matter,

baryon, radiation, and neutrino overdensities proportional to one another, so that the

ratios between the different energy densities is the same everywhere in space. With

adiabatic initial conditions, an overdensity in photons has a corresponding overdensity

in dark matter and the other components. Isocurvature perturbations, in which the
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fluctuations in two different components cancel one another out instead of tracking

one another, are discussed in more detail in later chapters.

We can study the evolution of these initial perturbations by considering how the

amplitude of each mode of the potential ϕ(k) is affected by when their wavelength

entered the horizon (the transfer function), and how the overdensities grow with time

as matter falls into the potential wells (the growth function). On superhorizon scales

(where the wavelength of the Fourier mode is larger than the Hubble scale), different

regions are not in causal contact and the potential remains constant, both during

radiation and matter domination, although it drops by 10% during the transition

through matter-radiation equality. The comoving Hubble scale grows with time so

modes that are initially outside the horizon enter the horizon. On subhorizon scales

the potential oscillates from the interplay between radiation pressure and gravity, and

decays because the universe is expanding. The transfer function therefore drops off

for small-scale modes (large k) that enter the horizon earlier and scales approximately

as T (k) ∝ 1
k2

for modes that enter during radiation domination (k ≫ keq), neglecting

a log k factor in the transfer function to show approximate scaling for illustrative

purposes. The transfer function is constant for large-scale modes that enter the

horizon well after matter-radiation equality (k ≪ keq) as these modes do not decay.

Applying this transfer function to a scale-invariant primordial power spectrum Pm ∝

k gives Pm ∝ k for k ≪ keq where the transfer function is constant, and Pm ∝ 1
k3

for k ≪ keq where the transfer function drops off at small scales. This scaling of

the matter power spectrum on different scales can be seen in Figure 1.1, with the

turnover at k ≈ keq.

After the shape of the power spectrum is determined using the transfer func-

tion, the power spectrum is evolved through time using the scale-independent growth

function D. A change to the growth function would shift the amplitude of the power

spectrum in Figure 1.1 up or down but keeps its shape the same. During matter dom-
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ination, the matter fluctuations grow as δm(a) ∝ a, and so in a matter-dominated

universe D(a) ∝ a and the power spectrum grows with time as P (k, t) ∝ a2(t).

Figure 1.1: The present-day matter power spectrum P (k). The power spectrum
turns over at scales corresponding to the horizon size at matter-radiation equality.
During the radiation dominated era modes that entered the horizon would decay
as the universe expanded, which is why the linear power spectrum, shown as the
solid black curve, falls of at large k (small scales). Modes that were on superhorizon
scales until after matter-radiation equality are preserved, in this case as a power law
at small k. The wiggles in the power spectrum just past the peak correspond to
baryon acoustic oscillations. On small scales non-linear contributions begin to be
significant as δρ/ρ̄ becomes larger, and a more complicated non-linear treatment is
needed. The nonlinear power spectrum is shown as the dotted blue curve. These
curves were computed using CLASS, the Cosmic Linear Anisotropy Solving System
(Blas et al., 2011a), with the halofit approximation used to calculate the non-linear
power spectrum (Smith et al., 2003; Bird et al., 2012)

Evolving the perturbations from an initially scale invariant power spectrum using

the transfer function to capture the scale-dependence and the growth function to

determine the amplitude gives the linear matter power spectrum shown in Figure 1.1.

A nonlinear treatment must be used to obtain accurate results on small scales at late

times, when gravitational collapse has grown the fluctuations so that δ is no longer

small enough to be treated linearly.
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Tensor perturbations

Tensor perturbations evolve independently of scalar perturbations and can therefore

be treated separately. Tensor perturbations affect only the spatial part of the metric

δgµν=



0 0 0 0

0 a2h+ a2h× 0

0 a2h× −a2h+ 0

0 0 0 0


, (1.24)

for a choice of axes in which the perturbations occur in the x and y directions and the

wavevector points in the z direction. The components of the tensor perturbation h+

and h× obey a wave equation with a damping term that depends on the expansion

of the universe (Dodelson, 2003). The solutions to this equation are gravitational

waves that begin to decay when they enter the horizon. Because of this damping,

only the large-scale tensor perturbations persist for long enough to leave an imprint

in the cosmic microwave background. Early universe models that predict a significant

primordial gravitational wave amplitude can be tested observationally.

1.1.3 The early universe

If we turn back the clock on an expanding universe with growing scale factor a(t),

then at early times a was very small, and if a keeps shrinking as we go back further

in time then we reach a singularity, a = 0. This initial singularity is known as the

Big Bang.

Let us take the ΛCDM universe described earlier, evolving it forward from t = 0

through a period of radiation domination, through matter domination, to recombina-

tion and the free-streaming of CMB photons at t = 380000. The particle horizon at

that time, or the furthest distance light could have traveled since the t = 0, would be
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small enough so that regions of the CMB that we observe to be very close to isotropic

to one part in 105 (Smoot et al., 1992) would not have been in causal contact at

last scattering. Regions that had no way of communicating with one another would

not have had time to come to the same temperature. This is known as the horizon

problem (Misner, 1969).

Another mystery that we have not addressed yet is the source of the primor-

dial perturbations that seed the growth of large scale structure. A model of the

early universe must generate these perturbations, and they must look like the per-

turbations we observe: dominated by scalar, adiabatic Gaussian fluctuations with an

approximately scale-invariant power law.

Thirdly, we have the flatness problem: why is the universe observed to be so

close to flat today? Any deviation from flatness would grow with time, and the current

constraints mean that the universe had to be much closer to the exact critical density

in the past to still be so close to flat now. This presents a fine tuning problem: the

universe has to be made very close to flat at early times with no apparent mechanism

for causing this flatness.

Inflation

An early period of rapid expansion called inflation was proposed to solve these prob-

lems (Guth, 1981; Guth & Weinberg, 1983). Inflation solves the horizon problem

because at the beginning of inflation the entire observable universe was much smaller

and causally connected. Inflation also predicts quantum fluctuations that can source

the perturbations observed in the CMB. Some of these fluctuations are stretched to

super-horizon scales during inflation, so both sub-horizon and super-horizon pertur-

bations are generated. As the universe is stretched, it is also made more flat.

There are a range of theories of inflation, but the simplest one involves a single

scalar field, the inflaton, that rolls slowly down a shallow potential (with kinetic energy
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smaller than potential energy, i.e. the inflaton’s potential energy dominates the energy

density of the universe at early times) (Linde, 1982; Albrecht & Steinhardt, 1982).

Inflation generates both scalar and tensor perturbations from quantum fluctuations.

The scalar perturbations seed the large scale structure we observe today. Slow-roll

single-field inflation predicts adiabatic, Gaussian, close to scale invariant primordial

scalar perturbations. The tensor perturbations to the metric are gravitational waves

which produce a specific signature in the cosmic microwave background polarization.

Other early universe models

Questions of fine-tuning problems within inflation, as well as concerns about the lack

of predictive ability of a multiverse scenario, prompted alternate models of the early

universe to solve the horizon, flatness and inhomogeneity problems, such as cyclic

models with periods of contraction and expansion (Steinhardt & Turok, 2002). One

such example is a bouncing cosmology (Ijjas & Steinhardt, 2018), with a period of

contraction followed by a classical bounce (the universe does not get small enough

to require quantum gravity), leading to expansion. This model does not predict

primordial gravitational waves, and may therefore be observationally distinguished

from inflationary models.

1.1.4 Cosmic Microwave Background

At early times the universe was hot and dense. Photons were energetic enough to ion-

ize hydrogen and helium, and the photons and baryons interacted with one another

via Thomson scattering between photons and electrons, and Coulomb scattering be-

tween electrons and protons, creating a coupled photon-baryon fluid. Photons had a

short mean free path between interactions.

As the universe expanded and cooled, protons and electrons could form neutral

atoms and there were fewer free electrons to scatter the photons. The mean free
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path of photons became long and the ‘primordial fireball radiation’ was released to

free-stream through the universe (Dicke et al., 1965). This radiation cooled further

with the expansion of the universe and is observed at the present time as the cosmic

microwave background (Penzias & Wilson, 1965). Today the CMB has a blackbody

spectrum with temperature T = 2.725 K (Mather et al., 1992).

The amplitude of the CMB temperature anisotropy in different directions on the

sky can be decomposed into the basis of spherical harmonics

δT (θ, ϕ)

T̄
=
T (θ, ϕ)− T̄

T̄
=

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ). (1.25)

The distribution of the aℓm’s for each ℓ > 0 has zero mean and variance Cℓ:

⟨aℓm⟩ = 0 (ℓ > 0) (1.26)

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ. (1.27)

To make a perfect measurement of the variance of each mode we could imagine a

scenario where we could study an ensemble of many universes with the same cosmol-

ogy as ours but different realizations of the initial fluctuations (different draws from

the same distribution). Averaging over this ensemble of universes would allow us to

measure the variance of each aℓm as precisely as we wanted to.

In practice, we only have one universe to study but we can use the fact that for

each ℓ we can measure 2ℓ+ 1 spherical harmonic amplitudes aℓm (for m = −ℓ...0..ℓ),

each of which is drawn from a distribution with the same variance. The variance Cℓ

of these modes gives us an estimate of the power of each ℓ mode. Thus instead of

taking an ensemble average over different realizations of the universe, we average over
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different values of m for each ℓ:

Cℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

aℓma
∗
ℓm (1.28)

For large values of ℓ we have many values ofm, and therefore good statistical errors on

our measurement of the variance Cℓ. However for small values of ℓ we are limited by

the number of modes that we can measure. The uncertainty caused by averaging over

a finite number of modes is called cosmic variance. It is largest for small values of ℓ and

is the limiting factor for CMB experiments on large angular scales. The uncertainty

due to cosmic variance scales inversely with the square root of the number of samples

for each ℓ:

∆Cℓ =

√
2

2ℓ+ 1
Cℓ. (1.29)

The variance Cℓ as a function of angular wavenumber ℓ is called the angular power

spectrum. The two dimensional angular power spectrum can be obtained from the

three dimensional power spectrum using spherical Bessel functions to project onto

the plane of the sky

Cℓ =
2

π

∫ ∞

0

dk k2P (k)

∣∣∣∣θℓ(k)δ(k)

∣∣∣∣2 (1.30)

where the transfer function converting from P (k) to C(ℓ) depends on an integral

involving the source function S and the spherical Bessel function jℓ:

θℓ(k, η0) =

∫ η0

0

dηS(k, η)jℓ (k(η0 − η∗)) . (1.31)

The power at angular wavenumbers ℓ depends on the peak of the spherical Bessel

function jℓ (kd
∗
A), where d

∗
A is the comoving angular diameter distance to the surface of

last scattering. This function peaks at ℓ close to but slightly less than kd∗A (Dodelson,

2003).
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The power spectra of the CMB temperature and polarization are shown in Figure

1.2 for a ΛCDM model. For visualization purposes we usually plot ℓ(ℓ+ 1)Cℓ/2π, so

that a scale-invariant initial power spectrum would translate on large scales (where

there isn’t any interesting recombination physics happening) to a flat line in the

angular power spectrum.

Temperature power spectrum features

The CMB temperature power spectrum is shown in the black curve in Figure 1.2

(the top curve). The plotted power spectrum begins at the quadrupole ℓ = 2. The

amplitude of the monopole ℓ = 0 gives the average temperature of the CMB, which

is T = 2.725 ± 0.001 K (Mather et al., 1992). The dipole ℓ = 1 is a few milliKelvin

and is caused by a Doppler shift due to our motion with respect to the CMB, which

is usually subtracted.

The Sachs-Wolfe plateau at ℓ < 100 is caused by the gravitational redshift of CMB

photons climbing out of potential wells for perturbations at angular scales larger than

the horizon at recombination (Sachs & Wolfe, 1967a). Approximately scale-invariant

primordial perturbations make this section of the power spectrum flat in ℓ(ℓ+ 1)Cℓ.

The power spectrum then has a series of acoustic peaks, caused by oscillations in

the photon-baryon fluid before recombination. Gravity pulls the photons and baryons

into potential wells, and then pressure resists this infalling and pushes the fluid out-

wards. This happens at all scales, with different timescales of oscillation and the

modes that are at their extrema at recombination show up with more power as the

acoustic peaks. The first peak at ℓ ∼ 200 (corresponding to angular separations

of about a degree on the sky) comes from the modes that entered the horizon and

then had time to collapse to maximum compression at recombination. The second

peak corresponds to the mode that went through compression and was then caught

at maximum rarefaction at recombination. Baryons weight these oscillations with-
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Figure 1.2: The cosmic microwave background temperature (black) and E- and B-
mode polarization (blue and green) angular power spectra for the Planck best-fit
ΛCDM cosmological model (Planck Collaboration et al., 2020c). The solid curves
depict the gravitationally lensed spectra and the dashed curves show the unlensed
spectra. These spectra were computed using CLASS (Blas et al., 2011a).

out contributing to the pressure, making the compressions more significant than the

rarefactions. This enhances the amplitude of the odd numbered peaks over the even

peaks, hence the second peak is lower than the first and the third peak.

During the process of recombination, photons executed a random walk as they

scattered off the remaining free electrons. Therefore on small scales, hot and cold

spots were mixed together, washing out the CMB’s acoustic peaks. This Silk damping

causes the power spectrum to fall off at large ℓ (Silk, 1968).

Some secondary effects are imprinted on the CMB as the photons travel from

the last scattering surface to us. During reionization, when there are once more free

electrons present, some photons scatter out of our line of sight, suppressing the power

spectrum by a factor that depends on the optical depth to reionization τ . The CMB

photons are also gravitationally lensed by the matter that they pass. The effect of
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lensing is to slightly smooth the peaks of the CMB power spectrum and to shift power

to small scales in the damping tail (Lewis & Challinor, 2006). The unlensed power

spectra are shown as the dotted curves in Figure 1.2. Additionally, the thermal and

kinetic Sunyaev-Zeldovich (SZ) effects cause distortions to the CMB temperature in

the directions of galaxy clusters, arising from photons inverse Compton scattering

off hot electrons and moving electrons along the line of sight (Sunyaev & Zeldovich,

1972).

Polarization power spectrum features

Thomson scattering in the presence of a quadrupole anisotropy at last-scattering

creates an E-mode (curl-free) polarization pattern in the CMB. The E-mode power

spectrum is shown as the blue curve in Figure 1.2. The T and E fluctuations are

correlated because they are both caused by the scalar perturbations at last scattering,

so the TE power spectrum (not shown) is also useful in cosmology. The E-mode peaks

come from modes that are at their velocity extrema at recombination, so they are out

of phase with the temperature peaks which come from displacement extrema.

Gravitational lensing affects the E-mode power spectrum in a similar way to the

temperature power spectrum: spreading out the peaks and transferring power to

small scales. The unlensed E-mode power spectrum is shown in dotted blue in Figure

1.2. Lensing also converts some E-mode polarization to B-mode polarization. This is

the dominant contribution to the B-mode power spectrum at small scales, peaking at

ℓ ∼ 1000. The lensed B mode power spectrum is the solid green curve in Figure 1.2.

Tensor perturbations in the form of primordial gravitational waves give rise to

a primordial B-mode polarization signal; scalar perturbations do not generate pri-

mordial B-modes. This tensor signal has not been detected yet, although the lensed

B-modes have been measured, so we only have an upper limit on the magnitude of

the primordial tensor to scalar ratio r (Ade et al., 2021). During reionization, an
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additional large-scale polarization signal is generated, giving the reionization bump

at ℓ < 10 in the E-mode and B-mode power spectrum. The green dotted curve in

Figure 1.2 shows the unlensed B-mode power spectrum, with the reionization bump

at ℓ < 10 and the gravitational wave signal for a tensor to scalar ratio of r = 0.01.

The gravitational wave signal peaks at around ℓ = 100 and then falls off.

1.2 CMB analysis

1.2.1 Effect of cosmological parameters on the CMB power

spectrum

The physics of the CMB power spectrum depends on many parameters, which can

then be constrained using CMB observations.

ΛCDM model parameters

The following parameters are measured by CMB experiments in the standard ΛCDM

model of the universe, which requires just 6 parameters to describe it.

Scalar amplitude As: Changing the amplitude of the primordial fluctuations

scales the entire power spectrum without changing its shape or shifting it to different

scales. The amplitude of the temperature power spectrum is degenerate with the

optical depth to reionization τ . This degeneracy is broken in the polarization spectra.

Planck finds a best fit scalar amplitude of As = 2.1×10−9 (Planck Collaboration et al.,

2020c).

Scalar spectral index ns: The tilt of the power spectrum affects the tilt of the

CMB power spectrum and the relative power on small and large scales. Planck finds

the best-fit scalar spectral index to be close to scale-invariant (which corresponds to

ns = 1) but with a slight red-tilt: ns = 0.965 (Planck Collaboration et al., 2020c)
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Optical depth τ : Reionization lowers all of the acoustic peaks uniformly, and

in this way is degenerate with the amplitude As. However reionization also produces

polarization on large scales, so the low-ℓ E-mode power spectrum provides a powerful

constraint on the optical depth which in turn improves our ability to measure the

amplitude. Planck measures a best fit value of τ = 0.054 (Planck Collaboration

et al., 2020c).

Baryon density Ωbh
2 : An increase in the baryon density weights the oscil-

lations of the photon baryon fluid before recombination, making compressions of

the fluid more pronounced than rarefactions, and thus increasing the height of the

odd-numbered acoustic peaks relative to the even numbered peaks. Planck finds that

baryons make up about five percent of the total energy content of the universe (Planck

Collaboration et al., 2020c).

Dark matter density Ωch
2: Increasing the dark matter content while keeping

the radiation and baryon energy density fixed makes the effect of the potentials more

important in the acoustic oscillations relative to the radiation pressure, reducing the

amplitude of the oscillations and lowering the height of the acoustic peaks. The

baryon weighting also becomes relatively more important, enhancing the odd peaks

relative to the even peaks. Planck finds that cold dark matter makes up about 26% of

the total energy content of the universe, around five times more than baryons (Planck

Collaboration et al., 2020c).

Angular acoustic scale θ∗: The physical scale of the first acoustic peak cor-

responds to the sound horizon at recombination, so changing the sound speed before

recombination would shift the peaks to lower or higher values of ℓ. The observed

angular scale of this peak depends on the geometry of the universe and the distance

to the last scattering surface, so the peak’s position can be shifted by changing the

curvature or expansion history of the universe. Planck finds that this angular scale is
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θ∗ = 0.59650◦ to 0.03% precision, corresponding to a physical scale of r∗ = 144.4 Mpc

(Planck Collaboration et al., 2020c).

Derived ΛCDM parameters

These are parameters that can be calculated from the six basic parameters in the

ΛCDM model, and include the following:

Hubble constant H0: Changing the Hubble constant changes the expansion

history of the universe and therefore the distance to the last scattering surface and

the angular scale of the acoustic peaks. Thus a change in the Hubble constant would

shift the peaks to lower or higher ℓ. Planck measures the Hubble constant to be

H0 = 67.4 ± 0.5 km s−1 Mpc−1, which is lower than the value preferred by Type 1a

Supernovae observations of H0 = 73.04 ± 1.04 km s−1 Mpc−1 (Planck Collaboration

et al., 2020c; Riess et al., 2021).

Dark energy density ΩΛ: The dark energy content also affects the expansion

history and therefore the scale of the acoustic peaks. In flat ΛCDM the dark energy

fraction can be calculated from the cold dark matter and baryon densities, as the total

density is then the critical density for a flat universe. Planck finds that 68.5% of the

energy content in the universe is in dark energy, with the remaining 31.5% made up

of matter in the form of cold dark matter and baryons (Planck Collaboration et al.,

2020c).

Additional parameters

These parameters are extensions to the basic ΛCDM parameterization above. We

give a few examples below. The curvature and effective number of neutrino species

are fixed to their standard values when constraining ΛCDM parameters, but may be

allowed to vary in extensions to the standard model. The tensor to scalar ratio r has

not been detected by current experiments, so only upper limits exist.
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Curvature ΩK: the curvature of the universe affects how a fixed physical scale

is translated into an observed angular scale, so changing the curvature will change

the position of the first peak (corresponding to the physical sound horizon at recom-

bination) and shift it to a different angular wavenumber ℓ. The curvature is very well

constrained by the CMB, in combination with galaxy surveys, to be close to 0, so the

universe is taken to be flat in the standard model.

Effective number of neutrino species Neff : Increasing the effective number

of neutrino species reduces small scale power of the CMB oscillations because neu-

trinos do not provide pressure to contribute to acoustic oscillations like photons do.

Changing Neff also changes the phases of the acoustic oscillations and therefore shifts

the positions of the acoustic peaks (Abazajian et al., 2015).

Tensor to scalar ratio r: The tensor to scalar ratio measures the power in

gravitational waves in the early universe, and therefore increases in r will increase

the primordial amplitude of the CMB B-mode polarization. r = 0 corresponds to no

primordial B-modes.

1.2.2 Foregrounds

The observed temperature and polarization power spectra depend on the cosmological

parameters described above, but also on radiation from other galaxies, the imprints

of hot electrons in galaxy clusters, and the dust in our own Galaxy. This means that

CMB experiments can probe a range of interesting Galactic and extragalactic physics.

It also means that we need to account for and separate out these effects when studying

cosmological parameters. Many of these foregrounds have different frequency spectra

to the CMB, so having a range of frequency channels helps to constrain models of the

foregrounds in addition to the CMB.

The level of point sources (AGN and dusty galaxies) in the Planck temperature

foreground power at 143 GHz is shown in the left panel of Figure 1.3, with foreground

24



amplitudes from Planck Collaboration et al. (2020a). This level will be lower for

higher resolution experiments which can detect and mask out more point sources.

The best-fit B-mode polarization of Galactic dust at 150 GHz in the BICEP region

is shown in the right panel of Figure 1.3. This is a relatively clean patch of the sky

in terms of Galactic dust. The dust is modeled as a modified blackbody in frequency

with spectral index βd and temperature Td = 19.6K (Ade et al., 2021)

Iν ∝ νβdB(ν, Td), (1.32)

where B is the blackbody function. The dust is assumed to follow a power law as a

function of angular wavenumber ℓ with spectral index αd

ℓ(ℓ+ 1)Cℓ/2π ∝ ℓαd . (1.33)

These and other foregrounds are included as part of the model of the observed CMB,

and their parameters are marginalized over when studying cosmological constraints.

1.2.3 Bayes theorem and data analysis

When analyzing experimental data, we want to find the model that best describes

the data (model selection) and the parameter values for that model that give the

best fit to the data (parameter estimation). Bayes theorem for the probability of the

parameters θ of a model given the data D is

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (1.34)

This states that the posterior probability p(θ|D) of parameters θ given the data D

is proportional to the product of the likelihood of the data given the parameters

p(D|θ) and the prior probabilities of the parameters p(θ). The normalization factor is
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Figure 1.3: The angular power spectrum of dominant foregrounds in temperature
(left) and polarization (right). The left plot shows the CMB temperature power
spectrum (black solid curve) and the temperature power spectrum at 143 GHz of
residual undetected Poisson-distributed point sources that have not been masked in
the Planck data (blue dashed curve). The right plot shows the B-mode polarization
power spectrum for r=0.01 (black solid curve) and r=0 (black dot-dashed curve),
together with the level of B-mode polarization from galactic dust in the BICEP
region of the sky (blue dashed curve).

the evidence p(D) which can be computed from the likelihood and the prior p(D) =∫
p(D|θ)p(θ)dθ (MacKay, 2003).

The likelihood p(D|θ) is a measure of how well the observed data match the model

prediction with parameters θ. For CMB experiments we use Boltzmann codes to

generate the theoretical CMB power spectrum for different values of the parameters θ,

add modeled foregrounds, bin the theory power spectrum in the same way as the data

and then compare the theory power spectrum to the data for different values of the

parameters. At large ℓ the angular power spectrum likelihood can be approximated

as Gaussian by the central limit theorem, giving

L ∝ exp

(
−1

2
(Ctheory

ℓ − Cdata
ℓ )Q−1(Ctheory

ℓ − Cdata
ℓ )

)
, (1.35)

where the covariance matrix Q includes instrumental noise, cosmic variance and the

effects of mode coupling. On large scales (low-ℓ) the likelihood for each Cℓ is not
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Gaussian and a different likelihood is needed; this is discussed further in later chapters

of this dissertation.

The prior on each parameter captures what we know about the parameter value

before performing the experiment. If our data are very constraining then the poste-

rior distribution should not depend strongly on the prior. Uninformative priors are

often used for parameters we expect to constrain well, so that our constraints are

independent of previous experiments and can be compared. However for parameters

that are difficult to constrain with the data, priors from previous experiments can be

very helpful, especially in the case of parameter degeneracies. For example the optical

depth to reionization τ is constrained well by the Planck satellite’s measurements of

large-scale E-mode polarization, which is difficult to obtain from the ground. Ground

based CMB experiments can use the Planck constraints in their τ priors to prevent

the degeneracy between As and τ from broadening their constraints.

Once we have defined the likelihood and the priors we can study the distribu-

tion of the posterior probability of the parameters given the data, to find the best-fit

parameters and their errors. The evidence p(D) can be ignored at the parameter

estimation stage as it changes the overall normalization and not the shape of the dis-

tribution. One way to obtain samples from the posterior distribution is using Markov

Chain Monte Carlo methods such as the Metropolis-Hastings algorithm (MacKay,

2003), which executes a random walk around the parameter space, deciding whether

to move to the next proposed location based on the relative probability density of

the proposed and current locations. After an initial burn-in period, the Metropolis-

Hastings algorithm produces a chain of samples from the posterior distribution. These

samples can be used to study the probability distributions of the parameters and find

their best-fit values and errors.

Choosing which out of a selection of possible models best describes your data

involves a trade-off between how well the model matches your data and how many
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parameters the model has. A model with too many parameters can overfit the data,

so for each additional parameter you need a corresponding significant increase in

goodness-of-fit to justify including the extra parameter. Models can be compared

using the model evidence in the denominator of Bayes theorem p(D) which could

be written more precisely as p(D|M), or the probability of the observed data given

the model M. Because the integral for the evidence is computationally challenging

to compute, quantities such as the Bayesian Information Criterion (BIC) or Akaike

Information Criterion (AIC) can also be compared for competing models.The BIC is

given by

BIC = k lnn− 2 lnLmax, (1.36)

where k is the number of parameters in the model, n is the number of data points,

and Lmax is the value of the likelihood for the best-fit model parameters. Both the

BIC and AIC weigh the best-fit likelihood of a model against how many parameters

it has.

1.3 CMB experiments

Relic radiation from the primeval fireball was predicted by Dicke et al. (1965) and

first measured by Penzias & Wilson (1965) as a mysterious 3 Kelvin source of noise

in their radio telescope. Scientists predicted anisotropies in the CMB corresponding

to fluctuations that seeded the large-scale structure we see today. These anisotropies

were observed by the Cosmic Background Explorer (COBE) satellite as faint fluctua-

tions at the level of one part in 100 000 in the CMB temperature maps (Smoot et al.,

1992). COBE also measured the spectrum of the CMB at a range of frequencies,

finding it consistent with a blackbody with temperature T = 2.725K (Mather et al.,

1992).
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Figure 1.4: The CMB temperature power spectrum from the first year of data from
The Wilkinson Microwave Anisotropy Probe (WMAP) satellite from Spergel et al.
(2003). The points with errorbars are the binned power spectrum. The grey dots
show the unbinned points. The solid curve is the best fit theory spectrum.

The Wilkinson Microwave Anisotropy Probe (WMAP) satellite measured the first

few peaks of the CMB temperature power spectrum, shown in Figure 1.4, and used

this together with the temperature-polarization TE cross spectrum to constrain the

six-parameter ΛCDM model of the universe (Spergel et al., 2003).

The Planck era

The Planck satellite was the third-generation of space-based CMB experiments.

Planck scanned the sky in nine frequency bands (ranging from 30 GHz to 857 GHz)

from August 2009 to October 2013. The different frequency bands were used to

characterize and mitigate the foregrounds. Planck measures the first seven acoustic

peaks in the CMB temperature, and also measures the E-mode polarization power

spectrum and the TE cross spectrum (Planck Collaboration et al., 2020a). The

Planck temperature power spectrum is cosmic variance limited up to ℓ ≲ 1600. The
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Planck 2018 legacy data release is consistent with a 6 parameter ΛCDM model of the

universe, and provides tight constraints on those parameters (Planck Collaboration

et al., 2020c). Planck also strongly constrains extensions to the ΛCDM model,

preferring the basic six-parameter model to extensions with more parameters.

Planck was the first experiment to detect ns < 1 at high significance, measuring

n = 0.965±0.004, consistent with the close to scale-invariant but slightly red spectrum

predicted by inflation (Planck Collaboration et al., 2020a).

Because of the challenges of measuring very large angular scales from the ground,

the low-ℓ Planck data is important for combining with current and future ground-

based experiments.

Ground-based and balloon experiments

The next phase of CMB experiments tend to have one of two broad aims: either to

measure the small scale anisotropies in temperature and E-mode polarization with

high resolution and sensitivity over a sufficiently large area of the sky to obtain tight

cosmological constraints, or to measure the large scale B-mode polarization signal

with very low noise in a small patch of the sky (to enable deep observations) to go

after primordial gravitational waves.

The Atacama Cosmology Telescope (ACT) is a six meter telescope located in

the Atacama Desert in Chile. It began observing in 2007, and was upgraded to

be polarization sensitive in 2013. Two advantages of ground-based experiments are

that the dishes can be large, giving high resolution maps, and that detectors can be

upgraded as the technology improves, increasing the sensitivity of the instrument over

time. The latest ACT data release (ACT DR4) used temperature and polarization

measurements over 6000 deg2 on the sky (Aiola et al., 2020).

The South Pole Telescope is a 10 meter telescope located in Antarctica. The

SPT-3G survey covers 1500 deg2 on the sky. SPT and ACT observations supplement
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the Planck data at high ℓ and also serve as a consistency check in the ℓ range covered

by both Planck and ground based experiments. The CMB spectra and cosmology

constraints from ACT and SPT are consistent with those from Planck.

BICEP (Background Imaging of Cosmic Extragalactic Polarization) and the Keck

Array are located at the Amundsen–Scott South Pole Station in Antarctica like SPT,

but focus on measuring primordial B-modes on large scales. They have placed the

tightest upper limit so far on the tensor-to-scalar ratio of r < 0.036 but have not yet

made a detection of primordial gravitational waves (Ade et al., 2021).

Balloon-borne experiments such as SPIDER are an intermediate option between

ground-based experiments and satellites, with the advantage of minimizing the effects

of the atmosphere and benefiting from the latest detector technology without being as

costly as satellite experiments. They fly at high altitudes in the stratosphere for a few

weeks to gather data which can then be used to map the CMB and galactic dust po-

larization and put constraints on the tensor to scalar ratio r (SPIDER Collaboration

et al., 2021).

Neither ground nor balloon experiments can reach low enough in ℓ to measure the

E-mode or B-mode reionization bump down to the quadrupole ℓ = 2, so until another

CMB satellite is launched the Planck data remains our best measurement on those

scales.

Upcoming CMB experiments

The Simons Observatory (SO) is an upcoming CMB experiment with two compo-

nents: the LAT (large aperture telescope) to measure a large fraction of the sky with

high resolution and place tight constraints on cosmological parameters, and the SATs

(small aperture telescopes) to measure or place an upper limit on primordial gravi-

tational waves (Lee et al., 2019). SO is currently being constructed in the Atacama

Desert. Figure 1.5 from Lee et al. (2019) shows the Planck and BICEP2/Keck data
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Figure 1.5: CMB power spectrum constraints from Planck’s 2018 legacy data release
(orange) and BICEP2/Keck (green), together with forecasted errors for the upcoming
Simons Observatory ground-based experiment (SO, blue) and the LiteBIRD satellite
(red). Simons Observatory will measure temperature and polarization fluctuations
for a wide range of angualar scales, including small scales (large ℓ). LiteBIRD will
measure the large scale (low-ℓ) polarization, including the reionization bump at ℓ < 10
which cannot be measured from the ground. Figure source: Lee et al. (2019)

and the forecasted SO errorbars. The BICEP/Keck collaboration installed the first of

four receivers that will constitute the six-frequency BICEP Array in 2020 (Moncelsi

et al., 2020), and will continue to search for a primordial gravitational wave signal in

the CMB B-modes alongside the SO SATs.

The next generation CMB ground based experiment after SO will be CMB S4,

a collaboration involving many of the current ground based CMB teams (Abazajian

et al., 2016). The next planned satellite experiment is LiteBIRD (Hazumi et al.,

2020), which is expected to launch in the late 2020s.
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1.4 Dissertation Overview

The rest of this dissertation is structured as follows. In Chapter 2 we present Cos-

MOPED, a Planck likelihood that has been compressed using the MOPED technique

to require only one number per parameter of interest, thereby reducing the need to

handle large covariance matrices. In Chapter 3 we fit binned bandpowers to the

low-ℓ Planck temperature and polarization likelihoods, showing that they closely

approximate a shifted log-normal distribution, and construct differentiable Python

likelihoods for the Planck low-ℓ data. In Chapter 4 we explore the effects of different

foreground modeling choices on BICEP’s tensor-to-scalar ratio constraint, and we

present a foreground-marginalized likelihood for BICEP that relies on just 9 CMB

bandpowers and has no nuisance parameters. Chapter 5 shows constraints on the

primordial power spectrum using ACT, SPT and Planck data for a broken power law

adiabatic model, as well as a model with both adiabatic and isocurvature fluctuations

in which the isocurvature fluctuations vary independently on different scales. Chap-

ter 6 shows the improved limits that the upcoming Simons Observatory will be able

to place on binned isocurvature models, especially on small scales. We conclude in

Chapter 7.
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Chapter 2

Data compression in cosmology: A

MOPED compressed likelihood for

Planck data

When analyzing a large dataset with many different data points, but only a few rele-

vant parameters, it can be useful to compress the data, retaining all the information

that is relevant to the parameters of interest. These compressed data can then be

used for parameter inference. Tegmark et al. (1997) showed that if there is one pa-

rameter of interest, a dataset can be compressed to one number without losing any

information about that parameter. The Massively Optimized Parameter Estimation

and Data compression technique (MOPED) described in Heavens et al. (2000) extends

this to multiple parameters, developing optimal linear compression for Gaussian data

provided the covariance is independent of the parameters. Alsing & Wandelt (2018)

show that compression to the score function (the gradient of the log likelihood) pre-

serves the information content even for non-Gaussian data and data for which the

covariance depends on the parameters. Thus the full dataset of N data points can
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be compressed to n numbers, where n is the number of parameters of interest, while

preserving the Fisher information about those parameters.

This compression step is useful both as a way to generate a simplified likelihood

function, and as a step towards likelihood-free inference when the form of the like-

lihood is not known precisely (e.g., Alsing & Wandelt, 2018). Compressions of this

form have been used to study the star formation history of galaxies (Reichardt et al.,

2001; Heavens et al., 2004; Panter et al., 2007) and considered for exoplanet tran-

sit detections (Protopapas et al., 2005), gravitational wave studies with LISA (Graff

et al., 2011), and covariance matrix estimation (Heavens et al., 2017). Gupta & Heav-

ens (2002) proposed applying MOPED compression to cosmic microwave background

(CMB) data, and Zablocki & Dodelson (2016) applied a similar compression scheme

to the temperature power spectrum of WMAP.

In this chapter we apply the MOPED compression to the Planck CMB power

spectrum Planck Collaboration et al. (2016a), and show that the standard ΛCDM

cosmological parameter constraints can be derived from a compressed likelihood of

just six Gaussian-distributed data points. We go beyond earlier analyses of CMB

data by precompressing the non-Gaussian large-scale temperature power spectrum

into two approximately Gaussian data points. We make the software for the MOPED-

compressed likelihood publicly available, as well as for the likelihood computed di-

rectly from the binned power spectrum with the inclusion of new large angular scale

bins. 1

The outline of the chapter is as follows. In §2.1 we describe the public Planck

likelihood and the precompression we implement to better approximate it as Gaussian.

In §2.2 we describe the MOPED compression scheme we apply, and in §2.3 show

1At https://github.com/heatherprince/cosmoped and https://github.com/heatherprince/planck-
lite-py. Both codes have been updated with the 2018 temperature and polarization Plik-lite likeli-
hood
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parameter constraints for the ΛCDM model and an example extended model with

running of the primordial spectral index. We conclude in §2.4.

2.1 Planck likelihood and low-ℓ binning

The current state-of-the-art CMB data come from the Planck satellite. The latest

cosmological analysis is reported in Planck Collaboration et al. (2020c), with public

data from the earlier 2015 analysis described in Planck Collaboration et al. (2016a).

The Planck temperature power spectrum is shown in Fig. 2.1. The likelihood func-

tion, describing the probability of the data given some model, is separated into two

main parts for the Planck power spectrum analysis, with different approaches for

large scales and smaller scales. We summarize these components briefly here.
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Figure 2.1: The Planck 2015 temperature power spectrum from (Planck Collabora-
tion et al., 2016a). The non-Gaussian ℓ < 30 bandpowers are shown with their asym-
metrical errors in gray. The two black points at ℓ < 30 are obtained by estimating
the binned spectrum in two angular bins, and have approximately Gaussian distri-
butions. We use these two low-ℓ bins for the likelihoods described in this chapter.
The ℓ ≥ 30 binned data are the foreground-marginalized temperature bandpowers
from the Plik lite likelihood for Planck 2015. The theoretical power spectrum for the
Planck 2015 TT+lowTEB best fit parameters (Planck Collaboration et al., 2016b)
computed using CLASS (Blas et al., 2011b) is shown in blue.
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At ℓ ≥ 30 (corresponding to scales smaller than several degrees on the sky) the

likelihood L for the temperature and E-mode polarization power spectra (TT, TE,

and EE) is modeled as a Gaussian distribution, with

− 2 lnL = (Cth
b − Cdata

b )TQ−1(Cth
b − Cdata

b ) (2.1)

to within an overall additive constant, with binned data Cdata
b , binned theory Cth

b ,

and binned covariance matrix Q. For the Plik lite likelihood (Planck Collaboration

et al., 2016a), these data spectra represent an estimate of the CMB bandpowers, with

foregrounds already marginalized over using the approach of Dunkley et al. (2013).

At ℓ < 30 the distribution of the angular power spectrum is non-Gaussian. For

the 2015 data release, the Planck team released a joint pixel based likelihood for

temperature and polarization for ℓ ≤ 29 (‘lowTEB’). There is also a standalone tem-

perature low-ℓ likelihood based on the foreground-cleaned Commander temperature

map, which we use in this chapter. These likelihoods are computed in map space since

the distribution of the power spectrum on these scales is non-Gaussian. The 2018 like-

lihood uses a similar low-ℓ temperature likelihood, and a separate low-ℓ polarization

likelihood built from simulations (Planck Collaboration et al., 2020b).

2.1.1 Low-ℓ temperature bins

The compression approach we adopt, which we describe in the next section, is optimal

for Gaussian distributions. Since we are interested in a lightweight compression to

estimate simple cosmological models, we first compress the ℓ < 30 Planck TT data

into two bins with approximately Gaussian distributions. We do this by conditionally

sampling the posterior distribution for the power in each bin, estimating

p(θ|d) ∝ p(d|θ)p(θ). (2.2)
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Figure 2.2: The probability distribution for Dℓ for two low-ℓ temperature bins using
the Planck 2015 low-ℓ Commander likelihood. The best-fit Gaussian distribution is
shown in blue.

Here the parameters θ are the binned values D2≤ℓ≤15 and D16≤ℓ≤29, where Dℓ =

ℓ(ℓ+ 1)Cℓ/2π, assuming a constant value for D in each bin. The likelihood p(d|θ) is

the Planck ℓ < 30 temperature likelihood function. We assume uniform priors on θ.

The binning is performed on Dℓ rather than Cℓ because Dℓ is approximately constant

for the low-ℓ temperature power spectrum. When binned values of C are required we

convert from the binned D values by dividing by the mean of ℓ(ℓ+ 1)/2π in the bin.

The distributions of the two low-ℓ power spectrum bins are shown in Fig. 2.2,

together with the best-fitting Gaussian distributions. We find

D2≤ℓ≤15 = 827± 74 µK2

D16≤ℓ≤29 = 854± 49 µK2. (2.3)

Their distributions are close to Gaussian, unlike the distributions for the individual

multipoles. These bandpowers are also indicated in Fig. 2.1 (the first two black

points), together with the unbinned low-ℓ power spectrum in gray. We chose this bin-

ning scheme before sampling parameters; other choices that produce approximately

Gaussian distributions would be expected to give similar results.
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2.1.2 Low-ℓ polarization (τ prior)

The amplitude of the large-scale polarization signal depends primarily on the optical

depth to reionization, as well as the primordial amplitude. To include the low-ℓ po-

larization data we compress the 2015 polarization information into a single Gaussian

prior on the optical depth to reionization, adopting τ = 0.067±0.023 derived from the

Planck low-ℓ likelihood using the Low Frequency Instrument (Planck Collaboration

et al., 2016a). This is an approximation since τ is correlated with other cosmological

parameters, in particular the primordial amplitude As. Improved measurements of

the optical depth have since been made from the Planck High Frequency Instrument

Planck Collaboration et al. (2016c, 2020c). However, the purpose of this study is to

compress the public 2015 likelihood, and we defer a future refinement of our com-

pression code to include the 2018 polarization information that was recently made

public.

2.1.3 Parameter constraints

The effect of describing the low-ℓ temperature data using two Gaussian bins and using

a prior on τ in place of the low-ℓ polarization likelihood is shown in Fig. 2.3, which

shows the posterior probabilities for the six ΛCDM parameters (the Hubble constant,

baryon density, cold dark matter density, amplitude and spectral index of primordial

fluctuations, and optical depth to reionization) obtained by sampling three different

likelihood combinations.

Replacing the low-ℓ temperature likelihood with a Gaussian likelihood based on

two low-ℓ temperature bins results in parameter constraints that agree well, to within

0.1σ (black versus blue-dashed in Fig. 2.3). Here, the black solid curve is derived using

our Python implementation of Plik lite with the additional two Gaussian low-ℓ bins in-

cluded (Planck-lite-py). The blue-dashed curve shows the posteriors obtained by sam-

pling the Planck high-ℓ temperature Plik lite and low-ℓ temperature-only Comman-
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Figure 2.3: Posteriors on the ΛCDM parameters from Planck-lite-py, a Python imple-
mentation of the Planck Plik lite likelihood with two Gaussian low-ℓ bins (black solid
curve) compared to the combined Plik lite TT + low-ℓ Commander Planck 2015 tem-
perature likelihoods (blue-dashed curve). The parameter constraints agree to within
0.1σ, showing that our two binned low-ℓ data points capture enough information to
give equivalent constraints to the full low-ℓ temperature likelihood. A Gaussian prior
of τ = 0.067 ± 0.023 is included in the black and blue curves. We also show results
from the public chains from sampling the TT+lowTEB Planck 2015 likelihood (gray
solid curve) for reference. The small difference is the effect of imposing a prior on the
optical depth.

der likelihoods using the CosmoSIS cosmological parameter estimation code (Zuntz

et al., 2015). In both cases we compute the theoretical CMB power spectrum using

the Cosmic Linear Anisotropy Solving System (CLASS) (Blas et al., 2011b), sample

the likelihood using the emcee (Foreman-Mackey et al., 2013) Python implementation

of Markov chain Monte Carlo (MCMC) affine-invariant ensemble sampling (Goodman

& Weare, 2010), and impose a Gaussian prior on the optical depth τ = 0.067± 0.023

from the Planck low-ℓ likelihood (Planck Collaboration et al., 2016a). The low-ℓ data

provide an important anchor for constraints on parameters such as spectral index ns

and Hubble parameter h. The Planck-lite-py parameter constraints agree with the

Plik lite+lowT constraints to within 0.1σ, showing that for the standard cosmological
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model the full low-ℓ temperature likelihood can be replaced by a Gaussian likelihood

with two bins and a diagonal covariance matrix without a significant effect on the

parameter constraints.

The gray curve in Fig. 2.3 shows the public Planck 2015 chains from the

TT+lowTEB likelihood. When comparing parameters constraints from the full

TT+lowTEB likelihood with the TT+lowT+τ prior likelihood some of the pa-

rameters shift by up to 0.2σ because we are using a tau prior which is only an

approximation to the full low-ℓ polarization likelihood.

We make available Planck-lite-py, a Python implementation of the Planck Plik lite

likelihood that includes these low-ℓ binned temperature data. 2

2.2 MOPED compression vectors

We use the Massively Optimized Parameter Estimation and Data compression tech-

nique (MOPED) described in Heavens et al. (2000) to compress the Planck power

spectrum. This linear compression is optimal in the sense that the Fisher information

content is preserved for Gaussian data when the covariance matrix is independent of

the parameters of interest.

The Planck data vector used in this analysis is the foreground-marginalized binned

temperature angular power spectrum. It would be straightforward to include the

TE and EE angular power spectra in the data vector for a combined temperature

and polarization compressed likelihood. The binning is performed using a constant

weighting in Dℓ (Planck Collaboration et al., 2016a), which corresponds to

Cb =

ℓmax
b∑

ℓ=ℓmin
b

wℓ
bCℓ, (2.4)

2https://github.com/heatherprince/planck-lite-py.

41

https://github.com/heatherprince/planck-lite-py


where

wℓ
b =

ℓ(ℓ+ 1)
ℓmax
b∑

ℓ=ℓmin
b

ℓ(ℓ+ 1)

. (2.5)

The binned angular power spectrum is the sum of a signal component that depends

on the cosmological parameters µ = Cth
b (the noise-free theoretical binned angular

power spectrum), as well as a noise component n. The total data vector is thus

x = µ+ n. (2.6)

The data vector can be compressed into a single number while preserving the

information about the first cosmological parameter of interest θ1 Tegmark et al. (1997)

y1 = b1
tx (2.7)

with

b1 =
Q−1µ,1√
µt

,1Q
−1µt

,1

, (2.8)

where µ,1 is the derivative of the signal (the theoretical binned temperature angular

power spectrum) with respect to the first cosmological parameter, Q is the covariance

matrix, and the normalization of the compression vector has been chosen such that

bt1Qb1 = 1.

Additional compression vectors can be found that produce linear combinations

which capture information about the other cosmological parameters, while being or-

thogonal to the other compression vectors so that each linear combination ym is
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Figure 2.4: Compression vectors for the ΛCDM parameters. The sharp features are
caused by binning of the power spectrum. These compression vectors can be applied
to the CMB temperature power spectrum to give six numbers that contain as much
information about the cosmological parameters as the binned temperature power
spectrum. The compression vectors depend on the order in which they are computed,
as they are intentionally orthogonal to one another.

uncorrelated with the others Heavens et al. (2000), giving

bm =

Q−1µ,m −
m−1∑
q=1

(µt
,mbq)bq√

µ,mQ
−1µ,m −

m−1∑
q=1

(µt
,mbq)

2

. (2.9)

The compression vectors for the six standard ΛCDM parameters are shown in

Fig. 2.4. The oscillatory behavior comes from the effect of the acoustic peaks on the

derivatives of the theoretical CMB power spectrum. Most of the signal comes from

1000 < ℓ < 2500 because this is where the diagonal of the binned inverse covariance

matrix is large (Fig. 2.5). At low ℓ cosmic variance dominates the noise while at high

ℓ experimental noise takes over. The noise in each bin is also dependent on the bin

width, which varies for different multipoles (Planck Collaboration et al., 2016a).

43



Figure 2.5: The diagonal of the binned temperature inverse covariance matrix for the
217 temperature bins (2 for low-ℓ and 215 for high-ℓ). The diagonal elements are
small for ℓ < 1000, then rise steeply for 1500 < ℓ < 2000 before dropping again when
the experimental noise approaches the signal.

Applying these compression vectors to the data vector

ym = bm
tx (2.10)

gives a set of M numbers ym,m = 1, ...,M which contain as much information about

the cosmological parameters of interest θm as the full angular power spectrum with N

bins. For the binned temperature power spectrum the data vector has lengthN = 217,

and for the standard ΛCDM cosmology the number of parameters of interest isM = 6.

The Planck power spectrum and covariance matrix that are used to compute the

compression vectors are already binned, so the compressed statistics for the data come

from applying binned compression vectors to the power spectrum. To compress the

theoretical CMB power spectrum we use a version of the compression vectors that

includes the binning, weighting each multipole appropriately as per Eq. (2.4), so that

the binning and compression are achieved in the same step.
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Figure 2.6: Posteriors on the ΛCDM parameters from the compressed CosMOPED
likelihood (red-dashed curves) and the Planck-lite-py Python implementation of the
Plik lite likelihood with two low-ℓ bins (black solid curves). The parameter constraints
agree to within 0.1σ, validating the CosMOPED compression scheme. A Gaussian
prior of τ = 0.067± 0.023 is included for both curves.

2.3 Likelihood and parameters

We now describe the compressed likelihood and compare it to our Planck-lite-py

implementation of the Planck 2015 Plik lite likelihood.

2.3.1 Format of the likelihood

Each compressed statistic ym is Gaussian distributed with unit variance. The ym’s

are uncorrelated with each other by design, so the total likelihood is the product

of the likelihoods from each statistic. The likelihood of the parameters given the

(compressed) data thus takes a simple form

− 2 lnL =
M∑

m=1

(ym − ⟨ym⟩)2

2
+ constant, (2.11)
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where ym is the compressed statistic from the data and ⟨ym⟩ = bm
tµ is the cor-

responding compressed statistic from the model (the theoretical temperature power

spectrum).

2.3.2 Parameter constraints

The parameter constraints for the six-parameter ΛCDM model are shown in Fig. 2.6.

The compressed likelihood (red-dashed curve) and the Python Plik lite implementa-

tion (black solid curve) agree to within 0.1σ for each parameter. Both likelihoods were

sampled with emcee, with a Gaussian prior on the optical depth τ = 0.067 ± 0.023

and the low-ℓ bins described in Sec. 2.1. The MOPED compression that we have

applied thus results in a likelihood that is equivalent to the uncompressed case. As

we showed earlier, the Python Plik lite implementation is in good agreement with the

full Planck temperature likelihood.

2.3.3 Effect of fiducial model

The theory vector µ used to compute the compression vectors depends on the fiducial

model parameters used. If the fiducial model is wrong then the compression is no

longer optimal and the M compressed statistics are not exactly independent. How-

ever, in practice using a different fiducial model does not have a significant effect on

the compressed likelihood, in agreement with the findings of Zablocki & Dodelson

(2016). A shift of order 3σ in the fiducial parameters has an insignificant effect on

the conditional probability slices obtained from the compressed likelihood.
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Figure 2.7: The constraints on running of the scalar spectral index from the com-
pressed CosMOPED likelihood (red dashed) agree to within 0.1σ with the uncom-
pressed Planck-lite-py (black). A Gaussian prior of τ = 0.067 ± 0.023 is used for
CosMOPED and Planck-lite-py. The distribution using the public Planck chains
(TT+lowTEB, gray) is slightly broader due to the more accurate treatment of low-ℓ
polarization.

2.3.4 Non-ΛCDM cases

We demonstrate the application of this compression technique to a one parame-

ter extension to the ΛCDM case by sampling running of the scalar spectral index

d lnns/d ln k in addition to the six ΛCDM parameters shown above.

The results are shown in Fig. 2.7, which compares the CosMOPED constraints to

the Planck-lite-py constraints (with the same τ prior as above), as well as the Planck

TT+lowTEB chains from the 2015 data release. The likelihoods show excellent agree-

ment. The CosMOPED and Planck-lite-py posteriors are slightly narrower than for

the Planck TT+lowTEB chains; this is because the Gaussian prior on τ which we use

in the CosMOPED likelihood comes from the low-ℓ likelihood assuming the ΛCDM

model. For ΛCDM extension models with parameters that correlate with τ , this prior

is slightly too narrow.
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2.4 Discussion

We have demonstrated that the low-ℓ Planck temperature data is well represented by

two Gaussian bins for simple cosmological models. We have also shown that applying

MOPED linear compression to the Planck 2015 binned temperature power spectrum

allows us to construct a simple likelihood that depends on just one compression vector

and one compressed statistic per parameter of interest, and which is equivalent to

the Plik-lite temperature likelihood with two low-ℓ bins included. Because we do not

directly incorporate the low-ℓ polarization likelihood, we recommend including a prior

on the optical depth to reionization τ when using either of these likelihoods.

We provide two public codes. The first is Planck-lite-py, an implementation of

Planck ’s Plik lite likelihood in Python, with the option to include the low-ℓ temper-

ature data as two Gaussian bins. The second is CosMOPED, which calculates the

MOPED compression vectors for the CMB temperature power spectrum and com-

putes the compressed Planck likelihood.

This method can easily be extended to incorporate the high-ℓ TE and EE data

which are also Gaussian distributed. It can also be used for the Planck 2018 likelihood,

and the publicly available code will be updated accordingly.

The MOPED data compression scheme provides a lightweight likelihood that can

easily be combined with other datasets. In addition, the compressed data can be

incorporated into a likelihood free inference framework which allows parameters to

be inferred based on forward simulations, without knowledge of the form of the likeli-

hood. In likelihood free inference it is useful to have informative compressed statistics,

because this makes the comparison of simulations and data much less computationally

intensive.
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Chapter 3

A binned Python likelihood for

large scale temperature and

polarization from Planck

The current best fit model of the universe is ΛCDM , which provides a remarkable fit

to a variety of cosmological data with only six cosmological parameters. The cosmic

microwave background (CMB) radiation from the early universe provides strong con-

straints on these parameters, and the CMB temperature and polarization have been

measured over the full sky by the Planck satellite, with its legacy data released in

2018 (Planck Collaboration et al., 2020b,c). Various current and planned CMB ex-

periments are focused on measuring the CMB from the ground, improving on Planck

in resolution and instrumental noise. However, because of atmospheric noise and

limited sky coverage, it is challenging to measure large angular scale CMB fluctu-

ations from the ground. Both galaxy surveys and ground-based CMB experiments

will thus continue to benefit in the coming decade from including the Planck data in

constraints, especially on large scales.
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The Planck legacy release includes likelihood functions describing the temperature

and E-mode polarization data on large scales, where the probability distribution of

the angular power spectrum is non-Gaussian (Planck Collaboration et al., 2020b).

While the evaluation time of these likelihoods for the Planck low-ℓ data is not a

limiting factor compared to the time needed, for example, to run Boltzmann codes,

the existing package includes code in both C and Fortran 90. To facilitate the ease

of use of the data, for both analysis and forecasting applications, we thus present an

alternative option that compresses the data to a set of independent log-normal bins.

This form of the Planck likelihood can be automatically differentiated in Python,

so it could be used in combination with future differentiable Boltzmann codes to

sample parameters using efficient Hamiltonian Monte Carlo methods, such as the

No U-Turn Sampler (NUTS, Hoffman & Gelman, 2011), requiring fewer likelihood

evaluations and therefore fewer iterations of the theory code than traditional Markov

Chain Monte Carlo sampling methods.

This log-normal compression extends work presented in Prince & Dunkley (2019)

which included a compression of the temperature spectrum. The low-ℓ (large scale)

E-mode polarization primarily constrains the optical depth to reionization, τ , and

the low-ℓ temperature provides a lever arm to constrain the tilt of the primordial

power spectrum, ns. For most models of interest, one therefore only needs a few

numbers to describe the Planck low-ℓ data (e.g., Heavens et al., 2000; Alsing & Wan-

delt, 2018). Here we use two bins to describe the low-ℓ temperature power spectrum

and seven bins for E-mode polarization, leading to a simple likelihood code written

in Python that is portable and easy to combine with other cosmological data. The

method could also be applied to the alternative Planck data processing from the

NPIPE maps described in Planck Collaboration (2020). Our code, Planck-low-py, is

publicly available on GitHub1. It can be used in combination with Planck-lite-py2,

1https://github.com/heatherprince/planck-low-py
2https://github.com/heatherprince/planck-lite-py
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our Python implementation of the Planck team’s Plik lite foreground-marginalized

likelihood for the high-ℓ data. Use of either code should reference the Planck Col-

laboration et al. (2020b) data. Other Python implementations of Planck likelihoods,

including Plik lite, are also already available with the public cosmological sampling

code cobaya3.

We describe the Planck data and our low-ℓ binned likelihoods in section 3.1. In

section 3.2 we compare ΛCDM parameter constraints from Planck-low-py with

those from the legacy Planck likelihoods; extended models were discussed in Prince

& Dunkley (2019). We conclude in section 3.3.

3.1 The Planck likelihood and low-ℓ binning

The likelihood function used for Planck ’s cosmological analysis, describing the prob-

ability of the data given some model, is separated into two regimes, with different

approaches for large and small angular scales (Planck Collaboration et al., 2020b).

At ℓ ≥ 30 (corresponding to scales smaller than several degrees on the sky) the

likelihood L for the temperature and E-mode polarization power spectra and cross

spectrum (TT , EE and TE) is modeled as a Gaussian distribution, with

− 2 lnL = (Cth
b − Cdata

b )TQ−1(Cth
b − Cdata

b ), (3.1)

to within an overall additive constant, with binned data Cdata
b , binned theory Cth

b ,

and binned covariance matrix Q. For the Plik lite likelihood (Planck Collaboration

et al., 2020b), these data spectra represent an estimate of the CMB bandpowers, with

foregrounds already marginalized over. The bandpowers for these binned high-ℓ data

are shown in Fig. 3.1, as the black markers in the right panels. The multi-frequency

3https://cobaya.readthedocs.io/en/latest/likelihood_planck.html
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Figure 3.1: The Planck 2018 temperature and polarization power spectra and best-
fit theory curves, from Planck Collaboration et al. (2020b). The log-normal binned
ℓ < 30 TT and EE spectra estimated in this paper, described in section 3.1, are
shown on the left of the upper panel. They compress the per-ℓ likelihoods (grey
markers) described by the Planck Commander and SimAll likelihoods respectively.
The Gaussian, foreground-marginalized ℓ ≥ 30 data (black markers on the right) are
used in the Plik lite cosmological likelihood and are shown for reference. The low-ℓ
TE cross spectrum is not used in the Planck cosmological analysis.

high-ℓ Plik likelihood does not pre-marginalize over foregrounds, and gives results in

agreement with Plik lite.

At ℓ < 30 (large angular scales on the sky) the distribution of the angular power

spectrum is non-Gaussian (see, e.g., Bond et al., 2000). The Planck low-ℓ temperature

likelihood is derived using the Commander framework (Eriksen et al., 2008), which

uses Gibbs sampling to explore the joint distribution of the CMB temperature map,

CMB temperature angular power spectrum, and foreground parameters, and then

uses a Gaussianized Blackwell-Rau estimator to describe the likelihood of the modeled

temperature angular power spectrum given the data.
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The Planck low-ℓ polarization uses a separate SimAll likelihood built from simula-

tions (Planck Collaboration et al., 2020b). This likelihood uses the E-mode polariza-

tion angular cross spectrum between the 100 GHz and 143 GHz channels, computed

using the quadratic maximum likelihood (QML) approach (Tegmark & de Oliveira-

Costa, 2001; Efstathiou, 2006), with templates for synchrotron and dust contamina-

tion used to remove the foregrounds. The likelihood is then constructed from this

data power spectrum using a suite of simulations.

The curl-like polarization B-modes are not used for the baseline Planck cosmolog-

ical analysis. The large scale temperature-polarization correlation (captured in the

low-ℓ TE cross spectrum) is also excluded due to performing poorly in null tests,

indicating that some systematic or foreground effects remain unaccounted for. In

this paper we thus focus just on compressing the ℓ < 30 temperature and E-mode

polarization likelihoods.

3.1.1 Low-ℓ temperature bins

The low-ℓ temperature power spectrum, shown in Fig. 3.2, is approximately flat due

to the Sachs-Wolfe effect (Sachs & Wolfe, 1967b). In the ΛCDM model, which is an

excellent fit to Planck data, the low-ℓ temperature power provides a large-scale anchor

for constraining the spectral index of the primordial fluctuation power spectrum,

ns, which tilts the resulting temperature power spectrum. Within simple models,

including ΛCDM, the lack of complicated structure on these large scales suggests

that we could bin the low-ℓ data without losing information about the cosmological

parameters. In Prince & Dunkley (2019) we demonstrated that compressing to two

bins was sufficient to reproduce parameters for the Planck 2015 temperature data.

There the compresssion to two Gaussian bins was useful for the data compression

technique applied to the full ℓ range of the Planck power spectrum.
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Figure 3.2: The low-ℓ Planck temperature power spectrum DTT
ℓ = ℓ(ℓ + 1)CTT

ℓ /2π.
The binned power and errors are shown in black. The Planck unbinned power spec-
trum and errors are in grey. The errorbars are asymmetric because on these scales the
power spectrum is non-Gaussian. The value of the power spectrum is taken from the
peak of the probability distribution and the errorbars come from the half-maximum
values. The theory curve for the best fit ΛCDM model is shown in red. The power
spectrum is close to flat on these large angular scales due to the Sachs-Wolfe effect.

Figure 3.3: The peak normalized posterior distribution for DTT
ℓ = ℓ(ℓ+1)CTT

ℓ /2π for
two low-ℓ temperature bins (ℓ = 2-15 and 16-29) using the Planck 2018 Commander
low-ℓ temperature likelihood. The best-fitting log-normal distributions are shown in
red.
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Here we refine this compression using a log-normal distribution to approximate

the likelihood, motivated by e.g., Bond et al. (2000). We find that the log-normal

bins give a slightly better fit to the shape of the posterior of the power in each bin,

and is also consistent with how we treat the low-ℓ polarization data in Section 3.1.2.

As in Prince & Dunkley (2019) we form two temperature bins, one for 2 ≤ ℓ ≤ 15

and one for 16 ≤ ℓ ≤ 29. We find the probability distribution for the power spectrum

Dℓ = ℓ(ℓ+1)Cℓ/2π by conditionally sampling the posterior distribution for the power

in each bin using the Planck 2018 Commander likelihood using the Cobaya cosmological

sampling code (Torrado & Lewis, 2020), estimating

p(θ|d) ∝ p(d|θ)p(θ). (3.2)

Here the parameters θ are the binned values D2≤ℓ≤15 and D16≤ℓ≤29, assuming a con-

stant value for D in each bin. We assume uniform priors on θ. In practice we vary one

bin at a time (giving every ℓ value in that bin the same value and then varying that

value) while holding the other bin constant, and use the full Planck low-ℓ likelihood

to find the shape of that bin, so we use the likelihood to sample Dbin instead the

parameters.

The probability distributions for the two low-ℓ power spectrum bins are shown

in Fig. 3.3, together with the best-fit log-normal probability distributions. A log-

normal distribution for the likelihood of Dbin means that ln(Dbin) is close to normally

distributed, or

L(x) = p(x) =
1

xσ
√
2π
e−(lnx−µ)2/(2σ2), (3.3)

for x = Dbin. Although there is some motivation for using a combination of log-normal

and Gaussian distributions to describe the probability distribution of the unbinned

angular power spectra (Verde et al., 2003), we find that the log-normal fit to the

bins gives an acceptable fit and accurately reproduces parameter constraints. The
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best-fitting parameters for the two bins are

µ1 = 6.717, σ1 = 0.09247,

µ2 = 6.734, σ2 = 0.06038. (3.4)

The covariance between bins is small, so we treat the likelihood of each bin inde-

pendently. To compute the likelihood for a given theory power spectrum, we convert

the theory Cth
ℓ to Dth

ℓ , bin Dth
ℓ into two bins, DTT

1 and DTT
2 , compute the log-normal

likelihood for each bin, and then multiply them together (corresponding to adding

the log-likelihoods), giving

lnLTT = lnLTT
1 + lnLTT

2

= ln

(
1

DTT
1 σ1

√
2π
e−(lnDTT

1 −µ1)2/(2σ2
1)

)
+

ln

(
1

DTT
2 σ2

√
2π
e−(lnDTT

2 −µ2)2/(2σ2
2)

)
. (3.5)

This compression approximates the cosmic variance contribution to the uncertainty

on the power spectrum as being independent of the theory, as in the ℓ > 30 Planck

likelihood.

The bandpowers for these two log-normal bins are indicated in Fig. 3.2 (the

large black points), together with the unbinned low-ℓ power spectrum. For plotting

purposes the Dbin at the peak of the distribution (the mode) is shown, which for a

log-normal distribution is at Dbin = eµ−σ2
. We plot errors using the D values at which

the probability drops to 0.61 of its maximum, which would be at 1σ for a Gaussian

distribution, showing

DTT
2≤ℓ≤15 = 819+79

−72 µK
2,

DTT
16≤ℓ≤29 = 837+52

−49 µK
2. (3.6)
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Figure 3.4: The low-ℓ E-mode polarization power spectrum, with the DEE estimated
in seven bins shown in black ((ℓ = 2-3, 4, 5, 6-7, 8-11 and 10-29). The Planck per-ℓ
power spectrum is shown in grey. The values and errors for these non-Gaussian data
points come from the peak and half-maximum of the conditional posterior distribution
for each Dℓ. The theory curve for the best fit model (red) and for high and low values
of the optical depth to reionization τ are shown. The reionization bump in the power
spectrum comes from polarization caused by Thompson scattering off free electrons
since reionization. This signal is higher for greater τ .

3.1.2 Low-ℓ E-mode polarization

The CMB E-mode polarization signal is created by Thomson scattering of CMB

photons off electrons, both at the last scattering surface and during reionization

when electrons are once again free (Bond & Efstathiou, 1984; Zaldarriaga, 1997).

Thomson scattering during reionization creates large-scale E-mode polarization, the

amplitude of which depends primarily on the optical depth to reionization, τ . This

‘reionization bump’ can be seen in Fig. 3.4, which shows the ΛCDM theoretical EE

power spectrum for a few different values of τ , including the best-fit τ = 0.054 from

Planck Collaboration et al. (2020c). As the optical depth to reionization increases,

so does the low-ℓ EE power.
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Figure 3.5: The peak normalized posterior distribution for DEE
ℓ = ℓ(ℓ + 1)CEE

ℓ /2π
for seven low-ℓ E-mode polarization bins, estimated using the Planck 2018 SimAll

low-ℓ polarization likelihood. The best-fit offset log-normal distribution is shown in
red for each bin. The ℓ ranges of the bins are chosen to capture the low-ℓ polarization
features imprinted from varying the optical depth to reionization, τ .
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The Planck 2018 low-ℓ polarization likelihood was built using simulations to de-

termine the probability distributions for the EE and BB spectra.

Here we compress the low-ℓ EE-mode polarization data into seven bins, three that

primarily constrains the height of the reionization bump using 2 ≤ ℓ ≤ 5, two that

constrain the width of the bump using 6 ≤ ℓ ≤ 11, and one wider bin for 11 ≤ ℓ ≤ 29

where the EE power spectrum has less structure. We do not compress the B-mode

polarization data, as it is not used in the main Planck likelihood combination for

cosmology constraints.

The probability distribution for the power in each bin is shown in Fig. 3.5. We

find that the distributions are sufficiently well described by an offset log-normal dis-

tribution, which modifies equation (3.3) for the probability distribution of x = DEE
bin

to

L(x) = p(x) =
1

(x− x0)σ
√
2π
e−(ln(x−x0)−µ)2/(2σ2). (3.7)

We experiment with other distributions, including a combination of a log-normal

and a Gaussian probability distribution Verde et al. (2003)

lnL =
2

3
lnLLN +

1

3
lnLG, (3.8)

as well as a spline, to capture the exact shape of the likelihood, but find that the log-

normal distribution is sufficient to capture the sensitivity to cosmological parameters.

The best-fit parameters for the log-normal bins are shown in table 3.1.

We neglect the covariance between bins just as we do for the temperature, so the

log-normal likelihoods from the seven EE bins are combined independently to give

the compressed low-ℓ E-mode polarization likelihood:

lnLEE =
7∑

i=1

lnLEE
i . (3.9)
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Figure 3.6: Posterior distributions of the ΛCDM parameters estimated using the
low-ℓ Planck 2018 temperature (Commander) and EE (SimAll) likelihoods (black),
compared to those using Planck-low-py (our log-normal compressed low-ell likeli-
hood) (red dashed). In both cases Plik lite is used at ℓ > 30. The parameters
shown are the optical depth to reionization τ , the amplitude of the primordial power
spectrum As, the scalar spectral index ns, the Hubble constant H0 in units of km s−1

Mpc−1, the baryon density Ωbh
2 and the dark matter density Ωch

2. The parameter
constraints agree to within less than 0.1σ.

Figure 3.7: Posterior distributions for extensions to ΛCDM. Left: constraint on the
running of the spectral index. Right: constraint on the amplitude of the neutrino
density isocurvature power spectrum at k = 0.1 Mpc−1 assuming that the isocurvature
power spectrum is a power law and is uncorrelated with the adiabatic power spectrum
(using the parameterization from Planck Collaboration et al. (2020e) with PRI = 0).
The black curves show the constraints using the full Planck 2018 low-ℓ likelihoods
and the red dashed curves show the constraints using the binned likelihoods described
in this paper.
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ℓ range µEE σEE xEE
0 [µK2] DEE[µK2]

2-3 -2.190 0.5615 -0.02244 0.059+0.062
−0.035

4 -3.445 0.8534 -0.00789 0.008+0.021
−0.009

5 -2.781 0.7335 0.00121 0.037+0.039
−0.019

6-7 -4.076 0.5327 -0.01355 ≤ 0.008
8-11 -4.393 0.4075 -0.01330 ≤ 0.003
12-15 -5.875 0.9196 -0.00203 ≤ 0.001
16-29 -3.094 0.1161 -0.03623 0.008+0.005

−0.005

Table 3.1: Parameters for the log-normal EE bins, and estimated DEE power.

We also neglect any covariance between the low-ℓ TT and EE likelihoods, combining

them independently. These best-fitting parameters are used to plot the mode and

errors and the upper limits in Fig. 3.4, also reported in Table 3.1.

The Planck calibration parameter is included in the low-ℓ likelihoods in the same

way as in Plik lite, as an overall normalizing factor applied to the theory power

spectrum.

3.1.3 Software products

We release a public Python likelihood code, Planck-low-py,4 which uses these in-

dependent log-normal likelihoods to describe the Planck low-ℓ temperature and po-

larization bins. The temperature and polarization likelihoods can be used separately

or together. This likelihood code provides an alternative to the full Planck low-ℓ

likelihood functions, for models without unusually complex large-scale behavior. Any

use of it should reference the Planck Collaboration et al. (2020b) data. The code can

be used in combination with any ℓ > 30 Planck likelihoods, including our Python

implementation of Plik lite, planck-lite-py5, or the Python implementations of

Planck ’s likelihoods in Cobaya.

4https://github.com/heatherprince/planck-low-py
5https://github.com/heatherprince/planck-lite-py
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3.2 Parameter constraints

We test the compressed Planck-low-py by comparing the constraints on ΛCDM

parameters with those from the full Planck 2018 low-ℓ TT and EE likelihoods, us-

ing the same high-ℓ Plik lite likelihood in both cases. The results are plotted in

Fig. 3.6, which shows the posterior probabilities for the six ΛCDM parameters (the

Hubble constant, baryon density, cold dark matter density, amplitude and spectral

index of primordial fluctuations, and optical depth to reionization). These parameter

constraints were obtained using Cobaya (Torrado & Lewis, 2020)6 with the CAMB cos-

mological Boltzmann code (Lewis et al., 2000; Howlett et al., 2012) and the MCMC

sampler developed for CosmoMC (Lewis & Bridle, 2002; Lewis, 2013).

The reference constraints (black) are obtained from the high-ℓ temperature and

polarization foreground-marginalized Plik lite likelihood, the low-ℓ EE likelihood

(SimAll), and the low-ℓ temperature-only likelihood (Commander) of Planck ’s 2018

data release (Planck Collaboration et al., 2020b). The red dashed lines show our con-

straints from combining Plik lite with our Planck-low-py compressed likelihood.

We find that all of the ΛCDM cosmological parameters are consistent to within 0.1σ.

We also tested two extensions to the standard ΛCDM model. Constraints on the

running of the spectral index and on the amplitude of a neutrino density isocurvature

component are shown in Fig. 3.7; parameters estimated from the full low-ℓ likelihoods

and our likelihood agree.

We find that using just one or two lognormal bins to describe the low-ℓ EE likeli-

hood is insufficient to reproduce the parameter constraints. Using three bins is better

able to capture the structure of the reionization bump (see Fig. 3.4), and reproduces

constraints with accurate values but slightly inflated errors on the optical depth, as

well as on As through its correlation with τ . Using seven bins accurately reproduces

both the means and widths of the probability distributions of the parameters. The

6https://ascl.net/1910.019
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Planck-low-py E-mode likelihood can also be used as an alternative to a τ prior,

with the advantage of directly using the amplitude of the EE power spectrum. For

the equivalent of imposing a broader prior on τ , as done in Aiola et al. (2020) for

example, one could inflate the error bars of the EE bins.

3.3 Discussion

We have demonstrated that the Planck 2018 low-ℓ temperature and E-mode polariza-

tion data can be effectively compressed to two and seven log-normal bins respectively

while retaining accurate constraints on ΛCDM cosmological parameters. This com-

pression would also be appropriate for non-ΛCDM models which do not have unusual

large-scale features. In our explorations of the minimal bin number required to cap-

ture the information, we found that as few as three bins in polarization was sufficient

to reproduce the means of the parameters to 0.1σ, but with slightly broader error

bars.

We provide a public Python likelihood code, Planck-low-py to describe the

Planck low-ℓ data which can be used as a light-weight alternative to the Commander

and SimAll likelihoods.

The Planck data will provide the community with the tightest constraint on the

optical depth to reionization τ , and the leading large-scale temperature measure-

ments, for some time. Light-weight versions of the Planck low-ℓ likelihoods can thus

be useful for future explorations of combined datasets, as well as for forecasting pur-

poses in the design of upcoming experiments.
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Chapter 4

Testing the BICEP/Keck

foreground model, and a

foreground-marginalized

‘BK18-lite’ likelihood

The theory of inflation predicts that tensor modes would be present in the early

universe in addition to the scalar modes that form the seeds of large scale structure

and source the primary CMB temperature and E-mode polarization. These primordial

tensor modes propagate as primordial gravitational waves that would produce a signal

in both E and B polarization (Seljak & Zaldarriaga, 1997; Kamionkowski & Kovetz,

2016). Because scalar modes predict only primary E-mode polarization, B-modes are

a cleaner way to search for primordial tensor perturbations. Any primordial signal

would be expected to come from gravitational waves, with B-mode power peaking at

ℓ ∼ 100 (degree scales) and a very large-scale bump from scattering of the primordial

signal at reionization at ℓ ∼ 5. The B-mode signal also includes gravitationally

lensed E-modes, peaking at ℓ ∼ 1000 (a few arcminutes in separation on the sky). In
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addition to these cosmological B-mode sources, polarized radiation from our Galaxy

also produces B-mode radiation at millimeter wavelengths (e.g., Planck Collaboration

et al., 2020f). Some of this foreground radiation comes from thermal emission from

dust grains, which is polarized because the dust grains tend to be aligned with their

long axes perpendicular to the Galactic magnetic field. Another source of B-mode

polarization at these wavelengths is synchrotron emission from charged particles that

are accelerated by magnetic fields in the Galaxy.

The BICEP (Background Imaging of Cosmic Extragalactic Polarization) and Keck

telescopes are being used to search for primordial B-modes from the South Pole Sta-

tion in Antarctica. Data from the BICEP2 experiment showed an excess of B-modes

at 150 GHz over those expected from lensing (BICEP2 Collaboration et al., 2014b).

A joint analysis with Planck multifrequency data subsequently showed that the ob-

served excess B-modes were from Galactic dust, and placed an upper limit on the

tensor-to-scalar ratio r (BICEP2/Keck Collaboration et al., 2015). The tightest con-

straint on primordial gravitational waves to date comes from BICEP3 observations,

together with data from BICEP2, the Keck Array, Planck and WMAP, giving a 95%

confidence upper limit on the tensor-to-scalar ratio r at 0.05 Mpc−1 of r < 0.036 (Ade

et al. (2021), hereafter BK18). Independent of BK18, there are also 95% upper limits

of r < 0.16 from Planck B-modes, and r < 0.056 from Planck T, E and B-modes,

derived from the NPIPE maps (Tristram et al., 2021). The first flight of the SPIDER

balloon experiment gave r < 0.11 (SPIDER Collaboration et al., 2021).

These current constraints on r are informed by the treatment of foregrounds, es-

pecially polarized dust emission. For the BK18 analysis, different foreground models

were tested by the BICEP/Keck collaboration, demonstrating the stability of the

estimated for r. In this chapter we explore further some of the assumptions made

in the BK18 foreground model, finding little impact on r. To constrain the fore-

grounds, eleven polarization maps at a range of frequencies from BK, WMAP and
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Planck are combined to give a total of 11 auto-spectra and 55 cross-spectra, which

are jointly analysed in the nominal BK18 likelihood to simultaneously constrain the

seven parameter foreground model and the tensor-to-scalar ratio r. In this chapter we

construct a ‘BK18-lite’ likelihood based on foreground-marginalized bandpowers for

the B-mode angular power spectrum, following a similar approach adopted for ACT

and Planck (Dunkley et al., 2013; Calabrese et al., 2013; Planck Collaboration et al.,

2016a), which appears sufficient to reproduce the tensor-to-scalar ratio constraints.

This chapter is laid out as follows. We describe the BICEP/Keck data and like-

lihood in §4.1. §4.2 explores some of the modeling choices and how the foreground

model affects the gravitational wave constraints. In §4.3 we estimate foreground-

marginalized CMB B-mode bandpower amplitudes and construct a ‘BK-lite’ likeli-

hood. We conclude in §4.4.

4.1 The BICEP/Keck data and likelihood

In this section we draw on Barkats et al. (2014); BICEP2 Collaboration et al. (2014a);

Ade et al. (2021) to review the details of the BK18 likelihood analysis, including the

data products, foreground model, and form of the likelihood.

4.1.1 Data and Window Functions

BICEP2/Keck: BICEP2 mapped the ∼ 400 square degree BICEP2/Keck region of

the sky first at 150 GHz from 2010–2012 (BICEP2 Collaboration et al., 2014a). The

Keck Array mapped the same region at 150 GHz and then at 95 and 220 GHz from

2012–2019 (BICEP2 and Keck Array Collaborations et al., 2015; BICEP2 Collabora-

tion et al., 2018). For the previous joint analysis of BICEP2, Keck Array, and Planck

(BK15),BICEP2 Collaboration et al. (2018)) the apodization mask on the sky was

the geometric mean of the BICEP/Keck inverse noise variance maps, and the same

66



mask was applied to WMAP and Planck data. The most recent BK18 analysis keeps

the BICEP2/Keck apodization masks for the BICEP2 and Keck maps, but uses the

BICEP3 mask for the BICEP3, WMAP and Planck data (Ade et al., 2021). The

BICEP2/Keck observations contribute three polarization maps to the BK18 analysis,

one each at 95, 150 and 220 GHz. At 150 and 220 GHz the B-mode power spec-

tra of the maps are dominated by polarized Galactic dust emission, and are used to

constrain and marginalize over dust foreground parameters.

BICEP3: BICEP3 measured the CMB sky at 95 GHz, and its 3-year dataset of

observations from 2016–2018 were used to make the deepest CMB polarization map

at 95 GHz so far, with a depth of 2.8 µK-arcmin (Ade et al., 2022). The BICEP3

scan region consists of ∼ 600 square degrees and includes the BICEP2/Keck region

(Ade et al., 2021). The 95 GHz channel is the least contaminated by foregrounds out

of the BICEP/Keck 95, 150 and 220 GHz channels.

WMAP : The likelihood includes spectra computed from 23 and 33 GHz maps

from the WMAP satellite, masked using the BICEP3 inverse noise variance. These

maps are used to constrain synchrotron radiation at low frequencies.

Planck : Spectra are used from the 30, 44, 143, 217 and 353 GHz polarization

maps from the Planck satellite, masked using the BICEP3 inverse noise variance.

These maps are used to constrain synchrotron radiation at low frequencies (30 and

44 GHz) and polarized Galactic dust emission at high frequencies (143–343 GHz).

In total there are 11 polarization maps included in the analysis: three 400 deg2

maps at different frequencies from BICEP2/Keck; one 600 deg2 BICEP3 map at

95 GHz; WMAP maps at two frequencies and Planck maps at five frequencies,

each covering the 600 deg2 BICEP3 footprint. This results in 11 auto-spectra

and 55 cross-spectra for BB. Each spectrum is composed of 9 bandpowers, result-

ing in 9×66 = 594 bandpowers, which are fit simultaneously in the likelihood analysis.
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Figure 4.1: BK18 bandpower window functions for the 9 bins. They differ for spec-
tra estimated in the larger BICEP3 region (black) versus the smaller BICEP2/Keck
region (red). Cross-spectra between the two regions have a third typical window func-
tion shape (orange). The Planck and WMAP maps are cut to the BICEP3 region
of the sky and have the same window functions as BICEP3. The BICEP2 and Keck
Array data for 95, 150 and 220 GHz have almost identical window function shapes,
but different normalizations. The suite of cross-spectra window functions are also
similar in shape but not identical, and have different normalizations.

Window functions: The window functions that are used to bin a theory curve to

compare to the data power spectra, with Db =
∑

ℓwbℓDℓ, include the effect of trans-

forming the apodization mask into Fourier space, as the mask affects how different

modes are coupled (Knox, 1999; Barkats et al., 2014). Thus there are effectively three

distinct sets of window function shapes: one for the larger BICEP3 field which applies

to the BICEP3, WMAP and Planck auto-spectra, one for the smaller BICEP2/Keck

field which applies to the BICEP2/Keck auto-spectra, and one for cross spectra be-

tween the two different fields. These window functions are shown in Figure 4.1. The

BICEP2/Keck window functions are shifted to slightly higher ℓ than the BICEP3

window functions, and have somewhat different shapes. The BICEP2/Keck window
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functions also each have different normalizations, although their shapes are almost

the same, at the three different frequencies. The cross spectra between BICEP3

regions and BICEP2/Keck regions also have different normalizations depending on

which BICEP2/Keck frequency is used1.

4.1.2 Foreground model

The foreground model assumes two contaminating components in polarization: ther-

mal dust and synchrotron emission from the Galaxy, such that Dij
ℓ = DCMB

ℓ +DFG,ij
ℓ ,

and

DFG,ij
ℓ = Ddust,ij

ℓ +Dsync,ij
ℓ +Ddust−sync,ij

ℓ (4.1)

for cross-spectrum between maps i and j. The model assumes that there is no polar-

ization signal from anomalous microwave or free-free emission. Extragalactic contam-

ination is expected to be negligible at these angular scales. In brightness temperature

units, the model terms are given by the following; these are converted to thermody-

namic units by integrating across the passbands.

Dust: Polarized galactic dust is assumed to follow a modified blackbody spectrum

with temperature Td = 19.6K. The dust has three parameters: the amplitude Ad,353

at 353 GHz at ℓ = 80, the spectral index in ℓ−space αd, and the spectral index of

the modified blackbody function in frequency space βd. In this model these spectral

indices are assumed to be constant over the sky region. The cross-power is given by

Ddust,ij
ℓ = Ad

(
ℓ

ℓ0

)αd

[
νβd
i Bνi(Td)

νβd
0 Bν0(Td)

][
νβd
j Bνj(Td)

νβd
0 Bν0(Td)

]
(4.2)

with emissivity index β. The function Bν(Td) is the Planck function at frequency ν

for effective dust temperature Td.

1In BK15 the window functions were normalized to unity; the BK18 window functions are not
normalized.
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Synchrotron: Polarized synchrotron emission is assumed to follow a power law

in frequency and multipole space. Synchrotron emission is parameterized by its am-

plitude Async,23 at 23 GHz at ℓ = 80, its spectral index in ℓ−space αs and its spectral

index in frequency space βs

Dsync,ij
ℓ = As

(
ℓ

ℓ0

)αs
(
νiνj
ν20

)βs

. (4.3)

Dust/synchrotron correlation: an additional foreground parameter ϵ captures

any correlation between the synchrotron and dust emission, with the cross-spectrum

given by

Ddust−sync,ij
ℓ = ϵ

√
AdAs

(
ℓ

ℓ0

)√
αsαd

[
νβd
i Bνi(Td)ν

βs

j

νβd
0 Bν0(Td)ν

βs

0

+
νβd
j Bνj(Td)ν

βs

i

νβd
0 Bν0(Td)ν

βs

0

]
. (4.4)

4.1.3 Likelihood

The BK18 analysis computes auto- and cross-spectra for all the frequency pairs from

the WMAP, Planck, BICEP and Keck Array data (Hamimeche & Lewis, 2008), and

uses the Hamimeche-Lewis approximation to model the likelihood. Each BB spectrum

consist of 9 bins ranging from multipoles ℓ = 20 to 330. The Hamimeche-Lewis

likelihood uses a pre-computed covariance matrix calculated from simulations using a

fiducial model, although the parameter constraints do not depend strongly on small

variations in the choice of fiducial model.

The likelihood for the model bandpowers, Db, given the data bandpowers, D̂b, in

the Hamimeche-Lewis approximation is given by

− 2 logL(Db|D̂b) = XcMcc′Xc′ , (4.5)

where the indices c and c′ run over all bins in ℓ for all temperature and polarization

combinations (i.e.m TT, EE, BB, TE, TB, EB) (Barkats et al., 2014). The indices
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b run over the 9 bins used and the different frequency auto- and cross-combinations.

For the baseline BK18 analysis only the BB spectra are used, so the indices c are

equivalent to b.

Xb is a vector of transformed bandpowers:

XBB
b = (Df

b )
1/2Ubg(Db)U

†
b (D

f
b )

1/2, (4.6)

where Df
b are fiducial bandpowers calculated from simulations of the signal and noise

using the fiducial ΛCDM parameter values. Ub is a matrix of the eigenvectors of

D−1/2
b D̂bD−1/2

b , and Db is a diagonal matrix of the eigenvalues of D−1/2
b D̂bD−1/2

b . The

function g, given by

g(x) = sign(x− 1)
√
2(x− lnx− 1), (4.7)

is applied to each element of the diagonal matrix Db to give g(Db). The bandpower

covariance Mcc′ is calculated from the same simulations as Df
b , and then terms are

added to account for the gain (Gc) and beam width (Sc) calibration uncertainties:

Mcc′ =Mcc′ +GcGc′D̂cD̂c′ + ScSc′D̂cD̂c′ . (4.8)

The BICEP/Keck team use 499 signal and noise simulations to calculate the fiducial

covariance matrix and bandpowers (Ade et al., 2021). The transformed bandpow-

ers Xc and the modified covariance matrix Mcc′ are then used to calculate what is

essentially a χ2 statistic for the log-likelihood in Equation (4.5).

In the likelihood analysis the data (9 bins for each of 66 auto- and cross-spectra for

BB) are compared to a model BB spectrum containing primordial B-modes from ten-

sor perturbations with a varying tensor-to-scalar ratio r, lensed B-modes from gravi-

tational lensing of the primordial ΛCDM E-modes, dust, and synchrotron. The lensed

71



B-modes are calculated using the Planck best-fit ΛCDM parameters (Planck Collab-

oration et al., 2020c). The tensor-to-scalar ratio is measured at k = 0.05 Mpc−1,

and the tensor spectral index is set to nt = 0, which corresponds to a scale free

spectrum (the tensor and scalar spectral indices have different definitions; ns = 1 for

scale-invariant scalars).

Figure 4.2: Auto-spectra for the 95 and 220 GHz Keck array data (grey dots and
purple squares respectively), 150 GHz BICEP2/Keck data (blue triangles), and 95
GHz BICEP3 data (black circles). Also shown is the B-mode power spectrum for
a ΛCDM cosmology with r=0 (solid black curve, just lensing B-modes) and r=0.03
(dashed black curve). The 220 GHz channel is above the theory curves because it
is dominated by dust, and the 150 GHz and 95 GHz channels have significant dust
contamination on larger scales (ℓ ≲ 200). Dust can cause an excess of power on
degree scales, which can be confused with primordial B-modes unless the foregrounds
are constrained using a range of frequency channels. The BICEP3 95 GHz spectrum
provides the most constraining power for the CMB B-mode power spectrum because
it has both high sensitivity (small error bars) and relatively low dust contamination.

The BICEP3 95 GHz and the BICEP2/Keck 95, 150 and 220 GHz binned power

spectra are shown in Figure 4.2, together with theory curves for the B-mode power

spectrum from lensing in the absence of primordial gravitational waves (r = 0) and
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the B-mode power spectrum for an example model with r = 0.03, with a combination

of primordial B-mode power, a bump at low ℓ from reionization, and the lensing signal

rising to peak on smaller scales (ℓ ∼ 1000). The 220 GHz data are dominated by

dust, and lie above the CMB-lensing theory curve. The 150 GHz data are dominated

by dust on degree scales ℓ ≲ 200 before the lensing B-modes rise above the dust

signal at ℓ ≳ 200. The 95 GHz channel is the cleanest for probing the CMB, although

it still has dust contamination on degree scales. Spectral information is needed to

distinguish between a gravitational wave signal from non-zero tensor-to-scalar ratio

r and Galactic dust contamination.

We initially use the BK18 likelihood to reproduce the r constraints from Ade et al.

(2021). Figure 4.3 shows the parameter constraints on r and the seven foreground

parameters, and also compares the distribution of r to one where the foreground

model parameters are fixed to their best-fit values; the dust and CMB are now almost

uncorrelated with only a slight correlation with the dust index, and the error on r

only increases by 10% when marginalizing over foregrounds. This is consistent with

the BICEP/Keck collaboration’s results (Ade et al., 2021). We also check that we

recover the same distribution for r as BK18 when adding the Planck PR3 likelihood

and marginalizing over the ΛCDM parameters.

4.2 Further exploration of the BK18 likelihood

A suite of tests of the likelihood were reported in BK18, including internal consistency

of splits of the data, and consistency of the signal measured in the deeper versus wider

sky region. No significant impact on r was found, compared to the nominal analysis

choices, from imposing a dust index prior, including dust decorrelation, freeing the

lensing amplitude, including EE data, or dropping parts of the WMAP or Planck

data. BK18 find that the data are well fit by a 3-parameter dust model, with no
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Nominal BK18

FG fixed at best-fit

Figure 4.3: Reproduction of the BK18 r and foreground parameters (dust and syn-
chrotron amplitude, spatial spectral index and frequency spectral index, and dust-
synchrotron correlation parameter) for fixed cosmological parameters. Only the dust
frequency index, βB,dust, is now correlated with the tensor-to-scalar ratio, r. The blue
curve in the top left panel shows the constraint on r when holding the foreground
parameters fixed at their best-fit values.

evidence yet for synchrotron emission, or for a primordial B-mode signal. In this

section we explore a few further assumptions that can be tested at the likelihood

level with the public data products2.

4.2.1 Consistency of r from 95 GHz and 150 GHz

An important consistency test for any future detection of r will be to show agreement

of the measurement from different frequencies. We show in Figure 4.4 the distribu-

2Maps of the sky would be needed for various further tests, for example analyzing different regions
separately, or testing for non-Gaussian statistics.
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tion for r estimated from just the BK18 95 GHz data, or just the 150 GHz data.

In each case we include the other frequency data (23–44 and 217–353 GHz) to clean

foregrounds. As noted in BK18, the latest BICEP3 95 GHz data dominate the con-

straint, with the overall r < 0.036 upper limit driven by the 95 GHz data (which give

r < 0.038 without the 150 GHz data) The 150 GHz data, in combination with the

foreground tracers, give r < 0.072; this larger uncertainty currently limits a frequency

null test.

Nominal (95+150 GHz)

150 GHz

95 GHz

Figure 4.4: Distribution for r estimated from 95 GHz or 150 GHz, compared to the
nominal combination. The foreground frequencies are included in all cases and the
standard seven foreground parameters are estimated. The current limit is dominated
by the 95 GHz BICEP3 data.

4.2.2 Consistency of r cleaned with 220 GHz or 353 GHz

Since dust is the dominant foreground, we would also hope to see consistency of r

if different frequency maps are used independently as the dust tracer. In Figure 4.5

we show r and the three dust parameters for the case where the 217/220 GHz is

discarded, and only 353 GHz is used to trace the dust (‘no-220’) versus discarding

353 GHz and using only 217/220 GHz as the dust tracer (‘no-353’). In both cases

the usual synchrotron parameters are also sampled. The estimated model parameters

appear statistically consistent, with parameter means differing by only ∼ 1σ. The
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best-fit value of r is non-zero in the no-220 GHz case, but r = 0 is still an acceptable

fit. For both cases all three dust parameters can be constrained by the data to a

similar level of precision; the no-220 case prefers a steeper spectral index and shallower

ℓ-dependence for the dust.

No 220 GHz

No 353 GHz

Figure 4.5: Parameter estimates are consistent whether 220+217 GHz or 353 GHz
data are used to clean the dust. The best-fit value of r is non-zero in the no-220 GHz
case, but r = 0 is still an acceptable fit. Scatter is expected since the dust-tracing
data are independent in the two cases.

4.2.3 Impact of assuming spatially power-law dust

From observations by Planck, the dust is found to follow a power-law spatially in

the angular range 40 < ℓ < 600 (Planck Collaboration et al., 2016d, 2020f), scaling

as ℓαd . However, the Planck data do show some departure from power law BB at

larger angular scales, and also show statistically significant variations in the power
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law over different sky regions. As data improve, we might expect to detect a deviation

from a pure power-law in the BICEP/Keck region, which may impact the estimated

r. To explore this, we extend the BK18 likelihood to include a different amplitude

of dust in each of the nine bins. We replace the two parameters Ad and αd, where

Dℓ = Ad(ℓ/80)
αd at 353 GHz, with nine amplitudes that are sampled simultaneously

with r and the other foreground parameters (making 15 parameters altogether instead

of eight). We find negligible impact on r, as shown in Figure 4.6. The dust amplitudes

are also shown in Figure 4.6, and are consistent with estimates in BK18 where the

dust and non-dust parameters are estimated separately in each bin3. We find no

significant departure from power law.

Within the power-law model, with Ad(ℓ/80)
αd at 353 GHz, the BK18 analysis

imposes a hard prior −1 < αd < 0, motivated by Planck data. Given the improved

data quality in BK18, we expand the prior on the dust slope, αd, so that it is not

limited by the hard boundary at αd = −1. The BK18 data can now constrain this

slope from the data, as shown in Figure 4.6. This choice also has a negligible impact

on r.

4.2.4 Effect of fixing the dust temperature

The fiducial model assumes a dust temperature of 19.6 K, which is the mean temper-

ature estimated by Planck over the sky. This temperature is expected to have some

spatial variation, and may depart from the mean value in the particular BK18 region.

We test the impact of varying the dust temperature in Figure 4.7, over a broad range

0 < Td < 50 K. It has a negligible effect on the estimated r, and simply shows up as

a correlation with the dust emissivity index, βd.

3Here we are simultaneously estimating r and a single dust index, and common synchrotron
parameters, together with the dust amplitudes.
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Nominal BK18 model

Expanded α prior

Dust amplitude in 9 bins

Figure 4.6: Top left: there is minimal impact on r when we expand the spatial power-
law dust model to one with an ell-by-ell amplitude, and negligible impact when we
relax the prior on the power-law exponent. Top right: the power-law estimated with
an expanded prior can still be constrained by the data. Bottom: estimated dust
amplitude in bins, defined at 353 GHz, together with the best-fitting power-law-
model

.

Nominal

Vary Td


Figure 4.7: Varying the dust temperature, Td, does not impact the constraint on
r. The temperature cannot be bounded from above by this dataset, but is weakly
anti-correlated with the dust index, βdust.

4.2.5 Relaxing the prior on the synchrotron index

In the nominal model there is a Gaussian prior on the synchrotron index, with

βs = −3.1 ± 0.3 estimated from WMAP data. The upper limit on the synchrotron
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amplitude is As < 1.5 µK2 at 95% CL, defined as the power at 23 GHz and ℓ = 80;

as noted in BK18 there is not yet a detection of polarized synchrotron in BB. The

data can still be used to put an upper limit on the synchrotron index, assuming a flat

prior, since although a flat index βs = 0 should be able to fit the data as As tends to

zero, there is a far smaller volume of models at this high-β limit. Figure 4.8 shows

that there is minimal impact on r if we allow the synchrotron index to be constrained

by the data within some prior range 4 < β < 0. There is an upper limit on βs, but

no lower limit, since an arbitrarily steep index can be accommodated by having a

negligible synchrotron amplitude at 95 GHz.

Nominal

Broad βs prior


Figure 4.8: Left: Removing the Gaussian prior on the synchrotron index has little
effect on r. Center/right: no synchrotron emission is detected in the BK18 data,
but with a uniform prior on the index, the larger volume of models at more negative
values of β are preferred.

4.3 ‘BK18-lite’ - a compressed likelihood

In this section we construct a foreground-marginalized likelihood that depends on the

BK18 data’s best estimate of the CMB power in each of the nine ℓ-bins. This has

been done in the past for the ACT likelihoods and for the Plik lite Planck likelihood

(Dunkley et al., 2013; Calabrese et al., 2013; Planck Collaboration et al., 2016a; Prince

& Dunkley, 2019). There are a few different factors that must be accounted for in this

process. Firstly, the probability distribution for each binned BICEP bandpower is

non-Gaussian, so it is key that we accurately capture the shape of the probability dis-
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tribution of the bandpower p(Cbin) for each bin. For ACT and Planckthe likelihoods

were Gaussian. Secondly, we need to evaluate the covariance between bandpowers to

see if the likelihoods for each bandpower can be combined independently, or whether

we need to account for covariances between bins. Thirdly, we need to account for the

three different window function shapes, and the different window function normal-

izations, based on the different regions of the sky observed by BICEP2, Keck Array,

and BICEP3. A sample of these window functions is shown in Figure 4.1. The win-

dow functions for the smaller BICEP2/Keck patch of sky are slightly shifted in ℓ and

have different shapes to the window function for the BICEP3 region. Although these

differences are fairly minor, they do result in differences in the CMB bandpowers

for each window function that are significant enough to affect the likelihood for the

tensor-to-scalar ratio r.

We sidestep the issue of different window functions for now by using only the

BICEP3 region maps (including the BICEP3 95 GHz map, as well as WMAP and

Planck maps at different frequencies), which have a common window function. The

constraints on r from these eight maps are very similar to the constraints from the

full 11 maps that use the BICEP2 and Keck array 150 GHz and 220 GHz data,

even though the foreground constraints are broader, as shown in Figure 4.9 (see also

Appendix E2 and Figure 20 of Ade et al. (2021)). An alternative approach would

be to estimate 27 foreground-marginalized bandpowers, nine for each window func-

tion shape, and use these to construct the likelihood. This would require accounting

for covariances between highly overlapping but not identical ℓ ranges for different

maps, and including the different normalizations of the window functions for the BI-

CEP2/Keck frequencies. Another possible approach could use the BICEP2/Keck 150

GHz and 220 GHz data to put a prior on the foreground parameters before estimat-

ing the bandpowers from the BICEP3 region data. Other methods for describing the

likelihood could also be explored, such as the Hamimeche-Lewis formalism used in
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BK18 full
BK18 (BICEP3 windows)

Figure 4.9: Constraints on the tensor-to-scalar ratio r and the seven foreground pa-
rameters from the full BICEP likelihood, using data from both the BICEP3 and
BICEP2/Keck sky regions (black) and just the BICEP3 sky region maps (red).
Dropping the BICEP2/Keck 150 and 220 GHz channels broadens the foreground
constraints, particularly for the dust spectral index, but the r constraint is not sig-
nificantly affected.

the full likelihood (Hamimeche & Lewis, 2008). We leave such extensions for future

work, and concentrate only on the BICEP3 region for the remainder of this chapter.
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4.3.1 Bandpower estimation

We use the BK18 likelihood described in Ade et al. (2021) to estimate the CMB

bandpowers in the nine ℓ-bins simultaneously, marginalizing over the foreground pa-

rameters. In practice this involves modifying Cobaya to estimate 18 parameters via

the usual Metropolis-Hastings algorithm: 9 bandpowers and 7 foreground parame-

ters. For the data vector, we use only the maps that have the wider BICEP3 sky

area, which includes the BICEP3 95 GHz map and the Planck and WMAP maps at

low and high frequencies to constrain synchrotron and dust foregrounds. These maps

all have the same bandpower window functions, and the BICEP3 95GHz provides the

most constraining power on the tensor-to-scalar ratio r.

The estimated bandpowers are shown in Figure 4.10, both for the foreground-

marginalized case in which the seven foreground parameters are allowed to vary in

addition to the nine bin amplitudes, as well as for a fixed-foreground case in which the

foreground parameters are set to their best-fit values. The bandpower distributions

are very similar in both cases. There are mild correlation between neighbouring bins

in ℓ, which is to be expected because the foregrounds are correlated between bins. In

Figure 4.11 we show that the foreground parameters are consistent when estimating

the bandpowers or when directly constraining r; this checks that the method is not

driving the foreground parameters to different values.

The one-dimensional distributions for the bandpowers are shown in Figure 4.12.

We find that they are well fit by an offset log-normal distribution with the form:

p(Db) =
1

(Db −D0)σ
√
2π
e−(ln(Db−D0)−µ)2/(2σ2), (4.9)

where D0 is the offset that makes ln(Db −D0) normally distributed for each bin, and

µ and σ are the mean and standard deviation of ln(Db−D0) respectively. These best-

fitting log-normal distributions are also shown in Figure 4.12. We also estimate the
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Figure 4.10: Estimates of the nine B-mode bandpowers (here just for the BICEP3
region) marginalized over foregrounds (red) or estimated for the best-fit foregrounds
(blue).

covariance between the bandpowers, finding the neighboring bins to have correlation

coefficients of order 15-20%, but non-neighboring bins below 10%.

The foreground-marginalized bandpowers are plotted together with theory curves

for different values of the tensor-to-scalar ratio in Figure 4.13. Our method of simul-

taneously estimating the nine bandpowers while marginalizing over the foregrounds

is different from the approach the BICEP team take to decompose each bin indepen-

dently into CMB, dust, and an upper limit on synchrotron for plotting purposes (see

e.g., Figure 16 of Ade et al. (2021). We obtain smaller errors because we use data

from all the bins to constrain the foregrounds simultaneously, instead of handling
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Figure 4.11: Distributions of the foreground parameters are consistent whether esti-
mating the bandpowers or the tensor-to-scalar ratio r directly.

each bin separately. The CMB bandpowers in Figure 4.13 can be compared to the

frequency channel bandpowers in Figure 4.2, which include the dust foregrounds. For

convenience, the BICEP3 95 GHz channel is reproduced in Figure 4.13 as light blue

dots. On scales larger than about 1 degree (ℓ < 180) the CMB bandpowers are lower

than the total 95 GHz channel because the dust contribution has been removed.
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Figure 4.12: Probability distributions for the nine CMB bandpowers in the BICEP3
sky region, each fit with a three-parameter offset log-normal distribution.

4.3.2 The BK18-lite likelihood

Independently combining the log-likelihoods for each lognormal bin would give

lnL ∝
9∑

i=1

(
−(ln(Dth,i −D0,i)− µi)

2

2σ2
i

− ln(Dth,i −D0,i)

)
+ constant, (4.10)

where Dth,i is the theory B-mode power spectrum for a given model (DBB(ℓ) =

ℓ(ℓ + 1)CBB(ℓ)/2π) that has been binned using the BICEP3 window functions, i.e.

Dth,i =
∑

ℓWi(ℓ)Dth(ℓ) for i = 1...9. The r-constraints using this likelihood are shown

as the blue curve in Figure 4.14. They are close to the r distribution found using the

full likelihood, but not identical.

We can modify Equation 4.11 to include the covariances between bins:

lnL ∝ −1

2
(ln(Dth −D0)− µ)T Q−1 (ln(Dth −D0)− µ)−

9∑
i=1

ln(Dth,i−D0,i)+constant,

(4.11)
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Figure 4.13: Foreground-marginalized CMB bandpowers (blue circles) plotted with
the theoretical B-mode power spectrum for r = 0 (solid black curve) and r = 0.03
(dashed black curve). The BICEP3 95 GHz bandpowers are shown for compari-
son (light blue dots). The values of the foreground-marginalized bandpowers are
taken from the mode of the best-fit log-normal distribution, and the errorbars for
the foreground-marginalized bandpowers are calculated using the 16th and 84th per-
centiles of the distribution. These errors are asymmetric, with the upper errors larger
than the lower error, although this is difficult to see with the log scale on the y-axis.
The errorbars plotted for the BICEP3 95GHz channel, taken from the publicly avail-
able BICEP/Keck data, are symmetric and reflect the width and not the shape of
the bandpower distribution.

where Dth is a vector of the binned theory B-mode power spectrum for a given model

and D0 is a vector of the best-fit offsets and means for the CMB data bandpowers.

This is equivalent to assuming that using the best-fit one-dimensional offset D0,i

for each binned data bandpower Di, the quantity ln(Di − D0,i) for i = 1..9 has a

multivariate normal distribution with covariance matrix Q and mean vector µ. We

find that a log-normal likelihood that includes the covariance between neighboring

bins (Q is a block-diagonal matrix) is sufficient to reproduce the BICEP3 constraint

on the tensor-to-scalar ratio r.
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Figure 4.14: The constraints on r constraints from our new foreground-marginalized
‘BK18-lite’ likelihood (black) agree with the nominal BK18 likelihood, restricted to
just the maps that use the BICEP3 window functions (red). Neglecting the covariance
between neighboring bins in the BK18-lite likelihood gives the blue curve.

The constraints on the tensor-to-scalar ratio r using our BK18-lite likelihood and

the full BICEP likelihood for the BICEP3 region are shown in Figure 4.14, as the black

and red curves respectively. They give almost identical constraints on r, validating our

compression into nine offset log-normal foreground-marginalized bins. This likelihood

is useful because it does not require sampling the foreground parameters for each r

constraint, the CMB-only bandpowers can be visually compared to the CMB theory

power spectrum, and it can be easily used with automatically differentiable theory

codes when using sampling methods like Hamiltonian Monte Carlo and the No-U-

Turn Sampler.
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4.4 Conclusion

In this chapter we have studied the likelihood analysis for the BICEP/Keck collab-

oration tensor-to-scalar ratio (Ade et al., 2021), and explored the effects of different

foreground modeling choices on the results. We compare primordial B-mode con-

straints using the 95 GHz and 150 GHz science channels respectively, and find that

they are consistent, with the 95 GHz channel having significantly more constrain-

ing power. We find that dust parameters measured primarily using complementary

data at 220 and 353 GHz are consistent. Relaxing the power law assumption for

the spatial variation of dust or allowing the dust temperature to vary instead of fix-

ing it to the mean temperature estimated by Planck has no significant effect on the

tensor-to-scalar ratio constraint. Relaxing the prior on the synchrotron spectral index

also has little effect on the r constraint. Public availability of the BICEP and Keck

Array maps in addition to the spectra would enable reproduction and tests of the

Gaussianity and spatial variation of the dust in the region.

We then estimate the joint probability distribution of nine foreground-marginalized

CMB bandpowers using BICEP3, Planck and WMAP maps in the BICEP3 region

of the sky. We fit these bandpowers with offset log-normal distributions and then

construct a likelihood that independently combines the nine bins before adding a

term to account for the covariances between neighbouring bins. We show that this

new ‘BK18-lite’ likelihood accurately reproduces the r constraint obtained with the

BICEP/Keck team’s likelihood. We plan to incorporate the BICEP2/Keck data at

95, 150 and 220 GHz into our BK18-lite likelihood and release it publicly for use as

a nuisance-parameter-free alternative to the full BICEP likelihood for constraining

r. We also plan to further test the BK18-lite likelihood in combination with other

datasets for constraining a variety of cosmological models.
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Chapter 5

Primordial adiabatic and

isocurvature power spectrum

constraints with the Atacama

Cosmology Telescope DR4: beyond

the single power law

The ΛCDM model of the universe, which is a good fit to a wide range of cosmological

data, assumes that the primordial scalar fluctuations in the universe are adiabatic,

Gaussian, and take the form of a power law. In standard inflation models of the

early universe this power law is predicted to be close to scale invariant, i.e. close

to having a spectral index ns = 1 (Peebles & Yu, 1970). The Planck 2018 legacy

data release provides an estimate of the spectral index with ns = 0.965 ± 0.004,

which is 8σ away from scale invariance (Planck Collaboration et al., 2020c). A slight

red tilt (more power on larger scales) is preferred, consistent with predictions from

inflationary models (Planck Collaboration et al., 2020e).
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Primordial isocurvature fluctuations can also be present in combination with adi-

abatic fluctuations in the early universe (e.g., Bucher et al., 2000). In the case of

adiabatic fluctuations, which are the only fluctuations that can be generated by sin-

gle field inflation, the overdensities of the different components are proportional to one

another, so a region that has a radiation overdensity has a correponding overdensity

in other particle species such as dark matter, baryons and neutrinos. For isocur-

vature fluctuations, however, an overdensity of one component, such as radiation,

corresponds to an underdensity of another component, say cold dark matter, such

that the sum of these components remains constant. The possibility of the primor-

dial fluctuations being purely isocurvature modes (Efstathiou & Bond, 1986, 1987)

was ruled out when the location of first acoustic peak of the CMB was measured, as

it is consistent with adiabatic and not isocurvature predictions (Enqvist et al., 2002).

We now know from Planck data that most of the primordial fluctuation power comes

from purely adiabatic fluctuations, with a 95% upper limit of 1.3% and 1.7% of the

total primordial power being sourced from cold dark matter density isocurvature and

neutrino density isocurvature respectively in the range of scales probed by Planck,

assuming a power law for the isocurvature fluctuations (Planck Collaboration et al.,

2020e).

More recent measurements from the Atacama Cosmology Telescope (ACT) and

the South Pole Telescope (SPT) ground-based experiments constrain the CMB at

smaller angular scales than Planck. Interestingly, they are consistent with the adia-

batic scalar fluctuations having ns = 1 (Aiola et al., 2020; Dutcher et al., 2021). These

new data also have the potential to constrain isocurvature fluctuations at smaller

scales than accessible to Planck. In this chapter we use data from the ACT DR4 data

release, and from the SPT-3G 2020 release, to explore three possible extensions to

the ΛCDM model. The first is purely adiabatic, but has a broken power law for its

primordial power spectrum, with scale invariant behavior on small scales and a red
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tilt on larger scales. The second two extensions keep the adiabatic component as a

pure power law, but include either CDM or neutrino isocurvature power in bins as a

function of angular scale.

This chapter is laid out as follows. We describe the CMB data and likelihoods we

use in Section 5.1. Section 5.2 gives constraints on the broken power law model for

the primordial adiabatic power spectrum. In Section 5.3 we present constraints on

the binned CDM density and neutrino density isocurvature power. We discuss our

results in Section 5.4.

5.1 Data and likelihoods

In this section we describe the data that we use from satellite (Planck) and ground-

based (ACT and SPT) CMB experiments. These data are complementary because

satellites are able to survey a large fraction of the sky and are not limited by

atmospheric noise on large scales, thus giving excellent measurements of the CMB

power on large angular scales. Ground-based experiments are able to use larger tele-

scope mirrors than satellites and replace their detector arrays with ever-improving

technology to obtain low-noise measurements at small angular scales. Therefore

combining data from space- and ground-based telescopes gives good signal to noise

over a large range of angular scales. Additionally, ACT and SPT observe different

regions of the sky from their locations in the Atacama desert and at the South Pole,

so their data do not have a large overlap in sky area.

ACT: We use temperature and polarization data from the fourth data release of

the Atacama Cosmology Telescope, ACT DR4 (Aiola et al., 2020; Choi et al., 2020).

Pyactlike, the foreground-marginalized likelihood for TT, TE and EE, is publicly

available on GitHub1. This likelihood has been obtained by marginalizing over the

1https://github.com/ACTCollaboration/pyactlike
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foregrounds in the multifrequency TT, TE and EE power spectra in wide and deep

fields from ACT DR4 (Choi et al., 2020) and data from ACT MBAC (Das et al.,

2014), resulting in binned CMB-only angular power spectra for TT, TE and EE with

a covariance matrix that includes the various sources of uncertainty including noise,

foregrounds, the beam, and calibration uncertainties. Pyactlike has one nuisance

parameter that must be sampled in addition to the cosmological parameters of

interest: the polarization efficiency yp. The full multipole range includes bin centers

at 600 ≤ ℓ ≤ 4125 for TT and 350 ≤ ℓ ≤ 4125 for TE and EE. However when we

combine ACT DR4 with the full ℓ range of Planck we drop the ACT DR4 TT data

at l < 1800 to avoid double counting scales that are observed by both experiments.

SPT: The third generation camera on the South Pole Telescope (SPT-3G)

includes in its 2020 data release (Dutcher et al., 2021) the TE and EE power spectra

over a multipole range of 300 ≤ ℓ < 3000. We use the Python implementation of

the SPT-3G likelihood2 presented in La Posta et al. (2021). The likelihood combines

power spectra from the three frequency channels at 95, 150, and 220 GHz with

foreground modeling of Galactic dust for TE and EE and polarized point sources for

EE.

Planck: We use Planck data and likelihoods from the 2018 legacy data release

(Planck Collaboration et al., 2020b). We use the publicly available foreground-

marginalized CMB-only likelihood Plik lite, which bins the power spectrum in the

range 30 ≤ ℓ ≤ 2508 for TT and 30 ≤ ℓ ≤ 1996 for TE and EE. For low-ℓ we

use the Commander TT likelihood and the Sim-all EE likelihood for 2 ≤ ℓ < 30.

The low-ℓ EE likelihood constrains the optical depth to reionization τ . For some

data combinations we also use a modified version of Planck-lite-py, our Python

2https://github.com/xgarrido/spt_likelihoods
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implementation of the Plik lite likelihood, that includes Planck TT data only from

30 ≤ ℓ ≤ 645. We call this likelihood PlanckTT645 and use it in combination

with the full ℓ range of ACT DR4 temperature data to provide constraints that are

independent of Planck on small scales (ℓ > 650).

Planck CMB lensing: We use the CMB lensing power spectrum likelihood from

the Planck 2018 legacy release (Planck Collaboration et al., 2020d) in our isocurvature

constraints in Section 5.3.

5.2 Primordial Adiabatic Power Spectrum

In this section we investigate whether a modification to the power-law model for the

primordial spectrum is able to better fit the Planck and ground-based data. In this

first extension to ΛCDM we assume the perturbations are purely adiabatic, where

the photon entropy ni/nγ for the various components i of the universe is constant.

The photon entropy perturbation (which is zero in the adiabatic case) is given by

Si =
δ(ni/nγ)

ni/nγ

=
δi

1 + wi

− δγ
1 + wγ

, (5.1)

where ni is the number density of component i (which could be cold dark matter,

neutrinos, baryons, etc), nγ is the number density of photons, δi = δρ/ρ̄ is the energy

density perturbation for component i, and wi = ρi/pi is the equation of state of

component i. Using the appropriate values for the equation of state, we see that

adiabatic perturbations correspond to δc = δb =
3
4
δν = 3

4
δγ, i.e. the energy densities

of the components of the universe are proportional to one another.
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5.2.1 Power law primordial power spectrum

The primordial adiabatic power spectrum is defined as

Pϕ(k) ≡
1

(2π)3
⟨ϕ(k)ϕ(−k)⟩, (5.2)

where ϕ is the Newtonian potential in the perturbed FRW metric. The power spec-

trum has units of (length)3 so to obtain a dimensionless quantity, we can multiply it

by k3, as the wavenumber k has units of inverse length.

∆2(k) ≡ k3P (k)

2π2
(5.3)

The Planck 2018 data are well-fit by a ΛCDM model with a single power law power

spectrum of the form

∆2(k) = As

(
k

k∗

)ns−1

, (5.4)

with a best fit scalar spectral index ns = 0.965± 0.004 (Planck Collaboration et al.,

2020c,e). The pivot scale is set to be k∗ = 0.05Mpc−1 in the Planck analysis.

This best-fit spectral index is > 8σ away from the ns = 1 scale-invariant Harrison-

Zel’dovich-Peebles power spectrum (Harrison, 1970; Zeldovich, 1972; Peebles & Yu,

1970). The Planck collaboration finds no evidence for ns varying with scale through a

running of the spectral index d (lnns/d ln k), or for a running of running of the spec-

tral index(d2 lnns/d(ln k)
2)(Planck Collaboration et al., 2020e). These constraints

were derived using the temperature power spectrum up to maximum multipole of

ℓ = 2509 and E-mode polarization and TE power spectra with a maximum multipole

of ℓ = 1997.

Ground based experiments with sensitive observations of the CMB at small scales

have shorter lever-arms over which to measure the spectral index, and find best-fitting

values of the spectral index that are consistent with a scale invariant power spectrum
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with ns = 1. The ACT DR4 data are used to estimate ns = 1.008 ± 0.015 from

ACT alone using a multipole range of 350 ≤ ℓ ≤ 4000, and ns = 0.973 ± 0.006 with

ACT and WMAP data (Aiola et al., 2020). The SPT-3G data provide an estimate

of ns = 0.995 ± 0.024 using binned TE and EE power spectra over the multipole

range 300 ≤ ℓ < 3000. The values obtained by ACT and Planck, shown in Figure

5.1 from (Aiola et al., 2020), do not differ by a statistically significant amount, and

the different results could simply be due to statistical fluctuations. However, this

2–3σ level difference could also be suggestive of a primordial power spectrum that is

not purely a power law, and we explore that possibility in this section. In the ACT

analysis in (Aiola et al., 2020) a running of the spectral index was investigated, and

was found to be preferred at the 2.4σ level with ACT alone, but no running was

preferred once the WMAP or Planck data were included.

Figure 5.1: 1σ and 2σ probability distribution contours for the spectral index, ns, and
the baryon density, Ωbh

2, using ACT DR4 (light blue), Planck (purple) and WMAP
(yellow) data reproduced from Figure 14 of Aiola et al. (2020). Planck and WMAP
prefer lower values of ns than ACT, which probes smaller angular scales.

We begin our investigation by reproducing the standard power-law results reported

in Aiola et al. (2020). Figure 5.2 shows the posterior distributions of the six ΛCDM
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parameters that we estimate from ACT DR4 data alone and from ACT combined

with Planck (for this combination we follow Aiola et al. (2020) in dropping ACT TT

data below ℓ = 1800 to avoid double counting the modes measured by Planck). For

both of these likelihood combinations we use a Gaussian prior of τ = 0.065 ± 0.015

instead of the Planck low-ℓ EE data, for consistency with Aiola et al. (2020). We find

that the parameters agree to within the expected chain-convergence level with those

estimated in the ACT DR4 analysis (Aiola et al., 2020). Figure 5.2, in addition to

Figure 5.1, illustrates how the ACT data alone prefer ns ∼ 1, while Planck prefers

a lower value, although they are not statistically inconsistent. Combining ACT DR4

with Planck data brings the spectral index down to below ns = 1.

Figure 5.2: Parameter constraints using ACT DR4 (blue) and ACT DR4 combined
with Planck 2018 (black). ACT prefers a higher value of ns than Planck, as seen
in the middle panel of the top row, but there is no significant tension between the
two datasets. The agreement of our parameter estimates with distributions from the
official ACT DR4 data release Aiola et al. (2020) are shown for comparison (dashed
purple and grey curves).
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5.2.2 A broken power law spectrum

Given the slight preference for different power-law indices at large and small scales,

we consider an alternative to the running of the spectral index by exploring a broken

power law model. This type of parameterization has been explored in the past for

WMAP and Planck data (e.g., Bridle et al., 2003). While most inflationary models

predict a slowly and monotonically varying power spectrum, more complicated and

fine-tuned inflationary models could introduce features at the length-scales probed

by current data. This is thus an empirical model that could be connected to theories

of the early universe if preferred by the data.

The simplest version we test has a scale invariant spectral index (ns = 1) on small

scales and a smaller spectral index on large to intermediate scales. The equation we

adopt for a smooth broken power law is

P (k) = Ab

(
k

kb

)(ns,1−1)
[
1

2

(
1 +

(
k

kb

)1/∆
)]∆(ns,2−ns,1)

, (5.5)

for a power law that breaks at k = kb with spectral index ns = ns,1 for k < kb and

ns = ns,2 for k > kb, with ∆ controlling the width of the transition between spectral

indices. We assume that the power spectrum is scale invariant at small scales then

ns,2 = 1. We then fit for the amplitude, power law index on large scales, and break

wavenumber kb of the broken power law, i.e., with one additional power spectrum

parameter compared to the standard ΛCDM model.

In Figure 5.3 we show the posterior distributions for the break wavenumber, kb,

and large-scale spectral index, ns (with ns = 1 for k > kb), as well as the other

cosmological parameters. Using just Planck data we find a preferred value of kb ≥

0.15 Mpc−1, which corresponds to ℓ ∼ 2000 which is at the upper end of Planck ’s

ℓ range. This is effectively equivalent to the Planck data having a single power law
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Figure 5.3: Parameter constraints for a broken power-law primordial power spectrum
that is scale invariant on small scales, with a slope equal to ns at scales k < kbreak
(given in units of Mpc−1). Planck prefers a single power law and therefore pushes the
transition scale, kbreak, to higher values (smaller scales) that are not well-constrained
by Planck. Adding ACT or ACT+SPT data selects a preferred transition scale at
k ∼ 0.1Mpc−1, although a range of larger k-values are still allowed.

Figure 5.4: Estimated primordial power spectra for a broken power law (blue) and a
single power law (green), with k in units of Mpc−1. The maximum likelihood curve
for ACT+Planck is shown as the solid curve, together with a sample of 500 other
points in the MCMC chains whose density is proportional to the model’s posterior
probability.
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Figure 5.5: Parameter constraints for a broken power law primordial power spec-
trum where both spectral indices are allowed to vary, with a break at kbreak, for
Planck+ACT, and Planck+ACT+SPT. A broken power law that is scale invariant
on small scales (ns = 1) has the highest probability, although models where the two
spectral indices are equal, i.e., the primordial power spectrum has a single power law,
are allowed by the data.

with a slight red tilt (ns < 1), and is consistent with there being no preference in the

Planck data alone for a deviation from power-law.

When we combine the Planck data with ACT DR4 data, or with ACT DR4 and

SPT-3G data, we find that a preferred value of kb = 0.1 Mpc−1 emerges, corresponding

to ℓ ∼ 1400. This best-fitting primordial power spectrum is shown in Figure 5.4,

compared to the single power law models. The spectral index for k < kb in the

broken power law model is slightly steeper than in the single power law model, before

flattening out to scale invariance at k > kb. We indicate the uncertainties in this

figure by drawing a sample of 500 points from the sampled chain, and plotting the

primordial power for each sample, such that the density of models is proportional to

the underlying posterior probability.

Despite the preference for this broken power-law, the distribution for kb in Fig-

ure 5.3 also shows that a high value of kb ≈ 0.3 Mpc−1 is not excluded by the data.

This transition scale translates to ℓ ∼ 4200, which is beyond the multipole range

probed by the ACT data, and thus is effectively equivalent to a single power law.

There is an improvement in χ2 of ∆χ2 = 3.8 for the broken power-law, compared

to ∆χ2 = 1.4 for a running spectral index. However, this is not a large enough im-
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provement to statistically prefer the broken power-law overall; the single power-law

model is still statistically preferred. When limiting the data to ACT DR4 + Planck

TT ℓ < 645, the improvement in χ2 is 10.3 for the broken power-law model, with the

broken power-law mildly preferred at the 2–3σ significance level. It will be interesting

to test this model with upcoming ACT DR6 data.

To check whether the smallest scales prefer a different power-law to ns = 1 we

also allow both slopes to vary, with Figure 5.5 showing the posterior distributions

when the spectral index at small scales is allowed to vary independently. We find

that a scale invariant value of ns,2 = 1 is preferred on small scales, but a range of

other options are allowed by the data, including the range where ns,1 = ns,2.

5.3 Primordial isocurvature perturbations

Spatial overdensities and underdensities of different particle species in the early uni-

verse can be divided into two orthogonal modes: adiabatic and isocurvature perturba-

tions. Taking photons as a reference species, another type of particle i (for example,

cold dark matter or neutrinos) whose fluctuations are purely adiabatic would have a

number density ni that is proportional to the photon number density nγ everywhere

in space, i.e., ni/nγ is spatially constant. Adiabatic perturbations are also known as

curvature perturbations because there is a spatial variation of density which corre-

sponds to a spatial variation of curvature. In contrast, isocurvature modes for species

i occur when spatial fluctuations of the densities of this species ni cancel out the spa-

tial fluctuations of the photons nγ. Multi-field inflation (or alternative early universe

models) can give rise to isocurvature modes in addition to adiabatic modes (Langlois,

1999).

In this section we consider isocurvature perturbations with non-zero perturbations

in the photon entropy, ni/nγ for two different components i, either cold dark matter
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or neutrinos. The primordial isocurvature power spectrum is defined as

PII,i(k) =

(
k

2π

)3

⟨Si(k)Si(−k)⟩, (5.6)

where Si is the entropy perturbation defined in Eqn 5.1, and i corresponds to baryons,

cold dark matter, or neutrinos. If the isocurvature and adiabatic perturbations are

correlated, the primordial cross-power is given by

PRI,i(k) =

(
k

2π

)3

⟨ϕ(k)Si(−k)⟩, (5.7)

were ϕ is the Newtonian potential that defines the adiabatic perturbation.

Here we consider isocurvature fluctuations between the photon density and either

the cold dark matter density (ICDI) or neutrino density (INDI). Isocurvature between

the photon and baryon density has an almost identical effect on the CMB as cold

dark matter density isocurvature so we do not quote separate constraints on these

two modes. If there was simultaneously both baryon and cold dark matter density

isocurvature then the CDI mode would include them both, with Ieffective
CDI = ICDI +

Ωb

ΩC
IBDI(Gordon & Lewis, 2003). We do not include isocurvature fluctuations between

the photon and neutrino velocity, identified in Bucher et al. (2000), because there is

no known way of exciting this mode.

5.3.1 Isocurvature mode phenomenology

As described in (e.g., Peebles & Yu, 1970; Bucher et al., 2000), isocurvature initial

conditions produce a CMB angular power spectrum that is quite distinct to one with

adiabatic initial conditions. We illustrate this in Figure 5.6, showing the shape of the

adiabatic power spectrum generated using the CLASS numerical code, compared to

the power spectrum from isocurvature components. All the spectra are shown for a

scale-invariant primordial power spectrum (ns = 1) with scalar power As = 2.3×10−9
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Figure 5.6: The TT, TE and EE angular power spectra of the CMB for adiabatic,
neutrino density isocurvature (NDI) and cold dark matter density isocurvature (CDI)
initial conditions. In each case the primordial power spectrum PRR(k) is scale invari-
ant (ns = 1) with scalar amplitude As = 2.3× 10−9. The isocurvature Cℓ’s have been
multiplied by a factor of 10 relative to the adiabatic Cℓ’s so that their shapes are
easier to compare.

defined at a pivot scale of k = 0.05 Mpc−1, but we multiply the isocurvature spectra

by 10 so that their overall shapes and phases relative to the acoustic peaks of the

adiabatic power spectrum can be seen.
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ICDI produces a CMB power spectrum that is almost exactly out of phase with the

adiabatic power spectrum, due to the phase shift in the initial conditions: its troughs

are at multipoles close to the adiabatic peaks. Because of this, a small amount of

CDI, in addition to the adiabatic power, has the effect of smoothing the acoustic

peaks in a similar way to gravitational lensing of the CMB. In temperature, the cold

dark matter isocurvature spectrum is large on large scales (low ℓ) and falls off quickly

with ℓ in both temperature and polarization, dropping much more steeply than the

adiabatic or neutrino density isocurvature modes. For a given amplitude As, cold dark

matter isocurvature produces less power in the CMB, resulting in suppressed power

spectra for TT, TE, and EE compared to adiabatic and neutrino density isocurvature

except at very small scales. These differing CMB amplitudes arise due to the different

transfer functions for each component.

The INDI power spectrum has peaks approximately in between the adiabatic and

CDI peaks. It is about a factor of 10 lower than the adiabatic CMB power for the

same initial primordial amplitude in P(k), but has a similar behavior with ℓ, with

the angular power falling off at around the same rate at high-ℓ, including at ℓ > 2000

which is beyond the range included in Figure 5.6.

The adiabatic and isocurvature primordial perturbations are small and so add

linearly, such that the total primordial CMB power spectrum is obtained by combining

the adiabatic, isocurvature, and cross-correlation terms,

Cℓ = CAd
ℓ + CIso

ℓ + CAd×Iso
ℓ . (5.8)

Some early universe models predict spatial correlations between adiabatic and isocur-

vature modes (e.g., Lyth & Wands, 2003; Kitajima et al., 2017), which can be either

negative or positive, and either partially or fully correlated depending on the physical

mechanism sourcing the perturbations.
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5.3.2 Parameterizing isocurvature perturbations

A single, generally correlated isocurvature mode was modeled for the Planck analysis

in Planck Collaboration et al. (2020e) by specifying the amplitude of the isocurvature

power and the adiabatic power at two reference scales and assuming that they take

the form of a power law. The scales are fixed to wavenumbers k1 = 0.002 Mpc−1 and

k2 = 0.1 Mpc−1 and then the relevant sampled parameters are P
(1)
RR and P

(2)
RR for the

adiabatic power, P
(1)
II and P

(2)
II for the isocurvature power, and P

(1)
RI for the correlation

power between the adiabatic and isocurvature modes. The spectral indices nRR and

nII can be calculated from these amplitudes. The correlation power is assumed to

also be a power law, with a spectral index given by the average of the adiabatic and

isocurvature indices nRI = (nRR + nII)/2.

Given that we do not a priori know the scale dependence of any possible isocur-

vature component, we extend this model to constrain five bins equally spaced in the

logarithm of the wavenumber, k, and allow the isocurvature power to vary indepen-

dently in these bins. We smoooth the bin transitions by convolving with a Gaussian.

We assume that the adiabatic and isocurvature modes are uncorrelated, consistent

with the PRI constraints from Planck (Planck Collaboration et al., 2020e). As in the

power law case, we allow one isocurvature mode to be present at a time, so we con-

strain the CDI and NDI modes separately. One advantage of using independent bins

to constrain the isocurvature power is that it is possible to explore which scales the

constraints are driven by, and where systematic errors may be arising. Additionally,

because the small scale CMB power is well constrained by ACT but not by Planck,

we can see whether there is some power there from a model that was not able to be

constrained by Planck. We choose bins in the range 0.001 < k < 0.5 Mpc−1, which

maps onto 10 < ℓ < 7000.
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Figure 5.7: The 95% upper limits on the cold dark matter density isocurvature (CDI)
primordial power spectrum as a function of wavenumber, k, with five bins smoothed
by convolving the binned power spectrum with a Gaussian. The best-fitting adiabatic
primordial power spectrum is shown for comparison. The ACT DR4 data improve
the constraints from Planck at the smallest scales.

5.3.3 Constraints on CDM isocurvature

We first test our parameter estimation framework by checking that we reproduce

the same parameter distributions as the Planck collaboration, using the power-law

assumption for the isocurvature power, and allowing the correlation power PRI to

vary. We find the same results as reported in the red contours of Figure 38 of Planck

Collaboration et al. (2020e), with P 1
II < 5.7× 10−11 at k1 =0.002 Mpc−1 and P 2

II <

3.3× 10−9 at k1 =0.1 Mpc−1 for CDI, and P 1
II < 1.5× 10−10 and P 2

II < 6.6× 10−10

for NDI. Within this restricted power-law model, we also find – as expected – that

the ACT DR4 data do not add noticeable constraining power to Planck.

For the five-bin model, with uncorrelated CDM isocurvature, we find 95% up-

per limits on the binned power for CDI as shown in Figure 5.7, together with the

Planck best-fitting adiabatic primordial power spectrum for comparison. We find the
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following upper limits as a function of scale for ACT+Planck :

P1(k) < 1.1× 10−10 (0.001− 0.0035 Mpc−1)

P2(k) < 1.7× 10−10 (0.0035− 0.012 Mpc−1)

P3(k) < 2.9× 10−10 (0.012− 0.04 Mpc−1)

P4(k) < 1.5× 10−9 (0.04− 0.14 Mpc−1)

P5(k) < 6.9× 10−8 (0.14− 0.5 Mpc−1) (5.9)

The ACT data adds negligible information to the larger-scale constraints, but

improves the limits on the two bins at k > 0.04 Mpc−1 by about 35%.

The posterior distributions for all the sampled parameters are shown in Figure 5.8.

The top two rows show the usual cosmological parameters where the power law adia-

batic power spectrum is parameterized by its amplitudes PRR at two different scales

k1 and k2 instead of by an amplitude and spectral index. All power spectrum am-

plitudes are renormalized by a factor of 10−10 so that the numerical values for most

of the isocurvature bin errors are around a few in these units, while the primordial

adiabatic power is ∼ 2× 10−9 = 20× 10−10.

We find that the adiabatic amplitudes are shifted slightly lower when isocurvature

is included, with Planck + ACT preferring lower values of the adiabatic amplitudes

PRR when isocurvature is included. The isocurvature power in the first three k-bins,

corresponding to ℓ ∼ 10 to 600, is constrained to be less than a few x 1010. On

smaller scales the upper bound on the isocurvature modes is less constrained. In

k-bin 4, corresponding to ℓ ∼ 600 to 2000, the cold dark matter density isocurvature

upper bound is around 2×10−9, which is the same as the best-fitting adiabatic power.

The fifth bin, which corresponds to ℓ > 2000, is not well constrained in the CDI case,

because CDI power contributes little to the CMB power spectrum.
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Figure 5.8: CDI constraints: posterior distributions for the amplitudes of the power-
law adiabatic power spectrum at two reference scales P 1

RR and P 2
RR, Hubble constant

H0, baryon density parameter Ωbh
2, cold dark matter density parameter Ωch

2 and
the optical depth to reionization τ , as well as the binned cold dark matter density
isocurvature amplitudes in five bins, P 1

II ... P 5
II .

Although a model with zero isocurvature is still an excellent fit to the data, we

do find a mild preference for a non-zero isocurvature amplitude in the fifth bin, but

at low significance (< 2σ). In adding isocurvature, we also find that the best-fitting

matter density is reduced compared to the model with purely adiabatic perturbations,
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and the Hubble constant is increased, but the parameter shifts are only a fraction of

a standard deviation.

We follow Planck Collaboration et al. (2020e) in quantifying the amount of isocur-

vature power relative to the total power in the CMB. The non-adiabatic fraction, α,

of the observed CMB variance is defined by

α =

4000∑
ℓ=2

(2ℓ+ 1)|CXY
iso,ℓ|

4000∑
ℓ=2

(2ℓ+ 1)|CXY
tot,ℓ|

, (5.10)

where XY=TT, TE or EE; here we extend the multipole range from ℓmax = 2500

used by Planck up to ℓmax = 4000. We find 95% upper limits on the contributions

of CDI to the TT, TE and EE power spectra up to ℓ = 4000 to be 1.9%, 1.7%, and

0.6% respectively.

Finally we also check that the upper limits would not be inconsistent with current

large-scale structure measurements, by plotting the matter power spectrum at z = 0

for the model with the 95% upper limit of CDM isocurvature. Shown in Figure 5.9,

we find that the isocurvature component is still well below the adiabatic level, due to

the suppressed matter transfer function for CDI compared to adiabatic perturbations.

5.3.4 Constraints on neutrino isocurvature

We repeat the same analysis for the NDI mode, and show the 95% upper limits on

the primordial isocurvature power in Figure 5.10. We find the following upper limits

as a function of scale for ACT+Planck :
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Figure 5.9: The 95% upper limits on the contribution of isocurvature to the linear
matter power spectrum at z = 0. The solid curve is the total adiabatic and isocurva-
ture power spectrum, the red dotted curve shows the upper limits on the cold dark
matter density isocurvature contribution, which is below 1% in the first few bins but
jumps up to 25% at k ∼ 0.2 h/Mpc and the blue dashed curve shows the upper limits
on the neutrino density isocurvature contribution, which remains below 1% at all
scales. This plot shows the linear matter power spectrum; the contributions to the
total (including nonlinear) matter power spectrum are of the same order of magnitude
but have a more complex as a function of k.

P1(k) < 3.4× 10−10 (0.001− 0.0035 Mpc−1)

P2(k) < 2.2× 10−10 (0.0035− 0.012 Mpc−1)

P3(k) < 3.4× 10−10 (0.012− 0.04 Mpc−1)

P4(k) < 3.4× 10−9 (0.04− 0.14 Mpc−1)

P5(k) < 1.5× 10−9 (0.14− 0.5 Mpc−1) (5.11)

Like for the CDI mode, the ACT DR4 data has little impact at large scales, but

improves the upper limits in the final two bins by 20%. At all scales the primordial

power is below the adiabatic best-fit, but the levels are comparable in the smallest-

scale bin.
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Figure 5.10: The 95% upper limits on the neutrino density isocurvature (NDI) primor-
dial power spectrum as a function of wavenumber, k (in Mpc−1), for Planck compared
to ACT+Planck. The best-fitting adiabatic power is shown for comparison.

In Figure 5.11 we show the posterior distributions for all the sampled parame-

ters. The best-fitting adiabatic power amplitudes are reduced when isocurvature is

included, but there is almost no change in the other cosmological parameters, com-

pared to the adiabatic-only case. Without the ACT data, the Hubble constant and

baryon density are slightly increased due to their correlation with the isocurvature

amplitudes.

Similar to the CDI model, there is some preference for non-zero isocurvature in the

the final bin, P 5
II , and the error bar is roughly halved with the inclusion of the ACT

data. There is also a mild preference for non-zero isocurvature in the third bin, P 3
II ,

driven by the Planck data; this was also noted in Planck Collaboration et al. (2020e).

We explore the phenomenological behavior of this non-zero isocurvature model in

more detail by examining the power spectra of the best-fitting model which has the

95% upper level of isocurvature power. The adiabatic and isocurvature components

of this model is plotted in Figure 5.12, and the residuals compared to the data are
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Figure 5.11: Neutrino density isocurvature (NDI) constraints: posterior distributions
for the amplitudes of the power-law adiabatic power spectrum at two reference scales
P 1
RR and P 2

RR, Hubble constant H0, baryon density parameter Ωbh
2, cold dark matter

density parameter Ωch
2 and the optical depth to reionization τ , as well as the binned

neutrino density isocurvature amplitudes in five bins, P 1
II ... P 5

II .

shown in Figure 5.13 for the TT spectrum (along with the CDI model). The non-zero

isocurvature model has more TT power at ℓ ∼ 2000 than the pure-adiabatic best-fit;

in TE and EE the models are very similar.
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Figure 5.12: The contribution of cold dark matter and neutrino density isocurvature
(scaled up by a factor of 100) relative to the adiabatic temperature and polarization
power spectra, for the model with 95% upper limits on the amount of isocurvature.

We test how much better this model fits the data, by looking at the goodness of

fit compared to the best-fitting adiabatic model. The χ2 for both models is given in

table 5.1, for each element of the data. The dominant impact comes from the Planck

data (Plik-lite), which has an improvement of ∆χ2 = 6 for the NDI model. This

is not statistically significant, however, since the model has 5 additional degrees of

freedom compared to the adiabatic-only case. As noted in Planck Collaboration et al.

(2020e), this model also has some phenomenological similarity to an enhancement in

gravitational lensing in the spectrum, which was seen with the Planck data at 2–3σ

significance.

112



Figure 5.13: Top: CMB temperature power spectrum for the best-fitting adiabatic
model, together with the ACT DR4 data points and compared to models with the
95% upper limit of NDI and CDI perturbations. The models with isocurvature have
a modest excess in the ℓ ∼ 2000 region. Bottom: difference between these models,
and residuals of the ACT DR4 data with each model.

Likelihood Adiabatic NDI 5 bins Difference
Planck 2018 lowTT 22.52 23.13 0.62
Planck 2018 lowEE 395.82 395.76 -0.06
Planck 2018 highTTTEEE (Plik-lite) 587.69 581.75 -5.94
Planck 2018 lensing 9.06 9.43 0.37
ACT DR4 TTTEEE(ℓ > 1800 for TT) 238.96 238.17 -0.79
Total χ2 1254.05 1248.24 -5.81

Table 5.1: The difference in χ2 (or −2 lnL) for the best-fitting adiabatic model com-
pared to the the best-fitting model with non-zero isocurvature. The overall improve-
ment in χ2 is only 5.8 for 5 extra degrees of freedom for the NDI model, so the
adiabatic model is still statistically preferred. The Planck data drives the improve-
ment in χ2.

We find 95% upper limits on the contributions of NDI perturbations to the TT,

TE and EE power spectra to be α < 1.7%, 1.8%, and 0.7% respectively. Like for the

CDI mode, the effect of NDI isocurvature at the upper level allowed by ACT and

Planck on the present day matter power spectrum, P (k), is shown in Figure 5.9. The

contribution from isocurvature is well below the total power spectrum.
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5.4 Discussion

The assumption made about primordial scalar perturbations in the standard ΛCDM

model is that they are Gaussian, adiabatic, and that their power spectrum can be

described by a power-law. This simple form of perturbations provides an excellent

fit to the Planck data, and so any deviation must be small. In this paper we have

explored whether there is any evidence from current data for such deviations, in

the form of departures from a power-law primordial power spectrum, or departures

from purely adiabatic perturbations over a range of scales. With the ACT DR4

data we were able to extend the range of scales probed by CMB data, out to k ∼

0.3−0.4 Mpc−1. We find no evidence for a break in the power-law, or a running index,

or for non-zero isocurvature perturbations in the range 0.001 < k < 0.5 Mpc−1.

Within the broken power-law model we find a mild preference for a break at k =

0.1 Mpc−1, for a transition between ns(k < 0.1) = 0.965 to an ns(k > 0.1) = 1,

but overall the power-law model is still statistically preferred. Similarly, within the

non-zero isocurvature model there is a mild preference for non-zero neutrino density

isocurvature at k > 0.002 Mpc−1, but the model is not preferred compared to a pure-

adiabatic model. The addition of ACT DR4 data tightens the upper limits compared

to Planck by ∼ 30% at the smaller scales. New data from ACT, and from future

Simons Observatory and CMB-S4 data, will be of great interest in better scrutinizing

these extended models, both with temperature and polarization CMB anisotropy

data.
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Chapter 6

Forecasts for constraining

primordial isocurvature with the

Simons Observatory

The CMB gives us a window into the early universe at the time when photons were

released at last scattering, as well as containing information about the photons’ in-

teractions during their journeys to our telescopes. The six-parameter ΛCDM model

of the universe has been constrained with increasing precision by the WMAP (Hin-

shaw et al., 2013) and Planck (Planck Collaboration et al., 2020c,b) satellites, and by

ground-based experiments including the Atacama Cosmology Telescope (Aiola et al.,

2020; Choi et al., 2020) and the South Pole Telescope (Dutcher et al., 2021).

The primordial perturbations that seed the large scale structure we see in the

universe today can theoretically be sourced by contributions from both adiabatic

and isocurvature fluctuations. The standard ΛCDM model with single field inflation

predicts solely adiabatic fluctuations in the early universe: the overdensities of the

different components are proportional to one another and a region that has a radia-

tion overdensity has a corresponding overdensity in dark matter, baryons, neutrinos
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etc. In contrast, for isocurvature fluctuations an overdensity of one component, such

as radiation, corresponds to an underdensity of another component, say cold dark

matter, such that the sum of these components remains constant.

The Planck satellite has constrained the contribution of non-adiabatic fluctua-

tions to being less than 1.3% and 1.7% of the CMB temperature power spectrum

over a multipole range of 2 ≤ ℓ ≤ 2500 at 95% confidence level for cold dark matter

density and neutrino density isocurvature respectively (Planck Collaboration et al.,

2020e), assuming a generally correlated power-law model for the isocurvature primor-

dial power spectrum. In Chapter 5 we showed how these constraints were improved

with data from ACT DR4, if we relaxed the assumption of power-law fluctuations.

The Simons Observatory (SO) is a new ground-based CMB experiment that is un-

der construction in the Atacama Desert in Chile (Galitzki et al., 2018; Ade et al.,

2019), with observations planned to begin in 2023–24, with a wide range of science

goals, from precision cosmology measurements to extragalactic as well as Milky Way

science (Ade et al., 2019; Hensley et al., 2022). SO consists of a large aperture tele-

scope (LAT), as well as three small aperture telescopes (SATs). With the LAT it

will observe the CMB intensity and polarization with ten times lower noise and at

five times smaller angular scales than Planck, enabling us to better constrain any

contributions from isocurvature from the early universe at small angular scales. The

CMB E-mode polarization will also be well-measured by the SO SATs at large angular

scales, leading to additional constraining power on the isocurvature modes.

In this chapter we focus on the constraining power that the SO LAT will have for

primordial cold dark matter and neutrino density isocurvature (CDI and NDI) pertur-

bations. Like in Chapter 5, we use a binned model for the isocurvature perturbations,

instead of the power law model used for the Planck analysis, to assess the possible

isocurvature amplitude at different scales. This chapter starts with a description of

SO and Planck mock data and likelihoods in §6.1, together with a description of the
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isocurvature model. We present the results of our forecasts in §6.2 and conclude in

§6.3.

6.1 Methodology

6.1.1 Simulated Simons Observatory data

The SO LAT will have a six meter dish and will observe at least 40% of the sky with

arcminute angular resolution. It will have six frequency bands from 27 to 280 GHz

to enable robust removal of foregrounds, with resolution from 7.4’ to 0.9’. We use

the publicly available SO multi-frequency likelihood code MFLike1, as well as power

spectra simulated for the 93, 145 and 225 GHz auto and cross spectra for TT, TE,

and EE2. We summarize the main features of these simulated data here, and refer to

Ade et al. (2019) for further details.

The noise angular power spectrum assumed in MFLike is modeled to include con-

tributions from atmospheric or instrumental 1/f noise as well as instrumental white

noise, described in Ade et al. (2019) by

Nℓ = Nred

(
ℓ

ℓknee

)αknee

+Nwhite. (6.1)

The first term on the right hand side describes the red noise and the second term is

the detector white noise. This includes the impact at small scales from the instrument

beam (Knox, 1997; Tegmark, 1997), such that

Nwhite = w−1eθ
2
b ℓ(ℓ+1)/2. (6.2)

1https://github.com/simonsobs/LAT_MFLike
2https://portal.nersc.gov/cfs/sobs/users/MFLike_data/
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Figure 6.1: Noise levels in temperature (top) and E-mode polarization (bottom) for
the Planck and Simons Observatory experiments. The blue curve shows the noise
curve for the Simons Observatory Large Aperture Telescope (LAT), while the orange
curve shows the noise for the Small Aperture Telescopes (SATs). The Planck white
noise curve is shown for comparison in grey. The theory curve for the CMB power
spectrum is shown in black. The LAT has strong signal-to-noise on smaller angular
scales (larger multipoles ℓ) than Planck, while the SAT has lower noise on similar
angular scales. These noise levels can be combined with the cosmic variance term to
obtain the uncertainty on the CMB power spectrum.

Here w−1 = (4πs2)(tobs), where s is the detector sensitivity in µKs1/2, and tobs is the

observation time. The full width at half maximum of the Gaussian beam is given by

θFWHM =
√
8 ln 2θb. These noise curves are shown in Figure 6.1 for the coadded 93

and 145 GHz science channels, together with the Planck 143 GHz noise curves, for

temperature and E-mode polarization. The expected effect of the atmosphere can be

seen in the SO noise at low ℓ (large scales), and the effects of the instrument beam

due to limited angular resolution at high ℓ (small scales). The Planck noise, with a

larger beam but no atmospheric contamination, becomes larger than the temperature

signal at ℓ ≳ 2000 for temperature and ℓ ≳ 1000 for E-mode polarization. In contrast,
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the SO LAT noise is larger than the TT power spectrum for ℓ ≳ 3000 and the EE

power spectrum for ℓ ≳ 2000, enabling CMB measurement on smaller scales than

Planck. Given these properties, the optimal cosmological constraints are expected

to be derived from a combination of Planck and SO data. In our joint forecasts for

Planck and SO we remove the SO TT power at ℓ < 1800 to avoid double counting

modes that are well-measured by both Planck and SO.

To create the inputs for MFLike, lensed CMB and foreground signal maps are sim-

ulated by drawing Gaussian realizations from a best-fitting ΛCDM theory spectrum,

plus a model for the multi-frequency spectra that includes foregrounds, following

Dunkley et al. (2013). The temperature power spectrum includes contributions from

the kinetic and thermal Sunyaev-Zel’dovich (SZ) effects, radio galaxies as Poisson-

distributed point sources, clustered dusty star forming point source galaxies as part

of the cosmic infrared background (CIB), the cross-correlation between the tSZ and

CIB, and emission from Galactic dust. The E-mode polarization power spectrum and

the TE cross spectrum include polarized emission from Galactic dust and from radio

galaxies. The templates for these components have 14 foreground parameters. A

Gaussian noise realization at each frequency is added to the simulated signal maps,

and spectra and analytic covariance matrices are estimated using pseudo-Cℓ methods

as in Li et al. (2021). These are then used to form a Gaussian likelihood for the

multi-frequency power spectra. Here, the error on the angular power spectrum at

each frequency approximately scales as

σ(Cℓ) =

√
2

(2ℓ+ 1)fsky
(Cℓ +Nℓ) , (6.3)

where the first term in Eqn. 6.3 captures the contribution of cosmic variance, and

the second term includes the effect of detector noise and the beam of the instrument.
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This expression is modified in practice to account for the mode coupling matrix that

is introduced when estimating spectra on the cut sky (Alonso et al., 2019).

In this chapter we do not include forecasts for the SATs (Ali et al., 2020), leaving

this to future work. The three SATs have diameters of 0.5 m and will observe larger

scales in polarization (with angular resolution of 10-91’) on approximately 10% of the

sky. Figure 6.1 includes the SAT noise curves for comparison; they have low noise in

polarization on large scales, but the beam cuts off at lower ℓ than for Planck.

6.1.2 Simulated Planck data

We use modified versions of our Planck-lite-py3 and Planck-low-py 4 likelihood codes,

described in Chapters 2 and 3, where we replace the CMB power spectrum with the

Planck best-fitting ΛCDM power spectrum in each bin, and use the actual errors and

covariances for Planck. This likelihood gives constraints that are consistent with the

full Planck likelihood for the ΛCDM parameters but has best-fitting values of zero

for the binned isocurvature power.

6.1.3 Isocurvature model

Following Chapter 5, we use a model with 5 bins equally spaced in log(k) and allow

the isocurvature power to vary independently in these bins, as P
(i)
II , for i = 1, ..., 5.

We set the correlation between the isocurvature and adiabatic modes to zero. We

allow one isocurvature mode to be present at a time, either cold dark matter density

isocurvature (CDI) or neutrino density isocurvature (NDI). This isocurvature model

is described in more detail in the previous chapter. The primordial adiabatic power

spectrum is still modeled as a power law, but is parameterized by its amplitude at two

reference wavenumbers P
(1)
RR at k = 0.002 Mpc−1 and P

(2)
RR at k = 0.1 Mpc−1. These

3https://github.com/heatherprince/planck-lite-py
4https://github.com/heatherprince/planck-low-py
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can be converted to the usual amplitude, As, defined at the pivot scale k = 0.05 Mpc−1

and spectral index, ns, parameters.

We use MCMC methods as in Chapter 5 to simultaneously sample the 11 cos-

mological parameters (two adiabatic power-law parameters, five isocurvature power

parameters, the baryon density, CDM density, Hubble constant, and optical depth to

reionization) and 14 foreground parameters.

6.2 Results

Figure 6.2: Forecast upper limits on the isocurvature power spectrum from Planck
(grey) compared to Planck + SO LAT (red) for CDM isocurvature (left) and neutrino
density isocurvature (right), for a set of five wavenumber bins.

We show the expected 95% upper bound on the primordial isocurvature power in

the five k-bins in Figure 6.2, for the two types of isocurvature. The CDM density

isocurvature 95% upper bounds are shown in the left panel, and the neutrino density

isocurvature constraints in the right panel. Apart from the first bin at largest scales,

which stays about the same, the upper bounds are reduced by 30% to 78% when the

SO Large Aperture Telescope data is added to Planck. The greatest improvement

occurs for the isocurvature power on small scales where the LAT noise is significantly

better than for Planck.
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Figure 6.3: Forecast posterior distributions for the ΛCDM cosmological parameters,
showing how SO LAT data (red) are expected to improve constraints compared Planck
data alone (black) in the case that the perturbations are not assumed to be perfectly
adiabatic. The left panel shows the constraints when binned cold dark matter density
isocurvature is allowed to vary, and the right panel show the constraints with neutrino
density isocurvature. The left and right panels are very similar to one another because
small amounts of isocurvature are preferred.

The expected parameter constraints for the other cosmological parameters are

shown in Figure 6.3. Including the LAT improves the constraints for all the parame-

ters, by removing correlations with the isocurvature parameters. Once SO simulated

data are included, the binned isocurvature parameters are not strongly degenerate

with the cosmological parameters or the foreground parameters.

6.3 Discussion

In this chapter we explored the additional constraining power on primordial isocur-

vature perturbations that power spectra from SO can offer, in combination with data

from Planck. In this work we considered only data anticipated from the LAT, which

will improve small-scale measurements. We leave for future work the addition of

larger-scale data expected from the SO SATs, and improved CMB lensing data de-

rived from the LAT. We found that the SO LAT power spectrum data is expected to

significantly tighten constraints on any isocurvature contribution, in the approximate
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range 0.01 < k < 0.4 Mpc−1, or alternatively could show up a non-zero isocurvature

signal if the underlying model has some departure from pure adiabaticity.
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Chapter 7

Conclusion

It’s still magic even if you know how it’s done.

Terry Pratchett A Hat Full of Sky

The cosmic microwave background gives us a remarkably clean window into the

early universe, while also carrying information about the CMB photons’ journeys from

recombination to our telescopes, because some of the photons have been deflected by

massive galaxies and clusters, Thomson scattered off electrons during reionization,

or inverse-Compton scattered to higher energies off hot electrons or moving electrons

in galaxy clusters. CMB experiments that observe at millimeter wavelengths also

detect emission from distant dusty galaxies and active galactic nuclei, as well as

thermal radiation from dust within our Galaxy and other foreground radiation at

those frequencies.

The Planck satellite used all-sky measurements of the CMB temperature and po-

larization in a nine frequency bands ranging from 30 GHz to 857 GHz to study which

model of the universe is preferred by the CMB and to measure its parameters to high

precision, while also improving our understanding of CMB foregrounds so that they

can be marginalized over in the cosmological analysis (Planck Collaboration et al.,

2020b). The Planck 2018 legacy data release provides cosmic variance limited mea-
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surements of the CMB temperature power spectrum to ℓ ≈ 2000, as well as E-mode

polarization measurements down to the quadrupole ℓ = 2, corresponding to large

scales which can only be observed from space because of the atmospheric noise en-

countered on large scales in ground-based observations (Planck Collaboration et al.,

2020a). The Planck data and likelihoods will be used by current and future cosmolo-

gists for years to come, as it serves as both a consistency check and a complement to

ground-based CMB data, as well as being used in combination with other cosmologi-

cal probes to place even tighter constraints on the cosmological parameters. For this

reason it is useful to have simple, concise, portable versions of the Planck likelihoods

that can be easily used by astronomers in different fields.

In Chapter 2 we applied the Massively Optimized Parameter Estimation and Data

compression technique (MOPED) to the public Planck 2015 temperature likelihood,

reducing the dimensions of the data space to one number per parameter of inter-

est. We presented CosMOPED, a lightweight and convenient compressed likelihood

code implemented in Python. In doing so we showed that the ℓ < 30 Planck tem-

perature likelihood can be approximated by two Gaussian distributed data points,

which allows us to replace the map-based low-ℓ temperature likelihood by a simple

Gaussian likelihood. We did not explicitly use the large-scale polarization data in

CosMOPED, instead imposing a prior on the optical depth to reionization derived

from these data. We showed that the ΛCDM parameters recovered with CosMOPED

are consistent with the uncompressed likelihood to within 0.1σ, and tested that a

7-parameter extended model performs similarly well.

In Chapter 3 we presented Planck-low-py, a binned low-ℓ temperature and E-

mode polarization likelihood, as an option to facilitate ease of use of the Planck 2018

large-scale data in joint-probe analysis and forecasting. It is written in Python and

compresses the ℓ < 30 temperature and polarization angular power spectra informa-

tion from Planck into two log-normal bins in temperature and seven in polarization.
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These angular scales constrain the optical depth to reionization and provide a lever

arm to constrain the tilt of the primordial power spectrum. Using Planck-low-py,

we showed that cosmological constraints on ΛCDM model parameters, and on exten-

sions to ΛCDM including running and isocurvature, agree with those derived with

the full Commander and SimAll likelihoods from the Planck legacy release.

The recent limit on the tensor-to-scalar ratio from polarization B-modes observed

using the BICEP and Keck Array telescopes at the South Pole (with r < 0.036 at 95%

confidence) puts pressure on early universe models. We used the publicly-available

multi-frequency likelihood to examine various assumptions made in the foreground

modeling, including relaxing the assumption of power-law dust, varying the dust tem-

perature, removing the synchrotron index prior, or removing the Planck data alto-

gether, and found these to have a negligible impact on r. The error inflation on r due

to foreground uncertainty is only ∼10%. We then estimated foreground-marginalized

CMB B-mode bandpower amplitudes and found their distribution to be well fit by a

multivariate offset-lognormal distribution, with minimal foreground-induced covari-

ance between bins (only done so far for BICEP3+Planck+WMAP data). We con-

structed a marginalized likelihood with no nuisance parameters, serving as a method

demonstration for simpler joint-probe cosmological analysis. The tensor-to-scalar

ratio inferred from this ‘BK18-lite’ likelihood matches that using the public BK18

likelihood.

Other ground-based CMB experiments such as the Atacama Cosmology Telescope

and the South Pole Telescope continue to map the CMB sky at high resolution and

with increasing sensitivity, measuring the CMB temperature and polarization on small

scales that were not accessible with Planck. Upcoming experiments such as the Simons

Observatory will continue this work, producing low-noise maps of a large fraction of

the sky with resolution of a few arcminutes. This enables us to constrain extensions

to ΛCDM that affect scales that were not accessible to Planck.
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In Chapter 5 we used ACT and SPT data in combination with Planck data to

study scenarios beyond adiabatic, power law initial conditions in the universe. We

first explored an adiabatic model with a broken power law instead of a single power

law, to see if this model could account for the preference for scale-invariance (ns = 1)

shown by ACT and SPT on small scales and the slightly red-tilted spectrum preferred

by Planck on large scales (ns < 1). We found that a preferred scale for transitioning

between spectral indices emerged, but the improvement in the goodness-of-fit did not

justify the inclusion of extra parameters.

We also used ACT and Planck data to constrain the level of isocurvature allowed

by the data in five wavenumber bins, improving the width of the constraints on small

scales with the ACT data. In Chapter 6 we performed forecasts for the upcoming

Simon’s observatory’s ability to further improve isocurvature constraints at small

scales.

Throughout this dissertation we have explored ways to use CMB satellite and

ground-based experiments to better constrain our model of how the universe began

and evolved, and ways to make CMB data more accessible to other scientific commu-

nities.
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