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Abstract: We study the back-reaction of fermion fields on the kink solution in one space and one

time dimension. We employ a variational procedure to determine an upper limit for the minimum of

the total energy. This energy has three contributions: the classical kink energy, the energy of valence

fermions and the fermion vacuum polarization energy. The latter arises from the interaction of the

kink with the Dirac sea and is required for consistency of the semi-classical expansion for the fermions.

Earlier studies only considered the valence part and observed a substantial back-reaction. This was

reflected by a sizable distortion of the kink profile. We find that this distortion is strongly mitigated

when the Dirac sea is properly accounted for. As a result, the back-reaction merely produces a slight

squeeze or stretch of the kink profile.

Keywords: kinks; fermions; Dirac sea; vacuum polarization energies; variational methods

1. Introduction and Motivation

Theories in one time and one space dimension (D = 1 + 1) of scalar fields with
degenerate vacua often lead to static solutions that connect different vacua at the two spatial
infinities. We call them solitons (or solitary waves) when the corresponding energy density
is localized. Solitons in D = 1 + 1 models serve as role models for higher-dimensional
systems but can also be embedded therein. Thus, they have numerous applications on all
scales ranging from cosmic strings [1] in the electro-weak theory via hadron [2], nuclear [3]
and condensed matter physics [4,5] even to cosmology [6]. A comprehensive summary of
applications of solitons in D = 1 + 1 has been compiled in the introduction of Ref. [7].

Kink–fermion systems always have a fermion zero mode. Numerous additional
fermion bound states emerge when the Yukawa is sufficiently large [8,9]. Though not
kinematically stable against decays into free fermions, it is possible to construct local
minima (or saddle points) of the static energy functional in which a (valence) fermion
resides in an excited bound state. Not so long ago, soliton configurations were constructed
that accounted for the back-reaction from such a higher energy valence level [10,11]. We
reconsidered those studies and found that the energy of the fermion vacuum, i.e., the
Dirac sea, which is of the same order as that of the valence fermion in the semi-classical
expansion, contributes largely to the total energy [12]. Based on that study, we now attempt
to identify soliton-like minima of the energy functional with an excited valence fermion
when all contributions to the fermion energy that are leading order in the semi-classical
expansion are included. This extension is also important because we know from the
bosonized Nambu-Jona–Lasino model that, while coupling to a valence quark strongly
binds the chiral soliton, the Dirac sea has a destabilizing effect in the sense that the energy
of the polarized sea significantly increases the total energy [13]. However, that model does
not fall into the class of renormalizable theories that we explore here.

Some time ago, self-consistent configurations from the binding to a single fermion
bound state omitting the Dirac sea were considered in chiral quark models [14–16], by
coupling the bound state to a magnetic monopole [17] as well as in variants of the electro-
weak theory [18], though only for the lowest-energy bound state. For models with fermion
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couplings, the necessity of including the Dirac sea was later pointed out for one [19] and
three space dimensions [20]. However, cases in which the coupling goes to an excited level
are still interesting and may cause major deformations of the kink even when the Dirac
sea is included. This is a major objective of the present study. We note that indeed excited
fermion levels play their roles in physics. For example, in the MIT bag model [21], the
Roper (1440) resonance is associated with a radially excited quark level [22,23].

This short report is organized as follows. In Section 2, we introduce the model and
discuss the classical energy of the kink as well the coupling between the kink and a single
fermion mode. In Section 3, we examine the fermion contribution to the energy with
emphasis on the Dirac sea contribution in the context of the semi-classical expansion. Our
numerical results are contained and discussed in Section 4 while we briefly conclude in
Section 5.

2. The Model

In D = 1 + 1, the scalar field Φ is dimensionless and the fermion spinors Ψ have
canonical energy dimension 1

2 . We take the Yukawa coupling constant g to be dimensionless
and write the Lagrangian as

L =
1

2
∂µΦ∂µΦ − λ

4

(
Φ2 − M2

2λ

)2

+ iΨ∂/Ψ − g

√
λ

2
ΨΦΨ . (1)

The scalar (or Higgs) coupling constant λ has dimension energy squared and m = gM
2 is

the fermion mass which arises from spontaneous symmetry breaking that generates the
vacuum expectation value ⟨Φ⟩ = ±M√

2λ
. Scalar fluctuations about ⟨Φ⟩ have mass M.

In order to find the most generic, i.e., parameter-independent, formulation and also
for numerical practicality, it is appropriate to introduce dimensionless quantities:

Φ(t, x) =
M√
2λ

ϕ(τ, ξ) and Ψ(t, x) =

√
M

2
ψ(τ, ξ) , where (τ, ξ) =

M

2
(t, x) . (2)

We have introduced the factor 1
2 in the dimensionless coordinate so that the kink,

ϕK(ξ) = tanh(ξ), is the soliton solution to the field equation for ϕ when g = 0. Choosing
γ0 = σ1 and γ1 = iσ3 as the representation for the Dirac matrices, the stationary Dirac
equation then is an eigenvalue equation for the dimensionless energy1 ϵ = 2E

M

ϵψ(ξ) = hψ(ξ) with h = −iσ2∂ξ + gϕ(ξ)σ1 . (3)

The normalization condition is
∫

dξ ψ†(ξ)ψ(ξ) = 1. Fortunately, in our approach we will
not need to construct these spinors but only the eigenvalues ϵ which can be discrete and,
above threshold g, continuous. We try to keep the notation simple and write the labels
for these energies (and the corresponding eigen-spinors) only when necessary. In terms of

upper (u) and lower (v) spinor components in ψ =

(
u
v

)
, Equation (3) reads (primes denote

derivatives with respect to ξ)

u′ = ϵv − gϕu and v′ = −ϵu + gϕv . (4)

The fermion quantum effects on ϕ(ξ) are non-local and when they are implemented the
field equation ϕ(ξ) is not a (simple) differential equation. However, for a given profile we
have the classical energy

Ecl =
M3

4λ
ϵcl with ϵcl =

∫ ∞

0
dξ

[
ϕ′2(ξ) +

(
ϕ2(ξ)− 1

)2
]

. (5)
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Any legitimate soliton profile connects the vacuum expectation values ⟨ϕ⟩ = ±1 between
negative and positive spatial infinity and is anti-symmetric under spatial reflection. Then,
the solutions to Equation (4) separate into two channels: the one with positive intrinsic
parity has even u and odd v, while the negative intrinsic parity channel has it the other
way round. As in Ref. [10], we refer to these channels as A-and B-type solutions or
configurations. Additional integer labels on A and B count the number of zero-crossings of
u on the half-line x ≥ 0, including the one at x = 0 for the B-type solution. In this notation,
the zero mode of the kink is an A0 solution.

3. The Fermion Energy Functional

Here, we detail the treatment of the fermion contribution to the energy starting from
the effective action for fermions interacting with a static background potential. In our case,
that potential is generated by the soliton ϕ(ξ).

3.1. Formal Considerations

Fermions that interact with a static background are subject to a Dirac equation of
the form (i∂t − h)Ψ = 0 and their effective action formally, i.e., ignoring the important
regularization, is [13,24]

A =
T

2 ∑
ν

|Eν| − i ln ∑
{ην}

exp

[
−iT ∑

ν

ην|Eν|
]

, (6)

where the Eν are again the eigenvalues of the Dirac Hamiltonian h and T is an arbitrarily
large time interval discretizing the eigenvalues of i∂t. The outer sum in the second term
runs over all possible sets of occupation numbers ην = ±1 for the single fermion levels.
When singling out a particular set of occupation numbers, say {ην}, this outer sum is
omitted and we extract the (unregularized) fermion energy functional

EF(ην) = −1

2 ∑
ν

|Eν|+ ην|Eν| . (7)

The two contributions on the right-hand side are the vacuum and valence energies, re-
spectively. Upon comparison with the free case without a static background, the vacuum
energy turns into the vacuum polarization energy that we will regularize and renormalize
utilizing spectral methods [25] in Section 3.3. We furthermore note that the conserved
fermion number is

NF(ην) = ∑
ν

(
ην −

1

2

)
sign(Eν) . (8)

For a prescribed fermion number, therefore, the global energy minimum corresponds
to a specific set of occupation numbers. Unless the vacuum energy of a self-consistent
configuration varies strongly with the selection of occupation numbers, this specific set fills
levels starting from the most strongly bound one. Recently, however, local energy minima
(or at least, saddle points) have been discussed for which the non-zero occupation numbers
concern the first, second or third excited single-particle levels [10–12]. This scenario is the
central objective of our project.

These formal considerations clearly show that fermion valance and vacuum energies
must be treated on an equal level. Yet, Equation (7) only contains the fermion one-loop
contribution to the energy. The loop-counting parameter is the inverse of the ratio of the

scales for the classical energy and the fermion energy eigenvalues, i.e., M2

λ . Hence, for
this approach to produce reliable results we focus on M2

> λ. Furthermore, we will omit
quantum corrections originating from the scalar field. That is, we assume that the fermion
quantum corrections dominate the scalar ones. This is reliable when the fermion energy
eigenvalues are strongly skewed by the background potential, which happens to be the
case when the Yukawa coupling is large: g ≫ 1.
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3.2. Bound States

The Dirac equation has discrete, normalizable solutions with |ϵ| < g. The stronger
the Yukawa coupling, the more of these solutions exist [8,9]. When ϕ(ξ) is odd under
spatial reflection, they have definite parity. We already mentioned that in the notation
of Refs. [10,11] these parity channels are called A- and B-type. An additional, integer
label on the capital letters counts the bound states in a given parity channel. Then, A0 is
the configuration with the most strongly bound fermion mode occupied. This mode has
energy eigenvalue zero and is always present, no matter what the Yukawa coupling is. The
second most bound fermion mode has opposite parity and its explicit occupation defines
the B1 configuration, followed by a bound state with the same parity as the zero mode. Its
occupation defines the A1 configuration, etc. [10–12]. We will maintain that notation for
the particular choices of ην.

In the numerical simulation, we find the energy eigenvalues by integrating the dif-
ferential Equation (4) from the origin with initial conditions suitable for either the A- or
B- configurations to some intermediate coordinate, ξm. Furthermore, we integrate from a
large distance, say ξmax ≫ ξm, with initial conditions for exponentially decaying spinor
components u and v to ξm as well. Only for certain parameters ϵ in Equation (4) is it possible
to match these solutions at ξm. These ϵ values are the searched-for energy eigenvalues. We
verify that the resulting bound state energies are not sensitive to the choice of ξm (ξmax)
when it is taken to be not too large (small).

3.3. Fermion VPE

In this Section, we renormalize the divergent vacuum part of the fermion energy in
Equation (7) and express it in terms of scattering data. First, we measure this energy relative
to the Φ ≡ ⟨Φ⟩ case so that it turns into the vacuum polarization energy (VPE)

EVPE = −1

2 ∑
ν

(
|Eν| − |E(0)

ν |
)∣∣∣

ren.
. (9)

The sum contains bound and scattering states. The latter is expressed as a momentum
integral over continuum energies weighted by the change in the density of states generated
by Φ ̸= ⟨Φ⟩. That change is computed from scattering data according to the Friedel–
Krein formalism [26]. The main ingredient is the momentum derivative of the phase shift
that describes the fermion scattering about the background potential. Renormalization
(indicated by the subscript) is then accomplished by subtracting sufficiently many terms in
the Born series, which is an expansion in the strength of the potential, from the integrand
and adding those pieces, which also combine to an expansion in that strength, back in as
a Feynman diagrams. Those Feynman diagrams are combined with the counterterms of
the chosen renormalization scheme. The counterterm Lagrangian may only contain terms
that arise from varying parameters (or scaling fields) in Equation (1) and the coefficients of
these terms may not depend on the peculiarities of the fields.

In the present application, we still have to account for the fact that with ϕ(±∞) = ±1
the fermion mass terms, as induced by spontaneous symmetry breaking, have opposite
signs at positive and negative spatial infinity. To this end, we note that for a static system
which is invariant under charge conjugation we can formally write the effective action,
from which the VPE is extracted, as

∫
dω

2π
TrLog[ω − h] =

1

2

∫
dω

2π
TrLog

[
ω2 − h2

]
. (10)

Thus, the VPE of this fermion system can be obtained from the average VPE of two scalar
systems [27] associated with Equation (4) since

h2 =

(
−∂2

ξ − gϕ′ + g2ϕ2 0

0 −∂2
ξ + gϕ′ + g2ϕ2

)
. (11)
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The two potentials are straightforwardly read off as

VS = g2
(

ϕ2 − 1
)
− gϕ′ and ṼS = g2

(
ϕ2 − 1

)
+ gϕ′ . (12)

They are invariant under spatial reflection. For any scalar potential σ in D = 1 + 1
dimensions with that invariance, the renormalized VPE is computed as

ϵVPE[σ] =
∫ ∞

0

dτ

2π

{
ln

[
G(t, 0)

(
G(t, 0)− 1

t
G′(t, 0)

)]
− ⟨σ⟩

t

}

t=
√

τ2+g2

. (13)

Let us outline the connection of Equation (13) with scattering data: For real momenta
k, the scattering phase shift is the phase of the Jost function, f (k, ξ). The Jost function
is the solution of the wave-equation with potential σ(ξ) that obeys the boundary condi-
tion limξ→∞ f (k, ξ) e−ikξ = 1. Factorizing the plane wave part f (k, ξ) = eikξG(k, ξ) defines

G(t, ξ) = G(ik, ξ) by analytic continuation. It solves the ordinary differential equation

G′′(t, ξ) = 2tG′(t, ξ) + σ(ξ)G(t, ξ) , (14)

subject to the boundary condition limξ→∞ G(t, ξ) = 1. Equation (13) applies to systems
with σ(−ξ) = σ(ξ) and thus decouples into parity channels. The first factor under the
logarithm stems from odd parity (wave-function vanishes at the origin) while the second
one originates from even parity (derivative of the wave-function vanishes at the origin).

A few further remarks are in order to explain Equation (13). First, the last term under

the integral proportional to ⟨σ⟩ =
∫

∞

0
dξ σ(ξ) is the Born approximation to the logarithm.

The corresponding Feynman diagram is fully canceled by a counterterm within the no-
tadpole renormalization scheme. Second, the physical momentum has been analytically
continued into the upper half complex plane. Evaluating the momentum integral as a
contour integral has contributions from the branch cut along k = it in the dispersion
relation ϵ =

√
k2 + g2 with t > g and the poles arising from the logarithmic derivative of

the Jost function since the Jost function vanishes at the complex momenta of the bound state
energies. Then, the third important feature is that the latter contributions exactly cancel the
bound state part in the sum of Equation (9). More details are given in the reviews [25,28].

Restoring physical dimensions finally yields

EVPE = −M

4

(
ϵVPE[VS] + ϵVPE

[
ṼS

])
. (15)

We also observe that the Born subtraction in Equation (13) involves the integral

⟨VS + ṼS⟩ = 2g2
∫ ∞

0
dξ
(

ϕ2 − 1
)

.

It also arises from a counterterm which compensates changes of the vacuum expectation

value ⟨Φ⟩2 = M2

2λ in Equation (1). Hence, Equation (15) indeed implements the no-tadpole
renormalization condition which requires that the (fermion) quantum corrections do not
alter this expectation value.

4. Numerical Results

The model parameters are the mass M, the Higgs coupling λ and the Yukawa coupling
constant g. With the scaling in Equation (2), we factor out an overall constant M from
the energy so that the relevant model parameters are g and the dimensionless ratio of the

energy scales: α = M2

2λ . This ratio weighs the classical vs. vacuum polarization energies
and its inverse plays the role of a loop-counting parameter. For the numerical analysis, it
obviously suffices to choose, e.g., M = 2 and scan the g-λ parameter space, or equivalently
the g-α space. This becomes obvious from the expression for the total energy
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Etot[Φ] = Ecl + ∑
ν

ην|Eν|+ EVPE =
M

2

{
αϵcl + ∑

ν

ην|ϵν| −
1

2

(
ϵVPE[VS] + ϵVPE

[
ṼS

])}
, (16)

as g and α are the only the model parameters entering the factor in curly brackets. An
important observation is that the classical and the fermion energies scale differently with
the model parameters. Hence, the choice of the particular relation M =

√
2λ, that was

assumed in Ref. [10], may obscure important information [12].
For the particular parameters M = λ = g = 2, our model matches the super-symmetric

one of Ref. [27]. For this case, our numerical simulation yields EVPE = 0.3479 when

substituting ϕ = ϕK in VS and ṼS. This agrees well with the analytic result M
π

(
1 − π

4
√

3

)

found in that super-symmetric model and confirms the validity of our simulation2.
The total energy is solely a functional of the scalar field Φ (or ϕ in dimensionless

variables) since for any given scalar profile the fermion contributions are determined by the
Dirac Equation (4) and/or its downstream scattering Equation (14). As already mentioned,
this extremal condition cannot be formulated as a set of differential equations due to the
non-local structure of the VPE. In a non-renormalizable model with a finite ultra-violet cut-
off, Λ, a finite and countable set of eigen-functions of the stationary Dirac equation exists
and the functional derivative δA

δϕ(ξ)
can be computed via the Feynam–Hellmann theorem.

Eventually, this produces an implicit field equation that can be solved self-consistently.
Adopting that method to compute the VPE requires the limit Λ → ∞ on top of the self-
consistent approach. Not only does that seem numerically infeasible,3 it also spoils the nice
features of the spectral method, Equation (13), that all entries are ultra-violet finite and the
renormalization conditions can be unambiguously implemented. Having discussed that,
we therefore consider a parameterization for the scalar profile that is modeled after the
kink ϕK = tanh(ξ) with a rational function as correction4

ϕ(ξ) =
ξ2 + a|ξ|+ b

ξ2 + d|ξ|+ e
tanh(cξ) . (17)

For notational convenience, we define the set of parameters as

P = {a, b, c, d, e} . (18)

The rational function in Equation (17) is a Padé approximation to the deviations from the
purely scalar kink subject to the condition that it approaches unity at spatial infinity. Padé
approximations converge quickly [30] so that only a few parameters are needed for an
effective variational approach. Indeed, we will observe that the above ansatz reproduces the
strongly distorted kinks from Refs. [10–12] very well. In addition to the rational function,
we introduce the variational parameter c for the extension of the profile function.

For a given set of occupation numbers {ην}, we then compute Etot for numerous
values of the five variational parameters in P and identify the minimal value. To do so, we
start with a profile function that is either close to the kink or close to one of the solutions
constructed in Refs. [10–12]. We then apply a simple steepest descent algorithm to that first
choice. Eventually, this will converge to a minimum which then will be an upper bound to
the actual minimum of Etot because the variational space is limited.

To gauge the quality of this fitting function, we will reconsider the minimization of
the reduced energy functional

Ered = Ecl + Eval = Ecl +
M

2 ∑
ν

ηνϵν . (19)
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That minimum was previously [10–12] constructed by self-consistently solving the Dirac
Equation (4) together with the differential equation

ϕ′′ = 2ϕ
(

ϕ2 − 1
)
+

4gλ

M2
sign(ϵ)uv , (20)

in which u and v are the spinor components of the level for which ην = 1 normalized

to
∫

dξ
(
u2 + v2

)
= 1. Here, self-consistent refers to the condition that the profile func-

tion in the Dirac equation with that particular energy eigenvalue is also the solution to
Equation (20). Those self-consistent profiles turned out to significantly deviate from the
kink. Since the VPE typically mitigates the binding from the occupied levels, we expect the
actual solution to lie between the kink and those strongly distorted kink profiles. Hence,
reproducing the latter by the above fitting function to a high precision will justify the pa-
rameterization in Equation (17). In a first step, we therefore consider the case M = λ = 2 for
which we constructed self-consistent solutions that minimize the reduced energy functional
Ered earlier [12]. Subsequently, the VPE is computed for this construction. The numerical
results for the B1 (ην = 1 for the first excited level with negative parity, all other ην = 0) and
A1 (ην = 1 for the first excited level with positive parity, all other ην = 0) configurations
are listed in Table 1 for the choice g = 4.

Obviously, the fit reproduces the results from the self-consistent approach convincingly
well, in particular for the fermion ingredients. As a matter of fact, we have considered
two scenarios; the first, labeled P1, is a parameter fit to the self-consistent solution and the
second, P2, is the variational minimum to Ered. Either variational profile essentially equals
the self-consistent one. This is the case for both the B1 and A1 configurations. Surprisingly,
those profiles exceed ϕ = 1 at some moderate distance and approach the asymptotic
vacuum expectation value from above as ξ → ∞. We conclude that the fitting function,
Equation (17), is indeed a well-suited variational ansatz to approximate the scalar profile
which minimizes the total energy, Equation (16).

However, there is a subtlety with this parameterization. Asymptotically, the profile
behaves as ϕ(ξ) ∼ 1 + a−d

|ξ| which causes the integral in the Born approximation

2g2
∫ ξmax

0
dξ
[
ϕ2(ξ)− 1

]

to logarithmically diverge as ξmax → ∞. The Born approximation has been introduced to
cancel the large t component of the logarithm in Equation (13). Since higher-order terms
of the Born series are finite when ξmax → ∞, we obtain a sensible result for Equation (16)
when we integrate the differential Equation (14) between zero and the very same ξmax.
We have confirmed that once ξmax is taken large enough, the numerical simulation of
Equation (13) is stable against further variations of ξmax. In the no-tadpole scheme, that
first-order contribution is exactly removed and there is no further problem. Although
the chosen parameterization may not be ideal asymptotically, the results from Table 1
corroborate that it is nevertheless suitable. There is no such problem for the bound states
whose wave-functions decay exponentially5.
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Table 1. Comparison of energies from the fitting function and the self-consistent solution to the

reduced problem, Equations (4), (19) and (20) for the B1 and A1 configurations using g = 4.0 and

M = λ = 2: P1 is the fit to the self-consistent solution; P2 is the variational solution. The column

labeled Eval denotes M
2 ∑ν ηνϵν for the respective configurations.

B1 Ecl Eval EVPE Etot

2.223 1.041 2.029 5.300
self-consistent minimum of Ered

2.277 1.041 2.043 5.361
P1 = {−0.758,−0.063, 0.903,−1.022, 1.018}

2.171 1.134 1.987 5.293
P2 = {−0.733,−0.013, 0.917,−0.924, 0.964}

A1 Ecl Eval EVPE Etot

2.079 2.071 2.000 6.150
self-consistent minimum of Ered

2.095 2.065 2.001 6.163
P1 = {−2.163, 1.395, 0.759,−2.304, 1.988}

2.067 2.091 1.983 6.142
P2 = {−2.151, 1.402, 0.760,−2.263, 1.958}

In Table 2, we present the results from minimizing Etot using the same model parame-
ters as in Table 1.

Table 2. Results from minimizing the total energy Equation (16) using the variational ansatz, Equation (17).

Model parameters are as in Table 1: g = 4.0 and M = λ = 2.

Ecl Eval EVPE Etot

B1 1.475 2.105 1.182 4.761
P = {−0.472, 0.181, 1.145,−0.544, 0.438}

A1 1.404 3.103 1.119 5.625
P = {−0.264, 0.132, 0.681,−0.282, 0.097}

Obviously, there are significant changes when including the VPE into the minimization
program. This is not unexpected, as we previously found that the VPE is approximately as
large as the valence energy. Compared with the data in Table 1, the total energy decreases
by about 10% by lowering the classical part more strongly than increasing the fermion

contribution. Yet, we still have Etot >
Mg
2 , which is the mass of a free fermion in this

case. Hence, the soliton configuration is not kinematically stable against a decay into a
free fermion. For the model parameters in Tables 1 and 2, the classical energy of the kink
without back-reaction from the fermions is 4

3 and the results from those tables suggest that
the VPE strongly mitigates the back-reaction obtained earlier from only the valence levels.
This also shows up in the graphical representation of the scalar profiles in Figure 1. The
profiles for which we found the minimal Etot are labeled P. They do not differ from the
kink ϕK substantially.



Universe 2024, 10, 13 9 of 15

Figure 1. Profiles for M = λ = 2 and g = 4. (Left panel): B1 configuration, (Right panel): A1.

The full black line (labeled P) arises from minimizing the total energy, Equation (16). The other

lines (P1, P2, self-cons.) are configurations obtained from minimizing the reduced energy functional,

Equation (19). The legends refer to the notation of Tables 1 and 2. For completeness, we also show

the kink without any fermion interaction (dashed lines).

We will now elaborate on our numerical analysis of scanning the g-α space in more
detail. With the VPE included, even the A0 configuration has a non-zero fermion energy6

and thus a deviation ϕ ̸= ϕK is expected. We will discuss this case first although a very
similar setting has already been considered in Ref. [19].

For the A0 configuration, the kink, ϕK(ξ) = tanh(ξ) has E
(K)
tot = M

2

[
4
3 α + ϵVPE

]
, where

ϵVPE = 0.943 and ϵVPE = 1.360 for g = 4 and g = 5, respectively. For the cases shown
in Table 3, the variational minimum is only slightly less than the total energy of the kink.
Again, this corroborates the assertion that the inclusion of the fermion fields only leads

to a moderate back-reaction. We also see that Etot <
Mg
2 for the A0 case which is thus

kinematically stable against a decay into a free fermion. However, since the zero mode
does not have definite fermion charge, this configuration cannot be asserted as a particle
number, in contrast to a free fermion.

Next, we turn to the B1 configuration with the numerical results displayed in Table 4.
In this case, the valence energy is substantial. However, since a strongly distorted kink

comes with large Ecl and EVPE, cf. Table 1, minimizing the valence energy does not lower
the total energy. Rather, configurations that minimize the total energy have significantly
larger valence energies than the solutions constructed in Refs. [10–12]. The resulting
configuration is similar to the kink as the variational parameters approximately obey a ≈ d
and b ≈ e. We find that c is slightly larger than unity which would indicate that profile is a
squeezed kink. However, the remaining differences between a and d as well as between
b and e lead to a stretched kink. This is seen in Figure 1 in which we show minimizing
profiles for various channels. As we increase α, the classical contribution to the energy
becomes more dominant and the minimizing configuration should come even closer to the
kink. Indeed, the numerical simulations confirm this as we find the variational parameters
P = {−0.401, 0.253, 1.070,−0.416, 0.342} and P = {−0.396, 0.274, 1.041,−0.408, 0.339} for
α = 3.0 and α = 4.0, respectively, with g = 4.0 in both cases. The respective energies are
Etot = 7.532 and Etot = 8.879. The discrepancies with the energy of the kink configuration
(7.589 and 8.922) are marginal and decrease as α increases.

As a final example, we consider the A1 configuration when the valence fermion dwells
in the third bound state, the second one with even parity. The numerical results are
displayed in Table 5.

The scenario is basically the same as for the previous configurations: The inclusion of
the fermion VPE moves the distorted kink back to a slightly stretched kink. We see that
even for α = 1 the variational solution is not very different from the kink. This implies that
the total energy is dominated by the classical part which is another indication that there
are sizable cancellations between the gain from binding a valence fermion and the fermion
VPE. All our variational searches yield a > d so that the profile approaches the vacuum
expectation value from above as ξ → ∞.
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Table 3. Variational approach for the A0 configuration. Top panel: g = 4, bottom panel: g = 5. The

valence contribution is not listed as Eval ≡ 0 for this configuration. For comparison, we also list the

total energy for the kink profile ϕK(ξ) = tanh(ξ).

α Ecl EVPE Etot E
(K)
tot

1.0 1.385 0.817 2.202 2.277
P = {1.053, 1.219, 1.104, 1.105, 0.946}

1.2 1.648 0.829 2.477 2.543
P = {1.053, 1.191, 1.112, 1.094, 0.976}

1.5 2.043 0.843 2.886 2.943
P = {1.105, 1.159, 1.138, 1.130, 1.032}

2.0 2.703 0.861 3.564 3.610
P = {1.104, 1.139, 1.120, 1.122, 1.051}

α Ecl EVPE Etot E
(K)
tot

1.0 1.437 1.079 2.516 2.693
P = {1.093, 1.243, 1.208, 1.157, 0.945}

1.2 1.699 1.103 2.802 2.960
P = {1.098, 1.243, 1.169, 1.158, 0.951}

1.5 2.092 1.131 3.222 3.360
P = {1.110, 1.221, 1.162, 1.149, 0.980}

2.0 2.748 1.167 3.914 4.026
P = {1.106, 1.202, 1.125, 1.146, 0.997}

Table 4. Variational approach for the B1 configuration. Top panel: g = 4, bottom panel: g = 5. The

entries g = 4 and α = 1 are those of Table 2.

α Ecl Eval EVPE Etot E
(K)
tot

1.0 1.475 2.105 1.182 4.761 4.922
P = {−0.472, 0.181, 1.145,−0.544, 0.438}

1.2 1.723 2.186 1.143 5.052 5.189
P = {−0.472, 0.212, 1.140,−0.533, 0.439}

1.5 2.104 2.270 1.103 5.477 5.589
P = {−0.474, 0.243, 1.136,−0.522, 0.436}

2.0 2.748 2.358 1.064 6.170 6.256
P = {−0.466, 0.280, 1.112,−0.504, 0.434}

α Ecl Eval EVPE Etot E
(K)
tot

1.0 1.485 2.390 1.647 5.522 5.693
P = {−0.479, 0.132, 1.224,−0.544, 0.321}

1.2 1.730 2.481 1.603 5.814 5.960
P = {−0.474, 0.159, 1.217,−0.533, 0.335}

1.5 2.107 2.576 1.559 6.241 6.360
P = {−0.473, 0.194, 1.203,−0.525, 0.358}

2.0 2.749 2.675 1.512 6.936 7.026
P = {−0.471, 0.237, 1.174,−0.516, 0.380}
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Table 5. Variational approach for the A1 configuration. Top panel: g = 4, bottom panel: g = 5. The

entries g = 4 and α = 1 are those of Table 2.

α Ecl Eval EVPE Etot E
(K)
tot

1.0 1.404 3.103 1.119 5.625 5.741
P = {−0.264, 0.132, 0.681,−0.282, 0.097}

1.2 1.669 3.136 1.101 5.905 6.007
P = {−0.262, 0.133, 0.702,−0.281, 0.102}

1.5 2.065 3.176 1.079 6.319 6.407
P = {−0.260, 0.139, 0.728,−0.277, 0.109}

2.0 2.724 3.228 1.051 7.003 7.074
P = {−0.258, 0.141, 0.769,−0.271, 0.116}

α Ecl Eval EVPE Etot E
(K)
tot

1.0 1.381 3.663 1.562 6.606 6.693
P = {−0.248, 0.081, 0.749,−0.263, 0.063}

1.2 1.645 3.697 1.541 6.882 6.960
P = {−0.255, 0.107, 0.766,−0.263, 0.083}

1.5 2.044 3.725 1.523 7.292 7.360
P = {−0.252, 0.105, 0.781,−0.263, 0.085}

2.0 2.706 3.768 1.496 7.970 8.026
P = {−0.245, 0.095, 0.814,−0.255, 0.081}

For a certain parameter set, we display the profiles that minimize Etot in the various
channels in Figure 2.

Figure 2. Variational solutions of the A0, B1 and A1 configurations for α = 1.0 and g = 4.0. For

comparison, the kink profile is also shown.

When compared to the kink, the solution of the A0 configuration is squeezed, while
the others are stretched. The reason for this is that squeezing the kink slightly decreases the
VPE. To considerably gain energy from binding a non-zero mode, the Yukawa interaction
must be strongly attractive which requires an extended kink profile. That is what we
observe for the B1 and A1 configurations.

We should, however, mention that we find various local minima for the total energy in
the space of the chosen variational parameters. Their total energies may be slightly smaller
or larger than those reported above but they turn out to be stationary under the steepest
descent algorithm. This is the case for all configurations but we will discuss this only for
the A1 configuration in more detail. The data for some of the alternative solutions are
listed in Tables 6 and 7. Looking at the corresponding variational parameters suggests that
these solutions would be quite different. In particular, those from Table 6 exhibit significant
deviations from the kink relation b ≈ e. However, when plotting them, cf. Figure 3, we
observe that the profiles are approximately identical and differences become smaller as
the Yukawa coupling increases. We conjecture that these solutions are fairly close to the
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actual solution but the particular variational ansatz is not capable of capturing it exactly.
Furthermore, the minimum may be very shallow. The ansatz most likely does not allow
for a continuous transition between the solutions on a path that can be constructed from a
steepest descent procedure. In any event, we have sufficient evidence to state that the actual
solution will be similar to the kink but quite distinct from the solutions of Refs. [10–12].
The latter could emerge for model parameters for which the classical and/or Dirac sea
contributions, which both prefer the standard kink profile, are suppressed compared to the
valence part. Equation (16) reveals that such parameters are governed by small α for which
the present semi-classical expansion is not reliable.

Table 6. Alternative solutions for the A1 configuration: Top panel g = 4, bottom panel g = 5.

α Ecl Eval EVPE Etot

1.0 1.443 3.035 1.141 5.618
P = {−1.963, 1.521, 1.345,−2.060, 1.875}

1.2 1.696 3.092 1.113 5.900
P = {−1.917, 1.530, 1.268,−2.002, 1.848}

1.5 2.073 3.156 1.088 6.317
P = {−1.832, 1.551, 1.141,−1.896, 1.807}

2.0 2.733 3.220 1.051 7.004
P = {−1.846, 1.580, 1.154,−1.905, 1.807}

α Ecl Eval EVPE Etot

1.0 1.419 3.507 1.644 6.571
P = {−1.664, 0.995, 1.245,−1.727, 1.120}

1.2 1.660 3.634 1.586 6.879
P = {−1.833, 1.457, 1.165,−1.918, 1.719}

1.5 2.052 3.692 1.549 7.293
P = {−1.824, 1.519, 1.116,−1.898, 1.744}

2.0 2.710 3.746 1.514 7.971
P = {−1.748, 1.490, 1.107,−1.804, 1.666}

Figure 3. Comparison of the different solutions for the A1 scenario according to the respective tables.

We always have α = 1 as in Table 1 and Figure 1. (Left panel) g = 4, (Right panel) g = 5.

Without the fermion coupling, the boson contribution to the VPE is 1
2
√

3
− 3

π ≈ −0.666

for M = 2 [25,31,32]. With that coupling included, the boson VPE is difficult to estimate
because there is a linear term in the harmonic approximation for the fluctuations when the
profile is not a solution to the classical kink equation. Furthermore, imaginary frequency
eigenvalues emerge for the boson fluctuations [33]. Yet, we assume that the above number
is a useful estimate because the variational profiles are quite similar to the kink. As conjec-
tured earlier, the numerical simulations verify that the fermion VPE becomes significantly
larger when the Yukawa coupling increases. In Section 3.1, we especially argued that for
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large-enough values of the Yukawa coupling constant, the fermion VPE should dominate
the boson counterpart. And indeed, we always find that EVPE >

M
2 when g ≥ 5.

Table 7. Second set of alternative solutions for the A1 configuration: Top panel g = 4, bottom panel

g = 5.

α Ecl Eval EVPE Etot

1.0 1.394 3.109 1.138 5.642
P = {2.600, 0.170, 0.717, 2.581, 0.088}

1.2 1.660 3.144 1.115 5.918
P = {2.441, 0.207, 0.734, 2.428, 0.117}

1.5 2.057 3.185 1.090 6.332
P = {2.590, 0.182, 0.766, 2.579, 0.110}

2.0 2.716 3.239 1.058 7.013
P = {2.558, 0.188, 0.805, 2.575, 0.126}

α Ecl Eval EVPE Etot

1.0 1.370 3.667 1.578 6.621
P = {2.609, 0.143, 0.770, 2.578, 0.074}

1.2 1.637 3.694 1.561 6.892
P = {2.449, 0.193, 0.780, 2.428, 0.108}

1.5 2.036 3.728 1.536 7.300
P = {2.442, 0.193, 0.801, 2.425, 0.117}

2.0 2.700 3.771 1.507 7.978
P = {2.592, 0.155, 0.834, 2.577, 0.103}

5. Conclusions

In this project we have considered a model with fermions coupled to the kink in
one space and one time dimension and investigated the fermion back-reaction on the
kink profile. In this approach a valence fermion appears as an explicitly occupied bound
state level and the back-reaction may be significant when this is not the ground state
level. And indeed, earlier studies which only considered the coupling of the kink to a
single fermion valence level found considerable back-reactions. However, it is important
to not only consider the energy of the occupied valence level but also to add the energy
of the Dirac sea to the functional that determines the back-reaction. The main argument
for its inclusion is the consistency of the semi-classical expansion. This contribution is
obtained as the renormalized sum of the changes of the one-particle fermion energies. These
changes emerge because the Yukawa coupling between the kink and the fermions polarizes
the fermion vacuum. They concern the discrete bound states as well as the continuous
scattering states. The boson contribution to the vacuum polarization energy has not been
included in the energy functional. Rather, we have argued that for large values of the
Yukawa coupling constant, the fermion energies would dominate the quantum corrections.
We have verified that conjecture a posteriori.

We have utilized a variational approach to find an upper bound to the minimal
total energy. We have only considered a single variational parameterization of the kink
profile with five parameters to lessen the numerical efforts. Certainly, this leaves space for
improvement. Nevertheless, we consider it sufficient to show that the Dirac sea contribution
brings back the strongly distorted kink profiles from the self-consistent treatment for the
case that omits the Dirac sea, to a slightly squeezed or stretched kink profile. The similarity
to the kink is particularly pronounced for the A0 configuration where we do not have
a valence quark contribution to the energy. For that reason, a slightly squeezed kink
profile is energetically favorable for the A0 configuration. In all other cases, some energy is
gained from binding the valence level by stretching the kink because it makes the Yukawa
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interaction more attractive. Since this deformation increases both the classical energy and
the vacuum polarization energy, the stretch can only be modest.

The dominant effect for mitigating the kink distortion is the balance between the
fermion bound state and vacuum energies so that the profile function is governed by
minimizing the classical energy. This balance could well be a consequence of Levinson’s
theorem [34,35], which relates the number of bound states to the density of continuum
states. Essentially, it states that any bound state must have emerged from the continuum so
that there is an exact balance between bound and scattering states when the background
potential changes. The fermion energy has two contributions, the valence part which arises
from the bound state energies and the vacuum polarization energy, which results from
the scattering data. For the energies, the balance is not exact because the particle number
(density) carries factors of the single-particle energies. Nevertheless, the theorem strongly
suggests that the energy gain from one comes with an energy loss of the other.

Though kink-type solutions emerge in many field theories, systems with explicit
scalar and fermion fields are most prominent in variants of the standard model of particle
physics. When embedded in three space dimensions, kinks represent domain walls in those
models [6]. In these models, the fermions’ back-reaction on the kink may eventually exhibit
effects like those we have explored here, in particular when the fermions are bound by the
domain wall and dwell in excited levels.

We have considered cases in which only a single fermion occupation number was
non-zero. The valence energy should become more important when this is true for several
occupation numbers. Then, we expect a stronger distortion of the kink. This should be the
subject of future projects.
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Notes

1 In physical variables the separation leading to the stationary equation is Ψ(t, x) = e−iEtΨ(x).
2 The computations of Ref. [27] make ample use of scattering data; so do we. Additionally we use the analytic properties of the Jost

function to write the VPE as a single integral over imaginary momenta. Note also that Ref. [27] computes the VPE for two widely

separated kinks and therefore has an additional factor two in Equation (21).
3 There have been attempts to pursue that program [29], however, the relation between the gauge invariant proper-time regulariza-

tion and the sharp cut-off for A is unclear.
4 We write absolute values for the odd powers to maintain the reflection property ϕ(−ξ) = −ϕ(ξ). The actual calculation is

performed on the half-line ξ ≥ 0 and the absolute value sign can be ignored.
5 This is similar to the S-wave bound states for the Coulomb problem in the Schrödinger equation.
6 The A0 bound state by itself is a zero mode with either u or v vanishing so that ψψ

∣∣
A0

= 0 and thus does not couple to the

scalar field.
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