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Abstract. We have proposed a technique to detect any anisotropic expansion in the universe
from the beginning of inflation to the last scattering. Any anisotropic expansion in the universe
would deform the shape of the primordial density perturbations in the universe, and a shape
analysis of the super-horizon fluctuations in CMBR will detect this shape deformation. Using
this analysis, we have constrainted any anisotropic expansion in the universe to be less than
35%.

1. Introduction

Observations have shown that the present universe is homogeneous and isotropic. One of the
most important observational evidences for the homogeneity and isotropy of the universe is the
highly smooth and uniform Cosmic Microwave Background (CMB) radiation. This does not rule
out the possibility of an initial anisotropic expansion of the homogeneous universe, which tend to
isotropic expansion later [1]. The question we would like to ask, here, is: Whether we can detect
any such transient anisotropic expansion in the history of the universe in a model independent
way? We have proposed that an analysis of the shapes of the super-horizon sized fluctuations
in the CMB can detect any anisotropic expansion in the universe, starting from inflation to
the surface of last scattering. Our technique is very general. The only assumption, here, is
that there is some mechanism in the early universe, which generates the density fluctuations of
super-horizon scales. However, for definiteness, we have used the picture of an early inflationary
stage of the universe, which is responsible for the generation of density fluctuations. Any early
anisotropic expansion in the universe will deform the fluctuations.

We have discussed two different ways of identifying shape deformations of density fluctuation
patches: (i) We have generated patches by considering some threshold value for over-density (or
under-density) of CMBR fluctuations in a given region on the surface of last scattering (excursion
sets). We then have studied shape deformation of these patches in this region using either the
Fourier transform, or detected it directly in the spatial patch. Both these methods can detect the
shape deformations. However, the shape analysis with spatial region has specific advantages,
which we have discussed later. (ii) We have also analyzed simulated density fluctuations of
specific geometrical shapes, such as spheres, and ellipsoids. This helps us in analyzing the
strengths of these two techniques in differentiating various scenarios, such as anisotropies arising
from initial conditions, or anisotropies arising from the anisotropic expansion, etc.
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2. The analysis

The main idea underlying our analysis is the following: If the density perturbations generated
initially (say during inflation) were statistically isotropic, then they would continue to have an
average spherical shape (statistically), if the expansion of the universe was always isotropic. But
if the universe ever went through an anisotropic expansion, then these perturbations would get
deformed [2]. For example, if the universe ever expanded differently in one direction from the
other two, then the average shape of these perturbations will become ellipsoidal. This average
deformation will survive the later isotropic expansion till the time the size of the perturbation
remains super-horizon. This means that any anisotropic expansion from the beginning of
inflation to the surface of last scattering will leave their signature in the shapes of super-horizon
perturbations in the CMBR.

We have used WMAP-7 data (ILC map) for the analysis, and chosen thin strips of the sky
along the great circles so as to avoid the galaxy contamination along the equator, and also chosen
the convenient pixel arrangement of HEALPix. We have done this by rotating the sky along
z-axis at different angles. A strip of width £10° along this rotated equator has been chosen,
and we have chosen CMBR fluctuations above/below a particular value, thereby, forming the
excursion sets. Figure 1 (a) shows a small 20° x 20° region in this equatorial belt. Filled patches
correspond to temperature anisotropies of magnitude (0.02 - 1)x(AT)mqaz, where (AT)pae is
the maximum magnitude of CMBR temperature anisotropy in this patch. As one can see, the
patches appear randomly shaped and sized. Such patches are projected on a plane to calculate
the X and Y extents.
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Figure 1. (a) X-axis corresponds to (sinf) ¢ (degrees) and the Y-axis shows 0 (degrees). The
figure shows the excursion sets in a 20° x 20° region in the equatorial belt of CMBR sky. (b)
Shows the histograms in the two directions for the 2D Fourier transform. Solid and dashed
curves are best fits to these histograms. (c¢) Shows plots of these histograms of the widths of
filled patches with corresponding (\/N ) error bars. Distribution for width along X-axis (angle ¢)
is shown by solid plot and distribution for width along Y-axis (angle #) is shown by the dashed
line. (d), (e) and (f) correspond to (a), (b) and (c) in the case a = 2.0
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2.1. Fourier transform method

Detection of shape anisotropies using Fourier transforms can be done in different ways depending
on what criterion one adopts to characterize the anisotropy. We have followed the approach used
in [3] for analyzing anisotropic deformations in metallography. Here, one uses a digitized image
of the material and then calculates the 2D Fourier transform of the image, which is thresholded
to levels 0 and 1. Anisotropy in the Fourier space is then determined by the ratio of the widths
of the histograms in the two directions. (See [4] for more details). Figure 1 (b) shows the plots
of the histograms in the two directions corresponding to the 2D Fourier transform. The two
plots completely overlap showing the statistical isotropy of the excursion sets in Figure 1 (a).

2.2. Analysis in the physical space

We have now described our technique for detecting shape deformations directly in the physical
space. What we want to find out is the average widths of the fluctuations in X-direction, and
compare it with the average widths in the Y-direction for the sky as given in Figure 1 (a). For
this, we have proceeded as follows: We have divided the entire 20° wide equatorial belt into thin
slices (varying from 0.05° - 1°) in X- and Y-directions (to increase statistics). Using these slices,
we have determined the X and Y extents of various filled patches. We have then plotted the
frequency distributions (histograms) of X and Y widths of the intersections of all the patches
with these slices in this equatorial belt. For the isotropic case, we expect the X and Y histograms
to almost overlap. Any relative shift, or difference, between the X and the Y histograms will
imply the presence of an anisotropy, such as an anisotropic expansion. We mention that this
fine slicing of the equatorial strip is done to simplify the analysis and improve the statistics.
The solid and dashed curves in Figure 1 (¢) shows the X and Y histograms, and they overlap
showing an isotropic expansion as also shown by the Fourier transform plots.

3. Constraining the anisotropy

To determine the level of isotropy, which is implied by the overlap of the two histograms in
Figures 1 (b) and 1 (c¢), we have introduced artificial stretching in the CMBR patches as follows
and repeated the above analysis for this stretched data. To simulate stretching by a factor «,

we have simply multiplied the Y-coordinate (i.e., ) for each point in the equatorial strip used

above by a factor a x l\g(l) This stretching represents an anisotropic expansion of the universe

along the polar axis compared to the expansion in the equatorial plane by a factor . Note again
that this simple scaling expression works approximately fine for a relatively thin strip along the
equator. For strips having larger widths along the longitudes, the Y-coordinates of different
patches will be scaled by a more complicated factor.

Figure 1 (d) shows these artificially stretched patches corresponding to the patches shown
in Figure 1 (a). The stretching factor is @ = 2 for Figure 1 (d). We have now repeated the
analyses as described above for these patches. Figure 1 (e) shows the histograms calculated
for the 2D Fourier transform for the stretched patches of Figure 1 (d). We have seen that
these histograms do not overlap showing the anisotropy arising from the stretching in Figure 1
(d). Similarly, Figure 1 (f) shows the histograms resulting from the analysis in physical space
applied to Figure 1 (d). We have seen, here, also that the two histograms do not overlap and the
difference is significant. Note incidentally that the peak in the dashed curve (# histogram) has
shifted to larger widths by almost a factor of 2, which is the factor of stretching of patches for
Figure 1 (d). We have tried to put stronger constraint on the anisotropic expansion factor « by
repeating the analysis with different values of « (including values of o < 1). Figures 2 (a) and
2 (b) show the cases of & = 1.35 and 1.3. We have seen that the two histograms corresponding
to X and Y widths of patches are clearly separated for a = 1.35. However, for a < 1.3, the
differences in the two histograms are insignificant. It is important to note, here, that the most
important, qualitative, signature of anisotropic expansion in our technique is the relative lateral




Proceedings of the 7th International Conference on Gravitation and Cosmology (ICGC2011) IOP Publishing
Journal of Physics: Conference Series 484 (2014) 012040 doi:10.1088/1742-6596/484/1/012040

1200 T T T T T 1200 [~

@

‘(b)‘

1000 || 1000 |

800 f¢ 800 fj.
1 3

600

400

Figure 2. Plots (a) and (b) are the frequency distributions for CMBR data with stretch factor
a = 1.35, and 1.3 respectively. ¢ and 6 width distributions are shown by solid and dashed
curves.

shift of the curves of the X and Y frequency distributions. This is clearly seen in Figure 2 (a),
which represents larger length scales in one direction compared to the other direction. This
automatically is correlated with change in relative heights of the peaks. Thus, in Figure 2 (a),
though peak height are very different, our focus on detecting anisotropic expansion (here, with
a = 1.35) is in the shift of the overall curve towards right. When we use smaller values of «,
this lateral shift is not significant. With this, it seems reasonable to conclude that with our
analysis technique, and with the present CMBR data, one can put a conservative upper bound
of a < 1.35 on the anisotropic expansion in the entire history of the universe. We have also
repeated the analysis by using under-density patches in CMBR sky and the results are the same.

To demonstrate the strength of the technique, we have repeated the analysis using simulated
patches with well defined geometric shapes. The isotropic case is represented by circles, whereas
anisotropic case by ellipses. For this, we have created a 3 dimensional cubic region in which over-
densities of constant magnitude and specific geometric shapes are created at different locations.
This represents a part of the universe enclosing the CMBR sky. We have then determined
the shapes of the over-density patches by embedding a surface of two-sphere (representing the
CMBR sky) in this cubic region and recording the patches, which are intersected by this S2.
We have repeated the analyses, and noticed that for isotropic case, the histograms in both the
analyses overlap, but for anisotropic case, they do not, and here also, for the analysis in physical
space, there is a peak shift which quantifies the stretch factor or the anisotropy factor. (See [4]
for the figures). We can also show with simulated patches that our technique can also distinguish
fluctuations, which are created deformed with the ones, which are deformed due to anisotropic
expansion. It can also be shown that the analysis in physical space has more advantages, since
it can quantify the shape deformation of fluctuations, but is not sensitive to any other type
of anisotropy, say anisotropic distribution of patches, whereas the Fourier transform method
detects all anisotropies and cannot distinguish them in a qualitative manner.

4. Conclusions

We have emphasized the most important part of our results, that a simple technique of shape
analysis is able to answer an important question in an almost model independent manner. That
is whether the universe ever expanded anisotropically almost from the beginning of inflation
near ¢t ~ 1073% sec. up to the stage of last scattering when the universe was 300,000 years
old. Even with our qualitative approach of comparing the histograms in the two directions, we
can conclude that our technique can rule out any anisotropic expansion of the universe in the
past to less than 35%, apart from any sufficiently early stages of inflationary universe, which
are followed by very long, isotropic inflationary stage. In particular, any anisotropic expansion
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stage after the end of inflation is certainly restricted to o < 1.35. With PLANCK data, one
should be able to do shape analysis of patches with high resolution. A major drawback of our
present analysis is its restriction to relatively small angular scale. Thus, claims of anisotropy at
quadrapole level in the literature are not examined by our analysis at present. We are working
on improvement of our techniques for larger angular scales, and also trying to get better control
on statistical fluctuations in our plots.
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