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Abstract. I review selected recent results of the MILC collaboration (1) determining masses
of the light quarks and decay constants of the pion and kaon, (2) analyzing the scalar meson
(a0 and f0) channel in the presence of two-body thresholds, and (3) determining the equation
of state of the quark-gluon plasma with a more realistic quark spectrum than hitherto.

1. Toward high precision lattice calculations

Our ability to solve QCD through numerical simulation has grown dramatically over the past
decade, thanks to the development of new algorithms that reduce lattice artifacts substantially
and to the continued increase in computer speeds. The Asqtad staggered fermion formulation
[1, 2, 3, 4, 5], coupled with advances in our understanding of lattice chiral perturbation theory
[6, 7, 8], has been very successful in reproducing a variety of known decay constants and mass
splittings to an accuracy of a couple percent [9].

Staggered fermion methods have a comparatively low computational cost, but to achieve
a realistic quark spectrum, they require a somewhat controversial approximation: taking the
fourth-root of the fermionic determinant. The concern is that the approximation introduces
nonlocalities and violations of unitarity, possibly even placing the theory in a different
universality class from that of other regularizations of QCD. Fortunately, over the past year
there has been considerable progress in understanding the validity of the method. For a review,
see [10].

In this talk I present some highlights of recent work by the MILC collaboration using this
numerical approach. (1) I will give an update of an effort to match lattice calculations to chiral
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Figure 1. Taste multiplets for π,
K, η, and η′ for the study ensemble.
The letters indicate the taste symmetry
assignments, grouped as predicted by
Lee and Sharpe [6].

Figure 2. Splittings in the pion
taste multiplet as a function of lattice
spacing with mud/ms = 0.4. The
vertical scale gives the difference in
squared mass between the member of
the multiplet and the lowest, Goldstone
boson member in units of r1. The
horizontal scale gives the square of
the running color coupling constant
times the square of the lattice spacing
in units of r1. Symbols distinguish
nondegenerate members of the multiplet.
Staggered chiral perturbation theory
predicts a slope of one as indicated by
the solid line.

perturbation theory, leading to a determination of the masses of the u, d and s quarks and
the pion and kaon decay constants. For more detail see [11, 12] and [13]. (2) I will review a
recent study of the difficult scalar meson correlators. In this case, staggered chiral perturbation
theory allows us to disentangle the supposed quark-antiquark states from the multitude of two-
body channels and provides a good illustration of how artifacts of the fourth-root approximation
disappear in the continuum limit. For further detail see [11, 14, 15]. (3) I will present recent
results of a determination of the equation of state of the quark-gluon plasma with a more realistic
light quark spectrum than hitherto [16, 17, 18].

The determination of quark masses and the analysis of scalar meson correlators is done with
the assistance of rooted staggered chiral perturbation theory (rSχPT) [19, 20]. This formalism
accounts for the lattice artifacts of the staggered fermion formalism in the low energy limit.
Fitting lattice results to the predicted behavior as a function of the quark masses and lattice
spacing makes it possible to do a simultaneous extrapolation to the physical quark mass and
continuum limit, and it gives a determination of the parameters of the chiral theory. This
procedure is the key to achieving high precision. Armed with the values of the low energy
couplings of the chiral theory, we can predict other low energy quantities. Staggered chiral
perturbation theory also describes the behavior of various quantities in “partial quenching”, in
which the masses of the valence quarks are taken to be different from the sea quark masses, thus
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Figure 3. The ratio of the Goldstone
pion mass squared to the sum of the
light valence quark masses as a function
of the sum of the light valence quark
masses for the several lattice ensembles
in our study. Quark masses are given in
lattice units. The red curve labeled “full,
cont.” predicts the continuum limit at
the physical strange quark mass with
valence and sea quark masses set equal.
The vertical line marks the physical
value of the light quark masses.

Figure 4. The Goldstone pion decay
constant as a function of the sum of the
light valence quark masses. Quark masses
are given in lattice units. The red curve
is as in Fig. 3. The red fancy plus marks
the predicted value. The adjacent blue
bar indicates the systematic error and the
burst plots the experimental value.

enlarging the domain in which lattice results can be matched to chiral perturbation theory.
Staggered chiral perturbation theory provides an understanding of the effects of species

doubling which plagues lattice fermions, and staggered fermions in particular. In the staggered
scheme each quark flavor appears in four “tastes”, and, as indicated in Fig. 1, each quark-
antiquark meson comes in a taste multiplet of sixteen members. They become degenerate in
the continuum limit. To be more explicit, in terms of the strong coupling α and lattice spacing
a, the improved actions have residual discretization errors of order αa2 in most quantities, but
O(α2a2) in meson mass splittings. Figure 2 shows splittings in the pion taste multiplet as a
function of lattice spacing. (The quantity r1 ≈ 0.318(7) fm is a particularly reliable measure of
the lattice scale. It is based on a measurement of the static quark-antiquark potential on the
same ensemble.) The solid line gives the slope expected from a splitting proportional to α2a2.
The trend is consistent with this prediction.

2. Light quark masses

Over the past few years the MILC collaboration has been generating a large archive of publicly
available gauge configuration files describing the QCD vacuum in the presence of two flavors of
light quarks (u and d) and one strange quark (s). A set of configurations at the same sea quark
masses and lattice spacing forms an ensemble. These ensembles are used to measure quantities
of importance to physics. The cost of generating them grows very steeply as the lattice spacing
a is decreased and as the light quark masses mud are reduced toward their physical values.
Currently, MILC is generating configurations at a resolution of 0.06 fm at mud/ms = 0.2 and
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expects to reach 0.1 at this lattice spacing in the near future.
The pion and kaon masses and their decay constants fπ and fK are measured as a function

of lattice spacing, sea quark masses, and valence quark masses. The lattice ensembles in the
study and their approximate lattice spacing are “coarser” (0.15 fm), “coarse” (0.12 fm), “fine”
(0.09 fm), and “superfine” (0.06 fm). The strange quark mass is set close to its physical value.
The light sea quark mass ratio mud/ms ranges from 0.1 to 1. The valence quark mass is varied
independently over this range. Figure 3 shows a portion of the results including a fit to the form
required by rSχPT. Altogether 978 data points are included in a fit involving 28 unconstrained
and 26 tightly constrained parameters. The fit is excellent.

Similarly Fig. 4 shows the pion decay constant in units of r1 as a function of the sum of the
light valence quark masses.

The light quark masses are determined by requiring that the predicted masses of the π and
K mesons match the experimental values at the physical point. The simulations are done with
degenerate u and d quarks, so in terms of m̂ ≡ (mu + md)/2, but with some mild assumptions
about electromagnetic mass splittings, it is possible to infer separate masses for the u and d
quarks. The most recent determination [13] gives

mMS
s = 90(0)(5)(4)(0)MeV

m̂MS = 3.3(0)(2)(2)(0)MeV

mMS
u = 2.0(0)(1)(2)(1)MeV

mMS
d = 4.6(0)(2)(2)(1)MeV

fπ = 128.6(0.4)(3.0)MeV

fK = 155.3(0.4)(3.1)MeV .

Quark masses are defined in the modified minimal subtraction scheme at scale 2 GeV.

3. Scalar meson correlators

When up and down quark masses are sufficiently light, the isovector (a0) and isosinglet (f0)
scalar meson correlators are dominated at large distances by two-body states composed of π,
K, and η. Because each meson occurs in a sixteen-member taste multiplet, the multiplet is split
at nonzero lattice spacing, resulting in a proliferation of two-body intermediate states, thereby
complicating the analysis of the correlators. To make matters worse, many of these states are
lattice artifacts with unphysical masses, and some even have ghost (negative) weights. Thus
we see nonlocalities in the form of unphysical long-range contributions to the correlators, and
we see violations of unitarity in the form of unphysical and negative norm intermediate states.
Such artifacts are expected to disappear in the continuum limit.

Fortunately, these complexities are described in detail by rSχPT [19, 20]. It provides a strict
framework in which to analyze these two-body contributions in terms of just a few low energy
constants – the same ones determined by fits to the meson masses and decay constants. As we
shall see, in rSχPT the lattice artifacts disappear in the continuum limit.

3.1. Pseudoscalar meson multiplet

The a0 channel was studied in recent years in staggered fermion QCD by the MILC collaboration
[21] and the UKQCD collaboration [22]. Both groups found that the correlator appeared to
contain states with energies well below those of possible thresholds involving known mesons. At
Lattice 2005 one of us showed that rSχPT provides a simple explanation [23, 24], namely, lattice
artifacts in the staggered fermion scheme introduce unphysically light two-body states in the
scalar meson channel.

Second Meeting of the APS Topical Group on Hadronic Physics IOP Publishing
Journal of Physics: Conference Series 69 (2007) 012029 doi:10.1088/1742-6596/69/1/012029

4



taste a0 f0

I 2/3 1/4
I0 −15/8 −1
V 4/8 4/4
T 6/8 6/4
A 4/8 4/4
P 1/8 1/4

Table 1. Two-body channel weights for 2 + 1 flavors in the a0 and f0 channels. The a0

weights apply to the πη contributions for tastes I, P, V,A, T , and the f0 weights apply to the ππ
contributions. Here the taste-singlet η is the physical state. For the a0 the weight I0 denotes the
contribution from the taste-singlet pion plus the bare taste-singlet η (unshifted by the anomaly).
For the f0 the weight I0 denotes the contribution from two bare taste-singlet etas.

To see this we refer to the meson taste multiplets sketched in Fig. 1. Of particular concern
are the η and η′ multiplets. They are mixed by the anomaly. But the anomaly is a taste singlet.
So only the taste-singlet members are proper candidates for the physical states. The other
unphysical taste members are unmixed at tree level and remain degenerate with the pions or
nearly so.

Consider the two-meson contributions to the physical taste-singlet a0 correlator. The lowest
energy state should be πη with a variety of possible taste assignments for the π and η. Taste
symmetry requires that π and η tastes be identical. Otherwise all contribute. In particular,
the taste-pseudoscalar pion and a taste-pseudoscalar eta have a threshold energy equal to just
twice the Goldstone pion mass. Other taste pairs are similarly light. Thus we expect anomalous
low-energy contributions to the correlator from these unphysical states.

3.2. Threshold weights

Explicit expressions were presented in [23, 24] for the two-meson contribution to the a0 correlator,
including all tastes. Some of us have extended this analysis to the f0 correlator [15]. The
expressions (not written here) consist of several two-body threshold contributions with weights
depending on the number of flavors and the replica factor [7] needed to correct for the unwanted
taste multiplicity. If we ignore mixings induced by the taste axial-vector and vector hairpins,
the weights for the physical 2 + 1 flavor case are given in Table 1. In the continuum limit in
the a0 channel, all thresholds but the taste-singlet πη become degenerate and the axial-vector
and vector hairpin mixings vanish. As is evident from the table, the weights add up to zero:
the ghost threshold cancels the unphysical thresholds, and only the physical taste-singlet πη
survives. In the f0 channel, all the ππ thresholds become degenerate leaving a proper weight of
three for the three charge assignments for the physical pions.

3.3. Fits and Results

Our initial study used only one “coarse” ensemble with a quark mass ratio mud/ms = 0.1.
Shown in Figs. 5, 6 and 7 are results of fitting the measured correlators at several scalar meson
momenta to the expressions

Ca0(p, t) = fmeson,a0(p, t) + fbubble,a0(p, t)

Cf0(p, t) = fmeson,f0(p, t) + fbubble,f0(p, t)

where the two-meson “bubble” contribution is determined completely by the independently
measured pseudoscalar meson masses and three chiral low energy constants. The latter are also
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Figure 5. Fit to the a0 correlator for
five momenta. Green points dropped.

Figure 6. Fit to the f0 correlator for
four momenta.

Figure 7. Fit to the f0 correlator for
zero momentum.

Figure 8. Interaction measure vs temperature.

determined in fits to the meson masses and decay constants. The “meson” contribution is a
standard set of single particle states, including a possible quark-antiquark a0 or f0.

The three low energy constants are µ = m2
π/(2mu,d) and the axial vector and vector hairpin

constants δA = a4δ′A and δV = a4δ′V in the notation of [11]. In this analysis it was convenient
to impose a range of values of δV by means of a Bayesian prior, based on the analysis of the
meson masses and decay constants [11]. The other two values were varied with only loose
priors. The resulting values, r1µ = 8.2(1.1) and δA = −0.056(7) are to be compared with
r1m

2
π/(2mu,d) = 6.72(2) from a direct measurement of the mass spectrum and δA = −0.040(6)

from chiral fits to the meson mass spectrum and decay constants. Our results appear to be
reasonably consistent with the model and with the previously determined low energy constants.
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Figure 9. Pressure vs temperature. Figure 10. Energy density vs temperature.

4. Quark gluon plasma equation of state

The equation of state of the quark gluon plasma is a central ingredient in hydrodynamical models
of the plasma dynamics. It is directly calculable in lattice simulations. The popular integral
method for determining it [25] begins with the thermodynamic relations

ε − 3p = I = −
T

V

d ln Z

d log a
≈ −

∂p

∂ log a
, (1)

where ε is the energy density, p is the pressure, I is the interaction measure, T is the temperature,
V is the spatial volume, Z is the partition function, and a is the lattice spacing. The interaction
measure I is simplest to calculate, since it involves local operators of the type that appear in the
lattice action and derivatives of the various lattice parameters with respect to lattice spacing.
From the last equality in the chain we see that we can obtain the pressure by integrating the
interaction measure, and finally, from the first equality we get the energy density. We choose to
integrate along lines of approximately constant mud/ms = 0.1 and 0.2.

The energy density and pressure are, of course, always defined relative to their vacuum values.
Thus we need the difference between the quantities calculated at the desired temperature and at
zero temperature. Since the quantities in the difference are dominated by ultraviolet fluctuations,
which grow as a−4 as we approach the continuum limit, the calculation becomes increasingly
expensive at small a. Thus calculations until now have been limited to somewhat coarse lattices.

In conventional practice the temperature is varied by varying the lattice spacing. Since
T = 1/(Nta), where Nt is the lattice extent in the imaginary time direction, at any fixed Nt

we map out a temperature scale. In particular for a given Nt, the lower the temperature, the
coarser the lattice spacing. To move closer to the continuum we increase Nt and repeat with a
faster computer. There is an extensive body of work at Nt = 4 [26, 27], but relatively little at
Nt = 6 [28, 16, 29].

What is needed is a simulation with reasonably small lattice artifacts and a realistic quark
(i.e. meson) spectrum. For staggered fermions it would seem important in the interesting region
just below the crossover that most of the pion taste multiplet be lighter than the kaon taste
multiplet. In Fig. 2 the vertical bars indicate the location of the crossover temperature Tc for
Nt = 4, 6, and 8. Also shown is the mass of the lightest kaon at mud/ms = 0.1 and 0.2 for the
Asqtad action. At Nt = 8 all members of the pion multiplet are lighter than the kaons at the
crossover temperature. At Nt = 4, however, the extrapolated lightest kaon mass approximates
the second lightest pion at the crossover. Thus Nt = 6 is better than 4, but 8 is better still.

In Figs. 8, 9 and 10 we show our results for the interaction measure, pressure, and energy
density for both Nt = 4 and 6. The interaction measure appears to peak more sharply just
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above the crossover region at Nt = 6, but there are otherwise no dramatic differences between
the two Nt values.

This work was supported in part by the US DOE and the US NSF. Computing resources
were provided by FNAL, IU, NCSA, NERSC, PSC, ORNL, SDSC, and the Utah CHPC.
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