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Abstract: We show that in a sliced spacetime (V, g), global hyperbolicity in V is equivalent to
TA-completeness of a slice, if and only if the product topology TP, on V, is equivalent to TA, where
TA denotes the usual spacetime Alexandrov “interval” topology.
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1. Preliminaries

Sliced spaces have attracted the attention of several authors in studies related to systems of
Einstein equations (see [1]), completeness (see [2]), global hyperbolicity (see [3,4]), as well as in
problems of a more geometric nature on quantum cosmology (see [5,6]).

Definition 1. Let V = M×R, where M is an n-dimensional smooth manifold, such that V is equipped with
an n + 1-dimensional Lorentz metric g, which splits in the following way:

g = −N2(θ0)2 + gijθ
iθ j,

where θ0 = dt, θi = dxi + βidt, N = N(t, xi) is called lapse function, βi(t, xj) is called shift function and
Mt = M× {t}, called spatial slices of V, are spacelike submanifolds equipped with the time-dependent spatial
metric gt = gijdxidxj. Such a product space V is called a sliced space.

Let (V, g) be a sliced space. A base for the product topology TP, on V, consists of all sets of the
form A× B, where A ∈ TM and B ∈ TR. Here TM denotes the natural topology of the manifold M
where, for an appropriate Riemann metric h, it has a base consisting of open balls Bh

ε (x) and TR is the
usual topology on the real line.

The Alexandrov topology (or “interval topology”) TA on a spacetime V has a base consisting of
open sets of the form < x, y >= I+(x) ∩ I−(y), where I+(x) = {z ∈ V : x � z} and I−(y) = {z ∈ V :
z� y}, where� is the chronological order defined as x � y iff there exists a future oriented timelike
curve, joining x with y. By J+(x) one denotes the topological closure of I+(x) and by J−(y) that one
of I−(y) (see [7]).

A spacetime V is strongly causal, if and only if it is strongly causal at every point, that is, for
every point p ∈ V, p has arbitrarily small causally convex neighbourhoods. We say that V is globally
hyperbolic, if and only if V is strongly causal and every set J+(x) ∩ J−(y) (called a “closed diamond”)
is compact. Global hyperbolicity is considered the strongest causality condition in the causal hierarchy
of spacetimes (see [8]) and is equivalent to the existence of a Cauchy hypersurface S for V (see
Section 5, in [7]); this supplies us with the benefit to construct on V well-defined initial-value problems
(see [9,10], Theorem 10.2.2). One can also view global hyperbolicity as a property on a spacetime
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which guarantees the absence of naked singularities in V (for its role in the strong cosmic censorship,
see [11]).

In the next section we will show that global hyperbolicity in a sliced spacetime (V, g) is equivalent
to completeness with respect to the Alexandrov topology of a slice (Mt, gt). Although completeness of
the Alexandrov topology TA, by itself, is not a criterion of nonsingularity (in the Schwartzschild space
and the Friedmann-Robertson-Walker cosmologies, for example, TA is complete, but these spaces are
singular; see [12]), it is interesting that in the particular case of sliced spacetimes that are equipped
with their natural product topology, completeness of a slice with respect to TA can be considered as
a criterion of global hyperbolicity for the entire space.

Thoughout our text, for topological terms like Hausdorff space and completeness, we refer to the
seminal book of Engelking, [13].

2. A Topological Condition for the Completeness of a Sliced Space

In [3], sliced spaces are being considered to have uniformly bounded lapse, shift and spatial
metric, in order to achieve the equivalence of global hyperbolicity of (V, g) with the completeness of the
slice (M0, γ) (Theorem 2.1). Being motivated by this result, in the Theorem that follows, we consider
global topological conditions, for showing the equivalence of global hyperbolicity of (V, g) with a slice
(Mt, gt) being TA-complete. Our Theorem 1, below, differs from Theorem 2.1 of [3] in that the slices
in [3] are complete Riemannian manifolds (with uniformly bounded spatial metric, lapse and shift
functions) while in our case the slices are TA-complete. We discuss this further in Section 3.

Theorem 1. Let (V, g) be a sliced space, with respect to its natural product topology TP, where V = M×R,
M is an n-dimensional manifold and g the n + 1-Lorentz “metric” on V. Let also TA be the Alexandrov topology
on V. Then, the following statements are equivalent:

1. (V, g) is globally hyperbolic.
2. TP ≡ TA.
3. (Mt, gt) is complete with respect to TA.

Proof. 1. has been shown to be equivalent to 2. in [4].
To show that 2. implies 3., we first notice that since (V, g) is globally hyperbolic, it is also strongly

causal. Since, also, TP ≡ TA, we have that for every t ∈ R, Mt is a subset of a spacetime V, with
nondegenerate spacetime metric, with subspace topology TA inherited from V, such that Mt is strongly
causal. Hence, TA, on Mt, is complete (see [12], Theorem 2).

For proving that 3. implies 1., for each t ∈ R, we let (Mt, gt) to be complete with respect to TA,
where each Mt is a spacelike submanifold with time dependent spatial metric gt ≡ gijdxidxj. But since
each Mt is complete, the Alexandrov topology TA, on Mt, is strongly causal (see, again, [12]). So, each
point of Mt is strongly causal, which means that for every point P ∈ Mt there exists an arbitrarily small
convex neighbourhood. But, V =

⋃
t∈R M× {t}, so P ∈ V if and only if there exists Mt = M× {t},

such that P ∈ Mt, and hence V is strongly causal with respect to TA. That the closed TA-diamonds, in
V, are compact, has been shown in Theorem 3, from [4]. Thus, (V, g) is globally hyperbolic.

3. Discussion

Question 1: Can our Theorem 1 hold, if one substituted in 3. “(Mt, gt) is complete with respect
to TA” with the statement “(Mt, gt) is a complete Riemannian manifold”? The answer is negative,
since in a spacetime manifold, TA is usually a coarser topology than the spacetime topology, and it is
equivalent to the manifold topology only if it is Hausdorff (see [7], Theorem 4.24). So, in order for this
question to have a positive answer, one would have to add in Theorem 1 the extra condition that TA,
on V, is Hausdorff. As a continuation of this question, we ask whether the spacetimes considered in [3]
may well have their Alexandrov topology TA not being Hausdorff. In such a case, strong causality
will fail due to this (see, for example, Remark 4.25 of [7]). Spacetimes where TA fails to be Hausdorff,
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according to Penrose, admit a null geodesic along which strong causality fails and this is one aspect
of a general result concerning the region of strong causality failure in a spacetime [7]. Given the
above argument, we conjecture that for a physically reasonable spacetime, the statements of Theorem
2.1 of [3] and of Theorem 1 here should be equivalent. A rigorous proof showing the equivalence of
a uniformly bounded spatial metric, lapse and shift functions with the condition of the topologies TP
and TA to be equivalent, will be of a great interest.

In [3], there are conditions introduced, so that global hyperbolicity to be equivalent to geodesic
completeness. In particular, in Theorem 3.1, the term trivially sliced space is introduced, so that
a slice is a complete Riemannian manifold, if and only if the space (V, g) is geodesically complete.
The “disadvantage” of this condition is that the spatial metric gij is time-independent.

Question 2: Can one relate slice-completeness and geodesic completeness of (V, g) with
a time-dependent spatial metric gij?

Question 2 does not seem to have a trivial answer. In a possible variation of Theorem 1, towards
an answer to this question, one could make use of the classical Hopf-Rinow Theorem (see [14]), which
gives that metric completeness, in a spacetime, is equivalent to geodesic completeness. Again, TA
should be Hausdorff.
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