

Article

# On Completeness of Sliced Spaces under the Alexandrov Topology

Nazli Kurt <sup>1</sup> and Kyriakos Papadopoulos <sup>2,\*</sup> 

<sup>1</sup> Faculty of Science, Open University, P.O. Box 197, Milton Keynes MK7 6BJ, UK; nazkrt.96@gmail.com

<sup>2</sup> Department of Mathematics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

\* Correspondence: kyriakos.papadopoulos1981@gmail.com or kyriakos@sci.kuniv.edu.kw

Received: 1 December 2019; Accepted: 6 January 2020; Published: 7 January 2020



**Abstract:** We show that in a sliced spacetime  $(V, g)$ , global hyperbolicity in  $V$  is equivalent to  $T_A$ -completeness of a slice, if and only if the product topology  $T_P$ , on  $V$ , is equivalent to  $T_A$ , where  $T_A$  denotes the usual spacetime Alexandrov “interval” topology.

**Keywords:** sliced space; Alexandrov interval topology; global hyperbolicity; slice completeness

## 1. Preliminaries

Sliced spaces have attracted the attention of several authors in studies related to systems of Einstein equations (see [1]), completeness (see [2]), global hyperbolicity (see [3,4]), as well as in problems of a more geometric nature on quantum cosmology (see [5,6]).

**Definition 1.** Let  $V = M \times \mathbb{R}$ , where  $M$  is an  $n$ -dimensional smooth manifold, such that  $V$  is equipped with an  $n + 1$ -dimensional Lorentz metric  $g$ , which splits in the following way:

$$g = -N^2(\theta^0)^2 + g_{ij}\theta^i\theta^j,$$

where  $\theta^0 = dt$ ,  $\theta^i = dx^i + \beta^i dt$ ,  $N = N(t, x^i)$  is called lapse function,  $\beta^i(t, x^j)$  is called shift function and  $M_t = M \times \{t\}$ , called spatial slices of  $V$ , are spacelike submanifolds equipped with the time-dependent spatial metric  $g_t = g_{ij}dx^i dx^j$ . Such a product space  $V$  is called a sliced space.

Let  $(V, g)$  be a sliced space. A base for the product topology  $T_P$ , on  $V$ , consists of all sets of the form  $A \times B$ , where  $A \in T_M$  and  $B \in T_{\mathbb{R}}$ . Here  $T_M$  denotes the natural topology of the manifold  $M$  where, for an appropriate Riemann metric  $h$ , it has a base consisting of open balls  $B_{\epsilon}^h(x)$  and  $T_{\mathbb{R}}$  is the usual topology on the real line.

The Alexandrov topology (or “interval topology”)  $T_A$  on a spacetime  $V$  has a base consisting of open sets of the form  $\langle x, y \rangle = I^+(x) \cap I^-(y)$ , where  $I^+(x) = \{z \in V : x \ll z\}$  and  $I^-(y) = \{z \in V : z \ll y\}$ , where  $\ll$  is the chronological order defined as  $x \ll y$  iff there exists a future oriented timelike curve, joining  $x$  with  $y$ . By  $J^+(x)$  one denotes the topological closure of  $I^+(x)$  and by  $J^-(y)$  that one of  $I^-(y)$  (see [7]).

A spacetime  $V$  is strongly causal, if and only if it is strongly causal at every point, that is, for every point  $p \in V$ ,  $p$  has arbitrarily small causally convex neighbourhoods. We say that  $V$  is globally hyperbolic, if and only if  $V$  is strongly causal and every set  $J^+(x) \cap J^-(y)$  (called a “closed diamond”) is compact. Global hyperbolicity is considered the strongest causality condition in the causal hierarchy of spacetimes (see [8]) and is equivalent to the existence of a Cauchy hypersurface  $S$  for  $V$  (see Section 5, in [7]); this supplies us with the benefit to construct on  $V$  well-defined initial-value problems (see [9,10], Theorem 10.2.2). One can also view global hyperbolicity as a property on a spacetime

which guarantees the absence of naked singularities in  $V$  (for its role in the strong cosmic censorship, see [11]).

In the next section we will show that global hyperbolicity in a sliced spacetime  $(V, g)$  is equivalent to completeness with respect to the Alexandrov topology of a slice  $(M_t, g_t)$ . Although completeness of the Alexandrov topology  $T_A$ , by itself, is not a criterion of nonsingularity (in the Schwarzschild space and the Friedmann-Robertson-Walker cosmologies, for example,  $T_A$  is complete, but these spaces are singular; see [12]), it is interesting that in the particular case of sliced spacetimes that are equipped with their natural product topology, completeness of a slice with respect to  $T_A$  can be considered as a criterion of global hyperbolicity for the entire space.

Throughout our text, for topological terms like Hausdorff space and completeness, we refer to the seminal book of Engelking, [13].

## 2. A Topological Condition for the Completeness of a Sliced Space

In [3], sliced spaces are being considered to have uniformly bounded lapse, shift and spatial metric, in order to achieve the equivalence of global hyperbolicity of  $(V, g)$  with the completeness of the slice  $(M_0, \gamma)$  (Theorem 2.1). Being motivated by this result, in the Theorem that follows, we consider global topological conditions, for showing the equivalence of global hyperbolicity of  $(V, g)$  with a slice  $(M_t, g_t)$  being  $T_A$ -complete. Our Theorem 1, below, differs from Theorem 2.1 of [3] in that the slices in [3] are complete Riemannian manifolds (with uniformly bounded spatial metric, lapse and shift functions) while in our case the slices are  $T_A$ -complete. We discuss this further in Section 3.

**Theorem 1.** *Let  $(V, g)$  be a sliced space, with respect to its natural product topology  $T_P$ , where  $V = M \times \mathbb{R}$ ,  $M$  is an  $n$ -dimensional manifold and  $g$  the  $n + 1$ -Lorentz “metric” on  $V$ . Let also  $T_A$  be the Alexandrov topology on  $V$ . Then, the following statements are equivalent:*

1.  $(V, g)$  is globally hyperbolic.
2.  $T_P \equiv T_A$ .
3.  $(M_t, g_t)$  is complete with respect to  $T_A$ .

**Proof.** 1. has been shown to be equivalent to 2. in [4].

To show that 2. implies 3., we first notice that since  $(V, g)$  is globally hyperbolic, it is also strongly causal. Since, also,  $T_P \equiv T_A$ , we have that for every  $t \in \mathbb{R}$ ,  $M_t$  is a subset of a spacetime  $V$ , with nondegenerate spacetime metric, with subspace topology  $T_A$  inherited from  $V$ , such that  $M_t$  is strongly causal. Hence,  $T_A$ , on  $M_t$ , is complete (see [12], Theorem 2).

For proving that 3. implies 1., for each  $t \in \mathbb{R}$ , we let  $(M_t, g_t)$  to be complete with respect to  $T_A$ , where each  $M_t$  is a spacelike submanifold with time dependent spatial metric  $g_t \equiv g_{ij}dx^i dx^j$ . But since each  $M_t$  is complete, the Alexandrov topology  $T_A$ , on  $M_t$ , is strongly causal (see, again, [12]). So, each point of  $M_t$  is strongly causal, which means that for every point  $P \in M_t$  there exists an arbitrarily small convex neighbourhood. But,  $V = \bigcup_{t \in \mathbb{R}} M \times \{t\}$ , so  $P \in V$  if and only if there exists  $M_t = M \times \{t\}$ , such that  $P \in M_t$ , and hence  $V$  is strongly causal with respect to  $T_A$ . That the closed  $T_A$ -diamonds, in  $V$ , are compact, has been shown in Theorem 3, from [4]. Thus,  $(V, g)$  is globally hyperbolic.  $\square$

## 3. Discussion

Question 1: Can our Theorem 1 hold, if one substituted in 3. “ $(M_t, g_t)$  is complete with respect to  $T_A$ ” with the statement “ $(M_t, g_t)$  is a complete Riemannian manifold”? The answer is negative, since in a spacetime manifold,  $T_A$  is usually a coarser topology than the spacetime topology, and it is equivalent to the manifold topology only if it is Hausdorff (see [7], Theorem 4.24). So, in order for this question to have a positive answer, one would have to add in Theorem 1 the extra condition that  $T_A$ , on  $V$ , is Hausdorff. As a continuation of this question, we ask whether the spacetimes considered in [3] may well have their Alexandrov topology  $T_A$  not being Hausdorff. In such a case, strong causality will fail due to this (see, for example, Remark 4.25 of [7]). Spacetimes where  $T_A$  fails to be Hausdorff,

according to Penrose, admit a null geodesic along which strong causality fails and this is one aspect of a general result concerning the region of strong causality failure in a spacetime [7]. Given the above argument, we conjecture that for a physically reasonable spacetime, the statements of Theorem 2.1 of [3] and of Theorem 1 here should be equivalent. A rigorous proof showing the equivalence of a uniformly bounded spatial metric, lapse and shift functions with the condition of the topologies  $T_P$  and  $T_A$  to be equivalent, will be of a great interest.

In [3], there are conditions introduced, so that global hyperbolicity to be equivalent to geodesic completeness. In particular, in Theorem 3.1, the term *trivially sliced space* is introduced, so that a slice is a complete Riemannian manifold, if and only if the space  $(V, g)$  is geodesically complete. The “disadvantage” of this condition is that the spatial metric  $g_{ij}$  is time-independent.

Question 2: Can one relate slice-completeness and geodesic completeness of  $(V, g)$  with a time-dependent spatial metric  $g_{ij}$ ?

Question 2 does not seem to have a trivial answer. In a possible variation of Theorem 1, towards an answer to this question, one could make use of the classical Hopf-Rinow Theorem (see [14]), which gives that metric completeness, in a spacetime, is equivalent to geodesic completeness. Again,  $T_A$  should be Hausdorff.

**Author Contributions:** Conceptualization, N.K. and K.P.; methodology, N.K. and K.P.; investigation, N.K. and K.P.; resources, N.K. and K.P.; writing—original draft preparation, K.P.; writing—review and editing, K.P.; supervision, K.P., project administration, N.K. and K.P. The both authors have read and agreed to the published version of the manuscript.

**Funding:** This research received no external funding.

**Acknowledgments:** The authors would like to thank Albert Much, for the oral communication and for the motivation, which led to this note. In particular, Question 2 is credited to him. Many thanks to the two unknown referees for their remarks and additions, which improved the shape of the text significantly.

**Conflicts of Interest:** The authors declare no conflicts of interest.

## References

1. Choquet-Bruhat, Y.; Ruggeri, T. Hyperbolicity of the  $3 + 1$  system of Einstein equations. *Commun. Math. Phys.* **1983**, *89*, 269–275. [[CrossRef](#)]
2. Choquet-Bruhat, Y.; Cotsakis, S. Global Hyperbolicity and Completeness. *J. Geom. Phys.* **2002**, *43*, 345–350. [[CrossRef](#)]
3. Cotsakis, S. Global Hyperbolicity of Sliced Spaces. *Gen. Relativ. Gravit.* **2004**, *36*, 1183–1188. [[CrossRef](#)]
4. Papadopoulos, K.; Kurt, N.; Papadopoulos, B.K. On Sliced Spaces; Global Hyperbolicity Revisited. *Symmetry* **2019**, *11*, 304. [[CrossRef](#)]
5. Finster, F.; Much, A.; Oeckl, R. Stationary Spacetimes and Self-Adjointness in Klein-Gordon Theory. *arXiv* **2020**, arXiv:1910.05322.
6. Much, A.; Oeckl, R. Self-Adjointness in Klein-Gordon Theory on Globally Hyperbolic Spacetimes. *arXiv* **2018**, arXiv:1804.07782.
7. Penrose, R. Techniques of Differential Topology in Relativity. In *CBMS-NSF Regional Conference Series in Applied Mathematics*; 1972. Available Online: <https://www.amazon.com/Techniques-Differential-Relativity-Conference-Mathematics/dp/0898710057> (accessed on 7 December 2019).
8. Minguzzi, E. Lorentzian causality theory. *Living Rev. Relativ.* **2019**, *22*, 3. [[CrossRef](#)]
9. Choquet-Bruhat, Y.; Geroch, R. Global aspects of the Cauchy problem in general relativity. *Commun. Math. Phys.* **1969**, *14*, 329–335. [[CrossRef](#)]
10. Wald, R.M. *General Relativity*; The University of Chicago Press: Chicago, IL, USA, 1984.
11. Penrose, R. Gravitational collapse—The role of general relativity. *Gen. Relativ. Gravit.* **2002**, *34*, 1142–1164. [[CrossRef](#)]

12. McWilliams, K.J. Completeness of the Alexandrov topology for space-time. *Int. J. Theor. Phys.* **1981**, *20*, 905. [[CrossRef](#)]
13. Engelking, R. *General Topology*; Sigma Series in Pure Mathematics; Heldermann Verlag: Berlin, Germany, 1989; Volume 6, ISBN 3-88538-006-4. Available Online: <http://www.heldermann.de/SSPM/SSPM06/sspm06.htm> (accessed on 7 December 2019).
14. Hopf, H.; Rinow, W. Ueber den Begriff der vollständigen differentialgeometrischen Fläche. *Comment. Math. Helv.* **1931**, *3*, 209–225. [[CrossRef](#)]



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).