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Abstract: We review instabilities that appear from the coupling of spin-one fields to a magnetic

background in a non-Abelian theory. Such coupling results, due to asymptotic freedom in a negative

quantum, contribute to the effective potential. In QCD, the Savvidy vacuum results. However, due

to the tachyonic mode, such a state is not stable, and the question about the true ground state of

QCD is still open. In the electroweak model, the corresponding instability is postponed to very large

background fields and may be of relevance in the early universe, at best. We start with an introduction

to the topic and display the necessary formulas and methods. Then, we consider the one-particle

spectra of the fields in a magnetic background and the related Euler–Heisenberg Lagrangians. In

addition, we discuss the potential instability connected with the anomalous moment of the electron.

The main part is on the quantum correction to the energy in non-Abelian fields, including massive

ones. Here, the focus is on so-called electroweak magnetism and the search for a classical solution of

the field equations and their approximations by a lattice of flux tubes. Finally, we review approaches

with non-homogeneous background fields and the background of an A0-field.

Keywords: magnetic background field; instability; tachyon; Euler–Heisenberg Lagrangian; Savvidy

vacuum; anomalous magnetic moment

1. Introduction

Quantum Field Theory (QFT) describes the Standard Model (SM), which is fundamen-
tal for our current understanding of the micro-world. Beyond, the SM is only a narrow
part of a huge variety of models in QFT, ranging from a mathematically strict formulation,
especially in the curved background, to applications in solid state theory. In addition,
QFT has many intriguing features, ranging from anomalies (which partly result in new
discoveries) to instabilities resulting mainly in phase transitions. In general, instabilities
can be found in many areas of classical physics, even in seemingly simple systems such as
Newtonian gravity where the Jeans instability may cause a gas cloud to collapse (distinct
from electric charges which repel if of the same sign).

In the present paper, a special class of instabilities is reviewed. The focus is on phe-
nomena in magnetic background fields. Thereby, these may be of electromagnetic or of
color magnetic nature. Magnetic fields cannot do work or transmit energy to a system. This
is distinct from electric fields which can do work, for example separating a virtual electron–
positron pair until it receives energy exceeding the mass of the pair so that it becomes
real. However, in dependence on the mutual orientation, the interaction with a magnetic
field with the magnetic moment of a particle may lower the energy, and interesting things
may happen.

The instabilities we are interested in have two sources. One is the interaction of a spin’s
magnetic moment with a magnetic background field, and the other is the self-interaction of
a field that may result in a negative quantum contribution to the energy. Hereby, under
‘magnetic’, we subsume electromagnetic and color-magnetic, i.e., Abelian and non-Abelian,
fields. The most prominent examples of negative quantum energy are the Casimir effect
and the Coleman–Weinberg mechanism.
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To be more specific, we consider quantum fields in a magnetic background field. To a
large extent, these fields are homogeneous. From the linearized equations for the quantum
fields, a spectrum follows,

E =
√

m2 + p2
z + eB(2n + 1 + 2sz), (1)

where E is the energy of a mode, m is the mass, and pz is the momentum parallel to the
background field B, while e is a coupling constant. The quantum number n = 0, 1, 2, . . .
describes the Landau levels, and sz = −s,−s − 1, . . . , s is the spin projection.

The ground state, i.e., the state with the lowest energy, has obviously pz = 0, n = 0,
and sz = −s. However, for s >

1
2 , and m = pz = 0, the energy may become imaginary.

Taken without further thought, this looks like a disaster. If one takes the time evolution,
∼exp(±iEt), the imaginary part causes an exponential blow-up. Taken more seriously,
imaginary energy signals an instability of the system, and a wider look at it is necessary
(and may reveal interesting features).

The other source of instabilities, the quantum contribution to the vacuum energy,
is in the lowest, one-loop approximation, given by the determinant of the kernel of the
linearized action. It can be represented in the form

Evac = (−1)2s ((2s)2 − 1
3 )(eB)2

16π2
ln

eB

µ2
, (2)

following [1], p. 268, who coined the name ‘Nielsen–Olesen formula’, for a field with spin
s. Here, µ is an arbitrary constant resulting from the usual arbitrariness of renormalization.
In (2), the contribution (2s)2 results from the interaction with the spin, whereas the ‘ 1

3 ’
results from the orbital motion.

The quantum vacuum energy must be considered together with the classical energy in
an effective potential,

Ve f f =
B2

2
+ Evac. (3)

For QED (s = 1
2 ), we have

Ve f f =
B2

2
− (eB)2

24π2
ln

eB

µ2
, (4)

and for QCD (s = 1), we have

Ve f f =
B2

2
+

11(gB)2

48π2
ln

gB

µ2
, (SU(2)), (5)

where e and g are the corresponding coupling constants. Sometimes, these relations are also
discussed in terms of the permeability of the vacuum. In analogy to the known formula,
E = 1

2 BH for the electromagnetic energy in a medium and the relation B = µH (in the
usual notations of macroscopic ED), the energies (4) and (5) can be expressed in the form

Ve f f =
1

2
µB2, (6)

where

µQED = 1 − e2

24π2
ln

eB

µ2
, µQCD = 1 +

11g2

48π2
ln

eB

µ2
(7)

are the corresponding permeabilities. The opposite sign in µQCD and in (5), as compared
with the electromagnetic case, is, of course, the sign of asymptotic freedom. As a result, for
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small B, Ve f f , Equation (5), has a minimum below zero. Equivalently, one may speak with
µQCD < 1 of diamagnetism.

These two kinds of instabilities are in the focus of the present review. We start with
the basic formulas for the various fields in a magnetic background. Then, we review the
necessary field theoretic tools and the Euler–Heisenberg Lagrangians. In the fourth section,
we consider instabilities caused by the quantum corrections and classical instabilities that
gave rise to the notion of ‘electroweak magnetism’.

Finally, a remark on finite temperature is necessary. The investigation of quantum
systems at finite temperature is an important tool in field theory. On the one hand, one
expects high temperature to restore a broken symmetry; on the other hand, many processes
happen at high temperature, such as, for example, heavy ions collisions or processes in
the early universe. However, in general, temperature tends to remove instabilities; hence,
we restrict ourselves here to T = 0. An exception is the last section, where we consider an
A0-background, which is interesting only at finite temperature.

On the technical side, we simplify notations as much as possible. We use units with
h̄ = c = 1 in most places and employ the summation convention without further note.
Throughout the paper, Aµ is the potential of the quantum gauge field, and Bµ is the
potential of the background field. In some places, vector notation is used, which relates to
the corresponding spatial parts.

2. Fields in a Magnetic Background

We consider a homogeneous magnetic background field, directed along the z-axis. Its
action on a charge is, in classical terms, the Lorentz force, which enforces the motion on
a circle. In the quantum language, the problem can be reduced to a harmonic oscillator
whose energy levels are the Landau levels.

2.1. Scalar Field

We start from a scalar field in a magnetic background. Its Lagrangian reads

Lsc(φ) = (Dµφ)∗(Dµφ)− m2φ∗φ, (8)

where

Dµ = ∂µ − ieAµ (9)

is the covariant derivative realizing the minimal coupling, and e is the electric charge.
Frequently, for the coupling, a plus sign is used in QED. We prefer the minus sign to have
the same sign as in the non-Abelian case below. The electromagnetic potential, Aµ, is
related to the field strength and to the commutator by

Fµν = ∂µ Aν − ∂ν Aµ, [Dµ, Dν] = −ieFµν. (10)

The relation to the non-relativistic notations is Aµ = ( 1
c Φ, ~A)µ, Fij = −ǫijkBk, where Bk is

the three dimensional magnetic field strength, ǫijk is the anti symmetric tensor, and Φ is the
scalar potential.

In the following, we will mostly work with a homogeneous magnetic field. As usual,
it points in the z-direction, Bk = Bδk3, and the related potentials are

~A sy =
B

2





−y
x
0



, ~A L = B





0
x
0



. (11)

The first is in the symmetric gauge, and the second is in the Landau gauge. These are
related by a gauge transform, ~A sy = ~A L − B

2 ∇xy.
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The equation of motion following from the quadratic part of Lagrangian (8) is the
Klein–Gordon equation,

(D2 + m2) φ = 0, (12)

and the second derivative can be expanded as

D2 = ∂2 − 2ieAµ∂µ − e2 A2, (13)

assuming ∂µ Aµ = 0.
At this place, a digression to quantum mechanics may be useful. In the Schrödinger

equation,

ih̄∂tΨ =

(

~π2

2m
+ eφ

)

Ψ (14)

with ~π2 = p2 − µB
h̄
~L~A + e2

2m A2, using the quantum mechanical momentum operator

~p = h̄
i ∇, the orbital momentum operator~L =~r ×~p (writing Asy in the form ~Asy = B

2 (
~B ×~r)),

and the Bohr magneton µB = eh̄
2m , the magnetic field couples to the orbital momentum

~L. Further, turning to a two-component wave function Ψ =

(

φ1

φ2

)

, we come to the

Pauli equation,

ih̄∂tΦ =

(

~p 2

2m
− µB

h̄
(~L + g~s)~A + eφ

)

Φ, (15)

where we have in addition the spin operator~s = h̄
2~σ with the Pauli matrices~σ. The factor g

is the gyromagnetic ratio, which remains open in quantum mechanics.
The spectrum, following from the operator in (12) for a homogeneous magnetic

field (11), is well known,

p0 =
√

p2
z + eB(2n + 1), (n = 0, 1, . . .) (16)

where p0 and pz are the eigenvalues of the corresponding momentum operators, and n
enumerates the Landau levels. These energy levels are degenerated as being independent
on a further quantum number. In the Landau gauge, we have translational invariance
in the y-direction, and in the symmetric gauge, rotational invariance around the z-axis.
The degeneracy factor is the number of flux units per unit area. The magnetic part of the
spectrum is equally spaced, and it is the same as that of a quantum mechanical harmonic
oscillator, since commutator (10) is a constant.

We mention also the spectrum for Pauli Equation (15)

E =
p2

z

2m
+

µB

h̄
B(2n + 1 + gsz), (17)

which is nonrelativistic. Here, the spin projection sz enters.

2.2. Spinor Field

The Lagrangian reads

Lsp = ψ(iγµDµ − m)ψ, (18)

where ψ is a Dirac spinor, and γµ are the gamma matrices obeying the anti-commutator
relation

γµγν + γνγµ = 2gµν. (19)
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The Dirac equation, following from (18),

(iγµDµ − m)ψ = 0, (20)

can be ‘squared’ by multiplying from left by (iγµDµ + m),

((iγµDµ)
2 − m2)ψ = 0, (21)

and using (19) and commutator (10), one arrives at

(D2 − eh̄

2
σµνFµν − m2)ψ = 0 (22)

with the antisymmetric spin matrix σµν = i
2 (γ

µγν − γνγµ). For the spatial components,
we note

σij = −ǫijk

(

0 −σk

σk 0

)

≡ ǫijkSk, ~S =

(

0 ~σ
−~σ 0

)

. (23)

In a homogeneous background field, using (13), we arrive at

(∂2 + e(~L + g~S)~B − (e~A)2)ψ = 0. (24)

This way, the gyromagnetic ratio g = 2 follows from the Dirac equation, with opposite spin
projections for the upper and the lower components.

One may ask for generalizations of the Dirac equation, of which there are. The most
general equation involving only the dimensions that appear in Equation (22) differs from
this equation by adding a direct interaction with the spin operator in the form (it is the only
covariant way in the given dimension)

(iγµDµ − ae
eh̄

4
σµνFµν − m)ψ = 0, (25)

which, in a lowest approximation by ’squaring’ the equation, results in a change of the
gyromagnetic ratio in Equation (24). It is usually formulated in terms of the anomaly factor,

ae =
g − 2

2
(26)

in Equation (25). It was first calculated by [2], who found ae = α
2π at the one loop level.

Considering Equation (25) with a non-zero anomaly factor as a starting point results
in a non-renormalizable theory. It is only higher loop corrections that may deliver an
anomaly while not destroying renormalizability. This may be viewed in parallel to the
Higgs mechanism, delivering a mass to gauge fields, where the direct introduction of a
mass term would destroy gauge invariance.

In a homogeneous background field, the spectrum of the operator in Equation (25),
which corresponds to (16), reads

p0 =
√

p2
z + eB(2n + 1 + 2(1 + ae)s) + m2, (27)

where s = ± 1
2 is the spin projection. An interesting point is the case n = 0, s = − 1

2 , where
the coupling of the spin (without anomaly) to the background field just compensates for
the energy of the lowest Landau level. The latter is conceptually the same as the zero-point
energy of a harmonic oscillator. Including the anomaly, one observes an overcompensation,
which will be discussed in Section 3.4. These energy levels are illustrated in Figure 1,
left panel.
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scalar spinor

0

n = 2

n = 1

n = 0

n = 2,  s = −1/2

n = 1,  s = 1/2

n = 1,  s = −1/2

n = 0,  s = 1/2

n = 0,  s = −1/2

scalar vector

0

n = 2

n = 1

n = 0

n = 1,  s = 1

n = 2,  s = −1

n = 0,  s = 1

n = 1,  s = −1

n = 0,  s = −1

p2
0

p2
0

Figure 1. The lowest energy levels in a homogeneous magnetic field. The left panel shows the levels

of a scalar field that are split by the spin interaction of the spinor field. An additional level splitting,

which is due to the anomalous magnetic moment, is shown as dotted lines (and magnified). The right

panel shows the levels of a scalar field that is split by the spin interaction of a vector field.

2.3. Abelian Vector Field

An Abelian vector field is basically the electromagnetic field, although it may also
appear as one isospin component of other fields. It can be represented by a vector potential,
Aµ, and the field strength, Fµν, as in Equation (10). Its Lagrangian reads

LED(Aµ) = −1

4
(Fµν)

2 =
1

2
Aµ

(

∂2gµν − ∂µ∂ν

)

Aν, (28)

where total derivative terms were dropped. This Lagrangian is singular due to its gauge
invariance, and one has to apply well-known procedures such as gauge fixing and Faddeev–
Popov fields (usually not in ED). We do not enter here the details of this. A background
field Bµ is introduced simply by LED(Aµ) → LED(Aµ + Bµ), and in the quadratic terms,
there is no coupling to the background field.

2.4. Non-Abelian Vector Field

A non-Abelian vector field is a representation of a non-Abelian group such as SU(2)
or SU(N). We restrict ourselves to the simplest case of SU(2) and represent here only the
minimal information needed in the following. The vector potential Aa

µ has an additional
index, a = 1, 2, 3, belonging to the fundamental representation and, considering the QCD,
can be called the color index. The field strength and the covariant derivative read

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gǫabc Ab

µ Ac
ν, Dab

µ = ∂µδab + gǫacb Ac
µ, (29)

where ǫabc is, again, the antisymmetric tensor. It is common to denote the coupling constant,
or color charge, by g distinct from the electric charge e. The commutator is

[Dµ, Dν]
ab = gǫacbFa

µν. (30)



Symmetry 2023, 15, 1137 7 of 41

The Lagrangian, in terms of the field strength, looks formally the same as before; however,
from the commutator, we have more structures,

LSU(2)(A) = −1

4
(Fa

µν)
2 = L2 + L3 + L4, (31)

where

L2 =
1

2
Aa

µ

(

∂2gµν − ∂µ∂ν

)

Aa
µ (32)

is the quadratic part and

L3 = −gǫabc(∂µ Aa
ν)Ab

µ Ac
ν, L4 = − g2

2
(Aa

µ Aa
µ Ab

ν Ab
ν − Aa

µ Aa
ν Ab

µ Ab
ν) (33)

are the triple and quartic parts. These represent the self-interaction that appears in the
non-Abelian case, distinct from the Abelian one.

A background field Ba
µ is added such as in the Abelian case, but the formulas become

more involved. Keeping previous notations,

LSU(2)(A + B) = LSU(2)(B) + L1 + L2 + L3 + L4, (34)

where now,

L2 =
1

2
Aa

µ

(

D2gµνδab − Dac
ν Dcb

µ − gǫacbBc
µ

)

Ab
µ, (35)

L3 = −gǫabc(Dad
µ Ad

ν)Ab
µ Ac

ν,

and L4 remains unchanged. Finally,

L1 = Aa
νDab

µ Fb
µν(B) (36)

is the linear term, which vanishes, for instance, for a homogeneous, Abelian background field.
In the above formulas, the derivatives had been changed for the covariant ones in the

background,

Dab
µ = ∂µδab + gǫacbBb

µ, [Dµ, Dν]
ab = gǫacbFa

µν(B). (37)

(we no longer use the definition from (29)). The additional term in L2 comes from L3 in
(33), and we have to note the indices in the second term in parenthesis. Interchanging these
results in a commutator term (which does not appear in the Abelian case), we arrive at

L2 =
1

2
Aa

µ

(

D2gµνδab − Dac
µ Dcb

ν − 2gǫacbBc
µ

)

Ab
µ, (38)

which is the quadratic part of the Lagrangian in an arbitrary background field.
In the following, we will restrict ourselves to Abelian background fields,

Ba
µ = Bµδa3. (39)

These point in one direction in the color space, and their field strength is similar to the
Abelian case,

Fa
µν(B) = Fµνδa3, Fµν = ∂µBν − ∂νBµ. (40)

In this case, it is useful to turn into the so-called ‘charged basis’ by a unitary transform,

Wµ =
1√
2
(A1

µ + iA2
µ), Aµ = A3

µ. (41)



Symmetry 2023, 15, 1137 8 of 41

The potentials Aa
µ are real fields, Wµ is a complex field (there is also its complex conjugate,

W∗
µ ), and the third component, Aµ, remains real. The field Wµ can be interpreted as a

color-charged vector field and Aµ as a color-neutral vector field. We mention that in SU(3),
a similar transformation yields two neutral fields, A3

µ and A8
µ, and three pairs of color-

charged fields which, distinct from SU(2), already have their interpretation in the theory of
strong interactions.

Rewriting the Lagrangian in terms of these fields, we arrive at

L2 = W∗
µ

(

D2δµν − DµDν + 2igBµν

)

Wν +
1

2
Aµ

(

∂2δµν − ∂µ∂ν

)

Aν, (42)

L3 = −ig(AµW∗
µνWν + AµW∗

ν Wµν − BµνW∗
µWν),

L4 = −g2(Aµ AµW∗
ν Wν − Aµ AνW∗

µWν + W∗
µWµW∗

ν Wν − W∗
µWνW∗

µWν).

Here, the covariant derivative is

Dµ = ∂µ − ieBµ, [Dµ, Dν] = −iFµν(B), (43)

and we use the notations Aµν = ∂µ Aν − ∂µ Aν and Wµν = DµWν − DµWν (only in this
formula), and Fµν is a constant antisymmetric tensor.

As a background field, we consider the a = 3 component Aµ. This is a so-called
Abelian background field since its field strength is given by Equation (28), i.e., such as
in ED. The reason behind this is that a field pointing in only one direction in color space
has no quadratic contribution in its field strength (29), which vanishes due to the anti-
symmetry of the structure constant, the epsilon tensor in our case. Further, we take a
homogeneous background as before. In such a background field, the spectrum of the
operator in the quadratic part of the Wµ field, taking in addition DµWµ = 0 as gauge fixing,
generalizing (16) and (27), reads

p0 =
√

p2
z + gB(2n + 1 + 2sz), (44)

where now the spin projection is sz = ±1. Here, the interesting case is n = 0, s = −1,
where the interaction of the magnetic moment overcompensates for the lowest Landau
level twice, and for a momentum pz < gB, the one particle energy p0 becomes imaginary.
These energy levels are illustrated in Figure 1, right panel.

3. Vacuum Energy in Magnetic Background Fields—Euler–Heisenberg Lagrangian

In this section, we consider the most common effects appearing in one-loop approxi-
mation in magnetic background fields. We start with an introduction of the basic methods
and advance to their application in several models.

3.1. Field Theoretic Methods

In this subsection, we consider a collection of some basic formulas of quantum field
theory (QFT). Thereby, we use the Euclidean version and will keep the formulas as simple
as possible. A field φ is, for the beginning, a generic object in the sense of condensed
notations, and summations/integrations are assumed. The basic object is the generating
functional Z,

Z(J) =
∫

Dφ eS+Jφ, S =
∫

dx L, (45)

defined by a functional integral, in terms of an action S and the corresponding Lagrangian
L. A possible normalization factor in front of the functional integral remains indeterminate.
The derivatives of Z with respect to the source J are the Green’s function of the theory
defined by L. As well known, all these formulas are classical ones (no operators), but with
the functional integral, we obtain the corresponding expressions of a QFT.
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The functional integral is, of course, a formal construct. We will give it a meaning
in perturbation theory. For this, we define the free part of the action from terms at the
quadratic in the field and divide the action,

S = S0 + Sint, (46)

into free and interaction parts. In the free part, we have a quadratic term in the field,

S2 =
1

2

∫

dx φ K φ, (47)

where K is a kernel. In momentum representation, and without a background field, i.e., in
the simplest case, it takes the form

K = −p2 − m2, (48)

where p2 = pµ pµ is the squared (Euclidean) momentum. The minus sign is included here
for convenience.

The transition to the perturbation theory can be performed using the following con-
struction,

Z(J) = e
Sint(

δ
δJ )
∫

Dφ eS2+φJ . (49)

The remaining integral is an infinite dimensional generalization of a Gaussian integral and
can be calculated as,

∫

Dφ eS2+φJ = exp(
1

2
tr ln ∆) exp(

1

2
J∆J) (50)

where

∆ = −K−1 (51)

is the propagator. In general, it is the Green’s function of the free equation of motion. In the
simplest case, such as (48), it is simply

∆ =
1

p2 + m2
. (52)

Expanding the exponential with the interaction in (49) in powers of Sint, the variational
derivatives create the Feynman graphs. The above scheme is not the only one; for reference,
one may consult one of the many textbooks, for instance, Refs. [3,4], where one can find a
complete elucidation of the so-called functional methods.

With

W(J) = ln(Z(J)), Γ(φ) = W(J)− φJ, φ =
δW(J)

δJ
, (53)

we define the generating functional W of the connected Green’s functional and, using the
Legendre transform, the effective action Γ(φ). The latter has an expansion,

Γ(φ) = S(φ) +
1

2
tr ln ∆ + W1PI(J = ∆−1φ), (54)

in terms of the one-particle-irreducible (1PI) Green’s functions W1PI with amputated legs.
The first term in Γ is the classical action, and the others are the quantum corrections, whereby
the ‘tr ln’ is the one-loop contribution, and the graphs are the higher-order corrections.
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Frequently, we are concerned with time-independent background fields and thermal
equilibrium. In those cases, one defines the free energy F from

W(0) = −TF, (55)

where T is the volume of the time axis, which must be separated. In the case of spatial
translational invariance, one must also separate the corresponding volume as a trivial
infinite factor. For a homogeneous background field, it makes sense to define the effective
Lagrangian Le f f and the effective potential Ve f f from

Γ(0) =
∫

dx Le f f , Ve f f = −Le f f . (56)

Considering that the volume factor must be stripped off, one can represent the effective
potential in the form

Ve f f = −L(0) + 1

2
tr ln K − W1PI(0), (57)

i.e., as a sum of the Lagrangian of the background fields, the ‘tr ln’, and the vacuum graphs.
In the following, we will mostly be concerned with the effective potential and do not go
beyond the ‘tr ln’ contribution.

3.2. Zeta Functional Method

In the calculation of the ‘tr ln’, appearing as the first quantum correction in (54), one
always assumes that the kernel K is a Hermite operator. Thus, it has a spectrum and can be
diagonalized, formally,

K φn = λn φn, (58)

where λn are the eigenvalues, φn are the eigenfunctions, and n may be multi-index (includ-
ing a continuous part). Then, the trace turns into a sum over the eigenvalues,

tr ln K = −∂sζK(s)µ
2s
|s=0 (59)

where

ζK(s) = ∑
n

λ−s
n (60)

is the zeta function of the operator K. Since the sum over the spectrum in QFT is always
divergent because of the infinitely many degrees of freedom, one needs a regularization.
As such, in principle, one is as good as any other as long as it provides a finite regularized
expression, and the limit of removing the regularization returns one, at least formally, to
the initial expression. Well known, and physically appealing, are the cut-off regularization,
the point-splitting method, and the Pauli–Villars regularization, to mention some. The zeta-
functional regularization, used in (59), is exceptional for its mathematical beauty. By (60),
it defines the zeta function ζK(s) of the operator K, which is known to be a meromorphic
function of the parameter s, defined in the strip ℜs > s0, for some s0 depending on the
problem, and having a unique analytic continuation to the whole complex plane. The
continuation to s = 0 is the removal of the regularization. In general, a pole may appear,
but frequently it will not. In case that there is no pole at s = 0, we obtain from (59) and (60)

tr ln K = −ζ ′K(0)− ζK(0) ln µ2 (61)

the expression of the ‘tr ln’ in terms of the zeta function of the operator K.
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We also mention the relation to the zeta function with the heat kernel of the operator,
which appears using the proper time representation,

ζK(s) =
∫ ∞

0

dt ts−1

Γ(s)
K(t), K(t) = ∑

n

e−tλn , (62)

where K(t)(t) is the heat kernel. The coefficients of its expansion for small t, the so-called
heat kernel coefficients, contain the full information about the ultraviolet divergences of
the one-loop vacuum energy. More details can be found in [5,6].

With any regularization, arbitrariness comes in. In (59), it is the parameter µ that has
the dimension of a mass. It must be fixed, together with the handling of the possible pole
in s = 0, by the procedure of renormalization. In application to the vacuum energy, this was
discussed in detail, for instance in [7], Section 4 and earlier, from a different point of view
in [8], Section 2.

To conclude this subsection, we mention that the zeta functional method is bound to
one loop. For higher loops, dimensional regularization is more appropriate. It changes
the space–time dimension from 4 to some d(= 2(2 − ǫ)), using ǫ as a parameter similar to
s. The point is that Feynman integrals in a lower dimension are less divergent. It has the
advantage that it respects, as far as possible, and the symmetries of the considered model,
gauge symmetries for instance.

3.3. Euler–Heisenberg Lagrangian

In pure electrodynamics, the field is a free one, without interaction. In the classical
case, it is the Maxwell field, and it becomes an operator in the quantum case. Its Lagrangian,
Equation (28), is quadratic, and the equations of motion are linear. It is only matter that
introduces interaction and that may cause effects such as the scattering of light on light.
It was in the very early years of QFT that [9] calculated the effects of such interaction in
QED in terms of an effective Lagrangian. From a formal point of view, this is the one-loop
correction due to the spinor loop. In this respect, the Euler–Heisenberg Lagrangian can be
viewed as the vacuum energy of the spinor field in a magnetic background.

We consider the effective Lagrangian (56) in the background of a homogeneous mag-
netic field. The Lagrangian is the sum of (28) and (18), whereby we take the electromagnetic
field as classical and the spinor field as quantum. The corresponding effective action reads

Γ(0) = S(0)∓ tr ln K, (63)

where the upper sign is for the case of scalar QED with the matter part given by (8) (without
the self-interaction) and the lower is for the spinor QED with the matter part given by (18).
We consider only a magnetic background B so that for S(0) we have LED = − 1

2 B2 from (28).
Generalizations that include the electric field will depend on two invariant combinations,
which is, however, beyond the present review.

3.3.1. The Scalar Case

First, we consider the scalar case. The spectrum is given by (16), and the effective
Lagrangian (56) can be written in the form

Le f f = −B2

2
−
∫

dk3dk4

(2π)2

eB

2π

∞

∑
n=0

ln(k2
4 + k2

3 + eB(2n + 1) + m2). (64)

In this expression, the volume factor is stripped off from both contributions and Le f f has
the dimension of energy per volume of space–time. The measure for the magnetic sum
is chosen in a way that the limit B → 0 returns us to the free field case considered in
Appendix A, Equation (A1).
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Applying zeta-functional regularization and proper time representation, we
transform (64) into

Le f f = −B2

2
+ ∂s

eBµ2s

8π2

∫ ∞

0

dt

t

ts−1

Γ(s)

∞

∑
n=0

e−t(eB(2n+1)+m2)|s=0. (65)

Here the same remarks as in Appendix A apply. The only difference to the case without a
magnetic field is that the two momentum integrations in the direction perpendicular to
the magnetic field turned into the sum over the Landau levels. This sum is easy, and we
arrive at

Le f f = −B2

2
+ ∂s

eBµ2s

16π2Γ(s)

∫ ∞

0

dt

t
ts−1 1

sinh(teB)
e−tm2 |s=0. (66)

Next, we have to construct the analytic continuation in s from, initially, s > 2 to zero. The
divergence appears for small t. For this reason, the expansion 1

sinh(t)
= 1

t − t
6 + . . . may be

used to represent

∫ ∞

0

dt

t
ts−1 1

sinh(tB)
e−tm2

=
∫ ∞

0

dt

t
ts−1

(

1

sinh(t)
− 1

tB
+

Bt

6

)

e−tm2
(67)

+ Γ(s − 2)
m2(2−s)

B
− Γ(s)

Bm−2s

6

by subtracting and adding the first two terms of the expansion for small t. In the added
terms, the integration resulted in Gamma functions, whose poles carry the divergence. The
analytic continuation is now trivial. The integral in the upper line is converging and can be
completed. The subtracted terms, Lsubtr (second line in (67)), have a finite continuation to
s = 0 and read

Lsubtr =
1

96π2

[(

−7eB2

60
− eBm2 − 3m4

)

ln
m2

µ2
+

9

2
m4

]

. (68)

Their finiteness is a special property of the zeta functional regularization, as discussed in
the Appendix A. Their interpretation says that we have a constant, which is irrelevant for a
Lagrangian, and a contribution proportional to B2, which adds to the classical contribution,
renormalizing it. Thus, we drop these terms. After that, we are left with

Le f f = −B2

2
+

1

96π2

[

(e2B2 − 4m2) ln
eB

m2
+ eB2(−3 + ln 2 + 24 ln A)− m4

(

ln eB +
3

2

)

(69)

+ 24e2B2 ln ΓB

(

1

2
+

m2

2eB

)

+ 12eB(eB − m2) ln Γ

(

1

2
+

m2

2eB

)

]

,

where A is the Glaisher constant, and ΓB is the Barnes zeta function, which is for this kind
of problem a very convenient tool (it is a generalization of the ‘usual’ Gamma function and
can be defined through the relation ΓB(z + 1) = Γ(z)ΓB(z)).

It is also interesting to have a look at the strong field limit,

Le f f = −B2

2
+

e2B2

96π2

(

ln
4eB

m2
− 12 ln A

)

+ O(B), (70)

and on the weak field limit,

Le f f = −B2

2
+

7e4B4

5760π2m4
+ O(B6). (71)

It can be shown that (68) is a monotone function. In the sense of Euler–Heisenberg, the
B4-term in (71) is the first nonlinear contribution in scalar QED.
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3.3.2. The Spinor Case

In the spinor case, which corresponds to the real QED, the electromagnetic Lagrangian (28)
is accompanied by the spinor one (18). Here, we are faced with the trace of the operator
in the Dirac Equation (20). It is first order. Of course, it can be diagonalized, or expressed
in terms of the Green’s function of the spinor field, which, however, would require the
introduction of a corresponding formalism. For our needs, which are much more modest,
the following procedure is sufficient, which dates back to [10]. Denote

Laux ≡ tr ln(iγµDµ − m), (72)

and take the derivative with respect to m,

∂Laux

∂m
= tr

−1

iγµDµ − m
, (73)

and ‘square’ the denominator,

∂Laux

∂m
= tr

iγµDµ + m

(γµDµ)2 + m2
. (74)

Now the denominator has an even number of gamma matrices. Thus, in the numerator
survives only the mass term under the trace. Integrating back over m, we arrive at

Laux = tr ln
[

(γµDµ)
2 + m2

]

, (75)

up to a constant, which we drop. We mention that this procedure is equivalent to expressing
the spinor Green’s function as a derivative from the scalar one.

Arriving at (75), we may apply (22) and, further, (27). This way, the following cal-
culations are in parallel to the scalar case. The effective Lagrangian can be written in
the form

Le f f = −B2

2
+
∫

dk3dk4

(2π)2

eB

2π

∞

∑
n=0

∑
s=± 1

2

ln(k2
4 + k2

3 + eB(2n + 1 + 2s) + m2). (76)

Introducing the regularization and the proper time representation, the momentum integra-
tions and the sums can be performed, resulting in

Le f f = −B2

2
− ∂s

eBµ2s

8π2Γ(s)

∫ ∞

0

dt

t
ts−1 coth(teB)e−tm2 |s=0. (77)

The analytic continuation in s can be performed using the expansion coth(t) = 1
t +

t
3 + . . . ,

resulting in

∫ ∞

0

dt

t
ts−1 coth(teB)e−tm2

=
∫ ∞

0

dt

t
ts−1

(

coth(teB)− 1

teB
− teB

3

)

e−tm2
(78)

+ Γ(s − 2)
m2(2−s)

eB
+ Γ(s)

eBm−2s

3
.

The subtracted terms,

Lsubtr =
−1

964π2

(

(2e2B2 − 3m4) ln
m2

µ2
+

9

2
m4

)

, (79)
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have the same properties as in the scalar case and will also be dropped. The final
answer reads

Le f f = −B2

2
+

1

24π2

[

(

e2B2 − 3eBm2 +
3

2
m4

)

ln
2eB

m2
+

3

4
m4 − 12 ln A (80)

− 12eB2 ln ΓB

(

m2

2eB

)

− 6eB(2eB − m2) ln Γ

(

m2

2eB

)

]

,

It is also interesting to have a look on the strong field limit,

Le f f = −B2

2
+

eB2

24π2

(

ln
2eB

m2
− 12 ln A

)

+ O(B), (81)

and on the weak field limit,

Le f f = −B2

2
+

eB4

360π2m4
+ O(B6). (82)

It can be shown that (80) is a monotone function. The B4-term in (71) is the first nonlinear
contribution in spinor QED.

3.3.3. The Vector Case

We are reminded that in the Abelian case, there is no interaction with a magnetic
(and electric) background field. In return, the non-Abelian case is highly interesting.
This can already be seen from the spectrum (44) with a mass parameter added, formally
p2

z → p2
z + m2. For n = 0, s = −1, and gB > m2, we may have an imaginary one-particle

energy p0 =
√

p2
z − gB + m2 for gB >

√

p2
z + m2, and the corresponding mode may be

imagined as having a negative mass square, m2 → m2 − gB < 0. Such particles are allowed
in special relativity (at least formally) and move faster than light. For this reason, such
a mode is frequently called tachyonic mode. In classical theory, such a mode would cause
exponential growth of the solution of the field equations. In QFT, imaginary one-particle
energy results in an imaginary part of the effective Lagrangian, making the theory unstable.

A spectrum, as discussed in this subsection, appears for the color-charged gluons
in QCD from a color magnetic background field (with m = 0). In addition, it appears
in the electroweak theory for the electrically charged W-bosons from an electromagnetic
background field. Since the W-boson has a mass, the corresponding mass parameter
enters the spectrum. A mass parameter may also come in as the inverse length from a
restriction of the space dimension parallel to the magnetic field because of the, then discrete,
momentum pz.

The calculation of the effective Lagrangian goes in principle along the lines of the
scalar case, with spectrum (44) (and the mass parameter) instead. However, due to the
tachyonic mode, there is an essential modification. We start with the same Formula (64)
as before, consisting of the classical energy B2/2 of the background field and the one-loop
contribution (57) from the W-field. The effective Lagrangian reads

Le f f = −B2

2
−
∫

dk4dk3

(2π)2

gB

2π

∞

∑
n=0

∑
s=±1

ln(k2
4 + k2

3 + gB(2n + 1 + 2s) + m2). (83)

We are faced with the problem that the argument of the logarithm changes sign. Thus, one
of the prerequisites for the Wick rotation in the proper time representation does not hold,
and we have to return to the Minkowski space representation. It reads

Le f f = −B2

2
+ i

∫

dk0dk3

(2π)2

gB

2π

∞

∑
n=0

∑
s=±1

ln(k2
0 − k2

3 − egB(2n + 1 + 2s)− m2 + i0) (84)
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with the usual ‘+i0’-prescription. Again, using zeta-functional regularization and proper
time representation, we arrive at

Le f f = − gB2

2
+ i(−∂s)

∫

dk0dk3

(2π)2

gB

2π

∫ ∞

0

dt

t

ts

Γ(s)
ei π

2 s
∞

∑
n=0

∑
s=±1

(85)

× exp
[

it(k2
0 − k2

3 − gB(2n + 1 + 2s)− m2 + i0)
]

|s=0

.

Using
∫

dk/(2π) e±itk2
= e∓i π

4 /
√

4πt, we can carry out the momentum integration as
before. In addition, we carry out the summations and represent the result in the form

Le f f = −B2

2
+ i(−∂s)

gB

8π2

∫ ∞

0

dt

t

ts−1

Γ(s)
ei π

2 s

(

eitgB +
1

i
e−itgB cot(tgB)

)

eit(−m2+i0), (86)

where the first term in the parentheses results from the tachyonic mode and the second
from all other modes.

Next, we consider the Wick rotation. For the non-tachyonic modes, we can perform
t → −it as before. For the tachyonic mode, we must rotate in the opposite direction, t → it.
We arrive at

Le f f = −B2

2
− (−∂s)

gB

8π2

∫ ∞

0

dt

t

ts−1

Γ(s)

(

−eiπse−t(gB−m2) + e−t(gB+m2) coth(tB)
)

. (87)

These are real integrals, and we are left with the task of the analytic continuation to s = 0.
For that, we represent the effective Lagrangian in the form

Le f f = −B2

2
+ Lta + Lnt, (88)

where Lta is the tachyonic contribution, and Lnt is the non-tachyonic one.
In Lta, the integrations are simple, and the continuation is provided by the gamma

functions. We arrive at

Lta =
1

8π2
gB(gB − m2)

(

ln
|gB − m2|

µ2
− 1

)

− i
gB(gB − m2)

8π
Θ(gB − m2). (89)

In Lnt, we subtract and add the first terms of the expansion e−t coth(t) = 1
t − 1 + 5

6 t + . . . ,
and split the expression into

Lnt 1 =
gB

8π2

∫ ∞

0

dt

t2

[

coth(tgB)−
(

1

tgB
− 1 +

5

6
tgB

)]

e−t(gB+m2) (90)

and

Lnt 2 = −(−∂s)
gBµ2s

8π2Γ(s)

∫ ∞

0
dt ts−2

(

1

tgB
− 1 +

5

6
tgB

)

e−t(gB+m2) (91)

=

(

−5gB2 − 6gBm2 − 3m4
)

ln
(

gB+m2

µ2

)

48π2
+

3
(

gB + m2
)2

32π2
.



Symmetry 2023, 15, 1137 16 of 41

The integration in (90) is also explicit in terms of Barnes gamma functions, ΓB(z), and the
result reads

Lnt 2 =
1

48π2

[

+ g2B2

(

3

(

m2

gB
+ 1

)2

− 6

(

m2

gB
+ 1

)

+ 2

)

ln

(

m2

gB
+ 1

)

(92)

+ 12gB
(

gB − m2
)

ln Γ

(

m2 + gB

2gB

)

+ 24gB2 ln ΓB

(

gB + m2

2gB

)

+ g2B2

(

ln(2)− 3

2

)

− 3gBm2 − 1

2
m4(3 + 6 ln(2)) + 24g2B2 ln(A)

]

.

We arrive at the effective Lagrangian from (89), (90) and (92) in the form

Le f f = −B2

2
+ Lta + Lnt 1 + Lnt 2. (93)

For gB > m2, we have an imaginary part resulting from Lta, which represents the tachyonic
instability.

The strong field limit is given by

Le f f ∼
B→∞

B2

2
− 11g2B2

48π2
ln

gB

µ2
. (94)

For weak fields, we note

Le f f =
m4(−2 ln m2

µ2 + 3)

32π2
+ g2B2



−
11 ln m2

µ2

48π2
− 1

2



+ O
(

gB3
)

(95)

in the massive case and in the massless case, we obtain the same Formula (94),

Le f f ∼
B→0

B2

2
− 11g2B2

48π2
ln

gB

µ2
, (96)

in the leading order.
Plots of the effective potential are shown in Figure 2. In the massless case (right panel),

there is a minimum of the real part at B = µ2

g , where the potential is

Vmin = − 11µ4

96π2
e
−1− 48π2

11g2 . (97)

As can be seen, it is exponentially small for a small coupling constant g. The minimum is
below zero, and the system would enter this state spontaneously, creating the background
field. This was observed in [11], and this state is called the Savvidy vacuum. However,
since there is an imaginary part, this state is not stable [12].
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Figure 2. The effective potential for a vector field in a magnetic background. In the left panel, the

mass is m = 0.1, and in the right panel, it is m = 0. The imaginary part is downscaled by a factor of

10. In the left panel, it sets in at B = 0.01 and in the right panel at B = 0.

3.4. Possible Instabilities in QED in a Magnetic Background Field

In the preceding subsection, we discussed some effects caused by the contribution
from the ‘tr ln’ to the effective Lagrangian. There, it was sufficient to know the spectrum of
the kernel of the free action, Equations (16), (27) and (44). In this subsection, we focus on
QED in a magnetic background, including higher-order corrections in the form of anomaly
factor (26).

A preliminary remark may be in order. At the end of the 1970s, there were claims that
pair creation might be possible in pure magnetic fields. As well known, in a strong electric
field, say a Coulomb field with Z > 137, the gap between electron and positron ground
state levels will close, and these levels cross. May a similar instability be possible in some
inhomogeneous magnetic fields as well? Some years later, Ref. [13] showed that this is not
possible in principle.

The discussion is quite simple and rests on the fact that the momentum operator

ß̃ = (~p − e~A) (98)

is Hermite. Squaring the Dirac equation,

(~αß̃ + βm)ψ = Eψ ⇒ ((~αß̃)2 + m2)ψ = E2ψ, (99)

(in three dimensional notations, α = γ0~γ, β = γ0), a trivial rewriting into the form (~αß̃)2ψ =
(E2 − m2)ψ shows on the left side an operator with only non-negative eigenvalues. Hence,
the energy cannot go below the mass. The above discussion is a special case of the Vafa–
Witten theorem.

Now we turn to the first radiative correction for the effective Lagrangian. It is given
by the ‘tr ln’ with the spectrum (27) without the anomaly factor and was considered in
Section 3.3.2. This system is stable. However, including the anomaly factor, for strong
fields, H > Hc , for example, in [14], pair creation was discussed. If taking ae as a constant,

the gap ∆E = 2m
(

1 − ae
H
Hc

)

, between electron and positron ground states, may close for

sufficiently strong fields.
However, as pointed out in [15], the anomaly factor is a function of the background

field and the state of the electron, (26) being its weak field approximation. In this approxi-
mation, the magnetic moment can be extracted from the triangle graph (as in [2]), which
appears from expanding the electron self-energy graph. In a homogeneous magnetic field,
this graph was calculated already in [16] for arbitrary field strength. In [15,17], its strong
field approximation was calculated for the ground state energy, which was shown to grow
quadratically with the logarithm of the magnetic field (for the excited states, it is linear in
the logarithm). This way, the stability of QED was ensured.

The calculation of the electron energy, including the dependence on its state, was a
topic of several papers, especially [18,19]. Special interest was in the synchrotron radiation
in a magnetic field, which can be calculated in this context since for higher levels, the
energy has an imaginary part.

The calculation of the anomaly factor requires knowledge of the electron self-energy
(mass operator) in the magnetic background. There are basically two kinds of represen-
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tations. The first rests on the expansion of the electron propagator in the eigenfunctions
of the Dirac operator. It is also known as Ep-representation, where Ep are the one-particle
energies. This method is general and, in principle, applicable to any background. Now
the homogeneous background with its high degree of symmetry allows for a more elegant
approach, which was invented initially by [10]. It rests on the proper time representation of
the inverse Dirac operator in the magnetic field in a similar way as it was applied to derive
Equation (75). Viewing the exponential as an evolution operator, taken in corresponding
matrix elements, one can derive ‘equations of motion’ and solve these. This representation,
applied to the mass operator, had been used in [20]. After transforming to momentum
space representation, they obtained in a very elegant way the formula

M =
α

2π
m
∫ ∞

0

dy

y

∫ 1

0
du e−uyH0/H

[

−1 − u +
1 + ue−2y

1 − u + ue−y sinh(y)/y

]

(100)

for the mass operator in the ground state. H0 = eH/m2 is the critical field strength. It is
a double-parametric integral, as it is common for a loop with two lines. This integral is
convergent; the necessary renormalization already occurred. The mass operator enters an
effective Dirac equation and may be viewed as an addendum to (20). In the ground state, it
adds to the energy,

E0 = m + M, (101)

(the energies of the lowest Landau level and of the spin coupling cancel). Compared with a
non-relativistic approximation of (27), one comes to its relation

ae = − 1

eH
M (102)

for the anomaly factor. In Figure 3, we show M, (101), as a function of the magnetic field.
For a weak field, it lowers the energy, changing the sign before the critical field strength Hc

is reached.
The calculation of the strong field limit of the mass operator has a quite long history.

The first two terms of the asymptotic expansion, which are quadratic and linear in ln H,
have been found independently by [15,17]. The constant contribution was calculated in [21].
We repeat this calculation in the Appendix B and show that it needs minor improvement.

0.2 0.4 0.6 0.8 1.0

H

Hc

-0.04

-0.02

0.02

0.04

0.06

M/
αm
2π

Figure 3. The mass correction M (100), divided by αm
2π , i.e., the function I (A7), as a function of the

magnetic field. In the minimum, this function takes small values and must be additionally multiplied

by α to compare with the rest mass.

4. Instabilities with First Radiative Correction

In a seminal paper [8], the question was raised on whether radiative corrections
are able to cause an instability, or even more, a spontaneous symmetry breaking, in a
massless theory. It was shown that radiative corrections do not leave massless theories
such as scalar φ4 or scalar electrodynamics without dimensional parameters. In the present
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section, we will discuss these ideas, which resulted, for instance, in the phenomenon of
dimensional transmutation.

4.1. Instabilities in Scalar φ4 Theory

We start with the Lagrangian of a scalar φ4 model with a single real field φ,

L =
1

2
φ(−p2 − m2)φ − λ

4
φ4. (103)

Distinct from (8), we have no background field here, and we use momentum representation.
As before, the metric is Euclidean.

If m2 > 0, the quantization is around φ = 0, and after renormalization, m is the
physical mass, which does not follow, such as the renormalized coupling λ, from the
quantum theory, and one may calculate all quantum corrections in perturbation theory, at
least in principle.

If m2 < 0, if quantizing around φ = 0, the ground state (vacuum) energy acquires
an imaginary part already from the first radiative correction, and the system becomes
unstable. For a constant field φ, the potential belonging to Lagrangian (103) has the
‘Mexican hat’ shape. The system will leave the ’top of the hill’ and roll down to the bottom.
Mathematically, this is realized by a shift,

φ → φc + φ, (104)

of the field, and quantization around φc, which has the meaning of the vacuum expec-
tation value of the field, φc = 〈0 | φ | 0〉, or the condensate. In general, the condensate
may depend on coordinates. However, at least in the beginning, one considers a homoge-
neous condensate.

With the substitution (104), and m2 → −m2, Lagrangian (103) turns into

L =
m2

2
φ2

c −
λ

4
φ4

c + φc(m
2 − λφ2

c )φ +
1

2
φ(−p2 − M2)φ − λφcφ3 − λ

4
φ4 (105)

with a new mass,

M2 = −m2 + 3λφ2
c . (106)

This Lagrangian has a linear contribution, which must vanish (we quantize after substitu-
tion (104) again around φ = 0), i.e.,

m2 = λφ2
c (107)

must hold on the tree level (this relation will be modified by the quantum corrections). At
once, as can be seen easily, this is the condition for the minimum in φc of the tree level part.

The first quantum correction is the ‘tr ln’-term in (54). Using (56), we obtain

Le f f =
m2

2
φ2

c −
λ

4
φ4

c − Vsc (108)

with

Vsc(M2) =
1

2

∫

d4k

(2π)4
ln(k2 + M2). (109)

This function is calculated in Appendix A. It has an ultraviolet divergence, and one must
apply some regularization. In the Appendix A, we represent two of them, the zeta func-
tional one and the momentum cut-off. The first one is more elegant while the second
provides more physical insight. To demonstrate the ideas behind the renormalization, in
this subsection, we use the second one.
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Inserting M2, (106), into (A4),

Vsc =
1

64π2

[

− 9λ2φ4
c

(

ln Λ2 +
1

2

)

+ λφ2
c

(

6m2

(

ln Λ2 − 1

2

))

(110)

+ Λ4

(

ln Λ2 − 1

2

)

− 2m2Λ2 − m4

(

ln Λ2 +
1

2

)

+ M4 ln M2

]

,

we reordered Vsc by powers of the condensate φc and a contribution, which is not a power
of φc since it contains the logarithm of M2. The renormalization starts by considering the
powers of φc as counterterms and by absorbing them into the tree-level Lagrangian by the
substitutions

λ → λ +
9λ

16π2

(

ln Λ2 +
1

2

)

, (111)

m2 → m2 + 12λ

(

m2

(

ln Λ2 − 1

2

)

+ Λ2

)

.

The second line in (110) does not depend on φc and can be added as a constant term to the
Lagrangian. We do not show this explicitly. Moreover, the specific form of substitution
such as (111) is unimportant, and we will not show them in the following. It is only
important that such substitutions are possible. We mention that the substitutions (111)
become infinite ones in the limit of removing the regularization, Λ → ∞. When performing
the corresponding substitutions with the zeta functional regularization, i.e., with Vsc as
given by (A2), these will be finite.

As known, regularization introduces a new, arbitrary dimensional factor. In the cut-off
regularization, it is Λ that has the dimension of momentum, and in the zeta functional
regularization, it is µ, as mentioned in Section 3.2. This circumstance opens the possibility
of finite renormalization. Usually, such arbitrariness is fixed by so-called normalization
conditions, which need a physical interpretation or justification. We mention that changes
in these conditions, or in the regularization parameters, can be described in terms of the
renormalization group. For instance, the factor in front of the logarithm in the upper line
in (111) is the first coefficient in the so-called β function. The renormalization group plays
an important role in quantum field theory, but it is also outside the scope of this review.

Using the renormalization freedom, we take the ‘tr ln’ contribution in the form

Vsc(M2) =
1

64π2

[

4m2 + 2M2

(

ln
M2

2m2
− 3

2

)]

. (112)

It is motivated by the tree level minimum, which remains unchanged when including this
Vsc since it was chosen such that the normalization conditions

Vsc(M2)∣
∣m2=λφ2

c
= 0,

∂Vsc(M2)

∂M2
∣

∣m2=λφ2
c

= 0, (113)

hold.
Now we can discuss the interpretation of these results. With (57), we obtain an effective

potential, including the first radiative correction, in the form

Ve f f = −m2

2
φ2

c +
λ

4
φ4

c + Vsc(M2) (114)

with M2 = −m2 + 3λφ2
c . Considered as a function of φc, it has a minimum at φc = m/

√
λ,

and the mass M takes in this minimum the value M =
√

2m. It is real. This way, one has a
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consistent theory with a condensate. For our needs, this is sufficient. We mention that this
approach allows for the inclusion of temperature (via the Matsubara representation) and the
study of symmetry restoration with a rising temperature. In doing so, infrared problems
occur that require the inclusion of an infinite number of higher radiative corrections
(graphs). All this is outside the given review. The interested reader may consult [22] for a
general introduction and motivation, Ref. [23] for the summation formalism, and the most
recent paper [24] for the actual state and for further literature.

Finally, we discuss the massless case, m = 0, which was the original motivation for [8].
In that case, model (103) does not have any dimensional parameter. As already mentioned,
such a parameter comes in with regularization. All previous discussions and formulas are
applicable until (112), where formally putting m → 0 would produce an infinity. There is
no reasonable normalization condition opposite to the massive case. In connection with the
Casimir effect, this point was discussed in detail in [7] (Section 4.3). Here, we take Vsc in
the form

Vsc =
9λ2φ4

c

64π2

(

ln
φ2

c

µ2
− 25

6

)

, (115)

where µ is arbitrary. The complete one-loop effective potential reads

Ve f f =
λ

4
φ4

c +
9λ2φ4

c

64π2

(

ln
φ2

c

µ2
− 25

6

)

. (116)

Following [8], we took 1
6

d4Ve f f

dφ4
c
∣

∣φc=µ
= λ as the normalization condition (note, their coupling

λ is our λ/6).
This function has the interesting property that from the logarithm for small φc negative

contributions appear, which result for

φc
2
|min =

µ2

3λ
exp

(

11

6
− 8π2

9λ

)

(117)

in a minimum,

Ve f f |min
= − 9λ2µ4

128π2
exp

(

22

3
− 32π2

9λ

)

. (118)

Formally, this is to the right from the tree level minimum at φc = 0. However, in the
perturbative approach, this is exponentially small and must be considered as zero. For
the minimum to exit, the logarithm must be negative and of the same order as the tree
contribution in (116), i.e., perturbatively small. This can be achieved only by a very small
condensate φc.

In [8], one finds another, even more convincing explanation. By improving (117) by the
renormalization group equation, or by letting the coupling constant run, negative values
of the effective potential occur only for φc in a region beyond the Landau pole, hence in a
nonphysical region.

In summary, in this section, we have seen that in a pure scalar theory, an instability
may occur when the initial mass has a negative, nonzero square. This instability results in a
condensate. This phenomenon can be viewed as the scalar part of the Higgs phenomenon.
In case the initial mass is zero, no realistic minimum and no condensate appear.

4.2. Scalar QED and Abelian Higgs Model

In this section, we consider the massless scalar QED. Its Lagrangian reads

L = −1

4
F2

µν + (Dµφ)∗(Dµφ)− λ

2
(φ∗φ)2, (119)
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where Fµν = ∂µ Aν − ∂ν Aµ is the field strength of the electromagnetic field, and φ is a
complex scalar field. With the covariant derivative

Dµ = ∂µ − ieAµ, (120)

this Lagrangian is invariant under the group U(1). Regarding (8), the electromagnetic field
is now a dynamic one, and we added the self-interaction of the scalar field. This model is a
generalization of the pure scalar model considered in the preceding subsection. It is also
called the Abelian Higgs model for the spontaneous symmetry breaking that it allows.

Following the ideas of [8], we turn to real fields φi,

φ =
1

2
(φ1 + iφ2), (121)

and rewrite the Lagrangian in the form

L =
1

2
Aµ

(

∂2δµν − ∂µ∂ν

)

Aν +
1

2
(∂µφ1 + eAµφ2)

2 +
1

2
(∂µφ2 − eAµφ1)

2 − λ

8
(φ2

1 + φ2
2)

2. (122)

It has, in addition to the gauge symmetry, O(2) symmetry, and its scalar part is a special
case of an O(2N) model.

Like in the scalar case, we imagine a mass term added with a negative mass square.
This would result in an instability and force us to consider the possibility of having a
condensate. Therefore, we make a shift

φi →
1√
2

φc + φi, (123)

of the scalar fields. Thereby, we follow [8], slightly changing the notations. In general, any
shift away from the origin in the (φ1, φ2)-plane would be as good as (123).

With (123), the Lagrangian turns into

L = −λ

4
φ2

c +
1

2
Aµ

(

(∂2 − e2φ2
c )δµν − ∂µ∂ν

)

Aν +
1

2
φ1

(

∂2 − 2λφ2
c

)

φ1 +
1

2
φ2

(

∂2 − 2λφ2
c

)

φ2

− 1√
2

φceAµ∂µ(φ1 − φ2)− λφ2
c φ1φ2 + . . . , (124)

where the dots stand for interaction terms that we do not need to consider (after performing
the shift). In addition, we did not show the terms that are linear in the fields since these
must vanish in the extremum of the Lagrangian. Equation (124) shows the constant and
the quadratic parts of the Lagrangian. However, it has two cross-terms. The first one
disappears when using the symmetry φ1 ↔ φ2 between the scalar fields. The second can be
diagonalized by the substitution φ1 → 1√

2
(φ1 + φ2), φ2 → 1√

2
(−φ1 + φ2), which results in

L = −λ

4
φ2

c +
1

2
Aµ

(

(∂2 − e2φ2
c )δµν − ∂µ∂ν

)

Aν +
1

2
φ1

(

∂2 − λφ2
c

)

φ1 +
1

2
φ2

(

∂2 − 3λφ2
c

)

φ2. (125)

After the shift, the electromagnetic field acquires a mass e2φ2
c , and the scalar fields acquires

masses λφ2
c and 3λφ2

c .
Now we calculate the effective potential. For the ‘tr ln’ contributions, we use Formula (115)

for all modes,

Ve f f =
λ

4
φ2

c +

(

5λ2

32π2
+

3e4

64π2

)

φ4
c

(

ln
φ2

c

µ2
− 25

6

)

, (126)

and take into account that the electromagnetic field now has three polarizations.
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We look for a minimum of this effective potential and discuss, such as in the preceding
subsection, the tree level and the quantum correction, which should be of the same order.
Demanding that the logarithm is of order one, this requires

λ ∼ e4. (127)

With such a relation, we have λ2 ∼ e8 << e4, and (36) simplifies,

Ve f f =
λ

4
φ2

c +
3e4φ4

c

64π2

(

ln
φ2

c

µ2
− 25

6

)

. (128)

For the arbitrary constant µ, we take the value of the effective potential, µ = φc, min, and
from the first derivative of (127), we arrive at

λ =
11e4

16π2
(129)

which confirmed (127). The potential in this minimum is

Ve f f |min
= − 3e4

128π2
(φc, min)

4. (130)

The interpretation of φc, min is that it is the vacuum expectation of the field, φc, min = 〈0 | φ |
0〉 φc, min = 〈φ〉0, so that with (129), the effective potential finally takes the form

Ve f f =
3e4φ4

c

64π2

(

ln
φ2

c

〈φ〉2
0

− 1

2

)

. (131)

We started this subsection with Lagrangian (119). It has two parameters, the pair (λ, e)
of dimensionless couplings. We ended with the effective potential (41), which has the
parameter pair (φc, e). Now φc has a dimension. It has an arbitrary parameter coming in
with regularization and for which we take φc, min. In [8], the change from the dimensionless
λ to the dimensional φc is called dimensional transmutation. In addition, they showed that in
this case, application of the renormalization group does not remove the minimum.

The outcome from this subsection is the understanding that by adding an Abelian
vector field to the scalar sector, a condensate and symmetry breaking occur, as shown
in Figure 4. Thereby, the initial coupling λ, which should obey relation (127), drops
out from the final result (131), and, unlike the pure scalar model, renormalization group
improvement does not destroy this picture.

0.5 1.0 1.5
Φc/ϕc, min

-0.002

0.002

0.004

0.006

Veff

Figure 4. The effective potential (131) of the Abelian Higgs model (119).

It is interesting to look at the fate of the modes under the symmetry breaking. Initially,
we have two photon modes and two scalar modes. After the symmetry breaking, one scalar
mode goes into massive photon mode, and the other remains. This can be seen, for instance,
using a module-phase representation, φ = ρeiΘ. The field Θ is massless and represents the
Goldstone boson. However, together with the electromagnetic sector, it appears as a pure
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gauge and can be eliminated. A similar discussion can be found in [25] as well as in the
discussion of further developments.

Of course, there are further developments of this model. The most important is the
inclusion of finite temperature. One needs to perform resummation to eliminate infrared
problems. In the result, as shown in [26], a first-order phase transition shows up, and the
symmetry is restored when raising the temperature. A physically important extension is
the electroweak phase transition (or crossover as the lattice calculations suggest), which is
still a topic under actual discussion [27].

4.3. Instabilities in Non-Abelian Gauge Theories

In this subsection, we consider instabilities in non-Abelian gauge theories. The most
relevant are QCD and the electroweak theory. Both involve non-Abelian vector fields, which
have in a magnetic background a spectrum such as in (44) or (83). Its peculiarity results from
their spin, s = 1, which causes a coupling to a magnetic background field with negative
energy. Frequently, this property is discussed as anti-screening or paramagnetism. In QCD,
which is a massless theory, the result is a tachyonic state that is present for any strength
of the background field making the ground state, which is considered a Savvidy vacuum,
unstable. This case was discussed in Section 3.3.3. The depths of the minimum (97), of the
effective potential are as shallow as in the massless scalar case in Section 4.1, Equation (118),
namely exponentially decreasing for small coupling. However, unlike the scalar case, it is
not washed out by renormalization group improvement due to asymptotic freedom.

In the electroweak theory, the mass mW of the W-boson postpones the instability until
the field strength reaches the critical value Hc = mW/g, i.e., until the background field
becomes very strong.

In the literature, the instability was discussed mainly in the context of an applied mag-
netic field, which would cause pair production and could have cosmological implications.
The spontaneous generation of a magnetic field is not considered due to the large mass
threshold. The topic was intensively discussed at the beginning of the 1980s, i.e., long
before the discovery of the Higgs boson, for instance in [28–31]. Therefore, all parameter
regions were of interest. A much-discussed question, for instance in [29], was the gauge
fixing to be applied in the background field, unitary gauge or the Rξ-gauge. Both are
possible and deliver, finally, the same result.

As an example of these developments, we consider [30]. The model consists of
an SU(2)-field coupled to a triplet of Higgs fields. Combining (31) and (119), the La-
grangian reads

L = −1

4
(Fa

µν)
2 +

1

2
| Dab

µ φa |2 −m2

2
φaφa − λ

4
(φaφa)2, (132)

where the covariant derivative,

Dab
µ = ∂δab + gǫacb(Ac

µ + Bc
µ) (133)

provides the coupling to both, the background field Ba
µ and gauge potential Aa

µ. Following (41),
we rotate the fields,

Wµ =
1√
2
(A1

µ + iA2
µ), φ =

1√
2
(φ1 + iφ2), (134)

and keep the third component. Thereby, the derivative term of the Higgs field turns into

1

2
| Dab

µ φa |2=| (∂µ − ig(A3
µ + B3

µ))φ |2 +
1

2
| (∂µ − igWµ)φ

3 |2, (135)
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the mass and self-interaction terms, accordingly, into

−m2

2
φaφa = −m2φ∗φ − m

2
(φ3)2, (136)

−λ

4
(φaφa)2 = −λ

[

φ∗φ ++
1

2
(φ3)2

]2

.

The spontaneous symmetry breaks sets after changing the sign of the mass square, m2 →
−m2, such as in Section 4.1, with a shift of the third component of the Higgs field,

φ3 → φc + φ3. (137)

From (135), the W-field acquires a mass, mW = g2φ2
c , in addition to what we have seen in

Section 4.2.
Now we have a charged vector field with mass mW and a charged scalar with mass

3λφ2
c in the magnetic background, with A3

µ as a neutral vector field and φ3 as a neutral
scalar field. The first two contribute with their spectrum in analogy to (83) and (64), as
well as two modes from A3

µ and one mode from φ3, such as (109), to the one-loop effective
potential. On the given level, all contributions are additive.

We demonstrate as an example the result obtained in [30] in this situation. The
following expression for the effective Lagrangian was obtained

Le f f = −B2

2
− 7g2B2

32π2

(

ln
gB

4πµ2
+ c

)

− m2
W

16π2
V (138)

with c = γ − 1 − 1
7 (12ζ ′(−1) + 2 ln 2 + 2

3 ) and where

V =
3

2
φ4

(

ln φ2 − 1

2

)

+
g2B2

2m2
W

[

− 3(m4 ln m2 +
1

2
+ ln 2) + 24ζ ′(−1,

m2 + 1

2
) (139)

+ 12ζ ′(−1) + ln 2 + 4(m2 + 1) ln(m2 + 1)− 4(m2 − 1) ln(m2 − 1)
]

.

In their notations, m2 =
2m2

W φ2

B2 , and φ is the scalar condensate. For the numerical evaluation,
it is meaningful to use the relation

ζ ′(−1, z) = ζ ′(−1)− ln ΓB(z) + z ln Γ(z). (140)

The corresponding effective potential, normalized to B = 0, is shown in Figure 5 as a
function of the condensate φ for two values of the magnetic field. The solid line represents
the real part, and the dashed line is the imaginary part. It is clearly seen that for small B, the
effective potential is real and shows the minimum known from the Abelian Higgs model.
For a larger magnetic field, an additional minimum appears near the origin together with
an imaginary part. This minimum corresponds to that known from the Savvidy vacuum,
and it becomes the deeper one. In addition, it is seen that the magnetic minimum is much
shallower than the scalar one. For the picture, quite a large value of the coupling was
chosen to obtain both minima shown in one picture.

Similar pictures were obtained in [32], where, however, the focus was on the formation
of a lattice of magnetic flux lines. At the beginning of the 1980s, there were a number of
investigations of the effective potential. For instance, in [31], similar pictures were obtained,
but there was a question about the symmetry restoration by a large magnetic field, partly by
early discussions in [33]. Similar discussions can be found in [28,34]. In [35], it was argued
that this is not possible as long as the ground state is not stable. The magnetic vacuum
remains, as seen, for example, in the right panel in Figure 5, as well as the scalar condensate
with it, in this minimum for all values of the magnetic field. Before the discovery of the
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Higgs boson, investigation of the effective potential of the electroweak model in a magnetic
field was used to obtain bounds on the Higgs mass; for a review see [36].
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Figure 5. The effective potential −Le f f (138) as a function of the scalar condensate φ, for mW = 1,

g = 1 and µ = 1. In the left panel, the magnetic field is B = 0.1, and in the right panel B = 0.22. The

dashed line is the imaginary part.

The question of symmetry restoration was also investigated at finite temperatures. The
general expectation, according to Refs. [37,38], was that broken symmetry, the spontaneous
creation of a magnetic field in our case, will be restored at a sufficiently high temperature.
However, as found in [39,40], this is not the case.

4.4. Electroweak Magnetism

Beyond the instabilities caused by the one-loop corrections, it is also interesting to
study non-Abelian fields on the classical level. As an especially intriguing feature, in quite a
number of papers, the analogy to a (dual) superconductor was considered. In this spirit, the
question arises of how the field responds to an applied homogeneous magnetic field. Will
this response be a lattice of flux lines or something else? The first discussion of this question
can be found in [41]. It was assumed that domains will form in the plane perpendicular to
the applied field with a size smaller than that necessary for the formation of an unstable
mode. Thereby, formation of the unstable mode is considered an infrared, long-range effect.
These domains are formed by magnetic flux tubes. In order to restore Lorentz invariance
of the model, in [41], a model was developed with a fluid-like superposition of the flux
tubes. However, this model, which is known as the “Copenhagen vacuum”, was criticized
independently in [40,42] and was finally abandoned.

The formation of the lattice of flux lines is of interest in the electroweak theory. In [43],
a mechanism was discussed that goes beyond the quadratic approximation and involves the
interaction with a longitudinal mode of the W-field. In [44], the condensate was discussed
in the Georgi–Glashow model. In a linearized approximation, the existence of a vortex-like
condensate was confirmed, and the relation to a type II superconductor was discussed.
In [45], these results were discussed in the electroweak model near the Bogomolny bound

λ =
g2

8 cos2 ΘW
(141)

where λ is the Higgs coupling constant, and ΘW is the Weinberg angle. In [35], similar
results were reported using a perturbative expansion near the bound. As a result, it
was concluded that beyond the critical field strength, a periodic lattice of flux lines will
be formed.

To demonstrate these ideas, we give a representation of the basic methods used. First,
we consider the derivation of exact (classical) equations of motion for the tachyonic modes,
which are a breakdown of the general Yang–Mills equations for this specific component.
Second, we represent the attempts to lower the effective potential by some superposition of
tachyonic modes.
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4.4.1. Equations of Motion for the Tachyonic Mode

In [44], a restricted model was discussed. It has an O(3) symmetry, and it is similar to
the SU(2)-model considered in Section 2.4 with an additional mass term for the W-field,

L = −1

4
(Fa

µν)
2 − m2W∗

µWµ. (142)

The fields are a charged vector field Wµ and a neutral vector field Aµ, related to the initial
fields Aa

µ by the relation (41). The W-field stands for the W-boson and the A-field for the
electromagnetic field. Restricting the mode carries the instability

W1 = W, W2 = iW, f12 = − f21, (143)

which are the only non-vanishing components. In this case, and assuming dependence on x1,2

only, the field equations can be simplified. This calculation is shown in Appendix C. Finally,
the equations for mode (143) read

−(∂2
1 + ∂2

2) ln |W| = m2 + 2e2|W|2, (144)

f12 =
m2

e
+ 2e|W|2.

The first line is a Liouville-type equation for the W-field, and the second line gives the
expression for the magnetic field in terms of the W-field. The energy of the solutions can be
expressed in the form

Ecl =
H2

cr

2
+ 2eHcr|W|2, (145)

where Hcr = m2/2 is the critical field strength. This way, the classical energy is always
non-negative, as one should expect. We also mention that the system can be rewritten
in terms of first-order equations using (A25) and the field strength F12 in addition to the
second line in (144). The system of equations, generalizing the above ones to the case
of the bosonic part of the electroweak theory, was derived in [45]. A review and further
discussions in [46] focused especially on the interpretation of the second line in (144). The
plus sign on the second term, which is an enhancement of the applied magnetic field by the
system, is interpreted as anti-screening caused by the asymptotic freedom.

4.4.2. A Lattice of Flux Lines

In this subsection, we consider the formation of a lattice of magnetic flux lines such
as that in a type II superconductor. We follow the first attempt of this kind [47]. The
authors start with a background field in the Landau gauge such as in (11). The equation
for the tachyonic mode follows as a special case from L2 (42). The general solution is a
superposition of harmonic oscillator ground state functions,

W(x) =
∫

dk2

2π

dk3

2π
φ̃(k2, k3) e−i(k2x2+k3x3) exp

[

− eH

2

(

x1 −
k2

eH

)2
]

, (146)

where φ̃(k2, k3) is an arbitrary coefficient function. All these states have the same energy
and realize the degeneracy of the ground state.

In [47], two ‘naive’ choices for φ̃ are discussed,

φ̃(k2, k3) ∼ δ(k2)δ(k3), or φ̃(k0, k2, k3) ∼ δ(k3). (147)

In the first case, the solution describes a magnetic field with a Gaussian shape on the plane
x1 = 0. In the second case, performing the Gaussian integration over k2, a similar picture
appears on the x2 plane. In either case, the field is of finite size in one direction. The classical



Symmetry 2023, 15, 1137 28 of 41

energy has translational invariance in all three spatial directions and is proportional to the
corresponding lengths, ∼L1L2L3, whereas the energy of the naive solutions is proportional
only to two, say ∼L2L3. Thus, one needs to look for a superposition that would be
proportional to the classical energy. With this motivation, the following ansatz was made,

φ̃(k2, k3) = Φδ(k3) ∑
m∈Z

δ(k2 − mc), (148)

where Φ and c are some constants. For c & 1√
eH

, we obtain an infinite set of leaves each with

a Gaussian magnetic field. For c ∼ 1√
eH

, an interference sets in, which will be constructive

for exp(−imcx2) = 1. Inserting (148) into (146) results in

W(x) = Φ ∑
m∈Z

exp

[

− c2

2eH
m2 − icm(x2 + ix1)−

eH

2
x2

1

]

. (149)

With the notations, v = − c
2π (x1 + ix2), q = exp(− c2

2eH ), one comes to a representation
in terms of a Theta function,

W(x) = Φ θ3(v, q) exp

[

− eH

2
x2

1

]

. (150)

This solution forms a regular lattice of magnetic flux lines. Further, in an ingenious calcula-
tion, Ref. [47] calculated the classical energy of this configuration, using an expression for
the energy density derived earlier in [48], and came to the result

Ecl =
H2

2
− eH

2κ
|Φ|2 + e2

4
√

κ
θ3(0, q)2|Φ|2 (151)

with κ = c2

2πeH . In hindsight, this formula should be a special case of (145).
Finally, the quantum contribution was added. For this, the one-loop vacuum energy in

a homogeneous background was taken. The corresponding expression is, with the reversed
sign, the second term in (96). This is, of course, a crude approximation. For the magnetic
field, some average of (150) can be taken, which will not have an essential influence on the
final result.

For the thus-obtained total energy, a minimum was found by a variation of all parame-
ters entering, for instance, the coupling parameter e. As a result, an effective potential in
the minimum was found (q0 = e−π),

Ve f f |min
=

11

96π2
Λ4

(

−1 +
1

θ3(0, q0)

)

exp

(

1

θ3(0, q0)− 1

)

. (152)

With θ3(0, q0) ≃ 1.2713, this effective potential is negative. The depth of this minimum is not
decreasing, unlike in (97), and for small coupling, it will certainly become the deeper one.

The above ideas were also applied to the electroweak theory, for instance in [32].

Here, a decisive parameter is the ratio K =
m2

H

m2
W

, where mH is the Higgs mass and mW is

the W-boson mass. For K < 1 (these masses were not known at that time), an instability
and a first-order phase transition similar to the Abelian Higgs model was found. In the
opposite case, the magnetic instability sets in when the magnetic background field exceeds
the critical value Hc = m2

W/e set by the W-boson mass. Making a perturbative expansion
for small e(H − Hc), the formation of a lattice of magnetic flux lines was derived, which
is similar to the Abrikosov lattice in a superconductor. The formation of such a lattice
was confirmed in [45] for the case of mH = mZ, where mZ is the Z-boson mass, using the
Bogomolny method, i.e., by reducing the equations of motion to first-order equations that
are easier to solve.
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The above results have been reconsidered several times, the latest in [49]. The ansatz (146)
had been modified using the symmetric gauge so that the initial solution describes a flux line
(in place of a flux plane). The superposition of such solutions is then directly in terms of the
center position. In addition, a regular lattice of these flux lines was chosen. It is argued that
the time evolution of an initially homogeneous field would result in such a lattice. Then,
the energy of such a configuration was minimized with respect to the scale parameter Φ of
the solutions. Numerically, a minimum was found that is appreciably below the energy of
the homogeneous field (the authors call it ‘classical field’).

In summary, there is a variety of instabilities in theories involving non-Abelian fields.
In electroweak theory, due to the W-boson mass, the threshold for these is far beyond
reachable energies (at least on Earth). In all cases, a spontaneous generation of a magnetic
field is energetically favorable. However, these states are all unstable. A solution for the
problem caused by this instability has not yet been found, despite numerous attempts, the
latest being [50] in the massless case.

4.5. On the Fate of a Homogeneous Background Field

Being interested in non-perturbative, infrared effects, homogeneous fields are a prime
candidate for a background field. Not only do such fields allow for quite explicit cal-
culations, inhomogeneities tend to increase the classical energy. The general properties
of background fields in an SU(2) theory were discussed in detail in [51]. It was shown
that there are two types of translational invariant fields, of non-Abelian type, where the
potential Aa

µ is constant in a suitable gauge, and an Abelian type field that may be taken in

the form Aa
µ = − 1

2 Fµνxνδa3, where Fµν is a constant field strength. For the first type, it was
shown that any constant potential with a non-vanishing field strength yields an unstable
action, and for that from the second type, only Euclidean self-dual fields may be stable.
These have infinitely many zero-mode excitations whose influence on the stability was left
open. In addition, one should remember that self-duality in the Euclidean region implies
an imaginary electric field in the Minkowski region.

The topic of a homogeneous Abelian background field was reconsidered indepen-
dently a few years later in [52] from a variational point of view. The variations were taken
in a class of fields being the unstable perturbations of a constant Abelian background,
thereby including their quartic self-interaction. It was assumed that the stable fluctuations
may be handled subsequently as perturbations. However, carrying out this program, it was
observed that inclusion of the quartic terms resulted in a scaling of the coupling, which is
different from the usual one that follows from the ultraviolet properties. In addition, it was
mentioned that the inevitable mixing of the stable and the unstable modes could produce
contributions of the same order as that from the unstable modes. Soon after, in [53], it
was shown that the mixing of unstable and stable modes makes this procedure unreliable.

More precisely, it was shown ‘that the minimum of the restricted action, S(Hµ + η
(u)
µ ), is of

no help’ (Hµ is the homogeneous background field and η
(u)
µ are the unstable fluctuations

modes). Their discussion rests on the observation that there is no solution of the Yang–Mills

equations of the form Hµ + η
(u)
µ for non-vanishing η

(u)
µ . This way, all attempts to consider

a homogeneous background field are put under question.
After submitting this review, a (re-)derivation of the effective potential for a homoge-

neous (anti)self-dual background field appeared [54]. In generalizing the initial work [55],
the author succeeded in summing up all zero modes explicitly, i.e., to solve a problem left
open in [51]. The resulting effective Lagrangian is the same as in the one-loop approxi-
mation but without the imaginary part. Further, in [54], this result was generalized by
deforming the electric field, E → γH with γ < 1, breaking the self-duality. In this case, one
has in the quadratic approximation, the known unstable modes. However, taking the full
interaction, i.e., including the quartic terms, in this case, the now unstable modes could
be summed up, such as the zero modes in the self-dual case. At the end, the one-loop
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result without the imaginary part was confirmed, including the case γ = 0, i.e., a pure
gluomagnetic background. The relation of this result to [53] was not discussed.

4.6. Instabilities in String-like Background Fields

In this subsection, we consider non-homogeneous background fields that have the
shape of magnetic strings or flux lines. Here, one has a more complicated classical part, as
compared with a homogeneous background, which itself requires a numerical approach.
This holds even more for the corresponding quantum part where the mode functions of the
fluctuations cannot be expressed in terms of known special functions. As a result, this type
of problem in much more complicated, and its investigation is, despite significant progress,
still far from being settled.

In addition to this kind of problem, our interest is focused on the question of whether
there is a situation similar to the Savvidy vacuum where quantum corrections may over-
come classical energy and turn the effective potential to negative values. This subsection is
divided into two parts, the electroweak and the color magnetic strings.

4.6.1. Strings in the Electroweak Theory

The first object discovered in this direction was found by [56] in the Abelian Higgs
model; see Equation (119). Unlike the homogeneous background shift (123), an ansatz with

~A =
n

e
v(ρ)

~eϕ

ρ
, φ =

η

2
f (ρ) eiϕ, (153)

as the only nonvanishing components, was taken, where cylindrical coordinates are used.
The classical energy of these fields is

Ecl = π
∫

d3x r

[

v′(ρ)2

e2r2
+ η2 f ′(ρ)2 +

(1 − v(ρ)2) f (ρ)2

r2
+

λ

2
η4(1 − f (ρ)2)2

]

. (154)

The asymptotic conditions for the profile functions follow from requiring finite energy. For
instance, v(ρ) → 1 and f (ρ) → 1 for ρ → ∞ follow immediately as well as their vanishing
at the origin.

The ansatz (153) results in two coupled nonlinear equations. Their properties have
been investigated in detail; for a review see, for example, Ref. [57]. These equations do not
have an analytical solution, and the solutions must be computed numerically. A remarkable
property is that these solutions are topologically stable. This follows since a solution with a
winding number n cannot be continuously deformed into the trivial solution. Further, we
mention that the system, up to a scaling (and the winding number), depends only on one
dimensionless combination,

β =
2λ

e
= 2

m2
φ

m2
A

, (155)

which is twice the ratio between the mass mφ =
√

λφc of the scalar field and the mass
mA = eφc of the vector field in (125), squared. An analogous parameter in a superconductor
would be β < 1 for type I and β > 1 for type II. There are many further, highly interesting
details and properties, which are, however, beyond the scope of the present paper.

The Nielsen–Olesen strings can be embedded into larger models. Thereby, the equa-
tions for the profile functions v(ρ) and f (ρ) remain the same. The first generalization is the
semilocal strings consisting, beyond the Abelian vector field, of a doublet, or multiplet, of
complex scalar fields that are coupled all with the same covariant derivative to the vector
field. However, in this case, the winding number is not a topological invariant, and such a
string has the possibility to ‘unwind’. This happens for β > 1. For β = 1, stability, together
with the existence of zero modes, can be shown using the Bogomolny method, reducing
the equations to first-order ones, and for β < 1, Ref. [58] proved the stability. In that case,
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multi-vortex solutions also exist. As a further development, for example, the formation of
networks of such strings in the early universe was discussed.

Further embedding is in the electroweak theory, where we have an SU(2) × U(1)
coupled to a Higgs field, with a mixing of the third iso-component and the U(1)-field. The
charged vector field describes the W-bosons, and the two Abelian components describe the
Z-boson and the photon. This embedding can be realized in two ways, as Z-strings or as
W-strings. For the latter, the ansatz reads

~W = −
√

2

g
eiζv(ρ)

~eϕ

ρ
, φ =

η√
2

f (ρ)

(

cos ϕ

eiζ sin ϕ

)

, (156)

where ζ describes a whole family of such strings. However, such solutions are all unstable.
A Z-string is described by the ansatz

~Z = − 2

g
v(ρ)

~eϕ

ρ
, φ =

η√
2

f (ρ)eiϕ

(

0
1

)

. (157)

Its stability was investigated in detail in [59]. All possible instability modes were considered,
and the corresponding eigenvalue problem was solved numerically. As a result, it was
found that only for a range of approximately 0.2 <

√

β < 1 and 0.9 < cos θW < 1, stability
exists, but such a value of the Weinberg angle and a Higgs-mass smaller than the Z-mass
(β < 1) are nonphysical.

The question of whether quantum corrections may stabilize such classical solutions
as described above was raised in quite a number of papers. The latest review is in [60].
As an example, the authors took a simplified version of the electroweak model with zero
Weinberg angles, i.e., essentially the model (132). The background, instead of the constant
φc in (137), is of the form

~W = ~Wa σa

2
= ns1s2

f (ρ)

g

~eϕ

ρ

(

s1s2 −(ic1 + s1c2)e
inϕ

(ic1 − s1c2)e
−inϕ −s1s2

)

, (158)

Φ = v f (ρ)

(

s1s2e−inϕ −ic1 − s1c2

−ic1 + s1c2 s1s2einϕ

)

,

where si sin ξi and ci = cos ξi, describing the isospin orientation, are variational parameters.
The quantum part was taken as resulting from the fluctuations of a fermion doublet

whose Lagrangian reads

L = iψ(PL /DL + PR /DR)ψ − f ψ
(

ΦPR + Φ
†PL

)

, (159)

where DL/R are the corresponding covariant derivatives, and PL/R are the projectors on the
left-/right-handed quarks. The quantum corrections are, in principle, described as shown
in Section 3.1, but while accounting for the Fermi sign,

Ve f f = −L(0)− tr ln(i /D + m). (160)

One needs to insert all contributions that follow from (159). This laborious work had
been performed in [60] and earlier papers cited therein. In a simpler case, namely in an
Abelian–Higgs model, a similar calculation was performed independently and by using
different techniques in [61]. The common outcome was that the influence of the fermionic
vacuum is by far too small to influence the stability in an essential way.

4.6.2. Color-Magnetic String Background

Here, we consider pure gluodynamics, such as in Section 3.3.3, or in Section 4.3 but
without the scalar field. In this model, there is no dimensional parameter. As a result, as
mentioned in [62], no finite-size string configuration may be classically stable (at least in
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non-compact space). This can be seen from dimensional reasons. The energy of any such
configuration should have a dimension of 1/length2 and a dilatation to a larger size would
decrease the energy. It is only the quantum fluctuations that will bring in a dimensional
parameter. This situation is in parallel to the case of a homogeneous background as
mentioned above.

We take as a model an SU(2), and as in Section 2.4, we introduce a background field
by Aa

µ → Aa
µ + Ba

µ and make for the background the ansatz

~Ba = δa3 µ(ρ)

ρ
eiνϕ~eϕ

ρ
(161)

with some profile function µ(ρ) as the only non-vanishing component of the potential Ba
µ.

Since it points only in one direction in color space, this is an Abelian background. It has the
classical energy

Ecl = π
∫ ∞

0
dρ

(µ′(ρ))2

ρ
, (162)

and for a finite energy, the profile function must satisfy µ(0) = 0 and µ(∞) = const. Now,
on the one-loop level, the complete effective potential is, according to (57),

Ve f f = Ecl +
µ2s

2 ∑
(n)

e1−2s
(n)

. (163)

Here, we represent the ‘tr ln’ as a sum over the eigenvalues of the quantum field in the
background of the string. The eigenvalues follow from the equation for the corresponding
modes from the quadratic part, the upper line in (42),

(

− ∂2

∂ρ2
− 1

ρ2

∂

∂ρ
+

ν − asµ(ρ)2

ρ2
− 2

asµ′(ρ)
ρ

)

φν,n,λ(ρ) = λν,nφν,n,λ(ρ), (164)

where as = ±1 denotes the spin projections, and ν is the orbital momentum quantum number.
The corresponding calculations were performed [62,63] using different approaches. It

was shown that the ghost contributions compensate for that from the nonphysical gluons so
that effectively two modes remain. In both calculations, the outcome was that the effective
potential has a minimum below zero, similar to in a homogeneous background. A difference
is, of course, the dimensionality; here, we have an energy per unit length, whereas the other
is per unit volume. In addition, it was mentioned that the dependence on the minimum
of the specific shape of the background profile is quite weak. However, an open question
remains. While in [62], the existence of a tachyon in the spectrum was excluded, in [63], it
was quite clearly seen numerically. In summary, for a string-like background, results were
obtained that are similar to that in a homogeneous background: a color magnetic field is
energetically preferable and should be created spontaneously, but it is not stable.

5. Instabilities with A0-Background

Regarding gauge field theory, besides the Wilson loop, the Polyakov loop is discussed
as an order parameter. For instance, the average of a Polyakov loop is

L =
1

3
Tr P exp(ig

∫ β

0
dx4 A0(x4,~x)), (165)

where A0 is the zeroth component of a background potential and is discussed as an order
parameter for the deconfinement phase transition. At finite temperatures, it cannot be
removed by a gauge transform. Many attempts were devoted to the question of whether
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an A0-background may be created spontaneously. For this to be answered, one needs to
investigate the free energy F, which is by means of

F = − 1

T
ln Z (166)

related, at finite temperature, to the generating functional (45). As shown in [64], on the
two-loop level, the tree energy has minima at a finite, nonzero A0. For SU(3), including the
quarks, these minima form a hexagonal lattice in the (A3

0, A8
0)-plane. The gauge dependence

of these minima was under lengthy discussion. However, an approach [65] with constraints
in the corresponding functional integral confirmed the effective gauge independence
established in [66] using the Nielsen identities.

In the 1990s, in [67], an attempt was undertaken to consider an A0-background together
with a homogeneous magnetic background. The idea was to find a minimum of the free
energy in the (A0, B)-plane, i.e., as a function of these two parameters. It was found that the
minimum persists for not too large magnetic fields. In [68], this problem was reconsidered,
and the free energy was calculated in the full parameter plane. The starting point is the
two-loop expression (for SU(2)) (see [68]) of the gluonic sector,

W
SU(2)
gl = B4(0, 0) + 2B4(a, b) (167)

+ 2g2
[

B2(a, b)2 + 2B2(0, b)B2(a, b)
]

− 4g2(1 − ξ)B3(a, b)B1(a, b),

for the free energy. Here, the notations

a =
gA0

2πT
, b = gB, (168)

are used, where g is the coupling constant, T is the temperature, and B is the strength of
the magnetic background field. The A0-background enters through the parameter a, and F
is a periodic function under A0 → A0 + 2πT. The functions Bi(a, b), entering (167), are the
‘tr ln’ expressions and a closed loop, in the given background,

B4(a, b) = T ∑
ℓ

∫

dk3

2π

b

4π ∑
n,σ

ln
(

(2πT(ℓ+ a))2 + k2
3 + b(2n + 1 + σ − i0)

)

, (169)

B2(a, b) = T ∑
ℓ

∫

dk3

2π

b

4π ∑
n,σ

1

(2πT(ℓ+ a))2 + k2
3 + b(2n + 1 + σ − i0)

,

as well as

B3(a, b) =
1

4πT
∂aB4(a, b), B1(a, b) =

−1

4πT
∂aB2(a, b). (170)

For these functions, several representations have been derived by different authors, includ-
ing their asymptotic expansions. In addition, numerically usable formulas are available.

For T = 0, these formulas represent the two-loop contribution to the Euler–Heisenberg
Lagrangian and do not bear any surprises. The picture changes when considering A0 and B
together at, necessarily, finite temperate. Before, in a number of papers, mentioned in [68], it
was discussed that the imaginary part caused by the magnetic background can be removed
one way or another while the real part of the effective potential stays in place, at least in
some approximation. However, as the results obtained in [68] show, this cannot be the
case. The main result in that paper is reproduced here in Figure 6. It shows the real part
of the effective potential as a function of the two parameters, A0 and B. On the axes, i.e.,
for A0 = 0 or B = 0, the known minima are reproduced. However, for both non-zero A0

and B, there is a line where F takes infinite values, which is, of course, nonphysical. The
conclusion of [68] was that the approaches known thus far are insufficient to describe the
considered situation.
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Figure 6. The real part of the effective potential W
SU(2)
gl (167), as a function of the A0-background a

and the magnetic background b (see Equation (168)) for T = 10 and g = 1.

After submitting this review, a continuation of the above investigation appeared [69].
There, it is shown that at high temperature, a minimum in both A0 and B exists in a region
with no imaginary part.

6. Concluding Remarks

In the foregoing sections, we reviewed instabilities that arise in magnetic background
fields either from the coupling of fields with spin s ≥ 1 with the background or from
radiative corrections (or from a combination of them). Thereby, we tried to provide an
approach to the topic that was readable with a generic background in QFT. In general,
QFT, and the SM especially, are the foundation of our understanding of the world. A
huge amount of methods and calculations are known and are in excellent agreement
with experiments, using the anomalous magnetic moment of the electron as one example.
Thereby, the perturbative approach plays an essential role. However, with the tachyonic
instabilities, which appear in the perturbative approach, there are two phenomena that
lack real understanding. Both are related to the tachyonic modes that appear from the
coupling of the magnetic moment of a one-spin field to a magnetic background field in a
non-Abelian gauge theory.

In the EW theory, it is the W-boson that may have a tachyonic mode. However, due to
its mass, this instability appears only for very strong magnetic fields. Thus, it will show up
at best in cosmology. It is a common belief that in such fields, a condensation of W-bosons
should happen. However, this topic is not worked out in sufficient detail.

In QCD, the gluon field is massless, and the instability is immanently present (at least
at low energy and temperature). In a first approach, this instability resulted in the Savvidy
vacuum, which is, however, not stable. Despite numerous attempts and approaches, this
problem is unsolved along with the confinement problem. We also review an approach with
background fields, having an A0 field and a magnetic component. This approach, however,
has raised more questions. The present review may inspire further research in these
directions. After submitting this review, two new papers, Refs. [54,69], appeared, which
together with [50], give the topic of color magnetic background fields a new dynamic.
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Abbreviations

The following abbreviations are used in this manuscript:

QED Quantum Electrodynamics

QCD Quantum Chromodynamics

QFT Quantum Field Theory

SM Standard Model

EW Electroweak

Appendix A. The Scalar Loop

In this appendix, we collect the basic formulas for the calculation of the one-loop
contribution to the effective potential. We demonstrate zeta-functional regularization with
proper time representation and cut-off regularization. The scalar loop,

Vsc =
1

2
tr ln(k2 + m2) =

1

2

∫

d4k

(2π)4
ln(k2 + m2), (A1)

is the simplest example. We include the factor 1/2 into the definition. For the case of more
components, we mention that the one-loop contribution is additive. We consider only the
massive case since the massless case, without any further parameters, does not make sense.

With regularization and proper time representation, we obtain

Vsc = −1

2
∂sµ2s

∫ ∞

0

dt

t

ts

Γ(s)

∫

d4k

(2π)4
exp[−t(k2 + m2)]|s=0, (A2)

= −1

2
∂sµ2sm2(2−s) Γ(s − 2)

(4π)2Γ(s)

∣

∣

s=0
,

=
m4

64π2

(

ln
m2

µ2
− 3

4

)

.

Here, each momentum integration gives a factor 1/
√

4π, and the remaining t-integration
gives the upper gamma function. There was no pole in s = 0.

For comparison, we display the corresponding calculation in cut-off regularization.
Here, we have from (A1)

Vsc =
1

2

∫

|k|≤Λ

d4k

(2π)4
ln(k2 + m2). (A3)

Carrying out angular integration, the remaining integration is simple, and we arrive at

Vsc = − Λ4

64π2

(

ln
Λ2

m2
− 1

2

)

− m2Λ2

32π2
+

m4

64π2

(

ln
Λ2

m2
+

1

2

)

+ O

(

1

Λ

)

. (A4)

Here, we have more divergent contributions, from Λ4 untill ln Λ. It is only the coefficient
in front of ln m2 that is the same. This is the first coefficient of the beta function, and it is
invariant under a change in the normalization. It must be understood that this is the only
information from results such as (A2) or (A4) that may have a physical meaning.

For the spinor loop, we obtain the same calculation with a factor 4 since the spinor
has four components and a minus sign for the statistics. For a vector field, the calculation
makes sense only when it has a mass and the result is just the scalar one multiplied with
the number of components.

Appendix B. Asymptotics of ae

In this appendix, we demonstrate the calculation of the weak and strong field limits of
the anomalous magnetic moment of the electron. For simplicity, we put the critical field
strength Hc equal to unity.
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The weak field limit can be derived from (100) quite easily by dividing the u-integration
into two regions, the first is 0 ≤ u0 ≤ u, and the second is u ≤ u0 ≤ 1, where u0 is an
arbitrary division point. In the first region, one expands the function h in powers of u
(up to u4), and in the second region, one expands h in powers of y (up to y4). After that,
the integrations can be performed explicitly (and by machine). Expanding the results in
powers of H (up to H3), one observes that the dependence on u0 compensates between
the two contributions, and not unexpectedly, it drops out. Moreover, putting u0 = 1, the
contribution from the first region disappears, and one is left with that from the second
region. It reads

I = −H

2
+

(

4

3
log

(

1

2H

)

− 13

18

)

H2 +

(

14

3
log

(

1

2H

)

+
83

90
− 32 log(2)

5

)

H3 + O(H4). (A5)

The first term is the Schwinger contribution. This result was first obtained in [70], later
confirmed in [17,18].

For the strong field expansion, it is useful to stripe off some constants,

M =
αm

2π
I, (A6)

and to take

I =
∫ ∞

0
dz e−z/H

∫ 1

0
du h, h = −1 + u

z
+

2(1 + ut)

2z(1 − u) + u2(1 − t)
, t = e−2z/u, (A7)

as the starting point. It differs from the integral in (100) by the substitution y = z/u and by
putting the critical field strength to equal unity.

We are interested in the leading order in H, where the logarithmic contributions show
up. It is useful to divide the z-integration into two regions,

I = I1 + I2, (A8)

I1 =
∫ 1

0
dz e−z/H

∫ 1

0
du h, I2 =

∫ ∞

1
dz e−z/H

∫ 1

0
du h.

In I1, neglecting contributions decreasing in H, one may put the exponential equal to unity.
The remaining integral can be calculated only numerically,

I1 =
∫ 1

0
dz
∫ 1

0
du h + O

(

1

H

)

≃ 0.00174984. (A9)

In the second contribution, one may add and subtract the contribution from t = 0, defining

h0 = h|t=0. (A10)

This allows for the splitting

I2 = I2a + I2b (A11)

with

I2a =
∫ ∞

1
dz e−z/H

∫ 1

0
du h0, I2b =

∫ ∞

1
dz e−z/H

∫ 1

0
du (h − h0) (A12)

The corrections from I2b are of order one,

I2b =
∫ ∞

1
dz
∫ 1

0
du(h − h0) + O

(

1

H

)

≃ 0.0414452 + O

(

1

H

)

, (A13)



Symmetry 2023, 15, 1137 37 of 41

which was not mentioned in the literature. In I2a, one can carry out the u-integration,

g(z) ≡
∫ 1

0
du h0 = − 3

2z
+

ln(z − 1 +
√

z(z − 2) )
√

z(z − 2)
, (A14)

and is left with

I2a =
∫ ∞

1
dz e−z/H g(z). (A15)

The easiest way to calculate the asymptotics of this integral is a Mellin transform. First, we
make a shift z → z + 1,

I2a =
∫ ∞

0
dz e−(z+1)/H g(z + 1), (A16)

then we transform this into

I2a = e−1/H
∫

dσ

2πi
Γ(σ)HσFσ, (A17)

where

Fσ =
∫ ∞

0
dz z−σg(z + 1). (A18)

The last integral converges in the strip 0 < ℜσ < 1, and the integration path goes parallel to
the imaginary axis just within this strip. The asymptotic expansion for H → ∞ is obtained
by moving the path left. The first pole is in σ = 0, and we need the analytic continuation of
Fσ to this point. It can be calculated by adding and subtracting the expansion for z → ∞,
gas = (ln(2z)− 3

2 )/z, and we obtain

Fσ =
π

2

2π cot(πσ) + 2 ln 2 − 3

sin(πσ)
+ Freg + O(σ) (A19)

with Freg ≃ 3.11886. Calculating the residue in σ = 0, we find

I2a =
1

2

(

ln(2H)− γ − 3

2

)2

− 1

2

(

ln 2 − 3

2

)2

− π2

12
+ Freg + O

(

1

H

)

. (A20)

Collecting the results, we arrive at

I = I1 + I2a + I2b (A21)

=
1

2

(

ln(2H)− γ − 3

2

)2

− 1

2

(

ln 2 − 3

2

)2

− π2

12
+ I1 + Freg + I2b

=
1

2

[

(

ln(2H)− γ − 3

2

)2

+ A

]

where

A = −
(

ln 2 − 3

2

)2

− π2

6
+ 2(I1 + Freg + I2b) ≃ 4.02817. (A22)

which is close to the value of A in [21], Equation (37), where I2b was not accounted for. It is
also in agreement with the estimate given by [15], −6 < A < 7. A is a constant that will
barely be of any interest.
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Appendix C. The Equations for the O(3)-Model in Section 4.4

In this appendix, we show the calculations that resulted in [44] in Equation (144). The
field equations, following from Lagrangian (142), are

∂ν fµν = −jµ, (A23)

((−D2 + m2)δµν + 2ie fµν)Wν = −e2W∗
µWµWν,

for the electromagnetic field strength fµν = ∂µ Aν − ∂ν Aµ and for the W-field. In (A23),
we used

Dµ = ∂µ − ieAµ, [Dµ, Dν] = −ie fµν, (A24)

jµ = −ie[W∗
ν DµWν − (DµWν)

∗Wν − W∗
ν DνWµ + (DνWµ)

∗Wν + ∂ν(W
∗
µWν − W∗

ν Wµ)],

as well as the gauge condition

DµWµ = 0. (A25)

Now we specialize these equations to the case when only the lowest mode of the W-field
and a field strength parallel to the x3-axis are present, i.e.,

W1 = W, W2 = iW, f12 = − f21 (A26)

are the only non-vanishing components. From (A25), we obtain the relations

(

D1

D2

)

W = −i

(

D2

−D1

)

W,

(

D1

D2

)∗
W∗ = i

(

D2

−D1

)∗
W∗, (A27)

With the ansatz (A26), Equation (A23) simplifies. In the first two terms of the current, we
apply (A26). The next four terms double with (A26), and we come to the result

ji = 2e

(

∂2

−∂1

)

i

|W|2, i = 1, 2. (A28)

However, this is just the structure of the first Equation (A23), which can be written in
the form

(

−∂2

∂1

)

f12 = −2e

(

∂2

−∂1

)

i

|W|2, (A29)

where we inserted (A28) on the right side. This equation can be integrated,

f12 = C + 2e|W|2, (A30)

where C is some constant.
From (A28), using (A27), we can derive another representation for the current,

ji = 2e

[(

(

D2

−D1

)∗
W∗
)

W + W∗
(

D2

−D1

)

W

]

, (A31)

= −2ie

[(

(

D1

D2

)∗
W∗
)

W − W∗
(

D1

D2

)

W

]

.

Using (A24) for the derivative, we arrive at

ji = 4e2

(

Ai +
1

e
∂iχ

)

|W|2 ≡ 4e2 Āi |W|2, (A32)
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with χ = 1
2i ln W∗

W . We mention that A and Ā differ by a gauge transform. Equations (A32)
and (A28) can represent Ā in the form

Āi =
1

2e|W|2
(

∂2

−∂1

)

i

|W|2, (A33)

=
1

e

(

∂2

−∂1

)

i

ln |W|.

This expression for Ā can be used to obtain a second expression for the field strength,

f12 = ∂1 A2 − ∂2 A1 = −1

e
(∂2

1 + ∂2
2) ln |w|, (A34)

since with (A32), the potentials A and Ā differ by a gauge transform only.
Now we need to transform the second equation in (A23). We use (A26) to obtain

(−D2 + m2 − 2e f12)W = −2e2|W|2W. (A35)

For the second derivative, we use (A27) and [D1, D2] = −ie f12 to obtain D2W = −e f12W,
resulting in

(m2 − e f12) = −2e2|W|2. (A36)

Now we insert here for f12 from (A34),

(m2 + (∂2
1 + ∂2

2) ln |W| = −2e2|W|2, (A37)

and with

−(∂2
1 + ∂2

2) ln |W| = m2 + 2e2|W|2 (A38)

we arrive at the final equation for |W|.
It remains to come to an expression for the field strength f12. It is given by (A30), but

we have still to find the constant C. For this, we insert f12 from (A30) into (A36),

(m2 − eC)|W| = 0. (A39)

For a nontrivial solution, we must take C = m2

e and obtain with

f12 =
m2

e
+ 2e2|W|2 (A40)

the final expression for the field strength.
From Lagrangian (142), the classical energy, Ecl , of the system can be derived [44],

Ecl =
1

2
f 2
12 − 2e2|W|2. (A41)

Using (A40), it can be rewritten,

Ecl =
H2

cr

2
+ 2eHcr|W|2 (A42)

in terms of the critical field strength Hcr = m2/2.
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