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The possibility of employing a dielectric-filled cavity as a high gradient wakefield accelerator is
investigated. It is demonstrated that accelerating gradients on the order of 140 MV1m can be achieved
by using modest drive-beam currents of 7.5 kA, and that large transformer ratios can be attained by
driving the system with a beam that has a linearly ramped current distribution. This device can be
operated in the 20 GHz frequency range, thus making a very small structure possible. Self-consistent
particle-in-cell simulations are presented in support of the theory.

During the past several years there has been increasing interest in using wakefield
acceleration techniques to achieve TeV energies with the next generation of
linear colliders. 1

,2 A 'wakefield accelerator uses the radiation excited by an intense
electron beam propagating in a slow wave structure to accelerate a low-current
load beam to a much higher energy. Fundamentally, any slow wave structure
can be employed in this context. The plasma wakefield accelerator employs a
plasma as the accelerating cavity,4-9 a modified disc-loaded cavity serves as the
slow wave structure for another wakefield accelerator, the Voss-Weiland radial
transformer .1,3 One can think of many other structures that could be used for
wakefield acceleration. Because of its inherent simplicity we have focused our
studies on a dielectric waveguide. 10,11

The Cherenkov ~akefield accelerator is a very simple device. The geometry,
shown in Fig. 1, consists of a gapless cavity filled with a dielectric material. A
hole is drilled in the. center of the dielectric to allow passage of the drive and load
beams. As the drive beam propagates through the cavity it generates Cherenkov
radiation, and all those modes having a phase velocity of vep = f3c/ £112 are excited.
The relative amplitudes of these modes depend upon the pulse length and the
current profile of the drive beam; these characteristics can be adjusted so that the
fundamental mode dominates. The expanding wave fronts superpose to create, an
axial accelerating electric field that has a phase velocity f3c. This high phase
velocity allows for the loading and acceleration of a properly phased, trailing
electron bunch. The law of conservation of energy requires that the load beam
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FIGURE 1 Geometry of the Cherenkov wakefield accelerator.

carry much less charge than the drive beam in order to achieve a very high
energy; the load beam's effect on the wakefield is therefore negligible.

The wavelength of the fundamental mode is given approximately by 2na(£­
1)1I2/PO ,lJ where a defines the radius of the cavity, £ is the dielectric constant, and
PO,1 == 2.4 represents the first zero of the Bessel function, Jo(x). By varying a or £

one can tune the frequency of the generated radiation. The amplitude of the
accelerating field, Ea --- Ip/a, where lp defines the peak drive beam current. In the
interest of building a relatively compact accelerator one would like to make Ea as
large as possible; this requires driving the system with multikiloampere currents.

I. THEORY OF THE CHERENKOV WAKEFIELD ACCELERATOR

It is straightforward to arrive at a general expression for the axial wakefield by
simply considering the well-known properties of Cherenkov radiation. The radial
eigenfunctions are given by Jo(k:r), where r is' radial distance and Jo defines a
Bessel 'function of the first kind. The perpendicular wavevector is determined
from the requirement that E z (r = a) vanish. This boundary condition yields
k~ ='Po,v/a, where PO,v defines the vth zero of Jo(x). Given k:, one can readily
find k~ by employing the Cherenkov angle relationship, k~/kv= £-112. This gives
k~ =Po,v/a(£ - 1)-"-1/2.

The parallel phase velocity is given byw v / k ~ = f3c. The frequency of the
generated r[ is thus [0, v = 2ncpo,v/a(£ - 1)-112. The. frequency of the fundamental
eigenmode can be approximated by [0,1 == 11.5 GHz [aCE _1)-112]-1. For example,
for a = 0.5 cm and £ = 2.3, [0,1 = 20 GHz, corresponding to a wavelength, Ao,1

equals 1.5 cm.
Given the perpendicular and parallel wavevectors and the frequency, the axial

electric field can be expressed in the general form

where the modal amplitudes, A v , must be determined. To evaluate these
coefficients we first consider a simple' disc current source of the form

j(r, z, t) = zca(r)b(ct- z)= zcao8(b - r)b(ct - z) (1)

where e defines the Heaviside step function, b is the beam radius and c is the
speed of light. The approximation that the beam moves at c ({3 = 1) results in the
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(2)

elimination of terms D(y-2). (For sufficiently relativistic beams these terms are
insignificant.) Given this source, and Fourier-transforming Faraday's and
Ampere's laws in z and t, one obtains the following equations for the fields:

1 a 4n EW
--rBa =-. ao<5(w - kc) - i-Ezr or c c

aEz W
ikE -~.=i-B

r ar c a

(3)

(4)

In these equations k refers to the parallel wave vector. The delta function
appearing on the RHS of Eq. (2) indicates that only those modes having a
parallel phase velocity equal to the beam velocity (c) will be excited. For these
modes Eq. (3) indicates that in the vacuum region Ba = E r • Propagating the
beams in vacuum as opposed to a medium·suchas a plasma means that the beams
will experience a negligible radial wakefield. This is an important characteristic of
this device; in particular, it allows the current-profile of the drive beam to be
maintained. This is crucial for establishing and maintaining a large transformer
ratio. Manipulating Eqs. (2)-(4) results in the following inhomogeneous wave
equation for the accelerating wakefield:

{
I a a EW

2 2} .4nc (2 EW
2

)--r-+--k Ez(r, W,k)=l-.-a(r) k --. <5(w-kc)
r ar ar c2 EW c2 (5)

Once this equation is solved, the other field components can be obtained via Eqs.
(3) and (4). To solve Eq. (5) we ignore the hole in the dielectric (a valid
approximation provided that is much smaller than At) and expand Ez(r, w, k) as a
Fourier-Bessel series:

Ez(r, w, k) = 2: Av(w, k)Jo(pQ,vr/a ),
v=t

(6)

(7)

where Po,v is a zero of Jo(x). This field automatically satisfies the boundary
condition that E z vanish at the conducting cavity wall. Substituting Eq. (6) into
Eq. (5) and using the orthogonality condition for Bessel functions on a finite
interval yields the coefficients,

(. .) _ .. !!- J1(po.vb!a) 1 {k2 _ EW
2

} <5(w - kc)
A v Q), k - 18naoC 2 2 2 2

apO,vll(PO,v)EW c . EW _k2 _ PO,v
c2 a2

Inverse Fourier-transforming A v ( w, k) then gives the accelerating field:
oc

Ez(r, z, t) = 2: AvJo(po,vr/a) cos (kV(ct - z»,
v=l

(8)
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(9)

where the coefficients are given by

8.rcao b J1(Po, vb Ia)
A v =-·-- 2 •

e a PovJ I(PO,v)

For sufficiently large v (such that Po,vbla > 1), A v decreases as po.~2. In order to
generate a coherent wake and not expend beam energy by exciting deleterious
modes, a faster decrease in the modal amplitudes is necessary. This can be
accomplished by driving the system with a beam of finite length.

There are several longitudinal current profiles for which the wakefield can be
simply analyzed, including a step function, a parabola, and a linear ramp. Of
these profiles only the asymmetric distribution results in a transformer ratio larger
than twO. 6

,7,8 The transformer ratio determines the maximum energy a load beam
electron can achieve. A large transformer ratio implies that the drive beam
experiences a decelerating field that is much smaller than the accelerating field
seen by the load beam. This results in a slow energy loss for the drive beam, thus
allowing the load beam to travel a long distance and gain maximum energy. We
consider a linearly ramped current source of the form

. 1 y
J(r, y) = Z n;;2 LE>(b - r)E>(L - y), (10)

where L is the pulse length and y = ct - z. Using the convolution theorem in
conjunction with Eq. (8) results in an axial field behind the beam (y > L) that is
given by

where

k = PO,v
v a(e _ 1)112 (12)

and 1>v(kvL) is a phase factor. Defining dimensions in centimeters and current in
kiloamperes, E z is expressed in megavolts per meter by the following:

[pee _1)112 ~ a BvJ1(Po,vbla)
Ez(r, z, t) = 25 LJ -b 2 2( ) Jo(po,vrla) cos [kv(ct - z) - <Pvl

ae v=1 PO-,vlI Po,v
(13)

For large kvL, Bv ""'" 1, and the coefficient under the summation falls off as po.3j2.
Thus the higher-order modes are effectively suppressed, and the wakefield is
dominated by the fundamental. As an example of the size of accelerating field
that can be generated in a Cherenkov accelerator, consider the following set of
parameters: a=0.5cm, bla=O.l, e=2.3, and Ip =7.5kA. This results in an
accelerating field E

V
=1 = 140 MV1m. The fundamental wavelength is 1.5 cm,

corresponding to a frequency of 20 GHz. It can be shown that the transformer
ratio R for a linearly ramped current distribution is approximately 0.5k I L.
Therefore, R == 12.5 for a pulse length, L = 4Al·
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It is important to note that when driving the system with a long pulse beam a
Cherenkov instability may arise because of a transverse perturbed current. Our
analysis has not treated this possibility, and it may be particularly severe for very
high current beams. Indications of such an instability have been observed in our
simulations.

II. SIMULATIONS OF THE CHERENKOV WAKEFIELD
ACCELERATOR

In support of the theory we have simulated the Cherenkov wakefield accelerator
using the fully self-consistent particle-in-cell model ISIS. 12 These simulations were
performed in r-z geometry with parameters corresponding to the above example.
The drive beam was ramped over 200 picoseconds, or four fundamental wave­
lengths. In addition to current ramping, the profile had a linear fall time of
12.5 picoseconds. A load beam was injected to .serve as a probe of the wakefield.
Both beams were injected into the cavity with energies of 20 MeV. To suppress
Cherenkov instability from developing a 17 kG magnetic field was superimposed
on the system.

Figures 2a and 2b show the axial wakefield generated by the drive beam, and
its Fourier spectrum. The peak field measured directly behind the drive beam is
132 MV1m, and has wavelength of 1.39 cm. Both the amplitude and the
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FIGURE 2a The axial wakefield (Ez vs. z).
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FIGURE 2b Fourier k-spectrum of the axial wakefield.
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FIGURE 3a Configuration space (r vs. z) for the drive-beam and load-beam electrons.
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FIGURE 3b Axial phase (yf3 vs. z) for the electrons.

wavelength are within a few percent of the theoretical predictions. Figure 2a
indicates that the decelerating field experienced by the drive beam is much
smaller than the accelerating field seen by the load beam, implying that a large
transformer ratio is achieved.

Figures 3a and 3b show the r-z configuration space and the axial phase space
for the two beams. The load experiences strong bunching because parts of the
beam are in a decelerating phase of the wakefield. This strong deceleration can be
seen in the phase space plot (Fig. 3b). The decelerated electrons rapidly fall back
into an accelerating phase where they become trapped and reaccelerated. The
peak energy achieved by the load electrons is 67.9 MeV, representing a maximum
energy gain of 47.9 MeV in only 37 cm. The tail of the drive beam has also been
accelerated; this explains the slight decrease in the amplitude of the wakefield
behind the beam. The transformer ratio can be defined as the maximum energy
gain of the load beam divided by the maximum energy loss of the drive beam.
According to Fig. 3b, the drive beam electrons have lost a maximum of 5.1 MeV.
Therefore the achieved transformer ratio R is approximately 9.4.

III. Summary

We have demonstrated analytically and with particle-in-cell simulations that a
dielectric-filled, gapless accelerating cavity can serve as an effective wakefield
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accelerator. An attractive feature of the Cherenkov wakefield accelerator is its
simplicity. This allows relatively easy experimental verification of the underlying
principles. Such a proof-of-principle experiment has been successfully performed
at the Advanced Accelerator Test Facility at Argonne National Laboratory. 13

There are potential problems in implementing this concept. One is dielectric
charging, which can occur if electrons from the drive beam become embedded in
the dielectric. By using a sufficiently large guide magnetic field it may be possible
to provide enough lateral stability for the beam that this will not occur. If a guide
field proves insufficient, it may be necessary to use a larger radius rod, allowing
for a larger hole to provide more beam clearance. In the above example,
increasing the rod radius to 1 cm would drop the fundamental frequency to
10 GHz and halve the accelerating gradient. To achieve the same accelerating
gradient would require doubling the peak-beam current. A second potential
problem is breakdown at the vacuum-dielectric interface. Under very high field
stresses, dielectrics tend to flash over, and this could produce a high enough
plasma density within the center hole of the accelerator to short the electric field.
However, it may be that breakdown is suppressed at the high frequencies at
which this accelerator will operate. At present there is not experimental data
pertaining to dielectric flashover at gigahertz frequencies.
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