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Abstract: The paper will describe the techniques that have
been used to perform the comparison on large batches of
cryogenic semiconductor-type thermometers, calibrated for
the CERN LHC and the main results obtained: they concern
either the uncertainty of the CernoxTM thermometers under
calibration and the behaviour of the standards used during
the calibrations.
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1.   INTRODUCTION

When a calibration facility is set up, an estimate of the
uncertainty budget is performed, on the basis of the
specifications of the instrumentation used and of the
requirements arising from the specifications of the sensors
to be calibrated, in order to ensure that the maximum
uncertainties match the needed level of the calibration
uncertainty. This estimate is generally required for a 95%
confidence interval, but is some cases more stringent limits
are required.

When a large number of sensors have to be calibrated,
the actual experimental conditions can vary from sensor to
sensor, resulting in a risk that,, for some of them the
calibration uncertainty exceeds the prescribed limit. On the
other hand, it may result that the uncertainty budget
evaluations were more severe than the calibration process
actually allows, resulting in a lower calibration uncertainty.

Consequently, it is interesting to perform an a posteriori
analysis on the calibration data, to estimate the posterior
–and actual– uncertainty level of the calibrations obtained.
This can be better done when the number of calibrations is
large.

The results of these studies that will be reported are
concerning large batches of cryogenic semiconductor-type
thermometers, calibrated for the CERN LHC.

2.   THE CALIBRATION PROCESS

For the thermometers to be calibrated, the CERN
specifications prescribe a tolerance that should be respected
by all 6000 thermometers: + 5 mK (1.6–2.2 K);  + 10 mK
(2.2–4.2 K); + 15 mK (4.2–6.0 K); + 0.5 K (6.0–25 K);  +

2.5 K (25–300 K). The experimental calibration work has
been performed by IPNO (Saclay, France), the calibration
assessment by INRIM.

  The calibration of M thermometers requires several
steps [1], from the experimental data, today generally
acquired automatically by means of a computer-assisted
system, to the sets a of parameters of the calibration
function. The layered structure of this process, as designed
by IMGC [2], is schematically shown in Fig. 1.

Fig. 1.  The layered data structure of the calibration of M sensors at
P temperatures, for each current I in the sensor.

The steps are described in Table 1. Initially, it is
necessary to select the function best-suited for the specific
thermometers: for a semiconducting type, as in the case of
the LHC ones,  cubic splines are a better choice than a high-
order logarithmic polynomial. Only when the model
function is decided is it possible to optimise the calibration
point distribution and minimise their number.



Table 1. The process of calibration, data reduction and its mathematical tools.

Data treatment step Data
(Fig.1)

Mathematical tool Ref.

1) Choice of the model for the thermometer
characteristics and experimental design

y = f(a, x)
x = T

Selection of the best model function class f(x) and of the
distribution of the calibration temperatures Ti and
optimisation of their number P

6

2) On-line outlier rejection during automated data
acquisition

ymijk ∀  tk

t is time
Sequence-Analysis Outlier Rejection (SAODR) routine 3

3) Elaboration of the data for each calibration point,
with thermal drift suppression

ymij vs tj   
∀  xi

Least Squares Mixed Effect  Method (LSME), which
makes use of the whole set of (ymij, tj ) data to obtain (ymi,
xi), obtaining a robust compensation of thermal drift

4

4) Elaboration of the data for identification of
possible anomalous data

(ymi, xi) Use of the LSME method for estimating the group {yi, xi}
as a whole, for robust detection of anomalous data

5

5) Elaboration of the full calibration data for each
thermometer, to obtain the calibration model
function parameters

{(ymi, xi)},
ym = f(â, x)

Application of the model class (e.g., splines) to the data,
including the handling of incomplete datasets, to obtain,
for each thermometer the set of parameters â.

5

6) Elaboration of the calibration functions for
identification of possible thermometer clusters

â Use of the LSME method with a simplified model
(polynomial) for identifying the clusters of â sets as a
whole, obtaining a robust detection of clusters of
characteristics

2

7) Estimation of the overall calibration uncertainty This
paper

Starting from the raw data acquisition (innermost box
in Fig. 1, step (2) in Table 1), each instrumental reading is
performed K  times [3]. This allows the detection of
outlying readings and their rejection. This step was not
eventually experimentally implemented.

In order to have statistical information on each
calibration point, the measurement on each thermometer
is repeated several times, say N . During the N ⋅M
measurements, the temperature generally drifts: better
thermal stabilisation generally requires more expensive
controllers and more time.

Consequently, there is advantage in using an algorithm
that can effectively suppress thermal drift from the
acquired data ymij (next outer box in Fig. 1, step 3 in Table
1), in order to obtain the calibration point ymi for each m-
th thermometer. For the Least Squares with Mixed Effect
(LSME) method to be applied, the thermometers do not
need be identical, but only “similar” to a certain extent.
[4]

An additional bonus is that the overall LSME easily
allows the detection of anomalous data (e.g., coming from
noisy acquisition channels), while providing statistical
information on the overall batch of thermometers under
calibration (step 4 in Table 1 [5]). When all the calibration
points {(ymi, xi)} are obtained, again the LSME can be
used with a simplified model (polynomial) to evaluate the
possibility of a grouping in clusters of the thermometers
(step 5 in Table 1 [2]).

3.   INITIAL UNCERTAINTY BUDGET

The initial uncertainty budget, as evaluated by INRIM,
is reported in Table 2 for the most critical temperature

range1. Note that actually a 99% confidence limit should
be used, leading to an uncertainty of 6.5 mK, outside
tolerance limit.

Table 2. Initial uncertainty budget (1.6 -2.2 K), 95% confidence
level.

On temperature (reference thermometers traceable to IMGC), mK

1) IMGC calibration 2.0

2) Overheating correction ( T < 2.2 K) 1.4

3) Stability of the working reference thermometers
within calibration time interval

1.0

4) Uncertainty of measurements of the reference
thermometers at IPNO

2.1

5) Repeatability of measurements at IPNO 0.7 a

On resistance (of thermometers to be calibrated) , mK

6) Uncertainty of measurements of the thermometers
to be calibrated by IPNO

0.2

7) Repeatability of measurements on the
thermometers to be calibrated by IPNO

0.1 a

8) Uniformity of the comparison block 0.5

9) Fitting of the calibration function by IMGC 3.5 a

Total 4.4

a It can vary from run to run, to be assessed a posteriori.

                                                            
1 The reason of the criticity is that the thermometers are also used for
controlling the superfluid-helium bath temperature.



4.   OVERALL CALIBRATION UNCERTAINTY
EVALUATION: BASICS

Several of the steps in Table 1 allow an evaluation of
the measurement uncertainty: step 2, when present, the
uncertainty of each instrumental reading; step 3, the
uncertainty of the each calibration point (for both the T
value and the resistance R value of each thermometer
under calibration); step 5, the uncertainty of the
calibration function fit. Additionally, a screening for
anomalous data (step 4, but also step 6) ensures that they
do not affect the normal calibration-function
determination process.

After step 5, a Monte Carlo simulation is also
performed, by letting the computed calibration points
randomly vary within squared boundaries determined by
the uncertainties of each point on both T and R . This
simulation additionally estimates the stability of the
calibration function within the experimental uncertainties
[7].

5.   POSTERIOR CALIBRATION UNCERTAINTY
EVALUATION: RESULTS AND DISCUSSION

The calibration process involves in each run about 70
thermometers, requiring overall close to a hundred
thousand readings. In fact, to the default 34 calibration
points obtained for lowering temperatures (Procedure A,
default) from the optimization process of step 1 in Table
1, about another 50 auxiliary points have been performed
in less controlled conditions for increasing temperatures
(procedure B), allowing some double checks with a
different procedure.

Therefore, it is not surprising that even a computer-
controlled automatic data acquisition system resulted in a
broad variety of actual experimental conditions, reflecting
in output files showing a broad variety of non-standard
outputs. This paper is reporting on the results of four (out
of 110) runs, considered as representative samples of the
overall population.

Table 3 is summarizing the main default outputs
expected from each IPNO run, together with the actual
outputs from the four test runs. In addition to uncertainty
evaluation, also a classification of the thermometers in
homogeneous R-T characteristics clusters has been
performed according to step 6 in Table 1.

Procedure A refers to a calibration performed at a
number of temperatures of decreasing value (31 is the
default), with a good stability during the time required to
measure all the thermometers and the references
(“temperature plateau”) and at least 3 repeated
measurements per thermometer. This allows to fully
perform the evaluations of step 2 and 3 in Table 1 (but
SAODR routine (step 2) was not implemented at IPNO).
The procedure also includes plateau identification and a
test of the quality of the plateau, leading to occasionally
discard those that do not comply with a sufficient

temperature homogeneity. Therefore, an uncertainty on
both R  and T  can be attached to each calibration point
obtained with procedure A in order to compute the
calibration function (step 4 in Table 1), which is a set of
cubic splines.

Procedure B, on the contrary, is non standard. It refers
to measurements taken at  a number of temperatures of
increasing value (50 is the default), with a much less
controlled temperature environment and being the
thermometers under calibration measured only one (one
reading per thermometer). On the contrary, the reference
thermometers are measured several times. No direct
evaluation of the thermal conditions is possible and no
uncertainty evaluation can be done on the calibration
points.  The only uncertainty parameter is the standard
deviation of the fitting, which is performed using a
logarithmic polynomial of degree 10, which does not
provide residuals passing a Kolmogorov-Smirnov
normality test (insufficient model).

Table 3 show quite a variety of experimental situations
and of result quality. Especially in the most critical range
(< 2.2 K) is can happen to have a reduced number of valid
calibration points for the default current (1 µA): in this
case, the fitting with the spline model is done with a
number of experimental points lower than the default
(e.g., …UN CASO…). The calibration with a current of
10 µA in this range will only be used in emergency in the
LHC (high electrical noise): the Cernox® thermometers
show quite a large overheating at this current (see Figure
1), resulting in a sharp bend in the R-T characteristics,
very difficult to accurately track with the calibration
function, especially with the polynomial model –this
reflects in line (14) of Table 3.

Figure 1. Overheating for I = 10 µA of Cernox® thermometers.

The procedure allows to obtain an estimate of the
actual differences in calibration of the reference
thermometers. The calibration uncertainty was evaluated
in Table 2 (lines (1) to (5))  to be 3.5 mK: differences up
to 5 mK between calibrated references were observed,
which are just within the combined uncertainties,
confirming the initial evaluation. An example of the sets
of differences between references is reported in Figure 2.



a)   b)

Figure 2. Differences between reference thermometers measured during a calibration run #1090 at IPNO versus tempereature (K): a) difference
between  two of the four reference thermometers (mK); b) (IMGC – IPNO) for all reference thermometers (mK).

Table 3. Main specifications for each calibration run and the actual outcomes of four typical calibration runs.

(per calibration run) CERN
specification

Run #1090 Run #1170 Run #2420 Run #2440

1) Number of reference thermometers 3…4 4 3 2 2
2) Number of thermometers under
calibration (Cernox®)

70…80 77* 74 52 28

3) Number of calibration points (I = 1
µA, T = < 4 K, procedure A)

20 12
Tini–Tfin < 30 mK

10
Tini–Tfin < 4 mK

20
Tini–Tfin < 5 mK,
except 2 (50 mK)

24
Tini–Tfin < 4  mK

4) Number of calibration points (I = 10
µA, T  > 54 K, procedure A)

28 26 24 26 30

5) Number of calibration points (I = 100
µA, T = 66–300 K, procedure A)

6 7 6 4 5

6) Calibration point sequence 1 cooldown +
1 warmup

2 cooldowns +
2 warmups

default default default

7) N° invalid thermometers – 7 1 4 0
8) N° thermometers with at least one
non-default feature

– 2 (1 µA)
5 (10 µA)

10  (1 µA)
2  (10 µA)

14 (1 µA)
27 (10 µA)

1 (1 µA)
19 (10 µA)

9) N° thermometers with non-typical R-
T characteristics

– 11 10 8 2

10) N° of thermometers with no
calibration anomalies (valid
thermometers)

– 57 (1 µA)
54 (10 µA)

53 (1 µA)
61  (10 µA)

26 (1 µA)
13 (10 µA)

25 (1 µA)
7 (10 µA)

11) Max Monte Carlo fitting-stability
boundary (95% CI), mK

3 3.5 2 (1 µA)
5 (10 µA) with
some up to 11

3

12) Reference thermometers agreement
(range), mK

5 5 2 1

13) Procedure A typical uncertainty
(fitting with cubic splines over 31
calibration points –default)
(T = 1.6–2.2 K), 95% CI, mK

< 5 < 1 (see overall
estimate)

< 1 < 2 (1 µA)
< 4.5 (10 µA)

2

14) Procedure B typical uncertainty
(fitting with a logarithmic polynomial
over 50 calibration points)
(T = 1.6–2.2 K), 95% CI, mK

< 5 (1 µA: see overall
estimate)

(10 µA: up to
18)*

Up to 3 (1 µA)
Up to 5.5 (10 µA)

Up to 4.5 (1 µA)
For  10 µA only

one valid
calibration point

in the range

Up to 8

15) Overall estimate
(T = 1.6–2.2 K),     95% CI

± 5 mK
(tolerance)

Unsure that all
valid

thermometers
comply with the

tolerance, due to a
single valid

calibration point
in the range

All valid
thermometers
within specs

All valid
thermometers

within specs, with
less confidence @

10 µA

Within specs:
all valid @ 1 µA,
low confidence @

10 µA

* includes the same 74 thermometers of run #1170.



The procedure also allowed to detect different types on
anomalies in the thermometers under calibration: from
faulty scanner channel to out-of-tolerance deviations of the
fitted function; from “noisy” calibration points to anomalous
uncertainty levels in step 3 of the procedure; from out of
tolerance instability of the fitted model on the Monte Carlo
test to critical dependance of the resulting calibration
function on the model used2. An example of large
differences in the standard deviations of the measurements
performed at different calibration temperatures is reported in
Figure 3.

Figure 3. Standard deviations of the thermal-drift fit, made using the
procedure of step 3 in Table 1, for different calibration points in run #2420.

An example of dependance of the calibration function
from the model, where the tolerance is not respected by all
the thermometers, is shown in Figure 4.

Figure 4. Differences between the calibrations in run #1090 @10 µA using
the splines model and the logarithmic polynomial model.

An example of non-conforming Monte Carlo result is
reported in Figure 5. The most critical temperature region is
always the 2–3 K one, as also in Figure 3 and 4.
                                                            
2 Obtained not only from comparison of the calibration functions obtained
with procedure A and B, but also by using as calibration points other sets
evaluated with different criteria available on the CERN database for the
same runs.

Figure 5. Monte Carlo simulation results (stability of the calibration
function on the errors on both variables) for a thermometer to be calibrated.

Finally, a cluster analysis (step 5 in Table 1) detected
thermometers with non-typical characteristics for the
relevant run (line (9) in table 3). Figure 6 reports the
dendogram of the clusters for one run.

Figure 6. Dendogram of the Cernox® clusters for run #1090.

Figure 7 reports the clusters found when the procedure is
repeated on all thermometers of the four runs in table 3. In
this case, two large cluster of the same size has been found,
with additional 5 thermometers in separate clusters, to be
considered real outliers.

Figure 7. Dendogram of all Cernox® thermometers in all four runs.

As a result of these evaluations, all thermometers
showing at least one non-conformity was considered as at



risk about its use in the most critical application within the
LHC machine, since an accident during the calibration or a
non-typical behaviour could be considered as a source of
less confidence in the quality and stability with time of those
thermometers. The conservative number of first-class
thermometers is reported in line (10) of Table 3.

 Run #1090 calibrated the same thermometers of run
#1170 with three more. It is therefore possible to obtain a
real evaluation of the reproducibility of the IPNO
calibrations on the same Cernox® thermometers. This is
shown in Figure 8. One is expecting to find a reproducibility
consistent with the tolerances, namely in the most crucial
range below 2.2 K. It is the case for a current of 1 µA, where
the maximum deviations are within 3 mK; on the contrary,
at 10 µA there are several outlying thermometers (> 5 mK
below 2.2 K, see figure) and a sparse set of differences
below 3 K. This is a confirmation that there is a difficulty in
correctly fitting the sharp bend due to the overheating and
that the latter can be quite different from thermometer to
thermometer, as already shown in Figure 1, and variable.

Figure 8. T(#1090) – T(#1170) for 70 thermometers, @ 10 µA using the
splines model.

6.   CONCLUSIONS

The results of application of the above methodologies
are shown in the paper, compared to the initial uncertainty
budget estimated from the thermometer characteristics, the
instrumentation specifications and the results of preliminary
studies –e.g., for the instrumental noise level.

A relevant variability of the experimental conditions is
observed, so that the a posteriori analysis allows checking
the initial assumptions.

The reproducibility of the measurements have been
evaluated by cross-checks with several methods, thanks to
the techniques embedded in the experimental procedure
designed by IMGC. In the most critical range, the test runs
show that not for all runs a high confidence can be attached
to the respect of the tolerance, this confidence being
generally lower with the calibrations with the 10 µA current,
due to the large thermometer overheating (about 100 times
higher than at 1 µ A). Generally a sizable number of

thermometers were found to be invalid or having had in
some extent problems during the calibration process, so that
their use in the most critical applications should not be
advisable.

The accuracy of the temperature values is less important
for the LHC functionality. However, a comparison of
calibrations of the reference thermometers allowed drawing
the conclusion that the values in the most critical range
should be correct within 5 mK.
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