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Abstract. We study nuclear effects in production of Drell-Yan pairs and direct photons

in proton-nucleus collisions. For the first time, these effects are studied within the color

dipole approach using the Green function formalism which naturally incorporates the

color transparency and quantum coherence effects. The corresponding numerical results

for the nuclear modification factor are compared with available data. Besides, we present

a variety of predictions for the nuclear suppression as a function of transverse momentum

pT , Feynman variable xF and invariant mass M of the lepton pair which can be verified

by experiments at RHIC and LHC. We found that the nuclear suppression is caused pre-

dominantly by effects of quantum coherence (shadowing corrections) and by the effective

energy loss induced by multiple initial state interactions. Whereas the former dominate

at small Bjorken x2 in the target, the latter turns out to be significant at large x1 in the
projectile beam and is universal at different energies and transverse momenta.

1 Introduction

The color dipole approach [1] represents a phenomenological framework that effectively takes into

account the higher-order and nonlinear QCD effects. There are many studies in the literature demon-

strating a reliable agreement of predictions with experimental data, especially at high energies and/or

small Bjorken variable x2 in proton-proton (pp) collisions and DIS (see e.g. Refs. [2–4] and references
therein).

The color dipole approach which is formulated in the target rest frame provides a consistent way

of studying the nuclear effects, especially the nuclear shadowing, in both proton-nucleus (pA) and
nucleus-nucleus (AA) collisions. The dynamics of pA or AA collisions is controlled by the coherence

length lc. When the coherence length is sufficiently large or small, one talks about the long coher-

ence length (LCL) or short coherence length (SCL) approximations, respectively. In the intermediate

kinematics when both approximations fail, one should employ the Green function technique which
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accounts for the exact coherence length lc and naturally incorporates the color transparency and quan-
tum coherence effects. Such a kinematic region corresponds e.g. to kinematics at RHIC fixed target

experiments or planned experiments such as AFTER@LHC.

In this paper, we present numerical results on the quark-nucleus cross section within the Green

function formalism for the Drell-Yan (DY) lepton pair production and production of direct photons.

Besides, we include also the gluon shadowing (GS) that dominates at small Bjorken x2 and the effec-
tive energy loss induced by multiple initial state interactions.

2 Coherence length

The rest frame of the nucleus is very convenient for study of coherence effects. The dynamics of Drell-

Yan (DY) process is regulated by the coherence length lc, which controls the interference between

amplitudes of the hard reaction occurring on different nucleons and is given by

lc =
1

x2mN

(M2 + p2T )(1 − α)
α(1 − α)M2 + α2m2

f + p2T
, (1)

where α is the fraction of the light-cone momentum of the projectile quark carried out by the photon,

and mq = 0.2 GeV is an effective quark mass. Figs. 1 and 2 show the energy dependence of the

mean coherence length for xF = 0 and xF = 0.6 corresponding to small x2 fractions, explicitly

separating the regimes with the long coherence length (LCL), lc > RA, and short coherence length

(SCL), lc � 1 ÷ 2 fm. For the transition region between both limits we used the Green function

formalism as the general case with no restrictions on lc.
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Figure 1. The mean coherence length for Drell-Yan

and direct photons production for xF = 0.
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Figure 2. The mean coherence length for Drell-Yan

and direct photons production for xF = 0.6.

3 Color dipole approach

The DY process in the target rest frame can be treated as a radiation of a heavy photon or Z0 boson

by a projectile quark. The transverse momentum pT distribution of photon bremsstrahlung in quark-

nucleon interactions reads [5]

d3σ(qN→γ∗X)

d lnαd2pT
=

1

(2π)2

∫
d2ρ1d2ρ2ei�pT ·(�ρ1−�ρ2)Ψ∗γ∗q(α, �ρ2)Ψγ∗q(α, �ρ1)Σ(α, �ρ1, �ρ2) , (2)
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where

Σ(α, �ρ1, �ρ2) =
1

2

(
σN

qq̄(α�ρ1) + σ
N
qq̄(α�ρ2) − σN

qq̄(α(�ρ1 − �ρ2))
)

(3)

and the light-cone (LC) wave functions of the projectile q → q + γ fluctuation ΨT,L(α, �ρ) can be

found in Ref. [5]. For the dipole cross section σN
qq̄(α�ρ) we used GBW [6], KST [7] and GBWnew [8]

parameterisations. The hadron cross section is given by a convolution of the qN cross section with the

corresponding parton distribution functions (PDFs) fq and f̄q as follows

d4σ(pp→l+l−X)

d2pT dxFdM2
=
αEM

3π2
x1

x1 + x2

∫ 1

x1

dα
α2

∑
q

Zq

(
q f (x1/α,Q2) + q̄ f (x1/α,Q2)

) d3σ(qN→γ∗X)

d lnαd2pT
(4)

where Zq is the fractional quark charge, the (anti)quark PDFs fq and f̄q are used with the leading order
(LO) parameterisation from Ref. [9] at the scale Q2 = p2T + (1 − x1)M2. After integration over the

transverse momentum �pT we get for hadronic cross section

d2σ(pp→l+l−X)

dxFdM2
=
αEM

3π2
x1

x1 + x2

∫ 1

x1

dα
α2

∑
q

Zq

(
q f (x1/α,Q2) + q̄ f (x1/α,Q2)

) dσ(qN→γ∗X)

d lnα
(5)

and for quark-nucleon cross section

dσ(qN→γ∗X)

d lnα
=

∫
d2ρ |Ψγ∗q(α, �ρ)|2σN

qq̄(α�ρ) . (6)
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Figure 3. Differential dilepton cross
sections in pp collisions vs E772

[13].
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Figure 4. Differential dilepton cross
sections in pp collisions vs E886

[14].

 (GeV/c)
T

p
2 4 6 8 10 12 14 16

)3
.c

-2
p

 (
m

b
.G

eV
3

/dσ3
E

*d

-1010

-910

-810

-710

-610

-510

-410  = 0ηdirect photons, 

GBW
GBWnew
KST
Data Phenix

GBW
GBWnew
KST
Data Phenix

GBW
GBWnew
KST
Data Phenix

GBW
GBWnew
KST
Data Phenix

Figure 5. Differential direct pho-

ton cross sections in pp collisions vs
PHENIX [15].

In Figs. 3, 4 and 5 we compare our predictions for various dipole cross section parameterisations

with available DY data from E772 and E886 experiments and for direct photons from the PHENIX

experiment where the dipole model predictions agree with the data reasonably well.
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4 Transition to nuclear target

Within the Green function formalism the quark-nucleus cross section for DY pair production on nu-

clear targets reads [5]

dσ(qA→γ∗X)

d lnα
= A

dσ(qN→γ∗X)

d lnα
− 1

2
Re
∫ ∞

−∞
dz1

∫ z1

−∞
dz2

∫
d2bd2ρ1d2ρ2

× Ψ∗γ∗q(α, �ρ2)ρA(b, z2)σN
qq̄(α�ρ2)G(�ρ2, z2|�ρ1, z1)ρA(b, z1)σN

qq̄(α�ρ1)Ψγ∗q(α, �ρ1) , (7)

where the Green function G(�ρ2, z2|�ρ1, z1) describes the propagation of |γ∗q〉 Fock state between lon-
gitudinal positions z1 and z2 through the nucleus with initial and final separations �ρ1 and �ρ2, respec-
tively. The Green function above satisfies the two-dimensional time-dependent Schroedinger equation

(z2 plays the role of time)[
i
∂

∂z2
+
ΔT (�ρ2) − η2
2Eqα(1 − α) − V(z2, �ρ2, α)

]
G(�ρ2, z2|�ρ1, z1) = 0 (8)

with the boundary condition G(�ρ2, z2|�ρ1, z1)|z1=z2 = δ
2(�ρ2 − �ρ1). The imaginary part of the potential

V(z2, �ρ2, α) describes an absorption of the dipole in a nuclear medium and reads

V(z2, �ρ, α) = − i
2
ρA(b, z2)σN

qq̄(α�ρ) . (9)

For the pT -dependent DY production cross section we solved the Schroedinger equation analyti-

cally which is possible for quadratic σN
qq̄(ρ) = Cρ2 and the uniform nuclear density. For pT -integrated

DY production cross section we solved the Schroedinger equation numerically using an algorithm

proposed in Ref. [10].

In the LCL limit the Green function formalism naturally leads to a simple modification of the

dipole cross section:

σN
qq̄(�ρ, x)→ σA

qq̄(�ρ, x) = 2
∫

d2b
(
1 − e−

1
2
σN

qq̄(�ρ,x)TA(b)
)
. (10)

Besides the lowest |qG∗〉 Fock state one should include also the higher Fock components contain-
ing gluons |γ∗qG〉, |γ∗q2G〉 etc. They cause an additional suppression known as the gluon shadowing
(GS). The corresponding suppression factor RG [11] calculated as a correction to the total γ∗A cross

section for the longitudinal photon, RG(x,Q2, b) ≈ 1 − Δσ
(γ∗A)
L

σ
(γ∗A)
tot

, was included in calculations replacing

σN
qq̄(�ρ, x)→ σN

qq̄(�ρ, x)RG(x,Q2, b).
The initial state energy loss (due to ISI effects) is expected to suppress the nuclear cross section

significantly towards the kinematical limits, xL =
2pL√

s → 1 and xT =
2pT√

s → 1. Correspondingly, the

proper variable which controls this effect is ξ =
√

x2L + x2T . The magnitude of suppression was evalu-
ated in Ref. [12]. It was found within the Glauber approximation that each interaction in the nucleus

leads to a suppression factor S (ξ) ≈ 1 − ξ. Summing up over the multiple initial state interactions in
a pA collision at impact parameter b, one arrives at the nuclear ISI-modified quark PDF

q f (x,Q2)⇒ qA
f (x,Q

2, b) = Cvq f (x,Q2)
e−ξσe f f TA(b) − e−σe f f TA(b)

(1 − ξ)(1 − e−σe f f TA(b))
. (11)

Here, σe f f = 20 mb is the effective hadronic cross section controlling the multiple interactions. The

normalisation factor Cv is fixed by the Gottfried sum rule (for more details, see Ref. [12]), TA(b)
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is the nuclear thickness function at given impact parameter b normalized to the mass number A. It
was found that such an additional nuclear suppression due to the ISI effects represents an energy

independent feature common for all known reactions, experimentally studied so far, with any leading

particle (hadrons, Drell-Yan dileptons, charmonium etc).
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In Figs. 6 and 7 we compare our predictions for ratios RA/B(x2) and RA/B(xF) with the E772 and

E886 data where the GS is not expected. We obtain a reasonable agreement with the E886 data

including the ISI effects. In Fig. 8 we present our predictions for the nuclear suppression of DY pairs

production at the future AFTER@LHC experiment demonstrating separate contributions from the GS

and ISI effects. Fig. 9 shows the difference between calculations using the Green function formalism

and the LCL limit in the RHIC kinematics region for production of direct photons and DY pairs at

midrapidity. The RHIC data [15] indicate a strong large-pT suppression that can be explained only by

the ISI effects.

5 Conclusions

For the first time, we use the Green function formalism based on the color dipole approach for de-

scription of DY pair and direct photon production on nuclear targets in the kinematic regions where

the SCL and LCL limits should not be used. We demonstrate that the GS and ISI energy loss causes a

significant nuclear suppression. While the GS dominates at large energies and pT , the ISI effects are

important at large pT and/or xF . Our predictions are in a good agreement with FNAL E772 and E886

data as well as with the data from the PHENIX Collaboration. Finally, we predict a strong suppression

due to the ISI effects that can be verified by the AFTER@LHC experiment in the future.
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