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ABSTRACT 

We discuss two supersymmetrization procedures -the so-called 
standard and spin-orbit coupling ones- when applied to the har- 
monic oscillator in the n = 1, 2, J, arbitrary-dimensional ca- 
ses as well as to other examples directly and simply connected 
with the harmonic context. We study their dynamical and kine- 
matical (super)symmetries and thelr inclusions are mentioned. 

I. The standard and spin-orbit couplin 9 procedures of supersym- 
metrization 

Let us consider the supersymmetric N = 2-system corresponding to 

a spin-½ particle moving on a line [I] characterized by two super- 

charges 
= - -  dW)_ 

Q+ I (p ¥ i ~ - ~ z  (1.1)  
¢z 

d where p = - i  ~ -  , [ p , x ]  = - i  , W(x) being the superpotent ia l  and 

(± the fermionic var iab les  s a t i s f y i n g  

{ ( + , ( _ }  = 1 , { ( + , ( + }  = 0 (1.2)  

and leading to a 2-dimensional Clifford algebra 

{@a,b}  = 2 6 ab , @1 = (+ + (_ , 2 = i ( ( _  ~ ( + )  (1.3)  

We then get the well known hamiltonian 
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dW 2 +- -dx  2d2W [ ( + , ( _ ] ]  (1.4) H = {Q+,Q_} = .r~[p2 + (~_) 

The extension to the n-dimensional case suggests to consider two 

p a r t i c u l a r  kinds of  supersymmetrizat ion procedures. The f i r s t  one 

- the so-ca l led standard procedure [ 1 ] -  consists in a genera l i za t ion  

of  the re la t i ons  (1.2) or (1.3) on the form 

a b 
{ ( + , k , ( _ , ~ }  = 6k~, { ( ± , k , ( ± , ~ }  = O, {£0k,~} = 2 6ab6k~ (1.5) 

between the fermionic variables ~±,k or ~ (k = 1,...,n ; a = 1,2) 

corresponding to the description of a 2n-dimensional Clifford alge- 

bra. In such a procedure we deal with a description admitting the 

same number (2n) of bosonic and fermionic degrees of freedom. 

The type-Q supercharges generalizing (1.1) are then given by 

~W )-  Q+ : 1__ (Pk ; i ~ &±,k (1.6) 
¢Z 

and lead with (1.5) to the supersymmetric hami l tonian 

~2 W 8W ,2 
[ ( # , ( ~ ]  = H 0 + H 1 , (1.7) H = ½[pkPk + (~Tk) ] + ½ 8xiSxj  

where H 0 corresponds to the usual bosonic hami l tonian in  the pre- 

an external  po ten t ia l  U = ½(~_~_)2~w . sence of 
U^,k  The second procedure of supersymmetrizat ion - the so-ca l led  

SPin-orb i t  coupl ing one [ 2 , 3 ] -  can be character ized [3]  by (k,& = 1, 
" , . ~ )  

{ ( + , k ( - , ~  } = 6k~- i~k~'  Bk~ = - ~ k  (E+=E)' { ( ± , k ' ( ± , ~  } = 0 (1.8) 

Of? 

{ ~  £0t} (6ab6k~+cabHk~ 12 _¢21 , = 2 ) ,  E = = 1 ,  a , b  = 1,2 (1.9) 

These relations essentially differ from (1.5) for the standard pro- 
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cedure. We deal here with a smaller number of fermionic degrees of 

freedom than the bosonic ones. 

Now the supersymmetrie hamiltonian is obtained from the super- 

charges (1.6) but with the relations (1.8). We get 

H' = ½[p~ + rBW ~2] B2W [~i,~j ] _ ½[(BiW)pj_(BjW)Pi)Ei j 
' x'~'k) J + ½-~iBxj - (1.10) 

2. Examples of supersymmetric systems with the standard procedure 

2.a The n-dimensional harmonic oscillator. The supersymmetric har- 

monic oscillator system in the n-dimensional case is described by the 

hamiltonian H = (1.4) with the superpotential W = ½ WXkX k We then 

have 

= + m2Xk) + 7 [~+,k'~-,k ] = HO + HI H (2.1) 

with the corresponding type Q-supercharges (el. (1.6)) 

Q+ = 1__ (Pk ; imxk)(±, = ~ i V ~ a ; , k ( ± , k  (2.2) - / Z  k ' 

a t being the wel l  known creat ion and ann ih i la t ion operators. I t  is 

in te res t ing  to notice that in such a context the hamiltonian admits 

d i s t i nc t  bosonic and fermionic parts without coupling term between bo- 

sonic and fermionic variables. 

Let us now give the largest maximal invariance superalgebras for 

such a system. Star t ing from the dynamical point of view [4 ] ,  l e t  us 

reca l l  that the maximal d_ynamical i_nvariance (MDI) algebra for H 0 

is  the algebra sp(2n) +~h(2n) generated by 

m ~}, C± _ + im ~2iwt, 
Tk~ = % {a- ,k 'a+,  ,k~ - - ~-e t %,k,a±,$} 

for sp(2n) and by 

(2.3) 

P±,k = (± i e;iWt(~x k ; iPk))  = ± i ~-me; iWta+ (2.~) 

together with the identity operator for h(2n), the so-called Heisen- 

berg algebra. Now the MDI ~algebra [5,6] is osp(2n/2n) 
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sh(2n/2n) where the generators of osp(2n/2n) are associated with 

the bosonic symmetries corresponding to sp(2n) but also with the 

fermionic ones described by the algebra so(2n) with the generators 

Yk~ = ~ [(+,k'(-,~ ]' Z±,kC = ± ~ - e  L~±,k,~±,C] (2.3) 

and the supersymmetries of type Q and S [7] 

Q+-,k~ = $ i ~  a ,k(±,~, S±,k~ = ±iv~e;2iWta+,k(±, ~ _  . (2.6) 

Finally, the generators of sh(2n/2n) , the so-called Heisenberg su- 

peralgebra, are the bosonic ones associated with h(2n) and their 

fermionic analogous 

T±, k e+iWt(+ = _,k (2.7) 

Now from the kinematical point of view [8] we notice that inside 

the MDI superalgebra we recognize [6] the generators associated with 

the maximal kinematical i__nvariance (MKI) superalgebra [osp(2/2) @ 

so(n)] ~ sh(2n/2n). They are the ones associated with invariances 

under coordinate transformations only. Let us write 

osp(2n/2n) +~sh(Zn/2n) ~ [osp(2/2) @ so(n)] ~)sh(2n/2n). (2.8) 

The 8-dimensional superalgebra osp(2/2) thus contains the so(2,1)-al- 

gebra corresponding to bosonic symmetries such that 

SS 
H 0 = Tkk , C± = C±,kk , (2.9) 

the so(2)-algebra corresponding to the fermionic symmetries with 

oJ 
Y = Ykk = ~ [~+,k'~-,k ] (2.1o) 

B~d finally the four supercharges 
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Q± Q±,kk (2 .2 ) ,  S± S±,kk ± i V ~ e  ~2imt = = = = a±,k(±,  k (2.11)  

The so(n)-algebra corresponds to the generators of the total angular 

momentum 

i 
Jk~ = Lk~+~k~ = ~ (Tk&-TSk) - i ( ( - , k ( + , ~ - ( - , ~ ( + , k )  (z.12) 

and the superalgebra sh(2n/2n) is the same as above. Finally let 

us insist on the fact that in the dynamical and kinematical contexts, 

the Heisenberg superalgebra sh(2n/2n) appears as fundamental since 

all the osp(2n/2n) generators can be written as second order pro- 

ducts of the sh(2n/2n)-operators (cf. (2.4) and (2.7)). 

2.b The free case. The supersymmetry of the free system is easily 

deduced from the harmonic oscillator one through a one-to-one corres- 

pondence existing between both systems. This corresponds to a change 

of variables found by Niederer [8] and further exploited [3] to show 

the isomorphism between the corresponding MKI algebras and superalge- 

bras. 

2.c The constant magnetic field system. A charged particle in inter- 

action with a constant m_agnetic field ~ = (O,O,B) is described by 

the hamiltonian (subscript M) 

H M = ½(£-eA) 2 = ½ ~#, £ s (Px,Py) , (2.13) 

where we refer to the 2-dimensional context in the (x,y)-plane. 

Using the gauge symmetric potential K S = -½ ~x~ , we get 

H M = HO-t~L (2.14)  

when eB = 2w and L = Xpy-ypx This relation clearly shows the 

connection between the magnetic and the harmonic oscillator context. 

Now using the supersymmetric harmonic oscillator hamiltonian 

(2.1) restricted to the 2-dimensional case with a specific 4 by 4 te- 

a (a = 1 2 ; presentation for the fermionic variables ~+ k or ~k 
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k = 1,2) satisfying (1.5), we get 

SS Qo 3 O) 
H 0 = H 0 + Y = H 0 - w (2.15) 

0 0 

The total angular momentum operator (2.12) which corresponds to a 

symmetry of HoS~ , is given by 

! \ 

= L + r = L +(0 O~ J 
\ 0 0 3 J 

So, in correspondence with (2.14), we propose a supersymmetric magne- 

tic hamiltonian 

SS SS Q o 3 0 1 H M = H 0 - wJ = H 0 - eL - w = (HM-wo 3) ® I = Hp ® I (2.16) 
0 0 3 

which is nothing else than an amplification of the well known Pauli 

hamiltonian Hp 

Due to the structure of Eq. (2.16) and the results obtained for 

the harmonic oscillator (cf. § 2.a), we immediately deduce that the 

supersymmetric magnetic hamiltonian admits the same invariance super- 

algebra. The Heisenberg superalgebra sh(4/4) has to be generated 

new operators which correspond to constants of motion for HO S- = by 

(2.16). Indeed with the definitions 

P+,± = P+,I±iP+,2 , P_,± : P_,I±iP_,2 (2.17a) 

and 

~+,± = (+,i±i(+,2 , (_,± = (_,i±i~_,2 (2 .17b)  

we get the four bosonic operators (~ = E + eL) 

= ~ +i~ = eiWtp , ~ = ~ -i 
+ x y +,+ - x y 

P = e-2iwt(H -iH ) = e-iWtp 
÷ x y +,- ' P- 

e-i~tp 
--9-- 

(2.18) 
= e2i~t(gx+igy ) = eimtp_,+ 

and the four fermionic ones 
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~+,+ = ei°JtT - i m t  T e-iC~tT icot T +,+ , ~ : e _ _, = , q : e . -,- ~ ~+~- +~- -~+ -~+ 

(2.19) 

The dynamical superalgebra osp(4/4) i s  then immediately constructed 

through all the second order products of the sh(4/4)-generators while 

the kinematical superalgebra osp(2/2) ~ so(2) admits unchanged ge- 

nerators (wzth respect to the harmonic oscillator case). Let us fi- 

nally mention that the isomorphism between the MDI as well as MKI su- 

peralgebras for the magnetic and harmonic oscillator cases can also 

be shown by another way. Indeed we have proposed [9] a very simple 

change of variables enlightening the connection between the 2-dimen- 

sional harmonic oscillator and the motion in a constant magnetic 

field. It corresponds to a time-dependent rotation R(c0t) in the 

(x,y)-plane acting on the bosonic as well as fermionic coordinates 

and it leads to the correspondences 

pO ,-, 0 0 T O + + ~+, P+ *-~ P+, T+ + *-~ (+ +, ,-* q+ _ (2.20) 
_,_ _ -,¥ - _,_ -,- ±,¥ -,+ 

This makes clear the isomorphism between the Heisenberg superalgebras 

and then between the whole invariance superalgebras [6]. 

3. Examples of supersymmetric system with the spin-orbi t couplin 9 

procedure 

3.a The harmonic oscillator and the constant magnetic field system. 

In fact let us consider the supersymmetric harmonic oscillator 

in the n = 2-case with the spin-orbit coupling procedure. Then the 

hamiltonian obtained from (1.10) with a specific 2 by 2 representa- 

tion of the fermionic variables is nothing else than the Pauli hamil- 

tonian for the constant magnetic field. Indeed we have 

(H~S), = ½( 2. 2 2) _ mL - mo 3 : Hp . ( 3 . 1 )  

The associated MDI superalgebra determined by Durand [10] is 

called here osp(2/4) ~sh(2/4). Its contents is then known. The 

Heisenberg superalgebra sh(2/4) admits the four bosonic charges 

(2.18) but only two fermionic ones 
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T± : e~2iwto+_ (3.2) 

The dynamical superalgebra osp(2/4) is once again easily construc- 

ted through all the second order products between the sh(2/4)-genera- 

tors. Let us insist on the fact that in osp(2/4) , there are only 

one fermionic charge associated with so(2) , ten bosonic charges as- 

sociated with sp(4) and finally eight supersymmetric charges. 

The corresponding MKI superalgebra is [osp(2/2) @ so(2)] +~ 

sh(2/4). We again have the "dynamical m kinematical" inclusion, i.e. 

osp(2/4)  ~ s h ( 2 / 4 )  ~ [osp(2 /2 )  @ s o ( 2 ) ] ~ s h ( 2 / 4 )  . 

3.b The harmonic oscillator and the I/r2-potential. We limit here our 

considerations to the n = 3-case. Besides the examples studied by Ba- 

lantekin [2] and subtended by the superalgebra osp(2/2) @ so(3) , 

let us consider another supersymmetric hamiltonian combining a harmo- 

nic oscillator and a I/r2-potentials [11]. It admits again an acci- 

dental degeneracy [4] in the energy levels. In fact with the fermio- 

nic variables realized by 4 by 4 matrices satisfying (1.8) and with 

the superpotential 

X 2  2 2 W(r) = ½ wr2+X %n r , ( r  = +y +z ) , (3.3) 

we get the hamiltonian 

X 2 ~ -~ 
H = ½(pZ+ojZr2 + --~ + 2wX)+o~(~.~ + ]) ® 03 + z (o.L+~I ]) ® 03.(3.4) 

r r 

Let us notice that such a hamiltonian clearly contains the usual bo- 

sonic part associated with the presence of an external potential 

U(r) = ½ wr 2 + X" + wX and another part containing coupling terms 
z 

2r 
between bosonzc and fermlonic variables. 

Now the MKI superalgebra associated with (3.4) is once again ob- 

tained as the superalgebra osp(2/2) @ so(3). The superalgebra 

Osp(2/2) is generated by the four operators 
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C+ = -+ ~ e~2io)t[(~+i~)21 + 

r 

k 2 
H I = ½ (p2+~2r2)l +-- I + 

2r 2 r 

H 2 : w(~.~ +~3 I) ® o 3 + ~X 

+ (~.'~+½ 1) eo 3] 

r 

(~.~ + ½ |) ® a 3 , (3,5) 

associated with so(2,1) @ so(2) and by four supercharges 

Q+ I [B+i(m + ~)~].~+ S+ I e+2imt[B+i(w _ X = -- , = -- -~)r].~+ . (3.6) 

- F ' 2  r - - ~ r - 

The rotational invariance leads to the conservation of the total an- 

gular momentum operators ~ = ~ + ½ ~ ® 1 

By taking into account the eigenvalues e = ±1 of o3, Eq. (3.4) 

becomes a direct sum of the two hamiltonians 

X 3 H e = ½(p2+w2r2)l + X(X+~-----Z) + e(w + )~.~ + w(X + 7 e)l (3.7) 
2r 2 r 

Concerning the energy levels, it is easy to show that H C admits the 

eigenvalues E E n~j where n, ~ and j refer to the usual quantum 

numbers : 

E B = ~o[2n + j + }~ + 1 + E ( j + X + I ) ]  
n ~ j  

E ~ = m[2n  + j + X + 2 - c ( j + X ) ]  
ng~j 

if j = 9 ~ + ½  

if j = ~ - ½  

Such results do contain accidental degeneracies. 

E I = 2~(n+j+X+1) = E -I 
n~ (:j-½)j n~ (:j+½)j 

(3.8) 

Indeed we have 

(3.9) 

Finally, through the subalgebra so(2,1) @ so(2) and its associated 

Casimir operators, we are led to a clear labelling of the states in 

an energy basis and the accidental degeneracy is completely elimina- 

ted due to the supersymmetric context. 



125 

References 

1)Witten, E., Nucl.Phys. B188,513(1981). 

2)Balantekin, A.B., Ann.Phys. (N.Y.) 164,277(1985). 
3)Beckers, J., Dehin, D. and Hussin, V., J.Phys. A20,1137(1987). 

4)Wybourne, B., "Classical Groups for Physicists", Wiley, N.Y. (1974). 

5)de Crombrugghe, M. and Rittenberg, V,, Ann.Phys. (N.Y.) 151,99(1983). 

6)Beckers, J.,  Dehin, D. and Hussin, V., "Dynamical and Kinematical 
Supersymmetries of the Quantum Harmonic Osci l lator and the Motion 
in a Constant Magnetic Field",  to be published 2.Phys. A (1988). 

7)Fubini, S. and Rabinovici, E., Nucl.Phys. 8245,17(1984). 

8)Niederer, U., Helv. Phys.Acta 45,802(1972) ; 46,191(1973). 

9)Dehin, D. and Hussin, V., Helv. Phys.Acta 60,552(1987). 
10)Durand, S., "Supersym~tries des syst~mes m@caniques non re l a t i v i s -  

tes en une et deux dimensions", MaItrise es Sciences, Universit4 de 
Montr4al, (1985). 

11)Celka, P. and Hussin, V., Mod.Phys.Lett. A2,391(1987). 


