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ABSTRACT

We discuss two supersymmetrization procedures -the so-called
standard and spin-orbit coupling ones- when applied to the har-
monic oscillator in the n = 1, 2, 3, arbitrary-dimensional ca-
ses as well as to other examples directly and simply connected
with the harmonic context. We study their dynamical and kine-
matical (super)symmetries and their inclusions are mentiocned.

1. The standard and spin-orbit coupling procedures of supersym-
metrization

Let us consider the supersymmetric N = 2-system corresponding to
a spin-3 particle moving on a line [1] characterized by two super-

charges

1 - . dW
q = 5 (p + 1 FIE, 1.1

where p = -i g§" [p,x] = -i , W(x) being the superpotential and
£, the fermionic variables satisfying

€, =1, {g,5}=0 (1.2)
and leading to a 2-dimensional Clifford algebra
WP =26 , o'z g, P =alE_ £ ) . (1.3)
We then get the well known hamiltonian

*Presented by V. Hussin.
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2
_ _ar.2 dwyz  dW
H={Q,,q} = 3% + (D% + S5 18,61 . (1.4)
dx
The extension to the n-dimensional case suggests to consider two
particular kinds of supersymmetrization procedures. The first ane
-the so-called standard procedure [1]- consists in a generalization

of the relations (1.2) or (1.3) on the form
_ _ a by _ ab
ot b = S By 10Be o} = 0 o) = 28778, (1.3)

between the fermionic variables Ei,k or mz (k =1,...,0 3 a =1,2)

corresponding to the description of a 2n-dimensional Clifford alge-
bra. In such a procedure we deal with a description admitting the

same number (2n) of bosonic and fermionic degrees of freedom.

The type-Q supercharges generalizing (1.1) are then given by

(py + 1 %¥;>€i’k (1.6)

i+
-
N

and lead with (1.5) to the supersymmetric hamiltonian

2 L
H = 3lpp, + <§§;>2] L L (1.7)

ax. 9x .
1]

where HO corresponds to the usual bosonic hamiltonian in the pre-
Sence of an external potential U = %(gr )2

The second procedure of supersymmetrization -the so-called

Spin-orbit coupling one [2,3]- can be characterized [3] by (k,% = 1,
eesn)

- 1. ol - o :+-_: -
{€+,k€_,l} = sz—lukly Sk T =k (\- —._‘), {Ei’k,gi’l} =0 (1.8)
Or

ab,
3

12 21

Togsob) = 2(6%%8 p4ez, ), €' = 2?21, ab 21,2 (1.9)

Thege relations essentially differ from (1.5) for the standard pro-
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cedure, We deal here with a smaller number of fermionic degrees of
freedom than the bosonic ones.

Now the supersymmetric hamiltonian is obtained from the super-
charges (1.6) but with the relations (1.8). We get

2 L -
H' = Hlpy + GI0)7) + 4 gt [EL,E3D - 42, W)p ~(3 Wop, )5 ™
“ td (1.10)

2. Examples of supersymmetric systems with the standard procedure

2.a The n-dimensional harmonic oscillator. The supersymmetric har-
monic oscillator system in the n-dimensional case is described by the
hamiltonian H = (1.4) with the superpotential W = 1 wxyx, . We then
have

SS 2 2.2 w _
Hoo = dlpy + W) v 7 L8, B = Hy + By (2.1)

with the corresponding type Q-supercharges (cf. (1.6))

(pk * ika)gi,k =z ¥ iYW a;’kgi’k , (2.2)

i+
-
N

a, being the well known creation and annihilation operators. It is
i;teresting to notice that in such a context the hamiltonian admits
distinet bosonic and fermionic parts without coupling term between bo-
sonic and fermionic variables,

Let us now give the largest maximal invariance superalgebras for
such a system. Starting from the dynamical point of view [4], let us
recall that the maximal dynamical invariance (MDI) algebra for HO

is the algebra sp(2n) Dh(2n) generated by

_w _ . iw ¥2iwt
ke =7 (8 108, o Gy g =t e 1, ha, gl (2.3)
for sp(2n) and by
Pt,k = {1 e+lmt(mxk + ipk)) =t 1i/2w e+iwtai,k (2.4)

together with the identity operator for h(2n), the so-called Heisen-
berg algebra. Now the MDI superalgebra [5,6] is osp(2n/2n) D
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sh{2n/2n) where the generators of osp(2n/Zn) are associated with
the bosonic symmetries corresponding to sp(2n) but also with the
fermionic ones described by the algebra so(2n) with the generators
iw elZiwt

W
ke =7 Lo 0b o) 2 = 2 2 (8, k084, 0] (2.5)

and the supersymmetries of type Q and S {7]

- s +2iwt
Qg =+ W0 o kbs g0 Sppug = BT, (8, (2:6)
Finally, the generators of sh(2n/2n) , the so-called Heisenberg su-
peralgebra, are the bosonic ones associated with h(2n) and their

fermionic analogous
T, = ettt X (2.7)

Now from the kinematical point of view [8] we notice that inside
the MDI superalgebra we recognize [6] the generators associated with
the maximal kinematical invariance (MKI) superalgebra [osp(2/2) e
so(n)] D sh(2n/2n). They are the ones associated with invariances

under coordinate transformations only. Let us write
osp(2n/2n) P sh(2n/2n) > [osp(2/2) & so(n)] D sh(2n/2n). (2.8)

The 8-dimensional superalgebra osp(2/2) thus contains the so(2,1)-al-

gebra corresponding to bosonic symmetries such that

S5

Ho

=T C, =C , (2.9)

kk * ~x +,kk

the so{2)-~algebra corresponding to the fermionic symmetries with

w
Y = Ykk =5 {£+’k,£_’k] (2.10)

8nd finally the four supercharges
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Q, = 0, = (2.2), 5, =5, , = tivb e %% (2.11)

e =0y £ = S ki G sk k
The so{n)-algebra corresponds to the generators of the total angular

momentum

g = YTy =5 (g T = 368, o8l 8, 1) (2.12)
and the superalgebra sh(2n/Zn) is the same as above. Finally let
us insist on the fact that in the dynamical and kinematical contexts,
the Heisenberg superalgebra sh(2n/2n) appears as fundamental since
all the osp(2n/2n) generators can be written as second order pro-
ducts of the sh(2n/2n)-operators (cf. (2.4) and (2.7)).

2,b The free case. The supersymmetry of the free system is easily

deduced from the harmonic oscillator one through a one-~to-one corres-
pondence existing between both systems. This corresponds to a change
of variables found by Niederer [8] and further exploited [3] to show
the isomorphism between the corresponding MKI algebras and superalge-

bras.

2.c The constant magnetic field system. A charged particle in inter-

action with a constant magnetic field 8 = (0,0,B) is described by
the hamiltonian (subscript M)

2
Hy = 3(p-eA)” = %_Ilz, p = (px,py) , (2.13)
where we refer to the 2-dimensional context in the (x,y)-plane.
Using the gauge symmetric potential - -1 BB, we get
HM = HO~wL (2.14)

when eB = 20 and L = xpy-ypx . This relation clearly shows the

connection between the magnetic and the harmonic oscillator context.
Now using the supersymmetric harmonic oscillator hamiltonian

(2.1) restricted to the 2-dimensional case with a specific 4 by 4 re-

presentation for the fermionic variables £, K or ¢E (a = 1,2
-
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k = 1,2) satisfying (1.5), we get

o 0
WS ol s Y=H -wf ° ) (2.15)
0 0 0 0 o

The total angular momentum operator (2.12) which corresponds to a
symmetry of Hgs , 1s given by

0 0O

J=L+Z =1L+

0 03
So, in correspondence with (2.14), we propose a supersymmetric magne-
tic hamiltonian
O 0
Hy = Hp” - @l = Hy-wl -w ( = (Hywoz) @ 1= Hy @ 1 (2.16)
0 04
which is nothing else than an amplification of the well known Pauli
hamiltonian HP

Due to the structure of Eq. (2.16) and the results obtained for

the harmonic oscillator (cf. § 2.a), we immediately deduce that the
supersymmetric magnetic hamiltonian admits the same invariance super-
algebra. The Heisenberg superalgebra sh(4/4) has to be generated
by new operators which correspond to constants of motion for Hgs =

(2.16). Indeed with the definitions

P =P ,tiP (2.17a)

P e = Py qtiP, o P = P xiP

and

[(aal
+
1

£, 4HE, 5, E_,=E

+, = +, ’ =z t

|HE_ (2.17b)

we get the four bosonic operators (m = p + eA)

. iwt .
m T 4+im = e P , T =T -i = e P ,
+ X Ty +y+ - X y -y

P . -2iut ~iwt p . G2iut

HX—iHy) = e P ,

I
@
—
=]
Pl
e
<
~—
1
0]
v

and the four fermionic ones
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-iwt iwt
e T s n_,+ = e T_,+.

(2.19)

The dynamical superalgebra osp(4/4) is then immediately constructed

_ Jiwt
E;-1»,-1- =¢e T+

» & = » N =
+ - L T -

¥

through all the second order products of the sh(4/4)-generators while
the kinematical superalgebra osp(2/2) @ so(2) admits unchanged ge-
nerators (with respect to the harmonic oscillator case). Let us fi-
nally mention that the isomorphism between the MDI as well as MKI su-
peralgebras for the magnetic and harmonic oscillator cases can also
be shown by another way. Indeed we have proposed [9] a very simple
change of variables enlightening the connection between the 2-dimen-
sional harmonic oscillator and the motion in a constant magnetic
field. It corresponds to a time-dependent rotation R(wt) in the
(x,y)-plane acting on the bosonic as well as fermionic coordinates
and it leads to the correspondences

P

+—+ P

0
i’;

2

+ O

s g+ +? T
= ~y -

=, . (2.20)

+ ¥ -
'+

£ +?

¥
This makes clear the isomorphism between the Heisenberg superalgebras

and then between the whole invariance superalgebras [6].

3. Examples of supersymmetric system with the spin-orbit coupling

procedure

3.a The harmonic oscillator and the constant magnetic field system.

e o e B S P o o S e . B e . . 0, W o Y 7, T Y S S o T Pt 220 S o B S A Bt o DO o T o i 2o S e e s e

In fact let us consider the supersymmetric harmonic oscillator
in the n = 2-case with the spin-orbit coupling procedure. Then the
hamiltonian obtained from (1.10) with a specific 2 by 2 representa-
tion of the fermionic variables is nothing else than the Pauli hamil-
tonian for the constant magnetic field. Indeed we have

SSy, _ 1,.2,22 _
(Hy™)' = 3(p"+w'x") - wl - woy = Hy (3.1)

The associated MDI superalgebra determined by Durand [10] is
called here o0sp(2/4) Dsh(2/4). Its contents is then known. The
Heisenberg superalgebra sh(2/4) admits the four bosonic charges

(2.18) but only two fermionic ones
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F2iwt
Ti:e CIi

. (3.2)

The dynamical superalgebra osp(2/4) is once again easily construc-
ted through all the second order products between the sh(2/4)-genera-
tors. Let us insist on the fact that in osp(2/4) , there are only
one fermionic charge associated with so(2) , ten bosonic charges as-
sociated with sp(4) and finally eight supersymmetric charges.

The corresponding MKI superalgebra is [osp(2/2) & so(2)] D
sh{2/4). We again have the "dynamical > kinematical" inclusion, i.e.

osp(2/4) D sh(2/4) > [osp(2/2) & so(2)] P sh(2/4) .

3.b The_harmonic_oscillator_and the_1/r’-potential. We linit here our
considerations to the n = 3-case. Besides the examples studied by Ba-
lantekin [2] and subtended by the superalgebra osp(2/2) & so(3) ,
let us consider another supersymmetric hamiltonian combining a harmo-
nic oscillator and a 1/r2—potentials [11]. It admits again an acci-
dental degeneracy [4] in the energy levels. In fact with the fermio-
nic variables realized by 4 by 4 matrices satisfying (1.8) and with

the superpotential
W(r) = % wr2+x ¢nr, (r= Vx2+y2+22) s (3.3)

we get the hamiltonian

2
H = 3(pawlrle i-z- + 200)+0(3. T +§. D e o, + -%-2- @0t 1) @ 05.(3.4)
T T

Let us notice that such a hamiltonian clearly contains the usual bo-
Sonic part assoc%ated with the presence of an external potential
U(r) = i wrz + &—7 + wA and another part containing coupling terms
between bosonic?Tand fermionic variables.

Now the MKI superalgebra associated with (3.4) is once again ob-
tained as the superalgebra osp(2/2) & so(3). The superalgebra

Osp(2/2) is generated by the four operators
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o 2

C, =+ 4 e @i+ 1+ B @l i Deoy)

- T T

2 22, A A

H, = (pF+0 ") 1 + =5 1+ (6.l + 3 1) @O, , {3.5)

1 2 2 3

2r r
3

H, = w(@.T + 5 1) & o +wA T,

associated with s0(2,1) @ s0(2) and by four supercharges

Lpraw+ 2012, s, = L% - 20712, . G.6)
vZ r - - V2 r -

The rotational invariance leads to the conservation of the total an-
gular momentum operators J =T + 4 G @ 1

By taking into account the eigenvalues £ = *1 of 05, Eq. (3.4)

becomes a direct sum of the two hamiltonians

He = 3P + 2B e L B L un s 2ot (3.7)
2r r

Concerning the energy levels, it is easy to show that Hs admits the

eigenvalues Eilj where n, L and j refer to the usual gquantum

numbers
Eigj:w[2n+j+)\+’!+e(j+)\+1)] if j=2+4% ,
(3.8)
e _ ) _ . e s o 1
Enzj zw2n + j+A+2-¢ (j+A)] if j=2-4%

Such results do contain accidental degeneracies. Indeed we have

1

-1
Enl (:j—%)j

= 2u(n+j+A+1) = E e (=j+4)j (3.9)
Finally, through the subalgebra so(2,1) @ so(2) and its associated
Casimir operators, we are led to a clear labelling of the states in
an energy basis and the accidental degeneracy is completely elimina-

ted due to the supersymmetric context.
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