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1. Introduction

1.1 The Status of Cosmology

1.1.1 Dark Energy

Spectacular advances in observational cosmology have revolutionized our view
of the universe. We now understand that ordinary matter in all its forms makes up
a negligible fraction of the mass of the cosmos: the visible stars and galaxies are an
insignificant foam drifting on a vast ocean of dark energy. This mysterious substance
pervades the vacuum and forces the expansion of the universe to accelerate. No one
knows what it is.

The first sign of dark energy came from measurements of type Ia supernovae,
which are explosions of a white dwarf following accretion of matter from a compan-
ion star. We have a rudimentary understanding of the intrinsic luminosity of these
events, so the discovery that very distant supernovae were unexpectedly dim [1,2]
presented a problem. After eliminating alternative explanations, the authors of [1]
proposed that the most distant supernovae, and the galaxies that contain them,
must be accelerating away from us. This amounts to a modification of the famous
Hubble Law, which states that ‘the recession velocity of a galaxy is proportional to
its distance from us. The supernova observations showed that the expansion rate
of the cosmos must have been different, and indeed smaller, in the past.

This accelerating expansion was a profound shock to most theorists. A universe
full of any sort of known matter and radiation cannot accelerate, any more than
a stone tossed into the air can accelerate upward in flight. A cosmos exploding
outward from the violence of the Big Bang may expand indefinitely, but the universal

attraction of gravity will inevitably slow the expansion. The only way to accomodate
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1 Introduction 2

the observed acceleration was to invoke the infamous cosmological constant, the
‘energy of the vacuum’.

The cosmological constant problem has mythic status among the deep problems
of fundamental physics. Einstein first invoked a constant term in his field equations
to create eternal, stationary cosmological solutions, which he found philosophically
appealing. The added term was necessary to keep the universe from contracting
and collapsing under its own gravitation. Later, faced with Hubble’s observation
that our own universe is expanding, Einstein recanted and called the addition of a
cosmological constant the biggest blunder of his life.

The crisis, however, is not simply that the Einstein equations contain an un-
known constant. The problem is that quantum field theory makes a prediction
about the vacuum energy, and it is nearly impossible to square this prediction with
cosmology. This is very important, because we understand quantum field theory
extremely well in the range of energies accessible to particle accelerators.

Precise predictions are difficult or impossible, but essentially any scheme for
computing the vacuum energy in quantum field theory will give an energy den-
sity pg;fT 2 10® GeV. Typical schemes suggest that in fact pg;fT ~ 10 GeV.
However, although the vacuum energy measured in our universe does dwarf the
energy density of matter, it still amounts to only p}\/ * ~ 1073 eV. The theoretical
prediction exceeds the measured value by more than 120 orders of magnitude!

The cosmological constant problem is thus a deep conflict between the macro-
scopic and the microscopic, and between the two great structures of twentieth-
century physics: general relativity and quantum field theory. We believe we under-
stand each theory separately, but our inability to understand the vacuum energy
proves that we do not understand how to combine them. After decades of effort,
the cosmological constant problem still overshadows every scenario in which gravity
couples to vacuum energy to source accelerating expansion. Even worse, the new
cosmological paradigm requires a gradual transition between stages of acceleration
at utterly different scales, from the cataclysmic stretching of inflation to the gentle
tug of dark energy today, so the problem is more complex and more acute than
ever.

String theory is a theory of quantum gravity: among many other virtues, it
provides a complete and consistent description of the quantization of the gravita-
tional field. Should we not expect string theory to resolve the cosmological constant

problem and predict, or at least accommodate, the observed value?
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Unfortunately, string theory has not provided any means of predicting the
observed vacuum energy, at least not in any conventional sense of prediction. How-
ever, advances in moduli stabilization with fluxes [3,4,5] have provided a method
of accommodating the smallness of the vacuum energy within string theory, i.e. of
constructing string vacua that contain a minuscule amount of dark energy. This is
dramatic progress from the point of view of string theory, but it has not yet shed
any light on the observed universe.

In this work we will not provide a solution to any aspect of the cosmological
constant problem. The issue, however, is powerful and pervasive, and it underlies
all our discussions of moduli stabilization, in Chapter 5, and of string cosmology,
in Chapters 6 and 7. Our only concrete step toward accommodating the cosmolog-
ical constant in string theory is our construction, in Chapter 5, of the first stable
solutions of the weakly-coupled heterotic string with non-vanishing vacuum energy.

The positive sign and small value of this energy remain out of our reach.

1.1.2 Inflation

A second great advance in our knowledge of the large-scale universe comes from
studies of the cosmic microwave background (CMB) radiation. This is the afterglow
of the Big Bang, but it has been redshifted by the subsequent expansion down to
a mere 2.7 K. The CMB is the first ‘light’ available to us: most of its microwave
photons last scattered off matter when the universe first became transparent, when
it was roughly 300,000 years old, so there is no direct way to see farther back using
the electromagnetic spectrum. The CMB photons are pervasive and surprisingly
numerous: at 411 per cubic centimeter, they far outnumber baryons. The discovery
of the CMB by Penzias and Wilson was dramatic evidence for the Big Bang theory,
and the detailed properties of the CMB are now providing essential clues about the
very early universe.

The most surprising thing about the CMB is its uniformity: the fractional
temperature difference between various points on the sky is no more than one part
in 10°. Even before this result was known precisely, the near-uniformity presented
a striking problem for the Big Bang model. Each patch of sky of size roughly
one degree is a region that was in causal contact at the moment that the universe
became transparent: physical signals would have been able to cross this region in

the available time, so causal processes could establish thermal equilibrium. Thus,
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it would not be at all surprising to find that the temperature does not vary within
a patch of size one degree or smaller. Amazingly, it is the entire sky that has a very
nearly uniform temperature! The challenge was to explain why the temperature of
the sky is uniform, and, in a related vein, why the distribution of matter is so nearly
homogeneous and isotropic. Without a causal mechanism to smooth the cosmos,
how could all these regions have contrived to look so similar? Moreover, what could
explain the immense entropy, age, and size of the universe?

The theory of inflation [6] provides a superb answer to all of these questions.
An initial epoch of tremendously violent, accelerated expansion could stretch causal
signals across a gigantic space, smoothing inhomogeneities and establishing causal
relations between widely-separated points. When the positive energy driving this in-
flation decayed to more ordinary quanta, the resulting temperature was very nearly
uniform, with a predictable spectrum of minute temperature anisotropies.

Since its creation, the inflationary scenario has had outstanding explanatory
power. However, the source of much recent excitement is the prospect of testing
the predictions of inflation, particularly the spectrum of temperature anisotropies,
through precision measurements of the CMB [7]. Certain models have already been
ruled out, and there is a limited possibility of confirming the whole scenario by find-
ing traces of gravitational waves in the CMB. This is an irreplaceable opportunity
for contact between inflation and reality: no terrestrial experiment is likely to probe
the energy scales relevant for inflation, so cosmological data is the only means of
testing the theory.

As a theoretical structure, inflation is appealing but incomplete. For example,
many well-studied models require field expectation values larger than the Planck
mass; although this is arguably acceptable even without an ultraviolet completion
for the theory, it would be most reassuring to check this assertion in a full theory
of quantum gravity. Furthermore, inflationary potentials need to be exceptionally
flat, but this is hard to achieve in most settings: various corrections, particularly
terms suppressed by the Planck mass, tend to curve the potential. Thus, a complete
computation of an inflating potential in a theory of quantum gravity, such as string

theory, would be invaluable.
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1.2 Prospects for String Cosmology

String theory and cosmology have much to gain from each other. In the preced-
ing section I have reviewed two of the deep questions of theoretical cosmology, the
nature of the dark energy and the fundamental physics underlying inflation. As a
mathematically consistent theory of quantum gravity, string theory ought perhaps
to have something to offer towards solutions of these puzzles, but no clear answer
has yet emerged.

However, in recent years there has been very significant progress toward theo-
retically satisfying, and experimentally testable, string cosmology. For many years
the most significant barrier to meaningful contact between string theory and cos-
mology has been the moduli problem. Correspondingly, most of the progress in
recent years is due to advances in moduli stabilization, culminating in the first
stable string vacua with positive cosmological constant [5]. We will therefore turn
our attention now to the problems posed by compactification moduli, and then,
in §1.2.2, to the solution to these problems: moduli stabilization with fluxes and

nonperturbative effects.

1.2.1 The Moduli Problem in String Cosmology

A modulus is a massless scalar field, often one which parameterizes the cou-
plings of a field theory or the deformations of a geometry. Geometric moduli are
endemic in string compactifications: the preferred compactification manifolds, most
notably Calabi-Yau spaces, have complicated topology, and admit correspondingly
numerous deformations of the complex structure and of the Kéhler parameters. Be-
fore accounting for the superpotentials arising from fluxes and from nonperturbative
effects, each of these scalars appears with vanishing potential in the four-dimensional
theory. Their couplings are of gravitational strength.

Moduli present several problems for cosmological models. First of all, gravi-
tational experiments place strong constraints on the existence of light scalars with
gravitational interactions. In addition, some moduli, especially the string dilaton
and the compactification volume, affect the couplings of Standard Model fields.
Variations in the Newton constant [8] or in the electromagnetic fine-structure con-
stant [9] are strongly bounded, so once again we find that typicai moduli are incom-
patible with the results of experiment. Taken together, these constraints suggest

that moduli must somehow be removed from any workable model.
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Finally, among the great successes of the Big Bang model, and of early universe
cosmology, are the predictions of Big Bang nucleosynthesis. In the first few minutes
of expansion, protons and neutrons combined to form light nuclei, primarily helium,
but with predictable relative abundances of deuterium and lithium. This provides
a powerful tool for excluding new particles that could disrupt this relatively deli-
cate process of synthesis. Moduli are problematic because they almost inevitably
store energy during inflation, by being displaced from their zero-temperature min-
ima. Unless the moduli acquire rather large masses, this energy causes one of two
problems. If the moduli mass m, is smaller than around 100 MeV, the moduli will
not have decayed by the present day, and the energy they stored during inflation
will overclose the universe. If 100MeV < m, < 30TeV then the moduli will have
decayed, but in the process will have released enough entropy to dilute the products
of nucleosynthesis [10]. Only if all the moduli have masses above 30 TeV can we
maintain the success of nucleosynthesis. Thus, we conclude that in the absence of
a mechanism for generating such masses, models based on string compactifications
are incompatible with cosmological observations.

Of great importance for us will be one particularly dangerous modulus, the
overall compactification volume. In the presence of a positive energy density, this
field develops an instability: it becomes energetically favorable for the internal
space to expand. This lifts the volume modulus, but the result is not a stable
model: instead we find a runaway decompactification.

This observation is significant for cosmological models because both inflation
and the present-day acceleration require positive energy density. These two features,
arguably the most important of the new cosmological paradigm, simply cannot be

achieved in string compactifications without moduli stabilization.

1.2.2 Techniques of Moduli Stabilization

Moduli stabilization is a procedure that generates a potential for the moduli.
This potential is usually required to have a minimum in a reasonable range of field
values. For example, the introduction of a spacetime-filling positive-energy source
creates a potential for the volume modulus whose minimum is at infinite volume.
This actually destabilizes the volume modulus, decompactifying the internal space,

and certainly does not qualify as volume stabilization!
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In order to understand what effects are needed to lift the moduli, it will be
helpful to have a partial classification of the moduli of a string compactification on
a Calabi-Yau threefold. The geometric moduli are the complex structure moduli,
which parameterize the space of choices of complex structure on the manifold, and
the Kéhler moduli, which govern the sizes of even-dimensional cycles. In heterotic
string compactifications and type I or type II compactifications with D-branes,
there will also in general be bundle moduli, which control the deformations of the
corresponding vector bundles. Finally, there can be open string moduli associated
with the locations of D-branes.

In the best-understood setting of type IIB orientifolds, the most numerous
and important moduli are the complex structure and Kéhler moduli. Intuitively,
complex structure moduli control the shapes of cycles, so what is needed is a physical
ingredient that associates an energy cost to changes of shape. Three-form fluxes,
the field strengths of the two-form Neveu-Schwarz and Ramond-Ramond potentials
B;; and Cjyj, provide just such an effect [4]. This flux is integrally quantized, so
inclusion of a real three-form flux amounts to a choice of one integer for each three-
cycle in the internal space. There are actually two real three-form fluxes in the
type 1IB theory, Hs = dBy and F3 = d(C5, and it is useful to form the complex
combination G3 = F3 —1Hj3, where 7 is the axio-dilaton. Turning on generic G-flux
usually fixes all the complex structure moduli and the dilaton. (In certain special
cases such as tori this may not be true.)

Kéhler moduli, in contrast, are not lifted by the inclusion of flux. In fact, they
cannot appear in the perturbative superpotential: the combination of holomorphy
of the superpotential and the shift symmetry [11] of the axion paired with each
volume modulus implies that the superpotential can acquire volume-dependence
only nonperturbatively. We must therefore seek nonperturbative effects that are
sensitive to the volume moduli. Two effects are suitable for this purpose [5]: gaugino
condensation on a stack of D7-branes wrapping a divisor, and Euclidean D3-branes
wrapping a divisor [12]. The former requires a suitably small matter content in the
D7-brane gauge theory, and the latter is possible (in the absence of flux) only if the
divisor satisfies a certain topological condition [12].

We conclude that to achieve complete stabilization of the geometric moduli
[5], one must introduce generic three-form fluxes and verify that every independent

divisor admits either gaugino condensation or Euclidean D3-branes.
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1.2.3 Inflationary Models in String Theory

Given a reliable technique for constructing stable string vacua with positive
energy, it is quite easy to imagine concrete inflationary models. Slow-roll inflation
does not require much more than the relaxation of an overdamped scalar field
in a potential with a large positive energy. One therefore needs to search for a
relatively flat potential that interpolates between a high-energy configuration and
one of approximately zero energy. Ideally, quantum corrections to this potential
would be computable and under control. The scale and slope of this potential rather
directly determine the magnitude and the spectral index of the density perturbations
that we see as CMB temperature anisotropies. One might also hope to explain the
very small amplitude of these perturbations, i.e. the near-isotropy of the CMB.

As we will see in Chapter 6, the separation of a D3-brane and an anti-D3-brane
in a warped deformed conifold [13] can provide an interaction potential with appro-
priate properties. This is merely a concrete example, a toy model for string inflation;
it seems quite clear that much more generic models remain to be discovered.

One striking consequence of brane inflation models is the possibility of forming
networks of stable cosmic superstrings [14,15]. The literature on cosmic strings had
largely discounted the possibility of a connection to string theory, in part because
the tensions of ordinary F-strings and D-strings in superstring theory are much
too large to be compatible with observations. However, progress in brane inflation,
particularly in warped models, led to the realization that the strings of string theory
could potentially be cosmic in scale.

Cosmic strings stretch for light-years and are so massive that they bend
starlight, creating distinctive lensing signals. Moreover, they emit a powerful flux
of gravitational radiation, with occasional high-intensity bursts. These metric fluc-
tuations affect the travel time of pulsar signals, so pulsar timing experiments can
be used to put bounds on the cosmic string tension. Lensing surveys and direct
observation of gravitational waves are other promising routes to discovering or rul-
ing out cosmic strings. In the event of a discovery, it is just possible that we could
distinguish a network of F-strings and D-strings from the more conventional cosmic
string scenarios that are unrelated to string theory. This thrilling prospect of direct
contact between string theory and experiment is another important opportunity for

string cosmology.



1 Introduction 9

1.3 Organization of this Thesis

The organization of this work is as follows. In Chapters 2,3, and 4 we discuss
the dynamics of unfixed moduli in quantum field theory and in string theory, with
emphasis on applications to cosmological model-building. Moduli-stabilizing effects
are not included, because our goal is to understand the evolution of moduli whose
potentials remain approximately flat. In Chapter 5 we develop a technique for
stabilizing moduli in the heterotic string, and we construct the first stabilized,
weakly-coupled heterotic vacua. In Chapter 6 we utilize advances in the stabilization
of type IIB compactifications to build the first models of inflation in stabilized string
vacua. Finally, in Chapter 7 we examine the effects of volume-stabilization on the
inflaton mass in closely-related scenarios of string inflation.

Chapter 2 presents a bouncing cosmology seen by an observer on a moving D3-
brane: this is a universe whose scale factor decreases to a minimum value and then
smoothly re-expands [16]. Singularity theorems usually forbid solutions of this form
[17], so we explain the rather surprising way in which our system circumvents these
theorems. The relevant modulus in this model is the position of the D3-brane along
the radial direction of a warped deformed conifold [13]. This particular modulus
will be lifted in the presence of nonperturbative stabilization of the compactification
volume, a result that will have great importance in Chapters 6 and 7.

In Chapter 3 we consider quantum corrections to the dynamics of a system
of coupled moduli in quantum field theory. Certain particles are light at special
points in moduli space, which often exhibit enhanced symmetry. (For example,
the light fields could be gauge bosons whose mass is large away from the special
points, and in this case the enhanced symmetry would be gauged.) We discover that
quantum production of these light particles traps moving moduli at these points of
enhanced symmetry [18]. This effect, which we call moduli trapping, has a variety
of implications for cosmology. Moduli trapping may ameliorate the cosmological
moduli problem by situating moduli at extrema of their effective potential during
inflation. It can lead to a short period of accelerating expansion, which we call
trapped inflation. The most interesting result is that moving moduli are most
powerfully attracted to the points with the highest degree of symmetry. Given
suitable initial conditions, this could help to explain why our universe exhibits a
relatively large degree of (spontaneously broken) symmetry. Some of the surprising

symmetries of our world might have an explanation in the dynamics of moduli.
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In Chapter 4 we study an interesting special case [19] of the moduli trap-
ping scenario. When the moduli in motion correspond to the relative positions
of D-branes, the quantum effect relevant for moduli trapping is pair-production of
stretched open strings. For slow-moving D-branes this is captured by the analysis
of Chapter 2. However, relativistic D-branes exhibit a tremendously strong trap-
ping effect. We show that the brane trajectory receives strong corrections from
copious production of highly-excited open strings, whose typical oscillator level is
proportional to the square of the rapidity. This purely stringy effect makes rela-
tivistic brane collisions exceptionally inelastic. We trace this surprising effect to
velocity-dependent corrections to the open string mass, which render open strings
between relativistic D-branes surprisingly light. Our analysis has applications to
cosmological scenarios in which branes approach each other at very high speeds:
pair production of open strings could play an unexpectedly strong role in the brane
dynamics.

Next, in Chapter 5, we present a technique for stabilizing the moduli of per-
turbative heterotic string compactifications on Calabi-Yau threefolds [20]. We show
that fractional flux from Wilson lines, in combination with a hidden-sector gaug-
ino condensate [21], generates a potential for the complex structure moduli, Kahler
moduli, and dilaton. This potential has a supersymmetric AdS minimum at moder-
ately weak coupling and large volume. In this way we construct the first stabilized
heterotic string models. Our solutions have a nonvanishing, although negative, cos-
mological constant, so our methods are a step toward controllable de Sitter vacua of
the heterotic string. Our technique circumvents a well-known problem [21] arising
from flux quantization by introducing a Chern-Simons invariant that does not have
an integer quantization condition. The necessary Chern-Simons invariant can arise
naturally from the GUT-breaking Wilson lines that are already present in most
phenomenologically appealing models.

In Chapter 6 we use earlier, fundamental advances [5] in stabilization of type
IIB compactifications to build the first concrete model of inflation in a stabilized
string compactification [22]. Our construction involves a D3-brane moving down a
warped deformed conifold [13] geometry in a Calabi-Yau orientifold stabilized by
fluxes [4] and by nonperturbative effects [5]. Condensation of a brane-antibrane
tachyon ends inflation, so our model is a string embedding of hybrid inflation. One

particularly appealing feature is the possibility of light, stable cosmic strings.
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In Chapter 7 we reconsider the effect of nonperturbative volume stabilization
on inflation [23], and observe that certain geometric shift symmetries constructed
to protect the inflaton mass are broken by threshold corrections [24,25]. We con-
clude that in typical configurations, some degree of fine-tuning is still required.
This presents a mild but relevant challenge for inflationary model-building in such

scenarios.

Note on Collaborative Research

Modern theoretical physics is a science built on collaborations. Most progress
in string theory, in particular, results from the work of small groups, not of individ-
uals in isolation. The unwritten rule governing this system is that each co-author
is expected to contribute in some way to every major aspect of a paper.

I was intimately involved in all the research reported in this dissertation. Fur-
thermore, in each project I was continually involved in the writing and rewriting
of our results. My contributions and those of my collaborators have been woven
together to create complete works, and there is no meaningful way to partition the

finished product.



2. Bouncing Brane Cosmologies

ABSTRACT OF ORIGINAL PAPER

We study the cosmology induced on a brane probing a warped throat region in
a Calabi-Yau compactification of type IIB string theory. For the case of a BPS
D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology
described by a suitable brane observer is a bouncing, spatially flat Friedmann-
Robertson-Walker universe with time-varying Newton’s constant, which passes
smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin
approximation to the Klebanov-Strassler solution the.cosmology would end with
a big crunch singularity. In this sense, the warped deformed conifold provides a
string theory resolution of a spacelike singularity in the brane cosmology. The four-
dimensional effective action appropriate for a brane observer is a simple scalar-tensor
theory of gravity. In this description of the physics, a bounce is possible because the

relevant energy-momentum tensor can classically violate the null energy condition.

2.1 Introduction

There has recently been considerable interest in the properties of string theory
cosmology. A generic feature of general relativistic cosmologies is the presence
of singularities, which is guaranteed under a wide range of circumstances by the
singularity theorems [17]. Since string theory has had great success in providing
physically sensible descriptions of certain timelike singularities in compactification

geometries, one can hope that it will similarly provide insight into the spacelike

This chapter is reprinted from Shamit Kachru and Liam McAllister, “Bouncing Brane Cos-
mologies from Warped String Compactifications,” JHEP 0303 (2003) 018, by permission
of the publisher. (© 2002 by the Journal of High Energy Physics.
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or null singularities which arise in various cosmologies. Proposals in this direction
have appeared in e.g. [26,27,28,29,30,31,32,33,34,35,36,37).

In a slightly different direction, the possibility of localizing models of particle
physics on three-branes in a higher-dimensional bulk geometry has motivated a great
deal of work on brane-world cosmology (see [38,39,40,41,42] and references therein
for various examples). Of particular interest to us will be the “mirage” cosmology
[38] which is experienced by a D3-brane observer as he falls through a bulk string
theory background. In this chapter, we present a simple and concrete example
where such an observer would describe a cosmology which evades the singularity
theorems: his universe is a flat FRW model which smoothly interpolates between a
collapsing phase and an expanding phase.

The background through which the D3-brane moves is a Klebanov-Strassler
(KS) throat region [13] of a IIB Calabi-Yau compactification. Compactifications
including such throats, described in [4], yield models with 4d gravity and a warp
factor which can vary by many orders of magnitude as one moves in the internal
space (as in the proposal of Randall and Sundrum (RS) [43]). The backgrounds
discussed in [4] would also admit, in many cases, some number of wandering D3-
branes. Such a brane can fall down the KS throat and bounce smoothly back
out, as the supergravity background has small curvature everywhere. The induced
cosmology on this probe, as described by an observer who holds particle masses
fized, is a spatially flat Friedmann-Robertson-Walker universe which begins in a
contracting phase, passes smoothly through a minimum scale factor, and then re-
expands.! A D3-brane probe in this background satisfies a “no-force” condition
which makes it possible to control the velocity of the contraction; in addition, the
background can be chosen so that the universe is large in Planck units at the bounce.
For this reason, the calculations which lead the brane observer to see a bounce are
controlled and do not suffer from large stringy or quantum gravity corrections. It
is important to note that in this scenario, the effective 4d Newton’s constant Gy
varies with the scale factor of the universe; this results from the varying overlap of
the graviton wavefunction with the D3-brane.

The KS solution is actually a stringy resolution of the singular Klebanov-

Tseytlin (KT) supergravity solution [45], which ends with a naked singularity in

1A different approach to using the KS model to generate an interesting string theory
cosmology recently appeared in [44].
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the infrared. A brane falling into a Klebanov-Tseytlin throat would therefore un-
dergo a singular big crunch. In this sense, the cosmology we study involves a stringy
resolution of a spacelike singularity, from the point of view of an observer on the
brane.

Although one can describe the cosmological history of these universes using the
behavior of the induced metric along the brane trajectory, it is also interesting to
consider the 4d effective field theory that a brane resident could use to explain his
cosmology. We construct a simple toy model of these cosmologies using a 4d scalar-
tensor theory of gravity. The scalar can be identified with the open string scalar
field @, (corresponding to radial motion down the warped throat) in the Born-
Infeld action for the D3-brane. It is well known that such scalar-tensor theories
can classically violate the null energy condition, making a bounce possible. Related
facts about scalar field theories coupled to gravity have been exploited previously
by Bekenstein and several subsequent authors [46,47,48,49].

The organization of this chapter is as follows. In §2.2 we use the construction
of [4] to study the cosmology on a brane sliding down the KS throat. In §2.3 we
provide a discussion of the effective scalar-tensor theory of gravity a brane theorist
would probably use to explain his observations. We close with some thoughts on
further directions in §2.4.

Several previous authors have investigated the possibility of bounce cosmologies
in scalar-tensor theories and in brane-world models. For FRW models with spherical
spatial sections (k = +1), examples in various contexts have appeared in [46,47,48].
As we were completing this work, other discussions of bounces in brane-world models
appeared in [50,51]. To the best of our knowledge, this chapter provides the first
controlled example in string theory of a bouncing, spatially flat FRW cosmology

with 4d gravity.

2.2 Brane Cosmology in a Warped Calabi-Yau Compactification
2.2.1 The Compactifications

In [52,4,53], warped string compactifications were explored as a means of re-
alizing the scenario of Randall and Sundrum [43] in a string theory context. It

was shown that compactifications of IIB string theory on Calabi-Yau orientifolds
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provide the necessary ingredients. In such models, one derives a tadpole condition

of the form .
1
- = N ———— | H3AF;3. 2.2.
1 Nos D3+ L CIE /X 3N\ F3 (2.2.1)

Here X is the Calabi-Yau manifold, No3 and Np3 count the number of orientifold
planes coming from fixed points of the orientifold action and the number of trans-
verse D3-branes, and Hg, F3 are the NSNS and RR three-form field strengths of
the IIB theory.? In general, the left-hand side of (2.2.1) is nonzero and can be
a reasonably large number, giving rise to the possibility of compactifications with
large numbers of transverse D3-branes or internal flux quanta. Since both of these
lead to nontrivial warping of the metric as a function of the internal coordinates,
(2.2.1) tells us that these Calabi-Yau orientifolds provide a robust setting for finding
warped string compactifications [52,4,53].

We can make this somewhat vague statement much more precise in the example

of the warped deformed conifold. The conifold geometry is defined in C* by
22+ 2+ 22+ 22 =0. (2.2.2)

It is topologically a cone over S? x $3; we will refer to the direction transverse to
the base as the “radial direction” (with small r being close to the tip and large r

being far out along the cone). The deformed conifold geometry
212+ 29% 4 232 + 242 = €2 (2.2.3)

has two nontrivial 3-cycles, the A-cycle S2 which collapses as € — 0, and the dual B-
cycle. Klebanov and Strassler found that the infrared region of the geometry which
is holographically dual to a cascading SU(N + M) x SU(N) N = 1 supersymmetric
gauge theory is precisely a warped version of the deformed conifold geometry, with

nontrivial 3-form fluxes

1 1

and N = kM. In particular, the space (2.2.3) is non-singular and the smooth geom-

etry dual to the IR of the gauge theory reflects the confinement of the Yang-Mills

2 In an F-theory description, the left-hand side of (2.2.1) is replaced by MZXT‘Q, where

X4 is the relevant elliptic Calabi-Yau fourfold.
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theory (with the small parameter ¢ mapping to the exponentially small dynamical
scale of the gauge theory). In a cruder approximation to the physics, Klebanov and
Tseytlin had earlier found a dual gravity description with a naked singularity [45];
this heuristically corresponds to the unresolved singularity in (2.2.2).

In [4], the warped, deformed conifold with flux (2.2.3), (2.2.4) was embedded
in string/F-theory compactifications to 4d. The small r region is as in [13], while
at some large r (in the UV of the dual cascading field theory), the solution is glued
into a Calabi-Yau manifold. The fluxes give rise to a potential which fixes (many
of) the Calabi-Yau moduli (and in particular the € in (2.2.3)), while the fluxes plus
in some cases wandering D3-branes saturate the tadpole condition (2.2.1). If one
considers one of the cases with Np3 > 0, then it is natural to imagine a cosmology
arising on a wandering D3-brane as it falls down towards the tip of the conifold
(2.2.3).

2.2.2 The Klebanov-Strassler Geometry

The KS metric is given by (we use the conventions of [54])
ds? = h=Y2(1)n,, detdz” + hY2(7)ds? (2.2.5)

where ds? is the metric of the deformed conifold,

1 1 T
ds? = — A8k dr? 512 h2(TVi(43)2 4\2
2= 56K (3 dr” + 6]+ cosh(3)[(6°) + (6] 226
) T
+sinh?($)[(g)? + (6%)7])-
Here
g = s § =
V2 V2
&= e+e ,_e+el (2.2.7)
Vi T
P =é
where
81 = —-sin(@l)d(bl, 62 = d01
3 = cos(1)sin(8)dds — sin(y))dbs,
(2.2.8)

e* = sin(vy)sin(02)dds + cos(1)db;
e = di + cos(6;)dp + cos(02)dgs .
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¥ is an angular coordinate which ranges from 0 to 47, while (61, ¢1) and (69, ¢2)
are the conventional coordinates on two S%s. The function K(7) in (2.2.5) is given
by

(sinh(27) — 271)%/3
K =

(7) 21/3ginh(1)

(2.2.9)

Clearly in (2.2.5) 7 plays the role of the “radial” variable in the conifold geometry,
with large 7 corresponding to large 7.

Finally, the function A(7) in (2.2.5) is rather complicated; it is given by the

expression
h(r) = (gsMa')?2*3 3/ 1(r) (2.2.10)
where
°  zcoth(z) -1/, 1/3

It will be useful to note that this reaches a maximum at 7 = 0 and decreases
monotonically as 7 — o0o. There are also nontrivial backgrounds of the NSNS 2-
form and RR 2-form potential; their detailed form will not enter here, but they
are crucial in understanding why the D3-brane propagates with no force in the
background (2.2.5).

Since the form of h(7) will be important in what follows, we take a moment
here to give some limits of the behavior of formulae (2.2.10),(2.2.11)[54]. For very
small 7, one finds I(7) ~ ag + O(7?%), with ag a constant of order 1. In this limit

the complicated metric (2.2.5) simplifies greatly (c.f. equation(67) of [54]):

, 4/3

% —
21/3a(1)/2gsM0/

1 1
Az den+ay 2673 (g, M a’)(§d72 +5(9°)° +(9°)* + ()

+ 17716 + (69)7)
(2.2.12)
This is R3®! times (the small 7 limit of) the deformed conifold. In particular,
the S has fixed radius proportional to /g, M, and so the curvature can be made
arbitrarily small for large g, M. In the opposite limit of large 7, the metric simplies

to Klebanov-Tseytlin form. Introducing the coordinate r via

3 .
r? = M3 (2.2.13)
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_4r
3

and using the asymptotic behavior I(7) ~ 3 x 271/3(7 — 1)e~%, one finds

2 L2/In(r[r,)
ds? —-———r-——da:ndx + = L2 + L2 /In(r [rs)dsa, 2.2.14
- 12 /ln(r/rs) n r2 T (r/rs)dsin ( )

where dsZ,, is the metric on the Einstein manifold T*! and L? = %. This
means that up to logarithmic corrections, the large T behavior gives rise to an AdSs
metric for the z* and 7 directions. This is the expected behavior from the field
theory dual, since large 7 corresponds to the UV, where the theory is approximately

the Klebanov-Witten ' =1 SCFT [55].

2.2.8 Trajectory of a Falling Brane

We will start the D3-brane at some fixed 7 = 7* and send it flying towards 7 = 0
with a small initial proper velocity v in the radial 7 direction. Before describing
the trajectory we will briefly explain our notation. 7 always indicates the radial
coordinate in the KS geometry (2.2.5) and is dimensionless in our conventions. We
will reserve t for proper time (for the infalling brane) and " for %, while £ represents

the coordinate time, in terms of which the metric is

ds* = h(T)_% (—de* + Z dz?) 4 grrdr? + angles (2.2.15)
and thus 5 2 g ?
t _1 1 T
(g8) =MD 7H (1= e () ) - (2.2.16)

To leading order in the velocity we have ( ) ~ h(r)"z.

Proper distance is given by d = [ dr’ gTT , and proper velocity by v = d = Tgig.
The initial values of the position, proper distance, coordinate velocity, and proper
velocity are denoted by 7., d«, 7o and vy, respectively.

The D3-brane trajectory is determined by the Born-Infeld action

Spr = 2}4/d30d§ h(T)~ \/l—h(7)2grr( —) —h(r)7t (2.2.17)

where we have neglected contributions from the U(1) gauge field on the brane. At
leading order in a low-velocity expansion, rewritten in terms of derivatives with

respect to proper time,

Spr = 2l4/d3ad§ h(T) g, 72 (2.2.18)
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where the cancellation of the potential h(7)~! is the realization of the no-force

condition. Conservation of energy then yields

_ 2 0@ 97 (1) (2.2.19)

= Oh(r) g (@)

#(t)?

From the profile of g% it follows that the brane accelerates gradually toward the
tip of the conifold. For large 7 we may use the KT radial coordinate r (2.2.13), in
terms of which (2.2.19) is %2% = 0, which is another expression of the balancing of

gravitational forces and forces due to flux.

2.2.4 The Induced Cosmology

An observer on the brane naturally sees an induced metric
ds%)rane = _dtz + h_l/z (7') (d.’]?% + dmg + dx?;) . (2220)

But given that the brane trajectory is a function 7(¢), (2.2.20) gives rise to a stan-
dard FRW cosmology

ds? = —dt?* + a®(t)(da? + dz} + dz3) (2.2.21)

with a(t) given by
a(t) = h™Y4(r(t)). (2.2.22)

Notice that the graviton wavefunction has a 7-dependent overlap with a brane
located at various points in the metric (2.2.5). This is simply the effect exploited

in [43]. The dimensionless strength of gravity therefore scales according to
GN ()M e ~ W(T(£)) 77 ~ a(t)? (2.2.23)

where Mopen, is the mass of the first oscillating open string mode. A physicist
residing on the brane may choose to fix one of the dimensionful quantities Gy,
Mopen 1N order to set his units of length. Grinstein et al. [56] have shown that
a brane observer who uses proper distance to measure lengths on the brane will
necessarily find fixed masses and variable G . One can argue for the same system
of units by stipulating that elementary particle masses should be used to define the
units, and should be considered fixed with time. In this model we will use the mass

of the first excited open string mode to fix such a frame; in a more realistic model,
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one would want other (perhaps “standard model”) degrees of freedom to be the
relevant massive modes.

A brane observer following an inward-falling trajectory in the background
(2.2.5) would therefore make the following statements.
1. Elementary particle masses, e.g. Mopen, are considered fixed with time.
2. In these units, the proper distance between galaxies on the brane scales with
a(t) as in standard FRW cosmology. In consequence, for the infalling brane (moving
towards 7 = 0) one observes blueshifting of photons.

3. The gravitational coupling on the brane is time-dependent,
Gn(t) ~ a(t)? . (2.2.24)

Therefore, as the universe collapses, the strength of gravity decreases.

In fact, (2.2.22) together with (2.2.24) imply that in 4d Planck units, the size
of the universe remains fized. From this “closed string” perspective, the cosmology
is particularly trivial; the brane radial position is described by a scalar field ®,. in
the 4d action which is undergoing some slow time variation (and, for small brane
velocity, carries little enough energy that backreaction is not an issue). However,
in this frame particle masses vary with time. We find it more natural, as in [56],
for a brane observer to view physics in the frame specified by 1-3 above; we will
henceforth adopt the viewpoint of such a hypothetical brane cosmologist. In §2.3.1
we describe the field redefinition which takes one from the “brane cosmologist”

frame to the “closed string” frame in a toy model.
The Bounce

As the brane falls from 7* towards zero, the scale factor decreases monoton-
ically. It hits 7 = 0 in finite proper time. However, as is clear from the metric
(2.2.5), there is no real boundary of the space at this point; 7 = 0 is analogous
to the origin in polar coordinates. The brane smoothly continues back to positive
7, and the scale factor re-expands. Although it is hard to provide an analytical
expression for a(t) given the complexity of the expressions (2.2.10) and (2.2.11), we

can numerically solve for a; a plot appears in Figure 1.
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a

t

Fig. 1: The scale factor a(t) as a function of proper time for a brane near
the tip of the Klebanov-Strassler geometry. This particular bounce begins
from radial position 7 = 4.

In the approximate supergravity dual to the cascading gauge theory studied in
[45], there is instead a naked singularity in the region of small 7, which is deformed
away by the fluxes (2.2.4). In the KT approximation to the physics, then, the
cosmology on the brane would actually have a spacelike singularity at some finite
proper time. The evolution in this background agrees with Figure 1 until one gets
close to the tip of the conifold; then, in the “unphysical” region of the KT solution,
the brane rapidly re-expands, and a singularity of the curvature scalar of the induced
metric arises at a finite proper time. A plot of a(t) for this case appears in Figure

2.

t

Fig. 2: The scale factor a(t) as a function of proper time for a brane near
the singularity of the Klebanov-Tseytlin geometry. The explosive growth
of a(t) on the right coincides with a curvature singularity in the induced
metric.
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Hence, we see that string theory in the smooth KS background gives rise to a
bouncing brane cosmology, while the KT approximation would have given rise to a
cosmology with a spacelike crunch. There has been great success in understanding
the resolution of timelike singularities in string theory, so it is heartening to see
that in some special cases one can translate those results to learn about spacelike

singularities as well.
Limiting behaviors

In the two asymptotic regimes of 7 ~ 0 and very large 7, the formulae simplify
[54] and the behavior of a(t) can be given explicitly. For small 7, the geometry is
just the product (2.2.12). Hence, in this limit, the brane is effectively falling in an

unwarped 5d space, and the cosmology is very simple:
a(t) = constant + O(t?) . (2.2.25)

In the large 7 regime, the metric (2.2.14) differs from AdSs by logarithmic
corrections, and so the brane trajectory deviates very gradually from that of a
D3-brane in AdS. For simplicity we present here the induced cosmology on a D3-
brane in AdS; the logarithmic corrections require no new ideas but lead to more

complicated formulae. From (2.2.18), using the D3-brane form of the AdSs metric

dr?
ds® = r?(—d¢® + dz? + dz3 + dx3) + rLz (2.2.26)

we find, in terms of proper time,

a?(t) = a2(0)(1 + 2?1&) (2.2.27)
0
for a brane with initial position and velocity 7o, 7o at ¢ = 0. It follows that
a., C
) == 2.2.2
r== (2:2.29)
where C = a* (O)(%‘)l)2 Because the right hand side of (2.2.28) scales like the energy
density of radiation, this has been termed “dark radiation” [57,58]. In the language
of [38] it might also be called “mirage matter with equation of state p = 3p.”
The Friedmann equation (2.2.28) has been thoroughly investigated in the con-

text of Randall-Sundrum models. In particular, just such a law was found to arise
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on a visible brane which is separated from a Planck brane by an interval whose
length varies with time (see [59] and references therein). This is entirely consistent
with our scenario, as the Calabi-Yau provides an effective Planck brane and the
bulk motion of the probe changes the length of the interval between the branes.
As the brane proceeds to larger 7, eventually it will reach the region where
the KS throat has been glued onto a Calabi-Yau space. Beyond that point it is
no longer possible for us to say anything universal about the behavior of the brane

cosmology.

2.2.5 Issues of Backreaction

There are several issues involving backreaction that merit consideration. To
argue that the bounce we have seen in §2.2.4 accurately describes the behavior of
the brane as it propagates in from 7, and back out again, we must ensure that the
state with nonzero 7 on the brane does not contain enough energy to significantly
distort the closed string background geometry. In fact we must check both that a
motionless brane in the throat creates a negligible backreaction, and that the kinetic
energy on the brane does not undergo gravitational collapse (yielding a clumpy
brane) on the relevant timescales. It is also important to understand the extent
of the backreaction from semiclassical particle production. Finally, the presence of
nonzero energy density on the brane leads to a potential for the Calabi-Yau volume
modulus (as in §6 of [60]). We will imagine that this modulus has been fixed and
will neglect this effect.

The first concern can be dismissed quickly. In the limit of small g; the back-
reaction on the closed string background is small. The second concern needs to
be discussed in somewhat more detail. The falling brane necessarily has energy
density localized on its worldvolume. After a sufficiently long time this initially
uniform energy can become inhomogeneous because of the Jeans instability. In this
subsection we demonstrate that, for a suitable choice of the parameters of the KS
geometry, this instability is negligible during the bounce portion of the history of

the brane universe.
Jeans Instability

For a uniform fluid of density p, the Jeans instability appears at length scales

greater than Ljeans = —ii—\/;g_, where v; is the velocity of sound. Perturbations with
N
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this wavelength could destabilize the brane given a time tingtabitity > Lieans. In

terms of the volume Vg of the Calabi-Yau,
G = g215Vs  h(ryv) T h(r) "% (2.2.29)

where we choose Tyy such that ryy (as given in (2.2.13)) is of order one (so the
throat extends slightly into the KT regime before gluing into the Calabi-Yau). For
19,3

the compactifications of interest Vg > so that for 7 < Ty

Gn < 95212 . (2.2.30)

From (2.2.18), (2.2.19), we see that the energy density on the brane is constant,

1
2g21%

p= h(T*)_lgTT(T*)'fOz (2'2'31)

50

v 1 1
t’instability > ;:h(T*)éQTT(T*) ;ls . (2232)

Because the brane accelerates toward the tip of the conifold, to fall from d, to the

tip and rebound requires a time

2d*
thounce < . (2.2.33)
Vo
This leads to (we now drop numerical factors of order one)
_bounce o Z2p(r)7T . (2.2.34)
tinstability ls
Using the asymptotic form of I(r), K(r) we find
t ounce 1 =2 — 2
b < Tl "3 (2e™)? (2.2.35)

tinstability Vg M

3 In fact, as discussed in [4], warped compactifications really reproduce the RS scenario
when the volume is not very large in string units (since the flux and brane backreaction
which produce the warping become larger effects at small Calabi-Yau volume). We are
assuming we are at the threshold volume where the warping becomes a significant effect,
which should justify the estimate (2.2.29).
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Because we have glued the KS throat into the Calabi-Yau geometry at a loca-
tion where r = ryy of (2.2.13) is of order one, we see that e2e™ = (O(1). This leads

to

thounce 1 3/4
< T . 2.2.36
tinstability V gsM ( )

Finally, since the hierarchy between the UV and IR ends of the throat is exponential
in 7., it is natural to take 7, to be a number of order 5-10 (in the language of RS
scenarios, T, controls the length of the interval in AdS radii, up to factors of 7).
Therefore, in the supergravity regime where g;M > 1, (2.2.36) demonstrates that
we can neglect the Jeans instability on the brane in discussing the dynamics during

the bounce.
Particle Creation

Because the bounce cosmology is strongly time-dependent, it is also important
to consider the spectrum of particles created semiclassically by the bounce. We will
argue that the energy density due to such particle production is small enough that
its backreaction is negligible.

The bounce geometry (2.2.21) is conformally trivial, so massless, conformally
coupled scalar fields will not be produced by the cosmological evolution. Massive
fields break the conformal invariance. The relevant massive scalar fields on the
brane are excited string states with mass m > 71; Quite generally we expect that
modes with frequencies w > % = H will not be significantly populated by the
bounce, i.e. the probability that a comoving detector will register such a particle
long after the bounce is exponentially small in #. The cases of interest involve
slow-moving branes, so the maximum value of H is far below the string scale. Thus
we expect the energy density due to particle creation should be quite small.

Concrete calculations of the production of massive scalar and fermion fields in
a bouncing k¥ = 0 FRW cosmology were carried out in [61] (though the system in
consideration there did not satisfy Einstein’s equations). The scale factor in [61] has
the same limiting behaviors as our own, and the results there are consistent with
our expectations. It would be interesting to carry out the relevant particle creation
calculation directly in string theory. A particle creation calculation in closed string

theory was described in worldsheet (2d conformal field theory) language in [62].
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2.3 Four-dimensional Lagrangian Description
2.3.1 Effective Lagrangian

In the limit of low matter density on the probe brane, the cosmology is de-
termined entirely by the bulk geometry. The D3-brane trajectory is determined
by the Born-Infeld action, and the induced metric along this trajectory provides a
time-dependent mirage cosmology. The mirage cosmology proposal of [38] includes
another step: one can write down the Friedmann equations for the cosmology and
identify the right hand side with mirage density and mirage pressure.

This is not yet an ideal formulation from the perspective of a brane resident.
One would like a four-dimensional Lagrangian description of the mirage matter,
of the cosmological evolution, and of the variation of Gn. In particular, since a
bounce in a flat Friedmann-Robertson-Walker universe necessitates violation of the
null energy condition, it would be interesting to understand this violation in terms of
a 4d Lagrangian and energy-momentum tensor. In this section we will propose a toy
scalar-tensor Lagrangian which admits cosmologies reproducing the basic features
of our “bouncing brane” solutions; similar Lagrangians have arisen in the study of
RS cosmology [63].

The massless fields in our 4d theory include a 4d graviton and the massless open
strings on the D3-brane: a U(1) gauge field A,, a scalar ®, corresponding to radial
motion in the compactified throat, and scalars ®;,7 =1, - - -, 5 parametrizing motion
in the angular coordinates. All other scalar fields are massive. (In fact without a
no-force condition there can be a potential and a mass for ®,.. For simplicity we
will work only with the BPS case, but the trajectory of anti-branes in the KS throat
would also yield an interesting time-dependent solution.*) We will choose to fix the
®;, and the requirement of negligible energy density in open string modes on the
brane means that A, is not relevant for cosmological purposes. This leaves @, and
Juv as the only massless fields entering the 4d Lagrangian.

Our goal in this section is to show explicitly how an observer who sees parti-
cle masses which depend on @, could change his units of length and see an FRW

cosmology with varying Gy. (In §2.2.4 we provided several arguments motivating

4 In particular, anti-branes near the tip of the conifold can annihilate by merging with
flux [60]. This could potentially lead to a cosmology which begins or ends with a tunneling

or annihilation process.
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this choice of frame.) Because the full Lagrangian for a brane observer in the KS
background, including all massive fields, is quite complicated, it will be most prac-
tical to work with a simpler Lagrangian which has the correct schematic features.
In particular, all particle masses depend on @, in the same way, so it will suffice
to consider a single massive field x (which could be, for example, an excited open
string mode).

A “mass-varying” Lagrangian with the appropriate features is

R R 1
L= [ dzy=g - =2 - ~¢g"V,9,.V,9,
/ A (167rGN g% 39 VbV (23.1)
1, 1 "
~5g* VuxVux — "mz(q)r)Xz - V(X))
2 2
where x is a matter field on the brane whose mass depends on &, as
m?(®,) = Q*(®,)u? (2.3.2)

for fixed u. The form of the potential for x and the coupling of x to the curvature
scalar will be unimportant for this analysis, and we will henceforth omit these terms.
Note that ®,. is conformally coupled.

As discussed in §2.2.4, an observer confined to the brane most naturally holds
fixed the masses of fields on the brane. This can be accomplished by performing

the change of variables

g;w = Qz(q)'r)gy,u (233)
d, = Q7 1(2,)®, (2.3.4)
=071 (@)x (2.3.5)

The resulting “mass-fixed” Lagrangian is

R 3 R .
— 3 ~ ~ur v 52
L / dzv =4 (167rGN§22(<I>r) T srara@yid vVl - 5

| B S
= 58" Vi@V, 8 — SFV VX - §M2X2) :

(2.3.6)

We have discarded terms which look like (VQ)2%? because Q < pu (at least in
our example, where x represents a massive string mode). Terms which look like

(VQ)282 cancel due to the conformal coupling of ®,.
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The effective gravitational coupling is given by
Gyl = GNQ% (D)) . (2.3.7)

According to the discussion in §2.2.4, we expect that Q%(®,) = h(T(‘I’r,.))_%, o)
indeed the strength of gravity scales as required by (2.2.24). (We will not need the
explicit relation between 7 and ®,..)

We are interested in the limit where the backreaction due to ®,, % is small, so in
particular ®,, ¥ < m;%n o+ This means that for the purpose of solving the Einstein
equations in the mass-fixed frame we may neglect terms which are suppressed by a

factor of Gy. Defining
3
4G N

we may write the effective Lagrangian

Q1(2,) (2.3.8)

’Y:

Mplanck

/ d3x\/—g <—'y + g‘“jvu'yv,/y-i—O(L)). - (2.3.9)

Observe that the kinetic energy term is now negative semidefinite (we are using
signature —+-++), so it is easy to violate the null energy condition which is relevant
(via the singularity theorems) in constraining the behavior of the metric g,,.°
The equation of motion which follows from this Lagrangian is
"'V oy — E’y O(L) (2.3.10)
6 MPlanck

Now let us see that this system reproduces our expectations from §2.2.4. Given
an FRW cosmology specified by a(t), if we set v(t) = ca™*(t) for some constant c
then (2.3.10) is satisfied identically. From (2.3.3), (2.3.4), (2.3.5) it is clear that we
should identify

alt) o Q@ (). (2.3.11)

Then the Einstein equations for (2.3.9) are satisfied if the varying-mass metric
9uv = N and the mass-fixed metric §u, = a?(t)nu,. So as discussed in §2.2.4,
we have two complementary perspectives: the brane observer uses the mass-fixed
action (2.3.6) and sees an FRW cosmology with varying Gy, while the “closed

string” observer sees gravity of fixed strength in Minkowski space.

5 Notice that because of the non-minimally coupled scalar, it is also possible to violate

the null energy condition which governs the behavior of g,..
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2.3.2 Relation to Warped Backgrounds

We can be slightly more explicit about how the toy model of §2.3.1 would be
related to a given warped background. Given any function a(t), we can construct a
warped background h(r) such that a no-force brane probe of that geometry experi-
ences an induced cosmology specified by a(t). We simply define { = [ E%’ r=v€
(v constant), and h(r) = a(r)~*.

A few comments are in order:

1. Very few backgrounds h(r) will correspond to solutions of IIB supergravity. One
which does, and indeed corresponds to a D3-brane in the warped deformed conifold,
is given by taking 7(¢) to solve (2.2.19) and setting a(t) = h~ % (7(t)) with h given
by (2.2.10).

2. The no-force condition is only a convenience. We could instead take r(§) to
be any function of £&. This would correspond to a brane which accelerates due to
external forces. Again, very few systems of this sort arise from known branes of

string theory moving in valid supergravity backgrounds.

2.4 Discussion

As demonstrated in general terms in §2.3, and in a special example in string
theory in §2.2, in the presence of scalar fields it is easy to evade the singularity the-
orems (from the perspective of a reasonable class of observers), even with a k = 0
FRW universe. It there’fore seems likely that many examples of such constructions,
arising both as cosmologies on D-branes and perhaps even as closed string cosmolo-
gies, should be possible. The cosmology we presented is just a slice of evolution
between some initial time when we join the brane moving down the throat, and a
final time when it is heading into the Calabi-Yau region. The later evolution of
our model is then non-universal; it depends on the details of the Calabi-Yau model
(or in the language of [43], the detailed structure of the Planck brane). It would
be very interesting to write down models with 4d gravity whose dynamics can be
controlled for an eternity; some controlled, eternal closed string cosmologies were
recently described in [62].

The cosmology discussed here is far from realistic. As a first improvement, one
would like to study probe branes with a spectrum of massive fields below the scale

% (which could be called “standard model” fields). It may be possible to construct
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such examples by using parallel D3-branes which are slightly separated in the radial
direction, wrapped Dp-branes with p > 3, or anti-branes in appropriate regimes. It
is also important to control the time-variation of G during/after nucleosynthesis,
since this is highly constrained by experiment (see for instance [8]). To improve the

” That is, one

situation, one can envision a program of “cosmological engineering.
could try to design IIB solutions with background fields specifically chosen to give
rise to interesting mirage cosmologies (various authors have already proposed mirage
models of closed universes [64], inflation with graceful exit [65], asymptotically de
Sitter spaces [50], etc., though most of these models do not include 4d gravity).
Each desired feature of the cosmology would result in a new condition on the closed
string fields. Then one would simply impose these conditions along with the field

equations of IIB supergravity.



3. Moduli Trapping at Enhanced Symmetry Points

ABSTRACT OF ORIGINAL PAPER

We study quantum effects on moduli dynamics arising from the production of parti-
cles which are light at special points in moduli space. The resulting forces trap the
moduli at these points, which often exhibit enhanced symmetry. Moduli trapping
occurs in time-dependent quantum field theory, as well as in systems of moving
D-branes, where it leads the branes to combine into stacks. Trapping also occurs in
an expanding universe, though the range over which the moduli can roll is limited
by Hubble friction. We observe that a scalar field trapped on a steep potential can
induce a stage of acceleration of the universe, which we call trapped inflation. Mod-
uli trapping ameliorates the cosmological moduli problem and may affect vacuum
selection. In particular, rolling moduli are most powerfully attracted to the points
with the largest number of light particles, which are often the points of greatest sym-
metry. Given suitable assumptions about the dynamics of the very early universe,
this effect might help to explain why among the plethora of possible vacuum states
of string theory, we appear to live in one with a large number of light particles and
(spontaneously broken) symmetries. In other words, some of the surprising proper-
ties of our world might arise not through pure chance or miraculous cancellations,

but through a natural selection mechanism during dynamical evolution.

This chapter is reprinted from Lev Kofman, Andrei Linde, Xiao Liu, Alexander Maloney,
Liam McAllister, and Eva Silverstein, “Beauty is Attractive: Moduli Trapping at Enhanced
Symmetry Points,” JHEP 0405 (2004) 030, by permission of the publisher. © 2004 by
the Journal of High Energy Physics.
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3.1 Introduction
3.1.1 Moduli Trapping Near Enhanced Symmetry Points

Supersymmetric string and field theories typically contain a number of light
scalar fields, or moduli, which describe low-energy deformations of the system. If
the kinetic energy of these fields is large compared to their potential energy then the
classical dynamics of the moduli is described by geodesic motion on moduli space.

At certain special points (or subspaces) of moduli space, new degrees of free-
dom become light and can affect the dynamics of moduli in a significant way
[66,67,68,69,70]. These extra species often contribute to an enhanced symmetry
at the special point. We will refer to any points where new species become light as
ESPs, which stands for extra species points, and also, when applicable, for enhanced
symmetry points.

A canonical example is a system of two parallel D-branes. When the branes
coincide, the two individual U(1) gauge symmetries are enhanced to a U(2) sym-
metry, as the strings that stretch between the branes become massless [71]. Similar
points with new light species arise in many contexts; examples include the Seiberg-
Witten massless monopole and dyon points in N' = 2 supersymmetric field theories
[72], the conifold point (2.2.3) and ADE singularities in Calabi-Yau compactification
[73], the self-dual radius of string compactifications on a torus, small instantons in
heterotic string theory [74], and many other configurations with less symmetry.

Classically, there is no sense in which these ESPs are dynamically preferred
over other metastable vacuum states of the system. We will argue that this changes
once quantum effects are included. In particular, quantum particle production of
the light fields alters the dynamics in such a way as to drive the moduli towards
the ESPs and trap them there.

The basic mechanism of this trapping effect is quite simple. Consider a modulus
¢ moving through moduli space near an ESP associated to a new light field x. For
example, ¢ could be the separation between a pair of parallel D-branes, and x a
string stretching between the two branes — in this case the ESP ¢ = 0 is the point
where the branes coincide and x becomes massless. As ¢ rolls through moduli space,
the mass of x changes; x gets lighter as ¢ moves closer to the ESP and heavier as ¢
moves farther away. This changing mass leads to quantum production of y particles;

as ¢ moves past the ESP some of its kinetic energy will be dumped into x particles.
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As ¢ rolls away from the ESP, more and more of its energy will be drained into the
x sector as the x mass increases, until eventually ¢ stops rolling. At this point the
moduli space approximation for ¢ has broken down, and all of the original kinetic
energy contained in the coherent motion of ¢ has been transferred into x particles,
and ultimately into all of the fields interacting with x (including decoherent quanta
d¢). As we will see in detail, the x excitations generate a classical potential for ¢
which drives the modulus back toward the ESP and traps it there.®

In the example of the pair of moving D-branes, the consequences of this are
simple: two parallel branes that are sent towards each other will collide and remain
bound together. The original kinetic energy of the moving branes will be transferred
into open string excitations on the branes and eventually into closed string radiation
in the bulk.

In §3.3.2 we will describe the general trapping mechanism and study its range of
applicability using a few simple estimates. In §3.3 we will write down the equations
of motion governing trapping in more detail, and describe the numerical and analytic
solutions of these equations in a variety of cases.

It is important to recognize that this trapping effect is in no way special to
string theory. Flat space quantum field theory with a moduli space for ¢ and an
ESP is an ideal setting for the trapping effect, and it is in this setting that we will
perform the analysis of §3.2 and §3.3. In §3.4 we will generalize this to incorporate
the effects of cosmological expansion, and in §3.5 we will discuss the possibility
of significant effects from string theory. Having established the moduli trapping
effect in a variety of contexts, we will then study its applications to problems in
cosmology.

The most immediate application is to the problem of vacuum selection. As
we will see in §3.6, the trapping effect can provide a dynamical vacuum selection
principle, reducing the problem to that of selecting one point within the class of
ESPs. This represents significant progress, since the vast majority of metastable

vacua are not ESPs. Trapping at ESPs may also help solve the cosmological moduli

6 There are also corrections to the effective action for ¢ from loops of x particles,
including both kinetic corrections and a Coleman-Weinberg effective potential. Both effects
will be subdominant in the weakly-coupled, supersymmetric, kinetic-energy dominated

regimes we will consider.
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problem, as we will see in §3.7. In particular, trapping strengthens the proposal of
[75] by providing a dynamical mechanism which explains why moduli sit at points
of enhanced symmetry.

Finally, as we will explain in §3.8, the trapping of a scalar field with a potential
can lead to a period of accelerated expansion, in a manner reminiscent of thermal
inflation [76]. This effect, which we will call trapped inflation, can occur in a steeper
potential than normally admits such behavior.

From a more general perspective, moduli trapping gives us insight into the
celebrated question of why the world is so symmetric. The initial puzzle is that
although highly symmetric theories are aesthetically appealing and theoretically
tractable, they are also very special and hence, in an appropriate sense, rare. One
expects that in a typical string theory vacuum, most symmetries will be strongly
broken and most particles will have masses of order the string or Planck mass,
just as in a typical vacuum one expects a large cosmological constant. Vacua with
enhanced symmetry or light particles should comprise a minuscule subset of the
space of all vacua.

Nevertheless, we observe traces of many symmetries in the properties of ele-
mentary particles, as spontaneously broken global and gauge invariances. Moreover,
all known particles are hierarchically light compared to the Planck mass. Given the
expectation that a typical vacuum contains very few approximate symmetries and
very few light particles, it is puzzling that we see such symmetries and such particles
in our world.

For questions of this nature, moduli trapping may have considerable explana-
tory power. Specifically, the force pulling moduli toward a point of enhanced sym-
metry is proportional to the number of particles which become massless at this
point, which is often associated with a high degree of symmetry. This means that
the most attractive ESPs are typically the ones with the largest symmetry, and
rolling moduli are most likely to be trapped at highly symmetric points, where
many particles become massless or nearly massless. Moreover, the process of trap-
ping can proceed sequentially: a modulus moving in a multi-dimensional moduli
space can experience a sequence of trapping events, each of which increases the
symmetry. These effects suggest that the symmetry and beauty we see in our world
may have, at least in part, a simple dynamical explanation: beauty is attractive.

We will discuss this possibility in §3.6.
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3.1.2 Relation to Other Works

Similar effects have been described in the literature. There has been much
work on multi-scalar quantum field theory in the context of inflation, especially
concerning preheating in interacting scalar field theories. Some of our results will
be based on the theory of particle production and preheating.developed in the series
of papers [66,67,68], which explores many of the basic phenomena in scalar theories
of the sort we will consider. Likewise, Chung et al. [69] have explored the effects
of particle production on the inflaton trajectory and on the spectrum of density
perturbations. Although we will derive what we need here in a self-contained way,
many of the technical results in this chapter overlap with those works, as well as with
standard results on particle production in time-dependent systems as summarized
in e.g. [77]. Although we will not study the case in which x goes tachyonic for
some range of ¢, our results may nevertheless have application to models of hybrid
inflation [78,79], including models based on rapidly-oscillating interacting scalars
[80,81,82].

In strong ’t Hooft coupling regions of moduli spaces which are accessible
through the AdS/CFT correspondence, virtual effects from the large numbers of
light species dramatically slow down the motion of ¢ as it approaches an ESP, with
the result that the modulus gets trapped there [70]. This also provides a mechanism
for slow roll inflation without very flat potentials. In the present work, which ap-
plies at weak ’t Hooft coupling, it is quantum production of on-shell light particles
which leads to trapping on moduli space.

Other works in the context of string theory have explored the localization of
moduli at ESPs. The authors of [83,84] studied the evolution of a supersymmetric
version of the ¢ — x system arising near a flop transition using an effective super-
gravity action. They showed that, given nonvanishing initial vevs for both ¢ and
X, the fields will settle at the ESP even if one formally turns off particle production
effects. Our proposal, by contrast, is to take into account on-shell quantum effects
which dynamically generate a nonzero {x2?). In works such as [85] attention was
focused on the boundaries of moduli space, while here we focus on ESPs in the inte-
rior of moduli space. In [86], production of light strings was studied in the context
of DO-brane quantum mechanics; as we explain in §3.2.3, this has some similari-
ties, but important differences, with our case of space-filling branes. Scattering of

Dp-branes was also studied in [87].



8 Moduli Trapping at Enhanced Symmetry Points 36

Dine has suggested that enhanced symmetry points may provide a solution to
the moduli problem, as moduli which begin at an enhanced symmetry minimum
of the quantum effective potential can consistently remain there both during and
immediately after inflation [75]. One would still like to explain why the moduli
began at such a point. As we discuss in §3.7, our trapping mechanism provides a
natural explanation for this initial configuration.

Horne and Moore [88] have argued that the classical motion on certain moduli
spaces is ergodic, provided that the potential energy is negligible. This means that
all configurations are sampled given a sufficiently long time, and in particular a given
modulus will eventually approach an ESP. We will argue that quantum corrections
to the classical trajectory are significant, and indeed lead to trapping, whenever
the classical trajectory comes close to an ESP. Combining these two observations,
we expect that in the full, quantum-corrected system the moduli are stuck near an
ESP at late times. This means that the quantum-corrected evolution is not fully
ergodic: the dynamics of [88] (see also [89]) implies that the modulus will eventually
approach an ESP, at which point quantum effects will trap it there, preventing the

system from sampling any further regions of moduli space.

3.2 Moduli Trapping: Basic Mechanism

We will now describe the mechanism of moduli trapping in more detail. Our
discussion in this section will be based on simple estimates of particle production
and the consequent backreaction, generalizing the results of [66,67,68] to the case
of a complex field. A more complete analysis, along with numerical results, will be
presented in §3.3.

We will consider the specific model
1 - 1 g2 o 9
L= 50,90 + 50ux0"x — T |¢°x (3.2.1)

where a complex modulus ¢ = ¢; + i@y interacts with a real scalar field y. We
are restricting ourselves to the case of a flat moduli space which has a single ESP
at ¢ = 0, where x becomes massless, and a particularly simple form for the x
interaction. This simple case illustrates the basic physics and can be generalized as

necessary, for example to include supersymmetry.
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We will consider the case where ¢ approaches the origin with some impact

parameter u, following a classical trajectory of the form
@(t) = ip + vt. (3.2.2)

Classically, if x vanishes then (3.2.2) is an exact solution to the equations of motion,
and the presence of the ESP will not affect the motion of @.

Quantum effects will alter this picture considerably, because the trajectory
(3.2.2) will lead to the production of x particles, as we discuss in §3.2.1. The
backreaction of these particles on the motion of ¢ will then lead to trapping, as we
will see in §3.2.2. In §3.2.3 we will illustrate this effect with the example of colliding

D-branes.

3.2.1 Quantum Production of x Particles

Let us first study the creation of x particles without considering how they may
backreact to alter the motion of ¢. In this approximation we may substitute (3.2.2)
into the action (3.2.1) to get a free quantum field theory for x with a time-varying

mass

m2 (1) = g*l6(0)> (3.23)

This time dependence leads to particle production.

Consider a mode of the x field with spatial momentum k, whose frequency

w(t) = k% + g%o(t)[? (3.2.4)

varies in time. This mode becomes excited when the non-adiabaticity parameter
w/w? becomes at least of order one. This parameter vanishes as t — +o0, indicating
that particle creation takes place only while ¢ is near the ESP. It is straightforward

to see that, for the trajectory (3.2.2), w/w? can be large only in the small interval

|¢| < A¢ near the ESP, where
v
Ad =4/~ 3.2.5
o= 325)

k? 2,,2
NIOE < (3.2.6)
gv

and only for momenta
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When the quantity on the left hand side is small, particle creation effects are very
strong. They are strongest if the modulus passes sufficiently close to the ESP, i.e.
if

pSVv/g. (3.2.7)

In this case x modes whose momenta k fall in the range (3.2.6) will be excited.”
Qualitatively, we expect that the occupation numbers ny of such modes will vary
from zero (no real particles) for modes with vanishing non-adiabaticity to of order
unity for modes with very large non-adiabaticity. The full computation of ny given
in Appendix 3.A yields

k2 + g2 M2> |

p (3.2.9)

ng = exp (—7r

which agrees with this qualitative expectation. Note that even when (3.2.7) is
not satisfied, there is generically a nonvanishing, though exponentially suppressed,
number density of created particles; even in this case we will find a nontrivial
trapping effect.

Before discussing the backreaction due to the production of x particles, it is
crucial to control other effects from the x field. In particular, there is another im-
portant quantum effect which arises in motion toward the origin: loops of light x
particles give corrections to the effective action. These include both kinetic correc-
tions and the Coleman-Weinberg potential energy. The latter we will subtract by
hand, as we will explain in §3.3.1. This gives a good approximation to the dynamics
in any situation where kinetic energy dominates.

The kinetic corrections are organized in an expansion in v2/¢* [70]. The pa-
rameters controlling both remaining effects — the nonadiabaticity controlling par-

ticle production and the kinetic factor v?/¢* controlling light virtual x particles —

7 This may be checked as follows. We have argued that unsuppressed particle pro-
duction occurs only when the modulus is sufficiently close to the ESP, |¢| < 1/v/g. The

modulus remains within this window for a time

At ~ _vz/g ~ (gv) 7Y%, (3.2.8)

The uncertainty principle implies in this case that the created particles will have typical
energy E ~ (At)™! and thus momenta k ~ (gv — g2u2)1/ 2. This agrees with the estimate
(3.2.6).
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diverge as we approach the origin. However, at weak coupling, the nonadiabatic-
ity parameter is parametrically enhanced relative to the kinetic corrections, i.e.
v2/g%¢* > v?/¢p*, so we can sensibly focus on the effects of particle production.
More specifically, we can ensure that the kinetic corrections are insignificant by
including a sufficiently large impact parameter u.

We will also analyze the case of small u, including g = 0. This relies on the
plausible assumption that the effects of the kinetic corrections remain subdominant
as we approach very close to the origin, and that in particular in our weak coupling
case they do not by themselves stop ¢ from progressing through the origin. It would
be interesting to develop theoretical tools to analyze this issue more directly and

check this hypothesis.

3.2.2 Backreaction on the Motion of ¢

One might expect a priori that any description of the motion of ¢ which fully
incorporates backreaction from particle production would be immensely compli-
cated. Fortunately, this turns out not to be the case, and a simple description is
possible. The key simplification is that creation of x particles happens primarily
in a small vicinity of the ESP ¢ = 0, so one can treat this as an instant event of
particle production. These particles induce a very simple linear, confining potential
acting on ¢, V ~ |¢|. The motion of ¢ in this potential between successive events
of particle production can be described rather simply.

Let us now explore this in more detail. We have seen that as ¢ moves in moduli
space, some of its energy will be transferred into excitations of x. This leads to a
quantum vacuum expectation value (x2) # 0. As ¢ rolls away from the ESP, the
mass of the created x particles increases, further increasing the energy contained
in the x sector. At this point the backreaction of the x field on the dynamics of ¢
becomes important, and the moduli space approximation breaks down.

We will concentrate on the backreaction of the created particles on the motion
of the field ¢ far away from the small region of non-adiabaticity, i.e. for ¢ >
Ap ~ \/z% At this stage the typical momenta are such that the x particles are
nonrelativistic, & < /gv < g|¢|. Therefore the total energy density of the gas of x

particles is easily seen to be

b= [ (—g%nm TP ~ glé®in.. (3:2.10)
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where n, is the number density of x particles,

= o=

n (3.2.11)

As ¢ continues to move away from the ESP ¢ = 0, the number density of x particles
remains constant, as particles are produced only in the vicinity of ¢ = 0. However,
the energy density of the x particles grows as g|¢(t)|n,. This leads to an attractive
force of magnitude gn_, which always points towards the ESP ¢ = 0.

This force of attraction slows down the motion of ¢, and eventually turns ¢ back
toward the ESP. This reversal occurs in the vicinity of the point ¢, at which the
initial kinetic energy density 3¢ = 1v? matches the energy density p, contained
in x particles. We find

_

bu = —grzv 2™, (3.2.12)
g

Observe that for g < 1 the trapping length on the first pass is always much greater
than the impact parameter y, which means that the motion of the moduli after the
first impact is effectively one-dimensional.

After changing direction at ¢, ¢ falls back toward the origin. On this second
pass by the ESP, more x particles are produced, leading to a stronger attractive
force. This process repeats itself, leading ultimately to a trapped orbit of ¢ about
the ESP, in a trajectory determined by the effective potential and consistent with
angular momentum conservation on moduli space.

We conclude that, in this simplified setup, a scalar field which rolls past an
ESP will oscillate about the ESP with an initial amplitude given by (3.2.12).

In fact, in many cases the amplitude of these oscillations will rapidly decrease
due to the effect of parametric resonance, similar to the effects studied in the theory
of preheating [66], and the field ¢ will fall swiftly towards the ESP. This important
result will be described in more detail in §3.3.3.

So far we have not incorporated the effects of scattering and decay of the
x particles. These could weaken the trapping potential (3.2.10) by reducing the
number of x particles. Specifically, the energy density p, contained in a fixed
number of x particles (3.2.10) grows at late times, since the y mass increases as ¢
rolls away from the ESP. However, if the number density of x particles decreases

due to annihilation or decay into lighter modes, this mass amplification effect is
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lost. It is therefore important to determine the rate of decay and annihilation of
the x particles.

In Appendix 3.B we address these issues and demonstrate that the trapping
effect is robust for certain parameter ranges, provided that the light states are
relatively stable. This stability can easily be arranged in supersymmetric models,
and in fact occurs automatically in certain D-brane systems.

Rescattering effects, in contrast, may actually strengthen the trapping effect.
Once x particles have been created, they will scatter off of the homogeneous ¢ con-
densate, causing it to gradually decay into inhomogeneous, decoherent ¢ excitations

[66,90,91]. However, we will not consider this potentially beneficial effect here.

3.2.3 The Example of Moving D-branes

Before proceeding, it may be illustrative to discuss these results in terms of
a simple, mechanical example — a moving pair of D-branes. The moduli space of
a system of two D-branes is the space of brane positions. In terms of the brane
worldvolume fields the separation between the two branes can be regarded as a
Higgs field ¢. The off-diagonal components of the U(2) gauge field are the W
bosons. At the ESP of this system, ¢ = 0, the W bosons are massless. Away
from ¢ = 0 the W bosons acquire a mass by the Higgs mechanism, breaking the
symmetry group from U(2) down to U(1) x U(1). If we identify x with the W
field® and g% ~ g%,, ~ g, with the string coupling, then we find that the brane
worldvolume theory contains a term like (3.2.1). We therefore expect this system
to exhibit moduli trapping.

The trapping effect is a quantum correction to the motion of D-branes. As the
D-branes approach each other, the open strings stretched between them become ex-
cited. When the D-branes pass by each other and begin moving apart the stretched
open strings become massive and pull the D-branes back together. We depict this
in Figure 3.

This effect can be a significant correction to the dynamics of any system with
a number of mobile, mutua,liy BPS D-branes. Consider, for example, N D3-branes
which fill spacetime and are transverse to a compact six-manifold M. Let us take

these branes to begin with small, random, classical velocities in M. The classical

8 For simplicity we ignore the superpartner of the x boson.
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Fig. 3: This figure illustrates the creation of open strings as two D-branes
pass near each other. The left corner shows the target space picture of the
creation of the open strings.

dynamics of this system is similar to that of a nonrelativistic, noninteracting, clas-
sical gas. When we include quantum production of light strings, the branes begin
to trap each other, pairwise or in small groups, then gradually agglomerate until
only a few massive clumps of many branes remain.

One interesting consequence is that such a system will tend to exhibit enhanced
gauge symmetry, with gauge group U(N) if the final state consists of a single clump.
(Hubble friction may bring the branes to rest before the aggregation is complete,
in which case the gauge group will be a product of smaller factors; we will address
related issues in §3.4.1.) Another important effect of massive clumps is their grav-
itational backreaction: a large cluster of D-branes will produce a warped throat
region in M, which may be of phenomenological interest [92].

There are additional corrections to the classical moduli space approximation of
the D-brane motion which come from velocity-dependent forces. These correspond
in the D-brane worldvolume field theory to higher-derivative corrections generated
by virtual effects. When this field theory is at weak ’t Hooft coupling, open string

production is the dominant effect as one approaches an ESP. However, sufficiently
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large clusters of branes will be described by gauge theories at strong ’t Hooft cou-
pling, where the dynamics of additional probe branes is governed instead by the
analysis of [70].%

A similar interaction was studied in the context of the scattering of DO-branes in
[86]. There is a crucial difference between that system and the case of interest here,
in which the branes are extended along 3+ 1 dimensions. In the DO-brane problem,
there is a nontrivial probability for the DO-branes to pass by each other without
getting trapped: because the D0-brane is pointlike, there is some probability for no
open strings between them to be created or for those created to annihilate rapidly.
This is the leading contribution to the S-matrix. In our case, there is always a
nonzero number density of particles created. As we argue in Appendix 3.B, for
certain ranges of parameters these particles do not annihilate rapidly enough to

prevent trapping.

3.3 Moduli Trapping: Detailed Analysis

In the previous section we gave an intuitive explanation of the trapping effect,
which we will now describe in more detail. In §3.3.1 we will present the equations
of motion which govern the trajectory of the modulus ¢, including the backreaction
due to production of light particles. These equations are difficult to solve exactly,
so in §3.3.2 we will integrate the system numerically. In §3.3.3 we focus on the
special case 4 = 0, where the modulus rolls directly through the ESP. In this
case analytic techniques are available, and as we will see the trapping effect is

considerably stronger than in the u # 0 case.

3.83.1 Formal Description of Particle Production Near an ESP

The full equations of motion are found by coupling the classical motion of ¢ to
the time-dependent x quantum field theory defined by (3.2.1).1°

In general, the presence of an ESP will alter the moduli dynamics in two ways.
First, any x excitations produced by the mechanism described above will backreact

on the classical evolution of ¢. In particular, as we saw in (3.2.10), a non-zero

9 A further correction to our dynamics could arise if, as we will discuss in §3.5, the
branes keep moving until the system is beyond the range of effective field theory.

10 We remain in flat space quantum field theory, reserving gravitational effects for §3.4.
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expectation value (x?) # 0 arising from particle production effectively acts like a
linear potential for ¢ and drives the moduli towards the origin. This is the effect
we wish to describe. Second, virtual x particles generate quadratic and higher-
derivative contributions to the effective action as well as an effective potential for a
spacetime-homogeneous ¢.

As we discussed in §3.2.1, we can neglect the kinetic corrections in our weakly-
coupled situation. The interaction in (3.2.1) also induces important radiative cor-
rections to the effective potential. Specifically, it leads to a Coleman-Weinberg

effective potential and three UV-divergent terms:

Verf(8) = Aes + g°mls ;% + g*Aesro?. (3.3.1)

These UV divergences could be subtracted by hand using appropriate counterterms.
In a supersymmetric system these divergences are absent.

In order to isolate the effects of particle production at the order we are working,
we will subtract by hand the entire Coleman-Weinberg effective potential for ¢ that
is generated by one loop of x particles. This mimics the effect of including extended
supersymmetry, which is a toy case of interest in string theory and supergravity. For
the more realistic N’ = 1 supersymmetry in four dimensions, radiative corrections do
generically generate a nontrivial potential energy. Nevertheless, particle production
effects can still dominate the virtual corrections to the potential after spontaneous
supersymmetry breaking. The reason is that bosons and fermions contribute with
opposite signs in loops, but on-shell bosons and fermions, such as those produced
by the changing mass of x, contribute with the same sign to backreaction on ¢.

To describe the production of x particles, we first expand the quantum field x

in terms of Fock space operators as
X = arxk +aLxi (3.3.2)
k

where the xj are a complete set of positive-frequency solutions to the Klein-Gordon

equation with mass
m2(t) = g% (8)|". (3.3.3)

Expanding in plane waves
Xk = uk(t)e*? (3.3.4)
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the equation of motion is
(af +EE 4+ gz|¢(t)|2)uk =0. (3.3.5)

The modes (3.3.4) are normalized with respect to the Klein-Gordon inner product,

which fixes

whi — Uhug = —i. (3.3.6)

The wave equation (3.3.5) has two linearly-independent solutions for each k, so
in general there will be many inequivalent choices of positive-frequency modes x.
Each such choice of mode decomposition defines a set of Fock space operators via
(3.3.2), which in turn define a vacuum state of the theory. The wave equation
depends explicitly on time, so there is no canonical choice of Poincaré invariant
vacuum. Instead, there is a large family of inequivalent vacua for y.

We can choose a set of positive frequency modes u!™ that take a particularly

simple form in the far past,

s 1 e~ VRECIROPA ag y o (3.3.7)

\/2\/192 +9%9[?

This choice of mode decomposition defines a vacuum state |in). In the far past
the phases of the solutions (3.3.7) are monotone decreasing with ¢, indicating that
the state |in) has no particles in the far past. This state, known as the adiabatic
vacuum, evolves into a highly excited state as the modulus ¢ rolls past the ESP.
We can now write down the classical equation of motion for ¢ including the

effects of x production. Including a subtraction d,s, to be determined shortly, it is

(6% + *(6®) = ar) )0 = 0. (3.3.8)

The expectation value (x?) depends on time and is calculated in the adiabatic

vacuum |in). At time ¢

(inb? @)in) = [ (;‘F’T’;luzn(mz. (33.9)

where the u}"c” are determined by the boundary condition (3.3.7) in the far past.
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In order to subtract the Coleman-Weinberg potential, we must remove the
contribution to (x2?) coming from one loop of x particles, replacing the y mass-
squared with g%|#(¢)|2. That is, the subtraction dp; can be written as

d3k
6 / 3.3.10
" k? + 92|¢|2 (3:3:10)

With this form it is straightforward to see that when the impact parameter is very

large, ((x2) — &) is negligible and ¢ follows its original trajectory (3.2.2).
To summarize, the effects of quantum production of x particles on the classical

motion of the modulus ¢ are governed by:
(62 +9*(x®) = dun) )¢ = 0
(3? + K2+ g% ()]l =0 (3.3.11)

3
) = [ ol ©F,

The above equations of motion can be reformulated in terms of the energy
transferred between the two systems. In particular, it is straightforward to show
that the coupled equations (3.3.11) are equivalent to the statement

d d
g % — (in|H,|in). (3.3.12)
The left-hand side of (3.3.12) involves the classical energy of the rolling ¢(t) fields,

whereas the right hand side is an expectation value of the time-dependent xy Hamil-

—Hgy =

tonian calculated in quantum field theory. This is the more precise form of energy
conservation which applies to our rough estimate in §3.2.2.

Furthermore, the angular momentum on moduli space is conserved, since the
action (3.2.1) is invariant under phase rotations ¢ — ¢e®®. In the present case
(3.2.1), the x particles do not carry angular momentum, so the orbit of ¢ around
the ESP will have fixed angular momentum. The result is an angular momentum
barrier which keeps the modulus at a finite distance from the ESP.

More complicated scenarios allow for the exchange of angular momentum be-
tween ¢ and x. This includes the case of colliding D-branes, where the strings
stretching between the two D-branes can carry angular momentum. Moreover, as
we will see in §3.4, the situation changes once gravitational effects are included,
as angular momentum is redshifted away by cosmological expansion. This leads to
scenarios where the moduli are trapped exactly at the ESP, rather than orbiting

around it at some finite distance.
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3.3.2 Moduli Trapping: Numerical Results

The coupled set of integral and differential equations (3.3.11) governing the
trapping trajectory is hard to solve in general. Some analytic results can be obtained
through an expansion in the non-adiabaticity parameter w/w?, combined with a
systematic iteration procedure. However, as time goes on, the mass amplification
of the x particles makes higher-order terms asvwell as non-perturbative terms in the
adiabatic expansion crucial for the motion of the moduli. This makes it very hard
to proceed analytically to obtain the detailed evolution of the system.

We have therefore numerically integrated the coupled equations (3.3.11) in
Mathematica, using a discrete sum to approximate the momentum integral &, and

implementing the subtraction of the Coleman-Weinberg potential described above.

Fig. 4: This figure shows the evolution, in the complex ¢ plane, of a system
with parameters g2 = 20,4 = 0.3,v = 1. The field rolls in from the right
and gets trapped into the precessing orbit exhibited in the plot. The orbit
is initially an elongated ellipse, but gradually becomes more circular. In an
expanding universe, the field would lose its angular momentum, so that the
radius of the circle would eventually shrink to zero.

In Figure 4 we plot a trajectory for the case p > 0, where ¢ becomes trapped
in a spiral orbit around the ESP. The radius of the orbit varies with the parameters,

but the qualitative features shown are typical.
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Fig. 5: This shows one-dimensional trapping, in which ¢ passes directly
through the ESP ¢ = 0. The vertical axis is the real part of ¢, and the
horizontal axis is time. The amplitude of the oscillations decreases expo-
nentially as a result of parametric resonance, as we explain in §3.3.3.

In Figure 5 we plot the trajectory of a modulus which is aimed to pass di-
rectly through an ESP, with vanishing impact parameter. In this case the motion
becomes effectively one-dimensional, and the field moves directly through the ESP
¢ = 0. The trapping effect in this case is especially strong, and can be understood

analytically to come from resonant production of x particles, as we will now explain.

3.8.8 The Special Case of One-Dimensional Motion

In this section we will concentrate on the interesting and important special
case of one-dimensional motion, i.e. vanishing impact parameter u. Perhaps sur-
prisingly, this is a good approximation to the general case. Indeed, the results of
§3.2 demonstrate that trapping becomes exponentially suppressed when the impact

parameter 4 (the imaginary part of the moduli field) becomes greater than , / wig.

On the other hand, for u < , /;"5 the motion of the field ¢ stops at ¢, ~ 4—7‘;g‘§:ﬁ.

The ratio of ¢, to u in the regime where trapping is efficient (i.e. for p < ﬂlg) is

therefore

T g9°
Thus, in the case of efficient trapping and weak coupling, the ellipticity of the moduli

. 4 7/2
o AT (3.3.13)

orbit is very high, so that the motion is effectively one-dimensional.
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In the case p = 0 the number density of x particles created when the field ¢
passes the ESP is

n, = gz))z . (3.3.14)

At || > f , when the x particles are nonrelativistic, the mass of each particle is

equal to g|¢|, and their energy density is given by [67]

(2 )3

We have written |¢| because this energy does not depend on the sign of the field ¢.

p,(®) =gn |¢| = l¢| (3.3.15)

This will be very important for us in what follows.
One should note that, strictly speaking, the x particles have some kinetic energy

even at ¢ = 0, but for g < 1 this energy is much smaller than the kinetic energy of
¢ [67]:

2 2 gz i
p, (¢=0)~ in 7/2 5 =52 Pe (3.3.16)
This means that the energy of ¢ decreases only slightly when it passes through the
ESP ¢ = 0. Although the initial energy in x particles is small, this energy increases
with |¢|, p, ~ gn, |¢|, and creates an effective potential for ¢. The equation of

motion for ¢ in this potential is [66]:

2
—0. 3.3.17
¢+ gn, Tl ( )

The last term means that ¢ is attracted to the ESP ¢ = 0 with a constant force
proportional to n_ .

At some location ¢] the x energy density p, equals the initial kinetic energy
density 2q52 2v%; at this point ¢ stops and then falls back toward ¢ = 0.

On this second pass by the origin, the energy density of the x particles again
becomes much smaller than the kinetic energy of ¢. Energy conservation implies
that ¢ will pass the point ¢ = 0 at almost exactly the initial velocity v. Since the
conditions are almost the same as on the first pass, new x particles will be created,
i.e. n  will increase. The field ¢ will continue moving for a while, stop at some
point ¢35, and then fall back once more to the ESP, creating more particles. Because

each new collection of particles is created in the presence of previous generations of
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particles, the process occurs in the regime of parametric resonance, as in the theory
of preheating.

A detailed theory of this process was considered in [66]; see in particular Eqgs.
(59),(60). By translating the problem into a one-dimensional quantum mechanics
system (as in Appendix 3.A) with a particle scattering repeatedly across an inverted
harmonic potential, [66] calculated the multiplicative increase of the Bogoliubov
coefficients during each pass in terms of the reflection and transition amplitudes. In
application to our problem, the equations describing the occupation numbers of
particles with momentum & produced when the field passes through the ESP j + 1
times look as follows:

nitt = nd exp(2mul), (3.3.18)

where
) 1 .z
pl = oI (1 +2e~™ —25in6? e 58 1+ e—"€2) : (3.3.19)
i3

Here £2 = ’g“—f)— and 7 is a relative phase variable which takes values from 0 to 2.
In a cyclic particle creation process in which the parameters of the system change
considerably during each oscillation (which is our case, as will become clear shortly),
the phases 67 change almost randomly. As a result, the coefficient u; for small k
takes different values, from 0.28 to —0.28, but for 3/4 of all values of the angle
67 the coefficient p; is positive. The average value of u; is approximately equal
to 0.15. This means that, on average, the number density of x particles grows by
approximately a factor of two or three each time that ¢ passes through the ESP
¢ =0.

But this means that with each pass, the coefficient n_ in (3.3.15) grows by a
factor of two or three. It follows that the effective potential becomes two to three
times more steep with each pass. Correspondingly, the maximal deviation |¢}| from
the point ¢ = 0 exponentially decreases with each new oscillation. Since the velocity
of the field at the point ¢ = 0 remains almost unchanged until ¢ loses its energy to
the created particles, the duration of each oscillation decreases exponentially as well.
Therefore the whole process takes a time (O(10)¢;] /v, after which the backreaction
of the created particles becomes important, and the field falls to the ESP.

This process is very similar to the last stages of preheating, as studied in

[66]. The main difference is that in the simplest models of preheating the field



8 Moduli Trapping at Enhanced Symmetry Points o1

oscillates near the minimum of its classical potential. In our case the effective
potential is initially absent, but a potential is generated due to the created particles.
This is exactly what happens at the late stages of preheating, when the effective
potential (with an account taken of the produced particles) becomes dominated by
the rapidly-growing term proportional to |¢|; see the discussion in Section VIII B
of [66].

We would like to emphasize that until the very last stages of the process,
the backreaction of the created particles can be studied by the simple methods
described above. At this stage the total number of created particles is still very
small, but their number grows exponentially with each new oscillation. This leads
to an exponentially rapid increase of the steepness of the potential energy of the field
¢ (3.3.15) and, correspondingly, to an exponentially rapid decrease of the amplitude
of its oscillations. This extremely fast trapping of ¢ happens despite the fact that
at this first stage of oscillations the total energy of ¢, including its potential energy,
remains almost constant.

Once the amplitude of oscillations becomes smaller than the width of the nona-
diabaticity region, |¢p(t)| < A¢d ~ \/17/— , one can no longer assume that the number
of particles will continue to grow via a rapidly-developing parametric resonance.
The amplitude of the oscillations is given by %, so the amplitude becomes
(9(\/1_1—/—53) when the total number of the produced particles grows to

ny ~ v*/2g7Y2 (3.3.20)

Note that the typical energy of each x particle at |¢(t)| ~ \/z% is of the same
order as its kinetic energy O(,/gv). One can easily see that the total energy density
of particles x at that stage is roughly /gon, ~ O(v?), i.e. it is comparable to the
initial kinetic energy of ¢.

Thus, our estimates indicate that the regime of the broad parametric resonance
ends when a substantial part of the initial kinetic energy of ¢ is converted to the
energy of the x particles, and the amplitude of the oscillating field ¢ becomes

comparable to the width of the nonadiabaticity region,

|6 ~ Ap = /v/g . (3.3.21)

We will use these estimates in our discussion of the cosmological consequences

of moduli trapping. In order to obtain a more complete and reliable description of
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the last stages of this process one should use lattice simulations, taking into account
the rescattering of created particles [90,91]. An investigation of a similar situation
in the theory of preheating has shown that rescattering makes the process of particle
production more efficient. This speeds up the last stages of particle production and
leads to a rapid decay of the field ¢ [93], which in our case corresponds to a rapid

descent of ¢ toward the enhanced symmetry point.

3.4 Trapped Moduli in an Expanding Universe
3.4.1 Rapid Trapping

In this section we will study the conditions under which the trapping mechanism
in quantum field theory survives the effects of coupling to gravity in an expanding
universe.

First, we should point out one very beneficial effect of cosmological expansion.
The field-theoretic mechanism presented above often leads to moduli being trapped
in large-amplitude fluctuations (3.2.12) around an ESP when y # 0. On timescales
where the expansion is noticeable, Hubble friction will naturally extract the energy
from this motion, drawing the modulus inward and leading the modulus to come to
rest at the ESP.

Let us now ask whether the expansion of the universe can impede moduli
trapping. Consider a system of moduli coupled to gravity, with the fields arranged
to roll near an ESP. For simplicity we will consider FRW solutions with flat spatial
slices,

ds® = dt® — a(t)%dz>. (3.4.1)

The Friedman equation determining a(t) is

1

3H? = —p
My

(3.4.2)
where H = a/a and p is the energy density of the moduli.

The trapping effect will be robust against cosmological expansion if the
timescale governing trapping is short compared to H~!, i.e. if H < v/, where
¢« is given by (3.2.12). Assuming that the potential energy of the moduli is non-

negative, this implies that
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43 pl/2
61729572 M,

This condition suffices to ensure that trapping is very rapid.

b < V6M, — emIRY 1 3.4.3
p

If this condition is satisfied, trapping occurs in much less than a Hubble time,
in which case the analysis of §3.2 and §3.3 remains valid. We will show in §3.4.3 that
even when (3.4.3) is not satisfied, trapping does still occur, although with somewhat

different dynamics.

3.4.2 Scanning Range in an Ezpanding Universe

An important effect of the gravitational coupling is that during the expansion
of the universe, the energy density in produced x particles dilutes like 1/a3 if they
are non-relativistic and like 1/a* if they are relativistic. The energy in coherent
motion of ¢, however, has the equation of state p = p and therefore dilutes much
faster, as 1/a®.

This effect reduces the range of motion for the moduli even before they en-
counter any ESPs. Hubble friction slows the progress of any rolling scalar field, and
if the distance between ESPs is sufficiently large then a typical rolling modulus will
come to rest without ever passing near an ESP. In order to apply our results to the
vacuum selection problem, we will need to know how large a range of ¢ we can scan
over in the presence of Hubble friction. This can be obtained as follows [94].

If we are in an FRW phase,
a(t) = agt? (3.4.4)
then the equation of motion for ¢ (ignoring any potential terms)
é+3Hd=0 (3.4.5)

has solutions of the form
to

. sﬁ
We can integrate this to determine how far the field rolls before stopping.
Let us first consider the case § = 1/3, which corresponds to the equation of
state p = p. This includes the case where the coherent, classical kinetic energy of ¢

drives the expansion. The value of ¢,

(t) = vto log (%) (3.4.7)
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diverges at large t. Thus ¢ can travel an arbitrarily large distance in moduli space.

In the more general case § > 1/3 the field will travel a distance

v B
H(to) 36 - 1

o(t) — ¢(to) = (3.4.8)

before stopping.

In order to be in a phase with # > 1/3, the kinetic energy of ¢ must not be
totally dominant; that is, we must have %qﬁz < p, where p = 3M2H? is the total
energy density appearing on the right hand side of the Friedman equation. Plugging
this into (3.4.8) we obtain the constraint

o(t) — ¢(to) < \/éMpr_r

(3.4.9)

Let us consider a specific example. Suppose that we start at o with kinetic
energy domination: Ky/pg = 1 — €, € < 1, in some region of the universe that
can be modelled as an expanding FRW cosmology. The kinetic energy drops like

K ~ po(ag/a)® ~ po(to/t)?, while the other components of the energy dilute like

p(t) = epolto/t) ™, (3.4.10)

with w < 1. The universe will stop being kinetic-energy dominated at the time
te = toe~ /(=) at which point, according to (3.4.7), the modulus has travelled a

distance

Blte) — B(to) =~ . —utologe. (3.4.11)

After this the field keeps moving and covers an additional range

B(t.) — d(te) = V3M, 2

pEZ]__—u))‘ (3.4.12)

To get a feel for the numbers, consider the case where vty ~ M, € ~ 1072,
and w = 0. Then ¢ will travel a total distance ¢(t.) — ¢(to) ~ 6M,, in field space,
which is not particularly far. However, as we will discuss in §3.6, certain moduli
spaces of interest have a rich structure on sub-Planckian scales, so in these cases
there is a good chance that the modulus will encounter an ESP and get trapped
before Hubble friction brings the system to rest.

There is another natural possibility if we assume low-energy A/ = 1 supersym-

metry. If the moduli acquire their potentials from supersymmetry breaking then
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there is a large ratio between the Planck scale and the scale of these potentials,
leading to significant scanning ranges. Specifically, consider a contribution to the
energy density coming from a potential energy V at the supersymmetry-breaking
scale. If the initial kinetic energy of the moduli is Planckian and the supersymmetry-
breaking scale is TeV then there will be a prolonged phase in which kinetic energy
dominates, since € = V/M][‘,1 ~ 107%4, This allows ¢ to scan a significantly super-

Planckian range in field space.

3.4.8 Trapping in an Expanding Universe

We are now in a position to combine all the relevant effects and consider trap-
ping during expansion of the universe. For simplicity, we will concentrate on the
case of effectively one-dimensional motion, u < \/1% Suppose that, taking into
account Hubble friction, the modulus field passes in the vicinity of the ESP at some
moment %o, so that x particles are produced, with n, (to) = %. We will now
determine the remaining evolution including both our trapping force and Hubble
friction. After the particles have been produced, the field ¢ becomes attracted to-
ward ¢ = 0 by a force gn,, so taking into account the dilution of the produced

particles, for ¢ > 0 the equation of motion is

3
¢+ 3H = —gn, (to) (‘;(;t‘)))) (3.4.13)

For the general power law case, a(t) o t%, this becomes

g

b+ 3?45 = —gny (to) (to/t)% . (3.4.14)

The general solution of this equation is

_ —38+1 —38+1 gny(t )tz gnx(t )
B(t) = B(to) + c(tyPHt — =38+ 4 (2X_ §ﬂ)0 T (2- 30[3) (to/t)%P4%  (3.4.15)

where c is some constant. In the important case § = 2/3, which corresponds to a

universe dominated by pressureless cold matter, the general solution is
-1 _ 4—1 2 t
¢ =¢0) +c(ty” —t7 ") — gnytslog ral (3.4.16)
0

According to these solutions, in a universe dominated by matter with non-negative

pressure (i.e. 8 < 2/3) the field ¢ moves to —oco as t — oo.
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Of course, as soon as the field reaches the point ¢ = 0, this solution is no longer
applicable, since the attractive force changes its sign (the potential is proportional
to |@|). The result above simply means that the attractive force is always strong
enough to bring the field back to the point ¢ = 0 within finite time. Then the field
moves further, with ever decreasing speed, turns back again, and returns to ¢ =0
once again. The amplitude of each oscillation rapidly decreases due to the combined
effect of the Hubble friction and of the (weak) parametric resonance. This means
that once ¢ passes near the ESP, its fate is sealed: eventually it will be trapped
there.

3.4.4 Efficiency of Trapping

It is useful to determine what fraction of all initial conditions for the moving
moduli lead to trapping. There are several constraints to be satisfied. First of all, if
the impact parameter y is much larger than \/17 , the number of produced particles
will be exponentially small, and the efficiency of trapping will be exponentially
suppressed. Of course, eventually ¢ will fall to the enhanced symmetry point, but
if this process takes an exponentially large time, the trapping effect will be of no
practical significance. Thus one can roughly estimate the range of interesting impact
parameters to be O(1/v/g).

Another constraint is related to the fact that even if initially the energy density
of the universe was dominated by the moving moduli, as discussed in §3.4.2, these
fields can only move the distance given by (3.4.11),(3.4.12). This distance depends
on the initial ratio 1 — € of kinetic energy to total energy, leading to a scanning
range C'M,, in field space, where the prefactor C' is logarithmically related to e.

Thus, the field becomes trapped only if there is an enhanced symmetry point
inside a rectangle with sides of length C'M,, along the direction of motion and width
O(y/v/g) in the direction perpendicular to the motion.

Interestingly, the total area (phase space) of the moduli trap

Strap ~ C’Mp\/g (3.4.17)

increases as the coupling decreases. This implies that the efficiency of trapping
grows at weak coupling. Although this may seem paradoxical, it happens because

the mass of the x particles is proportional to the coupling constant and (fixing the
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other parameters) it is easier to produce lighter particles. On the other hand, if
g becomes too small, the trapping force gn, ~ g°/2v3/2 becomes smaller than the
usual forces due to the effective potential, which we assumed subdominant in our
investigation.

So far we have studied the simplest model where only one scalar field becomes
massless at the enhanced symmetry point. Let us suppose, however, that N fields
become massless at the point ¢ = 0. If these fields interact with ¢ with the same
coupling constant g, then particles of each of these fields are produced, and the
trapping force becomes N times stronger. In other words, the trapping force is

proportional to the degree of symmetry at the ESP.

3.5 String Theory Effects

It is interesting to ask if there is any controlled situation where string-theoretic
effects become important for moduli trapping. Here we will simply list several
circumstances in which stringy and/ or quantum gravity effects might come into
play, as well as some constraints on these effects. In Chapter 4 we will revisit this

subtle and interesting situation.

3.5.1 Large x Mass

One way stringy and quantum gravity effects could become important in the
colliding D-brane case is if the x mass at the turnaround point is greater than string
scale, g¢. > m,. This can happen even if the velocity is so small that during the
non-adiabatic period near the origin only unexcited stretched strings are created.

Then, as in our above field theory analysis, we have

4 3
gu = 93—7;2111/2@“9#2/”. (3.5.1)

In this case, the full system includes modes, namely the created x strings, which are
heavier than the string oscillator mode excitations on the individual branes. This
means that the system as a whole cannot consistently be captured by pure effective
field theory. However, it may still happen that the created stretched strings are
relatively stable against annihilation or decay into the lighter stringy modes. Their

annihilation cross section is suppressed by their large mass, as discussed in Appendix



8 Moduli Trapping at Enhanced Symmetry Points 58

3.B.}! Furthermore, an individual stretched string will not directly decay if it is the
lightest particle carrying a conserved charge.

This latter situation happens in the simplest version of a D-brane collision.
The created stretched string cannot decay into lighter string or field theory modes

because it is charged and they are not.

3.5.2 Large v and the Hagedorn Density of States

If we increase the field velocity ¢ = v, then we may obtain a situation in which
excited string states are produced as ¢ passes the ESP. The number of string states
produced in this process is enhanced by the Hagedorn density of states, so the

Bogoliubov coefficients have the structure

1Bu]? = Ze;/—i—ge_w(kunmygzm)/(gv) (3.5.2)
n

where in the D-brane context, g = ,/gs is the Yang-Mills coupling on the D-branes.
Because of the e—™ms/(9v) suppression in the second factor, this effect is only

significant if gv > m?2.
However, in the case of colliding D-branes, and any situation dual to it, there
is a fundamental bound on the field velocity from the relativistic speed limit of
the branes. That is, for large velocity one must include the full Dirac-Born-Infeld

Lagrangian for ¢, which takes the form

S = L d*zq/1 2& 3.5.3
=" | CHT T (3:5:3)

This action governs the nontrivial dynamics of ¢ for velocities approaching the
string scale, and in particular, it reflects the fact that the brane velocity géa’ must
be less than the speed of light in the ambient space. Applied to our situation,
(3.5.3) implies that the D-brane velocity cannot be large enough for the Hagedorn
enhancement (3.5.2) to substantially increase the trapping effect.

However, in the presence of a large velocity, the effective mass of the stretched
string also has important velocity-dependent contributions [70]. As we will explain
in Chapter 4, this will increase the non-adiabaticity near the origin and dramatically

enhance the particle production effect.

11 For stringy densities of stretched strings, there could be additional corrections to the

annihilation rate, but we will not consider this possibility.
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3.5.3 Light Field-Theoretic Strings

A further possibility is to formally reduce the tension of strings by considering
strings in warped throats, strings from branes partially wrapped on shrinking cycles,
and the like. In these situations, the strings are essentially field-theoretic, though
string theory techniques such as AdS/CFT and “geometric engineering” of field

theories may provide technical help in analyzing the situation.

3.6 The Vacuum Selection Problem

We can now apply the ideas of the previous five sections to the cosmology of
theories with moduli.

A natural application of the moduli trapping effect is to the problem of vacuum
selection. One mechanism of vacuum selection is based on the dynamics of light
scalars during inflation. Moduli fields experience large quantum fluctuations during
inflation and can easily jump from one minimum (or valley) of their effective poten-
tial to another. It was suggested long ago that such processes may be responsible,
e.g., for the choice of the vacuum state in supersymmetric theories [95] and for the
smallness of the cosmological constant [96]. The probability of such processes and
the resulting field distribution depends on the details of the inflationary scenario
and the structure of the effective potential [97].

The mechanism that we consider in this chapter is, in a certain sense, com-
plementary to the inflationary mechanism discussed above. During inflation the
average velocities of the fields are very small, but quantum fluctuations tend to
take the light scalar fields away from their equilibrium positions. On the other
hand, after inflation, the fields often find themselves not necessarily near the min-
ima of their potentials or in the valleys corresponding to the flat directions, but on
a hillside. As they roll down, they often acquire some speed along the valleys, see
e.g. [68]. At this stage (as well as in a possible pre-inflationary epoch) the moduli
trapping mechanism may operate.

This mechanism may reduce the question of how one vacuum configuration is
selected dynamically out of the entire moduli space of vacua to the question of how
one ESP is selected out of the set of all ESPs. This residual problem is much simpler

because ESPs generically comprise a tiny subset of the moduli space.
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3.6.1 Vacuum Selection in Quantum Field Theory

In pure quantum field theory, discussed in §3.2, we saw that if a scalar field ¢
is initially aimed to pass near an ESP, then ¢ gets drawn toward the ESP and is
ultimately trapped there. This appears to be a basic phenomenon in time-dependent
quantum field theory: moduli which begin in a coherent classical motion typically
become trapped at an ESP. This leads to a dynamical preference for ESPs.

In many of the supersymmetric quantum field theories that have been studied
rigorously [72], the moduli space contains singular points at which light degrees of
freedom emerge. We have seen that moduli can become trapped near these points

given suitable initial conditions.

3.6.2 Vacuum Selection in Supergravity and Superstring Cosmology

Compactifications of M/string theory which have a description as a low energy
effective supersymmetric field theory can have a natural separation of scales: the
string or Planck scale can be much larger than the energy scales in the effective
field theory potential. Thus, the intrinsically stringy effects of §3.5 are unimportant
in this limit. On the other hand, the effects of coupling to gravity given in §3.4
continue to provide a crucial constraint, as we will now discuss.

First of all, as in the case of pure quantum field theory, there exist very instruc-
tive toy models with extended supersymmetry, for which there is no potential at
all on the moduli space. For these examples, in situations where higher-derivative
corrections to the effective action are suppressed, a rolling scalar field has the equa-
tion of state p = p. This corresponds to the § = 1/3 case (3.4.7) of §3.4, for which
one can scan an arbitrarily large distance in field space. Therefore, in this case, the
trapping effect applies in a straightforward way to dynamically select the ESPs for
regimes in which (3.4.3) is also satisfied.

More generally, however, one may wish to implement cosmological trapping in
theories with some potential energy. In this case the requirement that the scanning
range of ¢ (as constrained by Hubble friction in §3.4) should be large enough to cover
multiple vacua is an important constraint. The absolute minimum requirement
is that the scanning range is sufficient for the moduli to reach one ESP before
stopping from Hubble friction; but to address the vacuum selection problem one

should ideally scan a number of ESPs.
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One context in which this can happen is in a phase in which the kinetic energy
of the rolling scalar fields dominates the energy density of the universe so that the
B = 1/3 result (3.4.7) applies. This may occur in a pre-inflationary phase in some
patches of spacetime, though it is subject to the stringent limitation in duration
given in (3.4.11). Given such a phase, the field will roll around until it gets trapped
at an ESP.

During the ordinary radiation-dominated (8 = 1/2) and matter-dominated
(B = 2/3) eras, the more stringent constraint (3.4.9) applies. As we indicated in
§3.4, this scanning range is not large in Planck units, so we can usefully apply moduli
trapping to the problem of vacuum selection in these eras only if the vacuum has
appropriately rich structure on sub-Planckian scales. In other words, the average
distance in moduli space between ESPs should be sub-Planckian.

Gravitationally-coupled scalars ¢ generically have a potential energy V(¢/M,)
which has local minima separated by Planck-scale distances. In this cases, the lim-
ited scanning range during the 8 # 1/3 cosmological eras prevents our mechanism
from addressing the vacuum selection problem. However, it is generic for compact-
ification moduli to have special ESPs where the gravitationally-coupled system is
enhanced to a system with light field theory degrees of freedom. Given a rich enough
effective field theory in this ESP region, there will generically be interesting vacuum
structure on sub-Planckian distances. In this sort of region moduli trapping will

pick out the ESP vacua of the system.

3.6.3 Properties of the Resulting Vacua

Let us now consider the qualitative features of the vacua selected by moduli
trapping, assuming that the constraint imposed by Hubble friction has been evaded
in one of the ways described above.

First of all, it is important to recognize that what we have called ESPs may well
be subspaces of various dimensions, not points. For example, in toroidal compacti-
fication of the heterotic string, there is one enhanced symmetry locus for each circle
in the torus — new states appear when the circle is at the self-dual radius. Each of
these loci is codimension one in the moduli space, but of course their intersections,
where multiple radii are self-dual, have higher codimension.

When moduli trapping acts in such a system of intersecting enhanced symmetry

loci, we expect that the moduli will first become trapped on the locus of lowest
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codimension, but retain some velocity parallel to this locus. Further trapping events
can then localize the modulus to subspaces of progressively higher codimension.
The final result is that the moduli come to rest on a locus of maximally enhanced
symmetry.

The simplest examples of this phenomenon are toroidal compactification, in
which all circles end up at the self-dual radius, and the system of N D-branes
discussed in §3.2.3, in which the gauge symmetry is enhanced to U(N).12

Quite generally, we expect that within the accessible range in field space, taking
into account Hubble friction and the form of the potential, moduli trapping will
select the ESPs with the largest number of light states, which often corresponds to
the highest degree of symmetry.!3

In some very early epoch the rolling moduli can have large velocities, so trap-
ping can occur even at points where the “light” states x have a relatively large
mass, and the enhanced symmetry is strongly broken. However, Hubble friction
inevitably slows the motion of the moduli. Thus, trapping at late times is possible
only at ESPs with weakly-broken symmetries and very light particles. One could
speculate about a possible relation of this fact to the mass hierarchy problem.

Note that even though we emphasized the natural role of enhanced symmetry
in moduli trapping, in fact the only strict requirement was the appearance of new
light particles at the trapping points. In some of the many vacua of string theory,
particles may be light not because of symmetry but because of some miraculous
cancellations. Invoking such unexplained cancellations to produce a small mass
is highly undesirable. However, moduli trapping may ameliorate this problem, as
those rare points in moduli space where the cancellation does happen are actually

dynamical attractors.

12. A toy model for this situation, in the case of three D-branes, has the potential
923 [xf[qsz — ¢s)® + x3|b1 — b3)> + X351 — ¢2|2], where ¢; and x; are six different fields.
Suppose that ¢2 moves through the point ¢2 — ¢p3 = 0. This creates x1 particles and traps
the system at ¢2 = ¢3, where x1 is massless. Subsequent motion of ¢ can trap it at the
point ¢1 = ¢2 = ¢z, making the remaining fields x2 and xs massless.

13 Moreover, as we discuss in Appendix 3.B, the trapping effect is far more effective at
ESPs for which the x particles do not decay rapidly. We therefore expect moduli trapping
to select ESPs which have relatively stable light states.
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Thus, the attractive power of symmetry and of light particles may have impli-
cations for questions involving the distribution of vacua in string theory (3,98,5,99].
Given the strong preference we have seen for highly-enhanced symmetry, the distri-
bution of all string vacua obtained by a naive counting, weighted only by multiplic-
ity, may be quite different from the distribution of vacua produced by the dynamical
populating process discussed in this chapter. It is therefore very tempting to spec-
ulate that some of the surprising properties of our world, which might seem to be
due to pure chance or miraculous cancellations, in fact may result from dynamical

evolution and natural selection.

3.7 The Moduli Problem

One aspect of the moduli problem is that reheating and nucleosynthesis can
be corrupted by energy locked in oscillations of the moduli. The source of the
problem is that the true minima of the low-temperature effective potential appli-
cable after inflation do not coincide with the minima of the Hubble-temperature
effective potential which is valid during inflation. It follows that moduli which sit
in minima of the latter during inflation will find themselves displaced from their
true, low-temperature minima once inflation is complete. The energy stored in
this displacement, and in the resulting oscillations about the true minimum, poses
problems for nucleosynthesis.

One way to address this problem is to permit initial displacements of the mod-
uli, as described above, but somehow arrange that the oscillating moduli decay very
rapidly to Standard Model particles. Alternatively, one could fix the moduli at a
scale high enough that the Hubble temperature during inflation does not destabilize
them. This may work in string models with stabilized moduli such as [98,100,5,20].

Another approach to this problem [75] is to posit that the moduli sit at an
enhanced symmetry point minimum of the finite-temperature effective potential
during inflation. Then, when inflation ends, the moduli are still guaranteed to be
at an extremum of the effective potential. If this extremum is a minimum then the
moduli have no problematic oscillations after inflation. Our trapping mechanism
allies nicely with this idea by providing a preinflationary dynamical mechanism
which explains the initial condition assumed in this scenario. That is, in parts of
the universe where ¢ kinetic energy dominates well before inflation, the trapping
effect can explain why the moduli find themselves in ESP minima at the onset of

inflation.
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3.8 Trapped Inflation and Acceleration of the Universe

The main motivation of our investigation was to study the behavior of moduli
in quantum field theory and string theory. However, the results we have obtained
have more general applicability. To give an example, in this section we will study
the cosmological implications of the trapping of a scalar field ¢ with a relatively
steep potential.

Consider the theory of a real scalar field ¢ with the effective potential m2¢? /2.
In the regime ¢ < M, the curvature of the effective potential is greater than H?2,
with H the Hubble parameter, so ¢ falls rapidly to its minimum, and inflation does
not normally occur.

We will assume that ¢ gives some bosons x a mass g|¢ — ¢1|. Let us assume
that ¢ falls from its initial value ¢g = ¢1(1 + ) < M), with vanishing initial speed.
If we take o < 1 and neglect for the moment the expansion of the universe, then ¢
arrives at ¢; with the velocity v = v2ame;.

As ¢ passes ¢1, it creates x particles with number density n, = (gv)%/2/8r3.
After a very short time these particles become nonrelativistic, and further motion
of ¢ away from ¢; requires an energy g|¢ — ¢1|n,. In other words, the effective

potential becomes

1 | 1 v3/2
V(¢) = —2-m2¢2 + gny|é — ¢1] = §m2¢2 + 95/2@@ — ¢1]. (3.8.1)
For ¢°/2 8;;3/; > ¢1, the minimum of the effective potential is not at ¢ = 0, but at
the point ¢, where the particle production takes place. The condition g%/2 8;;3:;
¢1 implies that
m < 27927=64503/2¢, . (3.8.2)

Thus, if the mass of ¢ is sufficiently small, the field will be trapped near the point

é1.
To give a particular example, take ¢y ~ M,/2, a ~ 1/4. Then ¢ is trapped

near ¢; if
m < 107%¢° M, (3.8.3)

For a very light field, such as a modulus with m ~ 102 GeV ~ 10716M,, this

condition is readily satisfied unless g is very small.
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Once the field is trapped, it starts oscillating around ¢; with ever-decreasing
amplitude, creating new y particles in the regime of parametric resonance. Even-
tually ¢ transfers a large fraction of its energy to x particles. One can easily check
that in this model the fall of ¢ to the point ¢; and the subsequent process of creation
of x particles occurs within a time smaller than H~!, so one can neglect expansion
of the universe at this stage. This process is therefore governed by the theory de-
scribed in §3.3. In particular, we may use the estimate (3.3.20) of the total number
of x particles produced in the process. At the end of the particle production, the
correction to the effective potential becomes much larger than at the beginning of
the process:

AV = gl¢ — lny ~ v*/2g"2|¢ — ¢4 , (3.8.4)

Subsequent expansion of the universe dilutes the density of x particles as a3,

which eventually makes the correction to the effective potential small, so that ¢
starts moving down again. The field ¢ remains trapped at ¢ = ¢; until the scale

factor of the universe grows by a factor

1/6
a ~ ot/ (ﬂ) (3.8.5)
m

since the beginning of the trapping process.

In the beginning of the first e-folding, the kinetic energy of the x particles and of
the oscillations of ¢ is comparable to the potential energy of ¢. However, the kinetic
energy rapidly decreases, and during the remaining time the energy is dominated
by the potential energy V(¢;). This means that the trapping of ¢ may lead to a
stage of inflation or acceleration of the universe, even if the original potential V(¢)
is too steep to support inflation.

Let us consider various possibilities for the scales in the potential, to get some
simple numerical estimates for the duration of inflation. For example, if we take
a,g = 0(1), ¢1 ~ M, and m ~ 102 GeV, then the scale factor during a single trap-
ping event will grow by a factor of €°. If one considers a model with m ~ 10730M,,,
which can arise in a radiatively stable manner (as in the “new old inflation” model
[81]), the scale factor during a single trapping event can grow by a factor of e!l.
Finally, if the moduli mass is of the same order as a typical mass taken in theories of

quintessence, m ~ 10_60Mp, we can have an accelerated expansion of the universe
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by a factor €3, in a sub-Planckian regime of field space, just from trapping. (In
this last case, as in ordinary quintessence models, tuning is required.)

Thus, the stage of inflation in this simple model is shorter than the usual 60 e-
folds, but it may nevertheless be very useful for initiating a first stage of inflation in
theories where this would otherwise be impossible, or for diluting unwanted relics at
the later stages of the evolution of the universe. Moreover, this scenario can easily
describe the present stage of acceleration of the universe.

One can also make the effect more substantial by constructing a more compli-
cated scenario, consisting of a chain of N particle production events at locations
¢ = ¢;, where some fields x; become light. The field ¢ may be trapped and enter
the stage of parametric resonance near each of these points. Correspondingly, the
universe enters the stage of inflation many times. One could arrange for 60 e-folds

of inflation by taking, for example, m ~ 10?2 GeV, N ~ 10.
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Fig. 6: The D-brane picture of a series of trapping events.
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A D-brane example provides a useful geometrical model of this process. Sup-
pose we have an observable brane B and another brane A approaching it. Suppose
also that there are a number of other branes in between A and B. Each time the
moving brane passes through one of the standing intermediate branes, stretched
strings are created and slow the motion of A. The cumulative effect of a number
of standing branes is perceived on the observable brane as a slowing-down of the
motion of A due to the interactions.

One should note that inflation in our scenario is rather unusual: the inflaton ¢
rolls a short distance, then oscillates for a long time, but with period much smaller
than H~!, then rolls again, etc. This may lead to peculiar features in the spectrum
of density perturbations. One can avoid these features if the points ¢; are very
close to each other, and each of them does not stop the rolling of ¢ but only slows
it down. In this case, particle production will not lead to parametric resonance, so
it is not very important to us whether the fields x; are bosons or fermions, as long
as their masses vanish at ¢;.

This scenario is similar to the string-inspired thermal inflation considered in
[76] (see also [101]), but our proposal does not require thermal equilibrium. The
main effect which supports inflation in our scenario is based on particle production
and has a nonperturbative origin. (A closely-related mechanism uses the corrections
to the kinetic terms in the strong coupling regime, where the particle production is
suppressed [70].) We hope to return to a discussion of this possibility in a separate

publication.

3.9 Conclusion

We have argued that the dynamics of rolling moduli is considerably modified
due to quantum production of light fields. In flat space quantum field theory,
moduli typically become trapped in orbits around loci which have extra light degrees
of freedom. In the presence of gravity, Hubble friction limits the field range the
system samples, but any trapping events which do occur are enhanced by Hubble
friction, which rapidly brings the modulus to rest at an ESP. Moduli trapping may
aid in solving the cosmological moduli problem by driving moduli to sit at points
of enhanced symmetry. Furthermore, the trapping of a scalar field which has a

potential can lead to a short period of accelerated expansion in situations with
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steeper potentials than would otherwise allow this. Finally, the trapping effect has
important consequences for the problem of vacuum selection, as it can reduce the
problem to that of selecting one point within the class of ESPs. An intriguing
feature of this process is that the trapping is more efficient near points with a large

number of unbroken symmetries.

3.A Particle Production Due to Motion on Moduli Space

In this section we will calculate the quantum production of y particles, ignoring
the effect of backreaction on the motion of ¢.

A mode of x with spatial momentum k& obeys the wave equation
(02 + 82 + g2(u® + v*#%) Ju, = 0. (3.A.1)

There are two solutions to this equation, u{® and ug“*, associated to vacuum states
with no particles in the far past and no particles in the far future, respectively.

These two sets of modes are related by a Bogoliubov transformation
ul® = apudtt + Brugttt. (3.A.2)

If we start in the state with no particles in the far past, then one can calculate the

number density of particles in the far future to be
ng = | Bl (3.A.3)

in the k** mode. This may be evaluated by solving equation (3.A.1) in terms of
hypergeometric functions (see e.g. §3.5 of [77]), but we will present here a more
physical argument.

One can view (3.A.1) as a one dimensional Schrédinger equation for particle
scattering/penetration through an inverted parabolic potential. If we send in a wave
¥i" from the far right of the potential, part of it will penetrate to the far left, with
an asymptotic amplitude Tx12"*, and part of it will be reflected back to the right,
with an asymptotic amplitude Rgyi™*, Whefe Ty and Ry are the transmission and

reflection amplitudes.4

* jout*

14 The modes in the two problems are related by ul(t — —00) = Ty 2ut™, etc.
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The Bogoliubov coefficient in (3.A.2) is determined in terms of these transmis-
sion and reflection amplitudes via

_ B

Bx = T (3.A4)

Now we use a trick from quantum mechanics to relate R and T using the WKB
method. If we are moving along the real time coordinate, the WKB form of the
solution ui"(¢) will be violated at small ¢, due to non-adiabaticity. However, if we
take t to be complex then we can move from ¢t = —o0 to t = 400 along a complex

contour in such a way that the WKB approximation

P (t) ~ L R L (3.A.5)
\/2\/k2 + 92(/1/2 + ’U2t2)

is valid. Here the integral [ *dt' becomes a contour integral along a semicircle of
large radius in the lower complex ¢ plane. For large |t|, we can estimate the phase

integral in (3.A.5) by expanding

V% + g2(p? + v2t2) ~ gut + 16—2——;—9—;(—)]—:—/5 (3.A.6)
As we go around half of the circle, this term generates a factor
(e7tm) ik +g*u?)/29v=1/2 _ jo—m(k*+g"u*)/29v (3.A.7)
This is exactly the ratio between R* aﬁd T, so we find
nk = |Be]? = e~k +g" ) /gv, (3.A.8)

It is important to note that this result applies much more generally than for
¢ = ip + vt. (3.A.9)

In many cases the nonadiabaticity is only appreciable near the origin ¢ = 0, so that
the near-origin trajectory can be approximated by (3.A.9) with some appropriate
near-origin velocity v, even if the evolution away from the origin is very different
from (3.2.2).
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Moreover, in analogous circumstances (T-dual in the brane context) with a
nontrivial electric field, we obtain a similar expression due to Schwinger pair pro-
duction; a related point was made in [87]. In addition, formula (3.A.8) applies not
only to scalar fields, but also to fields of arbitrary spin. From this universal be-
havior, it is tempting to speculate that (3.A.8) could provide an effective model for
string theory effects, but we will not pursue this direction here.

The result (3.A.8) is nonperturbative in g (with g, not g2, appearing in the
denominator of the exponent); it is interesting to ask whether there is a simple
interpretation of this nonanalytic, nonperturbative effect. Similarly, it is interesting
to note that as discussed in §3.3, the potential for ¢ induced by particle production
is linear, so that if extended to the origin it would have a nonanalytic cusp there.

Our results correspond to the low-velocity limit of the D-brane calculation by
Bachas [87]. Bachas obtains an imaginary part to the action for moving D3-branes

of the form ()
X (1) +1 3/2
Im S Z =0 (ﬁ) exp(—nmgu’/v) (3.A.10)
n=1

n T

where we have translated his results into our variables. The first term in this ex-
pansion is proportional to the overlap [ d3E|Bx|? giving the number density (3.3.14)
of produced particles; this agrees with what we expect from unitarity. More gen-
erally, backing away from this low-velocity limit, the calculation in [87] combined
with unitarity provides a generalization of our results to the string case, as we will

explain in Chapter 4.

3.B Annihilation of the xy Particles

In this section we study the effects of collisions and direct decays of the created
x particles, and demonstrate that for suitably chosen parameters the trapping effect
receives only small corrections. More specifically, we place limits on the reduction
of the x number density through processes like xx — ¢¢ and x — 77, where 7 is
some light field.

Direct decays, if present, could easily ruin the trapping mechanism: if the x
particles decay too rapidly into light fields then the energy stored in created x
particles will not suffice to stop ¢. In this case the modulus will roll past the ESP,
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feel a transient tug toward the ESP while the x particles remain, and then gradually
break free and glide off to infinity at a reduced speed.

We will therefore consider only models in which couplings of the form x,
with 1,1 very light, are negligible. As an example, one can easily exclude such
decays in a supersymmetric model with a superpotential of the form W ~ ¢g®X2,
Here X is a chiral superfield with scalar component x and fermion %,, and ®
is a chiral superfield with scalar component ¢ and fermion 4. This generates
Yukawa couplings of the form x, %4 and ¢, 1,, which do not allow decays from
a component of X to purely ® particles. Thus, if all components of X are heavy, the
X-particle energy density we produce cannot decrease by direct decays. In some of
the simplest brane setups, exactly this situation is realized: a string which is heavy
because it stretches between two branes separated in a purely closed string bulk
space cannot decay perturbatively into two light, unstretched strings.

On the other hand, a priori we cannot ignore the coupling %—2 x2¢? as it is this
which gives rise to the desired trapping effect. This means that we must tolerate a
certain rate of annihilation (as opposed to direct decay). We will now review the
cross section for this process and determine its effect on the number density n
appearing in (3.2.10).

The Lorentz-invariant cross section for the annihilation process xx — ¢ s,
written in terms of center of mass variables,

41./
= Zﬁ%’ (3.B.1)
where k and k' are the momenta of the ingoing and outgoing particles and E is the
energy of the ingoing x particles. The reverse process ¢¢ — xx tends to enhance
the trapping effect. As we are in search of a lower bound on the number of x
particles, we will simply omit this reverse process.
We now determine the annihilation rate to find the rate at which x particles

are lost. If we assume that all the x’s are produced at t = 0, we find

k1ko)2 — m4
k) _ / dFan (R, 1) V (Fuka) X (R, o). (3.B.2)

n(ky, ) Ey By

Here u = /(k1k2)? — mi /E1E, is the Lorentz-invariant relative velocity of the

initial x’s and o(ky, k2) is the cross section, to be calculated using (3.B.1) in the

center of mass frame.
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We can simplify (3.B.2) to get an upper bound on how fast x decays. Ignoring
the momentum dependence on the right hand side of (3.B.2), which amounts to
taking the non-relativistic limit, and ignoring the mass of ¢ produced by the x

particles, we have

n(iﬁ,t) - 271'm§<

We can bound the integral in the second term on the right hand side by n_, the total

/ dfyn(Fa, B). (3.B.3)

number of x’s produced, as given in (3.3.14). To approximate the time-dependence

of the mass m,, we take m2 = u? 4 v?¢?, which is what the uncorrected motion for

¢ would give. So we have finally

2k, t 4
G (3.B.4)
n(ky, ) 27 (u? + v2t?)
which yields
7 4
t
n(ﬁ, 2 > exp (_g et arctan v_) . (3.B.5)
n(k,0) 27 pv %
This is clearly bounded from below by
4
g nx)
— . 3.B.6
e~ (3.B.6)

so that the number density is reduced over time by at worst the factor (3.B.6).

The total energy density in the x particles at a given time is therefore

E =/dl§n(13, )V k2 + g2(p? + v2t2)
4

n t
>n,+/9%(u? + v2t%) exp (— gﬂ'p;) arctan %) .

From this we see that the mass amplification effect of the x particles inevitably

(3.B.7)

prevails and stops ¢ from rolling arbitrarily far past the enhanced symmetry point.
This reduction of the number density softens, but does not ruin, the trapping
effect. Using the energy density (3.B.7) in the simple estimate leading to (3.2.12),

we find a new estimate for ¢.:

3
by = gfl———;r/zv”ze’fguz/veg“"x/‘w (3.B.8)

Thus, although collisions never lead to an escape, they do lead to a somewhat

increased stopping length ¢..
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For suitably chosen parameters we can arrange that the effect of collisions is
unimportant and the estimates (3.2.12),(3.B.8) approximately agree. For example,
the final exponential factor, which encodes the consequences of annihilations, will
be less important than the factor e™9#°/? as long as g3v < 2.

We conclude that direct decays can be forbidden using symmetry, whereas

collisions increase the stopping length (3.B.8) but do not ruin the trapping effect.

3.C Classical Trapping Versus Quantum Trapping

In this section we will compare our quantum trapping mechanism with the
purely classical trapping proposed in [102].

Consider for simplicity a theory of two real scalar fields, ¢ and x, with the
interaction ‘923¢2X2- In our discussion in the main text we assumed the initial
conditions (x) = 0, (#) # 0, x = 0, = v. Potentially interesting classical dynamics
arises in the more general case in which the initial velocity of x is nonzero [102].

Let us therefore consider the classical behavior of these fields, ignoring particle
production entirely. If we define v = /%2 + $2, then energy conservation implies
that the trajectory of ¢ and x is bounded by the surface ¢2¢2x? = v2. The fields
will evidently start bouncing off the curved walls of the potential. This bouncing
will be highly random.

Naively, one would expect that on average the fields become confined in the
region

v

(%) = (X°) ~ . (3.C.1)

This result would coincide with our estimate for the amplitude of the oscillations
of ¢ at the end of the stage of parametric resonance, cf. (3.3.21).

However, the situation is more complicated. As we are going to show, the fields
spend most of the time not at |¢| ~ |x| ~ \/g , but exponentially far away from this
region, moving along one of the flat directions of the potential.

To see this, note that because of the chaotic nature of the bouncing, it will
occasionally happen that the fields enter the valley x < ¢ at a small angle to the
flat direction, i.e. with velocities obeying |X| < é. Defining |x| = av, we are

interested in the case that the angle o happens to be small.
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Energy conservation implies that the amplitude of the oscillations of x at the

initial stage of this process is approximately %. Because of the interaction term
5;¢2 x?, these oscillations act on the field ¢ with an average returning force ~ az;f’z ,

which corresponds to the logarithmic potential V(#) ~ a?v?log¢ [102]. Clearly,
this potential will eventually pull the field ¢ back to the ESP ¢ = 0. However, this

happens at exponentially large ¢: the field starts moving back only after its value

¢:lass ~ \/_E‘ eC/a) (3.0.2)
g
where ¢ = O(1).

Once again, because the bouncing process is highly random, we do not expect

approaches

that the probability to enter the valley at a small angle o is exponentially sup-
pressed. This means that after bouncing back and forth near the point ¢ = xy =0,
the fields ¢ and x eventually enter one of the valleys at a small angle, and sub-
sequently spend a very long time there. In general, the fields will spend an expo-
nentially ‘long time at an exponentially large distance from the origin. Thus, the
classical trapping mechanism, unlike the particle production mechanism described
in this chapter, does not lead to a permanent trapping of the fields in the vicinity

of the point ¢ = x = 0.



4. Relativistic D-brane Scattering

ABSTRACT OF ORIGINAL PAPER

We study the effects of quantum production of open strings on the relativistic scat-
tering of D-branes. We find strong corrections to the brane trajectory from copious
production of highly-excited open strings, whose typical oscillator level is propor-
tional to the square of the rapidity. In the corrected trajectory, the branes rapidly
coincide and remain trapped in a configuration with enhanced symmetry. This is a
purely stringy effect which makes relativistic brane collisions exceptionally inelas-
tic. We trace this effect to velocity-dependent corrections to the open string mass,
which render open strings between relativistic D-branes surprisingly light. We ob-
serve that pair-creation of open strings could play an important role in cosmological

scenarios in which branes approach each other at very high speeds.

4.1 Introduction

Thought experiments involving the scattering of strings or of D-branes pro-
vide the key to understanding certain essential phenomena in string theory. The
discovery of strings in the theory is perhaps the most striking case, but other ex-
amples include the elucidation of the sizes of strings under various conditions and
the appreciation of another length-scale in the dynamics of slow-moving D-branes.

Despite much early interest in the scattering of D-branes, certain important
aspects of the dynamics have remained unexplored. In particular, the simplest

treatments involve parameter regimes governed either by supergravity or by the

This chapter is reprinted from Liam McAllister and Indrajit Mitra, “Relativistic D-Brane
Scattering is Extremely Inelastic,” JHEP 0502 (2005) 019, by permission of the publisher.
(© 2005 by the Journal of High Energy Physics.
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effective worldvolume field theory of massless open strings. In the latter case, there
can be significant quantum corrections arising from loops of light open strings or
from pair-production of on-shell open strings.

A key consequence of the pair-production of open strings is the trapping of D-
branes [18], which we now briefly review. Consider two Dp-branes, p > 0, moving
with a small relative velocity. As the branes pass each other, the masses of stretched
open strings vary with time. This leads to pair production, in a direct analogue
of the Schwinger pair-creation process for charged particles [103] or strings [104] in
an electric field. Because the velocities are low, the production of stretched strings
with oscillator excitations is highly suppressed. The resulting unexcited stretched
strings introduce an energy cost for the branes to separate; unless these strings
can rapidly annihilate, the branes will be drawn close together. In collisions with
a nonzero impact parameter, the brane pair carries angular momentum; in this
case the branes spiral around their center of mass, radiating closed strings, until
eventually they fall on top of each other. The final outcome is that the open strings
trap the branes in a configuration with enhanced symmetry. Because this process
involves the production of only unexcited open strings, it falls within the purview
of effective field theory.

Our goal is to explore related processes which are not describable in the low-
energy effective field theory but which instead involve intrinsically stringy physics.
We will show that the ultrarelativistic scattering of D-branes is a suitable laboratory
for such an investigation, as corrections from the massive string states turn out to be
essential. In particular, we will demonstrate that production of highly-excited open
strings generates crucial corrections to the brane dynamics and leads to spectacular
trapping of the branes over distances which can be of order the string length. As we
will show, these corrections are much stronger than a naive application of effective
field theory would predict; hence this is a setting where the importance of purely
stringy effects is a surprise. The explanation of such a huge production of highly
excited strings is that these states effectively become quite light — the mass receives
velocity dependent corrections. The fact that open string masses are in principle
velocity-dependent is well-known, but we have not found any explicit computations
of these masses in the literature. Our result leads to a formula for the masses of

open strings between moving D-branes.
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The intuition underlying this result is that in relativistic D-brane scattering,
it should be possible to pair-produce highly-excited open strings. The density of
string states at high excitation levels grows exponentially with energy; this is the
well-known Hagedorn density of states. For this reason, even if the production of a
given excited string state is exponentially suppressed compared to production of a
massless string state, the competition of the growing and decaying exponentials will
typically cause highly-excited strings to dominate the process, in terms of both their
number and their share of the total energy. Thus, one expects pair production of a
huge number of highly excited strings. This is indeed the case, as was first explained
by Bachas in the important work [87]. Our further observation is that because the
energy transferred into these open strings can easily be comparable to the initial
kinetic energy of the D-brane pair, the massive open strings are absolutely central
to the dynamics. This means that the backreaction arising from purely stringy
effects is crucial.

We will study the effect on the dynamics of this explosive pair-production of
massive modes. Our conclusion is that for a large range of velocities and impact
parameters, almost all the initial kinetic energy of the branes is transferred to
open strings and to closed string radiation. After the collision the branes are drawn
together and come to rest. In near-miss scattering events with an impact parameter
b, the branes revolve around their center of mass in a roughly circular orbit whose
initial radius is of order b; this orbit swiftly decays via radiation of closed strings.
This is to be contrasted to the much weaker trapping of nonrelativistic branes,
which typically proceeds via very elliptical orbits, i.e. the stopping length is much
greater than the impact parameter.

To recap, the dynamics of ultrarelativistic D-branes is strikingly inelastic: co-
pious production of highly-excited stretched open strings rapidly drains the brane
kinetic energy and traps the branes into a tight orbit, eventually leading the branes
to coincide.

In this simple and controllable example it proves possible to understand aspects
of the backreaction of open string production on the dynamics of colliding D-branes.
The lessons of our analysis could be extended to cosmological models in which other
sorts of fast-moving branes approach each other and collide. As we will discuss, these

include the ekpyrotic/cyclic universe scenario, brane-antibrane scenarios, and the
DBI model.
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It is useful to indicate the various regions of parameter space that we will probe.
We will outline this now to apprise the reader of our strategy; later, in §4.5.3, we
will provide a more complete discussion.

The dimensionless quantities of interest are the impact parameter b measured
in units of the string length; the string coupling gs, which determines the mass of
the D-branes in string units; and the initial relative velocity of the branes v. We will
find it more convenient to convert this velocity into the rapidity, n = arctanh(v).
We will usually set o = 1, except for a few cases where we will retain explicit
factors of the string length for clarity.

Our goal in this work is to understand open string effects in relativistic dynam-
ics; the nonrelativistic case is already well-understood [105,18]. We will therefore
impose 1 — v <« 1 so that n > 1. Another important consideration is that the
D-branes should have Compton wavelengths small compared to the impact pa-
rameter. Because the D-branes grow light at strong string coupling, this amounts
to a requirement that the coupling should be sufficiently weak. Another obvious
advantage of weak coupling is the suppression of string loop effects; our primary
computation is a one-loop open string process. A further requirement is that the
D-brane Schwarzschild radius should be much smaller than the impact parameter.
This too can be achieved with a suitably small string coupling, as we will demon-
strate in §4.5.3. Furthermore, although energy loss through closed string radiation
can be an important effect in a system of moving branes, there is a wide range of
string coupling, depending on 7, for which this effect is subleading compared to
open string production. Although all these considerations show that weak coupling
is desirable for control, it is important to recognize that as the coupling decreases,
the D-branes grow heavy and hence stretch the strings farther before coming to
rest.

In summary, there is a range of values of the string coupling in which the
backreaction of open strings is significant and competing effects are suppressed.

The organization of this chapter is as follows. First, in §4.2, we review the
trapping of nonrelativistic branes, which provides the basic intuition for the more
complicated, stringy process which we aim to study. Then, in §4.3, we study the
interaction amplitude for moving branes. We compute the brane interaction via
an annulus diagram and examine its imaginary part, which corresponds to open

string pair production. This result is well-known, but we include it for logical
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completeness and to set our notation. Our primary result appears in §4.4, where
we study the backreaction of open string production on the brane trajectory and
estimate the stopping length on energetic grounds. In §4.5 we discuss potential
corrections and additional effects, in particular the production of closed strings,
and explain how they affect our considerations. We conclude with a few comments
in §4.6. In Appendix 4.A we give a detailed check of our formula for the velocity-
dependent string mass. Finally, we collect useful identities about the theta functions

in Appendix 4.B.

4.2 Overview of the Trapping of Nonrelativistic Branes

We will now briefly review the trapping of D-branes in nonrelativistic motion,
which was studied in [18]. (See also [106,107] for earlier work on related mechanisms
in field theory and cosmology.) This process is governed by pair production of
massless open strings and hence is describable in effective field theory. It provides
the basic framework for understanding corrections to the brane dynamics, and so
is a useful background for the stringy trapping which we will study in §4.3.

Because the field theory description is entirely sufficient, we can abstract the
relevant properties of the worldvolume gauge theory and represent the system with

a simplified model,
L= l(9 PO+ + 18 xOHx — L|<;5|2><2 (4.2.1)
2k 2 K 82

in which a complex scalar field ¢ couples to a real scalar field x. We have normalized
the cross-coupling term so that the mass of x is precisely the mass of a stretched
string whose length is |¢| in string units. At the origin ¢ = 0, x becomes massless.

Let us consider the trajectory
o(t) =ib+ vt (4.2.2)

in which ¢ is separated from the origin by the impact parameter b. This is a
solution to the classical equations of motion of (4.2.1) provided that x = 0. Along
this trajectory, the mass of x changes: in the limit where we impose (4.2.2) and

ignore the effect of the coupling to x, we may rewrite (4.2.1) as

1 -1 1
- = 7 - M, 2 2;2y. 2
L 5 L POH D + 28,0(8 X~ g3 (* +v“t%)x (4.2.3)
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so that the effective mass of x varies with time. This results in production of x
quanta.

This effect is easily understood in the quantum mechanics example of a har-
monic oscillator whose frequency changes over time from w; to wy. If the oscillator
begins in its ground state at frequency w; but the frequency changes nonadiabati-
cally then the final state will not be the ground state of an oscillator of frequency
ws.

One can readily compute the occupation numbers ny of modes with momentum
k. The result [18] is

4m%k? + b2
= - ). 4.2.4
e = exp( =) (424
If instead we consider a model in which the mass of x is nowhere zero,
1 -1 m? 1
S " - 170N T 1Al2 2
£ = 50,0046 + 50,x0"X ( >+ o5l )x (4.2.5)
the result is instead
4 2k2 4 2,2 b2
ng = exp(— TR 27; m ) (4.2.6)

The crucial, though intuitive, observation is that production of a massive species
is exponetially suppressed. For this reason, production of massive string modes is
entirely negligible when the velocity is small.

We may now apply the result of the simplified model to a pair of D-branes.
Suppose that two Dp-branes, p > 0, are arranged to pass near each other. The brane
motion changes the masses of stretched string states and induces pair production of
unexcited stretched strings. As the branes begin to separate, these strings stretch
and pull the branes back together.

This process can be followed in detail by numerically integrating the quantum-
corrected equations of motion which follow from (4.2.1). Such an analysis was
presented in [18]. However, analytical estimates are more readily generalized to the
case of interest in this chapter, which is the stringy scattering of relativistic branes.
We will therefore explain how one can use energetics to estimate the stopping length
in the system (4.2.1). (It was shown in [18] that such estimates are in excellent
agreement with the numerical results, although only the nonrelativistic case was
studied there.)
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After the branes have passed each other, the stretched open strings grow in
mass. Even though pair production has ceased, the energy contained in open strings

grows with time, because the strings are being stretched:

Popen 2 () Mopen (4.2.7)

When the energy in open strings is of the same order as the initial brane kinetic
energy, the backreaction of the open strings is of order one and the brane mo-
tion slows down significantly. We therefore define the ‘stopping length’ ¢, via
Popen(®x) = $T,v* where T}, is the tension of a Dp-brane.

A few qualitative features of low-velocity trapping are worth mentioning. First,
the greater the number density of produced strings, the shorter the stopping length.
On the other hand, the stopping length increases if the brane velocity increases or
the string coupling decreases (making the branes heavier in string units).

The behavior in the limit v — 1 is not obvious a priori. To estimate the total
number density vy Of all string modes, wescould take the nonrelativistic result
(4.2.6) for the occupation numbers of a massive species and sum it over the levels n
in the string spectrum, including a factor of the density of states N(n). The result
(which was also presented in [18]) is

Viotal X i N(n)exp (_g_:_? (n + %)) (4.2.8)
n=0

As we explain in §4.4.1, the density of states at high levels n obeys
N(n) ~n~11/4 exp(\/ 87r2n) (4.2.9)

This does not grow rapidly enough to compete with the exponential suppression
(4.2.6) of high levels, so the limit v — 1 does not display strong production of
excited strings.

However, we will show in detail in §4.3, following [87], that the actual number
density of produced strings is very much larger than the nonrelativistic estimate
(4.2.8) suggests. We will find instead

Viotal X i N(n) exp(—2ni2 (n + %)) (4.2.10)
n=0

where = arctanh(v) > 1. This result does not follow from special relativity
alone; it is instead a stringy effect arising from velocity-dependent corrections to

the stretched string masses, as we will show.
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4.3 The Interaction Amplitude for Moving D-branes

We will now derive the interaction potential for two D-branes in relative motion
with arbitrary velocity. Although this result is well-known [87], we include the

calculation for completeness and to set notation.

4.8.1 Interaction Potential from the Annulus Diagram

We will derive the interaction potential by computing the open string one-
loop vacuum energy diagram. This diagram is an annulus whose two boundaries
correspond to the two D-branes. By the optical theorem, twice the imaginary part
of this amplitude is the rate of pair production of on-shell open strings. Thus, our
goal is to determine the imaginary part of the vacuum energy.

Several equivalent methods can be used to compute the vacuum energy. The
original treatment [87] involves a direct computation of the spectrum of open strings
between the moving branes; that is, it is possible to impose appropriate boundary
conditions and solve for the mode expansion. The vacuum energy is then the sum
of the zero-point energies of these oscillators.

We choose instead to review the perhaps more transparent computation given
in [108]. Let us stress that in this subsection we follow the treatment of [108] in
detail, with very minor modifications.

By double Wick rotation, a pair of branes in relative motion, separated by a
transverse distance b, can be mapped to a stationary pair of branes at an imaginary
relative angle, again separated by a distance b. We will make this precise below.
Because the partition function for branes at angles is very well understood, the
vacuum energy is easily computed in this approach.

Following [108], we begin with two D4-branes which are parallel to each other,
extended along the directions 0,1, 3, 5, 7, and separated by a distance b (the impact
parameter) along X°. (To regulate the computation we compactify the spatial
dimensions on a T® of radius R.) Now let one brane move towards the other along
the direction X8 with velocity v. That is, the coordinates of the moving brane are
X8 = vX9 X° = b while the other brane has X8 = X° = 0. This is our actual
problem.

We now perform the Wick rotation X° — —iX'’?, X7 — X0, This transforms

the moving branes into static branes which are misaligned by an angle ¢ in the
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(7',8) plane. The angle ¢ is given by X'"tan¢ = X®. The brane velocity v and
rapidity 7 are related to this angle by ¢ = —i arctanh(v) = —in.

Next, it is useful to combine the coordinates into complex pairs Y,, where
Vi=X'+iX2 Y, = X3 +iX4Ys = X54+4iX6,Y, = X7 +iX8. Define also the
angles ¢; = ¢ = ¢p3 = 0,4 = ¢. The rotation then takes Yy — exp(ip)Yy. It is
now a simple matter to set up the boundary conditions satisfied by strings which

stretch between the branes:
01=0: H1RelY,] =Im[Y,] =0

(4.3.1)
o1 =T O1Re[exp(idy)Ya] = Im[exp(ig,)Y,] = 0.

The solutions to the wave equation which satisfy these boundary conditions are:

a *

Yo (w, @) = i4/ o Z o exp(irw — 2igy) — Z or exp(irw)
a $ 2 r a r ’

r=Z+¢a/m r=Z+¢a/m ( )
4.3.2

where w = o1 + i02. We can readily write down the partition function for these

four scalars:

.exp(¢at/m)n(it)
z = — 4.3.
scalar(¢a) 1 911(’i¢at/ﬂ', it) ( 3 3)
so that the resulting bosonic partition function is
4
Zboson = H Zscalar(¢a) (434)

a=1

In a similar way, one can compute the fermionic partition function, keeping in mind

the various spin structures:

4
Zferm = H le (¢a/2, ’Lt) 9 (435)
a=1

where

oll(igbat/zﬂ'a it)
exp(¢3t/4m)n(it)

We conclude that the one-loop potential is

®dt 1 th? 011 (idgt/2m, it)
V I _ . WO
/0 t /8m2a't exp( 27ra’) H 011 (igat/m, it) (4.3.7)

Z3(¢a/2,it) = (4.3.6)




4 Relativistic D-brane Scattering 84

This potential governs D4-branes at a relative angle. To map into the case
of interest, we T-dualize as many times as needed, each time introducing the re-
placement 611 (ig.t/7,it) — ivV8mw2a/tn®(it)/R, where R is the size of the spatial
torus. '

This finally brings us to the potential for p-branes at an angle ¢:

. dt, /2 _th? > 611 (igt/2m, it)*
V= szA — (87%a’t)™P exp( Sral ) Ora (it ), tm(it)® (4.3.8)

Our final interest is in the number density and energy density of open strings, so

the spatial volume RP = iV}, will eventually cancel.

To read off the desired result for moving branes, we set ¢ = —in to get
o0 th? 611(nt/2m,it)*
— —p/2 11\ ) 4.3.9
v V;)/o (87r 7 exp ( 2”“') O11(nt/m,it)n(it)® (4.3.9)

One can easily show that this agrees precisely with the result of [87], equation
(11). To see this, use (4.B.2) and (4.B.8), define tspere = 2¢, e = I, and set o’ = 1.

A useful equivalent form for (4.3.9) is

_ 611(nt/2m, it)4
2./t p/2 11 )
V= V/ d’”/ = 8 Bu (it €)1 (i)

exp ('zm/ (6% +v%r >> Vo

In this form the time-dependence of the stretched string masses is manifest.

(4.3.10)

4.8.2 Imaginary Part and Pair-Production Rate

The above expression from the interaction potential is rich in information. The
real part tells us about the velocity-dependent forces from closed string exchange,
while twice the imaginary part is equal to the rate of production of open strings.

The potential (4.3.9) would be real if the integrand had no poles. However,
611(nt/m,it) has a zero for integral values of nt/m = k, so we can compute the

imaginary part of the integral by summing the residues at the corresponding poles.

2

Im{V] = (;/;';)p i% (%)p/ ’ exp(—%)Z(ikﬂ/n) (1 - (—1)k) , (43.11)
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where we have defined the partition function Z(7) = 203,(0|7)n(7)~'2. (The factor
projecting out even values of k arises because of J acobl s ‘abstruse identity’.)

This expression, which was first derived in [87], will be essential to our inves-
tigation. By extracting its behavior in various limits we will be able to study the
effect of open string production on the brane dynamics.

First of all, we can check the normalization of (4.3.11) by taking the low-velocity

limit, in which n — v. The result is
8V, . 1 v\p/2 b2k
I = p (= ——). 3.12
mlV] (2m)P k:lz k (wk) exp( 2v ) (4.3.12)

This is identical to Schwinger’s classic result (4.3.12) for the pair-production rate of

electrons in a constant electric field. In the present case, the interpretation is of pair
production of massless open strings between the branes, which was also obtained
by the method of Bogoliubov coefficients in [18].

Our interest is in the case of velocities approaching the speed of light. We
expect that the dominant contribution to pair production in this limit will come
from highly-excited string states. Because the density of states grows exponentially
(4.2.9) at high levels, we anticipate copious production of massive strings and, as a
result, dramatic backreaction on the brane motion.

To investigate this, we begin with the high-velocity limit n > 1 of (4.3.11):

Im{V] = (% f: % (—)p/H > exp(% - b;—:) (1 + O(e‘"”“)) (4.3.13)
k=1,3,5,...

where we have used the asymptotics (2.B.5).
Keeping the dominant contribution, which comes from k¥ = 1, and expressing
the result as a number density vopen, of open strings stretching between the branes,

we find
2_y4 b?
Vopen & Cpl2 —~ X €Xp (77 - —2—5) (4.3.14)

where ¢, = (2(2w)p7rp/2_4> -

There are three important differences between the low-velocity effect in
(4.3.12)and the high-velocity relation of (4.3.14). The first is that production of
strings is exponentially suppressed at low velocities: this can be understood from

the fact that the amount of strings produced at a given energy falls off exponentially
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with energy, while the density of states for such low energies is a simple power law.
At high energies, however, the density of states grows exponentially and these two
competing exponentials lead to copious string production if the initial velocity of
the branes is sufficiently high. |

The second important difference is that at low velocities, the efficacy of the
trapping process is strongly dependent on the impact parameter. For large impact
parameters, b > 1 (recall that b is measured in string units), the trapping is ex-
ponentially weak. For ultrarelativistic branes, however, the trapping weakens only
when b > 7. The effective range of strong trapping is evidently much increased in
the ultrarelativistic limit.

Finally, in the low-velocity limit, the energy of produced open strings is a
negligible fraction of the D-brane energy [18] until the branes separate far enough to
stretch the open strings significantly. The associated distance, the ‘stopping length’,
is generically much larger than the impact parameter. In the ultrarelativistic limit,
in contrast, the energy carried by the open strings can be comparable to the brane
kinetic energy even before any stretching. This occurs because high speeds make
possible the production of highly-excited strings with significant oscillator energy.
This consideration suggests that the backreaction of open strings is much more
dramatic for relativistic branes than for nonrelativistic ones. We undertake a careful

study of this in the following section.

4.4 Backreaction from Energetics

We have seen in the previous section that relativistic brane motion leads to the
production of a tremendous number density (4.3.14) of stretched open strings. We
would now like to estimate the effect of this process on the brane motion, and to

do so we must estimate the energy density carried by the produced open strings.

4.4.1 Open String Energy

An open string stretched between two moving branes receives velocity-
dependent corrections to its mass. The change in mass is understood to be due
to a rescaling of the effective tension, and in the limit that the branes move towards
each other at the speed of light, the strings must become massless. This rescaling

can also be understood from the T-dual electric field perspective: as the electric
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field approaches a critical value, the strings can no longer hold themselves together,
so their effective tension goes to zero [104]. We will now determine this rescaling in
a simple way; in Appendix 4.A we will provide a detailed consistency check of this
result.
The factor depending on b in (4.3.14) indicates that the effective area of a brane
moving with rapidity 7 is [87]
rees el (4.4.1)

This corresponds precisely to the logarithmic growth in cross-sectional area of a
highly-boosted fundamental string, rgf s ~ o In(a’s), where /s is the center-of-
mass energy. The explanation for this growth is that a Regge probe of an ultrarela-
tivistic string is sensitive to rather high-frequency virtual strings, whose considerable
length creates a large cloud of virtual strings [109]. We conclude that a D-brane
with rapidity # has an apparent radius refy = \/mT/v, where we have inserted the
factor of v to produce the correct behavior in the zero-velocity limit.

We therefore propose that the effective string tension is:

T(n) = =

. 4.4.2
2raln ( )

This rescaling of the effective tension of the string means that the energy of a string

excited at level n is: o 9\ .9
By = 22 4 0 iy u
a'n A C¥/27']2

(4.4.3)

In this expression b is the usual impact parameter, while r is the brane separation
along the direction of motion.

In Appendix 4.A we demonstrate that precisely this dependence of mass on
velocity explains the dramatic difference between the naive result (4.2.8) and the
complete annulus computation (4.3.14) for the number density. Note also that the
mass formula (4.4.3) does reduce to the usual formula for low speeds (n — v).

We now proceed to calculate the energy density of the produced open strings.
This energy is easily computed if we first rewrite the partition function Z as a sum
over string states. This is conveniently parametrized in terms of the excitation level

n and the number of states N(n) at each level.

27r2nk).

Z(ikﬂ/n)zéﬁlo(o,ikw/n) (ikm /n) 12 ZN exp(— (4.4.4)
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We would first like to determine the behavior of N(n) at high excitation levels n.

Taking the ansatz
N(n) =~ cyn®exp (b\/ﬁ) , (4.4.5)

approximating the sum by an integral, evaluating this integral by stationary phase,

and demanding the asymptotics (2.B.5), we find
N(n) =~ (2n)_11/4exp(7r\/8n>. (4.4.6)

The numerical prefactor was chosen for convenience; strictly speaking, the approx-
imate evaluation of the integral does not determine constant prefactors of order
unity, but for our purposes it suffices to choose the factor now as in (4.4.6).

With this result in hand, we can rewrite (4.3.11) as

ImfV] = ; 2‘7/:)p kzi % (%)p/ ’ exp(—b;—:) gN(n) exp(- 2”727"’“ ). (a7

An equivalent form for this relation is

Im[V] = 6% /_Z di:;i;,m% (%)P—E_l j;)N(n) exp(—ﬂgi(—z)-) (4.4.8)

n  b% 4 vir?
wi(r)=—

a, W. (4.4.9)

We can now express the energy density of produced open strings as

oo / 2 e 2
Popen = (—2—%; k ; 71; (:—k)p 2exp(—%—n’f) ;E(n)N(n) exp - 2”77”’“ ),

) (4.4.10)

where (4.4.3) is used for E(n). Because of the competition of the growing and

decaying exponential factors, this sum is dominated by terms near some npeqx > 1.

As indicated above, we approximate the sum on levels using the relation
o0
2 2 9] 2 2
Z N(n)n®exp (—ﬁ) A 27 11/4 / dnn® 14 exp (71'\/ 8n — ﬂ) (4.4.11)
n=0 n no n

where the lower bound ng > 0 is chosen so that the integral is dominated by

N & Npeak, N0t n = 0. We have kept the leading term in the sum on k. By the method
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of stationary phase we find that the integral is dominated by n & npeqr = 7 (271'2)_1,

leading to

oo 21%n 1 /47 n?\@
—11/4 a—11/4 _ =T )
2 /;O dnn exp<7r\/8n ” ) %€ (77) (———-—271_2 . (4.4.12)

l

For o = 0 this reproduces the asymptotic behavior (4.B.5); we normalized (4.4.6)
to arrange this.

This approximate result provides an important physical lesson: the primary
contribution to the open string energy comes from strings at levels 2m2n =~ n?. For

such a string,

nv (B2 +r2e? 1 b2 472

Let us now examine this result in the parameter ranges of interest. If the
stretched string length is large compared to 7%/2, /62 + r2 > 13/2, then the sum

(4.4.10) is simply
Vb2 + r?
2rn

On the other hand, when 73/2 > /b2 + r2, we have instead

Vopen - (4.4.14)

Popen =

Ui
Popen ~ 71'\/\/_—. '2'Vopen (4415)

where we have used (4.4.12) with a = 1/2.

The key observation which follows from (4.4.15) is that the energy density
carried by produced pairs of stretched open strings can be a significant fraction
of the kinetic energy density of the Dp-brane. The backreaction from open string
production is therefore an important contribution to the dynamics of relativistic

D-branes. We will now examine this in detail.

4.4.2 Estimate of the Stopping Length

It will be very important to recognize three length-scales which arise in the
problem: the effective size ref¢ (1) = \/no’ of a relativistic brane, the critical impact
parameter b.i;(7) beyond which the trapping rapidly weakens, and the size 7,,4(n)

of the region in which the stretched open string masses change nonadiabatically.
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To find the critical impact parameter, we note that the open string energy

density obeys
b2

Popen X exp( - Z?->, (4.4.16)

so that for n > 1, the critical distance is evidently b.;; ~ 1. For impact parameters

less than b.,;;, the open string energy density is generically large. The trapping

effect is therefore very strong for impact parameters of order b..; and smaller.

(Nevertheless, trapping still occurs for impact parameters much larger than bgp;.)

The nonadiabaticity is characterized by how rapidly the frequency changes with

time. Quantitatively, it is measured by the dimensionless quantity £ = w%, where

w is the frequency. Using (4.4.3) with r = vt we find

_ 2mnutt N 2rnr
T (Am2non 4+ (2 4+ r2)w2)3/2 T (4n2ny + b2 4 r2)3/2

§ (4.4.17)

which reaches its peak at r? = £b? + 2w2nn. For the energetically-dominant levels,

2, so that the effective region of nonadiabaticity has size rpqq ~ 77% for

21in = q
n > b. Open strings are produced in large quantities when —7peq S 7 S Tnad-

In summary, for relativistic speeds the critical impact parameter is b..;z ~ 7,
and is smaller than the size of the nonadiabatic region. The effective radius of a
moving D-brane, i.e. the size of the stringy halo, is much smaller, resf ~ /1 < berit-

For any fixed, large n we can require
Teff K b < berit (4.4.18)

so that the trapping is very strong but the stringy halos are small enough to be
unimportant. The case of a head-on collision, b S 7esy, is also interesting, particu-
larly for the question of string production in the cyclic universe models, but we will
first explore the better-controlled regime (4.4.18).
With these estimates in hand we can at last compute the stopping length for
a scattering event. Taking one brane to be at rest and the other to have velocity v,
we define as before
1 = arctanh(v). (4.4.19)

Working instead in the center of mass frame, the branes approach each other with
velocities
u = tanh(w) = tanh(n/2) (4.4.20)
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so that the center-of-mass v factor for either brane is

1
(Vi

when w > 1. The energy density of the brane pair is then

1
~ 5 (4.4.21)

Eiot = 2Tppy ~ Tppe® = Tppe/2. 4.4.22
P I4 P

We therefore find that for n — oo,

1

- on/2
gs(%)pe . (4.4.23)

PDp = TDpen/2 =

In the case of strong trapping, b < b.-i: = 1, the open string energy at the minimum

brane separation is
220 )
e ex 4.4.24
Popen N — 7511 p(n ( )

whereas for weak trapping, b > b.,.;:, the open string energy is instead

Popen = g—zn%*%/m—r? exp( — %) (4.4.25)
where ¢, = (2(27r)p7r”/ 2‘4> _1. Of course, the open string energy depends on r even
in the case of strong trapping, but this dependence is relatively unimportant until
T~

Comparing (4.4.23),(4.4.24) we conclude that if an external force compels the
branes to pass each other at constant, ultrarelativistic velocity, then, unless the
string coupling is exponentially small, the energy stored in open strings at the
point of closest approach is considerably larger than the initial kinetic energy of the
branes. This means that without an artificial external force, the branes will not
pass each other with undiminished speed, as this is energetically inconsistent.

We expect instead that as open strings are produced, the branes slow down
gradually, leading to diminished further production of strings. The final result, of
course, will be consistent with conservation of energy. (In §4.4.3 we will address
the production of open strings between decelerating branes, and in §4.5.1 we will
explain that the emission of closed string radiation also serves to reduce the rate of

production of open strings.)
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Although the open string energy in (4.4.24) is an overestimate for the reason
just mentioned, we will nevertheless use it now to find an estimate of the stopping
length. This will serve to illustrate our technique in a manageable setting; it will
then be a simple matter to repeat the analysis including the corrections of §4.4.3
and §4.5.1, which will not alter the form of our result.

We define the stopping length r. by popen(r«) = ppp, so that at 7 = r, all
the initial energy has been stored in stretched open strings. Equating (4.4.23) and
(4.4.25), we find the stopping length

472 n b2\ /n\5-p/2
. 0Ly (o , 442
™, exp( 2 " 277) (w) (4:4.26)

This is our main result. It manifests the surprising property that for sufficiently
large rapidity, the stopping length decreases as the rapidity increases. (More pre-
cisely, for any fixed g,, b there exists a rapidity 7,,:, such that the stopping length
decreases as 7 increases past Nmin-) To understand this unusual property, it is useful
to keep in mind the behavior of D-branes scattering at even greater speeds, so great
that the stringy halos themselves collide. For any b there is an 1 such that refs 2 b;
the scattering of the branes is then described by the collision of absorptive disks of
radius r.¢s [87]. Moreover, for a suitable range of g, the brane Schwarzschild radii
are so large that black hole production is an important consideration. We have
carefully chosen our parameter ranges to exclude these effects and focus instead on
the more controllable regime of strong stringy trapping; however, the black disk
collisions and black hole production serve to illustrate that the limit of arbitrarily
high rapidity involves very hard scattering and high inelasticity, in good agreement
with the large-n behavior of (4.4.26).

The stopping length (4.4.26) is large in string units only when

n b 77)5"1’/ 2

b wen(1+0) (2

5) (4.4.27)

which is an exponentially small value of the coupling provided n > b,17 > 1. Thus,
although backreaction from open string production is a higher-order correction to
the dynamics [110] which one might suppose is unimportant at moderately weak
coupling, we have shown that for relativistic branes with b <« 7 the backreaction of

open strings is crucial unless the string coupling is extraordinarily small.
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4.4.8 Corrections from Deceleration

All of our computations so far have applied exclusively to a pair of branes
approaching each other at constant velocity. On the other hand, we have demon-
strated that the backreaction from open string production, as computed along this
trajectory, necessarily causes the branes to decelerate. Clearly, the next step is to
understand how the amount of string production changes when the branes follow a
decelerating trajectory.

The analysis of string production during deceleration turns out to be tractable
in the nonrelativistic limit. However, we have not found an exact answer for the rel-
ativistic case. Upon double Wick rotation the amount of string production between
decelerating branes is mapped to the interaction between curved branes, which is
not obviously solvable with conformal field theory techniques.

Even though we will not find an exact result for the string production, we will
be able to place bounds on the resulting number density. This suffices to reveal the
qualitative features of the trapping process: copious production of excited strings
and very high inelasticity.

First, however, we will examine the limit of instantaneous deceleration. Take
the branes to move with a velocity vg for all ¢t < 0, but to come to rest for ¢ > 0.
This problem can be solved exactly by matching the parabolic cylinder functions
(and their derivatives) to the plane wave solutions at ¢ = 0. However, this setup
clearly involves enormous non-adiabaticity and so there would be an extremely large
amount of pair-production, far greater even than in the case of constant velocity.
This is readily computed, but it is not useful; we would like a more conservative
estimate.

A more realistic picture is one in which the relative velocity of the branes varies
as a function of time, for example as v(t) = vo(1 — tanh(¢/f)), where f measures
how abruptly the brane slows down. (Note also that in this setup the initial velocity
is v(—00) = 2vp.) The wave equation governing the stretched strings is therefore

b2 2
(02 48+ 5 +

22 T 32 [t — log(cosh(t/ f))]z)x =0. (4.4.28)

It is instructive to consider the non-adiabaticity parameter £ = &/w?, where

4m%w?(t) = 4%k + b2 + v2[t — log(cosh(t/ f))]2. (4.4.29)
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Let us first take f <« 1, which is the case of very rapid deceleration. In this limit
the deceleration is concentrated at t = 0, so that for slightly later times, when
the branes have come to a halt, we have £ = 0 and hence no particle production.
Comparing this scenario to that of branes moving with uniform velocity 2v and
no deceleration, we see that an abrupt stop reduces the effective time available for
particle production by a factor of two. Thus, for branes which come to a halt very
rapidly, the total number of particles produced is approximately half the number
produced when the branes move with uniform velocity.

We can analytically solve the problem in the opposite limit of very gentle
deceleration, f >> v/4n?k2 + b2 /v,. Using the steepest descent method to determine
the Bogoliubov coefficients [111,39,112] and observing that in this limit there is a
branch point very near the imaginary axis, at —iv/4m2k2 + b2 /vg, we find
L (4n2? +6%)). (4.4.30)

Vo

|6r|? = eXp(

This coincides with the exact result for the constant-velocity problem with velocity
v(t) = vo. However, as we already noted, in the present case the initial velocity is
v(—00) = 2vy. Our very simple conclusion is that this gradually decelerating trajec-
tory leads to the same amount of string production as an unaccelerated trajectory
in which the branes move at a uniform velocity which is smaller by a factor of
two. The effective velocity, for purposes of particle production, is thus the average
velocity 3(v(—00) 4 v(00)).

We conclude that very gradual deceleration results in significantly reduced
string production. In particular, comparing the limits of large and small f, we see
that the reduction in number density is much greater for gradual than for rapid
deceleration.

The above result applies to nonrelativistic motion. The string computation
which would be analogous to the annulus partition function but incorporate de-
celeration is considerably more complicated. In particular, the acceleration of the
branes breaks conformal invariance, so it is difficult to use conventional techniques
to compute the string production in this case.

Fortunately, it is possible to estimate the stopping length without an exact
result for the string production during deceleration. The simple argument relies

only on energetics and on the constant-velocity result (4.3.14).
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Suppose that open string production slows a moving brane, bringing it from
- an initial kinetic energy E; = v;T) to an energy (at the point of closest approach)
Ef = ~4T,, where v;, vy are the usual relativistic factors. The stopping length,

defined again by E; = E,pen(T«), is easily seen to be

2mnE; E;
Tx N # = \/5773/2—& _zEf, (4.4.31)
where we have used (4.4.14),(4.4.15).

Consider first the case vs > 1. If the stopping length is large compared to
the size rpeq of the nonadiabatic region, 7, > 13/2, then the branes are moving
quickly as they leave the region of nonadiabaticity. This means that the result
(4.3.14) applies directly, and we return to an apparent inconsistency: the open
string energy is large compared to the initial energy. This is a clear signal that the
stopping length cannot be much larger than rpqq ~ 7°/2.

A stopping length of order 7%/2 or smaller is indicative of strong trapping: the
branes come to rest around the time that the nonadiabaticity grows small, which
means that a few strings are still being produced.

On the other hand, in the case vy ~ 1, we have Ey <« Ej;, so that (4.4.31)
yields the stopping length 7, ~ v/2n3%/2.

We conclude that no matter how the deceleration affects open string produc-
tion, if the only process acting to slow the branes is loss of energy to open strings,
then the stopping length is no more than of order 32, i.e. the size of the nonadi-
abatic region. Thus, the trapping is very strong: very little stretching is required
before the branes are brought to rest.

Given a good estimate of the open string production along a decelerating path,
we could give a more accurate estimate of the stopping length. However, we have
just demonstrated through energetics and the result (4.3.14) that in any event
this stopping length is no larger than 7%/2. In fact, we expect that it is actually
considerably smaller than this, as suggested by (4.4.26).

It remains a possibility that loss of energy through closed string radiation could

modify this result. We now proceed to show that this is not the case.
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4.5 Further Considerations
4.5.1 Production of Closed Strings

By incorporating the effects of open string production we have seen that rel-
ativistic D-branes decelerate abruptly as they pass each other. This deceleration
will lead to radiation of closed strings, in a process analogous to bremsstrahlung.
This drains energy from the brane motion, and, unlike the transfer of energy into
stretched open strings, this energy is forever lost from the brane system. Closed
string radiation therefore serves to increase the inelasticity of a brane collision.
Now, the end state of a near-miss is a spinning ‘remnant’, i.e. two D-branes or-
biting rapidly around each other, connected by a high density of strings. Loss of
energy and angular momentum to closed string radiation will swiftly reduce the
rotation of this remnant, at least until the velocities become nonrelativistic.

One potential worry is that the energy loss to radiation might be so large that
the quantity of open strings produced during a near-miss is quite small, leading to
weak trapping and a large stopping length. This is an example of the more general
concern that string production could be highly suppressed if any other effect caused
the branes to decelerate to nonrelativistic speeds before reaching each other. We
will show that the radiation of massless closed strings can be energetically significant
but, even so, does not alter our conclusion that the stopping length is not large in
string units.

To estimate the energy emitted as massless closed strings, we will make use
of the close analogy of this process to gravitational bremsstrahlung [113] and to
gravitational synchrotron radiation [114]. Of course, one of the massless closed
string modes is the graviton, but we also expect radiation of scalars, including the
dilaton and, when present, the compactification moduli. Even so, it will not be at
all difficult to convert results from general relativity to the case at hand, because in
practice, relativists often use the far simpler scalar radiation to estimate the basic
properties of gravitational radiation. We will do the same. .

Consider a small mass m moving rapidly past a large mass M in a path which
is, to first approximation, a straight line. A burst of gravitational radiation will
be emitted in a very short time, at the moment of closest approach. This is called
gravitational bremsstrahlung. The peak radiated power is approximately [113]

G3 M2m?2

p W

o (4.5.1)
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where G is the Newton constant, b is the impact parameter, and + is the relativistic
factor. For the remainder of this section we omit numerical prefactors: it will suffice
to have the dimensional factors and the powers of ~.

The case of interest to us is extremely strong binding by open strings, for if
the acceleration caused by the open strings is small then the closed string radiation
should not play a key role, and the argument for trapping given in §4.4.3 suffices.
Thus, we model the brane scattering by a gravitational scattering event in which
the impact parameter is not much larger than the Schwarzschild radius of the larger
‘mass. This gives

Gm?
7z 74, (4.5.2)

Another useful case is that of gravitational synchrotron radiation from a mass

P~

m moving in a circular orbit with period wg. The power is [114]

2
Gm* 4

P ~ Gm*wiy* ~ e (4.5.3)

where we have identified the inverse frequency with the minimum expected orbital
radius, which is of order the impact parameter. This result will be very useful for
understanding the decay of the initial circular orbit.

Furthermore, one can directly compute, in the supergravity limit, the radiation

from an accelerated D-brane. The result for circular motion with radius b is [115]

Gm?
b—2~/4 (4.5.4)

The results (4.5.3),(4.5.2), and (4.5.4) are thus in good agreement.

Knowing now the power lost to closed strings for a given decelerating trajectory,

P =

we also wish to compute the quantity of open strings which would be required to
produce this trajectory. Stated more generally, given an object being accelerated by
an external force, we are interested in the ratio of the radiated power to the power
associated with the driving force. For an accelerating electron this is a textbook
problem; see e.g. [116], chapter 14.

The result is that there is a characteristic length L, = %7;;22 governing radiation
by electrons, and unless an electron’s energy changes by of order its rest energy
during acceleration over a distance of order L., the radiation is negligible compared

to the external power. More specifically,

Eradiated AE Le
—_— =, — .b.
Edriving ¢ Az mc? (4 5 5)
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where the total change in energy, from all causes, is AE over a distance Az.

One can readily estimate the corresponding characteristic length Lp for mass-
less closed string radiation from a D-brane by comparing to the power (4.5.4). The
outcome is that Lp ~ g,ls.

Let us now consider a brane whose initial kinetic energy is E; = ~;T,, where
~; > 1. Suppose that the brane decelerates over a distance Az to a new kinetic
energy Ef = v4T,, Ay = v; — . The ‘driving force’ here is loss of energy through
open string production; we will now compare this to the energy lost to radiation.

ls

Eeciosea _ AE Lp A
gS ’YA
T

Q D= ~ — =
Eopen T, Az

(4.5.6)

If Qp <« 1 then our previous conclusions hold automatically, as the closed
strings are energetically negligible. If Qp > 1, there are two cases to consider.
First, if yf ~ 1, so that Ay ~ 7; > 1, the branes have slowed down to nonrelativistic
motion. In this case the energy in open strings can be estimated to be
AE T,Azx

i 4.5.7
Qp gs s ( )

Eopen =

To arrive at this rough estimate we did not need the Bogoliubov coefficients derived
from the annulus amplitude; we have used instead the fact that the external driving
force (open string production) can be determined based on the postulated trajectory.

Proceeding to estimate the stopping length, we find

ls
Az’

T« 2mnEy V2n*/2Ey & 2T, /2
~ ~ s

= 4.5.8
ls Vopen Eopen Eopen ( )

The distance Az is roughly order n3/2, because that is the size of the nonadiabatic
region in which open strings are created. (Two branes approaching each other will
begin to decelerate when they enter this region.) To make a very conservative
estimate, however, we will use Az 2 I;. Then, because we are working at weak
string coupling, the stopping length is

Tx

ls
< n?2g, -2 < n*/? (4.5.9)

Ax

so that the stopping length is much smaller than 73/2[,.
The second case is {1p > 1,5 > 1, so that the brane is moving relativistically

even after decelerating, and the relative velocity is large when the branes pass each
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other. Our general conclusion will be invalid only if the branes do not rapidly
trap in this final case. However, if the branes separate to a considerable distance
while moving rapidly, our annulus amplitude computation of open string production
applies directly. In other words, by assuming that the branes can separate, we are
arranging that they leave the region of nonadiabaticity, so that the number density
of open strings is accurately given by (4.3.14), and the trapping length by (4.4.26).
Thus, the assumption that the branes separate at high speed is not consistent.

We conclude that closed string emission can slow the motion of the brane
pair, but it does not substantially increase the stopping length. In fact, radiation
helps considerably to bring the branes to rest: once the branes are trapped and are
spiraling around each other, rapid radiation losses will slow their rotation. This
is enhanced by the familiar fact that, for relativistic objects, radiation losses are
greater in circular motion than in rectilinear accelerated motion. Once the branes
are trapped they slow down through this closed string synchrotron radiation. From
the power (4.5.3) we conclude that the branes lose energy so rapidly that they
would require only a few orbits to come to rest. In practice the spin-down process
is prohibitively complicated, but this result suffices to show that the lifetime of the
highly-excited, rapidly revolving remnant is in any case very short.

One important additional point is that the closed string radiation is strictly
negligible only when the coupling is so small that the branes are rather heavy, and
hence stretch the open strings farther before stopping. There is consequently a
tradeoff between computability and control, which are best at extremely weak cou-
pling, and the strength of the trapping, which is best for couplings above the bound
(4.4.27). It is essential to recognize that for any nonzero coupling, the collision is
inelastic and trapping eventually does occur; however, the stopping length increases
when the coupling grows very small.

A further question which we have not addressed is the production of massive
closed strings. In the case of very abrupt deceleration we would expect nonvanishing
production of these modes. We will leave a precise computation of this effect within
string theory as an interesting problem for future work.

For the present analysis, we can make a very crude estimate of massive string
production by using a result on the spectrum of gravitational synchrotron radiation.

For a mass in an orbit with period wp, the power per unit frequency is [114]

) (4.5.10)

dP
— X eXp (—
dw Werit



4 Relativistic D-brane Scattering 100

where werip = g’)’sz. Thus, for wer¢ < 1771, massive closed strings should play a
negligible role, but when gravitons of frequency I;! are being produced, it is natural
to expect massive modes as well. We therefore expect some emission of massive
closed strings in processes where y% > %. This will further increase the rate of
energy loss from the revolving brane pair, speeding the trapping and increasing the

effective inelasticity of the collision.

4.5.2 Summary of the Argument

For clarity, we will now briefly review our argument that the trapping of rela-
tivistic D-branes is powerful and abrupt.

The annulus partition function for open strings between moving D-branes in-
dicates that the density of produced open strings is given, in the relativistic limit,
by (4.3.14). The characteristic impact parameter below which the backreaction of
these strings is strong can then be seen to be b.¢ ~ nls. If the D-branes are as-

3/2, they have left the region of

sumed to separate to a distance larger than of order
nonadiabaticity, so that (4.3.14) applies. The energy (4.4.15) in open strings then
exceeds the initial brane energy, so that the assumption of significant separation
was inconsistent.

The same argument applies when closed string radiation is taken into account.
A straightforward estimate of the energy lost to radiation over a distance 7%/2 shows
that the energy transferred to open strings is still sufficient to stop the branes before
their separation exceeds 7%/2.

We expect that a detailed computation of the string production along a de-
celerating trajectory would show that the stopping length is at most of order b,
which can be much smaller than 1%/2. In particular, we expect that in a head-on
collision with negligible impact parameter the stopping length would be of order
the string length. However, estimates involving (4.3.14) are strictly valid only when
the branes eventually leave the window of nonadiabaticity, leading to the very con-
servative estimate r, ~ n3/2,.

A few potential objections remain. First of all, one might worry that the
branes somehow slow down before reaching each other, so that at the moment of
closest approach the velocities are nonrelativistic. In this case excited open strings
would not be produced and we would simply have field theory trapping. We have

already explained in §4.4.3 that if the branes slow down exclusively due to open
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string production, then they will still experience rapid trapping. Then, we showed
in §4.5.1 that additional loss of energy through closed string radiation also does not
ruin the trapping.

A final worry is that the branes could interact by creating string pairs at
extremely high excitation levels. A vanishingly small number density of arbitrarily
highly excited strings (with level much higher than 5?) could absorb all the initial
kinetic energy and yet not generate a strong attractive force between the branes.
However, we have seen that in fact string production peaks around level npeqr ~
n? (27r2)_1, which is sufficiently small to ensure that the trapping is strong.

We therefore conclude that D-branes in relativistic motion generically trap each
other through copious production of open strings, with a trapping length no larger
than the size 7%/2l, of the nonadiabatic region. A sizeable fraction of the initial
energy is eventually emitted in the form of massless closed string radiation.

The limitations to our argument which we have discussed above make it chal-
lenging to precisely and controllably compute the stopping length in an ultrarela-
tivistic D-brane collision. However, these issues, and others — such as massless and
massive closed string radiation, annihilation of the produced strings, and dilution
of the produced strings in a cosmological background — do not in any way weaken
our argument that the brane collision is inelastic. In fact, it is easy to see that radi-
ation, annihilation, and dilution all extract energy from the brane system, slowing
the brane motion. (See [18] for an analysis of these issues in the nonrelativistic con-
text.) Happily, for applications to cosmological models, it is the inelasticity rather

than the stopping length which is most immediately relevant.

4.5.8 Regime of Validity and Control

We will now examine the characteristics of the trapping process as a function
of the dimensionless parameters g, b, n.

First of all, we will never work at strong string coupling (g > 1), since then we
would have to include higher string loop effects. Furthermore, at strong coupling
the D-branes become very light, and their Compton wavelength Ap grows. We
require Ap < b so that we can neglect these quantum effects.

Secondly, we should require that the Schwarzschild radius R, of the D-brane is

negligibly small compared to b. To estimate this, we treat the Dp-brane as a point
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source in 10 — p dimensions. The black hole solution in (10 — p) dimensions for a

p-dimensional extended object of tension T and zero charge is [117]

8—p\ RIP
= s 4.5.11
T (7—;0) (27)7dpg2 (4.5.1)

where dp, = 5Pt (552).

We are interested in the limit of zero charge because the highly-boosted branes
have far greater effective mass than the BPS bound requires. Note that in fact the
metric for one of these moving branes is of a shock-wave form, not a static black
hole. We are imagining that the branes collide inelastically and then asking whether
the Schwarzschild radius of the excited remnant, seen in the center of mass frame,
is comparable to the initial impact parameter.

In this scheme, the effective tension is the center-of-mass energy 27,y ~ Tpe”/ 2,

We therefore find, using the tension of a p-brane,

T—p N
(%) =0s (-;—_—%) (2m)7Pd,e"/? (4.5.12)

from which we conclude that for p < 7, the Schwarzschild radius can be made para-
metrically less than any given impact parameter by reducing the string coupling.
Let us now fix b and 7 and take the string coupling to be small enough so that
string loops, the brane Schwarzschild radius, and the brane Compton wavelength
can be neglected. As we further decrease the coupling, the brane becomes heavier
and the stopping length becomes greater. Now, recall that when we examined
the open string production along a constant-velocity path, we found an energetic
inconsistency: unless the coupling was exponentially small, the open string energy
exceeded the initial kinetic energy of the system. Of course, deceleration reduces
string production, so for any controllable coupling the energy in open strings will
not exceed the initial energy. However, we can still define a value of g, at which
the energetics is consistent even before we incorporate the deceleration which arises
from backreaction. Comparing (4.4.23) and (4.4.24), we find that the energetics are

automatically consistent provided that
gs < 23/27rp/2_3777_53 e /2, (4.5.13)

Thus, only for exponentially small string coupling are the branes so heavy that they

stretch the open strings substantially before coming to rest.
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4.6 Discussion

We have argued that the relativistic scattering of Dp-branes, p > 0, at small
impact parameters is almost completely inelastic as a result of pair production of
excited open strings. The time-dependence induces production of an extremely high
density of highly-excited, stretched open strings, which rapidly draw the branes into
a tight orbit. The resulting acceleration results in significant closed string radiation,
which acts to further brake the motion.

Powerful stringy trapping of this sort occurs whenever the impact parameter,
measured in string units, is small compared to the rapidity n. This is a much larger
range of distances than that controlled by collision of the stringy halos of the two
branes, whose radius grows as /7. Moreover, the strength of this stringy trapping
was a surprise: it does not follow from summing the low-velocity result of [18] over
the string spectrum. Instead, the velocity-dependence of stretched string masses
enters in a crucial way to enhance the production effect.

Our result, which is essentially a simple observation about the quantum-
corrected dynamics of D-branes, has obvious implications for scenarios involving
branes in relativistic motion. One example!® is the stage of reheating in cosmo-
logical models with fast-moving branes and antibranes. Brane-antibrane inflation
models typically end with the condensation of the open string tachyon, leaving a
dust of closed strings in the bulk as well as excited open strings on any remaining
branes [118]. Despite much effort, this process is not fully understood [119]. Sup-
pose, however, that the antibrane is moving relativistically toward the end of its
evolution, and then passes by or collides with a stack of branes. (Ultrarelativistic
brane motion is natural in the DBI models [120,121], for example, and could occur
elsewhere.) In this case tachyon condensation governs only a small fraction of the
energy released; most of the kinetic energy goes into open string pair production.
Thus, reheating in such a model proceeds by stringy trapping (for related work, see
[122]).

More speculatively, moduli trapping may be a useful mechanism for vacuum
selection [18], as it gives a dynamical explanation for the presence of enhanced
symmetry. (See also [123,124] for related work on moduli dynamics in string/M

theory.) The stringy trapping presented here extends the trapping proposal not

15 YWe are grateful to S. Kachru for suggesting this.
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just to a new parameter range, but to a regime where the strength of the effect
increases dramatically.

The inelasticity of D-brane scattering may be viewed as a calculable example
of a more general question: to what extent do particle, string, and brane production
affect motion toward or away from a given ‘singular’ configuration? Time-dependent
orbifolds [125,126,127,128,129,130,131] (see also [132] and references therein) pro-
vide a relatively tractable setting for such a question. Berkooz and Pioline [130]
and Berkooz, Pioline and Rozali [131] have emphasized the possibility of resolving
a spacelike singularity through the pair production and condensation of winding
strings. It would be very interesting to extend these results and repair more general
spacelike singularities through the production of branes or strings; see [133] for work
in this direction. Our analysis suggests that string production could be surprisingly
important in such a setting.

Another interesting open question is whether the inelasticity of quantum-
corrected D-brane collisions can be used to place bounds on the elasticity of other
sorts of collisions. In the cyclic universe model [134,135], the orbifold boundaries of
heterotic M-theory [136] approach each other and collide. An intrinsic assumption
of these cyclic models is that the collision is very nearly elastic; this is essential
to make possible a large number of collisions and the associated cyclic behavior.
Our result makes it plain that D-brane collisions, which appear elastic classically,
are highly inelastic when the quantum effects associated to fundamental strings are
included.

In the cyclic model, the M2-branes stretched between the boundaries become
tensionless at the instant of collision. In the weakly-coupled four-dimensional de-’
scription these objects are heterotic strings whose tension, in four-dimensional
Planck units, goes to zero at the moment of impact. Because the masses vary
rapidly during the collision, the nonadiabaticity is large and we expect copious pro-
duction of these strings. It would be extremely interesting to compute the energy
loss through this string/membrane production and to understand the implications
for the cyclic models [137].

We should point out that in the most realistic cyclic models, the brane veloci-

ties are required, for phenomenological reasons, to be nonrelativistic.!® The results

16 We are grateful to P. J. Steinhardt for helpful discussions on this point.
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in this chapter appear to give an independent upper bound on the velocity of the
branes before collision — this bound is one which is required for the self-consistency
of the model, rather than one imposed by observational requirements. However,
this argument is qualitative at present; an explicit extension of our results involv-
ing stretched fundamental strings to the case of stretched membranes would be
nontrivial.

Another interesting application would be to investigate inelasticity in the rel-

ativistic dynamics of networks of cosmic strings [138].

4.A Masses of Strings Between Moving Branes

In this appendix we provide a consistency check of our result (4.4.3) for the
mass of an open string stretched between moving branes. We motivated this result
with several independent arguments for a rescaling of the string tension. We will
now show that precisely for this value (4.4.3) of the mass, our WKB estimate of
string production (4.2.6) is consistent with the complete string result (4.4.7) in their
regime of common validity.

In order to compare these two results, we need to work in a regime where the
WKB result is reliable. We therefore require that the occupation numbers of all
string states are small, i.e. we work in the nearly-adiabatic limit. By examining the
full string result (4.4.7) we see that this can be achieved by requiring that b? > 7.
Moreover, we are interested in the relativistic limit n > 1.

We can use the result of §4.2 to conclude that if the time-dependent x mass is
given by o
m2(t) = C’;T(;’)(b? + v?t?) (4.A.1)

then the number of produced x particles is

C(v)b?

U X exp (—T> . (4.A.2)

Requiring consistency with (4.4.7) we see that
C(v) =v/n, (4.A.3)

exactly matching our proposed formula (4.4.3).
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This analysis allows us to determine the velocity-dependence of that part of
the string energy which comes from stretching, i.e. the second term in (4.4.3).
The necessity of working in the nearly-adiabatic limit prevents us from extracting
the velocity-dependence of the string oscillator energy, which is the first term in
(4.4.3). However, we view the exact agreement between (4.A.3) and the energy
resulting from the rescaling of the string tension (4.4.2) as compelling evidence that
the rescaled tension correctly encodes the properties of this system. We therefore
propose that the oscillator energy is likewise given by the same rescaling of the
tension as in (4.4.2). This leads to (4.4.3).

4.B Theta Function Identities

In this section we collect various identities about the elliptic theta functions.
Because of the existence of several canonical notations for these functions, we define
the functions as used in the chapter.

The theta functions are often expressed in terms of the variables v and 7, or
in terms of the nome ¢ = exp(27iT) and z = exp(2niv). The four theta functions

are written down below in both their series and product forms:

Ooo(v, 7) = 03(v|T) = Z qn2/22n — H (1- qm)(l + zqm—l/z)(l n Z_1qm_1/2)

n=—oo m=1

o1 (v, 7) = O4(v|7) = i (=1)ngn"/2m

= H(l_qm)(l__ m— 1/2)(1 o1 7 1/2)
m=1
010(1/7 T) - 02(1/'7') = 2 q(n-—l/2)2/2zn_1/2
n=—oo

= 2¢™7/4 cos(mv) H (1—¢™) 1+ 2g™)(1 + 27 1¢g™)

m=1

O11(v, T)=—0:1(v|T) = —i Z( 1" (n~1/2)2/2zn—1/z

n=—oc

o0
= —2¢"*sin(mv) [] (1 - ¢™)(1 ~ 2¢™)(1 ~ 27*¢™).
m=1

(4.B.1)
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In addition to the theta functions, we shall also need the Dedekind eta function:

0o 71/3
n(r)=¢/* [[1-¢™) = {a—”e—l—l(o’—)} : (4.B.2)

27

These functions have the following modular transformation properties:
Ooo(v/7, —1/7) = (—iT)*? exp(wiv? /7)000 (v, T)
Bo1(v/ 7, ~1/7) = (=ir) /2 exp(miv?/7)010(v, 7)
010(v/T, —1/7) = (—i1)Y? exp(miv? /7)001 (v, T) (4.B.3)
011(v/7, —1/7) = —(—i7)* % exp(wiv?/7)011 (v, T)
n(=1/7) = (=ir)/*n(r).

We will often need the asymptotic behavior of the theta and eta functions.
When g <« 1 we can immediately find the asymptotics using the above expansions,
whereas for ¢ — 1 we must first perform a modular transformation.

The asymptotic behavior of a particular combination will be especially helpful.
Define the fermionic partition function Z(7) = 264,(0|7)n(r)~'2. Then for —ir =
s > 1 we have

Z(is) = 8 + O(e™ ") (4.B.4)

whereas for s < 1 we find, using the modular transformations above,
1 x
Z(is) = 534 exp(%) (1 +O0(e” > ) (4.B.5)
We will also need a few identities involving the theta functions:

030(0,7) — 05,(0,7) — 03,(0,7) =0  011(0,7) =0

4 4 4 4 4
[T 28(¢arit) = [ 29(¢asit) — [] 25($arit) — [] 21 (Barit) = 2] 21(¢}. i),
a=1 a=1 a=1 a a=1

=1

(4.B.6)
where
wrr o Baplidt/m,it)
25000 = (@t mmit
¢$ = %(qsl +g2t g3t ds) g = %(m +¢2 — ¢3 — ¢4) (4B.7)

¢§=%(¢1-¢2+¢3—¢4) ¢ﬁ;=%(¢1—¢2—¢3+¢4)-

The identity (4.B.6) leads in the case ¢ = ¢3 = ¢4 = 0 to

29‘111 (v/2,7) = bgo(v, 7')080(0, T) — Bo1(v, 7')931 (0,7) = B10(v, 7')9?0(0, 7). (4.B.8)



5. Heterotic Moduli Stabilization

ABSTRACT OF ORIGINAL PAPER

We show that fractional flux from Wilson lines can stabilize the moduli of heterotic
string compactifications on Calabi-Yau threefolds. We observe that the Wilson
lines used in GUT symmetry breaking naturally induce a fractional flux. When
combined with a hidden-sector gaugino condensate, this generates a potential for
the complex structure moduli, Kdhler moduli, and dilaton. This potential has
a supersymmetric AdS minimum at moderately weak coupling and large volume.
Notably, the necessary ingredients for this construction are often present in realistic
models. We explore the type ITA dual phenomenon, which involves Wilson lines in
D6-branes wrapping a three-cycle in a Calabi-Yau, and comment on the nature of

the fractional instantons which change the Chern-Simons invariant.

5.1 Introduction

When string theory is compactified on a Calabi-Yau manifold [139], the result-
ing low-energy field theory typically contains some number of massless scalar fields,
or moduli. Gravitational experiments and the requirement of consistency with nu-
cleosynthesis place rather strong constraints on the existence of such fields (see e.g.
[140]). If moduli were an essential feature of all string compactifications then model
building would be very difficult. Fortunately, moduli are only endemic in the sim-
plest, most symmetric constructions. General backgrounds involving fluxes, as well

as nonperturbative effects, tend to create potentials for some or all moduli. Even

This chapter is reprinted from Sergei Gukov, Shamit Kachru, Xiao Liu, and Liam McAllis-
ter, “Heterotic Moduli Stabilization with Fractional Chern-Simons Invariants,” Phys.Rev.
D69 (2004) 086008, by permission of the publisher. © 2003 by the American Physical
Society.
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so, although compactifications with reduced moduli spaces are easy to construct, it
remains challenging to eliminate all of the moduli in a given model.

Two fields which have proven particularly difficult to stabilize are the Calabi-
Yau volume and, in heterotic compactifications, the dilaton. The problem is es-
pecially acute in these cases because the dilaton and volume directly influence the
gauge and gravitational couplings in our world, making rolling values unacceptable.
Moreover, as these parameters govern the string and sigma-model perturbation ex-
pansions, a controllable compactification requires that the dilaton and volume be
stabilized at weak coupling and large radius.

We will demonstrate that this can be achieved in a certain class of heterotic
compactifications on Calabi-Yau spaces with a large fundamental group. The con-
text for this proposal is the original work [21] of Dine, Rohm, Seiberg, and Witten,
who observed that the combination of a gaugino condensate (in the hidden-sector
of the Eg x Ejg heterotic string) and a background three-form flux generates a po-
tential for the dilaton but leaves the cosmological constant zero at tree level.l” As
was understood there and in more detail in subsequent work, because of the quan-
tization condition for the three-form of the heterotic theory, the dilaton cannot be
fixed at weak coupling. The essential difficulty is that the gaugino condensate term
is nonperturbatively small when the coupling is weak, whereas quantization forces
the flux term to be of order one. The resulting potential drives the dilaton to strong
coupling.

It is important, however, that the Chern-Simons contribution to the heterotic
three-form flux does not obey the same quantization condition as the contribution
from the field strength of the antisymmetric tensor. In fact, as we will explain below,
the Chern-Simons contribution of a flat gauge bundle can take fractional values of
order 1/N, where N is related to the order of the fundamental group. On Calabi-
Yau manifolds with sufficiently large fundamental group this provides a natural
mechanism to stabilize the dilaton at weak coupling. The same effect stabilizes
all Kahler moduli once the dependence of the gauge coupling on these moduli is
correctly incorporated. For related earlier work see [142,143,144,145,146,147,148].

The requirements that the Calabi-Yau manifold should have non-trivial fun-

damental group and that the gauge bundle should have nonzero Wilson lines are

17 Closely related simultaneous work appears in [141].
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actually well motivated by other model-building considerations. In fact, most mod-
els of particle physics based on Calabi-Yau compactifications of the heterotic string
involve manifolds with non-trivial fundamental group and associated gauge bundles
with Wilson lines.

A standard way to construct such manifolds is to quotient a simply-connected
Calabi-Yau space by a freely-acting discrete symmetry group G. The resulting
string GUT model solves a number of important problems. For instance, in simple
constructions the number of generations is divided by |G|, leading to models with
realistically low numbers of generations [139]. Moreover, one can naturally solve
the doublet-triplet splitting problem [149,150] in this setting.

More importantly, the non-trivial fundamental group allows us to introduce
Wilson lines. In addition to being an attractive method of GUT symmetry breaking,
Wilson lines are actually indispensable, as standard heterotic string models do not
admit adjoint Higgses of the GUT group [149].

We will add the stabilization of moduli to this list of problems which admit
natural solutions on Calabi-Yau manifolds with non-trivial fundamental group and
non-trivial gauge connection. The dilaton, Kéhler moduli, and complex structure
moduli can all be stabilized by incorporating the effects of gaugino condensation
and the flux induced by the Wilson lines.

We would like to underscore the happy coincidence that the necessary ingre-
dients for our construction are automatically present in certain realistic models.
Wilson lines typically lead to Chern-Simons flux, as we will explain in §5.3.3. Thus,
heterotic string GUT models with Wilson-line symmetry breaking often have a
background flux and an associated constant term in the superpotential. To the
best of our knowledge the consequences of this term have not been well explored
in the literature. In a restricted subset of models, namely those with hidden-sector
gaugino condensation and very small Chern-Simons flux, the effect is dramatic: the
moduli can be fixed, in a controllable regime, by the mechanism we are proposing.

The organization of this chapter is as follows. In §5.2 we review basic facts
about the relevant supergravity Lagrangians in ten and four dimensions, and about
the superpotential generated by gaugino condensation in the hidden Fg. In §5.3 we
review the quantization conditions on three-form flux and describe how fractional
flux can arise in the presence of flat connections with fractional Chern-Simons in-

variant. In §5.4 we describe how the fractional flux of §5.3 can be combined with

110



5 Heterotic Moduli Stabilization 111

gaugino condensation to stabilize the dilaton at weak coupling, along with the com-
plex structure moduli. In §5.5 we include loop corrections and show that it becomes
possible to simultaneously stabilize the Kahler moduli as well as the dilaton; this re-
quires more restrictive assumptions about the choices of gauge bundles. We observe
that a strong coupling transition naturally arises in this setting and we provide a
toy model which illustrates the smoothness of this transition. In §5.6 we discuss
some basic aspects of the dual descriptions of our story, including the dual type ITA
theories with wrapped D6-branes. In §5.7 we explore the nature of the domain walls
which interpolate between configurations with distinct fractional Chern-Simons in-
variants. We conclude with a discussion of possible extensions and broader issues
in §5.8.

As this work was being finalized, three papers which have some overlap with
our results appeared [151,152,153].

5.2 Gaugino Condensation in the Heterotic String

In this section we review the structure of the heterotic string low-energy effec-
tive Lagrangian, with particular attention to terms coupling the heterotic three-form
flux, H, to the gauginos. In §5.2.1 we fix notation by presenting the low-energy ac-
tion for the heterotic string in ten dimensions. We dimensionally reduce this action
on a Calabi-Yau threefold and describe the potential appearance of a gaugino con-
densate in the resulting N' = 1, d = 4 configuration. In §5.2.2 we show how to derive
the four-dimensional action of §5.2.1 from a simple superpotential induced by the
flux and the gaugino condensate. In §5.2.3 we explain that the dilaton potential

does not have a minimum at finite coupling unless the background flux is fractional.

5.2.1 Effective Lagrangian for the Heterotic Theory

The low-energy effective action for the heterotic string in ten-dimensional Ein-

stein frame is [154]

/

1 1 1 @ i
/dl%\/% (’Rm - §3A¢6A¢ — Ee"¢ (HABC - —G%YPABCX>

=20¢’4

S

16

/
—%e_%tr(FABFAB) — o/tr(";ZI‘ADAx))
(5.2.1)
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Indices A, B run from 0...9, and y,v are four-dimensional spacetime indices. The
internal space has real indices m,n and (anti)holomorphic indices i, ,4,5. The
Einstein-frame metric g;¢ has Ricci scalar R19, while w is the spin connection and
¢ is the dilaton. The heterotic string has gauge field strength F},, and gaugino
field x; all traces are taken in the fundamental representation. The three-form flux

H 4pc is defined by
/
H=dB- 9‘4- (ng(A) - Qg(w)) (5.2.2)

where (13 is the Chern-Simons three-form,
Qa(A) = tr (A/\dA+ %A/\A/\A) (5.2.3)

with a similar formula for Q3(w).

To reduce to four-dimensional Einstein frame, we use the ansatz
dsiy = e %9ds? + 2790, dy™dy™ (5.2.4)

where g0 .. is a fixed fiducial metric normalized to have volume 4a/3. Although this

differs from the usual convention
ds?y = e780=00)ds2 4 2900 dymdyn (5.2.5)

by a constant rescaling, (5.2.4) is nevertheless appropriate for a discussion of
moduli stabilization, as we do not know what the vev o¢ will be until we sta-
bilize 0. For a similar reason, we go between ten-dimensional string and Ein-
stein frame with the unconventional scaling g3,y = 95 Ne%, while one usually sees
guN = 95 Nej%m [108]. The resulting Minkowski metric differs from the conven-
tional diag(—1,1,1,1) by a constant scaling depending on the vevs of the dilaton
and volume modulus. To relate dimensionful quantities here to those directly mea-
sured from experiments, one must perform an inverse rescaling. Finally, note that

the gamma matrices built from the metric scale with €.

Let us decompose the ten-dimensional Majorana-Weyl gaugino x as

X = Xe ®Xa+ X6 ® X2 (5.2.6)
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where x¢ and x4 are six and four-dimensional Weyl spinors with positive chirality
and xg is the zero mode of the internal Dirac operator for the gaugino, with the

normalization
Xolx6 = L. (56.2.7)

We will choose to express the action in terms of a rescaled four-dimensional gaugino
A

A= xge 50t (5.2.8)

which will give the standard kinetic term after dimensional reduction.

Coupling Constants

The four-dimensional gauge coupling is
gy = €. (5.2.9)

where the four-dimensional dilaton ¢ is related to the ten-dimensional dilaton and

volume modulus via

=2 _6o (5.2.10)

2

Another important scalar field of the four-dimensional theory is the volume scalar!®

Ps

p= g +20 (5.2.11)

The fields ¢,p are related to the scalar components of two A/ = 1 chiral superfields

S, T:
S=e %+1a
(5.2.12)
T=c¢€”+1b

where a and b are the axions which arise from the spacetime and internal components

of B4p, respectively. In particular,

(xda) “**Hyp (5.2.13)

pvp = €

with an analogous relation for b.

18 For the moment we assume that the Calabi-Yau has only one volume modulus. We

will present the more general case in §5.5.2.
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The holomorphic Wilsonian gauge coupling functions f;¥ (where i = 1,2 runs

over the two Fg gauge groups) can be expressed in terms of S and T by
=8+ BT +0E®)+ 0T (5.2.14)

where the coeflicient (3; represents the one-loop correction to the gauge coupling
function, and the last two terms represent nonperturbative corrections. Higher loop
corrections vanish by standard holomorphy arguments, since the dilaton and radion
are partnered in chiral multiplets with axions. The physical effective coupling differs
from the Wilsonian coupling by wave-function renormalization and integration over

the low momentum modes.

Four-dimensional Action
Combining the relations given above, we reach the dimensionally-reduced ac-
tion 19

S4d = Sgravit'y + Sgauge + SC’Y (5.2.15)

2 1 3
Sgravity = ~ /d4x —g4 (’R4 - 5%@8“90 - §Bpp8“p) (5.2.16)

Sgauge —/d Tv/—ga ( o tr(F,, F*) —

tr(XI‘“DM)) (5.2.17)
YM 9y m

o 2
Scy =~ / d*z/—gae¥ 3 / d®y+/—g° (Hlmn—ﬁem"Tlmn) (5.2.18)

where we have defined

Timn = t1 (X6 X5 + X6 AD) T (X6*AD + X6AD")) (5.2.19)

and Ap is the Dirac spinor corresponding to A\. The perfect-square interaction term
(5.2.18) couples the background flux to the gauginos and therefore gives rise, as we

will see in detail, to a potential for the dilaton.

19 The unusual gravitational coupling x3 = %/ is an artifact of our ansatz (5.2.4).

The physical gravitational coupling differs from this by the constant rescaling mentioned

previously.
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Gaugino Condensation

Recall that in a pure N = 1 supersymmetric Yang-Mills theory in four dimen-
sions with gauge group H, the gaugino condensate which develops at low energies
is given by [155,156,30,157]:

(i (%xp(l - 75)AD>> — (tr(AAY)) = 1672M3exp (— 8" f W).

o (5.2.20)

Here M is the ultraviolet cutoff for the gauge theory, f% is given by (5.2.14), and
Cpy denotes the dual Coxeter number of H. We are interested in studying a gaugino
condensate in some subgroup H of the hidden sector Eg gauge group which arises
in compactification of the Fg x Eg heterotic string on a Calabi-Yau manifold. The

appropriate ultraviolet cutoff M for a string compactification is the mass scale of

8—120'
M3} =c (---) (5.2.21)

2&’3/2

Kaluza-Klein excitations,

where ¢ is a constant of order one. Combining (5.2.20) and (5.2.21), we find that
the gaugino condensate in H C Fg satisfies

—120 2 W
(tr(\\)) = 8n2c (23 - ) exp <— 8”01{{ ) (5.2.22)

5.2.2 Superpotential from Flur and a Gaugino Condensate

For a variety of reasons it will prove useful to work with a superpotential and
Kéhler potential from which one can reproduce the interaction (5.2.18).

One can derive the kinetic terms in (5.2.16) using the Kéhler potential
_ _ i _
K=-log(S+5)—3log(T'+1T) - log(——40‘—,3 /Q A ). (5.2.23)
The superpotential for this system takes the form

W= Wflux + Weondensate (5224)

where the first term is induced by the background flux and the second term is a
nonperturbative contribution arising from the gaugino condensate.

The flux-induced superpotential can be written as an integral over the Calabi-
Yau space [158,159,160,161]

2v2
Wfl’u,:l,‘ = F /H AN Q (5.2.25)
5
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This superpotential leads to the following term in the scalar potential

Ve = ¥~ / dSyv/— g0 Hypp H'™™ (5.2.26)
bs

240/

which is precisely the first term in (5.2.18). As we will explain in §5.3, the number
of quanta of H-flux is roughly given by

1

so that we may define a mass parameter yu,

4+/2cm?
in terms of which
243
Wiiuz = —~ h (5.2.29)

The nonperturbative contribution is conveniently expressed in terms of the

Wilsonian coupling [162]

8/ W) (5.2.30)

Wcondensate = _CH/J'seXp (_ C
H

where the normalization was obtained by comparing to (5.2.18). Putting these two

pieces together, the total superpotential is

3 2 W
W = (2%) h — Cyu®exp (—SW f ) . (5.2.31)

Cu
5.2.8 Conditions for a Stabilized Dilaton

A potential for the dilaton arises from the perfect-square interaction term
(5.2.18), which couples the background flux to the gauginos. To analyze this expres-
sion we first observe that the gaugino bilinear appearing in (5.2.18) is proportional
to the covariantly constant holomorphic three-form. This follows from the fact that

X6 is a gaugino zero mode on the Calabi-Yau manifold [21]:

tr (06 X"+ X6 e 06X + XoX7) ) = 2 ON))umn + e (5.2.32)

Here Q is the holomorphic (3,0) form on the Calabi-Yau, with the normalization
100k = 1.
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Minimizing the perfect square (5.2.18) forces (AN)Q + (AN*Q to align itself
along the same direction in H3(M, R) as the three-form flux H. This uniquely
fixes the complex structure moduli and the four-dimensional gaugino condensate.
Because the gaugino condensate depends on the four-dimensional dilaton, it follows
that the interaction (5.2.18) generates a potential for the dilaton.

However, the minimum of this potential is generically at infinite coupling. In
the absence of Chern-Simons contributions, the three-form H obeys the quantization

condition

1
53 /Q dB=n (5.2.33)

for any @ in H3(X,Z). The second term inside the perfect square of (5.2.18), on

the other hand, integrates over three-cycles to
Oél e120’
/Q 3 ((tr()\)\))ﬂijk + c.c.)

cm? ( 8m2 ) ( w/ o [ =
= ——exp| ——=——— e~ Q+ett / Q) 5.2.34
o/1/2 CrIY M Q Q ( )

~ crla’ exp ( 8 )
B CHGY M

These two terms cancel only if

c 872 )
—exp| ————=— | ~n. 5.2.35
2 P ( CH.‘]}Z/M ( )

This has no solution because the left hand side is almost always?® less than one.
This means that instead of stabilizing the four-dimensional dilaton at a finite value,
turning on an integral flux dB actually drives the system to infinitely strong cou-
pling. Our proposal is to use fractional fluxes to overcome this problem and stabilize
gy m at finite coupling. We therefore turn to an investigation of the conditions under

which fractional flux can arise in the heterotic string.

20 We are assuming that the constant ¢ in (5.2.21) is of order one. If c takes a larger
value in a particular model then integral flux might possibly stabilize the dilaton, albeit

at relatively strong coupling. We will not investigate this possibility here.
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5.3 Fractional Flux Induced by Gauge Fields

In §5.3.1 we review the quantization condition for three-form flux and explain
its relation to the Chern-Simons invariant. In §5.3.2 we briefly discuss the class of
three-manifolds used in our models and construct a simple example. In §5.3.3 we
provide expressions for the Chern-Simons invariants of these manifolds. In §5.3.4 we
discuss the conditions under which fractional Chern-Simons flux leads to a world-

sheet anomaly, and we explain how this can be avoided in our setup.

5.3.1 Quantization Conditions for Three-Form Fluz

Consider a compactification of the Fg X Eg heterotic string on a Calabi-Yau

manifold X. The two-form B, is required to satisfy

1

for any three-cycle @ in H3(X,Z) in order for the action of worldsheet instantons

to be single-valued [142]. However, the gauge invariant field strength is
o o
H = dB — S 0a(4) + 0 (). (5.3.2)

This does not need to obey the same quantization law, due to the presence of the
Chern-Simons term. To see this let us assume for simplicity that the background
B-field is trivial, and that the contribution of the spin connection w can be ignored.
Then only the remaining factor of the gauge connection contributes. So instead of

(5.3.1) we find the quantization rule
—1——/H—-—CS(A Q) (5.3.3)
o Jo o ’ o

where we introduced a standard notation

1
CS(4,Q) = — / Q3(A4)
87T Q
) (5.3.4)
tr{ ANdA+-ANANA
Q 3

~ 8n?

for the Chern-Simons invariant associated with a three-manifold ¢} and a connection

one-form A.
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The invariant CS(4,Q) plays an important role in the theory of three-
manifolds. In particular, if V'’ is a gauge bundle over Q and if A is a flat gauge con-
nection on V', then CS(A, Q) is a topological invariant, in the sense that CS(A4, Q)
takes a fixed value on each component of the moduli space of flat connections on
Q. Moreover, it is well known that CS(A, Q) is well defined only modulo integers
and can take fractional values. If we further assume that the bundle V' pulls back
to a gauge bundle V over the Calabi-Yau manifold X, then we obtain the desired
situation where the three-form flux takes fractional values. In the following sections
we will use this as a mechanism to produce small quanta of the H-flux, which can

then be used to stabilize the various moduli.

5.8.2 Three-cycles with Fractional Flux

Certain classes of three-cycles in Calabi-Yau manifolds admit connections with
fractional Chern-Simons invariant. We now turn to a discussion of the properties
of such three-cycles.

Since only holomorphic and antiholomorphic components of the three-form
flux contribute to the superpotential (5.2.25), the only fractional fluxes we need
to consider are those of Hodge type (3,0) + (0,3). These can be viewed as fluxes
through special Lagrangian cycles (). Typically these are compact three-manifolds
with non-negative curvature which support gauge fields suitable for our purposes.
According to McLean [163], the deformations of a special Lagrangian submanifold
Q@ can be identified with the harmonic one-forms on ). Specifically, the deformation
space has real dimension by (Q). Therefore, rigid special Lagrangian three-cycles are
precisely rational homology three-spheres, i.e. three-manifolds with b;(Q) = 0. We
shall henceforth restrict our attention to rigid special Lagrangian three-cycles. The

local Calabi-Yau geometry near such cycles is always of the form,
TQ

For example, we can choose @ to be the base of the special Lagrangian torus fibration
164,
i X —-Q (5.3.5)

Indeed, following Strominger, Yau, and Zaslow [164], consider a BPS state in

the effective four-dimensional theory represented by N D6-branes wrapped over the
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entire mirror manifold X. These D6-branes are rigid and, because the fundamental
group of X is finite, there is only a discrete set of Wilson lines. In fact, the latter
account for the degeneracy of D-brane bound states [165]. Namely, the number of
bound states of N D-branes is given by the number of N-dimensional irreducible
representations of m(X). Under mirror symmetry (realized as T-duality on 72
fibers) these D6-branes become D3-branes wrapped around the base Q. In order
for the D3-branes to have no continuous moduli the base manifold @ must be a
rational homology three-sphere. Also, by looking at the degeneracy of D-brane
bound states for different values of N, we conclude that 71(Q) and 71(X) should
be related. Notice that since both X and its mirror X are fibered over the same
base @, the above arguments imply that their homotopy groups should be related
as well. In particular, in a large class of examples one finds that the abelian parts
of 71(X) and 71(X) are isomorphic, cf. [166].

Let us study a simple example that will be relevant in the following. Consider

a quintic hypersurface in CP*,
5, .5, .54 .5 .5 : _
2] + 25 + 23 + 23 + 22 + deformations =0 (5.3.6)

This hypersurface represents a Calabi-Yau variety X, with Al = 1, A%! = 101.
Unfortunately, m1(Xo) is trivial, so Xy does not admit a fractional flux induced by
non-trivial gauge fields. Moreover, since the number of generations in a heterotic
compactification on a Calabi-Yau threefold X is related, in the case of the standard
embedding, to the Euler number of X [139], in the present case with the standard
embedding we find an unrealistically large number, N = 1|x(Xo)| = 100. A model
with a more realistic spectrum that does not suffer from these problems can be

obtained by considering a quotient of Xy,
X =X,/T

by a discrete symmetry group I' = Z5 x Z5, generated by two elements

a1: (Z1,22,23,24,25) - (Z5,217Z2,Z3,Z4) (5 3 7)
92: (21, 22, 23, 24, 25) — (C21, (%22, (P23, (P24, 25)

where ¢ = exp(27i/5). Since I' acts freely on Xo, we have x(X) = x(X5)/25 = 8

and 71 (X) = Zs x Zs. Therefore, compactification of the heterotic string on the

120



5 Heterotic Moduli Stabilization 121

resulting manifold X with the standard embedding provides a model with only four
generations, and there is a possibility to turn on non-trivial Wilson lines on X.
Also, it is easy to see that the base, @, of the special Lagrangian torus fibration in
this case is a rational homology three-sphere with non-trivial fundamental group.
For the quintic hypersurface (5.3.6), the base Qo of the special Lagrangian
torus fibration can be represented by the image of the moment map, z; — |z|2.
The topology of Qg can easily be understood in the large complex structure limit,
where it is close to the boundary of the toric polytope. Hence, Qo = S3. Now
let us consider the action of the discrete group I'. From (5.3.7) it follows that the
generator go acts trivially on (g, whereas g; acts freely. Therefore, we find that

the base of the special Lagrangian torus fibration X — @ is a Lens space,
Q=S3%/Zs (5.3.8)

In particular, we have m;(Q) = Z5 and, as we will show below, there are many
choices for the gauge bundle V' and for the gauge connection A over this three-
manifold, such that CS(A4,Q) has fractional values. If V' is such a bundle, we
can define its pullback V = f~1V’ under the projection map (5.3.5). The resulting
gauge bundle V over X has the desired properties and, according to the quantization
rule (5.3.3), the three-form flux in heterotic string theory on this background can
take fractional values.

This construction can easily be generalized to an arbitrary special Lagrangian
three-cycle () which is rigid inside X. As was explained above, the condition of
rigidity implies that @ is a rational homology three-sphere. Examples of ratio-
nal homology three-spheres that can occur as special Lagrangian cycles in Calabi-
Yau threefolds include Lens spaces, Brieskorn homology three-spheres, and, more
generally, Seifert fibered three-manifolds. Recall that the Seifert three-manifold,
¥(a1,-..,an), is a circle fibration over a two-sphere, with n multiple fibers. This
includes Brieskorn spheres and Lens spaces as a special case, n = 3. For instance, the
Lens space L(p,1) = S3/Z,, is a Seifert three-manifold with (a1, a2, a3) = (p, 2, 2).
Many of these three-manifolds support non-trivial gauge connections with fractional

Chern-Simons functional [167,168].
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5.3.83 Formulas for the Chern-Simons Invariant

In order to determine the set of values of CS(A4, Q) for a given three-manifold
Q, one has to study the space of representations of the fundamental group, (@),
into the gauge group. A familiar example of a reducible?! gauge connection on a

manifold with m; = Z,, corresponds to a discrete Wilson line of the form
U = diag(e?™k1/P . e?miks/p) (5.3.9)

variations of which are often used to break the GUT gauge group to a smaller sub-
group, such as the Standard Model gauge group [149]. The Chern-Simons invariant

of such a connection is [170] (see also [171])
k2
CS(A,Q) = ;52—9 mod Z (5.3.10)

where the sum is over all eight complex worldsheet fermions. For appropriate choices
of p and of the k; the result is a fractional Chern-Simons invariant.??

This has the surprising consequence mentioned in the introduction: in many
cases the Wilson lines which are used to break the GUT gauge group to the Standard
Model introduce a fractional Chern-Simons invariant, and hence a fractional flux.

We now turn to the more general question of the fractional Chern-Simons
invariants of Seifert three-manifolds; this choice covers a fairly large class of models
relevant to the physical problem at hand. Without loss of generality, we can take
the gauge group to be SU(2) (which can be realized as a subgroup in one of the
two Eg’s). Let @ = X(as,...,a,) be a Seifert three-manifold. In this case, the

irreducible representations,

p: m(Q)—SUQ2)

21 A connection A is called reducible if its isotropy subgroup, that is a maximal subgroup
that commutes with all the holonomies of A, is a continuous group. Otherwise, 4 is called
irreducible. For example, an SU(2) gauge connection is reducible if its isotropy subgroup is
U(1). Notice that reducible gauge connections may have non-zero Chern-Simons invariant,
see e.g. [169].

22 In §5.3.4 we review the existence and cancellation of a potential worldsheet global

anomaly in such backgrounds.
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are characterized by what are called “rotation numbers”, (£m;,...,+m,), where
each m; is defined modulo a;,

m; ~ m; +a;

Furthermore, there exists at most one component of the representation variety
realizing a given set of rotation numbers (mgy,...,my). If A is the corresponding
connection one-form, the value of the Chern-Simons functional, CS(A4, @), is given
by the simple formula

3

1
CS(A4,Q) == — (mi+ A)? (5.3.11)

i=1

where .
A=0, 3 (5.3.12)

In particular, if Q = S3/Z, is a Lens space, from the general formula (5.3.11) we
find . 32

CS(A,Q) = - (my + ) — & mod Z (5.3.13)
where for simplicity we set mg = mg3 = 0. This expression gives two sets of values of
the Chern-Simons functional (listed in [167]) corresponding to A =0 and A = 1/2,

respectively. It is convenient to introduce a new integer parameter
m=2mj + 2\ mod 2p

and rewrite (5.3.13) in the form

2 2
CS(A4,Q) = —T—p . % ‘mod Z. (5.3.14)

In general, it follows from (5.3.11) that CS(A, @) is a rational number whose de-

nominator can be as large as the order of the fundamental group, m1(Q).

5.3.4 A Global Worldsheet Anomaly from Fractional Chern-Simons Invariants

For completeness, we now discuss a technical issue related to modular invari-
ance in a fractional flux background. Specifically, we present a sufficient condi-
tion for cancellation of the worldsheet anomaly induced by fractional Chern-Simons

flux.23

23 We are indebted to E. Witten for explaining to us much of the content in this
subsection.
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When the heterotic string propagates on a nontrivial geometry M with non-
trivial Wilson lines, there is a global worldsheet anomaly in addition to the one-loop
anomaly seen in the ten-dimensional supergravity [170]. This signals that the world-
sheet instanton path integral is not necessarily single-valued in such a background.

To compute the anomaly, consider a one-parameter (t) family of maps from a
one-parameter family of worldsheets into the target space, with the worldsheets at
t = 0 and ¢ = 1 identified by a large diffeomorphism A preserving the spin structure:
@ : (¥ x[0,1]4)p, — M. The change of the fermion determinant can be calculated

using an index theorem [170],

InZ(¢',t=1)—InZ(¢*,t =0) = —2m'/ Q3(4), (5.3.15)
©(Ex[0,1])n
where
Z(¢",t; gij, Bij, Al ) = (detF)(dety, )(dety, )(det* R). (5.3.16)

Here the first three terms inside the logarithm are Dirac determinants for the right-
and left-moving fermions coupled to the pull-back of the spin connection and gauge
connection, and the fourth term comes from the right-moving Rarita-Schwinger
ghost. If we were unable to find other sources to cancel the factor on the right hand
side, we would have to set the Chern-Simons invariant to an integer to maintain
the single-valuedness of the determinants. _

Fortunately the Wess-Zumino term on the worldsheet can help us. For the
heterotic string on a Calabi-Yau with flat B field and with no Wilson lines, the

worldsheet action looks like

5= [ o (0150) + Bis@) 0,000 + igig* (047 + Ts0_g4)
(5.3.17)
HGap(@M (0,07 + AP (0,692 + -;-EjABWW'AAAB)

where ¥¢ and A4 are the right- and left-moving fermions, I";'.k is the Levi-Civita
connection of the target space, and G4p is the metric on the gauge bundle. This
action has manifest (0,2) supersymmetry. The question is, if we now turn on flat
Wilson lines supporting fractional Chern-Simons invariant, resulting in multi-valued
fermion determinants, can we find cancelling effects from the bosonic worldsheet

action? The answer is yes, provided there is no torsion in H*(M,Z).
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To see this, consider the following exact sequence:
o —HYM,R)-H3 (M, U(1)) - HY(M, Z)— H*(M,R)—>---.  (5.3.18)

The Chern-Simons invariant exp(i [Q3(A)) for a flat bundle takes values in
H3(M,U(1)) and is mapped into the torsion part of H*(M,Z). If H*(M,Z) is
torsion-free, the Chern-Simons invariant lives in the kernel of d and therefore Q3(A)
lives in H3(M,R). So there exists, locally, a two-form B:

dB = Q3(A).

It is crucial that B is not globally defined when J Q3(A) is fractional. The change in
phase from the coupling of B to the worldsheets cancels the change in the fermion
determinants in equation (5.3.15)[172]. On the other hand, if H*(M,Z) has a
torsion piece, B does not exist for bundles supporting fractional Chern-Simons
invariant and we cannot cancel the global worldsheet anomaly. The only consistent
Wilson lines are then those that give integer Chern-Simons fluxes.

The reader will have noticed that if we modify the Wess-Zumino term into

/B+§,
)

we no longer have (0,2) worldsheet supersymmetry. We can preserve (0,1) super-

symmetry by modifying the connection to
~;‘k = F;"k +g"(dB)ju = Fj'k + 9" A) jh1- (5.3.19)

However, the complex structure J* j is no longer covariantly constant. Thus, just
as we expected, turning on a flat bundle with Chern-Simons gauge flux generates
a spacetime superpotential W = [ Q3(A4) A © and breaks M = 1 spacetime super-
symmetry and (0,2) worldsheet supersymmetry. It is obvious from the supergravity
effective action that with the addition of a gaugino condensate, spacetime supersym-
metry can be restored. However, we do not expect a useful worldsheet description

after including such spacetime effects.?4

24 Alternatively, to preserve (0,2) worldsheet supersymmetry, one could modify J ij so
that 6¢Jj p=J? P fiz Jh — ﬂkﬂ 1 = 0 with respect to the modified connection. This
typically cannot be achieved by a local modification (i.e. a continuous deformation) and
requires starting with a non-Kahler manifold. This is closely related to [173] and to more
recent literature on non-Kéhler compactifications. The difference is that here we would

consider non-Kéhlerity due to §23(A) instead of the more conventional non-flat dB.
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We have seen, then, that a sufficient condition for cancellation of the worldsheet
anomaly in the presence of fractional flux is absence of torsion in H*(M, Z). More
specifically, it is enough that no three-cycle @ on which the Chern-Simons form
integrates to a fraction is a torsion cycle in H3(M,Z). We will henceforth assume

that this condition is satisfied.

5.4 Dilaton Stabilization

We will now demonstrate that the combination of a gaugino condensate and a
fractional flux induced by the Chern-Simons term of the Eg x Eg gauge connection
can lead to stabilization of the dilaton at finite (and, with sufficient tuning, weak)
coupling. |

We denote the two gauge groups Eéi), it = 1,2. Let us henceforth adopt the
convention that Eél) is the observable Eg and Eéz) is the hidden sector. We imagine
that there is a suitable visible-sector bundle which breaks Eél) to an attractive GUT

group. If a realistic model is desired, we may also require that the observable Eél)

has a gauge bundle with | [ c3| = 6 to give three generations of quarks and leptons.?®
In the remaining visible-sector group we then turn on Wilson lines which have
fractional Chern-Simons invariant on some three-cycle. The resulting fractional
flux generates a superpotential via (5.2.25).26

For the purposes of this section we could take the hidden-sector bundle to be
trivial, so that Eéz) is unbroken. However, it will prove useful in §5.5 to include a
non-trivial gauge bundle in each of the Egs. We therefore embed an SU(2) bundle
into Es(;z), breaking Fs — E7. There is no index theorem protecting charged matter
in E; (as it has only real representations), so we can safely assume that the low-
energy F gauge theory in the hidden sector has no light 56s. The gauge group then
confines at low energies, providing a gaugino condensate to balance the fractional

flux, as in §5.2.2.

25 Examples of Calabi-Yau models with three generations and nontrivial 71 have ap-
peared in [174], and undoubtedly many more could be constructed in a systematic search.
26 The fractional flux could instead come from hidden-sector Wilson lines. We focus on

visible-sector Wilson lines for simplicity.
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The overall result is the superpotential (5.2.31):

W 2h 8128

where b = (2r2a/%/2)~ [ H A Q is the flux contribution and the second term is the
result of gaugino condensation (the dual Coxeter number of E7 is 18).27

To look for a supersymmetric vacuum, we solve the equation DgW = 0, with
the result

18

Modest values of the Chern-Simons invariant lead to a solution at weak coupling.

h = (9c+8c7r2Re(S))exp (—87T28> . (5.4.2)

For example, if h is approximately %, which is easily attainable using the construc-
tions of §5.3, then (5.4.2) can be solved with Re(S) ~ 1.6, which corresponds to
agur ~ 35- To achieve instead the often-quoted value agyr ~ & one needs h of
order 4—10. Of course the requirements are weaker if we take the pure hidden sector
gauge group to be Eg instead of Fr. ,

There are many variations of this mechanism which involve slightly different
choices of bundles. It seems to us that the most elegant models are those in which
one set of Wilson lines breaks the observable-sector GUT group to the Standard
Model and also provides the needed fractional Chern-Simons invariant.

We have already solved the dilaton equation DgW = 0. We can likewise solve
the equations for the complex structure moduli by making H of type (3,0) + (0, 3).
In this way the H-flux from the Chern-Simons invariant generically stabilizes all
complex structure moduli. The Kéhler moduli of the Calabi-Yau, however, are not
yet fixed. In particular, there is a flat direction for the volume modulus 7'.28

In fact, this flat direction is a general property of “no-scale” models. From the
form (5.2.23) of the Kéahler potential, combined with the fact that W is independent
of the volume modulus 7' at this order, we see that the supergravity potential

undergoes a simplification

V=X (giiD,-WT)TW - 3|W|2) =X (g‘“—’DaWDb—W> (5.4.3)

27 This superpotential is of the same form as the one appearing in, for instance, equation
(12) of [5]. There, the small constant term comes from the (0, 3) part of the type IIB G3
flux, while the exponential arises from nonperturbative gauge dynamics as in our system.

28 If there are vector bundle moduli then these are also unfixed. However, in §5.8 we

explain why bundle moduli could be absent in generic situations.
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where 7,j run over all fields, but a,b run over all fields except T. As a result,
we are left with a flat direction, T'. Generically DrW # 0, so supersymmetry is
broken. Nevertheless, the vacuum energy vanishes at this order of approximation,
since we have solved D, W = 0 for all a. Loop corrections will plausibly destabilize
T, resulting in a runaway problem for the overall volume.

We will suggest a solution to this problem, in the context of Calabi-Yau com-
pactification, in the next section. However, we should point out that investigation
of supersymmetric non-Kéhler compactifications of string theory has recently been
renewed (see e.g. [175,176,152,177]). In such compactifications the overall volume
modulus can be stabilized at tree level by balancing fluxes against the non-Kéahler
nature of the geometry. The combination of this tree-level T stabilization with our
results on dilaton stabilization could plausibly yield weakly-coupled models with
all moduli stabilized. This would require a compactification manifold which admits

moderately small Chern-Simons invariants.

5.5 Dilaton and Volume Stabilization in Calabi-Yau Models

In §5.5.1 we show that it is possible, with appropriate choices of bundles, to
stabilize both the dilaton and the overall volume by incorporating the one-loop
correction to the gauge coupling. In §5.5.2 we extend this mechanism to stabilize
all the Kdhler moduli of a threefold. In §5.5.3 we investigate the strong-coupling
transition which occurs in these models. We present a toy model to illustrate
the physical smoothness of this transition. In §5.5.4 we discuss the conditions
under which the resulting theory is weakly coupled. In §5.5.5 we summarize our

assumptions concerning the Calabi-Yau and the Eg gauge bundles.

5.5.1 One-loop Correction

We first consider, for simplicity, the case of a Calabi-Yau threefold which has
h11 =1 and hence a single Kihler modulus. When one-loop corrections are incor-

porated, the Wilsonian gauge kinetic functions have the form (5.2.14):
i =S+ BT, (5.5.1)

where ¢ = 1,2 labels the gauge groups Eél), Eéz). In the case without space-

filling heterotic five-branes, it is a simple matter to derive the linear terms in T by
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dimensional reduction of the B A Xg(F1, F3, R) term in the ten-dimensional Fg X Eg
theory. The result is

1
82

1
b=

Here J is the generator of H 1’1(X ,Z). Notice that

B = L (cz(vl) _ cz(vz)) , (5.5.2)

L (02(v2) - cz(vl)) . (5.5.3)

Pr+B2=0 (5.5.4)

while in the case of the standard embedding

Pr— P2 = 1 J/\ c2(TX) . (5.5.5)

This fact that the difference of the gauge coupling functions is given by a topological
invariant (in the case of the standard embedding) was observed in e.g. [178]. One
can easily calculate 8 for a few simple examples. We present the calculation below

for J A co(TX); one can imagine partitioning this into cz(V4 2) in various ways.

/ J/\cz=10/ JAJAJ =50,
[4]5] ab

/ J/\Cz=6/ JAJAJ =54,
/5113 3] [51/3 3]

/ J/\Cz=5/ JANJNJT =60.
(613 2 2] (613 2 2]

From these examples it is plausible that 3 can be reasonably large, at least of order
one.

We will choose the gauge bundle V5 so that Eéz) is broken to a subgroup H
(say Er) without any light charged matter. The resulting four-dimensional theory
therefore has a sector which is pure N/ = 1 supersymmetric gauge theory with gauge
group H, which undergoes gaugino condensation at low energies. Let us furthermore
choose the bundle V; so that Eél) is broken to a low-energy group and matter content
which can contain the Standard Model. Finally, we take 82 = —8; = 8 > 0, so that
Eél) is more strongly coupled than Eéz).zg

29 Notice that we are putting more instantons in the hidden sector than in the observable
sector, which is a somewhat unusual situation compared to the bulk of the literature.

129



5 Heterotic Moduli Stabilization 130
The complete superpotential is then

W 2h 812
Bl Crexp <—E(S+ﬂT)) : (5.5.6)

This superpotential depends nontrivially on both of the chiral multiplets S and T.

The condition for a supersymmetric vacuum is
Wis=W;r=0 (5.5.7)

where the Kéhler covariant derivatives are determined using (5.2.23).

A solution of (5.5.7) necessarily satisfies
39 = ST, (5.5.8)

2
h = Cre + 8cm®Re(S) | exp _3205 (5.5.9)
2 Cu

The resulting solution is a supersymmetric AdS vacuum in which both the four-

dimensional dilaton ¢ and the four-dimensional volume modulus p have been sta-
bilized. We will defer our discussion of the physics in Eél) to §5.5.3.

5.5.2 Stabilization of Multiple Kdhler Moduli

On a threefold X with A > 1 Kéhler moduli, the formulas of the previous
section can be generalized:
i =8+ B3 Ta, (5.5.10)

where ¢ = 1,2 labels the gauge groups Eél), Eéz) and o = 1,...,h"? indexes the
independent Kéhler moduli.

We will need to define a few quantities related to the generators J* of
HY(X,Z):

1
B = ) /x J*N (Cz(Vl) — Cz(V2)) ; (5.5.11)
1
B =g [ TN (C2(V2) - c2(V1)) . (5.5.12)
Capy = / JEANTPAJY (5.5.13)
X

The cog are the intersection numbers of X.
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The Kéhler potential (5.2.23) now takes the form

_ i _
K = —log(S + S) — log (cap, T*TPT) —log (— E /Q A Q) (5.5.14)
with 27 = T* + T, while the complete superpotential, including hidden-sector

gaugino condensation, is

W 2h 8?2
;—5 = -? — C’Hexp (—6:[—(8 + ,BaTa)> . (5515)
This superpotential depends nontrivially on the dilaton and on all the Kéahler mod-
uli.

In order to find a supersymmetric solution we will assume that all the % are

nonzero. Combining (5.5.15) and (5.5.14) and imposing W;s = W;r, = 0, we find

S 3% (CapyTOTPT™) = B3 (Capy T*TPT") (5.5.16)
é

2
Cruc 327 S) (5.5.17)

h= (——2— + 807r2Re(S)> exp <— Cn

where the second relation is identical to (5.5.9).
The result is a supersymmetric AdS vacuum without moduli. To recapitulate,
we have now seen that the combination of fractional, flux with a gaugino condensate

can stabilize the complex structure moduli, the Kéhler moduli, and the dilaton.

5.5.3 A Strong Coupling Problem

We have just seen that the potential for the dilaton and K&hler moduli has a
supersymmetric AdS minimum whose location is given, in the case of one Kéahler
modulus, by (5.5.8),(5.5.9). However, there is an evident problem with this mini-

mum. Suppose that some subgroup of Eél) remains unbroken at low energies. The

naive Eél) gauge coupling function, f; = S — 8T, appears to be negative, f; = —285.
Moreover, one might think that before becoming negative, f; must pass through
zero, at which point one encounters a singularity where the gauge coupling diverges.
It is clear a priori that such a problem cannot exist in the full theory. Moduli
(and parameter) spaces of four-dimensional supersymmetric theories are complex

and hence can only have singularities at complex codimension one. It follows that
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one can always continue around any point of naively singular gauge coupling, ob-
taining a unitary theory with positive g2 on the “other side”. Numerous examples
of such phenomena have been explored in various four-dimensional supersymmetric
gauge theories over the past several years, most recently in interpreting the G5 flop
in [179].

In fact, what we are encountering here is (at least in those cases which are most
easily understood) a close relative of the well-studied strong coupling transitions
in six-dimensional string vacua with (0,1) supersymmetry [180]. The observable
sector gauge coupling diverges precisely when the ratio S/T reaches a fixed value;
this is in fact a point in moduli space where an effective siz-dimensional coupling
is becoming strong. As explained in [180], in dual type II or F-theory descriptions,
this phenomenon can be modeled locally in terms of a geometric transition which
affects the D-branes or local geometry responsible for Eél). On the other side of the
geometric transition, the Eél) physics remains sensible, and there is a new effective
description of the low energy gauge theory.

In the remainder of this subsection we investigate this strong coupling singu-
larity. The resolution is necessarily model-dependent, so we simply review some
dual descriptions which shed light on the phenomenon, and give an explicit exam-
ple where the physics on the “other side” of the transition is fully understood. Of
course in as much as one wishes to embed the standard model in Eél), it would
be crucial to have a good dual description of this new phase. For readers who find
this too daunting a challenge, we can only suggest that the special case 312 = 0
neatly sidesteps the issue, leaving a no-scale model with an unfixed volume modu-
lus. However we emphasize that more generally, the only assumption we really need
to make is that the physics of the transition does not introduce new terms in the
superpotential. For models where Eél) is broken to a low-energy field theory that

does not dynamically generate a superpotential, this is quite plausible.

Dual Descriptions of the Strong Coupling Singularity

The appearance of strong gauge coupling in heterotic models with nonzero 8 is
well known. The problem is easily seen in compactifications of heterotic M-theory
to four dimensions, where it manifests as a linear shrinking [181] of the Calabi-Yau

volume as a function of location on the M-theory interval. For some critical size
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of the interval, the Calabi-Yau has zero volume at one boundary, rendering the
supergravity approximation invalid.

A closely related problem arises in compactifications of the Eg x Eg heterotic
string on K3 x T2. The gauge bundle in such a model is specified in part by a
choice of instanton numbers (12 — n, 12 + n) in the two Egs. If n is positive then
the first Fg is more strongly coupled than the second; this is analogous to positive
B in our models. At a finite value of the heterotic dilaton the first Eg has infinite
gauge coupling.

This configuration is dual to compactification of type ITA string theory on a
Calabi-Yau threefold which is an elliptic fibration over the Hirzebruch surface F,,.
Recall that F;, has a single curve of self-intersection —n. The volume of this curve
is dual to the heterotic dilaton in such a way that shrinking the (—n) curve to
zero volume coincides with infinite gauge coupling in the first Eg. This suggests
that one could use the type II geometry to understand the nature of the strong
coupling singularity. While this approach is rather complicated for general n (see
e.g. [180] for work in this direction), we will see that the case n = 1 is relatively
straightforward.

It is important to remember that type II strings on such a Calabi-Yau threefold
yield N = 2 supersymmetry in four dimensions, twice as much as the models we
have considered in this chapter. This greatly facilitates analysis of the singularity, in
particular because the geometry can be described via a prepotential. A direct study
of the N = 1 system would be more challenging, but we expect the generic features,
including the positive gauge coupling function, to be similar in the two cases. One
would simply have to study the geometry of a dual F-theory compactification on a

Calabi-Yau fourfold, instead of type II strings on a Calabi-Yau threefold.

A Simple Flop Model of the Strong Coupling Singularity

We will now construct a simple model in which, in a sense which we will make
precise, the gauge kinetic term f; undergoes a flop.
Recall that in the flop of a curve, the volume of the curve vanishes on a wall

of the Kéhler cone.®® However, instead of continuing to negative values on the far

30 In the full physical theory the volume is complexified, and one can go “around” the
wall of the Kéhler cone by turning on a nonzero 6 angle [182,183].
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side, the volume is actually positive in the new Kéahler cone. In certain N' = 2
heterotic/type ITA dual pairs [184], the singularity in the Calabi-Yau prepotential
when a curve in the type IIA geometry undergoes a flop (and an effective gauge
coupling becomes singular) is dual to a heterotic strong coupling singularity. We
describe one such example below. It is important to stress that as expected on
completely general grounds, the effective g? remains positive everywhere in the
properly-interpreted type II moduli space.

The examples we have in mind, and their heterotic duals, are well known. Our
presentation of a specific example will closely follow [185], which mapped out in
detail several heterotic/type II dual pairs.

Let X be the Calabi-Yau threefold which is an elliptic fibration over F;. The
prepotential for the Kahler moduli space of X is [185]:

4 3 1
Fir = gt? + itftz + §t1t§ + t{t3 + t1tats (5.5.18)

where t; are the Kahler moduli. The volume of the (—1) curve is controlled by ¢3.
One can find a set of dual heterotic variables S, T, U, which are related to the type
IT variables by

T U
t1=U, tzzT—U, t3=S—§—E (5519)
In heterotic variables, the prepotential reads
1 3
Fn=8TU + -U (5.5.20)

3

We know that the type II operation of shrinking the (—1) curve corresponds to

strong gauge coupling in the heterotic picture. This instructs us to identify S— % - —g—
with the visible-sector gauge coupling.3!
Now, to study the effect of the strong gauge coupling, we flop the curve corre-

sponding to t3. The fields transform as

(t1,t2,t3) — (t1 +t3, to +t3, —t3) (5.5.21)

31 To make contact with our earlier notation, T and U are the two T, and G = % for
a=1,2.
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leading to the prepotential for X, the image of X under the flop. It turns out that
X is not a K3 fibration, and furthermore it is not dual to a perturbative heterotic
model.

Given this linear implementation of the flop in type II variables, we can apply

this transformation to the heterotic variables (3.9). This yields

T U u T T 33U T U
(U’T_U’S_E_E)_)(S_*_E_E,S+§_7’ 5-’-5—5) (5.5.22)
The key result is that the visible-sector gauge coupling has changed sign,

T U T U

In this new Kéahler cone, the visible-sector coupling is sensible provided T+ U > 285,
which is complementary to the initial restriction 7'+ U < 2S.

We have therefore seen that in this very simple example, the gauge coupling
function for the visible sector is sensible and positive on both sides of the strong
coupling transition. We expect this result to hold in all of the cases of interest,
simply from macroscopic arguments about supersymmetric theories. It would be
interesting to generalize the simple illustration above to A/ = 1 heterotic vacua by
studying the dual geometric transitions in F-theory compactifications on Calabi-Yau
fourfolds.

5.5.4 Fractional Invariants and Weak Coupling

Let us now determine the conditions under which the stable vacuum exists at
modestly large values of S and T. Note that this does not mean that all of the
physics is weakly coupled, since as we just discussed, we have undergone a strong
coupling transition in Eél)! However, some other sectors of the theory may remain
perturbative at large S and T, so it is still of interest to know that stabilization at
large S and T is possible.

The goal is to arrange that the volume of the Calabi-Yau is large in string

units, while the string coupling is small:32

(ST)? = ¢ > 1, (5.5.24)

32 For simplicity we now present the formulae for the case of one Kihler modulus, the

overall volume; the generalization is straightforward.
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3\ %
(%) =e? < 1. (5.5.25)

Recall that ¢ is the ten-dimensional dilaton; we denote the four-dimensional dilaton

by ¢. Using the relation (5.5.8), we have

(%) G2 = (80 (5.5.26)

(%)352 _ o6 (5.5.27)

Clearly 8 > 3 is a necessary condition for perturbative validity. It follows from
(5.5.3) that this condition can only be met if the bundle V, is nontrivial; hence
gaugino condensation in an unbroken hidden-sector Eg is not compatible with this
method of volume stabilization. To see explicitly that large 3 is possible within
known constructions we refer to the plots of [186].

From the form of the solution (5.5.9) it is clear that the values of S and T at the
stable minimum increase as the Chern-Simons invariant becomes smaller. We are
therefore interested in finding three-cycles admitting extremely small Chern-Simons
invariant.

Small values of the Chern-Simons invariant are distasteful but not unattainable.
We saw in §5.3 that it is possible to get a small Chern-Simons invariant h by working

on a Calabi-Yau which has a three-cycle () satisfying

m(Q) = Zy

for p > 1. The simplest example of this is a Lens space. One way to generate
even smaller h is to take @ to be a general Seifert manifold ¥(ay, ..., a,), since the

minimal value of h would scale like
n
ot~ JJ e (5.5.28)
i=1

With several a; one could then generate very small fractional fluxes.
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5.5.5 Summary of Requirements

Let us briefly review the conditions on the Calabi-Yau X and the gauge bundles

Vi which ensure the existence of the supersymmetric vacuum (5.5.9) with both

dilaton and Kahler moduli stabilized. Conditions essential to the mechanism are

listed first, while those related to detailed model-building come last.

1)

(2)

3)

(4)

In order to achieve a small value of the three-form flux, the Calabi-Yau manifold
X must have a nontrivial fundamental group and must admit gauge connections
which have fractional Chern-Simons invariant on a three-cycle Q which is not
torsion. One of the bundles V1,V, must then be chosen to have such a gauge
connection, i.e. suitable Wilson lines. These conditions are automatically met
in a large class of realistic string models.

For gaugino condensation to be possible in H C Eéz), the bundle Vo must break
Es — H without introducing any light charged matter, leaving a pure gauge
group. For example, if H = FE; then there is no index theorem protecting
charged matter 56s, so we expect that this condition is generically satisfied. If
instead H = Eg the number of chiral generations is |1 [ c3(V(®)|. The bundle
Vs should be chosen so that this vanishes.33

In order to stabilize the overall volume we must choose bundles for which the
quantity G2 defined in (5.5.3) is nonzero. To stabilize multiple Kéhler moduli
we must take all of the 3§ to be nonzero. To ensure stabilization of the volume
above the string scale, we should also have 3> > 3, with an analogous condition
for the case of many moduli.

If the K&hler moduli are to be stabilized, the initial configuration and the final
stable minimum are on opposite sides of a transition in which the visible sector
becomes strongly coupled. It follows that the visible-sector gauge theory can
only be properly understood in models where this strong coupling transition
can be followed in detail. Better understanding of this transition is a necessary
prelude to the building of realistic models. Readers uncomfortable with the
transition are advised to set 5y = (2 = 0, in which case one is left with a

no-scale model with fixed dilaton and an unfixed volume modulus.

33

One could imagine other possibilities in which charged matter in the hidden sector

generates a nonperturbative superpotential which can be used for stabilization. See e.g.

[187] for a discussion of this possibility in the context of racetrack models.
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(5) Further constraints will be necessary to obtain realistic low-energy physics. For
example, V7 should contain appropriate Wilson lines which break the visible-
sector GUT to the Standard Model gauge group. (It is sometimes possible to
arrange that these same Wilson lines also provide the fractional Chern-Simons
invariant.) The vacua we have constructed have negative cosmological constant,
with an energy density not far below the string scale. This must certainly be
modified to lead to a sensible cosmological model! Finally, if we wish to stabilize
at very weak coupling then the fundamental group of the Calabi-Yau must be
unusually large.

Clearly, the greatest obstacle to calculability in this scenario is the strong cou-
pling transition in the observable sector. It is conceivable that one could avoid
this difficulty by combining fractional Chern-Simons invariants and gaugino con-
densation with a non-Kéhler compactification geometry, for in this case the volume
modulus can be stabilized at tree level. However, for the bulk of our analysis, the
only real assumption we have made is that the unknown physics of the visible sector
does not modify the superpotential. This seems believable provided that the low-
energy N = 1 gauge theory which emerges from Eél) is not one which dynamically

generates a superpotential.

5.6 Duality to Type IIA and M-theory

The models studied in this chapter are related by various dualities to a par-
ticular class of N' = 1 compactifications of M-theory and Type IIA string theory.
These models have recently received some attention due in part to phenomenological
applications, see e.g. [188,189,150,190,191,192,193,194]. After appropriate duality
transformations our mechanism for moduli stabilization can be applied to these
models as well. In this section we briefly discuss various aspects of these dualities,

as well as their implications.

5.6.1 Heterotic/Type IIA Duality

Our considerations have thus far been limited to the Eg X Fg heterotic string,

but the discussion can be repeated almost verbatim for the Spin(32)/Z, heterotic
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string compactified on a Calabi-Yau manifold. The latter theory is related to an

N =1 compactification of type ITA string theory by the following chain of dualities:
Spin(32)/Zy Het <> TypeI <=+ Type IIB /Q «— Type IIA /(Q-T) (5.6.1)

Let us now explain each step in this duality in more detail and, in particular, find
the relation between the parameters and the coupling constants. The first relation
is the standard strong-weak coupling duality between the Spin(32)/Z2 heterotic
string theory and type I string theory. The effective supergravity action in the
latter theory is similar to the heterotic supergravity action, with the type I and

heterotic variables related by
¢1=—¢n (5.6.2)

Gran = Grne *H (5.6.3)

At the next step in the chain of dualities (5.6.1) we identify type I string theory
with an orientifold of type IIB closed string theory, where (2 denotes the world-sheet
parity syinmetry. The parameters and the coupling constants in the supergravity
action do not change under this identification, although some terms acquire a dif-
ferent interpretation. In particular, in the type IIB theory the gauge degrees of free-
dom arise as open string states on the world-volume of 32 space-filling D9-branes.
Thus, the Wilson lines of the original heterotic string theory become Wilson lines

on D9-branes, and the ten-dimensional gauge coupling is simply

g%o @ )
g =t =ebun (5.6.4)

From (5.6.2) and (5.6.4) we find

¢11B6 = ¢1 = —9H (5.6.5)

The last step in (5.6.1) is the T-duality — mirror symmetry, to be more precise —
between type IIB string theory on a Calabi-Yau manifold X and type IIA theory on
the mirror manifold X. Strictly speaking, the dual background is an orientifold of
X, where the involution changes the orientation of the T fibers. Under T-duality,

the space-filling D9-branes transform into D6-branes wrapped over the base, @, of

139



5 Heterotic Moduli Stabilization 140

the special Lagrangian torus fibration [164]. The parameters of the resulting type
ITA background can be obtained from the usual T-duality rules:

VB 1 v
$114 = 118 — log VaTB o7 = 5%n —log 7 (5.6.6)

Here Vx and V( denote, respectively, the volume of the Calabi-Yau space X and the
volume of the base three-manifold () in the string theory given by the superscript.

To summarize, after a chain of dualities (5.6.1) we found that our heterotic
string models are dual to ITA string theory on a mirror Calabi-Yau manifold X, with
D6-branes wrapped over the special Lagrangian three-cycle Q. This is precisely the
configuration studied in [189,150,190,191]. In these papers, @ is usually taken to be
a Lens space, Q = S3/ Z,, and the Calabi-Yau manifold Xis usually assumed to be
non-compact. If X is compact, as described above, then the presence of orientifold
6-planes is crucial to cancel the D6-brane charge.

Observe that on the D6-brane world-volume there is a topological coupling
between the gauge field, FF = dA + A A A, and the Ramond-Ramond tensor fields
C=Ci+Cs+...,

tr / C Aef (5.6.7)
R4xQ

Among other terms, this expression contains a coupling

CS(4,0) /R G (5.6.8)

which we obtained by expanding (5.6.7) and integrating by parts. It follows that
D6-branes wrapped over () with a non-zero value of the Chern-Simons invariant act
as an effective source for the Ramond-Ramond four-form field strength in the four

uncompactified directions.

Comments on Proton Decay
Using the chain of dualities (5.6.1) we have now related our setup to compact-
ifications of type IIA string theory, where the GUT gauge theory is realized on
the world-volume of D6-branes wrapped over a compact three-manifold ). Similar

configurations have been discussed in a recent work of Klebanov and Witten [191]
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(see also [195]), where it was shown that the proton decay rate from dimension six

operators is given by34

4/3 L(O)2/3e5%114

(5.6.9)
Méyr

where gy is the GUT gauge coupling, and Mgy is the unification scale. This
scale is determined by the size of the three-manifold @,
L(Q)

1/3
Meur = (‘“‘75—) (5.6.10)

where the extra factor L(Q) accounts for the one-loop threshold corrections from
Kaluza-Klein harmonics on ) [190,191]. Specifically, L(Q) is a topological invariant
of @, known as the Ray-Singer torsion.

Let us now compute the proton decay rate in our heterotic models. In contrast

to the result of {191], we expect in our case the conventional amplitude

A M ebtio '

h gz e (5.6.11)
GUT

where the unification scale and the gauge coupling are given by (5.2.9) and (5.2.21),

respectively. By tracing the chain of dualities (5.6.1) in reverse, being careful to

include the constant rescaling of the Einstein-frame metric mentioned in §5.2, one

can verify that (5.6.9) and (5.6.11) differ by the factor aé/gTe“%d” 14 which exhibits

the anomalous scaling with agyr explained in [191].

5.6.2 Lift to M-theory

Now let us consider the M-theory lift of the type IIA configuration considered
above. Since D6-branes wrapped over a special Lagrangian submanifold Q ¢ X
preserve N = 1 supersymmetry in four dimensions, their lift to M-theory must be
described by a seven-dimensional manifold, X, , with G2 holonomy. Topologically,
Xg, can be viewed as a K3 fibration over Q [196],

K3 — Xg,
1 (5.6.12)
Q

34 For simplicity, we omit numerical factors of order one.
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such that each K3 fiber has an ADE singularity, which corresponds to the type of
the gauge group on the D6-branes. For example, SU(5) gauge theory would lift
to a Ge-manifold with A4 singularities in the fiber. The dual M-theory geometry
(5.6.12) can be obtained directly from the heterotic string theory on a Calabi-Yau
manifold X by using the familiar duality between M-theory on K3 and heterotic
string theory on T°. Applying this duality to each fiber in the special Lagrangian
torus fibration, X — @, we end up with M-theory on a seven-manifold X, with
G2 holonomy and topology (5.6.12). Various aspects of M-theory on Go-manifolds
of this kind have been studied in [188,189,197,198,150,190].

Now let us consider a D6-brane configuration with non-trivial gauge fields char-
acterized by CS(4, Q) # 0. According to (5.6.8), such gauge fields act as a source
(localized on the three-cycle @) for the space-time component of the four-form flux,
Go123. In the effective four-dimensional field theory, this means there is a non-zero
superpotential induced by CS(A, Q). In M-theory, the relevant interaction term
(5.6.8) appears due to anomaly inflow at the location of ADE singularities [199],
while the effective superpotential is generated by topologically non-trivial gauge
fields supported at the singularities [192].

The models studied in this chapter have real values of the Chern-Simons invari-
ant CS(A, Q). However, Acharya has argued [192] that, in a more general setting,
the superpotential induced by gauge fields should be given by a complex Chern-
Simons invariant. A deeper understanding of the connection between these ideas

would be quite interesting.

5.7 Domain Walls

In order to obtain an expression for the effective superpotential of an N =1
supersymmetric gauge theory, it is often useful to study the spectrum of BPS domain
walls. Moreover, in a theory with gaugino condensation, the domain walls provide
information about the breaking of chiral symmetry and about other phenomena of
interest.

With this motivation in mind, let us consider domain walls in our models33,
where different vacua are characterized by the values of the Chern-Simons func-
tional, CS(A, @). Hence, the BPS domain walls are represented by self-dual field

35 For a related discussion see also [200,201].
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configurations (instantons) supported on @ X R, where R represents a spatial di-
rection orthogonal to the domain wall. Since CS(A, @) takes fractional values, such

instantons carry fractional charge,

ey = tr (FAF) = CS(A, Q)|—co — CS(A, Q)] 400 (5.7.1)

- 8n?

The instanton action is given by [ oxr T (F A %F), which, using the self-duality of

the gauge field F', can be written as

/QXRtr(F/\F)

Furthermore, using (5.7.1) one can rewrite the instanton action as the difference of
the values of the Chern-Simons functional, ACS(A, Q). Comparing this formula
with the standard expression for the tension of a domain wall in N' = 1 supersym-
metric theory, T' = |AW/|, we come to our previous result (5.2.25) for the effective

superpotential induced by non-trivial gauge fields [158,159]
Wflux = / QS(A) | (572)
Q

Now let us consider the degeneracy of domain walls interpolating between two
vacua with fractional Chern-Simons functional, CS(A, @), for some three-cycle Q C
X. At least in the classical theory, the BPS domain walls come in continuous
families. Specifically, the moduli space of domain walls with fractional charge ¢, is

isomorphic to the moduli space of charge-c; instantons on @ x R,
M(Q x R;c2) (5.7.3)

Without loss of generality, we can study SU(2) instantons and, for concreteness,
take @) to be a Lens space,
Q= Ss/ Zy

Then, according to (5.3.14), the Chern-Simons functional on @ can take the frac-
tional values:

CS(4,Q) =-1 _ 2 ' (5.7.4)

Here we follow the notations of [202], introduced at the end of §5.3, where m is an

integer defined modulo 2p.
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Consider an instanton on ¢ X R which interpolates between different values of
the Chern-Simons invariant, CS(A, Q). According to (5.7.1) and (5.7.4), such an
instanton connects two states characterized by different rotation numbers m and
m’ = m mod 2, and carries a fractional instanton charge, co = k/p. Put differently,
it is described by a triplet of integers, (k, m,m’). Following [202], let us express
(m,m') ~ (a—b,a+b) in terms of a and b, such that

a=(m'+m)/2 modp
(5.7.5)
b=(m'—m)/2 modp

Using the above expression (5.7.4) for the value of the Chern-Simons functional,

we find the corresponding instanton number:

C2 = CS(A, Q)'—Oo - CS(A, Q)I+00 =
_(a—0)? N (a+b)* ab
4p p  p

Therefore, we have
k=ab modp (5.7.6)

Now we are in a position to describe the moduli space, M, of instantons on
@ x R that interpolate between gauge connections with rotation numbers m =
a — b and m' = a + b. Since instanton configurations always have a modulus that
represents their position in R, it makes sense to divide by translations and consider

the reduced moduli space,

M =M/R
Using index theorems one can compute the virtual dimension of the reduced moduli
‘space [202],
8k 222 T wim wim’
Dim(M') = — —4+n+ =) cot? = (sin2 —— —sin® —J—) (5.7.7)
p p p p P

=1

where n € {0, 1,2} is the number of m, m’ # 0,p. It turns out that this virtual
dimension is always even. In order to illustrate this general formula, in the table
below we list the dimensions of the moduli spaces of fractional charge instantons on
S3/Zs x R. In terms of a and b, m = a — b, m’ = a + b, and the instanton number
k = ab mod 5.
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a\b |0 |1 |2 |3 |4
Y A I
1 [-]o|2 |2 |2
2 |- |24 |6 |10
3 |- 2|6 |12 |18
4 |- ]2 |10 |18 |24

Table 1: Dim(M’) for the Lens space, Q = S3/Zs.

The dimension of the moduli space tends to grow with the instanton number,
k = ab. For low values of the dimension, one can describe M’ rather explicitly using
general topological properties [202](see also [203,204]). When Dim(M’) = 0, the
reduced moduli space must be just a point. In this case, we have only one domain
wall interpolating between two vacua. Furthermore, the Euler number of M’ is
given by the number of solutions (a, b) to the equations (5.7.5), such that ab = k.

In particular, this implies that

x(M') >0 (5.7.8)

Hence, when Dim(M’) = 2, the reduced moduli space must be of the form,
M =8\ F

where F' is a set of 0, 1, or 2 points.

For example, let us take p =5, a = 2, and b = 1. This implies k =2, m = 1,
and m’ = 3. Then, from Table 1 we find that M’ must be of real dimension 2, and
by looking at the Euler number x(M'’) = 2 one concludes that in this example the

moduli space is simply a two-sphere,

MI:S2
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Since this space is compact, we expect that the degeneracy of domain walls of
charge c; = 2/5 interpolating between vacua with m = 1 and m’ = 3 is given by

the cohomology of M’. Therefore, in this example we find
#( domain walls ) = 2

The above results suggest the following conjecture for the degeneracy of domain
walls with small fractional charge, co = k/p,

1 ifk=1

9 if k=2 (5.7.9)

#( domain walls ) = {

In other words, we expect that there is always only one domain wall of the minimal
fractional charge, whereas the degeneracy of domain walls with twice the minimal

charge is equal to 2. It would be interesting to pursue this analysis further.

5.8 Discussion

We have argued that it is possible to stabilize the complex structure mod-
uli, Kéhler moduli, and dilaton of heterotic Calabi-Yau compactifications. Our
ingredients are hidden-sector gaugino condensation combined with a flux-generated
superpotential arising from a flat connection with fractional Chern-Simons invari-
ant. For the non-Kéhler compactifications of [175,176] our result looks even more
promising, since there the volume is stabilized at tree level, and the only concern is
the dilaton.

One omission from our list of stabilized moduli is the vector bundle moduli.
Following the analysis in [205], it seems likely that the very existence of bundle
moduli is not generic. Massless modes arising from the moduli of a vector bundle
V are associated with elements of the group H*(X, End(V)). Typically there is
no index theorem which allows one to argue that this group should be nontrivial.
Even if the group were nontrivial, a generic infinitesimal deformation of the vector

bundle is obstructed at some finite order and so does not constitute a modulus.36

36 Nevertheless, simple bundles constructed by mere humans often have moduli. In
many such simple cases, even nonperturbative sigma model effects do not suffice to lift
them [206]. Examples of superpotentials arising for the bundle moduli associated with
small instantons in heterotic M-theory are described in e.g. [207].
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In addition to the omission of a detailed discussion of bundle moduli, we have
used standard approximations in describing the hidden sector gaugino condensa-
tion. For instance, in real string models, the hidden sector would have massive
fields charged under the hidden Fg. This would lead to corrections to the form
of the superpotential used here, which presumably arise as more highly damped
exponentials in S. While for reasonable values of Re(S) this should not be a large
correction, it would be nice to have exact results. These are not yet available for
N =1 supersymmetric compactifications of heterotic strings.

The solutions we have constructed are supersymmetric AdS vacua. It is natural
to ask whether one can add a source of supersymmetry-breaking energy which
lifts these models to de Sitter vacua, along the lines of [5]. In fact, there are
significant similarities between the type IIB constructions of [5] and the heterotic
models discussed here. As noted in §5.4, the superpotential in each case consists
of a small, constant term from flux and an exponential term from nonperturbative
gauge dynamics. To continue this analogy and include supersymmetry breaking,
one would have to introduce the heterotic dual of the anti-D3-brane introduced in
[5]. In heterotic M-theory this would correspond to a non-supersymmetric wrapped
Mb5-brane. To achieve control over the construction, one would need to introduce
such an object in a heterotic background with significant warping.

Burgess, Kallosh, and Quevedo [208] have recently proposed that a Fayet-
Iliopoulos D-term potential could serve as another useful source of energy for up-
lifting heterotic models. The stable AdS vacua we have discussed would appear to
be a suitable setting for such a mechanism, but we leave the construction of explicit
models as a subject for future exploration. Again, one would have to arrange for a
suitably small D-term to justify the analysis.

The present proposal for manufacturing vacua without moduli, combined with
the constructions in [5,192,208,209,210], is a small step towards filling out our pic-
ture of the “discretuum” [3] of string/M-theory vacua. This is the full space of
vacua of string theory, including all of the possibilities for the background fluxes,
wrapped branes, and other discrete data. Interesting general aspects of this land-
scape of string theory vacua have recently been discussed in e.g [99,211,212], while
statistical arguments relying on the existence of the discretuum have been used in

e.g. [3,213,5] in tuning the cosmological constant.
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Although this is a bit far from the concrete goal of this chapter, it is worth
discussing how this discretuum may be expected to arise in the heterotic theory. In
type II theories, as in M-theory, the discretuum is populated by vacua with vari-
ous quantized values of the RR and NS fluxes, and with different wrapped branes,
consistent with the tadpole conditions arising from the Gauss’ law constraints on
the various p-form field strengths. In the heterotic theory, there are a few quan-
tum numbers which contribute to the large number of vacua. In addition to the
large number of choices of vector bundles on a fixed manifold (characterized by
the topological numbers ¢y (V;), c3(V;), for instance), there are also background NS
fluxes. Finally, there is the possibility of non-Kéahlerity, which is roughly dual to
the possibilities of different fluxes in type II theories [175].

As described at length in [99], to get a good handle on this large set of possi-
bilities, it will probably be necessary to find auxiliary ensembles which accurately
model the space of vacua. We have little to say about this at present but leave it

as an ambitious goal for future research.
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6. Towards Inflation in String Theory

ABSTRACT OF ORIGINAL PAPER

We investigate the embedding of brane inflation into stable compactifications of
string theory. At first sight a warped compactification geometry seems to pro-
duce a naturally flat inflaton potential, evading one well-known difficulty of brane-
antibrane scenarios. Careful consideration of the closed string moduli reveals a fur-
ther obstacle: superpotential stabilization of the compactification volume typically
modifies the inflaton potential and renders it too steep for inflation. We discuss the
non-generic conditions under which this problem does not arise. We conclude that
brane inflation models can only work if restrictive assumptions about the method
of volume stabilization, the warping of the internal space, and the source of infla-
tionary energy are satisfied. We argue that this may not be a real problem, given

the large range of available fluxes and background geometries in string theory.

6.1 Introduction

Inflation provides a compelling explanation for the homogeneity and isotropy of
the universe and for the observed spectrum of density perturbations [214,215]. For
this reason, we would hope for inflation to emerge naturally from any fundamental
theory of microphysics. String theory is a promising candidate for a fundamental
theory, but there are significant obstacles to deriving convincing models of inflation

from string theory.

This chapter is reprinted, with changes, from Shamit Kachru, Renata Kallosh, Andrei
Linde, Juan Maldacena, Liam McAllister, and Sandip Trivedi, “Towards Inflation in String
Theory,” JCAP 0310 (2003) 013, by permission of the publisher. (©) 2003 by the Journal
of Cosmology and Astroparticle Physics.
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One problem is that string compactifications come with moduli fields which
control the shape and size of the compactification manifold as well as the string
coupling. Inflation is possible only if these fields are either stable or else have
relatively flat potentials which do not cause fast, non-inflationary rolling in field
space. Controlling the moduli in this way is a difficult problem. In particular, the
potential for the dilaton and for the compactification volume tends to be a rather
steep function [216].

A second problem is that the inflaton potential itself must be exceptionally
flat to ensure prolonged slow-roll inflation. A successful microphysical theory would
naturally produce such a flat potential. Since the flatness condition for the potential
involves the Planck scale one should ensure that quantum gravity corrections do not
spoil it. Hence, the problem should be analyzed in a theory of quantum gravity,
such as string theory. The hope of brane-antibrane inflation scenarios is that the
brane-antibrane interaction potential can play the role of the inflaton potential (see
[217] for a nice review), but it is well known that this potential is not naturally flat.
Since in string theory one cannot fine-tune by hand, but only by varying background
data (like the compactification manifold or the choice of flux), one concludes that
in generic compactifications, brane inflation will not work. However, the many
choices of flux and compactification make possible a considerable degree of discrete
fine-tuning, so for very special choices of the background one would expect to find
potentials which are sufficiently flat for inflation.

In this chapter we discuss these problems in the concrete context of the warped
type IIB compactifications described in e.g. [4,218]. One reason for working in this
setting is that one can sometimes stabilize all the moduli in a geometry of this
type, avoiding the first problem mentioned above. In addition, the constructions
of [4] naturally admit D3-branes and anti-D3-branes transverse to the six compact
dimensions. Furthermore, one could wish for a model which accommodates both
inflation and the present-day cosmic acceleration. This might be possible if one
could construct inflationary models which asymptote at late times to the de Sitter
vacua of [5] (or variants on that construction, as described in e.g. [219,220]; earlier
constructions in non-critical string theory appeared in [98]). As these vacua included
one or more anti-D3-branes in a warped type IIB background, it is quite natural to

consider brane-antibrane inflation in this context.
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Our idea, then, is to begin with the de Sitter vacua constructed in [5], add
a mobile D3-brane, and determine whether the resulting potential is suitable for
inflation. For the impatient reader, we summarize our findings here. We find that
modest warping of the compactification geometry produces an extremely flat brane-
antibrane interaction potential, provided that we neglect moduli stabilization. This
solves the second problem listed-above. However, a new problem appears when we
incorporate those terms in the potential which led, in the construction of [5], to
the stabilization of the volume modulus. We show that generic volume-stabilizing
superpotentials also impart an unacceptably large mass to the inflaton, halting
inflation.

While these conclusions are “generic,” it is very important to emphasize that
the problem of the inflaton mass might be circumvented in at least two different
ways. First, the stabilization mechanism for the moduli might be different from
that in [5]. For example, the volume modulus could be stabilized by corrections to
the Kédhler potential, which, as we will see, can naturally circumvent this problem.
Second, the mobile brane might be located not at a generic point in the compact
manifold but close to some preferred point. If the location of the D3-brane is ap-
propriately chosen then there could be significant corrections to the superpotential.
In general models, the superpotential may be a rather complicated function of both
the brane positions and the volume modulus. Little is known about the form of
these nonperturbative superpotentials in string compactifications. Our arguments
show that if the functional form of the superpotential is generic then inflation does
not occur. Nevertheless, it seems quite likely, given the range of available fluxes
and background geometries, that cases exist which are sufficiently non-generic to
permit inflation, although with predictions which are altered from those of naive
brane inflation.3”

Our conclusions should be viewed as a first pass through the class of brane
inflation models, in the context of the moduli stabilization mechanism which has
recently been developed in [4,5]. Once the non-perturbative superpotentials involved
in such constructions are better understood, and/or as soon as other mechanisms for

moduli stabilization become available, one could re-examine brane inflation in light

37 This point is made more quantitative in Appendix 6.F, where we explain that the

degree of non-genericity required corresponds roughly to a fine-tune of one part in 100.
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of this further concrete knowledge. This may well lead to a precise determination
of the non-generic cases where working models of brane inflation in string theory
can be realized.

Our analysis clearly indicates that any viable inflation scenario in string theory
has to address the moduli stabilization problem. Since essentially all papers on
the subject, to the best of our knowledge, have ignored the problem of moduli
stabilization, their conclusions are questionable in view of our results. In particular,
should a more detailed analysis reveal the possibility of inflation in various non-
generic situations, as suggested above, we expect that the resulting inflationary
parameters will typically be quite different from those calculated in the existing
literature by neglecting moduli stabilization.

This chapter is organized as follows. In §6.2 we review basic facts about brane-
antibrane inflation [221,222], with special attention to the case of D3-branes, and
discuss some generic problems for such models. In §6.3 we show that warping of
the geometry can help with some of these problems. In §6.4 we explain one method
of embedding the warped inflation scenario into string theory, using the warped
compactifications of [4]. In §6.5 we describe further problems that arise in the
string theory constructions when one tries to stabilize the overall volume modulus.
Generic methods of stabilization (e.g. via a nonperturbative superpotential) modify
the inflaton potential and make inflation difficult to achieve. We discuss several ways
to overcome this problem. We conclude with some general remarks in §6.6.

Appendix 6.A contains a general discussion of the gravitational interaction of
an (unwarped) brane-antibrane pair, and demonstrates that the potentials which
arise are typically not flat enough to lead to prolonged inflation. In Appendix 6.B we
specialize to a warped background and derive the interaction potential. In Appendix
6.C we explore the detailed properties of inflation in warped brane-antibrane models,
assuming that a solution to the challenges of §6.5 has been found. In Appendix 6.D
we explain that eternal inflation may be possible in this scenario. In Appendix 6.E
we discuss the exit from inflation and point out that the production of undesirable
metric perturbations due to cosmic strings, which are typically created during brane-
antibrane annihilation, is highly suppressed in warped models. Finally, in Appendix
6.F we discuss the possibility of fine-tuning of the inflaton potential in order to
achieve an inflationary regime.

After completing this work, we became aware of the papers [223], in which

related issues are addressed.
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6.2 Brief Review of D3/D3 Inflation

In brane-antibrane inflation one studies the relative motion of a brane and
an antibrane which are initially separated by a distance r on the compactification
manifold M. One should assume r > [, so that the force is well approximated by
the Coulomb attraction due to gravity and RR fields. Then the potential takes the

form

1 Ty
V(r) =2Ts (1 523 3, o ) : (6.2.1)

where Mo p; is the ten-dimensional Planck scale, defined by 8nGiony = 1_0?Pl’
and T3 is the tension of a D3-brane. In terms of a canonically normalized scalar

field ¢, one can rewrite this as

1 T3
V(¢) = 2T; (1 53 W, ) (6.2.2)

It was suggested in [221] that for large fields (large r), one may obtain inflation
from this potential.
A basic (and well known [217]) problem with this scenario is the following. The

standard inflationary slow-roll parameters € and 7 are defined via

Mg, V!

= i(vf (6.2.3)
V/l

n= MPl V . (6.2.4)

One generally wants €,7 < 1 to get slow-roll inflation with sufficient e-foldings. Is
this possible in the model (6.2.2)? The four-dimensional Planck mass appearing in
(6.2.4) is M3, = M, p,L° where L% is the volume of M. This implies that 7 is

n= -—%(L/r)s ~ —0.3(L/7)® | (6.2.5)

Hence, n <« 1 is possible only for » > L — but two branes cannot be separated by a
distance greater than L in a manifold M of size L!

One can try to evade this constraint by considering anisotropic extra dimen-
sions or non-generic initial conditions which yield flatter potentials than (6.2.2).
We argue in Appendix 6.A that this is not possible. There are always some tachy-
onic directions in the potential with n < —2/3. This implies that the slow-roll

approximation cannot be maintained for a large number of e-foldings.
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In §6.3 we will explore another possibility that successfully evades this prob-
lem — we will modify the potential (6.2.2) by considering branes and antibranes
in a warped geometry. We should mention that there are other proposals which
might evade the above problem, such as branes at angles or branes with fluxes, see
[224,225,226,42,227].

However, all of these models have an unsolved problem: moduli stabilization.
For an internal manifold of size L, the correct four-dimensional Einstein-frame po-
tential is not quite (6.2.2). If one assumes that the main contribution to the infla-
tionary energy comes from the D3-brane tension then one finds, for r > [, that

273

(6.2.6)

The energy in the brane tensions sources a steep potential for the radial modulus
L of the internal manifold. Therefore, in the absence of a stabilization mechanism
which fixes L with sufficient mass so that the variation of L in (6.2.6) is negligible,
one will find fast-roll in the direction of large L rather than slow-roll in the direction
of decreasing r. This means that it is important to study concrete scenarios where
the volume modulus has already been stabilized. However, we will show that not
every means of volume stabilization is compatible with inflation, even when the
naive inter-brane potential is flat enough to inflate. We will return to the issue
of volume stabilization in §6.5 , where we will discuss a new and generic problem

which appears when one considers the issue in detail.

6.3 Inflation in a Warped Background: Essential Features

Our modified brane-antibrane proposal is that inflation might arise from the
interaction potential between a D3-brane and an anti-D3-brane which are parallel
and widely separated in five-dimensional anti de Sitter space (AdSs).3®

The anti-D3-brane is held fixed at one location in the infrared end of the
geometry (this is naturally enforced by the dynamics, as we shall explain). The D3-
brane is mobile; it experiences a small attractive force towards the anti-D3-brane.

The distance between the branes plays the role of the inflaton field.

38 Thisisa slight simplification; in §6.4 we will construct compact models which deviate
from AdSs both in the infrared and in the ultraviolet. It is nevertheless convenient to work

out the essential features of the model in this simpler geometry.
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The forces on the brane and antibrane arise as follows. A single D3-brane
experiences no force in an AdS background: electrostatic repulsion from the five-
form background exactly cancels gravitational attraction. The addition of a distant
anti-D3-brane results in a relatively weak interaction potential arising from the
attraction between the brane and the antibrane. We interpret this as a slowly
varying potential for the inflaton. We will demonstrate in §6.3.2 and in Appendix
6.B that this potential is much flatter than the interaction potential for a brane-
antibrane pair in flat space.

In the remainder of this section we explain this key idea in more detail. §6.3.1
is a review of gravity in a warped background. §6.3.2 deals with the motion of a
brane probe in such a background.

It is important to point out that throughout this discussion, we will ignore
the possibility that other moduli (or the effects which stabilize them) interfere with
inflation. In the context of the string constructions of §6.4, the relevant other
modulus is the compactification volume, and the generic problems associated with
its stabilization are the subject of §6.5. In fact we will see that this modulus problem

will generically stop inflation.

6.3.1 Gravity in an AdS Background

We first consider a compactification of string theory on AdSs x X5 where Xj is
a five-dimensional Einstein manifold.3® This arises in string theory as a solution of
ten-dimensional supergravity coupled to the five-form field strength F5. The AdSs

solution is given in Poincaré coordinates by the metric

,,.2

2 __
dS—ﬁ

R2
(—dt2 + dfz) + T—zdrz (6.3.1)

There is, in addition, a five-form flux: if the geometry (6.3.1) arises as the near-
horizon limit of a stack of N D3-branes, then the five-form charge (in units of the
charge of a single D3-brane) is N. R, the characteristic length scale of the AdSs

geometry, is related to the five-form charge by

R = 4rag,No'>, (6.3.2)

39 The detailed form of X5 will not matter for the moment. For concreteness the reader

may imagine that X5 = S°.
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where the constant a depends on X5. It will be useful to recall that AdS is a
maximally symmetric, constant curvature spacetime. Its curvature scales like Elg
and is independent of the radial location r. As long as N > 1 this curvature is
small and supergravity analysis is reliable. We will choose to truncate AdSs to the
region 7o < 7 < Tmagz-

The reader will notice that, apart from the additional manifold Xs, this back-
ground is identical to that considered by Randall and Sundrum in [43]. Two phys-
ical insights from [43] will be crucial for our model. First, one can see from the
warped metric (6.3.1) that the region of small r is the bottom of a gravitational
well. Energies along the t,z° coordinates therefore get increasingly redshifted as
r decreases. (The region of significant redshift is consequently referred to as the
infrared end of the geometry.) Second, as a result of truncating the AdS region,
the four-dimensional effective theory which governs low-energy dynamics will have
a finite gravitational constant, and will include four-dimensional gravity described

by the Einstein-Hilbert action: 4°

1

— 4 —
Syran = T / d*z/=gR. (6.3.3)

Recall also that in [43], the truncation of AdS space was achieved in a brute
force manner by placing two branes, conventionally called the Planck brane and the
Standard Model brane, at 7,4, and rg, respectively. In the string theory construc-
tions of [4], the truncation arises because the compactification geometry departs
significantly from that of AdSs x X5 away from the region ro < r < Tmez. In the
ultraviolet, in the vicinity of r > 742, the AdS geometry smoothly glues into a
warped Calabi-Yau compactification. In the infrared, near r = rg, the AdS region
often terminates smoothly (as in the example of [13]). The infrared smoothing
prevents the redshift factor r/R from decreasing beyond a certain minimum whose

value will be very important for our model.

40 The graviton zero modes have polarizations parallel to ¢, z;, are constant on Xs, and

have a profile identical to the warped background.
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6.3.2 Brane Dynamics

We mentioned above that the warped nature of the geometry gives rise to a
redshift dependent on the radial location. It will be important in the discussion
below that the redshift results in a very significant suppression of energies at the
location of the antibrane; that is, the ratio ro/R is very small. Also note that
within the truncated AdS geometry, rg < 7 < Tjmaz, We have chosen to place the
anti-D3-brane at the infrared cutoff r = rg, where it has minimum energy due to
the redshift effect.

The five-form background is given by

473
(F5)rtz1x2m3 - F (634)

In a suitable gauge the corresponding four-form gauge potential Cy takes the form

7“4

(04)tar:1x2x3 = ﬁ (6.3.5)

The D3-brane stretches along the directions ¢, z!, 2%, z3. Its location in the

radial direction of AdS space will be denoted by r;. In the discussion below we will
assume (self-consistently) that the D3-brane has a fixed location along the angular
coordinates of the X5 space. The motion of the D3-brane is then described by the

Born-Infeld plus Chern-Simons action

S =-T; / V—gdtz (R—i) \/ 1-— f—;gwaﬂrlayrl + T3 / (Cy)sz1 g2 g3 dtdrt dz?da®.

(6.3.6)
The indices u,v denote directions parallel to the D3-brane along the ¢, z!, 22, 23
coordinates, and g*¥ is the metric along these directions. The D3-brane tension,

T3, is
1

Ty=—— .
3 (2'/r)3gso/2

(6.3.7)

For future purposes we note here that since an anti-D3-brane has the same tension
as a D3-brane but opposite five-form charge, it is described by a similar action

where the sign of the second term is reversed.
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Now consider a D3-brane slowly moving in the background given by (6.3.1)
and (6.3.4), with no antibranes present. It is easy to see that because of a cancella-
tion between the Born-Infeld and Chern-Simons terms, the D3-brane action at low

energies is just that of a free field,

S =T; / d4x\/—g%g“”’0“r13,,r1. (6.3.8)

This in accord with our comment above that the net force for a D3-brane in the
background (6.3.1),(6.3.4) vanishes due to gravitational and five-form cancellations.
We are now ready to consider the effect of an antibrane on the D3-brane.
Physically this arises as follows. The anti-D3-brane has a tension and a five-form
charge and perturbs both the metric and the five-form field. This in turn results in
a potential energy dependent on the location of the D3-brane.
The potential between a brane located at ry and an antibrane located at rg, in

the limit when 71 > 7y, is given by:

4 4
V= m% (1 - %%) . (6.3.9)
For a derivation see Appendix 6.B.

The first term in the potential is independent of the location of the D3-brane
and can be thought of as a constant potential energy associated with the anti-D3-
brane. It is proportional to the tension T3. For the antibrane the force exerted by
gravity and the five-form field are of the same sign and add, so we have a factor
of 2. In addition, the warped geometry gives rise to a redshift, which reduces the
effective tension of the antibrane by a factor r§/R*.

The second term in (6.3.9) depends on the location of the D3-brane; its negative
sign indicates mutual attraction between the pair. Two features of this term will be
important in the subsequent discussion. First, the term varies slowly, as the inverse
fourth power of the radial location of the D3-brane. Second, due to the warping
of the background, the coefficient of this second term is highly suppressed, by a
redshift factor r§/R*%.

Two more comments are in order at this stage. We have assumed that the
antibrane is fixed at . From (6.3.9), we see that this is in fact a good approximation
to make. In the r; > 7y limit the first term in (6.3.9) is much bigger than the

second, and most of the energy of the anti-D3-brane arises due to interaction with
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the background. This is minimized when the anti-D3-brane is located at rg in
the truncated AdS spacetime. Second, in our analysis above, we are working in
the approximation r; > rg. We will see below that the D3-brane is far away from
the anti-D3-brane while the approximately sixty e-foldings of inflation occur, so this
condition is met during the inflationary epoch. Eventually the D3-brane approaches
the antibrane, r; ~ rg, and this approximation breaks down. The potential then
becomes quite complicated and more model dependent (e.g. it depends on the
separation between the brane and antibrane along X5 ). The resulting dynamics is
important for reheating.

A summary of the discussion so far is as follows. We have considered a D3-
brane moving in an AdS; x X5 background with five-form flux, in the presence of a

fixed anti-D3-brane. This system is described by an action:

S = / d*x (ngg’“’Burlayrl - 2T3f-3— (1 - lﬁ)) (6.3.10)
2 R4 Nr}

The reader will notice in particular that r;, the location of the D3-brane, is a
scalar field in the effective four-dimensional theory.

Once we cut off the AdSs space as in the Randall-Sundrum models we will
find that we can add to (6.3.10) the four-dimensional Einstein action. However, we
should also add an extra coupling of the form %r%R coming from the fact that the
scalar field 7; describing the position of the D3-brane is a conformally coupled scalar
[228]. This unfortunately leads to a large contribution to 7. We will discuss this
phenomenon in more generality (from the perspective of the effective low-energy
four-dimensional supergravity) in §6.5.

The model described above has several appealing features in addition to the
flatness of the potential. We study these properties in Appendices 6.C,6.D, and 6.E,
with the assumption that one can somehow overcome the problems of §6.5 (which
must be tantamount to cancelling the conformal coupling). In Appendix 6.C we
compute the inflationary parameters and show that observational constraints are
easily met. In Appendix 6.D we argue that eternal inflation can be embedded into
this model, and in Appendix 6.E we point out that the warped geometry suppresses
the production of metric perturbations due to cosmic strings (which naturally form

during the brane/anti-brane annihilation).
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6.4 A Concrete Example in String Theory

We now show how to realize our proposal in a specific class of string compact-
ifications. In §6.4.1 we present the compactifications and explain why they contain
warped throat regions. As the warped throat is well-described by the Klebanov-
Strassler (KS) solution [13], we dedicate §6.4.2 to a very brief review of the KS
geometry. In §6.4.3 we show that a brane moving in the KS background might give
rise to inflation, realizing the general idea presented in §6.3. Throughout this dis-
cussion, we ignore the problem of stabilizing the overall volume modulus, which is
unfixed in the constructions of [4]. We consider the problem of volume stabilization
in §6.5, where we will find that generic methods of volume stabilization can perturb

the inflaton enough to stop inflation.

6.4.1 The Compactification

Our starting point is type IIB string theory compactified on a six-dimensional
Calabi-Yau orientifold. More generally one could use F-theory on an elliptically-
fibered Calabi-Yau fourfold. We choose to turn on background fluxes: the three-
form fluxes F3, H3 present in the theory are placed along cycles in the internal space
(and Fj is fixed as in [4]). These fluxes induce warping of the background. One
can show that the resulting space is a warped product of Minkowski space and the
Calabi-Yau:

ds? = eQA(y)nﬂ,,d:c“da:” + e 24W) Imndy™dy™ (6.4.1)

where y; are coordinates on the compactification manifold and g,,, is the Calabi-
Yau metric. As was discussed in [4], one expects that with a generic choice of flux,
all the complex structure moduli of the Calabi-Yau, as well as the dilaton-axion, will
be fixed. We will assume that the compactification has only one Kéahler modulus,
thé overall volume of the internal space.

As described in [4], one can use the above construction to compactify the
warped deformed conifold solution of Klebanov and Strassler (KS). We spend the
next section reviewing a few facts about this geometry, as certain details will be

important for inflation.
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6.4.2 The Klebanov-Strassler Geometry

The Klebanov-Strassler geometry [13] is a noncompact ten-dimensional solution
to type IIB supergravity in the presence of background fluxes. The spacetime natu-
rally decomposes into a warped product of a Minkowski factor and a six-dimensional
internal space. The six-dimensional space has a tip which is smoothed into an S3
of finite size. Far from this tip the geometry can be approximated by a cone over
the Einstein manifold 7%, which is topologically S? x $2. Our coordinates will
be five angles on 7!, which we can consistently neglect in the following, and a

radial coordinate 7 which measures distance from the tip. The background fluxes

1
@$JLF:M, @WJLHz—K (6.4.2)

where A is the S2 at the tip and B is its Poincaré-dual three-cycle. We will require

are given by

that M > 1 and K > 1; these conditions are important in deriving the solution.
The exact metric is known, but for our purposes a simpler form, valid far from the
tip, will be more useful. For large » we may express the complete ten-dimensional

solution as

ds? = h=Y 2y, datdz” + hY/2 (dr? + rPdsi.,.) (6.4.3)
where now
_2Tm 2 3 3 r
h(’l") = 21‘774‘04 gsM (K +9sM (8_71' + %ln(rmax ))) . (644)

Neglecting the logarithmic corrections and the second term on the right, this takes
the form 4!
27

R*= -ZﬂgsNalz (6.4.5)

N=MK (6.4.6)

When the KS geometry is embedded in a compactification then at some location r =
Tmaz the warped throat geometry is smoothly joined to the remainder of the warped
Calabi-Yau orientifold. Near this gluing region, departures from the AdS; x T11!

geometry are noticeable; eventually the AdS must end. In terms of redshift this

4l The second term on the r.h.s. of (6.4.4) can easily be included. For the numerical

values discussed in Appendix 6.C, this gives a three percent correction.
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location corresponds to the deep ultraviolet, and so the gluing region plays the role
of the ultraviolet cutoff (Planck brane) in the AdS of §6.3.

The exact solution likewise shows departures from (6.4.3) in the far infrared,
near the tip, although the geometry remains smooth.#? The details of the deviation
from (6.4.3), although known, are unimportant here; it will suffice to know the
redshift at the tip. This can be modeled by cutting off the radial coordinate at
some minimum value rp, which is the location of the tip. It was shown in [4] that
the minimal redshift satisfies

To _ 21K

.E =e 3gs M (6.4-7)

This can be extremely small given a suitable choice of fluxes.

6.4.3 Inflation from Motion in the KS Region

In [5] additional anti-D3-branes were introduced in the KS region. These anti-
D3-branes minimize their energy by sitting at the location where the redshift sup-
pression is maximum, i.e. at the very tip of the deformed conifold, where r ~ rq
(the dynamics of anti-D3-branes in the KS geometry was studied in [229]).

Thus we see that the string construction outlined above has all the features of
the general model of §6.3: a truncated AdSs geometry, an associated five-form flux of
the correct strength, and anti-D3-branes fixed at the location of maximum redshift.
In addition most of the moduli associated with the compactification, including the
dilaton, are stabilized. The one exception is the volume modulus; we will discuss
the complications its stabilization introduces separately, in §6.5.

No mobile D3-branes were included in the construction of [5], but it is easy to
incorporate them. One needs to turn on somewhat different values of three-form
flux, which allow the four-form tadpole to cancel in the presence of the additional
D3-branes. This is straightforward to do and does not change any of the features
discussed above.

We will take one such D3-brane to be present in the KS region of the compact-
ification. The general discussion of §6.3 applies to this brane. Since the D3-brane is
described by the action (6.3.6), with R now given by (6.4.5), the calculation of the
brane-antibrane potential follows the discussion in Appendix 6.C, which we outline

here.

42 The radius of curvature is v gsMca', so the tip is smooth provided g.M > 1.
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In the KS model the warp factor (6.4.1) is given in terms of a function h = e =44

which obeys a Laplace equation, with the fluxes and branes acting as sources. In
particular, a single D3-brane located at r = r; will correct the background according
to

Pnew(r) = h(r) + Ah(r,r1). (6.4.8)

Here h(r) is the background given in (6.4.4) and Ah(r,r;) is the correction due to
the D3-brane. In a region where the original warp factor is very small we see that

h(ro) > 1, so that the total warp factor can be expanded as

et~ h(ro) ! (1 - %) . (6.4.9)

This warp factor yields the contribution to the energy due to the presence of an
antibrane. If h(rg) > 1 this typically gives a very flat potential.

The small warp factor and the consequent exponential flatness are the heart of
our proposal, so an alternative explanation of the origin of these small numbers may
be helpful. Recall that there is a holographic dual gauge theory which describes the
geometry of the KS model. This gauge theory is approximately scale invariant in
the deep ultraviolet, with slowly running gauge couplings. It undergoes K duality
cascades before leading in the infrared to a confining gauge theory with a mass gap.
Then the smallness of the redshift factor,

4 ¥id
(%)) =e 38931161 (6410)

can be ascribed to the exponential smallness of the confinement scale in such a
gauge theory.

In summary, we have seen that one can construct concrete examples of string
compactifications which lead to the general behavior described in §6.3. One of their
virtues is that they automatically lead to very flat inflaton potentials, without the
need for large brane separation or excessive fine-tuning of initial conditions. The
primary source of this flatness is the redshift suppression (6.4.7) which is expo-
nentially sensitive to the (integer) choice of fluxes K and M. However, all of these
virtues must be re-examined in the light of concrete ideas about how to stabilize the
closed string moduli. In this general class of flux compactifications, the fluxes sta-
bilize many moduli but not e.g. the overall volume. We now turn to the discussion

of volume stabilization.

163



6 Towards Inflation in String Theory 164

6.5 Volume Stabilization: New Difficulties for D-brane Inflation

The results of §6.3,6.4 indicate that warped geometries provide a promising
setting for making models of inflation with naturally small € and 7. However, as
emphasized in §6.2, one must ensure that the compactification volume is stabi-
lized in order to avoid rapid decompactification instead of inflation. We will now
demonstrate that in the concrete models of [4] this is far from a trivial constraint.

In these models the four-dimensional N' = 1 supergravity at low energies is of
the no-scale type. The Kahler potential for the volume modulus p and the D-brane
fields ¢ takes the form [218]43

K(p,7,$,8) = —3log (p+ p - k{6, $)) (6.5.1)

Let us pause for a moment to explain how this is obtained. In the tree level com-
pactification the massless fields are the volume, the axion and the position ¢ of the
branes. The axion comes from a four-form potential proportional to a harmonic
four-form in the internal manifold [4]. At first sight one would think that the mod-
uli space is simply a product of the moduli space for ¢, which is just the internal
Calabi-Yau manifold, and the space spanned by the volume and the axion. This
is not correct; the axion describes a circle which is non-trivially fibered over the ¢
moduli space. This structure arises from the coupling of the four-form potential to
the worldvolume of the moving D3-brane. The moduli space has a metric of the

form

3 1. .1 — 3 L

where r is proportional to the volume of the Calabi Yau (in the notation of [4],
r ~ e*). If we tried to work with a complex variable r + iy then (6.5.2) would
not follow from a Kéahler potential. It turns out that the good complex variable is
p, which is defined as follows. The imaginary part of p is the axion, while the real

part of p is defined by
or = p+ 5 — k(¢ $) - (6.5.3)

It is then possible to see that (6.5.1) gives rise to (6.5.2). This type of definition
of p arises when we Kaluza-Klein compactify supergravity theories; see for example
[230].

43 The variable p is called —ip in [5].
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The superpotential is of the form
W =W, (6.5.4)

where W is a constant (we assume the D-branes are on their moduli space, so we
do not write down the standard commutator term). This arises from the (0,3) part
of the three-form flux in the full theory including the complex structure moduli and
the dilaton. We have not yet included the anti-D3-branes used in §6.3,6.4; these
will be incorporated at the end of the discussion.

It is important that with the Kéhler potential (6.5.1), one obtains the no-scale

cancellation in the potential
V =K (gPK K 5|W[2 - 3|W[?) =0. (6.5.5)

since :
9P, KK =3 (6.5.6)

where a, b run over p and ¢. 4

Using (6.5.5), it is clear that a generic W(¢) will yield a potential for the D-
brane fields ¢, but that the potential for the p modulus will vanish if the solution
for the ¢ fields has 94W = 0. It is also clear that a constant superpotential, as in
(6.5.4), gives no potential to the ¢ fields. This is consistent with the analysis in [4],
where the pseudo-BPS nature of the flux background leaves the D3-brane moduli
unfixed.

We are interested in finding a situation where the D-branes can move freely in
the Calabi-Yau (so the ¢ fields are unfized), but the volume is stabilized. Before
we discuss various scenarios for such a stabilization, it is important to distinguish
carefully between the p chiral superfield, and the actual volume modulus, r, which
controls the o’ expansion.

The Kéhler potential (6.5.1) has the following peculiar feature. Let us imagine
that there is one D-brane, and hence a triplet of fields ¢ describing its position on

the Calabi-Yau space. Then k(¢, ¢) should be the Kahler potential for the Calabi-

Yau metric itself, at least at large volume. However, under Kéhler transformations

44 The easiest way to check (6.5.6) is to note that in expression (6.5.6) we can switch

back to the variables r,a, ¢ in (6.5.2). In these variables K is only a function of 7.
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of k, the expression (6.5.1) is not well behaved. This can be fixed by assigning the

transformation laws

k($,0) > k+f(@)+f(@), p—p+f p—p+f. (6.5.7)

This is a manifestation of the fact that the circle described by the axion is non-
trivially fibered over the ¢ moduli space. Note that the physical volume of the
internal dimensions, which is given by r, (6.5.3), is invariant under (6.5.7).

Armed with this knowledge, and given (6.5.1) and (6.5.4) as our starting point,

we can now explore various scenarios for volume stabilization.

6.5.1 Scenario I: Superpotential Stabilization

Perhaps the most straightforward method of stabilizing the volume involves
a nonperturbative contribution to the superpotential. Various sources of nonper-
turbative superpotentials for the p modulus are known; one instructive example

described in [5] involves a superpotential
W(p) = Wy + Ae™ % (6.5.8)

where A and a are constants and Wy is the contribution (6.5.4) of the three-form
flux. For the remainder of this section we will consider W = W (p) to be a general
holomorphic function of p.

In the presence of D3-branes the superpotential must in addition develop some
dependence on ¢, as it should be invariant under (6.5.7). For instance, as argued
in [231], the superpotential due to Euclidean brane instantons or gauge dynamics
on D7-branes has to vanish when a D3-brane hits the relevant cycle. This can be
understood directly by examining and integrating out the massive D3-D7 strings in
the latter case. This subtlety must be accounted for to get a globally well-defined
W, and we will see in a moment that this actually changes the inflaton mass term.
Nevertheless, we will first study the simpler case W = W (p), both because it reflects
the essential features of the problem and because the full dependence of W on ¢ is
not known.

Let us start by presenting a general argument which highlights a problem faced
by any inflationary model involving a moving D3-brane in the models of [5]. The

main point is that one will choose some configuration with a positive energy V.
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When the compact manifold is large then this energy will go to zero rather quickly,

as a power of the volume modulus 7:

X(p) _ _ X(p)
= (o= 9d/2)

where « is a number of order one and the form of X(p) depends on the source

V(r,¢) = (6.5.9)

of energy. This follows because in existing proposals the inflationary energy arises
either from brane tensions or from fluxes, and all known brane and flux energies
vanish as some power of r. On the other hand the stabilization mechanism would
fix p (or else some combination of p and ¢) rather than r. This implies that as the

brane moves and ¢ changes there will be a change in the potential,

V="V, (1 + a% + ) . (6.5.10)

This will lead to a contribution to 1 of order one, unless there is a compensating
contribution to the mass term from some other source.

One possible source of such a cancellation is a dependence of the superpoten-
tial on ¢, not just p. If V(r,¢) = X(p,$)r~* then we would get an additional

contribution to the mass term,

X(p,d) _X() (;, 99 A(p) 3
(o—d/2)* — (” or ' )+ ra ¥

Vip, ¢) =

where
X(p,0)=X(p)  Ap) =040;X(p, d)|¢=0

so that at the minimum p = p. we find

aVo(pc) 4 A(pe)
2pc pe

[

V(pe, ¢) = Vo(pe) + ( ) ¢+ ...

In principle the second contribution to the mass term might substantially cancel
the first, alleviating the problem of the inflaton mass. This would certainly require
fine-tuning at the level of one percent (in order to make 7 sufficiently small to allow
sixty e-foldings). More importantly, the dependence of W on ¢ is not known, so
the question of which models admit such fine-tuning cannot be answered at present.
We should emphasize that the problem we are discussing is quite general, but one

might well be able to find non-generic configurations in which the problem is absent.
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Let us discuss these issues more concretely for the case of a brane-antibrane pair
transverse to a stabilized Calabi-Yau. In principle one should be able to compute
the inflaton potential directly, by substituting the complete superpotential into the

supergravity F-term potential
VF = X (g9D;,WD,;W — 3|W|?) (6.5.11)

and possibly including the effects of D-term contributions. This turns out to be a
rather subtle problem, essentially because of the breaking of supersymmetry in the
brane-antibrane system.

We will begin instead by understanding the (supersymmetric) system of a single
D3-brane transverse to a Calabi-Yau. We will find that superpotential stabilization
of the volume necessarily generates mass terms for the scalars ¢ which describe
the motion of the D3-brane. An implicit assumption in brane-antibrane inflation
scenarios is that the brane and antibrane are free, in the absence of interactions,
to move around the Calabi-Yau; the gentle force from their Coulomb interaction is
then expected to lead to a relatively flat inflaton potential. Significant mass terms
for the D3-brane (or any external forces on the D3-brane) invalidate this assumption
and make inflation impossible.

Let us therefore consider the effective potential governing a D3-brane transverse
to a Calabi-Yau manifold. We substitute the superpotential W(p) and the Kahler
potential (6.5.1) into (6.5.11), where the physical volume modulus r is given by
(6.5.3). The resulting four-dimensional effective potential is

vE = % (apwa,,—W(l + %%) - %(W@,W + Wa—,,W)) : (6.5.12)
In the vicinity of a point in moduli space where k(#, ¢) = ¢@, this can be simplified

to

3

1
VF %% 2
~6r (]3,; | 2r

2
(Wo,W + W'é,,‘W)) + (%) b . (6.5.13)

We must now incorporate the effects of an anti-D3-brane. In the scenario of
[5] the superpotential (6.5.8) stabilized the compactification volume and generated

a negative cosmological term V{. The positive, warped tension of an anti-D3-brane
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was added to this to produce a small positive cosmological constant. In our notation,

the anti-D3-brane induces an additional term in the effective potential (6.5.12),

_ 1
©6r

_ k 4k, 3 _ _
1% <8pW6pW(l 4 100y i(Wa,,W + Wa,,W)) + (6.5.14)

2r k43 2r (2r)2

where D is a positive constant. Notice that this induced term differs from the

one in [5] by a factor of r. This arises because the anti-D3 tension in the warped

compactifications of [4] scales like L e*#, and in the highly warped regime, e*4 ~

r ewp(—é’if\{l). This does not alter the conclusions of [5], though it changes the

numerology.

Suppose that the potential (6.5.14) has a de Sitter minimum Vg at p =
pe, ¢y & = 0. We will now compute the mass of the D3-brane moduli in an expansion
about this minimum. To simplify the analysis we assume that at the minimum p
is real, and also that for real p, W(p) is real. The canonically normalized scalar
which governs the motion of the D3-brane is not ¢ but is instead a rescaled field

© = ¢+/3/(p+ p); it is the mass of ¢ which we will compute.
First, we rewrite (6.5.14) as

D = N —
V= (Wl - wew o) + 7) b= 632" (6519
where primes denote derivatives with respect to p, and define Vj by
1 ! 2 7 D
Vo(pe) = ;E W'(pe)*pe — 3W (pc)W' (pc) + ) (6.5.16)
Then Vo(oo) 0
V = —0 Pe ~ 1 - ). e
This means that the field ¢ acquires the mass
2
my, = 3Vas = 2H" (6.5.18)

This is in fact precisely the result one would obtain for a conformally coupled
scalar in a spacetime with cosmological constant V;g. This is most easily understood
by setting D = 0 and studying the resulting AdS4. The four-dimensional AdS
curvature is Raqs = 4V, so that (6.5.18) corresponds to a coupling

1
0V = (-6RAds> weP. (6.5.19)
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If the D3-brane is in a highly warped region this result could have been anticipated,
since this highly warped region is dual to an almost conformal four-dimensional field
theory [232] and the scalar field describing the motion of the brane is conformally
coupled (see [228])4°. The derivation of (6.5.19) is also valid even when the D3-brane
is far from the near horizon region.

We now see that the D3-brane moduli masses are necessarily of the same scale
as the inflationary energy density V, since during inflation, the extra antibrane(s)
simply sit at the end of the throat and provide an energy density well-modeled
by (6.5.14). It is straightforward to verify that such masses lead to a slow-roll
parameter n = 2/3, incompatible with sustained slow-roll inflation.

It is instructive to compare this result with the well-known 7n-problem, which
bedevils most models of F-term inflation in N/ = 1 supergravity. One begins by
asking whether slow-roll inflation is possible in a model of a single field ¢ with
any type of Kahler potential and any superpotential W (¢). For a minimal Kéhler
potential and a generic superpotential W (¢) one typically has a inflaton mass mi =
O(H?), and hence no inflation, just as in the generic case considered in the present
chapter. But this does not mean that inflation in ' = 1 supergravity is impossible.
Various superpotentials with non-generic dependence on ¢ have been found, some
of which permit inflation. For example, in supergravity with the canonical Kéhler
potential and a linear superpotential for the inflaton, the mass term contribution

to the potential cancels:

K=¢¢, W=¢ = V:e‘5¢((1+<}_5¢)2—3¢_5¢)=1+%(¢_5¢)2+---
(6.5.20)
A similar effect occurs for the superpotential W = ¢(o102 — M?), which leads to a
simple realization of F-term hybrid inflation [233]. Moreover, the dangerous mass
terms for the inflaton do not appear at all in D-term inflation [234].

It is quite possible, therefore, that one could find a consistent inflation scenario
in string theory by studying superpotentials which depend on the inflaton field.
As mentioned above, this would undoubtedly require a fine-tuned configuration in
which two contributions to the mass cancel to high precision. We treat this question

in detail in Appendix 6.F, where we show that the introduction of a superpotential

45 Note that the kinetic term for ¢ is of the form f d*zVpVa.
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depending on the inflaton field ¢ leads to a modification of the mass-squared mi
of the inflaton field which could make it much smaller (or much greater) than 2H2.
This issue merits further investigation, which should become possible as we learn
more about the detailed dependence of W(p, ¢) on the background geometry and

on the fluxes in string compactifications.

6.5.2 Scenario II: Kahler Stabilization

One model of stabilization that would be compatible with the inflationary sce-
nario of §6.3,6.4 is the following. We have seen that the true Kéahler-invariant
expansion parameter which controls the o/ expansion in these models, is r. Fur-
thermore, r and ¢ have independent kinetic terms.

A method of directly stabilizing r could freeze the volume directly, without
stopping inflation. Since 7 is not a chiral superfield itself, stabilization via effects in
the superpotential cannot accomplish this. However, given that Wy # 0, one can
imagine that corrections to the Kéihler potential could directly stabilize 7.

In fact, Kéhler stabilization has been proposed earlier for rather different rea-
sons (see e.g. [235], which discusses Kéahler stabilization of the heterotic string
dilaton). Here we would need the o’ corrections to (6.5.1) to break the no-scale
structure and fix r. Some of these corrections have been calculated (see e.g. [236]).
The subset of terms presented in [236] does not lead to this kind of stabilization,
though there are likely to be other terms at the same orders which could change
this conclusion. However, Kéhler stabilization would be very difficult to find in
a controlled calculation, so one might simply have to state it as a model-building
assumption.

If one does assume that r is stabilized by corrections to the Kahler potential,
then the models of §6.3,6.4 could be realized in the framework of [4]. In Appendix
6.C we show that in these models one can easily satisfy observational constraints

such as the number of e-foldings and the size of the density perturbations.

6.6 Conclusion

One of the most promising ideas for obtaining inflation in string theory is based

on brane cosmology. However, brane-antibrane inflation [221] suffers from various
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difficulties when one tries to embed it in full string compactifications with moduli
stabilization, such as the (metastable) de Sitter vacua of [5].

We have argued here that some of these difficulties can be resolved by in-
troducing highly warped compactifications. The warped brane-antibrane models
introduced in general form in §6.3 and in a compact string theory example in §6.4
give rise to slow-roll inflation with an exponentially flat potential. In the compact
example, the slow-roll parameters and the density perturbations can be fixed at
suitable values by an appropriate choice of discrete fluxes in the warped region.

The above discussion assumes a suitable stabilization mechanism for the volume
modulus of the compactification manifold. As described in §6.5, this is a highly
nontrivial issue. Indeed, we have found that if one stabilizes the moduli as in [5]
then this field acquires an effective mass-squared mj = O(H?), making inflation
impossible. As discussed in §6.5.1, fine-tuned dependence of the superpotential on
¢ could reduce this mass. With generic dependence on ¢ the problem persists.

The arguments leading to our conclusion that generic methods of stabilization
stop inflation are rather general, and should apply to any system where the energy
density depends on the volume modulus as r~% with a > 0. There are general
arguments that this should always be the case, for the sources of energy we know
about in string theory [237]. Thus, it appears very difficult to achieve slow-roll
brane inflation in a manner compatible with stabilization of the compactified space
in string theory. At the very least, it is challenging to find a model which works
for generic forms of the stabilizing superpotential, which itself varies in a way that
depends on all of the microscopic details of the compactification. In those non-
generic cases where inflation is possible, the inflationary predictions will depend on
the details of the moduli stabilization.

One should note that the degree of fine-tuning required for slow-roll inflation
in these models is not extraordinary (see Appendix 6.F), and may well be attain-
able within the large class of known models. Moreover, even though fine-tuning is
certainly undesirable, it may not be a grave problem. Indeed, if there exist many
realizations of string theory, then one might argue that all realizations not leading
to inflation can be discarded, because they do not describe a universe in which we
could live. Meanwhile, those non-generic realizations which lead to eternal inflation
(see Appendix 6.D) describe inflationary universes with an indefinitely large and

ever-growing volume of inflationary domains. This makes the issue of fine-tuning
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less problematic. It will not escape the reader’s notice that this argument is an-
thropic in nature [3,238,211]. It is worth pointing out that it is an independent,
presumably well-defined mathematical question, whether or not string theory has
solutions which are consistent with present experiments (e.g. which contain the
standard model of particle physics, have sufficiently small cosmological term, and
allow early inflation). This question can of course be studied directly (see e.g. [239]
for fecent work in this direction), and is an important one for string theorists to
answer. Only if string theory does admit such solutions, does anthropic reasoning in
this context become tenable. The large diversity of string vacua makes it reasonable
to be optimistic on this score.

We have primarily focused on the implications of superpotential stabilization
of the moduli for D3-brane/anti-D3-brane inflation. Our analysis has implications
for other models of brane inflation as well. These include Dp — Dp systems and
Dp-branes at angles with p = 5,7. In these cases, Chern-Simons couplings will
generically induce a D3-brane charge on the branes due to the presence of a non-
trivial Byg field. Such a charge will also be generated due to the curvature couplings
for generic topologies of the cycles the branes wrap. If the induced charge is of order
unity or more, the discussion of the previous section will apply. The volume modulus
and the inflaton field will mix non-trivially in the Kahler potential and as a result a
superpotential of the kind considered in §6.5.1, or in fact any source of energy which
scales like 1/r%, will generically impart an unacceptably big mass to the inflaton. It
would be interesting to explore the special cases where such a charge is not induced,
to see if one can make simple working models of brane inflation.

Other existing proposals for brane inflation depend on Fayet-Iliopoulos terms in
the low-energy field theory [234]. The status of these FI terms in the effective N’ = 1
supergravity arising from compactified string theory therefore merits careful inves-
tigation. String theory models with D-terms were realized in brane constructions
[224,42] without consideration of volume stabilization. A consistent embedding of

this model into compactified string theory is under investigation [240].

6.A General Discussion of Brane-Antibrane Potentials

Here we compute the gravitational force between a D3-brane and an anti-D3-

brane which are transverse to a general compact six-dimensional space. We assume
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that there is no warping before we add the D-branes. Our objective is to compute
the expression for the slow-roll parameter 7 (6.2.4) in this setup. For this purpose
we note that the brane tension as well as the ten-dimensional Planck mass drop out
from the expression for 7 if we express it in terms of the physical distance. We can
therefore set Mp; 10 = 1, Tp3 = 1, to avoid clutter in the equations.

The action for the system has the form
1
_ 6 2 .
S = /d :vg(Vgo) + EZ (1 + vp(z;)) (6.A.1)

where v is a constant we will determine below. Here ¢ is the gravitational potential

on the internal space. The equation of motion from (6.A.1) is
—V2o+v> bz —x:) =0 (6.A.2)
i

Treating one brane as the source and the other as a probe and comparing with

(6.2.1) we see that 42 = 2.46 The expression for the energy of N branes is thus
1
V~N+g Z Yothers(2i) (6.A.3)

where the subscript in ¢ indicates that we compute the potential due to the other
branes, with j # 4, and evaluate it at z;. There is also a self-energy correction.
We assume that the latter is independent of position. This is true in homogeneous
spaces, such as tori.

The equation of motion (6.A.2) is not consistent since all the charges on the
left hand side of (6.A.2) have the same sign. A minimal modification that makes

the equation consistent is to write it as
V2193 (6@ -2)—2) =0 (6.A.4)
i s

where vg is the volume of the compact manifold. This term comes naturally from
the curvature of the four-dimensional spacetime, which, in the approximation that
we neglect the potential, is de Sitter space. This positive curvature gives rise to

a negative contribution to the effective potential in the six internal dimensions. It

46 Note that (6.2.1) contains a contribution both from gravity and from the Ramond
fields, so the gravity contribution is half of that in (6.2.1).
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is reasonable to assume that the negative term is smeared over the compact space
as in this minimal modification, as long as the transverse space is approximately
homogeneous.*’

Note that this term does not arise for the Ramond fields since the total charge
is zero.

Let us now consider, for simplicity, the case of a single brane and a single
antibrane. In order to compute 17 we compute the Laplacian of the potential V with

respect to x1. We get 0
Vi, Py (T1) = —Zg’)’ (6.A.5)

The subscript in ¢ indicates that this is the potential due to the brane at zo. For
a pair of branes the potential is V' = 2 + y¢,,(x1). The Laplacian has a constant
negative value (6.A.5). We see that this implies that there exists at least one
direction in which the second derivative has a value V" ~ ~v¢” < —%2%, since
there are six transverse dimensions. When we compute the contribution to 7 the
factor vg cancels out.

When there are many fields, one should consider 1 as a matrix. In order to have
slow roll inflation we need to demand that the matrix has no negative eigenvalue
that is too large. If we have a large negative eigenvalue, then even if the scalar
field is not initially rolling in that direction, it will typically start moving in this
direction after a few e-foldings. The discussion above implies that 7, viewed as a

matrix, has an eigenvalue more negative than

2

nleigenvalue S _g . (6A6)

This implies that at least one of the moduli acquires a tachyonic mass m? < —2H?,
which typically prevents a prolonged stage of inflation.

A similar analysis can be carried out for the general case of a Dp-brane/anti-Dp-
brane system. It is easy to see that the only change is that the coefficient 2 in (6.A.6)

is replaced by (gf—p)—. More interestingly, the above analysis can also be applied to the

47 In compactifications with orientifold planes, there would also be localized nega-
tive terms. However, these would be cancelled by the tensions of the branes which are
present even after brane/antibrane annihilation. The extra energy of the inflationary
brane/antibrane pair can be expected to induce a smeared negative contribution over and

above the orientifold plane contribution.
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case of Dp-branes at angles. By this we mean a system of slightly misaligned branes
and orientifold planes, [225]. The supersymmetry breaking scale in such a system
is controlled parametrically by an angle which measures the relative orientation of
the branes. For small values of this angle, the vacuum energy, V' ~ 3. T;, obtained
by summing over all the branes and planes, can be much smaller than the tension
of any individual brane or plane. The force on a brane in such a system arises due
to graviton-dilaton and RR exchange. In these systems there can be a cancellation
between the graviton-dilaton and the RR force in such a way that the resulting
force, computed with non-compact “internal” dimensions, is parametrically smaller
than the value of the cosmological constant. Once the internal dimensions are
compact, we have to make some modification of the gravitational equation in order
to make it consistent. The simplest modification is to add a constant term on the
right hand side of the corresponding Laplace equation. In this case the constant
term will be proportional to the effective four dimensional cosmological constant.
Then, repeating the analysis above, one finds that the resulting potential satisfies

the inequality
V< 1S
ST T

As a result, once again one obtains a value of 7, (6.A.6), with the coefficient %
replaced by ﬁ. In other words, both the potential and its second derivative
scale in the same way with the small angle which supresses supersymmetry breaking,

making 7 independent of this angle.

6.B The D3/D3 Potential in Warped Geometries

To calculate the potential it is actually easier to turn things around and view
the D3-brane as perturbing the background and then calculate the resulting energy
of the anti-D3-brane in this perturbed geometry. This of course gives the same
answer for the potential energy of the brane-antibrane pair.

The coupling of the metric and the five-form to the D3-brane is given by (6.3.6).
On general grounds one expects that the changes in the metric and F5 caused by

the D3-brane will vary in the directions transverse to the brane. These directions
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are spanned by the radial coordinate r and the directions along Xs5. It is useful to
observe that the background can be written as follows:

2
ds? = h™% (_dt2 + dfn’2) + A2 (dﬁ + %gabdy“dyb) (6.B.1)
(FS)rtx1x2z3 = 6,~h—1, (6B2)
where §,5dy®dy® is the line element on X5, and h(r) is given by
R4
h(r) = e (6.B.3)

It is easy to check that A(r) is a harmonic function in a six-dimensional space

spanned by r and the directions along X5, with metric

r2
R?
Adding one additional D3-brane at a radial location r; results in a perturbed

ds? = dr? + — Gapdy®dy’. (6.B.4)

background which is of the form (6.B.1), but with a harmonic function now given
by

h(r) = -1;; + 8h(r). (6.B.5)

8h solves the equation VZ6h(r) = C§®(7—77) in the six-dimensional space (6.B.4).48

For r <« r1 a simple calculation shows that

R* 1
N
independent of r and the detailed metric on X5. In (6.B.6) the coefficient N arises

Sh(r) = (6.B.6)

because the ambient background is supported by N units of charge, whereas the
perturbation we are interested in arises due to a single D3-brane. From (6.B.5) the

resulting harmonic function is

h(r) = R4 (;14- + %%) . (6.B.7)
To determine the potential we now couple this new background to the anti-D3-
brane. The anti-D3-brane is described by an action of the form (6.3.6), except that,
as was mentioned before, the sign of the Chern-Simons term is reversed relative to
the case of a D3-brane. We also remind the reader that the antibrane is located at
r = ro; we will assume that r; > ro. Combining all these results, after a simple
calculation one recovers the desired potential (6.3.9).
This calculation of the potential is valid for one brane-antibrane pair. For
one brane and p antibranes, to leading order, (6.3.9) is simply multiplied by p.
Corrections to this leading-order potential are suppressed for small p.

48 The constant C' is determined by the tension of the D3-brane.
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6.C Warped Inflation

In this appendix we discuss how inflation would look if one managed to fix
the overall volume modulus without giving a mass to the brane motion. We argued
above that the low energy dynamics of the system is described by the action (6.3.10).
The radial position of the D3-brane, r1, will play the role of the inflaton below. We

define a canonically normalized field
¢ = /T3 (6.C.1)

and ¢g = /1I3719. The effective action is then given by

_ 4 R L .. 42 1 ¢§

We have assumed that there are no significant additional terms in the effective
action (6.C.2).

This inflaton potential is extremely flat: the first term in the potential, which is
independent of the inflaton, is larger than the second term by a factor proportional
to (%)4. This factor can be interpreted as the relative redshift between the brane
location 7; and the antibrane location rg; as we explained in §6.4, this redshift is

exponentially sensitive to the parameters of the model:

2n K

To/R =€ BgsM (603)

where g5 is the string coupling and K, M are integers that specify fluxes turned on
in the compactification.
The slow-roll parameters can now be calculated in standard fashion. We will

use conventions where 871Gy = M3%,. One finds that

= PG =k

2 \v) = wmMr g

pe 2V o o8

(6.C.4)

ISR VA
Slow-roll requires that || <« 1,|¢] < 1. Of these the condition on 7 is more

restrictive. It can be met by taking

20 o \Y°
¢>>(-—]\7Mpl¢0> . (6.C.5)
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The number of e-foldings is given by

1 1% N 1 ¢°
e=— [ —=do¢ ~ ——— . 6.C.6
vz, | v s (0G0
Requiring N, ~ 60 can be achieved by taking ¢ to be sufficiently large and is
compatible with the bound (6.C.5).

Finally, the adiabatic density perturbations are given by ([215], page 186)

1 1 v¥2 /N, ¢°
T VTR MR, VT 2B BAME,

This quantity should be equal to 1.9 - 107% at N, ~ 60, when the perturbations

Sar (6.C.7)

responsible for the large scale structure of the observable part of the universe are
produced.

After some algebra, ég can be eicpressed in terms of N, as follows:

Ts \'/3 /7o \4/3
= O N5/6 [ =2 2 .C.
S = C1NE (Mél) (R) (6.C.8)

C; is a constant which is somewhat model dependent; using (6.C.7) and (6.C.2),

one has

31/393/2 N \ Y6
- 5 (T3R4>

and after using (6.4.5), (6.3.7) one finds that C; = 0.39 for the model of §6.4.4°
The four-dimensional Planck scale (Mp? = 87Gy) is given by

A (6.C.9)

2Vs

2 _
MRS e

(6.C.10)
where Vg is the volume of the Calabi-Yau. This formula is strictly applicable only
to a Kaluza-Klein compactification, not a warped compactification of the kind con-
sidered here. However, the approximation is a good one since the graviton zero
mode has most of its support away from the regions with large warping (where its

wave function is exponentially damped.) We may express the brane tension as

Ty (27r)11 30/6

Wi 4 O

(6.C.11)

49y increases by a factor /P when there are p antibranes. While making numerical
estimates we set p = 2. ‘
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This dimensionless ratio evidently depends on the string coupling constant and
the volume of the six compact dimensions. The value T3/M$3, ~ 1073 is quite
reasonable: it corresponds to g, ~ 0.1 and a Calabi-Yau volume of a characteristic
size (Vg)'/6 ~ 5v/o/. Larger values of Vs lead to smaller values for T5/M$,, which
make it easier to meet the density perturbation constraints.

More important, for present purposes, is the factor (ro/R)%/3, which has its
origins in the redshift suppression of the potential that was emphasized in the
discussion above. By taking this factor to be small enough we see that the constraint
on dg, (6.C.7), can be met. As an example, taking T3/M3, ~ 1072 and N, = 60,
we find that éy ~ 1.91-107° for ro/R = 2.5 - 10~%. This condition on ro/R can
easily be met for reasonable values of the flux integers K, M. Taking g, = 0.1, we
get ro/R = 2.5-107%, with K/M ~ 0.4. The latter condition can be achieved using
moderate values of flux, e.g. K =8, M = 20.

Now that we have ensured that the various constraints can be met in our model,
it is worth exploring the resulting inflationary scenario a little more. The energy
scale during inflation can be expressed in terms of §z. One finds from (6.C.8), and
using the fact that the potential is well approximated by the first term in (6.3.9),
that v 053

ME = C?]\Zs/z. ' (6.C.12)
Taking 6 = 1.91-107%, N, = 60, C; = 0.39 and Mp; = 2.4 - 10'® GeV one finds

that the energy scale is

A=VYV4=13.-10"GeV. (6.C.13)

This is considerably lower than the GUT scale ~ 10'® GeV. This low scale of
inflation is a generic feature of the scenario.

Next, it is straightforward to see that dg is given in terms of V' and € by

1 V 1/2
og = ——— | — . 6.C.14
" 5rv/Be (M§z> ( )

Solving for V from (6.C.12) gives

On

€= ——T—.
T5m2C3NE/?

(6.C.15)
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Taking 0z = 1.91-107%, C; = 0.39,N, = 60 gives
e=1.54-10"1, (6.C.16)

a very small number. The ratio of the anisotropy in the microwave background gen-
erated by gravitational waves to that generated by adiabatic density perturbations
is given (at large [) by

r ~ 12.4e. (6.C.17)

In our model this is very small, so the anisotropy is almost entirely due to density
perturbations.

Finally, n can be related to N, and is given by

=———. 6.C.18
=N ( )
Setting N, = 60 gives
n = —0.014. (6.C.19)
Clearly, as we mentioned above, |n| > e. The tilt parameter is given by
n=1-6e+2nc1+2n=0.97, (6.C.20)

in excellent agreement with observational data from WMAP.

In summary, in our model the scale of inflation A (6.C.13) is generically low.
Most of the anisotropy originates from adiabatic density perturbations, since € is
extremely small, and the tilt in the spectrum, (6.C.20), is determined by 1. The
values for these parameters are nearly model-independent: they are almost entirely

determined by the observed value for §g and by the number of e-foldings, N,.

6.D Eternal Inflation

At large ¢, the potential V(¢) in (6.C.2) becomes extremely flat. For flat
potentials, the force pushing the field ¢ down becomes very small, whereas the
amplitude of inflationary fluctuations remains practically constant. As a result, the
motion of the field ¢ at large ¢ is mainly governed by quantum jumps. This effect
is known to lead to eternal inflation [241,242].
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Eternal inflation leads to formation of a fractal structure of the universe on
a very large scale. It occurs for those values of the field ¢ for which the post-
inflationary amplitude of perturbations of the metric §5 would exceed unity [214].
In our case dp is proportional to ¢°, cf. (6.C.7). Since the amplitude of the density
perturbations is g ~ 1.9 - 107° in the observable part of the universe, eternal
inflation should occur for all values of the field ¢ that are greater than 10- ¢go. Here
¢eo is the value of the field at the moment starting from which the universe inflated

Ne ~ €80 times. In other words, if rgo is the brane separation corresponding to the

e
moment when the large-scale structure of the observable part of the universe was
produced, then the regime of eternal inflation occurred when the brane separation
was ten times greater than rgg. The possibility of eternal inflation in our model
is very interesting since this regime makes the existence of inflation much more
plausible: even if the probability of initial conditions for eternal inflation is small,
the universes (or the parts of the universe) where these conditions are satisfied

rapidly acquire indefinitely large (and ever growing) volume [243].

6.E Exit from Inflation

In this appendix we comment on the exit from inflation through brane-
antibrane annihilation.

The brane-antibrane potential used in our analysis of inflation is no longer
valid when the brane separation is comparable to the string length. At that stage
a tachyon appears and then condenses. (In this sense, our model, like all the brane
inflation models described in [217], is a particular version of the hybrid inflation
scenario [244].) One may attempt to use the properties of this brane-antibrane
tachyon [118,245] to describe the exit from inflation. Here we will show that one of
the possible problems of this scenario, the overproduction of cosmic strings [246,14],
is ameliorated by the warped geometry.

In the case of a merging brane-antibrane pair, the tachyon is a complex field
and there is a U(1) symmetry. Formation of cosmic strings associated with the
U(1) symmetry breaking leads to large-scale perturbations of the metric which are
compatible with the current observations of the cosmic microwave anisotropy [247]
only if GNT1 = éT%\%,‘l < 1077, where T} is the cosmic string tension [248]. This
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tension can be evaluated either by the methods of [249], or by identifying cosmic

strings with D1-branes. In the usual case (i.e. ignoring warping) one has

1
T = . 6.E.1
! 2rgsa’ ( )
The requirement Gy 17 = 3—7%41—2— < 10~7 reads
Pl
gs (27rls)6 -7
GyTi = <1071, 6.E.2
N Tor Vi S (6.E.2)
i.e.
Ve = 2 x 10° g, (271,)C. (6.E.3)

This shows that the cosmic string contribution to the perturbations of the metric
produced after inflation is unacceptably large unless the volume of the compactified
space Vg is at least five orders of magnitude greater than g,(2nl,)®.

In the brane inflation models of §6.3, §6.4, however, the relevant tension is

redshifted by the warped geometry, which leads to exponential suppression of T7:

1 4n K

e 3e:M, (6.E.4)

T, =
! 2r g0’
As a result, the undesirable contribution of cosmic strings (D1-branes) to pertur-

bations of the metric becomes exponentially suppressed.

6.F Fine-tuning of the Superpotential

In this appendix we study a toy model in order to make more precise our
statements concerning the degree of fine-tuning which is required for slow-roll brane
inflation. We should note here that we will be discussing the degree to which
the inflaton potential itself must be tuned. In a given string model, one cannot
directly tune the potential, but only vary choices of the background data like fluxes,
compactification manifold, or brane positions. It could be that the tuning required
in terms of this data is more or less severe than our estimate below, but explicit
string calculations of the relevant superpotentials will be necessary to determine
this.
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Before studying the example, let us mention how small the inflaton mass term
must be for a given model of slow-roll inflation to be compatible with experiment.
The goal is to have a long stage of inflation producing metric fluctuations with a
fairly flat spectrum. Recent observations suggest that, modulo some uncertainties,
the tilt is ns = 1 + ?,’L}n;% = 0.97£0.03 [247,250]. This is compatible with an inflaton
mass |m3|/H? ~ 107! — 1072

This could be achieved through fine-tuning of mi by only about one part in
100. Thus, the fine-tuning that we need to perform is not extraordinary. Given
the large number of possible compactifications, the existence of some configurations
which allow inflation seems quite likely.

We now turn to an example which illustrates this point. Consider a D3-brane
transverse to a warped compactification; we would like to know how the (brane-
antibrane) inflaton mass terms vary as the inflaton-dependence of the superpotential
varies. |

The Kéhler potential for the volume modulus and the D3-brane field ¢ takes
the form K(p, p, ¢, $) = —3log (p+p— k(9 c;_S)) We will work in the vicinity of the
point ¢ = ¢ = 0 in moduli space, where k(¢, ¢) = ¢¢p. We choose a superpotential

of the form
W(p, ¢) = Wo + g(p) f(¢) (6.F.1)

where g(p) is an arbitrary function of p, f(¢) = (1 + 6 $?), and Wy and § are con-
stants. This is a slight generalization of the superpotential in [5], which corresponds
to 6 = 0 and g(p) = Ae™? .

One can now calculate the supergravity potential V¥ = ¥ (gi3 D,-W_Dj_W —
3|W|?) for the two complex fields p, ¢. The exact potential has a simple dependence
on Im p and Im ¢ which shows that the point Im p = Im ¢ = 0 is an extremum of the
potential (it is a minimum, at least for small ¢). Therefore we will present here the

exact potential V¥ (c, ) as a function of Rep = c and Re¢p = ¢y at Imp = Im ¢ = 0.

F _ 9(0)? (o) o — _ % _
Vo) =5 o (-0 -3 226)F )

We are interested in the total potential V¥ (o, )+ V55 at small ¢, where V5, is the

(25%2 + 1)

potential due to the antibrane (cf. (6.5.14)). We may therefore use the stabilization
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of the volume in the first approximation at 4> = 0 and calculate the potential at

the AdS critical point o, = r., where, using D,W|4=¢ = 0, one finds

(¢'(0e))?

60,

2
Wo = _g(ac) + gacg,(ac) , Vads = — (6F3)

We now change variables to 9% = %acc,oz, where ¢ is a field with the canonical

kinetic term (8¢)%. We find

1
6o(1 - ¢?/3)?

2 4
—(3) 990" + 55%403)

456242 2099’
(_(g/)2+ 3.9 o — gg o?

VE(oe, ) =
(6.F.4)

From the antibrane we get the additional contribution mentioned above. Keeping

terms up to those quadratic in ¢, we finally arrive at

2

2 1
VF(0¢,0) + Vpa(oe, ) = Vas + % (VdS + 67(25292 = 59'9)) (6.F.5)
[+

Here Vyg is the value of the potential at the de Sitter minimum,

__(g(e))* D

= = = 3H? F.
Vas = Vags + 107 6o + 102 (6.F.6)
The mass-squared of the field ¢ is
2|Vaas| AN
2 _ o2

2
To make mi small, we need 6% > 0 as well as Ii/“‘—s‘ié’—[ 2 (5-9‘-’;) 0%~ —H? If
the parameters of the model were arbitrary then this would certainly be possible.

We will express our results in terms of a parameter 3 = § =g‘]7:

2 V.
m2 = 2H? — 2[Vaas|(6 — 26%) = 212 (1 - [Vassl i o2y (6.F.8)
3 Vas
For 8 = 0 we recover the “conformal” result

m3 = 2H? (6.F.9)
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As a simple example, if g(p) = Ae™, as in [5], we find B = —%. However,
let us assume, as in [5], that |Vaqs| > Viys. Then for the simple value 5 =1 (i.e.
0 = —a) we have
V. 2
m3 = 2H? 4+ [Vass| ~ Z|Vaas| > 2H? (6.F.10)
Vs 3

Thus, whereas it is true that our knowledge of W {(p, ¢) is not particularly good,
our absence of knowledge does not allow us to say much about mé. The only thing
we can say is that in our particular example, for |Vaq4s| > Vyg, this mass can be
fine-tuned to take almost any value.’° In particular, one has a flat potential with

mﬁ, = 0 for

1 8Vus
=—|1£4/1- 6.F.11

This equation always has solutions for |Vags| > 8Vys. For |Vaus| > 8Vyg, the

solutions are:

01 1 Vas 1
=2=c-- ~ = 6.F.12
o= 2 |Vaas| 2 ( )
and 5
9 Vs
= — <1 6.F.13
B2 " IVAds| ( )

In order to satisfy one of these two conditions and have m; = 0 one can
fine-tune either the ratio Iﬁﬁ— (as was done in [5]) or the coefficient § in the
superpotential. In order to prove that inflation in this scenario is impossible, one
would need to prove that neither of these types of fine-tuning is possible.

It is instructive to compare this situation with the problem of realizing the
chaotic inflation scenario in A/ = 1 supergravity. Let us consider a canonical Kéhler
potential K = ¢¢ + G;0;, where ¢ is the inflaton field and o; are some other fields.
If the superpotential is a function of the fields o; but not of the field ¢, then the
potential of the scalar fields has the general structure as a function of the real part
of the field ¢, V =%’ V(o;), which implies that mi =3H? ie n=1.

50 Tncidentally, Eq. (6.F.10) implies that if one does not make any fine-tuning, then for
the model described in [5], with Vs ~ 10712 in Planck units, the typical mass squared
of the D3 brane moduli fields is expected to be O(|Vaaqs|), which can be extremely large.

This result may have interesting phenomenological implications.
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One can resolve this problem by introducing a superpotential depending on the
inflaton field, just as we did in this appendix. However, in the simplest version of
chaotic inflation one needs the inflaton field to be at ¢ > 1, in Planck mass units,
and to change significantly, by A¢ = O(1), during the last 60 e-folds. It is this
last part that causes substantial difficulties for inflation in AN/ = 1 supergravity. It
is always possible to find a superpotential which depends on the inflaton field ¢ in
such a way that the potential becomes flat in the vicinity of one particular point.
However, one must do this for all ¢ in a large interval A¢p = O(1). One needs
enormous functional fine-tuning in a large interval at ¢ > 1, where the term ~ e%’
grows very fast.

Meanwhile, in our case the situation is much better. Instead of a functional
fine-tuning in a large interval of ¢ we need to make a fine-tuning at a single point
0 = 0¢ ¢ = 0. In order to estimate the required degree of fine-tuning, let us
e.g. fix B = 1/2 and change the ratio |Vags|/V4s in Eq. (6.F.8) in the interval
0 < |Vaas|/Vas < 4. As one can easily see, in this case the mass squared of the
inflaton field changes from 2H? to —2H?. In approximately 1% of this interval
the condition n; ~ 1 + g—f‘;’ = 0.97 + 0.03 is satisfied. On the other hand, if
this condition is substantially violated, which happens in the main part of this
interval, then inflation becomes either too short or impossible, and the universe
most probably becomes unsuitable for life.

Finally, if inflation can be eternal (and it can be eternal in the models of
§6.3,6.4; see Appendix 6.D), then the parts of the universe where eternal inflation
is possible have an indefinitely large and ever-increasing volume. For this reason,
regions of the universe where eternal inflation does occur, however improbable that
may have been, are in some sense favored. One could therefore argue that the
problem of fine-tuning in inflationary cosmology is not as dangerous as one could

expect, and sometimes it may not even be particularly relevant.
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7. An Inflaton Mass Problem from Threshold Corrections

ABSTRACT OF ORIGINAL PAPER

Inflationary models whose vacuum energy arises from a D-term are believed not
to suffer from the supergravity eta problem of F-term inflation. That is, D-term
models have the desirable property that the inflaton mass can naturally remain
much smaller than the Hubble scale. We observe that this advantage is lost in
models based on string compactifications whose volume is stabilized by a nonper-
turbative superpotential: the F-term energy associated with volume stabilization
causes the eta problem to reappear. Moreover, any shift symmetries introduced
to protect the inflaton mass will typically be lifted by threshold corrections to the
volume-stabilizing superpotential. Using threshold corrections computed by Berg,
Haack, and Kors, we illustrate this point in the example of the D3-D7 inflationary
model, and conclude that inflation is possible, but only for fine-tuned values of the
stabilized moduli. More generally, we conclude that inflationary models in stable
string compactifications, even D-term models with shift symmetries, will require a

certain amount of fine-tuning to avoid this new contribution to the eta problem.

7.1 Introduction

In any model of slow-roll inflation [6], one needs the inflaton potential V' (¢) to

be rather flat, as measured by the slow-roll parameters:

€= —A-gé(-‘;)Z (7.1.1)
n= Mj(vu) (7.1.2)

This chapter is reprinted, with changes, from Liam McAllister, “An Inflaton Mass Problem
in String Inflation from Threshold Corrections to Volume Stabilization,” hep-th/0502001.
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where M), is the four-dimensional reduced Planck mass and primes denote deriva-

tives with respect to the inflaton ¢. It is convenient to rewrite (7.1.2) as

V//
~ 3H?

n (7.1.3)

so that 1 measures the inflaton mass in units of the Hubble scale H. Observations
require that 7 < 1072, A key issue in inflationary model-building is the solution of
this constraint.

Inflationary models in supergravity can be divided into F-term models and D-
term models according to the source of the supersymmetry-breaking energy which
drives inflation. F-term models suffer from what is known as the eta problem, or

the inflaton mass problem [251]. The F-term energy
VF = ¥ (K°? D, WDsW — 3|W|2) (7.1.4)

depends on the inflaton ¢ because ¢ necessarily appears in the Kéhler potential.
Even if the superpotential depends weakly or not at all on ¢, the total energy does
vary with ¢. Thus, restoring factors of the Planck mass, we have

KII
v =
M}

Ve + ... (7.1.5)

and so a canonically-normalized scalar has n ~ 1. The only general solution to this
problem in F-term models is fine-tuning the contributions in (7.1.5) to cancel each
other to reasonable accuracy, leaving a small net 7.

D-term models [234], however, are well-known to be immune to the eta problem,
as the Kahler potential does not appear in the D-term energy.5! This is argued to
imply that the inflaton mass need not obey mg ~ H, as is generically true in F-term
models, but can instead be much smaller. This is a fairly strong argument in favor
of D-term inflation.

The goal of this chapter is to demonstrate that this statement no longer holds in
string compactifications whose volume is stabilized by a nonperturbative superpo-
tential: both D-term and F-term models, including shift-symmetric constructions,

receive inflaton mass corrections from threshold corrections to the nonperturbative

51 For a discussion of important updates to the D-term inflation scenario, see [252].
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superpotential. We will see that these mass corrections are generically of order the
Hubble scale, so that  ~ 1.

The source of the problem is readily understood. Superpotential stabilization
of Kéhler moduli proceeds by introducing an F-term potential whose minimum
determines®? the compactification volume. Just as in the eta problem of F-term in-
flation, this energy depends on the inflaton through the Kéhler potential. Although
the inflationary dynamics may be designed to proceed according to a weak inter-
action, e.g. of widely-separated branes [221,222], the inflaton-dependence of the
volume-stabilizing F-term energy typically introduces a stronger interaction and
renders the total potential too steep for inflation.53

A solution to this problem that has received considerable attention [254,257,258]
is the introduction of continuous geometric symmetries to protect the inflaton mass.
In this approach, one posits the existence of an approximate shift symmetry along
the inflationary trajectory.

One purpose of the present chapter is to point out that one-loop threshold
corrections to the volume-stabilizing nonperturbative superpotentials will typically
lift any such shift symmetry and introduce an inflaton mass of order H. Thus, shift
symmetries do not suffice to protect the inflaton mass, because quantum corrections
will lift these symmetries and change the inflaton potential. Specifically, threshold
corrections to the nonperturbative superpotential introduce a dependence of the
F-term energy on the various moduli in the system, including both open-string and
closed-string fields. The inflaton is usually constructed as one of these moduli, so
the F-term potential depends on the inflaton. If this dependence is generic then
n ~ 1. This implies the existence of a rather general eta problem for inflation in
nonperturbatively-stabilized string compactifications.

Volume stabilization is indispensable for a consistent model, and at present
the best-understood methods of volume stabilization use nonperturbative superpo-
tentials, along the lines suggested by Kachru, Kallosh, Linde, and Trivedi (KKLT)

5].54 Thus, the presence of an eta problem in the context of nonperturbative volume
P

52 In some cases, as we will review, the physical volume and the stabilized Kahler mod-
ulus are closely related but not identical. For simplicity we will nevertheless refer to this
situation as ‘volume stabilization’.

53 This conflict between F-term stabilization and slow-roll inflation was recognized in a
concrete form in the brane inflation [221,222] scenario of [22] and has been addressed in
e.g. [24,25,253,254,255,256].

54 For very interesting examples of perturbative volume stabilization, see [259,260].
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stabilization is an important aspect of inflation in string theory.

We will be able to observe this effect in detail. Berg, Haack, and Kérs (BHK)
[24,25] computed the one-loop threshold corrections to the nonperturbative super-
potential for the case of type IIB string theory on certain toroidal orientifolds.
They observed that the loop corrections introduce a moduli-dependent mass for a
mobile D3-brane in this background. (They further showed that this mass correc-
tion may be used to fine-tune a brane-antibrane potential to render it flat enough
for inflation.) Their result clearly demonstrates, for the case that the inflaton is
a D3-brane position and the compactification is a toroidal orientifold, that the
inflaton-dependence of the threshold corrections is indeed sufficiently strong to af-
fect inflation.

In §7.5.2 we will apply the result of BHK to compute the inflaton mass in a
stabilization of the D3-D7 inflationary model [42]. A key point is that the D3-D7
model is a D-term model that has been constructed to enjoy a shift symmetry [254],
so it might be expected not to be subject to an eta problem. As we will see, even
though D-term inflation and shift symmetries do sometimes remove the usual eta
problem, neither one suffices to remove the eta problem explored in this chapter.

An important qualification of this result, discussed in §7.5.3, is that the choice
of a moduli-stabilizing configuration for the D3-D7 model can affect the inflaton
mass. We will illustrate our points using a minimal implementation of the pro-
posal of KKLT, i.e. a gaugino condensate from a single stack of D7-branes. More
complicated configurations are possible, and in some special configurations with
approximate symmetries, the inflaton mass can be fine-tuned to be small.

These statements should not be taken as criticisms of the D3-D7 model in par-
ticular. We would expect similar results for nearly any model of moving branes
in a stabilized string compactification. More generally, the inflaton need not be a
brane coordinate; closed string moduli can certainly appear in the threshold correc-
tions, giving a mass to a closed string inflaton. Moreover, although nonperturbative
superpotentials play an essential role in our concrete discussion, any F-term moduli-

stabilizing energy could in principle lead to the same result.
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7.2 The Eta Problem in Supergravity

In this section we will briefly review the supergravity eta problem and men-
tion how D-term models avoid the problem. In later sections we will argue that
this success of D-term models does not extend to superpotential-stabilized string

compactifications.

7.2.1 F-term Inflation and the Eta Problem

In F-term models, inflation proceeds by slowly reducing the F-term energy,
VF = K (K"’BDQWD[gW - 3|W|2), (7.2.1)

We are interested in computing the slow-roll parameter 7 (7.1.2).
Let us work with a canonically normalized inflaton ¢, which we take to be

complex for convenience. Then 0,03K = 1, so that as a function of ¢,
VF(¢) = VF(0) (1 +éd+.. ) (7.2.2)

We may therefore organize the contributions to (7.1.3) as

eK

1= 1+ Jr ;00 (K:QBDQWD,B—W - 3|W|2). (7.2.3)

A successful model requires that the two terms on the right hand side of (7.2.3)
are arranged to cancel to reasonable accuracy, leaving a small net inflaton mass.
This sort of fine-tuning is the only general solution to the n problem in F-term
models.

In particular, if the inflaton does not mix in the Ké&hler potential with any
other fields, so that K ,5 = 0 unless a = ¢, then the second term in (7.2.3) depends
on the inflaton only through the superpotential, and the necessary fine-tuning must

be achieved by adjusting the inflaton-dependence of the superpotential.

7.2.2 D-term Inflation

D-term models [234,261] are those in which the inflationary trajectory follows a
direction which is not D-flat, so that inflation proceeds by slowly reducing a D-term
energy. The particular advantage of this approach is that the Kahler potential does
not appear in the D-term energy, so the argument of §7.2.1 does not apply. Thus,
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the inflaton mass does not receive the corrections of order H that plague F-term
models.

At first sight, this conclusion appears surprisingly strong. The mass terms
given in §7.2.1 are merely a concrete example of a general expectation: because the
inflationary energy V breaks supersymmetry, we expect soft scalar masses to be
induced by gravitational mediation, even if no more direct coupling is present. The
resulting masses will be of order V/M2 = 3H2.

This problematic coupling of the inflaton to the supersymmetry-breaking en-
ergy arises from the tree-level Kéhler potential for the case of F-term models. D-
term inflation sidesteps the problem by providing an inflationary energy which is
insensitive to the Kihler potential [262].5°

We will find that this statement requires careful reexamination in the context of
stabilized string compactifications. The reason is that moduli stabilization typically

introduces an F-term energy, reviving the problem of §7.2.1.

7.3 Nonperturbative Superpotentials and Volume Stabilization

The remainder of our discussion will rely on the details of moduli stabilization,
so in this section we will first outline the logic of moduli stabilization and then

explain how nonperturbative superpotentials can be used to fix Kéhler moduli.

7.8.1 The Necessity of Volume Stabilization

String compactifications on Calabi-Yau manifolds typically have a large number
of massless scalar fields, or moduli. For our purposes the most interesting moduli are
the complex structure moduli, the positions of D-branes, and the Kéhler parameters,
including the overall volume.

Moduli can ruin cosmological models in various ways. They can store en-
ergy during inflation and then interfere with nucleosynthesis, or they could have
time-dependent vevs at the present epoch, leading to changes in various physical
constants. Finally, the presence of these light, gravitationally-coupled fields would

" typically lead to unobserved fifth-force interactions. Cosmological models which

55 S, Thomas has emphasized that Planck-suppressed couplings of the inflaton in the

Kahler potential can sometimes produce an inflaton mass even in D-term models [263,264].
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aim to be successful in detail should somehow remove most or all of these light
fields.

One modulus in particular presents a grave problem. The overall compactifica-
tion volume does not have a flat potential, but is in fact unstable: it has a runaway
direction toward decompactification. The reason is that the various sources of in-
flationary energy in string theory will necessarily appear, in the four-dimensional

(Einstein-frame) description, multiplied by inverse powers of the volume:

Vg = g (7.3.1)

—.
Here Vyq is the inflationary potential, p is the volume modulus (taken to be real), C
is a volume-independent factor, and « is positive. This result is easily obtained by
dimensional reduction of ten-dimensional sources of energy, such as branes, strings,
and fluxes.

If the volume were held fixed by hand, then a mild inflaton-dependence in C
could lead to an inflating model. However, in reality we expect that a fast roll in
the p direction, toward decompactification, will remove the possibility of slow roll
in the ¢ direction.

It is therefore absolutely essential to introduce some form of volume-stabilizing

potential U(p), so that
C
V= p—a + U(p) (732)

has a minimum at a finite value of p.
The proposal of KKLT, which we will now review, is that a nonperturbative

superpotential could lead to the necessary volume-dependence.

7.8.2 Nonperturbative Superpotentials and Volume Stabilization

Let us work in the concrete and well-studied example of the type IIB string
on a six-dimensional orientifold, which we view as a limit of a compactification of
F-theory on a fourfold. For simplicity we assume that the threefold has exactly
one Kéahler modulus, p. Three-form fluxes Hjs, F3 in the internal space lead to a

superpotential [158]
Wo = / (Fs — rHy) A Q) (7.3.3)
cy
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which depends on the complex structure moduli x;,i = 0,...h%® and the dilaton
T.
An additional contribution W {p) to the superpotential would allow simultane-
ous solution of
D,W =D,W = D, ,W = 0. - (7.3.4)

In this supersymmetric solution the dilaton, the complex structure moduli, and
the volume are stabilized. (For more details on the stabilization of the complex
structure moduli and the dilaton in this scenario, see e.g. [5,4,265].)

KKLT proposed that a nonperturbative superpotential Wy, (p) from either of
two sources could provide the necessary effect:

(1) Euclidean D3-branes wrapping a divisor in the Calabi-Yau [12].

(2) Gaugino condensation on a stack of N > 1 D7-branes wrapping a divisor
in the Calabi-Yau, and filling spacetime.

In either case, the resulting superpotential takes the form

Wap = (¢, d)e ™. (7.3.5)

In this formula a is a numerical constant and ¥ is a holomorphic function of the
various moduli ¢ (such as the complex structure moduli x; and the positions of any
D-branes) and of the inflaton ¢.

In the absence of background flux, such a superpotential is possible only when
the divisor D satisfies a rather stringent topological condition: the arithmetic genus
x(D, Op) of the divisor must obey x =1 [12].

As explained in [266], the effect of fluxes is to permit gaugino condensation to
occur somewhat more generally, so that divisors with x > 1 can contribute to the
superpotential. There are reasons to believe that the same conclusion applies to the
Euclidean D3-brane superpotential [267,268].

A special feature of the gaugino condensate superpotential is that a = 472/N
for the condensate of a pure SU(N) gauge group, whereas a ~ 1 for the case of
Euclidean D3-branes.?®

We will now turn our attention to the holomorphic prefactor (¢, ¢).

56 Our conventions for a and p differ by a factor of (27) from those of KKLT: axxrT =
2w /N.
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7.3.8 Threshold Corrections to Nonperturbative Superpotentials

Recall that in A/ = 1 Yang-Mills, the Wilsonian gauge coupling is given by the
real part of a holomorphic function f:
1
a2

7 =Re(f(9) (7:3.6)

This holomorphic coupling receives one-loop (and nonperturbative) corrections, but
no higher-loop corrections [269,270], so that f is the sum of a tree-level piece and a
one-loop correction: f = fy + fi.

The one-loop correction f; is known as a “threshold correction” because it en-
codes the effect on the Wilsonian gauge coupling of heavy particles at the threshold,
i.e. at the ultraviolet cutoff [185]. This correction is a holomorphic function of the
moduli, including, in general, the inflaton.

The gaugino condensate superpotential in pure SU(N) Yang-Mills with ultra-
violet cutoff Myy and gauge kinetic function f is given by [269]

W = 16n2M3, exp(—% f) = (¢, §)e™ . (7.3.7)

We have absorbed the constants in the exponent into a, we have omitted the di-
mensionful prefactor, and we have used the fact that dimensional reduction of the
7 + 1 dimensional theory on the D7-brane relates the tree-level gauge coupling to
the volume p of the divisor. All further moduli dependence arising from f; has been
encoded in X(¢, ¢).

In the remainder of the chapter we will analyze the physical consequences of the
prefactor (¢, ¢), viewed as a threshold correction to a gaugino condensate super-
potential. This means that we are focusing our attention on gaugino condensation
instead of Euclidean D3-branes as the source of the superpotential.

The motivation for this choice is that ¥((, #) is more readily computed in
the gaugino condensate case. For a Euclidean D3-brane superpotential, 3({, @)
represents a one-loop determinant of fluctuations around the instanton. In the M-
theory description of this effect, this depends on the worldvolume theory of an M5-
brane, which is rather subtle [12]. Although explicit results for ¥ are unavailable in
the Euclidean brane case, we do still expect to find nontrivial inflaton-dependence,

leading, as we will see for the gaugino condensate case, to an eta problem.
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7.4 The Eta Problem in String Compactifications

We will now examine the relation between moduli stabilization and the eta
problem. In §7.4.1 we recall a problem which can be thought of as the incarnation
of the (usual) supergravity eta problem in a very specific string context. Then, in
§7.4.2 we explain how shift symmetries have been used to address this problem,
and we indicate a few important obstacles to the construction of shift-symmetric

models.

7.4.1 Inflaton- Volume Mizing and the Eta Problem

In the context of brane inflation in type IIB string theory, the eta problem takes
a .novel form [22]. We will examine this now because it presents a concrete setting
in which shift symmetries may be used to solve the usual eta problem. Our eventual
goal is to understand a new and different eta problem which these symmetries do
not eliminate, but to achieve this it will be very useful to review the shift symmetry
idea in a simpler setting.

D-brane inflation [221] requires mobile, space-filling D-branes, and in a type IIB
compactification this is most simply achieved with D3-branes. It will be important
for our considerations that the coordinates of D3-branes (i.e., their center-of-mass

position moduli) ¢;,i = 1,2, 3 appear in the Kéhler potential as [271]57
K = ~3log(p+ 5 — k(¢i, %)) (7.4.1)

where k(¢;, ¢;) is the (unknown) Kahler potential for the Calabi- Yau manifold itself,
which is closely related to the D3-brane moduli space. Singling out one direction as
the inflaton and denoting it by ¢, we have k(¢, ®) = ¢ + ..., where the expansion
is performed around a point in the D3-brane moduli space where the kinetic term
is canonical.

This mixing of the brane coordinates with the geometric modulus p has impor-
tant implications. The physical volume r in this setting is no longer simply Re(p),

but is instead

2r = p+ p— ¢o. (7.4.2)

57 For additional explanation of this point, see [22] and especially [24].
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This implies a revision of (7.3.1), namely

C C
V = —_—_—— 7.4,
KT - 9d/2) (749
so that [22]

Vaa($) = Vaa (0) (1 + 5-69) (7.4.4)

This introduces a contribution of order one to 1. Because this effect arises from
a term in the Kahler potential, it is reasonable to view it as the manifestation, in
this specific model, of the usual eta problem. (The new problem we will discuss

shortly does not have this property.)

7.4.2 Solving the Eta Problem with Geometric Shift Symmetries

Shift symmetries [254] are a promising approach to solving the eta problem
reviewed in the previous section. The idea is to consider a special compactification
which happens to have a particular continuous geometric symmetry.

The proposed symmetry is that the tree-level Kahler potential is independent
of one particular (real) field, such as the real part of ¢. There are strong arguments
[258,257] from N = 2 gauged supergravity that this is indeed the case in certain
examples, at least before supersymmetry is broken.

The resulting Kéhler potential, for example for D3-branes moving along the

torus directions of K3 x T2, takes the form

K = -3log(p+5- (6— ) (7.4.5)

so that Re(¢) receives no mass from the term analogous to (7.4.3). This solves the
eta problem expressed in (7.4.4).

Various corrections®® will alter this result and lift the shift symmetry of (7.4.5).
In particular, Berg, Haack, and Kors have very clearly demonstrated that threshold
corrections to the D7-brane gauge coupling lift the shift symmetry of a certain
toroidal orientifold model.

We would like to observe that this conclusion is both generic and problematic,

and is in fact a symptom of a new eta problem for string inflation.

58 Perturbative corrections to the Kahler potential will almost certainly lift this sym-
metry, although we will not address this [272,273].
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Before moving to our main point, we pause to consider some of the obstacles
to implementing the shift symmetry argument. (This is an aside because in §7.5
we will ignore these difficulties and grant the presence of such a symmetry, in
the absence of threshold corrections, and then demonstrate that the inclusion of
threshold corrections still causes an eta problem.)

The first difficulty is that requiring a geometric shift symmetry places severe
constraints on the compactification manifold. It is well-known (cf. [274], p.484) that
ordinary Calabi-Yau threefolds, i.e. Calabi-Yau threefolds whose holonomy is SU(3)
and not a subgroup, do not have any continuous isometries. Thus, orientifolds of
tori and of K3 x T? are the only suitable candidates for shift-symmetric models.
This implies a tremendous reduction in the number of compactifications available
for model-building.

Furthermore, the strategy of guessing general results based on detailed study of
toroidal orientifold examples is not always reliable. In particular, even if most such
simple examples have continuous symmetries, we know for certain that ordinary
Calabi-Yau manifolds do not. Hence, any conclusions about shift symmetries that
are inferred from toroidal orientifold examples apply only to that context, and not
to the general case. This is one of the reasons that our conclusions are different
from those of [275].

Moreover, some important aspects of model-building are actually more diffi-
cult in the nominally simplified setting of toroidal orientifolds. Although partial
stabilization of Kédhler moduli has been achieved in this context [276,277], complete
stabilization remains challenging. At present it is not clear that known methods
will suffice to stabilize all the Ké&hler moduli in an order-one fraction of toroidal
orientifold models. In this regard, Calabi-Yau threefolds with unreduced holonomy
can be much more tractable [278]. This is a fairly serious objection to toroidal con-
structions, given the importance of moduli stabilization for an inflationary model.
Even so, it is possible that complete moduli stabilization will eventually be achieved

for a toroidal orientifold with properties appropriate for inflation.

7.5 Threshold Corrections Change the Inflaton Mass

We now present the key observation of this chapter, which is that threshold

corrections induce an entirely new eta problem which D-term and shift-symmetry
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techniques do not solve. That is, we explain how threshold corrections lead to an
inflaton mass that is generically of order H, even in the special case that a shift
symmetry was present before the inclusion of these corrections.

In §7.5.1 we discuss the potential sources of an inflaton mass, and in §7.5.2 we
illustrate our considerations with the D3-D7 model [42], in which the problem is

particularly clear. In §7.5.3 we explore potential solutions to this problem.

7.5.1 General Results

The total potential in a stabilized inflationary model is the sum of several
contributions:
V = VF + Vpos + ‘/intp (7.5.1)

The first contribution, Vg, is the F-term moduli-stabilizing energy. In the
KKLT scenario, Vg = Vags < 0 is also the vacuum energy of a supersymmetric
AdSy solution. A supersymmetry-breaking effect then adds an energy Vjos which
‘uplifts’ the total vacuum energy to a positive value, creating a metastable de Sitter
vacuum. The prototypical source of positive energy is an anti-D3-brane [5], though
there are various alternatives [279,280].

The final and most model-dependent ingredient is an interaction potential Vi
designed to produce the dynamics of slow-roll inflation. Simple examples include
the weak interactions between a widely-separated brane-antibrane pair [222,22] or
between a D3-brane and a D7-brane [42].

The 1 condition for slow-roll inflation (where primes denote derivative with

respect to the canonically-normalized inflaton) is
V¥ + Vi + Vimy < 3H? (7.5.2)

By far the simplest case has V& and Vo5 independent of ¢, so that 7 is de-
termined by V., alone. Then, if the interaction potential is reasonably flat, the
slow-roll condition can be satisfied. The only remaining challenge is to design an
interaction Vin(¢) that is sufficiently weak.

Of course, this simple case is hard to achieve. Let us now repeat the potential
problems:

(1) If Vipy is an F-term energy then the eX prefactor leads to an inflaton mass

of order H. This is the classic supergravity eta problem [251].
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(2) If the inflaton and compactification volume mix, as in (7.4.2), and the energy
is proportional to the volume, as in (7.4.3), then this produces an eta problem as
in (7.4.4). This was the problem in [22].

(3) If the volume-stabilizing Vg has inflaton dependence, e.g. from threshold
corrections, then this leads to yet another eta problem. The inflaton mass depends
on the detailed form of these threshold corrections, but is not expected to be para-
metrically small.

D-term inflationary energy avoids the first problem, as we recalled in §7.2.2;
shift symmetries [254,257] avoid the second problem, as we explained in §7.4.2; but
it appears that some more clever mechanism, or an explicit fine-tuning, will be

necessary to overcome the third problem. That is the point of the present chapter.

7.5.2 The Example of the D3-D7 Model

It will be worthwhile to illustrate the assertions of the previous section in
a specific example. We will focus on the D3-D7 model of [42]. This model is
particularly interesting for our purposes because it is a D-term model which can
moreover be constructed to take advantage of a shift symmetry, so that the first
and second problems of §7.5.1 are not present. This leaves the inflaton mass from
threshold corrections as the final obstacle to a working model.5?

We will now briefly review the aspects of the D3-D7 model [42]%° that are
relevant for our considerations. The general proposal is that the weak interaction
between a mobile D3-brane and a D7-brane whose worldvolume flux F is not self-
dual can give rise to inflation. The D3-brane moves toward the D7-brane and then,
at a critical distance, dissolves.

The flux in question is F = dA — B, where A is the gauge potential on the
D7-brane worldvolume and B is the pullback of the NS-NS two-form potential. If

this flux is not self-dual in the four-dimensional space described by the divisor which

59 Berg, Haack, and Kors have done a careful study [24,25] of the inflaton mass cor-
rections in the brane-antibrane model of [22]. Because the second and third effects listed
in §7.5.1 are both present in that example, it is possible to balance these effects against
each other and fine-tune away the eta problem. In contrast, our present point is that the
third effect, from threshold corrections, is problematic in general, and particularly so in
shift-symmetric models.

60 For a more recent generalization, see [281,282].
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the D7-brane wraps, then supersymmetry is broken and there is a force between
the D7-brane and the D3-brane [42].

This model can be compactified on K3 x T?/Z,, with the orientifold action
explained in [42]. The maximal gauge symmetry is SO(8)*, which arises when four
D7-branes and one O7-plane sit at each of the four fixed points of the orientifold ac-
tion. In more general configurations, the branes will be dispersed around the torus.
However, at least one stack of D7-branes is necessary for the KKLT method of vol-
ume stabilization. When gaugino condensation occurs on two or more independent
stacks, the superpotential takes on a more complicated ‘racetrack’ form. We will
make the minimal assumption that fixes the K3 volume: gaugino condensation on
a single stack of NV D7-branes that wrap the K3 and sit at a point on the torus,
which we take to be the origin.

We will now see that this stack of branes exerts a force on a probe D3-brane
elsewhere on the torus. In the special case that the motion of the D3-brane towards
the origin corresponds to the inﬂaton direction, this immediately implies a violation
of the slow-roll condition. Much more generally, the effect of the stack of D7-branes
is to deflect the D3-brane from an otherwise suitably flat inflaton trajectory.

Note that the translational symmetry along the torus may be thought of as
the origin of the shift symmetry [254]. Correspondingly, the Kahler potential for
this model is given by the shift-symmetric form (7.4.5)[254,258,257]. Without loss
of generality, we will take the shift-symmetric direction to correspond to the real
part of the field ¢ that parametrizes the D3-brane coordinate on the torus.

The holomorphic gauge coupling on the stack of D7-branes, including the string

loop correction, is [25]
1

where ¥ is a Jacobi theta function, U is the complex structure of the T2, ¢ is the
inflaton, and the omitted terms are independent of ¢.

For generic values of ¢, even the epsilon slow-roll condition will not be sat-
isfied. However, when the D7-brane stack and the probe D3-brane are antipodal,
i.e. when ¢ = 1/2, the term in the potential linear in ¢ vanishes. Expanding the
superpotential around ¢ = 1/2, BHK find

Wap(1/2 + ) = Wap(1/2) (1 + 5(U)¢2) (7.5.4)

202



7 An Inflaton Mass Problem from Threshold Corrections 203

where
5(U) = % (E2(U) +95(0, U)* + 94(0, U)4). (7.5.5)

Here FE5 is the second Eisenstein series, related to derivatives of the ¥-functions,
and a is the numerical constant appearing in (7.3.5). In these expressions ¢ is

dimensionless; the canonically-normalized inflaton, with mass dimension one, is

: 3
¢ = Mpg4/ P (7.5.6)

We can now compute the mass term for a D3-brane probe of this compactifica-
tion by using (7.5.4) to expand the F-term energy. For motion along Im(¢) = 051,
the mass is conveniently expressed as

1= 5 )

(7.5.7)

where, as in KKLT, Vaq4s is the vacuum energy at the AdS; minimum which is
uplifted to create a de Sitter vacuum.

This result is slightly different from the result of [25] for the mass of a D3 — D3
inflaton. The reason is that the Kdhler potential relevant for brane-antibrane infla-
tion is (7.4.1), but for the present example of D3-D7 inflation the Kéhler potential
takes the shift-symmetric form (7.4.5).

Let us now assess whether 7 (7.5.7) can satisfy the slow-roll condition < 1072,
Each of the factors in (7.5.7), except for §(U), is roughly of order one or larger. The
ratio |Vags|/V cannot be parametrically small, because Vags determines the height
of the potential barrier that prevents decompactification, and the energy density
V should not exceed this.%? The constant 1/a is likewise not parametrically small;
in the concrete example given in KKLT, a was taken to be 27/10 (where we have
included a factor of (27r)~! which converts their result to our notation), and more

generally, a = 472 /N for a stack of N coincident D7-branes.

61 For other choices of inflaton trajectory, i.e. different locations in I m(¢) of the D7-
brane bearing anti-self-dual flux, the results are more difficult to express in closed form.
However, for any such model the inflaton mass can still be found by using (7.5.3) to
determine the F-term energy, and it remains true that for generic values of U, 7 is not
small.

62 This statement is model-dependent; our present discussion assumes moduli stabiliza-
tion by the method of KKLT [5].
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The only factor which might be small is 6(U). As explained in [25], § is not
automatically small, but there does exist a small range of values of U, the torus
complex structure, for which §(U) <« 1. A small inflaton mass can therefore be
arranged by a choice of fluxes that fixes U in this window. This amounts to an
explicit fine-tuning of the inflaton mass.

We conclude that with KKLT volume stabilization, the D3-D7 model requires

a modest fine-tuning which can be achieved by a judicious choice of fluxes.53

7.5.8 Discussion

The result of the previous sections accords with the general expectations dis-
cussed in §7.2. An inflaton mass which is much smaller than H does not arise
automatically, nor even with the imposition of a shift symmetry; in the end, a fine-
tuning at the percent level is necessary to make the model work. In the scheme of
inflationary fine-tuning, this is not a serious problem; in particular, it should be con-
trasted to the functional fine-tuning required for certain models in which ¢ >> M.
Even so, the necessity of fine-tuning in the present case cannot be ignored.

This result should not be interpreted as a stroke against the D3-D7 model
(or any other model) in particular. In fact, we would expect almost any complete
and fully-realized model to require some fine-tuning of parameters. Omission or
simplification of certain physical ingredients, especially moduli stabilization, may
obscure the eta problem and make a model appear to work automatically, but
sufficient inspection can be expected to reveal one or more problems of detail that
require fine-tuning.

It would be extremely interesting to find a solution to this eta problem that
does not amount to a fine-tuning of parameters. A slightly modified mechanism
of volume stabilization, such as the proposal of [283], does alter the mass formula
(7.5.7), but does not naturally produce a small mass. However, it may be possible
to invent a method of volume stabilization which does not affect the inflaton mass.
Volume dependence through a D-term energy would be a promising candidate.

A further possibility is to circumvent this problem through a suitably symmetric

configuration of D7-brane stacks. Although such arrangements are presumably less

63 We should again emphasize that corrections to the Kahler potential may introduce

further changes in the inflaton mass.
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generic, i.e. arise from a more limited choice of F-theory fluxes, any such explicit
model would be quite interesting.

Another interesting possibility [262] is that an inflaton charged under a sym-
metry G can sometimes be excluded from the holomorphic correction term fi, so
that %’;71 = 0. However, in simple examples, such as the D3-D7 model, no such
symmetry is present. Moreover, D-term inflation requires [234] that ¢ is neutral
under the U(1) gauge group Gp whose D-term energy drives inflation, so in partic-
ular G cannot coincide with Gp. It is reasonable to expect, however, that discrete

symmetries of the appropriate form can sometimes be arranged.

7.6 Conclusion

We have seen that threshold corrections to volume-stabilizing nonperturba-
tive superpotentials create an eta problem for inflationary models in string theory.
These threshold corrections cause the volume-stabilizing F-term energy to depend,
generically, on the values of the open-string and compactification moduli. Because
the inflaton is expected to consist of one of these moduli, the threshold correction
changes the dependence of the inflationary energy on the inflaton vev, altering the
slow-roll parameters and creating an eta problem.

This conclusion applies to models which satisfy several assumptions, which
we now repeat for clarity. Our general considerations were limited to models of
inflation which can be realized in a string compactification. In any such model it
is essential that the instability to decompactification has been removed by moduli
stabilization; it is also desirable that all other moduli have also been stabilized. We
have explicitly assumed that the volume stabilization arises from a nonperturbative
contribution to the superpotential, as in KKLT [5]. (For interesting alternatives,
see [259,260].) We have also assumed that the inflaton is a modulus whose flat
direction is slightly lifted by a further supersymmetry-breaking effect. This could
correspond, for example, to a brane interaction.

Thus, our result applies to any model of inflation in string theory which uses a
compactification stabilized by methods analogous to those of KKLT. Every aspect of
the discussion is simplest in the case of D-brane inflation in a type IIB compactifica-
tion, but the result applies much more broadly. For example, current techniques for

moduli stabilization in the heterotic string [284] and in M-theory on G2 manifolds
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[285] also use a combination of flux and nonperturbative superpotentials. Any in-

flationary model®4

which is elaborated on one of these foundations would be subject
to an eta problem from threshold corrections to these superpotentials.

Moreover, although we have seen that the threshold corrections of Berg, Haack
and Kors [24] lead to an explicit result for the inflaton mass in a particularly simple
D3-D7 model, generic moduli dependence will lead to an eta problem even in more
complicated cases. For example, the threshold corrections are not known for generic
Calabi-Yau threefolds, so no complete and explicit computation of the slow-roll pa-
rameters is possible at present for an inflationary model arising in a compactification
on such a space. Progress in this direction appears to be important for inflationary
model-building in string compactifications.

It is essential to recognize that although the conclusions of this chapter are
somewhat general, the actual computation of the inflaton mass is only strictly ap-
plicable to a supersymmetric AdS, configuration that can be uplifted to produce
an inflationary scenario. In particular, the one-loop exactness of threshold cor-
rections in supersymmetric theories permits us to be somewhat precise about the
inflaton mass in a supersymmetric vacuum, but, as we have emphasized through-
out, supersymmetry-breaking effects will typically produce substantial corrections
to these mass terms.

Nevertheless, the strategy of understanding the lifting of (inflaton) flat direc-
tions in a supersymmetric vacuum is a sensible one.%% If no suitably flat direction
exists in the supersymmetric configuration, it is very hard to believe that the addi-
tion of gravitationally-mediated soft terms will remedy this problem. Moreover, it
is usually not possible to compute these corrected masses in detail.

Thus, it is usually impossible to prove that a given string model has a small
inflaton mass, including all quantum corrections. On the other hand, it is possible
to establish that a given model has an eta problem, because if a problem arises from
one set of quantum corrections, such as threshold corrections to the gauge coupling,
then further quantum corrections will generically not undo this problem. In this

chapter we have focused on establishing a problem using the one-loop-exact results

64 For interesting examples in this category, see [286].
65 This perspective was the one used to expose and address the problem of a brane-

antibrane inflaton mass in [22,253,254].
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for the superpotential, with the understanding that additional corrections, e.g. to
the Kahler potential, should not conspire to flatten the inflaton potential.

There are several interesting directions for future work. First of all, it is the
threshold corrections from closed string moduli that are relevant when the inflaton
itself is a closed-string field, for example a geometric modulus [287]. The mass of
such a closed string inflaton depends on these corrections, and it would be useful
to understand their form.

Furthermore, we have only examined the nonperturbative superpotentials re-
sulting from gaugino condensation, but Euclidean D3-branes are known to play
an important role in stabilizing certain classes of Kéhler moduli [266,278]. In this
context the inflaton dependence of the instanton superpotential arises through a
moduli-dependent one-loop determinant (¢, ¢) of fluctuations around the instan-
ton. It would be extremely interesting, although challenging [12], to compute pref-
actors of this sort, not only for the considerations of this chapter, but for rather
general moduli stabilization.

In addition, corrections to the Kahler potential can further adjust the depen-
dence of the total inflationary energy on the inflaton vev. A complete and consistent
model requires inclusion of these effects, which have also not yet been calcuated.

Looking forward, we can hope that a thorough understanding of the effect
of threshold corrections on shift-symmetric brane configurations will guide us to
models in which the threshold corrections, and all other quantum corrections, are
indeed small, so that the shift symmetry is an approximate symmetry of the full
quantum theory. If this could be achieved, it would be a significant step toward a

controllable model of inflation.

7.A A Field-Theory Model of the Brane Interaction

In this appendix we will point out a counterintuitive aspect of our conclusion.

We will then use a field-theory model to expose the flaw in this intuition, and to
further demonstrate that our results are correct.

| The inflaton mass term from threshold corrections is the result of an interaction

induced by massive strings stretched between the D3-brane and the D7-branes,

which we refer to as 3-7 strings. In the field theory description, these 3-7 strings
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correspond to a massive flavor whose mass mg; is controlled by the modulus ¢.
From this perspective, one might expect this massive flavor to decouple when its
mass is very large, and to give rise to a negligible interaction in that limit. It is
therefore somewhat surprising that the inflaton mass (7.5.7) does not diminish when
|¢| is large. Should we not expect the BHK result to vanish for widely-separated
branes?

To resolve this puzzle, we first note that as soon as mg7 approaches the mass of
a string winding the torus, the D3-D7 interaction induced by the superpotential is
correctly described by the full string threshold correction of BHK, and not by its field
theory limit. Thus, we can place an upper limit Ayy < mw on the ultraviolet cutoff
of our field-theory description, where myy denotes the mass of the lightest wound
string. In other words, the field theory that provided the decoupling intuition applies
only to situations in which the brane separation is much less than the smallest radius
of the torus.%® At greater separations, wound strings can appear in the theory and
contribute an additional interaction between the D3-brane and the D7-branes. |

We should therefore ask whether decoupling sufficient for slow roll is possible
within this limit imposed by the radius of the compact space. To do this, we
will examine a simple field theory that models the D3-D7 interaction induced by
stretched (but not wound) 3-7 strings. (We will check our model by verifying that
it coincides with the small-separation limit of the full BHK result.)

The model is a supersymmetric SU(N) Yang-Mills theory with a single chiral
superfield  whose mass is controlled by a parameter ¢. Here we will take ¢ to
be non-dynamical, and will examine the gaugino condensate superpotential as a
function of ¢.87

The gaugino condensate superpotential below the scale mgz, i.e. after integrat-
ing out @), can be matched to the superpotential above this scale. For N > 2 the
result is simply [288]

Wiow X Af’ﬁ;}l/ Nmzl,f,N (7.A.1)

with Apign the dynamically-generated scale of the high-energy theory. Thus, in
the low-energy theory, W = C¢!/N with C independent of ¢. We can precisely

66 I am grateful to M. Berg and M. Haack for discussions on this point.
57 For simplicity we are studying the supersymmetric configuration; the supersymmetry-
breaking effects used in the model of [42] would generate additional corrections to the

inflaton mass, in addition to introducing a tachyon.
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reproduce (7.A.1) by expanding the superpotential (7.3.7), including the full string
threshold correction (7.5.3) of BHK, in the limit ¢ <« 1, after using the relation
a=4n%/N.
Let us now compute 7 in this model. From the supergravity formula for the
F-term energy, we have
V = —3eK 2N (7.A.2)

AERE e

so that®

0~ —-]2\7 (2—p> (7.A.4)

so that applying a = 47%/N, we finally come to

”N_E%?‘ (7.A.5)
However, ap > 1 was a condition for the validity of the nonperturbative superpo-
tential used by KKLT: (7.3.5) is the leading approximation, analogous to a single-
instanton effect, and there will be corrections suppressed by further powers of e %%,
Furthermore, |¢| < % measures the distance from the origin on a unit torus, so
lp| < % is necessary in order for the brane separation to be small compared to the
size of the torus (and hence for the field theory model to be a good approximation
to the true result, which incorporates wound strings.) Thus, there is no controllable
parameter regime in which (7.A.5) is small.

Indeed, even at the extreme boundary of the region of control, ap ~ 1, |@| ~ %,
we have at best n ~ % If we were to extend the toy model to ¢ > M, then the
interaction would no longer be strong enough to affect slow-roll. However, this is
not an allowed range in the full model, because of the UV cutoff of the effective
field theory, which corresponds to the limit imposed by the radius of the compact

space.

68 We have again replaced the dimensionless ¢ with the canonically-normalized ¢, cf.
(7.5.6).
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We conclude that one cannot arrange suitable decoupling simply by separating
the branes; a somewhat more complicated fine-tuning will be necessary to remove
the inflaton mass terms under consideration. This could be achieved, for exam-
ple, by introducing a suitably symmetric configuration of several D7-brane stacks
bearing gaugino condensates.

We have certainly not demonstrated that slow-roll is impossible for D3-D7
systems in the regime in which separations are small compared to the size of the
torus. We have simply shown that the interaction captured by threshold correc-
tions produces, on its own, an unsuitably large inflaton mass in this range, so that
some fine-tuning against other effects would be needed to make a phenomenologi-
cally acceptable model. Thus, one cannot evade the arguments of this chapter by

separating the D3-brane from the D7-branes and invoking decoupling.

210



[1]

[2]

[10]
[11]

References

A. G. Riess et al. [Supernova Search Team Collaboration], “Observational
Evidence from Supernovae for an Accelerating Universe and a Cosmological
Constant,” Astron. J. 116, 1009 (1998), astro-ph/9805201.

S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Mea-
surements of Omega and Lambda from 42 High-Redshift Supernovae,” As-
trophys. J. 517, 565 (1999), astro-ph/9812133.

R. Bousso and J. Polchinski, “Quantization of Four-form Fluxes and Dynam-
ical Neutralization of the Cosmological Constant,” JHEP 0006, (2000) 006,
hep-th/0004134.

S. B. Giddings, S. Kachru and J. Polchinski, “Hierarchies from fluxes in
string compactifications,” Phys. Rev. D 66, 106006 (2002), hep-th/0105097.
S. Kachru, R. Kallosh, A. Linde, and S. Trivedi, “de Sitter Vacua in String
Theory,” Phys. Rev. D 68, (2003) 046005, hep-th/0301240.

A.D. Linde, Particle Physics and Inflationary Cosmology, Harwood Aca-
demic, 1990;

E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley, 1990;
A.R. Liddle and D.H. Lyth, Cosmological Inflation and Large-Scale Struc-
ture, Cambridge University Press, 2000.

D. N. Spergel et al. [WMAP Collaboration]|, “First Year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) Observations: Determination of Cosmo-
logical Parameters,” Astrophys. J. Suppl. 148, 175 (2003), astro-ph/0302209.
S. Degl’'Innocenti, G. Fiorentini, G.G. Raffelt, B. Ricci and A. Weiss, “Time
variation of Newton’s constant and the age of globular clusters,” Astron.
Astrophys. 312, 345 (1996), astro-ph/9509090.

A 1. Shlyakhter, “Direct test of the constancy of fundamental nuclear con-
stants,” Nature 264 (1976) 340 ;

T. Damour and F. Dyson, “The Oklo bound on the time variation of the fine-
structure constant revisited,” Nucl. Phys. B 480, 37 (1996), hep-ph/9606486.
T. Damour, “Gravitation, experiment and cosmology,” gr-qc/9606079.

M. Dine and N. Seiberg, “Nonrenormalization Theorems In Superstring The-
ory,” Phys. Rev. Lett. 57, 2625 (1986).

211



[12]

[13]

[14)

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

References 212

E. Witten, “Non-Perturbative Superpotentials In String Theory,” Nucl.
Phys. B 474, 343 (1996), hep-th/9604030.

I. Klebanov and M.J. Strassler, “Supergravity and a Confining Gauge The-
ory: Duality Cascades and xySB Resolution of Naked Singularities,” JHEP
0008, (2000) 052, hep-th/0007191.

S. Sarangi and S. H. Tye, “Cosmic String Production Towards the End of
Brane Inflation,” Phys. Lett. B 536, (2002) 185, hep-th/0204074; N. T. Jones,
H. Stoica and S. H. Tye, “The Production, Spectrum and Evolution of Cos-
mic Strings in Brane Inflation,” Phys. Lett. B 563, (2003) 6, hep-th/0303269;
L. Pogosian, S. H. Tye, I. Wasserman and M. Wyman, “Observational Con-
straints on Cosmic String Production During Brane Inflation,” Phys. Rev.
D 68, (2003) 023506, hep-th/0304188.

E. J. Copeland, R. C. Myers and J. Polchinski, “Cosmic F- and D-strings,”
JHEP 0406, 013 (2004), hep-th/0312067.

D. B. Kaplan and A. V. Manohar, “Current Mass Ratios Of The Light
Quarks,” Phys. Rev. Lett. 56 (1986) 2004.

S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Spacetime,
Cambridge University Press, 1973.

L. Kofman, A. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein,
“Beauty is attractive: Moduli trapping at enhanced symmetry points,” JHEP
0405, 030 (2004), hep-th/0403001.

L. McAllister and I. Mitra, “Relativistic D-brane scattering is extremely
inelastic,” JHEP 0502, 019 (2005), hep-th/0408085.

S. Gukov, S. Kachru, X. Liu and L. McAllister, “Heterotic Moduli Stabi-
lization with Fractional Chern-Simons Invariants,” Phys. Rev. D 69, 086008
(2004), hep-th/0310159.

M. Dine, R. Rohm, N. Seiberg, and E. Witten, “Gluino Condensation in
Superstring Models,” Phys. Lett. B 156 (1985) 55.

S. Kachru, R. Kallosh, A. Linde, J. Maldacena, L. McAllister and S. P. Tri-
vedi, “Towards inflation in string theory,” JCAP 0310, 013 (2003), hep-
th/0308055.

L. McAllister, “An inflaton mass problem in string inflation from threshold
corrections to volume stabilization,” hep-th/0502001.

M. Berg, M. Haack and B. Kérs, “Loop Corrections to Volume Moduli and
Inflation in String Theory,” Phys. Rev. D 71, 026005 (2005) hep-th/0404087.
M. Berg, M. Haack and B. Kors, “On the Moduli Dependence of Nonpertur-
bative Superpotentials in Brane Inflation,” hep-th/0409282.

R. Brandenberger and C. Vafa, “Superstrings in the Early Universe,” Nucl.
Phys. B 316 391 (1989).



[27]

[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]

[42]

References 213

M. Gasperini and G. Veneziano, “Pre-Big Bang in String Cosmology,” As-
tropart. Phys. 1, 317 (1993), hep-th/9211021.

D. Liist, “Cosmological String Backgrounds,” hep-th/9303175;

C. Kounnas and D. Liist, “Cosmological String Backgrounds from Gauged
WZW Models,” Phys. Lett. B 289, 56 (1992), hep-th/9205046.

R. Brustein and R. Madden, “Graceful Exit and Energy Conditions in String
Cosmology,” Phys. Lett. B 410, 110 (1997), hep-th/9702043.

N. Seiberg, “From Big Crunch to Big Bang: Is it Possible?,” hep-th/0201039;
J. Khoury, B. Ovrut, N. Seiberg, P. Steinhardt and N. Turok, “From Big
Crunch to Big Bang,” Phys. Rev. D 65, 086007 (2002), hep-th/0108187.

V. Balasubramanian, S. Hassan, E. Keski-Vakkuri and A. Naqvi, “A
Space-Time Orbifold: A Toy Model for a Cosmological Singularity,” hep-
th/0202187.

N. Nekrasov, “Milne Universe, Tachyons, and Quantum Group,
th/0203112.

L. Cornalba and M. Costa, “A New Cosmological Scenario in String Theory,”
hep-th/0203031.

H. Liu, G. Moore and N. Seiberg, “Strings in a Time-dependent Orbifold,”
hep-th/0204168.

S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, “From Big Bang to Big
Crunch and Beyond,” hep-th/0204189.

L. Cornalba, M.S. Costa and C. Kounnas, “A Resolution of the Cosmological
Singularity with Orientifolds,” hep-th/0204261.

B. Craps, D. Kutasov and G. Rajesh, “String Propagation in the Presence
of Cosmological Singularities,” hep-th/0205101.

A. Kehagias and E. Kiritsis, “Mirage Cosmology,” JHEP 9911, 022 (1999),
hep-th/9910174.

S. Gubser, “AdS/CFT and Gravity,” Phys. Rev. D 63, 084017 (2001), hep-
th/9912001.

C. Csaki, M. Graesser, L. Randall and J. Terning, “Cosmology of Brane
Models with Radion Stabilization,” Phys. Rev. D 62, 045015 (2000), hep-
th/9911406.

J. Khoury, B. Ovrut, P. Steinhardt and N. Turok, “The Ekpyrotic Universe:
Colliding Branes and the Origin of the Hot Big Bang,” Phys. Rev. D 64,
123522 (2001), hep-th/0103239;

R. Kallosh, L. Kofman and A. Linde, “Pyrotechnic Universe,” Phys. Rev. D
64, 123523 (2001), hep-th/0104073.

K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, “D3/D7 Inflationary
Model and M-theory,” Phys. Rev. D 65, 126002 (2002), hep-th/0203019.

”

hep-



[53]

[54]
[55]

[56]

References 214

L. Randall and R. Sundrum, “A Large Mass Hierarchy from a Small Extra
Dimension,” Phys. Rev. Lett. 93, 3370 (1999), hep-th/9905221.

A. Buchel, “Gauge/gravity Correspondence in an Accelerating Universe,”
hep-th/0203041.

I. Klebanov and A. Tseytlin, “Gravity Duals of Supersymmetric SU(N) X
SU(N + M) Gauge Theories,” Nucl. Phys. B 578, 123 (2000), hep-
th/0002159.

J. Bekenstein, “Exact Solutions of Einstein-Conformal Scalar Equations,”
Ann. Phys. 82 535 (1974);

J. Bekenstein, “Nonsingular General-relativistic Cosmologies,” Phys. Rev. D
11, 2072 (1975).

C. Molina-Paris and M. Visser, “Minimal Conditions for the Creation of a
Friedmann-Robertson-Walker Universe from a ‘Bounce’,” Phys. Lett. B 455,
90 (1999), gr-qc/9810023.

R. Fakir, “General Relativistic Cosmology with No Beginning of Time,” gr-
qc/9810054.

M. Visser and C. Barcelo, “Energy Conditions and their Cosmological Im-
plications,” gr-qc/0001099.

A.J.M. Medved, “Big Bangs and Bounces on the Brane,” hep-th/0205037.
S. Mukherji and M. Peloso, “Bouncing and Cyclic Universes from Brane
Models,” hep-th/0205180.

H. Verlinde, “Holography and Compactification,” Nucl. Phys. B 580, 264
(2000), hep-th/9906182;

C. Chan, P. Paul and H. Verlinde, “A Note on Warped String Compactifi-
cation,” Nucl. Phys. B 581, 156 (2000), hep-th/0003236.

K. Dasgupta, G. Rajesh and S. Sethi, “M-theory, Orientifolds and G-flux,”
JHEP 9908 023 (1999), hep-th/9908088;

B. Greene, K. Schalm and G. Shiu, “Warped Compactifications in M and F
theory,” Nucl. Phys. B 584, 480 (2000), hep-th/0004103,;

P. Mayr, “Stringy World Branes and Exponential Hierarchies,” JHEP 0011
013 (2000), hep-th/0006204.

C. Herzog, I. Klebanov and P. Ouyang, “Remarks on the Warped Deformed
Conifold,” hep-th/0108101.

I. Klebanov and E. Witten, “Superconformal Field Theory on Three-branes
at a Calabi-Yau Singularity,” Nucl. Phys. B 536, 199 (1998), hep-th/9807080.
B. Grinstein, D.R. Nolte and W. Skiba, “On a Covariant Determination of
Mass Scales in Warped Backgrounds,” hep-th/0012074.



References 215

P. Binétruy, C. Deffayet, U. Ellwanger and D. Langlois, “Brane cosmological
evolution in a bulk with cosmological constant,” Phys. Lett. B 477, 285
(2000), hep-th/9910219.

S. Mukohyama, “Brane-world solutions, standard cosmology, and dark radi-
ation,” Phys. Lett. B 473, 241 (2000), hep-th/9911165.

J. Khoury and R.-J. Zhang, “On the Friedmann Equation in Brane-World
Scenarios,” hep-th/0203274.

S. Kachru, J. Pearson and H. Verlinde, “Brane/Flux Annihilation and the
String Dual of a Nonsupersymmetric Field Theory,” hep-th/0112197.

J. Audretsch and G. Schéfer, “Thermal Particle Production in a Contracting
and Expanding Universe Without Singularity,” Phys. Lett. A 66 459 (1978).
O. Aharony, M. Fabinger, G. Horowitz and E. Silverstein, “Clean Time-
dependent String Backgrounds from Bubble Baths,” hep-th/0204158.

For example see: S. Bhattacharya, D. Choudhury, D. Jatkar and A.A. Sen,
“Brane Dynamics in the Randall-Sundrum Model, Inflation and Graceful
Exit,” hep-th/0103248.

D. Youm, “Closed Universe in Mirage Cosmology,” Phys. Rev. D 63, 085010
(2001), hep-th/0011290.

E. Papantonopoulos and I. Pappa, “Type 0 Brane Inflation from Mirage
Cosmology,” Mod. Phys. Lett. A 15, 2145 (2000), hep-th/0001183,;

P. Brax and D.A. Steer, “Non-BPS Brane Cosmology,” hep-th/0204120.

L. Kofman, A. D. Linde and A. A. Starobinsky, “Towards the theory of
reheating after inflation,” Phys. Rev. D 56, 3258 (1997), hep-ph/9704452.
G. N. Felder, L. Kofman and A. D. Linde, “Instant preheating,” Phys. Rev.
D 59, 123523 (1999), hep-ph/9812289.

G. Felder, L. Kofman, and A. Linde, “Inflation and Preheating in NO Mod-
els,” Phys.Rev. D 60, (1999) 103505, hep-ph/9903350.

D.J.H. Chung, E.W. Kolb, A. Riotto, and I.I. Tkachev, “Probing Planck-
ian Physics: Resonant Production of Particles During Inflation and Features
in the Primordial Power Spectrum,” Phys.Rev. D 62, (2000) 043508, hep-
ph/9910437.

E. Silverstein and D. Tong, “Scalar speed limits and cosmology: Acceleration
from D-cceleration,” hep-th/0310221; M. Alishahiha, E. Silverstein, and D.
Tong, in progress.

E. Witten, “Bound states of strings and p-branes,” Nucl. Phys. B 460, (1996)
335, hep-th/9510135.

N. Seiberg and E. Witten, “Electric-Magnetic Duality, Monopole Con-
densation, and Confinement in N=2 Supersymmetric Yang-Mills Theory,”
Nucl.Phys. B 426, (1994) 19, hep-th/9407087 ;



[73]

[74]

[75]

References 216

N. Seiberg and E. Witten, “ Monopoles, Duality and Chiral Symmetry Break-
ing in N=2 Supersymmetric QCD,” Nucl.Phys. B 431, (1994) 484, hep-
th/9408099 ;

K. Intriligator and N. Seiberg, “Lectures on Supersymmetric Gauge Theo-
ries and Electric-Magnetic Duality,” Nucl.Phys.Proc.Suppl. 45 BC (1996) 1,
hep-th/9509066.

E. Witten, “String Theory Dynamics In Various Dimensions,” Nucl.Phys. B
443 (1995) 85, hep-th/9503124 ;

S. Katz, D. R. Morrison, and M. R. Plesser, “Enhanced Gauge Symmetry in
Type II String Theory,” Nucl.Phys. B 477, (1996) 105, hep-th/9601108 ;
M. Bershadsky, K. Intriligator, S. Kachru, D.R. Morrison, V. Sadov,
and C. Vafa, “Geometric Singularities and Enhanced Gauge Symmetries,”
Nucl.Phys. B 481, (1996) 215, hep-th/9605200.

E. Witten, “Small Instantons in String Theory,” Nucl.Phys. B 443, (1995)
85, hep-th/9511030.

M. Dine, “Towards a Solution of the Moduli Problems of String Cosmology,”
Phys.Lett. B 482, (2000) 213, hep-th/0002047 ;

M. Dine, Y. Nir, and Y. Shadmi, “Enhanced Symmetries and the Ground
State of String Theory,” Phys.Lett. B 438, (1998) 61, hep-th/9806124.

A. Berera and T. W. Kephart, “Ubiquitous inflaton in string-inspired mod-
els,” Phys. Rev. Lett. 83, (199) 1084, hep-ph/9904410.

N. D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cam-
bridge University Press, Cambridge, England (1982).

A. Linde, “Hybrid Inflation,” Phys.Rev. D 49, (1994) 748, astro-ph/9307002.
G. N. Felder, J. Garcia-Bellido, P. B. Greene, L. Kofman, A. D. Linde and
I. Tkachev, “Dynamics of symmetry breaking and tachyonic preheating,”
Phys. Rev. Lett. 87, (2001) 011601, hep-ph/0012142.

L. Kofman, A. D. Linde and A. A. Starobinsky, “Non-Thermal Phase Tran-
sitions After Inflation,” Phys. Rev. Lett. 76 (1996) 1011, hep-th/9510119;
G. N. Felder, L. Kofman, A. D. Linde and I. Tkachev, “Inflation after pre-
heating,” JHEP 0008 (2000) 10, hep-ph/0004024.

G. Dvali and S. Kachru, “New Old Inflation,” hep-th/0309095.

R. Easther, J. Khoury and K. Schalm, “Tuning Locked Inflation: Supergrav-
ity versus Phenomenology,” hep-th/0402218.

L. Jarv, T. Mohaupt, and F. Saueressig, “Effective Supergravity Actions for
Flop Transitions,” JHEP 0312, (2003) 047, hep-th/0310173 ;

L. Jarv, T. Mohaupt, and F. Saueressig, “M-theory Cosmologies from Sin-
gular Calabi-Yau Compactifications,” hep-th/0310174.



/84]

[85]

References 217

M. Brandle and A. Lukas, “Flop transitions in M-theory cosmology,” Phys.
Rev. D 68, (2003) 24030, hep-th/0212263.

T. Banks, W. Fischler, and L. Motl, “Dualities versus Singularities,” JHEP
9901 (1999) 019, hep-th/9811194 ;

L. Motl and T. Banks, “On the hyperbolic structure of moduli spaces with
16 SUSYs,” JHEP 9905 (1999) 015, hep-th/9904008.

M. R. Douglas, D. Kabat, P. Pouliot and S. H. Shenker, “D-branes and short
distances in string theory,” Nucl. Phys. B 485 (1997) 85, hep-th/9608024.
C. Bachas, “D-brane dynamics,” Phys. Lett. B 374, (1996) 37, hep-
th/9511043.

J. Horne and G. Moore, “Chaotic Coupling Constants,” Nucl.Phys. B 432,
(1994) 109, hep-th/9403058.

T. Banks, M. Berkooz, S. H. Shenker, G. W. Moore and P. J. Steinhardt,
Phys. Rev. D 52, (1995) 3548, hep-th/9503114.

S. Y. Khlebnikov and I. I. Tkachev, “Classical decay of inflaton,” Phys. Rev.
Lett. 77, 219 (1996), hep-ph/9603378.

G. N. Felder and I. Tkachev, “LATTICEEASY: A program for lattice simu-
lations of scalar fields in an expanding universe,” hep-ph/0011159.

L. Randall and R. Sundrum, “A Large Mass Hierarchy from a Small Extra
Dimension,” Phys.Rev.Lett. 83, (1999) 3370, hep-ph/9905221.

G. N. Felder and L. Kofman, “The development of equilibrium after preheat-
ing,” Phys. Rev. D 63, 103503 (2001), hep-ph/0011160.

G. N. Felder, A. V. Frolov, L. Kofman and A. D. Linde, “Cosmology with
negative potentials,” Phys. Rev. D 66 (2002) 023507, hep-th/0202017.

A. D. Linde, “Inflation Can Break Symmetry In SUSY,” Phys. Lett. B 131,
(1983) 330.

A. D. Linde, “Inflation And Quantum Cosmology,” Print-86-0888 (June
1986), in 800 Years of Gravitation, S.W. Hawking and W. Israel, eds., Cam-
bridge University Press, Cambridge (1987).

A. D. Linde, D. A. Linde and A. Mezhlumian, “From the Big Bang theory
to the theory of a stationary universe,” Phys. Rev. D 49, (1994) 1783, gr-
qc/9306035;

J. Garcia-Bellido, A. D. Linde and D. A. Linde, “Fluctuations of the gravi-
tational constant in the inflationary Brans-Dicke cosmology,” Phys. Rev. D
50, (1994) 730, astro-ph/9312039;

J. Garriga and A. Vilenkin, “A prescription for probabilities in eternal infla-
tion,” Phys. Rev. D 64, (2001) 23507, gr-qc/0102090;

A. Linde, “Inflation, quantum cosmology and the anthropic principle,” in
Science and Ultimate Reality: From Quantum to Cosmos,” J.D. Barrow,



[100]
[101]

[102]
[103]

[104]
[105]
[106]
[107)
[108]
[109]

[110]
[111]

[112]
[113]

[114]
[115]

[116]

References 218

P.C.W. Davies, and C.L. Harper, eds., Cambridge University Press, Cam-
bridge (2003), hep-th/0211048;

J. Garriga, A. Linde and A. Vilenkin, “Dark energy equation of state and
anthropic selection,” hep-th/0310034.

A. Maloney, E. Silverstein and A. Strominger, “de Sitter Space in Non-
Critical String Theory,” hep-th/0205316.

M. R. Douglas, “The Statistics of String/M Theory Vacua,” JHEP 0305,
(2003) 046, hep-th/0303194; S. Ashok and M. R. Douglas, “Counting Flux
Vacua,” hep-th/0307049.

B. S. Acharya, “A moduli fixing mechanism in M theory,” hep-th/0212294.
R. Fardon, A.E. Nelson, and N. Weiner, “Dark Energy from Mass Varying
Neutrinos,” astro-ph/0309800.

R. Helling, “Beyond eikonal scattering in M(atrix)-theory,” hep-th/0009134.
J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev.
82 (1951) 664.

C. Bachas and M. Porrati, “Pair creation of open strings in an electric field,”
Phys. Lett. B 296, (1992) 77, hep-th/9209032.

M. R. Douglas, D. Kabat, P. Pouliot, and S. H. Shenker, “D-branes and short
distances in string theory,” Nucl. Phys. B 485, (1997) 85, hep-th/9608024.
L. Kofman, A. D. Linde, and A. A. Starobinsky, “Towards the theory of
reheating after inflation,” Phys. Rev. D 56, (1997) 3258, hep-ph/9704452.

G. N. Felder, L. Kofman, and A. D. Linde, “Inflation and preheating in NO
models,” Phys. Rev. D 60, (1999) 103505, hep-ph/9903350.

J. Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond, Cam-
bridge, UK: Univ. Pr. (1998) 531 pp.

J. Polchinski, String Theory. Vol. 1: An Introduction to the Bosonic String,
Cambridge, UK: Univ. Pr. (1998) 402 pp.

C. P. Bachas, “Lectures on D-branes,” hep-th/9806199.

D. J. H. Chung, “Classical inflaton field induced creation of superheavy dark
matter,” Phys. Rev. D 67, (2003) 083514, hep-ph/9809489.

S. S. Gubser, “String creation and cosmology,” hep-th/0312321.

P. C. Peters, “Relativistic gravitational bremsstrahlung,” Phys. Rev. D 1
(1970) 1559. v

R. Breuer, “Gravitational perturbation theory and synchrotron radiation,”
Berlin: Springer-Verlag (1975) 196 pp.

M. Abou-Zeid and M. S. Costa, “Radiation from accelerated branes,” Phys.
Rev. D 61, (2000) 106007, hep-th/9909148.

J. D. Jackson, Classical Electrodynamics, New York: Wiley (1999) 808 pp.



[117]
[118]
[119]
[120]
[121]

[122]
[123]

[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
133]
[134]
[135]

[136]

References 219

G. T. Horowitz and A. Strominger, “Black strings and P-branes,” Nucl.
Phys. B 360 (1991) 197.

A. Sen, “Tachyon Condensation on the Brane Anti-Brane System,” JHEP
9808, (1998) 012, hep-th/9805170.

N. Lambert, H. Liu, and J. Maldacena, “Closed strings from decaying D-
branes,” hep-th/0303139.

E. Silverstein and D. Tong, “Scalar speed limits and cosmology: Acceleration
from D- cceleration,” hep-th/0310221.

M. Alishahiha, E. Silverstein, and D. Tong, “DBI in the sky,” hep-
th/0404084.

X. Chen, “Cosmological rescaling through warped space,” hep-th/0406198.
S. Watson, “Moduli stabilization with the string Higgs effect,”
hep-th/0404177.

L. Jarv, T. Mohaupt, and F. Saueressig, “M-theory cosmologies from singular
Calabi-Yau compactifications,” JCAP 0402, (2004) 012, hep-th/0310174.
H. Liu, G. Moore, and N. Seiberg, “Strings in a time-dependent orbifold,”
JHEP 06, (2002) 045, hep-th/0204168.

H. Liu, G. Moore, and N. Seiberg, “Strings in time-dependent orbifolds,”
JHEP 10, (2002) 031, hep-th/0206182.

G. T. Horowitz and J. Polchinski, “Instability of spacelike and null orbifold
singularities,” Phys. Rev. D 66, (2002) 103512, hep-th/0206228.

M. Fabinger and J. McGreevy, “On smooth time-dependent orbifolds and
null singularities,” JHEP 06, (2003) 042, hep-th/0206196.

M. Fabinger and S. Hellerman, “Stringy resolutions of null singularities,”
hep-th/0212223.

B. Pioline and M. Berkooz, “Strings in an electric field, and the Milne uni-
verse,” JCAP 0311, (2003) 007, hep-th/0307280.

M. Berkooz, B. Pioline, and M. Rozali, “Closed strings in Misner space:
Cosmological production of winding strings,” hep-th/0405126.

L. Cornalba and M. S. Costa, “Time-dependent orbifolds and string cosmol-
ogy,” Fortsch. Phys. 52, (2004) 145, hep-th/0310099.

J. J. Friess, S. S. Gubser, and I. Mitra, “String creation in cosmologies with
a varying dilaton,” Nucl. Phys. B 689, (2004) 243, hep-th/0402156.

J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt, and N. Turok, “From
big crunch to big bang,” Phys. Rev. D 65, (2002) 086007, hep-th/0108187.
P. J. Steinhardt and N. Turok, “A cyclic model of the universe,” hep-
th/0111030.

P. Horava and E. Witten, “Eleven-Dimensional Supergravity on a Manifold
with Boundary,” Nucl. Phys. B 475, (1996) 94, hep-th/9603142.



[137]
[138]
[139]

[140]

[141]

[142]
[143]
[144]
[145]
[146]

[147]

[148]
[149]
[150]

[151]

References 220

M. Perry, P. J. Steinhardt, and N. Turok, “M theory model of a big crunch
/ big bang transition,” hep-th/0408083.

M. G. Jackson, N. T. Jones and J. Polchinski, “Collisions of cosmic F- and
D-strings,” hep-th/0405229.

P. Candelas, G. Horowitz, A. Strominger, and E. Witten, “Vacuum Config-
urations for Superstrings,” Nucl. Phys. B 258 (1985) 46.

G. Coughlan, W. Fischler, E. Kolb, S. Raby and G. Ross, “Cosmological
Problems for the Polonyi Potential,” Phys. Lett. B 131 (1983) 59;

B. de Carlos, J.A. Casas, F. Quevedo, and E. Roulet, “Model Independent
Properties and Cosmological Implications of the Dilaton and Moduli Sectors
of 4-D Strings,” Phys. Lett. B 318 (1993) 447, hep-ph/9308235;

T. Banks, D.B. Kaplan and A.E. Nelson, “Cosmological Implications of
Dynamical Supersymmetry Breaking,” Phys. Rev. D 49 (1994) 779, hep-
ph/9308292.

J.P. Derendinger, L. E. Ibanez, and H.P. Nilles, “On the Low Energy D=4,
N=1 Supergravity Theory Extracted from the D=10, N=1 Superstring,”
Phys. Lett. B 155 (1985) 65.

R. Rohm and E. Witten, “The Antisymmetric Tensor Field in Superstring
Theory,” Annals Phys. 170 (1986) 454.

A. Niemeyer and H.P. Nilles, “Gaugino Condensation and the Vacuum Ex-
pectation Value of the Dilaton,” hep-th/9508173.

H.P. Nilles, “Dynamical Gauge Coupling Constants,” hep-ph/9601241.

P. Binétruy, M.K. Gaillard, and Y.-Y. Wu, “Dilaton Stabilization in the
Context of Dynamical Supersymmetry Breaking through Gaugino Conden-
sation,” Nucl.Phys. B 481, (1996) 109, hep-th/9605170.

T. Barreiro, B. de Carlos, and E.J. Copeland, “Stabilizing the Dilaton in
Superstring Cosmology,” Phys.Rev. D 58 , (1998) 083513, hep-th/9805005.
Y.-Y. Wu, “Dilaton Stabilization and Supersymmetry Breaking by Dynam-
ical Gaugino Condensation in the Linear Multiplet Formalism of String Ef-
fective Theory,” Nucl.Phys. B 481, (1996) 109, hep-th/9610089.

R. Xiju, “Supersymmetry Breaking Scheme and The Derivation of Mgyt =
10'GeV from A String Model,” hep-ph/9412262.

E. Witten, “Symmetry Breaking Patterns In Superstring Models,” Nucl.
Phys. B 258 (1985) 75.

E. Witten, “Deconstruction, Go holonomy, and Doublet-Triplet Splitting,”
hep-ph/0201018.

G. Cardoso, G. Curio, G. Dall’Agata and D. Liist, “Heterotic String The-
ory on non-Kaehler Manifolds with H-Flux and Gaugino Condensate,” hep-
th/0310021.



[152]

[153]

[154]

[155]

[156]

[157)
[158]
[159]
[160]

[161]

[162]

[163]
[164]
[165]

[166]

[167]

References 221

K. Becker, M. Becker, K. Dasgupta, P. Green and E. Sharpe, “Compact-
ifications of Heterotic Strings on Non-Kéhler Complex Manifolds: I1,” hep-
th/0310058.

E.I. Buchbinder and B.A. Ovrut, “Vacuum Stability in Heterotic M-Theory,”
hep-th/0310112.

E. Bergshoeff, M. de Roo, B. de Wit, and P. van Nieuwenhuizen, “Ten-
Dimensional Maxwell-Einstein Supergravity, its Currents, and the Issue of
its Auxiliary Fields,” Nucl.Phys. B 195, (1982) 97.

M.A. Shifman and A.L. Vainshtein, “On Gluino Condensation in Supersym-
metric Gauge Theories with SU(N) and O(N) Groups,” Nucl.Phys. B 296
(1988) 445.

M.A. Shifman and A.I. Vainshtein, “On Holomorphic Dependence and In-
frared Effects in Supersymmetric Gauge Theories,” Nucl.Phys. B 359 (1991)
571.

D.Finnell and P.Pouliot, “Instanton Calculations versus Exact Results in 4
Dimensional SUSY Gauge Theories,” hep-th/9503115.

S. Gukov, C. Vafa and E. Witten, “CFT’s from Calabi-Yau four-folds,” Nucl.
Phys. B 584, 69 (2000), hep-th/9906070.

S. Gukov, “Solitons, Superpotentials and Calibrations”, Nucl. Phys. B 574,
(2000) 169, hep-th/9911011.

M. Becker and D. Constantin, “A Note on Flux Induced Superpotentials in
String Theory,” hep-th/0210131.

K. Behrndt and S. Gukov, “Domain Walls and Superpotentials from M-
theory on Calabi-Yau Three-Folds,” Nucl. Phys. B 580 (2000) 225, hep-
th/0001082.

V. Kaplunovsky and J. Louis, “Field Dependent Gauge Couplings in Lo-
cally Supersymmetric Effective Quantum Field Theories,” Nucl.Phys. B 422,
(1994) 57, hep-th/9402005.

R. McLean, “Deformations of Calibrated Submanifolds,” Comm. Anal.
Geom. 6 (1998) 705.

A. Strominger, S. T. Yau, and E. Zaslow, “Mirror Symmetry is T-duality,”
Nucl. Phys. B 479, (1996) 243, hep-th/9606040.

R. Gopakumar and C. Vafa, “Branes and Fundamental Groups,” Adv. Theor.
Math. Phys. 2 (1998) 399, hep-th/9712048.

P. S. Aspinwall and C. A. Lutken, “Geometry Of Mirror Manifolds,” Nucl.
Phys. B 353 (1991) 427; “Quantum Algebraic Geometry Of Superstring
Compactifications,” Nucl. Phys. B 355 (1991) 482.

H. Nishi, “SU(n)-Chern-Simons Invariants of Seifert Fibered 3-Manifolds,”
Int. J. Math 9 (1998) 295.



[168]
[169]
[170]
[171]
[172]

[173]
[174]

[175]

References 222

D. Auckly, “Topological Methods to Compute Chern-Simons Invariants,”
Math. Proc. Camb. Phil. Soc. 115 (1994) 229.

L. Rozansky, “A Large k Asymptotics of Witten’s Invariant of Seifert Man-
ifolds,” Commun. Math. Phys. 171 (1995) 279.

E. Witten, “Global Anomalies in String Theory,” in Symposium on Anom-
alies, Geometry, Topology; Bardeen and White, eds., World Scientific, 1985.
J.O. Conrad, “On Fractional Instanton Numbers in Six Dimensional Het-
erotic E8 x E8 Orbifolds,” JHEP 0011 (2000) 022, hep-th/0009251.

E. Witten, “World-Sheet Corrections Via D-Instantons,” JHEP 0002, (2000)
030, hep-th/9907041.

A. Strominger, “Superstrings with Torsion,” Nucl. Phys. B 274 (1986) 253.
See e.g.: B.R. Greene, K. Kirklin, P. Miron and G.G. Ross, “A Three Genera-
tion Superstring Model I: Compactification and Discrete Symmetries,” Nucl.
Phys. B 278 (1986) 667;

D. Gepner, “String Theory on Calabi-Yau Manifolds: The Three Generations
Case,” hep-th/9301089;

S. Kachru, “Some Three Generation (0,2) Calabi-Yau Models,” Phys. Lett.
B 349, (1995) 76, hep-th/9501131;

B. Ovrut, T. Pantev and R. Reinbacher, “Torus Fibered Calabi-Yau Three-
folds with Nontrivial Fundamental Group,” JHEP 0305, (2003) 040, hep-
th/0212221.

K. Dasgupta, G. Rajesh, and S. Sethi, “M-theory, Orientifolds and G-flux,”
JHEP 9908, (1999) 023, hep-th/9908088;

K. Becker and K. Dasgupta, “Heterotic Strings with Torsion,” JHEP 0211,
(2002) 006, hep-th/0209077;

S. Gurrieri, J. Louis, and A. Micu, “Mirror Symmetry in Generalized Calabi-
Yau Compactifications,” Nucl. Phys. B 654, (2003) 61, hep-th/0211102;
G.L. Cardoso, G. Curio, G. Dall’Agata, D. Liist, P. Manousselis, and
G. Zoupanos, “Non-Kaehler String Backgrounds and their Five Torsion
Classes,” Nucl. Phys. B 652, (2003) 5, hep-th/0211118;

S. Kachru, M. Schulz, P. Tripathy, and S. Trivedi, “New Supersymmetric
String Compactifications,” JHEP 0303, (2003) 061, hep-th/0211182;

K. Becker, M. Becker, K. Dasgupta, and P. Green, “Compactifications of Het-

. erotic Theory on Non-Ké#hler Complex Manifolds I, 7 JHEP 0304, (2003)

[176]

007, hep-th/0301161. ,
K. Becker, M. Becker, K. Dasgupta, and S. Prokushkin, “Properties of Het-
erotic Vacua from Superpotentials,” hep-th/0304001.



[177]

[178]

[179]

[180]

[181]
[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

References 223

G. L. Cardoso, G. Curio, G. Dall’Agata and D. Lust, “BPS Action and
Superpotential for Heterotic String Compactifications with Fluxes,” JHEP
0310, (2003) 004, hep-th/0306088.

M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, “Kodaira-Spencer Theory
of Gravity and Exact Results for Quantum String Amplitudes,” Commun.
Math. Phys. 165, (1994) 311, hep-th/9309140. |

M. Atiyah, J. Maldacena and C. Vafa, “An M-theory Flop as a Large N
Duality,” J. Math. Phys. 42, (2001) 3209, hep-th/0011256.

See e.g.: D. Morrison and C. Vafa, “Compactifications of F-theory on Calabi-
Yau Threefolds I,” Nucl.Phys. B 473 (1996) 74, hep-th/9602114; “Compact-
ifications of F-theory on Calabi-Yau Threefolds II,” Nucl.Phys. B 476 (1996)
437, hep-th/9603161;

N. Seiberg and E. Witten, “Comments on String Dynamics in Six Dimen-
sions,” hep-th/9603003.

E. Witten, “Strong Coupling Expansion of Calabi-Yau Compactification”,
hep-th/9602070.

E. Witten, “Phases of N = 2 Theories in Two Dimensions,” Nucl. Phys. B
403, (1993) 159, hep-th/9301042.

P. Aspinwall, B. Greene and D. Morrison, “Calabi-Yau Moduli Space, Mirror
Manifolds, and Space-Time Topology Change in String Theory,” Nucl. Phys.
B 416, (1994) 414, hep-th/9309097.

S. Kachru and C. Vafa, “Exact Results for N=2 Compactifications of Het-
erotic Strings,” Nucl. Phys. B 450 (1995) 69, hep-th/9505105;

S. Ferrara, J. Harvey, A. Strominger and C. Vafa, “Second-Quantized Mirror
Symmetry,” Phys. Lett. B 361 (1995) 59, hep-th/9505162.

V. Kaplunovsky and J. Louis, “On gauge couplings in string theory,” Nucl.
Phys. B 444, 191 (1995), hep-th/9502077;

J. Louis and K. Foerger, “Holomorphic couplings in string theory,” Nucl.
Phys. Proc. Suppl. 55 B, 33 (1997), hep-th/9611184.

R. Schimmrigk, “Scaling Behavior in String Theory,” Phys. Lett. B 388,
(1996) 60, hep-th/9412077.

B. de Carlos, J.A. Casas, and C. Munoz, “Supersymmetry Breaking and
Determination of the Unification Gauge Coupling Constants in String The-
ories,” Nucl. Phys. B 399, (1993) 623, hep-th/9204012.

M. Atiyah and E. Witten, “M-Theory Dynamics On A Manifold Of G5 Holon-
omy,” hep-th/0107177.

B. Acharya and E. Witten, “Chiral Fermions from Manifolds of G5 Holon-
omy,” hep-th/0109152.



[190]
[191]
[192]
193]
[194]

[195]

[196]
[197]
[198]
[199]

[200]

[201]
[202]
[203]
[204]
[205]

[206]

References 224

T. Friedmann and E. Witten, “Unification Scale, Proton Decay, And Mani-
folds Of G5 Holonomy,” hep-th/0211269.

I. R. Klebanov and E. Witten, “Proton Decay in Intersecting D-brane Mod-
els,” hep-th/0304079.

B. S. Acharya, “A Moduli Fixing Mechanism in M theory,” hep-th/0212294.
M. Cvetic, G. Shiu and A. M. Uranga, “Chiral Four-Dimensional N = 1
Supersymmetric Type ITA Orientifolds from Intersecting D6-branes,” Nucl.
Phys. B 615, (2001) 3, hep-th/0107166.

M. Cvetic, P. Langacker and J. Wang, “Dynamical Supersymmetry Breaking
in Standard-like Models with Intersecting D6-branes,” Phys. Rev. D 68,
(2003) 046002, hep-th/0303208.

M. Cvetic and I. Papadimitriou, “Conformal Field Theory Couplings for
Intersecting D-branes on Orientifolds,” Phys. Rev. D 68, (2003) 046001,
hep-th/0303083

S. Gukov, S. T. Yau, and E. Zaslow, “Duality and Fibrations on G(2) man-
ifolds,” hep-th/0203217.

H. Ita, Y. Oz, and T. Sakai, “Comments on M Theory Dynamics on G2
Holonomy Manifolds,” JHEP 0204 (2002) 001, hep-th/0203052.

T. Friedmann, “On the Quantum Moduli Space of M-theory Compactifica-
tions,” Nucl. Phys. B 635 (2002) 384, hep-th/0203256.

E. Witten, “Anomaly Cancellation On Manifolds Of G, Holonomy,” hep-
th/0108165.

J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. R. Morrison,
and S. Sethi, “Triples, fluxes, and strings,” Adv. Theor. Math. Phys. 4, (2002)
995, hep-th/0103170.

A. Keurentjes and S. Sethi, “Twisting Eg Five-Branes,” Phys. Rev. D 66,
(2002) 046001, hep-th/0205162.

D.M. Austin, “SO(3)-Instantons on L(p,q) x R,” J. Diff. Geom. 32 (1990)
383.

R. Fintushel and R. Stern, “Invariants for Homology 3-Spheres,” London
Math. Soc. Lect. Notes 150 (1989) 125.

R. Fintushel and T. Lawson, “Compactness of the Moduli Spaces for Orbifold
Instantons,” Topology Appl. 23 (1986) 305.

E. Witten, “New Issues in Manifolds of SU(3) Holonomy,” Nucl. Phys. B
268 (1986) 79.

E. Silverstein and E. Witten, “Criteria for Conformal Invariance of (0,2)
Models,” Nucl. Phys. B 444, (1995) 161, hep-th/9503212;

A. Basu and S. Sethi, “World-sheet Stability of (0,2) Linear Sigma Models,”
hep-th/0303066;



[207]

[208]
[209]

[210]

[211]
[212]

[213]
[214]
[215]

[216]

[217]
[218]

[219]

[220]

References 225

C. Beasley and E. Witten, “Residues and World-Sheet Instantons,” hep-
th/0304115.

G. Moore, G. Peradze, and N. Saulina, “Instabilities in Heterotic M-theory
Induced by Open Membrane Instantons,” Nucl. Phys. B 607, (2001) 117,
hep-th/0012104;

E. Buchbinder, R. Donagi, and B. Ovrut, “Superpotentials for Vector Bundle
Moduli,” Nucl. Phys. B 653, (2003) 400, hep-th/0205190;

G. Curio and A. Krause, “G-Fluxes and Nonperturbative Stabilisation of
Heterotic M-theory,” Nucl. Phys. B 643, (2002) 131, hep-th/0108220.

C.P. Burgess, R. Kallosh, and F. Quevedo, “de Sitter String Vacua from
Supersymmetric D-terms,” hep-th/0309187.

E. Silverstein, “(A)dS Backgrounds from Asymmetric Orientifolds,” hep-
th/0106209.

C. Escoda, M. Gomez-Reino and F. Quevedo, “Saltatory de Sitter String
Vacua,” hep-th/0307160;

A. Frey, M. Lippert and B. Williams, “The Fall of Stringy de Sitter,” Phys.
Rev. D 68 (2003) 046008, hep-th/0305018.

L. Susskind, “The Anthropic Landscape of String Theory,” hep-th/0302219.
B. Acharya, “Compactification with Flux and Yukawa Hierarchies,” hep-
th/0303234.

J. Feng, J. March-Russell, S. Sethi, and F. Wilczek, “Saltatory Relaxation of
the Cosmological Constant,” Nucl. Phys. B 602 (2001) 307, hep-th/0005276.
A.D. Linde, Particle Physics and Inflationary Cosmology, Harwood, Chur,
Switzerland (1990).

A R. Liddle and D.H. Lyth, Cosmological Inflation and Large-Scale Struc-
ture, Cambridge University Press, Cambridge, England (2000).

S. Hellerman, N. Kaloper and L. Susskind, “String Theory and Quintessence,”
JHEP 0106, (2001) 003, hep-th/0104180;

W. Fischler, A. Kashani-Poor, R. McNees and S. Paban, “The Acceleration
of the Universe: A Challenge for String Theory,” JHEP 0107, (2001) 003,
hep-th/0104181.

F. Quevedo, “Lectures on String/Brane Cosmology,” hep-th/0210292.

O. DeWolfe and S. Giddings, “Scales and Hierarchies in Warped Compactifi-
cations and Brane Worlds,” Phys. Rev. D 67, (2003) 066008, hep-th/0208123.
A. Frey, M. Lippert and B. Williams, “The Fall of Stringy de Sitter,” hep-
th/0305018.

C. Escoda, M. Gomez-Reino and F. Quevedo, “Saltatory de Sitter String
Vacua,” hep-th/0307160.



[221]

[222]

[223]

[224]
[225]
[226]
[227]
[228]

[229]

[230]
[231]
[232]

[233]

References 226

G. Dvali and S.H. Tye, “Brane Inflation,” Phys. Lett. B 450, (1999) 72,
hep-th/9812483.

S. Alexander, “Inflation from D - Anti-D-Brane Annihilation,” Phys. Rev. D
65, (2002) 023507, hep-th/0105032;

G. Dvali, Q. Shafi and S. Solganik, “D-brane Inflation,” hep-th/0105203;
C.P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh and R.J.
Zhang, “The Inflationary Brane-Antibrane Universe,” JHEP 07, (2001) 047,
hep-th/0105204;

G. Shiu and S.H. Tye, “Some Aspects of Brane Inflation,” Phys. Lett. B 516,
(2001) 421, hep-th/0106274 ;

D. Choudhury, D. Ghoshal, D.P. Jatkar, S. Panda, “Hybrid Inflation and
Brane-Antibrane System,” hep-th/0305104.

R. Brustein, S. De Alwis and E. Novak, “Inflationary Cosmology in the Cen-
tral Region of String/M-theory Moduli space,” Phys. Rev. D 68, (2003)
023517, hep-th/0205042;

R. Brustein, S. De Alwis and E. Novak, “M-theory Moduli Space and Cos-
mology,” Phys. Rev. D 68, (2003) 043507, hep-th/0212344.

C. Herdeiro, S. Hirano and R. Kallosh, “String Theory and Hybrid Infla-
tion/Acceleration,” JHEP 0112, (2001) 027, hep-th/0110271.

J. Garcia-Bellido, R. Rabadan and F. Zamora, “Inflationary Scenarios from
Branes at Angles,” JHEP 0201, (2002) 036, hep-th/0112147.

B. Kyae and Q. Shafi, “Branes and Inflationary Cosmology,” Phys. Lett. B
526, (2002) 379, hep-ph/0111101.

N. Jones, H. Stoica and S.H. Tye, “Brane Interaction as the Origin of Infla-
tion,” JHEP 0207, (2002) 051, hep-th/0203163.

N. Seiberg and E. Witten, “The D1/D5 System and Singular CFT,” JHEP
9904, (1999) 017, hep-th/9903224.

S. Kachru, J. Pearson and H. Verlinde, “Brane/Flux Annihilation and the
String Dual of a Nonsupersymmetric Field Theory,” JHEP 0206, (2002) 021,
hep-th/0112197.

E. Witten, “Dimensional Reduction Of Superstring Models,” Phys. Lett. B
155 (1985) 151.

O. Ganor, “A Note on Zeroes of Superpotentials in F-theory,” Nucl. Phys.
B 499, (1997) 55, hep-th/9612077.

J. Maldacena, “The Large N Limit of Superconformal Field Theories and
Supergravity,” Adv. Th. Math. Phys. 2, (1998) 231, hep-th/9711200.

E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands,
“False Vacuum Inflation with Einstein Gravity,” Phys. Rev. D 49, (1994)
6410, astro-ph/9401011; G. R. Dvali, Q. Shafi and R. Schaefer, “Large Scale



[234]
[235]

[236]

[237]
[238)]
[239]

[240]
[241]

[242]

[243]

[244]

[245]

[246]

[247]

References 227

Structure and Supersymmetric Inflation without Fine Tuning,” Phys. Rev.
Lett. 73, (1994) 1886, hep-ph/9406319; A. D. Linde and A. Riotto, “Hybrid
Inflation in Supergravity,” Phys. Rev. D 56, (1997) 1841, hep-ph/9703209.
P. Binetruy and G. R. Dvali, “D-term inflation,” Phys. Lett. B 388, (1996)
241, hep-ph/9606342.

T. Banks and M. Dine, “Coping with Strongly Coupled String Theory,” hep-
th/9406132.

K. Becker, M. Becker, M. Haack and J. Louis, “Supersymmetry Breaking and
Alpha-Prime Corrections to Flux Induced Potentials,” JHEP 0206, (2002)
060, hep-th/0204254.

S. Giddings, “The Fate of Four Dimensions,” Phys. Rev. D 68, (2003) 026006,
hep-th/0303031.

A. Linde, “Inflation, quantum cosmology and the anthropic principle,” hep-
th/0211048.

S. Ashok and M. Douglas, “Counting Flux Vacua,” hep-th/0307049;

M. Douglas, “The statistics of string/M theory vacua,” hep-th/0303194.

R. Kallosh, work in progress.

A. Vilenkin, “The Birth of Inflationary Universes,” Phys. Rev. D 27 (1983)
2848.

A. D. Linde, “Eternally Existing Selfreproducing Chaotic Inflationary Uni-
verse,” Phys. Lett. B 175 (1986) 395.

A. D. Linde, D. A. Linde and A. Mezhlumian, “From the Big Bang Theory
to the Theory of a Stationary Universe,” Phys. Rev. D 49, (1994) 1783,
gr-qc/9306035.

A. D. Linde, “Axions in Inflationary Cosmology,” Phys. Lett. B 259, (1991)
38; A. D. Linde, “Hybrid Inflation,” Phys. Rev. D 49, (1994) 748, astro-
ph/9307002.

M.R. Garousi, “Tachyon Couplings on Non-BPS D-branes and Dirac-Born-
Infeld Action,” Nucl. Phys. B 584, (2000) 584, hep-th/0003122;

E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras and S. Panda, “T-
Duality and Actions for Non-BPS D-branes,” JHEP 0005, (2000) 009, hep-
th/0003221;

J. Kluson, “Proposal for Non-BPS D-brane Action,” Phys. Rev. D 62, (2000)
126003, hep-th/0004106.

L. Kofman and A. Linde, “Problems with Tachyon Inflation,” JHEP 0207,
(2002) 004, hep-th/0205121.

C. L. Bennett et al., “First Year Wilkinson Microwave Anisotropy Probe
Observations: Preliminary Maps and Basic Results,” astro-ph/0302207.



[248]
[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

References 228

P. P. Avelino and A. R. Liddle, “Cosmological Perturbations and the Reion-
ization Epoch,” astro-ph/0305357.

A. Sen, “Dirac-Born-Infeld Action on the Tachyon Kink and Vortex,” hep-
th/0303057.

C. R. Contaldi, H. Hoekstra and A. Lewis, “Joint CMB and Weak Lensing
Analysis: Physically Motivated Constraints on Cosmological Parameters,”
Phys. Rev. Lett. 90, (2003) 221303, astro-ph/0302435.

E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, “False
vacuum inflation with Einstein gravity,” Phys. Rev. D 49, 6410 (1994), astro-
ph/9401011.

P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, “Fayet-Iliopoulos
terms in supergravity and cosmology,” Class. Quant. Grav. 21, 3137 (2004),
hep-th/0402046.

C. P. Burgess, J. M. Cline, H. Stoica and F. Quevedo, “Inflation in realistic
D-brane models,” JHEP 0409, 033 (2004), hep-th/0403119;

N. Iizuka and S. P. Trivedi, “An inflationary model in string theory,” Phys.
Rev. D 70, 043519 (2004), hep-th/0403203;

X. G. Chen, “Multi-throat brane inflation,” hep-th/0408084;

X. G. Chen, “Inflation from warped space,” hep-th/0501184;

H. Firouzjahi and S. H. Tye, “Brane inflation and cosmic string tension in
superstring theory,” hep-th/0501099.

J. P. Hsu and R. Kallosh, “Volume stabilization and the origin of the inflaton
shift symmetry in string theory,” JHEP 0404, 042 (2004), hep-th/0402047;
H. Firouzjahi and S. H. H. Tye, “Closer towards inflation in string theory,”
Phys. Lett. B 584, 147 (2004), hep-th/0312020;

J. P. Hsu, R. Kallosh and S. Prokushkin, “On brane inflation with volume
stabilization,” JCAP 0312, 009 (2003), hep-th/0311077.

S. Buchan, B. Shlaer, H. Stoica and S. H. H. Tye, “Inter-brane interac-
tions in compact spaces and brane inflation,” JCAP 0402, 013 (2004), hep-
th/0311207.

A. Buchel and R. Roiban, “Inflation in warped geometries,” Phys. Lett. B
590, 284 (2004), hep-th/0311154.

F. Koyama, Y. Tachikawa and T. Watari, “Supergravity analysis of hybrid
inflation model from D3-D7 system,” Phys. Rev. D 69, 106001 (2004), hep-
th/0311191.

C. Angelantonj, R. D’Auria, S. Ferrara and M. Trigiante, “K3 x T**2/Z(2)
orientifolds with fluxes, open string moduli and critical points,” Phys. Lett.
B 583, 331 (2004), hep-th/0312019.



[259]
[260]
[261]

[262]
[263]

[264]
[265]

[266]
[267]
[268]

[269]

[270]
[271]
[272]
[273]
[274]

[275]
[276]

[277]

[278]

References 229

A. Saltman and E. Silverstein, “A new handle on de Sitter compactifica-
tions,” hep-th/0411271.

K. Bobkov, “Volume stabilization via alpha’ corrections in type IIB theory
with fluxes,” hep-th/0412239.

E. Halyo, “Hybrid inflation from supergravity D-terms,” Phys. Lett. B 387,
43 (1996), hep-ph/9606423.

G. Dvali, personal communication.

M. Dine, L. Randall and S. Thomas, “Supersymmetry breaking in the early
universe,” Phys. Rev. Lett. 75, 398 (1995), hep-ph/9503303.

S. Thomas, personal communication.

E. Silverstein, “TASI / PiTP / ISS lectures on moduli and microphysics,”
hep-th/0405068.

L. Gorlich, S. Kachru, P. K. Tripathy and S. P. Trivedi, “Gaugino conden-
sation and nonperturbative superpotentials in flux compactifications,” hep-
th/0407130.

L. Gorlich, P. Tripathy and S. Trivedi, work in progress.

R. Kallosh and D. Sorokin, “Dirac action on M5 and M2 branes with bulk
fluxes,” hep-th/0501081.

M. A. Shifman and A. I. Vainshtein, “Solution Of The Anomaly Puzzle In
Susy Gauge Theories And The Wilson Operator Expansion,” Nucl. Phys. B
277, 456 (1986). '

H. P. Nilles, “The Role Of Classical Symmetries In The Low-Energy Limit
Of Superstring Theories,” Phys. Lett. B 180, 240 (1986).

O. DeWolfe and S. B. Giddings, “Scales and hierarchies in warped compactifi-
cations and brane worlds,” Phys. Rev. D 67, 066008 (2003), hep-th/0208123.
K. Becker, M. Becker, M. Haack and J. Louis, “Supersymmetry breaking
and alpha’-corrections to flux induced potentials,” JHEP 0206, 060 (2002),
hep-th/0204254.

M. Berg, M. Haack, and B. Kors, work in progress.

M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory, Volume 2,
Cambridge, 1986.

S. E. Shandera, “Slow Roll in Brane Inflation,” hep-th/0412077.

S. Kachru, M. B. Schulz and S. Trivedi, “Moduli stabilization from fluxes in
a simple IIB orientifold,” JHEP 0310, 007 (2003), hep-th/0201028.

P. K. Tripathy and S. P. Trivedi, “Compactification with flux on K3 and
tori,” JHEP 0303, 028 (2003), hep-th/0301139.

F. Denef, M. R. Douglas and B. Florea, “Building a better racetrack,” JHEP
0406, 034 (2004), hep-th/0404257.



[279]
[280]

[281]

[282]
[283]

[284]

[285]

[286]

[287]

[288]

References 230

C. P. Burgess, R. Kallosh and F. Quevedo, “de Sitter string vacua from
supersymmetric D-terms,” JHEP 0310, 056 (2003), hep-th/0309187.

A. Saltman and E. Silverstein, “The scaling of the no-scale potential and de
Sitter model building,” JHEP 0411, 066 (2004), hep-th/0402135.

K. Dasgupta, J. P. Hsu, R. Kallosh, A. Linde and M. Zagermann, “D3/D7
brane inflation and semilocal strings,” JHEP 0408, 030 (2004), hep-
th/0405247.

P. Chen, K. Dasgupta, K. Narayan, M. Shmakova and M. Zagermann, “Brane
inflation, solitons and cosmological solutions: I,” hep-th/0501185.

R. Kallosh and A. Linde, “Landscape, the scale of SUSY breaking, and in-
flation,” hep-th/0411011.

E. I. Buchbinder and B. A. Ovrut, “Vacuum stability in heterotic M-theory,”
Phys. Rev. D 69, 086010 (2004), hep-th/0310112;

S. Gukov, S. Kachru, X. Liu and L. McAllister, “Heterotic moduli stabi-
lization with fractional Chern-Simons invariants,” Phys. Rev. D 69, 086008
(2004), hep-th/0310159;

M. Becker, G. Curio and A. Krause, “De Sitter vacua from heterotic M-
theory,” Nucl. Phys. B 693, 223 (2004), hep-th/0403027.

B. de Carlos, A. Lukas and S. Morris, “Non-perturbative vacua for M-theory
on G(2) manifolds,” hep-th/0409255.

E. I. Buchbinder, “Five-brane dynamics and inflation in heterotic M-theory,”
hep-th/0411062;

K. Becker, M. Becker and A. Krause, “M-Theory Inflation from Multi M5-
Brane Dynamics,” hep-th/0501130.

J. J. Blanco-Pillado et al., “Racetrack inflation,” JHEP 0411, 063 (2004),
hep-th/0406230.

K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge theo-
ries and electric-magnetic duality,” Nucl. Phys. Proc. Suppl. 45 BC, 1 (1996),
hep-th/9509066.



	slac-r-750a
	slac-r-750b



