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Abstract

The effects of one- and two-photon exchange on the energy levels
of composite systems have been studied for many years, especially in
the case of two-body bound states. However, a systematic analysis of
the extent to which such effects can be described as resulting from
the action of configuration-space potentials, deter-mined by field
theory but acting directly between the constituents, appears not to
have been carried out. A method for studying this problem will be
presented and the results obtained to date will be summarized, with
emphasis on the long-range character and spin-dependence of such
potentials, as well as on conceptual aspects; there are some
surprises here. Some comments will also be made on the long-range
forces arising from two-neutrino exchange, which have recently been
the object of renewed interest, and on aspects of the long-range
force between a hydrogen and helium atom, which involves a
competition between a repulsive two-photon exchange force and the
attractive force of gravity.
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I. Introduction

The main purpose of this talk is to discuss some aspects of the
use of effective potentials in few-body problems and to report
results of a recent paper on this topic, in the context of the long-
range forces arising from photon exchange.? I will also make some
brief remarks on gravity and (virtual!) neutrinos, major themes at
this meeting. As befits the pre-dinner time slot, my sermon will be
very informal and start with an ever popular type of tale: a referee
story. The first referee on the above-mentioned paper indicated that
he might be old-fashioned but he thought it should not be published
because it does not contain a calculation whose results could be
immediately compared with experiment. This was a criterion I had not
encountered before; it would certainly lead to a much thinner
journal! A second referee was very positive, agreeing that the
issues raised were important. I conclude that the latter is not only
modern in outlook but, if male, both a gentleman and a scholar.

By way of an aperitif, here’s a quiz. Recall that the usual
starting point for a relativistic theory of hydrogen or H-like ions
is the Dirac equation:

h(1l)w(1) = (a; py+HBm+V, . (1) Jw(1l) = Ew(1) (1)
Now consider the statement: "With U, = e,e,/47r, a reasonable starting
point for a relativistic theory of helium or He-like ions is the
equation:

h(1,2)p(1,2) = [(h(1)+h(2)+U}ew(1,2) = Ew(1,2)." (2)
Question 1: The last statement is a) true, b) false, c) not well
posed.

Having given you five seconds to think about it, I will tell you
that (c), which I would normally chose in such a pressure situation
(one can always argue about what is meant by "reasonable"), is
incorrect. By any standard, the answer is (b), because (1) has no
normalizable solutions associated with bound states.

Another example: In the late 1920’s Breit and Gaunt
independently considered the question of the leading correction to
the Coulomb interaction, in the context of a Dirac description of
electrons, arriving at different results:

Uy = -%(a, a+a,fa, 1)U, Uy = -@, U (3)
Question 2: Which one, if any, is right?

I will return to this later. The point is that in the context
of relativistic quantum field theory (RQFT) the concept of an
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effective two-body interaction operator or potential V is subtle and
beset with ambiguity.? In RQFT the interaction Lagrangian is
primary; V is secondary and requires sharp definition. Historically,
effective potentials have often "emerged" in the context of level-
shift calculations for a specific physical system, initially in the
context of time-independent perturbation theory, exemplified by Tamm-
Dancoff (TD) type of calculations, and later from four-dimensional
Bethe-Salpeter (BS) type of equations, via a relatively messy

3)

reduction to equal times. However such potentials really merit a

priori definitions and delineation of their use.

II. A different approach to effective potentials and bound states

I want to briefly sketch another approach, whose genesis is in
work done long ago with the late Gary Feinberg on the quantum theory
of long range forces (LRF). Using the techniques of particle theory
(Lorentz and gauge invariance, analyticity and unitarity) we studied,
in particular, the LRF arising from photon exchange between two
composite neutral spinless systems. I review some of the results
very briefly here, in order to write down some formulas which are
needed later. As one would expect, the potential vy, associated with
one-photon exchange turns out to be short-range. However, the
potential Va from two-photon exchange between two such systems, A and
B, is long-range. For large r and low energies one finds that

v, = -D/r?, D = (23/47) (e P+a,te’) = (7/4m) (et o le®) (4)
where the a’s denote electric and magnetic polarizabilities. The
purely electric terms were first obtained in the classic work of

casimir and Polder.?®

Application of the same techniques to the case
of a neutral composite A and a charged elementary particle B (V,, is
then still short-range) yields
Vo (X) = (e/4m) [(-1/2)ar™*+(11/4m) aer ™ (Ay/x)
+(5/4M) qr* (A /r) +. .. ] (5)

' and the dots denote terms which fall off as 1/r7 or

where A, = my’
faster; these terms are however important in applications of the
results to the fine structure of He Rydberg levels.?®

Returning to our problem, both for practical reasons and to gain
insight, it is obviously desirable, on the one hand, to try (i) to
describe the interaction of particles in terms of potentials which
can be used in 3-dimensional equations and to define such potentials

directly. On the other hand, we wish (ii) to retain the enormous
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simplification achieved by the use of Feynman graphs and techniques
in the computation of higher-order effects. Of course we want (iii)
to avoid any a priori nonrelativistic approximations and if possible,
(iv) to avoid any approximations which destroy gauge-invariance (GI).
In contrast, the BS equation involves a kernel K which must be
truncated in practice; this destroys GI in gauge theories such as
QED. Further, in bound-state problems the use of Coulomb gauge is a
practical necessity, which destroys manifest Lorentz invariance.
While these are not fatal flaws, the approach I will sketch has, at
a minimum, some conceptual advantages; unlike TD or BS, it retains
both Lorentz and gauge invariance at any stage of approximation and
has some other practical advantages. In any case, I believe it has
a higher ISQ (intellectual satisfaction quotient) than the tradi-
tional approaches, which to some extent have the character of a black
box.

I will focus on the two-body problem. The basic idea is quite
simple,® a sort of a geometric mean between TD and BS. Somewhat
paradoxically, we first consider the scattering problem and the
associated two-body transition amplitude T. We then ask to what
extent T can be regarded as arising from an effective two-body
potential, to be used in a Schroedinger type of equation. To be more
explicit, we define an interaction operator V, acting directly in
configuration space, as a Fourier transform of an on-shell amplitude,
obtained from gauge-invariant subsets of Feynman diagrams, modified
by appropriate subtractions to avoid double counting; V is con-
strained by the requirement that when used in a specified type of
center-or momentum system (c.m.s.) relativistic Schroedinger equation
it reproduce T_,, the value of T in the c.m.s. The equation has the

natural form

- - 0
h, ¢ = Wp, hy, =h @ +V (6a)
with h°p<°> defined by
h P = E® + E® , [E® = (m?p,0)"? B, = -13/9r]. (6b)
The associated potential theory transition amplitude Tpot is given by
Tpoe = <P/|V + V(W-hP-V+ie) 'V |p>. (7)
The field-theory transition amplitude T is given, in the c.m.s. by
T, . = M(s,t)/4E,E, (8)

where M(s,t) denotes the invariant Feynman amplitude and sE(pA+pB)2,
tE(pA-pA')z. The constraint on V, which in general will depend
parametrically on s, is then simply that Toot = Tepr @ condition which
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is to be satisfied order-by-order in perturbation theory. To apply
this to bound states, we look for normalizable solutions of (6);

these correspond to poles of M at values of s below s; = (m‘+mg)z.

III. LRF between charged particles: Beyond the Coulomb potential

For concreteness, consider two point-like spin-0 particles, with
charges e, and e;, and confine attention to the so-called generalized
ladder approximation to M(s,t), i.e. to graphs which involve photon
exchange only between the particles. Consider first the one-photon
exchange potential V,,- If one uses Feynman gauge in writing down the
(gauge invariant) one-photon exchange amplitude M, , one is 1led® to
a Feynman-gauge inspired (FGI) potential VWF“,

v1yFGl = z'opUCz’op + yop(pop.UCpoplzmAmB)yop (Qa)
where

2’y = (1+p 2/2EPEP)VZ | y = (mmg/E,PE,%) V2. (9b)
The corresponding Coulomb-gauge inspired (CGI) one-photon exchange
potential Vh,CGl is given by "

VS = Y L{E,%P, {Eg%, U }+(1/2) {P;*, {P;*, (&;;+8,2)Uc} }1y,,/ 4mymg  (10)

In the n.r. limit (9) yields as the leading correction to U, an orbit-

orbit interaction U _, of the form

Uy = {p;*, {P;®, 6,,Uc} }/4m,m,. (11)
whereas (10) yields
U8 = (1/2){p;%, {p;P, (8;;+£;£,) U} }/4mmg. (12)

This is a manifestly hermitian form of the orbit-orbit interaction
U,, familiar from atomic physics, usually described as arising from
reduction of the Breit operator (3) to n.r. form. But, of course,
spin has nothing to do with it!

Some insight into the difference between the two choices comes
from examining the potential V,, from 2y exchange. Surprisingly, the
computation of this is more difficult than in the case where at least
one of A or B is neutral, because of the presence of infrared
divergences (IR); the cure for these turns out to be precisely the
subtractions necessary anyhow to avoid double counting." These
subtractions depend on the choice of V,, and turn out to affect even
the asymptotic form of V,+ At low energies and large r one finds,
with k = e,e,/4m, that "

Vo = czr'2 + czr'3 + ... (13)
where c; = - 7k2/6nmAmg in both cases, but

c,fl = k¥/2(mytmg), S = o. (14)
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This observation resolves a long-standing puzzle in the literature
and shows that in the case of two charged particles the concept of
the asymptotic form of the effective potential has an unexpected
ambiguity. Further, as was noted some time ago by L. Spruch, czFm is
classical in character. It turns out that this can also be under-

stood, by an extension of the classic work of Darwin.”’

IV. Inclusion of spin
Similar results hold when A and B are point particles but B,
say, has spin-1/2. The FGI vy, is then given by ®

v, = (7, PASP UP (v, PA%), UP = (EP-a-p,,Uc}/2m,, (15)
where A% = (E°P+h,°P)/2E,°® is a Casimir positive-energy projection
operator and y,® = (m,/E,®)"2. The corresponding CGI v, is

V1y°m - (onp/\+op) (U'+ U,") (yAOP/\+°P) (16a)
where

U’ = {E,U}/2m, U’ = -(1/2){p;®a;, (§;;+2,£;)U.}/2m,. (16b)

Reduction of (15) and (16) to the n.r. limit yields the same spin-
dependent (s.d) interaction operator —[1+2m8/mA]UCa-¢/4mBZrZ, while the
s.i. potentials differ in the same way as when B has spin-0. If VWFG'
is used, the two-photon exchange yields a s.i. term with c, as in (14)

and a s.d. correction given at large r by ¥

Vopt™® ® K[ (3m,+5mg) /m, (m,+mg) ] (0-2/4mlr") . (17)
If A has structure, Yy, also contains a spin-orbit polarizability
potential

Vayipot ™% = (eg?/4m) [ (etmgta (m+mg) ) /2mm,?] (o 2/x8) +0(x™7) . (18)

There are a number of physical situations in which it may be
possible to detect the effects of V2y5'°. Typically these involve
measurements of bound state energies in exotic atoms, where one
particle has spin 1/2 and another has spin 0. Examples include anti-
protonic atoms with a spin-0 nucleus, such as p-He‘, pionic atoms with
a spin-1/2 nucleus, such as pionic hydrogen, and the pi-muon bound
state known as pi-muonium. Certain aspects of szs"" may be observable
in Rydberg states of helium-like ions whose nuclei have spin 1/2.
For details see Ref.8.

For two-spin 1/2 particles one finds, with A,, a projection
operator product,

v, = AL (U + U)A v, = AL (U, + UpA,,. (19)
Thus the answer to the question posed earlier is "neither". The

++ 7

computation of V,, for this case is a major undertaking, which is
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currently in progress. i

When this is completed one will be able to
reanalyze the spin-dependent level structure of a number of physical

systems and gain new insight into some aspects of QED.

IV. Some exotic long-range forces

Since both gravity and neutrinos are topics of this meeting I
thought it would be of interest to discuss briefly some unusual
aspects of long-range forces, which touch on these areas.

A. The long-range H-He force and gravity. From (4) we can see

that, contrary to folklore, there are cases in which V, is repulsive

2
at large distances. 1Indeed, although the coefficient: D in (4) is
necessarily positive if A = B, already the very simplest departure
from this, viz. A = H and B = He* gives a negative D. This is because
@, « a, for He while for H, a, = 129a%, which is about 30 times larger

than o = 9a3/2 (a = Bohr radius) and more than compensates for the

ratio 23/7 % 3. Thus D ~ -(7/4m)g/ ¢ < 0 and V,* = -p/r’ is
repulsive. Since Vo, is attractive at distances of a few Bohr radii,
when graphed as a function of r it must cross the V = 0 axis for

large enough r and then approach this axis from above. If we now add
the one-graviton exchange potential Vg = -Gmm, /r to Vo the total

potential v __ = sz + Vi must eventually approach the axis from below.

tot
It is possible that there is a 1little potential well at some
sufficiently large r ? If so, perhaps something could be made of it.

Indeed the sum Vet = v

[(7/4n) hceyta*®/Gmm, 1"/ and its derivative vanishes at r, = 7Yr;

as :
2 +V19 vanishes at r,

Q

1.4r,. With o* = 1.4a° one gets r; » 4x10% = 2x10°? cm. However, one
must now ask whether sz is well approximated by szas for such values
of r. This requires a detailed knowledge of V,, for the case at hand.
Recently Chi Kwan Au and I decided to have a closer look at this.'®

We may write, in an obvious notation, Vay = Veg + Vg + Vg + Voo
Although V., and V,, can be neglected, analysis shows that the actual
V. 1is canceled by Vi at a much smaller value of r. To be
quantitative, for values of r such that 2w,r/c « 1, where #w, is the
hyperfine splitting of the hydrogen ground state, one finds that

Ve ® (5/87r°)atae (Ay) - (20)
Then V,. + V,, = 0 for ry’ = [(5/87)c’a%* (fw,) /Gmym, ]"/* =~ 2x10" cm and
the derivative vanishes for r,’ = 5Y%r;r = 1.5r,’. Since V,, is well
approximated by its asymptotic form for r » a’'a = 10%cm, we have

- V! Ve ® (5/46)a*(2ma?/A ) r? = . 01503 (r?/Aa) (22)
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in the region of interest, with A, = 21 cm. For r = r,/ the ratio
(22) if of order 10°® and so is much less than unity. The Vg
potential therefore dominates in this region and there is no minimum.
Thus, this intriguing possibility for detecting an interplay between
electromagnetism and gravity in an atomic system appears to be out of
reach for the foreseeable future.

B. The two-neutrino exchange force. The exchange of neutrino-
antineutrino pair between two spin-1/2 particles also gives rise to

5

a long-range potential, V. which falls of as r™”, as shown long-

’
ago.' My interest in thiz subject was reawakened by a preprint in
of Hsu and Sikivie.'? These authors had come across some lectures of
Feynman in which he studied the question of whether neutrino-pair
exchange forces might be responsible for gravity.' In this
connection Feynman considered the possibility that the two-neutrino
exchange potential might fall off as r’>. On dimensional grounds the

simplest form of V,, compatible with this is V,, @ G mmy/r®, in which
case some experimental tests might be feasible. Because the results
of Ref. 12 disagreed with those found in Ref. 11 (in the
coefficients of both the s.i. and s.d. parts of V,), I was led to
check the old work in a more general way, without making any n.r.
approximations. The result turns out to be of some interest,
especially in view of Feynman’s considerations.

Consider a current-current interaction of Dirac fields g, and g,

with a massless neutrino field ¢, of the form

Ly = = G, (¥,I,°w,) (WL w,) - (A~B) (22)
where the I'’s have the generic form
rAﬂ = V°(1+§AV5); rga = Y°(1+§5V5); r’ = )'”(1+CV5) (23)

and G’s denote effective Fermi coupling constants. One then finds,
on use of the methods of Ref. 11, that the long-range part of V , is
given by V, + V,, where, with G?= (1+c?)G,Gy,

v, = (G¥/41) (1, 1) (T, Ter™®) , ¥, =(3/2) (G¥/47) (1,°") (mymgh, vy /x) « (24)
Thus, within a Dirac description of spin-1/2 particles, there is

3, but it comes accompanied with

indeed a term proportional to mm,r’
a p° factor for each particle. Reduction to Schroedinger-Pauli form
of V, then yields, in the low-energy limit, only spin-dependent terms
of order r°. To be precise,

(V)) reg = (G/4Tr%) (1-§,6,0,0;) , (V,) g = (G¥/4Tr%) (££,/2) (50,0, -2-0,-0;)
so that

(Vo) reg = (G2/47°r) [1+(£,§,/2) (50,-20,-2-30,°0,,]. (25)



401

For G; = GF/ZU2 and ¢ = - 1, § = - 1, as in the old four-fermion
interaction for charged leptons, this reduces to the results of Ref.
11. In the standard model, we have G, = chF/Z”Z, § = -c,/cy, with ¢,
- 1 = 2sin®~1/2, ¢, - 1 = -1/2, so that the s.i. part of (V,) .
becomes (2sin20"+1/ 2) 2GF2/4113r5, in agreement with Ref. 2.

It is amusing to note that if one had two macroscopic bodies
which contained an appreciable fraction of relativistic polarized
electrons, so that <y;> = 1, one could indeed generate an interaction

of the Feynman type! Unfortunately such systems are hard to come by.
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