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The effects of one- and two-photon exchange on the energy levels 
of composite systems have been studied for many years , especially in 
the case of two-body bound states . However , a systematic analysis of 
the extent to which such effects can be described as resulting from 
the action of configuration-space potentials , deter-mined by f ield 
theory but acting directly between the constituents , appears not to 
have been carried out . A method for studying this problem will be 
presented and the results obtained to date will be summarized , with 
emphasis on the long-range character and spin-dependence of such 
potentials , as well as on conceptual aspects ; there are some 
surprises here . Some comments will also be made on the long-range 
forces arising from two-neutrino exchange , which have recently been 
the obj ect of renewed interest ,  and on aspects of the long-range 
force between a hydrogen and hel ium atom, which involves a 
competition between a repulsive two-photon exchange force and the 
attractive force of gravity . 
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I .  Introduction 
The main purpose of this talk is to discuss some aspects of the 

use of effective potentials in few-body problems and to report 
results of a recent paper on this topic,  in the context of the long­
range forces aris ing from photon exchange . 1 > I will also make some 
brief remarks on gravity and (virtua l ! )  neutrinos , maj or themes at 
this meeting . As befits the pre-dinner time slot ,  my sermon will be 
very informal and start with an ever popular type of tale : a referee 
story . The f irst referee on the above-mentioned paper indicated that 
he might be old-fashioned but he thought it should not be published 
because it does not contain a calculation whose results could be 
immediately compared with experiment . This was a criterion I had not 
encountered before ; it would certainly lead to a much thinner 
j ournal !  A second referee was very positive , agreeing that the 
issues raised were important . I conclude that the latter is not only 
modern in outlook but , if male , both a gentleman and a scholar . 

By way of an aperitif , here ' s  a quiz .  Recal l  that the usual 
starting point for a relativistic theory of hydrogen or H-like ions 
is the Dirac equation : 

h ( l ) fl/ ( l ) = ( a1 • p1+P1m+vext ( l ) ] fl/ ( l )  = Efl/ ( l ) ( 1 )  
Now consider the statement : "With Uc = e1 e

2
/ 41fr , a reasonable starting 

point for a relativistic theory of helium or He-like ions is the 
equation : 

h ( l , 2 ) fl/ ( l , 2 ) = [ h ( l ) +h ( 2 ) +Uc J fll ( l , 2 )  = Efl/ ( l , 2 )  . "  ( 2 )  
Question 1 :  The last statement i s  a )  true , b )  false , c )  not wel l  
posed . 

Having given you five seconds to think about it , I will tell you 
that ( c ) , which I would normal ly chose in such a pressure situation 
( one can always argue about what is meant by "reasonable" ) ,  is 
incorrect . By any standard , the answer is (b) , because ( 1 )  has no 
normalizable solutions associated with bound states . 

Another example : In the late 19 2 0 ' s  Breit and Gaunt 
independently considered the question of the leading correction to 
the Coulomb interaction , in the context of a Dirac description of 
electrons , arriving at different results : 

Ue = -Ja (aA · ae+aA • l'ae · l' ) Uc ,  UG = -aA · aeUc . ( 3 ) 
Question 2 :  Which one ,  if any , is right? 

I will return to this later . The point is that in the context 
of relativistic quantum field theory ( RQFT) the concept of an 
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effective two-body interaction operator or potential V is subtle and 
beset with ambiguity . 2> In RQFT the interaction Lagrangian is 
primary; V is secondary and requires sharp definition . Historically, 
effective potentials have often " emerged" in the context of level­
shift calculations for a specific physical system, initially in the 
context of time-independent perturbation theory , exemplified by Tamm­
Dancoff (TD)  type of calculations , and later from four-dimensional 
Bethe-Salpeter (BS)  type of equations , via a relatively messy 
reduction to equal times . 3> However such potentials real ly merit a 
priori definitions and delineation of their use . 

II . A different approach to effective potentials and bound states 
I want to briefly sketch another approach , whose genesis is in 

work done long ago with the late Gary Feinberg on the quantum theory 
of long range forces ( LRF) . Using the techniques of particle theory 
( Lorentz and gauge invariance , analyticity and unitarity) we studied , 
in particular , the LRF arising from photon exchange between two 
composite neutral spinless systems . I review some of the results 
very briefly here,  in order to write down some formulas which are 
needed later . As one would expect , the potential V1r associated with 
one-photon exchange turns out to be short-range . However , the 
potential v2r from two-photon exchange between two such systems , A and 
B ,  is long-range . For large r and low energies one finds that 

v2r :::: -D/r7, D = ( 2 3 / 4ir )  ( rzE
A
rzE

8+rz/rzM
8 ) - ( 7 / 4ir) ( rz/rzM

8+rzM
A
rzE

8 ) ,  ( 4 )  
where the rz ' s  denote electric and magnetic polarizabil ities . The 
purely electric terms were first obtained in the classic work of 
Casimir and Polder . 4> Appl ication of the same techniques to the case 
of a neutral composite A and a charged elementary particle B (V1r is 
then sti l l  short-range) yields 

v2r ( r )  = ( e// 4ir) ( ( - 1 / 2 ) rzEr-4+ ( 11 / 4ir) rzEr-4 (,\8/ r )  
+ ( 5 / 4ir) rzMr-4 (...18/r)  + • . .  ] ( 5 )  

where ...18 = m8- 1 and the dots denote terms which fall off a s  1 /r7 or 
faster ; these terms are however important in appl ications of the 
results to the fine structure of He Rydberg levels . 5> 

Returning to our problem , both for practical reasons and to gain 
insight , it is obviously desirable , on the one hand , to try ( i ) to 
describe the interaction of particles in terms of potentials which 
can be used in 3-dimensional equations and to define such potentials 
directly . On the other hand , we wish ( i i )  to retain the enormous 
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simplification achieved by the use of Feynman graphs and techniques 
in the computation of higher-order effects . Of course we want ( ii i )  
t o  avoid any a priori nonrelativistic approximations and if possible , 
( iv) to avoid any approximations which destroy gauge-invariance (GI) . 
In contrast , the BS equation involves a kernel K which must be 
truncated in practice ; this destroys GI in gauge theories such as 
QED . Further , in bound-state problems the use of Coulomb gauge is a 
practical necessity ,  which destroys manifest Lorentz invariance . 
While these are not fatal flaws , the approach I will sketch has , at 
a minimum , some conceptual advantages ;  unlike TD or BS , it retains 
both Lorentz and gauge invariance at any stage of approximation and 
has some other practical advantages . In any case,  I believe it has 
a higher ISQ ( intellectual satisfaction quotient) than the tradi­
tional approaches ,  which to some extent have the character of a black 
box. 

I will focus on the two-body problem . The basic idea is quite 
simple , 6> a sort of a geometric mean between TD and BS . Somewhat 
paradoxically , we first consider the scattering problem and the 
associated two-body transition amplitude T .  W e  then ask t o  what 
extent T can be regarded as arising from an effective two-body 
potentia l ,  to be used in a Schroedinger type of equation . To be more 
explicit , we define an interaction operator V, acting directly in 
configuration space , as a Fourier transform of an on-shell ampl itude, 
obtained from gauge-invariant subsets of Feynman diagrams , modified 
by appropriate subtractions to avoid double counting ; v is con­
strained by the requirement that when used in a specified type of 
center-or momentum system ( c .  m. s .  ) re la ti vistic Schroedinger equation 
it reproduce Tc.m. ' the value of T in the c . m . s .  The equation has the 
natural form 

h0p </) = WI/) , h0p = h0p(O) + V 
with h0P

<OJ defined by 
( Ga )  

h0P
<Ol = EA

0P + E8°P 1 [ E;0P = (m/+p0/ ) 112 1 Pop = -iil/ilr ) . ( 6b) 
given by 

( 7 )  
The associated potential theory transition amplitude T�t is 

T�t = <p ' I V + V (W-h0°P-V+if: ) . 1V l p> .  
The field-theory transition amplitude T is given , 

Tc.m. = M ( s , t ) / 4 EAE8 
in the c . m . s .  by 

( 8 )  

where M ( s , t) denotes the invariant Feynman amplitude and s= (pA+p8) 2 ,  
t= (pA-pA ' ) 2 • The constraint on V, which in general will depend 
parametrical ly on s ,  is then simply that T�t = Tc.m. , a condition which 
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is to be satisf ied order-by-order in perturbation theory . To apply 
this to bound states , we look for normalizable solutions of ( 6 ) ; 
these correspond to poles of M at values of s below s0 = (mA+m8 ) 2 • 

III . LRF between charged particles : Beyond the Coulomb potential 
For concreteness , consider two point-l ike spin-0 particles , with 

charges eA and e8 , and confine attention to the so-cal led general ized 
ladder approximation to M ( s , t) , i . e .  to graphs which involve photon 
exchange only between the particles . Consider f irst the one-photon 
exchange potential V1r. If one uses Feynman gauge in writing down the 
(gauge invariant) one-photon exchange amplitude M1r, one is led6> to 
a Feynman-gauge inspired ( FGI ) potential v1/61 ,  

where 
V FGI 1y ( 9 a )  

z '  op "" ( l+pop2/ 2 EAopEBop) 
1/2 ' Yop = (mAma/ EAopEBop) 112 . ( 9b)  

The corresponding Coulomb-gauge inspired ( CGI ) one-photon exchange 
potential V1YCGI is given by 1 > 

v1yCGl "" Yop
[ { EA0P ,  { EB0P ,  Uc} } + ( 1 / 2 )  {P;0P ,  {pj0P ,  ( S ; j +:t;t) Uc} }  ] Yo/ 4mAmB ( 10 )  

I n  the n . r .  l imit ( 9 )  yields a s  the leading correction t o  U c  a n  orbit­
orbit interaction U0_0 of the form 

Uo_/GI = {P;oP , {p/P , & i jUC } } / 4mAmB . 
whereas ( 10 )  yields 

( 1 1 )  

Uo-oCGI = ( 1 / 2 )  {P;op , {p/P,  ( 8 ; j+:ti:tj ) Uc } } / 4mAmB . ( 12 )  
This i s  a manifestly hermitian form o f  the orbit-orbit interaction 
u0_0 familiar from atomic physics , usually described as arising from 
reduction of the Breit operator ( 3 )  to n . r .  form. But , of course , 
spin has nothing to do with it ! 

Some ins ight into the difference between the two choices comes 
from examining the potential V2r from 2V exchange . Surprisingly, the 
computation of this is more diff icult than in the case where at least 
one of A or B is neutra l ,  because of the presence of infrared 
divergences ( IR) ; the cure for these turns out to be precisely the 
subtractions necessary anyhow to avoid double counting . 6> These 

subtractions depend on the choice of V1r and turn out to affect even 

the asymptotic form of v2r. At low energies and large r one f inds , 
with k ""  eAe8/ 4 rr ,  that 1 > 

v2r = c2r-2 + c3r-3 + ( 1 3 )  
where c3 = - 7k2 / 6rrmAm8 i n  both cases , but 

c/GI = k2/ 2  (mA+mal ,  c2cG1 o .  ( 1 4 )  
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This observation resolves a long-standing puz z le in the l iterature 
and shows that in the case of two charged particles the concept of 
the asymptotic form of the effective potential has an unexpected 
ambiguity . Further , as was noted some time ago by L .  Spruch , c/GI is 
classical in character . It turns out that this can also be under­
stood , by an extension of the classic work of Darwin . 7' 

IV . Inclusion of spin 
Similar results hold when A and B are point particles but B ,  

say , has spin-1 / 2 .  The FGI v1r i s  then given by 8' 
v,/GI = ( y/P/\OP) uC2l (yAop/\+op) ,  u<2> :: { EAOP-a · pop' UC} / 2mA , ( 15 )  

where /\/P = ( E8°P+h8°P) / 2 E8°P i s  a Casimir positive-energy projection 
operator and yA0P = (mA/ E8°P) 112 . The corresponding CGI V1r is 

where 
v,ycGI = (YA OP/\+ op) ( Uc ' + Ur ' ) (yAOP/\+op) ( 16a)  

Uc ' = { EA0P , uc} / 2mA , Ur ' = - ( 1 / 2 )  {P;0Paj , ( o i j+!';!'j ) Uc} / 2mA . ( 16b) 
Reduction of ( 1 5 )  and ( 1 6 )  to the n . r .  limit yields the same spin­
dependent ( s . d) interaction operator - [ 1+2m8/mA J Uca · t / 4m/r2 , while the 
s .  i .  potent ials differ in the same way as when B has spin-0 . If v1/GI 
is used , the two-photon exchange yields a s . i .  term with c2 as in ( 1 4 )  
and a s . d .  correction given at large r by 8> 

Vzy;pts.o. Z -k
2

( ( 3mA+5m8) /mA (mA+m8 ) ) (CJ • t / 4m/r4 ) , ( 1 7 )  
I f  A has structure , v2r also contains a spin-orbit polarizability 
potential 

v2r;pol s.o. 
= ( e// 4rr) [ ( aE 

Am6 +aM
A (mA +m8 ) ) / 2mAm/ ] ( a · t / r6 )  +o ( r-7) • ( 18 ) 

There are a number of physical situations in which it may be 
possible to detect the effects of V2y' · 0 •  Typically these involve 
measurements of bound state energies in exotic atoms , where one 
particle has spin 1 / 2  and another has spin 0 .  Examples include anti­
protonic atoms with a spin-0 nucleus , such as p-He4 , picnic atoms with 
a spin- 1 / 2  nucleus , such as picnic hydrogen , and the pi-muon bound 
state known as pi-muonium . Certain aspects of V2y"0• may be observable 
in Rydberg states of helium-like ions whose nuclei have spin 1 / 2 .  
For detai l s  see Ref . 8 .  

For two-spin 1 / 2  particles one finds,  with /\++ a projection 
operator product , 

v,/GI = "·· ( Uc + UG ) "·· · v,/GI= 
Thus the answer to the question 
computation of V2r for this case 

( 1 9 )  
posed earlier i s  "neither" . The 
is a maj or undertaking , which is 
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currently in progress . 9  When this is completed one will be able to 
reanalyze the spin-dependent level structure of a number of physical 
systems and gain new insight into some aspects of QED . 

IV. Some exotic long-range forces 
s ince both gravity and neutrinos are topics of this meeting I 

thought it would be of interest to discuss briefly some unusual 
aspects of long-range forces , which touch on these areas . 

A .  The long-range H-He force and gravi ty . From ( 4 )  we can see 
that , contrary to folklore , there are cases in which V2r is repulsive 
at large d istances . Indeed , a lthough the coefficient D in ( 4 )  is 
necessarily positive if A = B ,  already the very simplest departure 
from this , vi z .  A =  H and B = He4 gives a negative D .  This is because 
aM « aE for He while for H ,  aM "' 129a3 , which is about 3 0  t imes larger 
than aE "' 9 a3 / 2  (a = Bohr radius) and more than compensates for the 
ratio 2 3 / 7  "' 3 .  Thus D "' - ( 7 / 4 rr ) aM"aEHe < 0 and V2/• = -D/ r7 is 
repuls ive . Since V2r is attractive at distances of a few Bohr radii , 
when graphed as a function of r it must cross the V = O axis for 
large enough r and then approach this axis from above . If we now add 
the one-graviton exchange potential V19 = -GmHmH0/r to V2r the total 
potential Vtot = v2r + V19 must eventually approach the axis from below. 
It is possible that there is a l ittle potential wel l  at some 
sufficiently large r ? If so,  perhaps something could be made of it . 
Indeed the sum Vtotas - V2/•+v19 vanishes at r0 "' 
[ ( 7 / 4rr ) licaM"aE"•/GmHmH0 ] 116 and its derivative vanishes at r1 = 7 116r0 "' 
1 . 4r0 • With aE"• "' 1 . 4 a3 one gets r0 "' 4xl06a "' 2x10-2  cm . However , one 
must now a sk whether V2r is well approximated by V2/• for such values 
of r. This requires a detailed knowledge of V2r for the case at hand . 
Recently Chi Kwan Au and I decided to have a closer look at thi s . 10> 

We may write , in an obvious notation , V2r = VEE + VME + VEM + VHH " 
Although VEH and VMH can be neglected , ana lysis shows that the actual 
VHE is canceled by V19 at a much smaller value of r .  T o  be 
quantitative , for values of r such that 2wHr/c « 1 ,  where liwH is the 
hyperf ine splitting of the hydrogen ground state , one finds that 

VME "' ( 5 / 8rrr5 ) a3a
2aE"° C lill{,l . ( 2 0 )  

Then VHE + V19 = o for r0' = [ ( 5 / 8rr ) a3a2aE"° (liwH ) / GmHmHe J 114 "' 2x10-3 cm and 
the derivative vanishes for r, ' = 5114r0 ' = 1 . 5r0 ' . Since VEE is wel l  
approximated by its asymptotic form for r » a - 1 a "' 1 0-6cm, w e  have 

- VHE/VEE "' ( 5 / 4 6 ) a3 ( 2rra
2

/AHaE" ) r
2

"' . 0 15a3 ( r
2

/AHa ) ( 2 2 )  
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in the region of interest , with AH = 2 1  cm . For r = r0 1 the ratio 
( 2 2 )  if of order 10-6 and so is much less than unity . The VEE 
potential therefore dominates in this region and there is no minimum . 
Thus , this intriguing possibility for detecting an interplay between 
electromagnetism and gravity in an atomic system appears to be out of 
reach for the foreseeable future . 
B .  The two-neutrino exchange force . The exchange of neutrino-
antineutrino pair between two spin-1/2 particles also gives rise to 
a long-range potentia l ,  v2

v,  which falls of as r-5 , as shown long­
ago . 1 1 > My interest in this subject was reawakened by a preprint in 
of Hsu and Sikivie . 12> These authors had come across some lectures of 
Feynman in which he studied the question of whether neutrino-pair 
exchange forces might be responsible for gravity . 13l In this 
connection Feynman considered the possibility that the two-neutrino 
exchange potential might fall off as r-3 • On dimensional grounds the 
simplest form of V

2
v compatible with this is V2v a G/mAm8/r3 , in which 

case some experimental tests might be feasible . Because the results 
of Ref . 12 disagreed with those found in Ref . 11 ( in the 
coefficients of both the s . i .  and s . d .  parts of Vw) , I was led to 
check the old work in a more general way , without making any n . r .  
approximations . The result turns out to be of some interest , 
especially in view of Feynman ' s  considerations . 

Consider a current-current interaction of Dirac fields �A and �8 
with a massless neutrino field �v of the form 

Leff = - GA ( qiAr/�A) CiP.,r,,�vl - (A-+B)  
where the r ' s  have the generic form 

r/ = v" C l+fAV5 ) ,  re" = v" C l+feV5 ) ,  r" = v" ( l+cV5 ) 

( 2 2 )  

( 2 3 )  
and G ' s  denote effective Fermi coupling constants . One then finds , 
on use of the methods of Ref .  1 1 ,  that the long-range part of Vw is 
given by V1 + V2 , where , with G2 = ( l+c2) GAG8 , 
V1 "' (G2/ 41T3) ( VAOV8° )  ( rA • r8r-5 ) ,  V2 = ( 3 / 2 )  ( G2/ 41T3 ) ( VAOV80) (mAm8v/v85/r3) .  ( 2 4 )  
Thus , within a Dirac description of spin-1 / 2  particles , there is 
indeed a term proportional to mAm8r-3 , but it comes accompanied with 
a v5 factor for each particle . Reduction to Schroedinger-Pauli form 
of V2 then yields,  in the low-energy limit,  only spin-dependent terms 
of order r-5 • To be precise , 
(V1 ) red = (G2/ 4TT3r5 ) (1-fAfeaA • a8) ,  (V2) red = (G2/ 4TT3r5 ) (fAf8/ 2 )  ( 5aA • t"a8 • 1"-aA • a8) 
so that 

(Vwl red = ( G2/ 4TT3r5 ) [ l+ (fAf8/ 2 )  ( 5aA • t"a8 • t"-3aA • a8, J . ( 2 5 )  
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For G; = GF/ 2 112 and c = - 1 ,  f; = - 1 ,  as in the old four-fermion 
interaction for charged leptons , this reduces to the results of Ref . 
1 1 .  I n  the standard mode l ,  we have G ;  = cvGF/ 2 112 , f; = -cA/ cv ,  with Cv 
- 1 = 2 s in28w-l / 2 , CA - 1 = -1/ 2 ,  so that the s . i .  part of (Vw) red 
becomes ( 2 s in28w+ l/ 2 ) 2G// 4rr3r5 , in agreement with Ref . 2 .  

It is amusing to note that if one had two macroscopic bodies 
which contained an appreciable fraction of relativistic polarized 
electrons , so that <y5> � 1 ,  one could indeed generate an interaction 
of the Feynman type ! Unfortunately such systems are hard to come by . 
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