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Abstract: Correlation functions of the higher-spin current operators in large N Chern-

Simons theories are important to understand approximate higher-spin symmetries in these

theories. Moreover, they also provide stronger checks for conjectured dualities in these

theories. In this paper, we compute the two, three and four-point functions of the operators

in the spin zero multiplet of N = 2 Supersymmetric vector matter Chern-Simons theory

at large N to all orders of ’t Hooft coupling. While the two- and three-point functions

are computed by solving the Schwinger-Dyson equation, this method becomes intractable

for the computation of the four-point functions. Thereby, we use bootstrap method to

evaluate four-point function of scalar operator Jf0 = ψ̄ψ and Jb0 = φ̄φ. Interestingly,

because 〈Jf0 J
f
0 J

b
0〉 is a contact term, the four point function of Jf0 operator resembles

the corresponding correlation function in the free theory, up to overall coupling constant
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dependent factors and up to some ‘bulk AdS’ contact terms. On the other hand the Jb0 four-

point function receives an additional contribution compared to the free theory expression

due to the Jf0 exchange. We find that the double discontinuity of this single trace operator

Jf0 vanishes and hence it only contributes to AdS-contact term.

Keywords: 1/N Expansion, Chern-Simons Theories, Higher Spin Symmetry, Field The-

ories in Lower Dimensions
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1 Introduction

The perturbative technique to compute observables in quantum field theories involving

Feynman diagrams is effective only when the coupling is weak and breaks down in the

strong coupling regime. In the past few decades various strong-weak dualities have been

discovered which have proven to be extremely useful in understanding some of the most in-

teresting non-perturbative properties of strongly coupled quantum field theories. One such

class of dualities which have been studied extensively in recent times are the Bosonization
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dualities in Chern Simons gauge theories coupled to fundamental matter at large N [1–7].

Though, one of the main indications for these dualities initially came from their holographic

duality with Vasiliev theories in AdS4 [8–13], by now there exists a plethora of evidence

for these dualities coming from exact computations of correlation functions, thermal parti-

tion functions, anomalous dimensions, scattering amplitudes and RG flow analysis relating

these theories to known supersymmetric dualities [3–5, 14–36].

Primary example of these bosonization dualities are those among the quasi-fermionic

(critical bosonic and regular fermionic theory) and the quasi-bosonic theories (regular

bosonic and critical fermionic theory).1 A particularly interesting case of these duali-

ties is present in the N = 2 supersymmetric U(N) Chern Simons theory coupled to a

single fundamental chiral multiplet. This theory exhibits a strong-weak self duality [37–39]

generalizing the well known Giveon-Kutosov duality [37, 40]. The self duality of this su-

persymmetric theory serves as a parent duality for the non-supersymmetric bosonization

dualities mentioned above since they can obtained from the supersymmetric theory via

RG flows seeded by mass deformations [41, 42]. Taking hints from the supersymmetric

dualities and the Level-Rank duality of pure Chern Simons theory, finite N extensions for

the non supersymmetric dualities have also been proposed [43–52]. These theories were

also investigated recently in presence of background magnetic field [53].

In this article, we will focus our attention on the N = 2 theory. Various large N

computations in this theory show remarkable features which are absent in the non super-

symmetric couterparts. For example, the all loop 2 → 2 scattering amplitude is tree-level

exact except in anyonic channel [27] and it was shown that these amplitudes are also in-

variant under Dual superconformal symmetry [27, 30]. [29] further showed that the tree

level m → n scattering amplitudes in this theory can be constructed using the BCFW

recursions relations.

Although many interesting non supersymmetric physical observables, as mentioned

above, are amenable to direct exact computations by solving corresponding Dyson-

Schwinger equations, the computation of 4-point correlation function of even the simplest

of single trace operators, namely the scalar operators φ̄φ and ψ̄ψ, appears prohibitively

difficult2 to compute via this direct approach. Given the remarkable simplicity of the re-

sults for other known observables one expects the 4-point functions in this theory to also

have a simple structure. In the present article, our main goal will be to determine the

exact 2, 3 and leading connected 4-point correlation functions of scalar operators in this

supersymmetric theory.

For the quasi-bosonic and quasi-fermionic theories mentioned above, in [54–57], the

4-point correlation functions of various scalars as well as some higher spin operators were

determined using recently developed ideas from conformal Bootstrap. In particular, one

of the central objects used in [55] is the double discontinuity of the 4-point function which

determines the coefficients in the OPE expansion of external operators via the Lorenzian

inversion formula (LIF) discovered by Caron-Huot in [58]. The authors of [55] first demon-

1In the terminology of [3, 4].
2See appendix D for a discussion of our attempt.
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strated that for large-N CFTs the double discontinuity of the 4-point function of identical

scalars determines the full 4-point function up to three AdS4 contact Witten diagrams.

The authors further showed that for the quasi-bosonic and quasi-fermionic theories the

coefficients of these contact terms vanish. This is consistent with the results of [56] which

used the large spin perturbation theory developed in [54] instead of the LIF. In the present

work, we apply some of these ideas in conjunction with the self duality, to the case of scalar

4-point functions in our N = 2 theory.

Our article is structured as follows. In section 2, we review the N = 2 theory of interest

in this paper and its operators spectrum in some detail. In section 3, we determine the

scalar multiplet 2 and 3-point functions via a directl computation. In section 4, we deter-

mine the 4-point function of the bosonic and the fermionic scalar operators in this theory

using the double discontinuity technique developed in [55]. Finally, in the section 5, we

summarize our results and outline related open questions and future directions. In various

appendix, we collect our notation and conventions, some technical details of the results in

main text of the paper and briefly summarize our attempt at the direct computation of

4-point function.

Note added. While we were in the process of finishing up our article, we were informed

about the related work [59] by the authors which has overlap with the results of our

section 3.

2 N = 2 theory and its operator spectrum

In this paper, we are interested in N = 2 U(N) Chern-Simons theory coupled to single

chiral multiplet, Φ ≡ (φ, ψ), in the fundamental representation of the gauge group. The

position space Lagrangian for the theory is

SLN=2 =

∫
d3x

[
− κ

4π
εµνρTr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
− ψ̄i /Dψ +Dµφ̄Dµφ

+
4π2

κ2
(φ̄φ)3 − 4π

κ
(φ̄φ)(ψ̄ψ)− 2π

κ
(ψ̄φ)(φ̄ψ)

]
. (2.1)

The theory above has two parameters: the rank of the gauge group, N , and the

Chern-Simons level, κ, which is quantized to take only integer values [60]. κ−1 controls the

strength of gauge interactions and the theory is perturbative for large values of κ at any

finite N .

This theory is conjectured to be self-dual under a strong-weak type duality, [37]. In

the ’t Hooft like large N limit

κ→∞, N →∞ with λ =
N

κ
fixed (2.2)

of interest in this paper, the duality transformation is

κ→ −κ, λ→ λ− sgn(λ). (2.3)

– 3 –
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Apart from the matching of many of the supersymmetric observables which can be

computed at finite N and κ using supersymmetric localization techniques, recent exact

computation of many non-supersymmetric observables, e.g. the thermal partition function,

in the large N limit [1, 2, 5, 26, 31, 41] has provided ample evidence for this conjec-

tured duality.

The theory is quantum mechanically (super) conformal for all values of κ and N . In the

’t Hooft limit, one can focus on the single trace superconformal primary operator spectrum

of the theory. Though our theory has N = 2 superconformal symmetry, in this paper

we will work in the N = 1 superspace formulation to allow us to use the relevant results

of [27] for our computations. In the N = 1 language, the operators spectrum of the theory

consists of a set of supercurrent operators [61]

J (s) =
2s∑
r=0

(−1)
r(r+1)

2

(
2s

r

)
∇rΦ̄∇2s−rΦ , (2.4)

which are written in terms of the superfields,

Φ = φ+ θψ − θ2F, Φ̄ = φ̄+ θψ̄ − θ2F̄ .

and the superscript s in (2.4) takes values in {0, 1
2 , 1,

3
2 , . . .}. Here, we have also defined

J (s) =λα1λα2 . . . λα2sJα1α2...α2s , ∇ = λα∇α (2.5)

using the auxiliary commuting polarisation spinors, λαi , which keep track of the spin; and

∇αi are the standard supersymmetry invariant gauge-covariant derivatives. Their action

on the matter superfields of our theory is given by,

∇αΦ = DαΦ− iΓαΦ

∇αΦ̄ = DαΦ̄ + iΓαΦ̄ (2.6)

The explicit expressions for spin 0 operator and the first few spin-s currents are,

J0 = Φ̄Φ

Jα = Φ̄∇αΦ−∇αΦ̄Φ = Φ̄DαΦ−DαΦ̄Φ− 2iΦ̄ΓαΦ

Jαβ = Φ̄∇α∇βΦ− 2∇αΦ̄∇βΦ +∇α∇βΦ̄Φ

Jαβγ = Φ̄∇α∇β∇γΦ− 3∇αΦ̄∇β∇γΦ− 3∇α∇βΦ̄∇γΦ +∇α∇β∇γΦ̄Φ

(2.7)

In the free limit of the theory i.e. λ → 0, each of these supercurrents, J (s) with s 6= 0,

satisfies the conservation equation

Dα
(

∂

∂λα
J (s)

)
= 0 (2.8)

and constitutes two component conserved current operators {J (s), J (s+ 1
2

)} in its θ expan-

sion [61]. At finite λ, the conservation equation (2.8) is violated at order 1
N by double trace

operators for s ≥ 2 [1, 61].
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In this article, we are interested in the scalar operator J0(θ, x). There is no conservation

equation associated with this operator and it constitutes 2 scalar and 1 spin half operator

as follows

J (0)(θ, x) = Jb0(x) + θαΨα(x)− θ2Jf0 (x) (2.9)

where

Jb0(x) = φ̄φ(x), Ψα(x) = (φ̄ψα + ψ̄αφ)(x), Jf0 (x) = ψ̄ψ(x). (2.10)

In the subsequent sections, we compute the 2 and 3-point functions of the J (0) operator

and two component of the 4-point function.

3 Correlation functions

In this section, we compute the two and three point correlation function of the J0(θ, p)

operator in momemtum space. Two of the main ingredients for these computations are the

exact propagator (3.2) and the renormalized four point vertex for the fundamental super-

field Φ(θ, p) (ν4 in (3.3)). These were computed in [27] for a more general class of theories

with N = 1 supersymmetry which can be thought of as one parameter3 deformation of the

N = 2 theory of interest in this paper. Below, we list these results for our N = 2 theory,

conveniently stated in term of the exact quantum effective action

S = S2 + S4 ,

S2 =

∫
d3p

(2π)3
d2θ1d

2θ2

[
Φ̄(θ1,−p)e−θ

α
1 pαβθ

β
2 Φ(θ2, p)

]
,

S4 =
1

2

∫
d2p

(2π)3

d2q

(2π)3

d2k

(2π)3
d2θ1d

2θ2d
2θ3d

2θ4[
ν4(θ1, θ2, θ3, θ4; p, q, k)Φi(θ1,−(p+ q))Φ̄i(θ2, p)Φ̄

j(θ3, k + q)Φj(θ4,−k)

]
(3.1)

The quadratic part of the effective action receives no quantum corrections at large N in

the N = 2 theory. The propagator is thus tree level exact and given by

〈Φ̄(θ1, p1)Φ(θ2, p2)〉 = (2π)3δ3(p1 + p2)P(θ1, θ2; p1)

= (2π)3δ3(p1 + p2)
e−θ

α
1 θ
β
2 (p1)αβ

p2
1

.
(3.2)

The quartic superspace vertex, ν4, does receive quantum corrections and takes the follow-

ing form

ν4(θ1, θ2, θ3, θ4; p, q, k) = e
1
4
X.(p.θ12+q.θ13+k.θ43)F4(θ12, θ13, θ43; p, q, k),

with F4 = θ+
12θ

+
43

[
A(p, q, k)θ−12θ

−
43θ

+
13θ
−
13 + C(p, q, k)θ−12θ

+
13

+D(p, q, k)θ+
13θ
−
43

] (3.3)

3Quartic superpotential term: −π(ω−1)
κ

∫
d3x d2θ (Φ̄Φ)2. ω = 1 is the N = 2 point.
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θ1

θ2

θ3

θ4

p + q

p

k + q

k

Figure 1. Diagrammatic representation of the exact four point vertex, ν4 in (3.3).

Here, we have used following notation for the sum and the difference of Grassmann variables

to avoid clutter,

Xα =
n∑
i=1

θαi , θαin = θαi − θαn . (3.4)

The overall exponential factor is determined by supersymmetric Ward identity (3.8), while

the coefficient functions A, C and D require explicit computation and given by [27]

A(p, q, k) = −2πi

κ
e

2iλ
[
tan−1

(
2ks
q3

)
−tan−1

(
2ps
q3

)]
,

C(p, q, k) = D(p, q, k) =
2A(p, q, k)

(k − p)−
.

(3.5)

Note that the vertex ν4 was computed in a special momentum configuration, namely

q+ = q− = 0, (3.6)

while the momenta p and k are arbitrary.4 For this reason, our computation of correlation

functions will also be restricted configuration in which the momentum of J0 operators are

restricted to lie only in the 3-direction. Diagrammatically, the exact four point vertex will

be represented as in figure 1.

3.1 Constraints on correlation functions from supersymmetry

To begin with, let us study the constraints on an arbitrary correlation function due to

supersymmetry. As stated earlier, although our theory has N = 2 supersymmetry, we will

be working in N = 1 superspace following [27]. A general n-point correlation function

of N = 1 scalar superfield is constrained by supersymmetry and translation invariance to

take the following form [27]

〈O1(θ1, p1) . . .On(θn, pn)〉

= (2π)3δ3

(
n∑
i=1

pi

)
exp

[(
1

n

n∑
i=1

θi

)
.

(
n∑
i=1

pi.θi

)]
Fn({θin}; {pi}).

(3.7)

4We refer the reader to appendix A for conventions for labelling momenta.
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The δ3(
∑

i pi) follows from translation invariance while the overall Grassmann exponential

factor follows from invariance under N = 1 supersymmetry. Note that the function Fn
above only depend on the differences of the Grassmann coordinates. Following [27], the

form is easily derived as follows

0 =

[
n∑
i=1

Q(i)
α

]
〈O1(θ1, p1) . . .On(θn, pn)〉

=

[
n∑
i=1

(
∂

∂θαi
− (pi)αβθ

β
i

)]
〈O1(θ1, p1) . . .On(θn, pn)〉

=

(
n

∂

∂Xα
−
n−1∑
i=1

(pi)αβθ
β
in

)
〈O1(θ1, p1) . . .On(θn, pn)〉.

(3.8)

In the last line above, we used the momentum conservation to replace pn with
∑n−1

i=1 (−pi).
The factorized form in (3.7) follows as the solution to last equation in (3.8).

3.2 J0-vertex

Before proceeding to the computation of correlation functions, it would be useful to com-

pute an intermediate quantity, the J0-vertex. It is defined by stripping of the propagators

from 〈J0ΦΦ̄〉 as follows

〈J0(θ1, p1)Φ(θ2, p2)Φ̄(θ3, p3)〉 = (3.9)∫
d3p′2
(2π)3

d3p′3
(2π)3

d2θ′2d
2θ′3

[
〈J0(θ1, p1)Φ(θ′2, p

′
2)Φ̄(θ′3, p

′
3)〉verP(θ′2, θ2;−p2)P(θ′3, θ3; p3)

]
and satisfies the same Ward identity as a three point function (3.7).

The vertex receives contribution both from the free propagation of the fundamental

field as well as from the interaction vertices in the theory. The free part vertex is simply

proportional to the momentum and the Grassmannian δ-functions while the interacting

part of the vertex can be computed from the exact ν4 vertex. Figure 2 shows the rele-

vant diagrams.

〈J0(θ1,p)Φ(θ2, r)Φ̄(θ3,s)〉ver = 〈J0(θ1,p)Φ(θ2, r)Φ̄(θ3,s)〉ver,free

+〈J0(θ1,p)Φ(θ2, r)Φ̄(θ3,s)〉ver,int

where

〈J0(θ1,p)Φ(θ2, r)Φ̄(θ3,s)〉ver,free = (2π)3δ3(p+r+s) ν3,free(θ12,θ32;p,s)

= (2π)3δ3(p+r+s)θ+
32θ
−
32θ

+
12θ
−
12

and

〈J0(θ1,p)Φ(θ2, r)Φ̄(θ3,s)〉ver,int

= (2π)3δ3(p+r+s)

[∫
d3q

(2π3)
d2θad

2θb P(θ1,θa;q+p)P(θb,θ1;q)ν4(θa,θb,θ2,θ3;q,p,s)

]
= (2π)3δ3(p+r+s)e

1
3
θ123.(p.θ12+s.θ32)ν3,int(θ12,θ32,p,s) (3.10)

– 7 –
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(θ1, p)

θa

θb

θ2

θ3

p + s

s

p + q

q

= +(θ1, p)

θ2

θ3

p + s

s

(θ1, p)

s

p + s

θ2

θ3

Figure 2. Solid circle on the l.h.s. represents the full exact J0 vertex and the first diagram

on r.h.s. is the free vertex. The second diagram on r.h.s. includes all the interactions which are

accounted by insertion of exact 4 point vertex (3.3) connected to the external J (0) operator using

the exact propagator.

Explicit computation of the above integral, with constraint p+ = p− = 0 following from

the (3.6), leads to the following result for the full J0-vertex factor

ν3 = (ν3,free + ν3,int) (θ12, θ32, p, s)

=
1

2s+

[
1− e2iλ tan−1

(
2ss
p3

)]
θ+

32θ
+
12 +

1

2p3

(
e

2iλ tan−1
(

2ss
p3

)
−iπλsgn(p3) − 1

)
θ+

32θ
−
32

+

(
1 +

1

6

(
−4 + e

2iλ tan−1
(

2ss
p3

)
+ 3e

2iλ tan−1
(

2ss
p3

)
−iπλsgn(p3)

))
θ+

32θ
−
32θ

+
12θ
−
12

(3.11)

The J0-vertex computed above will be useful in further computations of 2 and 3 point

functions of the J0 operator.

3.3 〈J0J0〉 correlation function

The 2 point function can be straightforwardly computed from the J0-vertex determined in

the previous section by combining the exact vertex on one side with the free vertex on the

other side. Figure 3 shows the relevant diagram which leads to the following integral for

the two point function

〈J0(θ1,p)J0(θ2, r)〉

= (2π)3δ3(p+r)

[
N

∫
d3q

(2π)3
d2θad

2θb ν3(θ1,θa,θb;p,−p−q,q)P(θa,θ2;q+p)P(θ2,θb;q)

]
(3.12)

Again, the collinear constraint (3.6) restricts the momenta p and s to lie in 3-direction.

Computing the integrals with this constraint leads to the following result

〈J0(θ1, p)J0(θ2, r)〉 = (2π)3δ3(p+r)N
e−θ1.p.θ2

8|p3|

(
sin(πλ)

πλ
+ |p3|δ2(θ12)

1− cos(πλ)

πλ

)
(3.13)

The result can be straightforwardly generalized for arbitrary external momenta to give

〈J0(θ1, p)J0(θ2, r)〉 = (2π)3δ3(p+ r)N
e−θ1.p.θ2

8|p|

(
sin(πλ)

πλ
+ |p|δ2(θ12)

1− cos(πλ)

πλ

)
(3.14)

– 8 –
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θa

θb

(θ1, p)

p + q

q

(θ2, − p)

θ2

θ2

Figure 3. The full J0 2 point function is obtained by connecting the exact J0-vertex (solid circle)

to the free vertex (cross) with exact propagators (thick line).

The non vanishing component correlators can easily be read off to give

〈Jb0(p)Jb0(−p)〉 =
N

8|p|
sin(πλ)

πλ

〈Jf0 (p)Jf0 (−p)〉 = −N |p|
8

sin(πλ)

πλ

〈Ψα(p)Ψβ(−p)〉 =
N

8

(
pαβ
|p|

sin(πλ)

πλ
+ Cαβ

1− cos(πλ)

πλ

)
〈Jb0(p)Jf0 (−p)〉 = −N

8

(1− cos(πλ))

πλ

(3.15)

Let us compare the above two-point functions with the corresponding two-point func-

tions in the regular fermionic and regular bosonic theories studied in [5] and [31] respec-

tively.

Note that as opposed to the regular bosonic and regular fermionic theories studied

in [5] and [31], the λ dependence of the two-point function of Jb0 and Jf0 operators is the

same as that of the higher spin currents in the non-supersymmetric cases. Further, using

the double trace factorization argument of [21] relating the two-point function of current

operators in the supersymmetric and the above mentioned non-supersymmetric theories, we

know that the two-point function of all the current operators in our supersymmetric theory

is exactly the same as those of the corresponding regular boson/fermion theory. Thus, we

see that in our theory the two-point function of scalar operators is the same as that for

the higher spin current operators. The reason for this is supersymmetry. Though we are

working in N = 1 superspace language, our theory has underlying N = 2 supersymmetry

under which the scalar operators Jb0 , J
f
0 belong to the same supersymmetry multiplet as

the spin 1 conserved current and thus the two-point function of the two are thus related

by supersymmetry.

3.4 〈J0J0J0〉 correlation function

The full 3-point function can be constructed by combining three J0 vertices with exact

propagators. There are two such diagrams shown in figure 4. Each of these two diagrams

can easily be shown to be cyclically symmetric and related to each other by pair-exchange

of any two J0 insertions. An explicit computation of the diagram shows that each of the
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(θ1, p) (θ2, − p − s)

(θ3, s)

p + q

q −s + q

θa

θb θc

θd

θeθf

(θ3, s) (θ2, − p − s)

(θ1, p)

p + s

q −p + q

θa

θb θc

θd

θeθf

(θ1, p) ↔ (θ3, s)

(A) (B)
Figure 4. The full J0 3 point function is obtained by connecting three exact J0-vertices with exact

propagators. There are two such diagrams, as shown above, which turn out to be equal.

diagrams is completely symmetric (cyclic as well as under pair-exchange) by itself and the

two diagrams are equal. The full 3 point function is then just twice the contribution of the

first diagram which we write down below.

〈J0(θ1, p)J0(θ2, r)J0(θ3, s)〉 = (2π)3δ3(p+ r + s)G3(θ1, θ2, θ3; p, s), (3.16)

where

G3(θ1, θ2, θ3; p, s) = 2N

∫
d3q

(2π)3

(
f∏
i=a

d2θi

)[
ν3(θ1, θa, θb; p,−p− q)

× ν3(θ2, θc, θd;−p− s, s− q) ν3(θ3, θe, θf ; s,−q)

× P(θa, θf ;−q)P(θa, θf ; s− q)P(θc, θb;−p− q)
]

The overall factor of 2 in the above equation is from the sum over two triangle diagrams in

figure 4 which turn out to be equal while the factor of N results from index contractions.

Explicit computation of the above integrals in the collinear limit of the external momenta

gives the following result

G3(θ1,θ2,θ3;p,s) = e
1
3
θ123.(p.θ12+s.θ32)F3(θ12,θ32,p,s),

F3(θ12,θ32,p,s) = 2N
(
A1+A2θ

+
12θ
−
12+A3θ

+
32θ
−
32+A4θ

+
12θ
−
32+A5θ

+
32θ
−
12+A6θ

+
12θ
−
12θ

+
32θ
−
32

)
(3.17)

The overall factor of 2 in the expression of F3 above is from the sum over two triangle

diagrams which turn out to be equal. The coefficients {Ai} are given by

A1 =
sin(2πλ)

2πλ

1

8|p3||s3||p3+s3|
,

A2 =−i (sin(πλ))2

πλ

1

8|s3||p3+s3|
,

A3 =−i (sin(πλ))2

πλ

1

8|p3||p3+s3|
,
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A4 =− 1

48p3s3(p3+s3)

[
sin(2πλ)

2πλ

(
−(p3+2s3)sgn(p3)+(2p3+s3)sgn(s3)+(p3−s3)sgn(p3+s3)

)
−3i

sin2(πλ)

πλ
sgn(p3+s3)

(
|p3+s3|−(|p3|+|s3|)

)]
A5 =

1

48p3s3(p3+s3)

[
sin(2πλ)

2πλ

(
−(p3+2s3)sgn(p3)+(2p3+s3)sgn(s3)+(p3−s3)sgn(p3+s3)

)
+3i

sin2(πλ)

πλ
sgn(p3+s3)

(
|p3+s3|−(|p3|+|s3|)

)]
A6 =− sin(2πλ)

2πλ

[
1

72p3s3(p3+s3)

(
(p3−s3)(2p3+s3)sgn(p3)−(p3+2s3)(p3−s3)sgn(s3)

−(p3+2s3)(2p3+s3)sgn(p3+s3)

)]
(3.18)

The non vanishing components of the three point functions can easily be extracted

from (3.17) and (3.18) to be

〈Jb0(p3)Jb0(s3)Jb0(−p3−s3)〉= sin(2πλ)

2πλ

N

8|p3s3(p3+s3)|

〈Jf0 (p3)Jf0 (s3)Jf0 (−p3−s3)〉= −iN
8

(sin(πλ))2

πλ

〈Jb0(p3)Jb0(s3)Jf0 (−p3−s3)〉= (sin(πλ))2

πλ

(−iN)

8|p3s3|

〈Jf0 (p3)Jf0 (s3)Jb0(−p3−s3)〉= sin(2πλ)

2πλ

N

16|p3+s3|

〈Ψ+(p3)Ψ−(s3)Jb0(−p3−s3)〉= N

16pss3(p3+s3)

(
sin(2πλ)

2πλ

(
|p3|−|s3|−(p3−s3)sgn(p3+s3)

)
−i (sin(πλ))2

πλ
sgn(p3+s3)(|p3+s3|−|p3|+|s3|)

)
〈Ψ+(p3)Ψ−(s3)Jf0 (−p3−s3)〉= N

16pss3

(
sin(2πλ)

2πλ

(
|p3+s3|−|p3|−|s3|

)
+i

(sin(πλ))2

πλ
sgn(p3+s3)

(
(p3−s3)|p3+s3|−|p3|+|s3|

))
(3.19)

Notice that in the above result for 3 point functions, two different functional forms

of λ dependences appear, namely sin(2πλ)
2πλ and sin2 πλ

πλ . The two of them differ in a crucial

way. The first one has a finite λ → 0 limit and is invariant under parity under which λ

is odd. The second is odd under parity and vanishes in λ → 0 limit. This result thus

provides some support for the conjecture made in [61] that the three-point functions in

N = 1 superconformal theories with higher spin symmetry have exactly one parity even

and one parity odd structure. The results (3.14) and (3.18) for the 2 and 3-point are clearly

invariant under the duality transformation (2.3).

4 Four point functions

In the previous section, we evaluated the 3-point functions involving the J0 operator in

the N = 2 supersymmetric theory by computing the required vertex. However, the direct
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Figure 5. Schematic for the conformal block expansion.

computation of the four-point function of J0 operator following the same technique has

proven to be intractable in our attempt till now. We describe our attempt to evaluate this

four-point function in momentum space through the required vertices in the appendix D.

In this section, we determine the four-point correlators of the Jb0 and Jf0 operators

using a novel method developed in [55], which we briefly review below. Note that we will

be evaluating the 4-point correlation function in the position space as in [55].

Consider the position space four-point correlator of the identical external operators

with conformal dimensions ∆. The function A which is known as the reduced correlator is

defined as follows

〈O(x1)O(x2)O(x3)O(x4)〉 =
1

x2∆
12

1

x2∆
34

A(u, v) =
1

x2∆
13

1

x2∆
24

A(u, v)

u∆
. (4.1)

Here, u, v are the standard cross-ratios:

u =

(
|x12||x34|
|x13||x24|

)2

, v =

(
|x14||x23|
|x13||x24|

)2

.

The conformal block expansion expressed in terms of the reduced correlator A(u, v) is

given as

A(u, v)

u∆
=

1

u∆

∑
k

C2
OOOkG∆k,Jk(u, v) (4.2)

where G∆k,Jk(u, v) is known as the conformal block corresponding to the operator Ok with

scaling dimension ∆k and spin Jk (see figure 5).

In the supersymmetric four point functions of J0 operators, the relevant exchanges are

schematically shown in figure 6.

4.1 Review of the double discontinuity technique

In [55], the authors determine the four-point correlation functions of the scalar operator

in the non-supersymmetric scalar/fermion coupled to Chern Simons gauge field i.e. quasi-

bosonic and quasi-fermionic theory respectively. In order to obtain the required four-point

functions, the authors utilize the inversion formula which relates the double discontinuity

to the OPE coefficients [58]. The authors first prove an interesting theorem that in the

large-N limit of a CFTd, the double discontinuity constrains the four-point correlator up
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Figure 6. Schematic for the exchanges relevant in the supersymmetric scalar correlators.

to three contact terms in AdSd+1. Suppose there are two solutions G1 and G2 to the

crossing equation with the same double discontinuity then they are related by the contact

interactions in the AdS as follows

G1 = G2 + c1G
AdS
φ4 + c2G

AdS
(∂φ)4 + c2G

AdS
φ2(∂3φ)2 (4.3)

Furthermore, the authors showed5 that for the four-point function of single trace scalar

operator in Chern-Simons coupled fundamental scalar/fermion theories these AdS4 contact

terms do not contribute and hence the double discontinuity completely determines the four-

point functions.

Consider the normalized three point functions of the operators Oi(i = 1, 2, 3).6 In [3,

4, 55], it was noticed that the square of this normalized coefficients in the quasi-fermionic

theories (C2
s,qf ) are related to that of a single free Majorana fermion (C2

s,ff ) as follows

C2
s,qf =

1

Ñ
C2
s,ff (4.4)

where Ñ is related to the rank of the gauge group N and coupling λqf by,

Ñ = 2N
sin(πλqf )

πλqf
. (4.5)

Note that the normalized coefficients of quasi-fermionic theory and free fermionic theory

are proportional to each other as given in (4.4). Hence, the double discontinuity of the

scalar four point function in the free fermionic theory is same as that of the quasi-fermionic

theories up to an overall factor which depends only on N and λqf .

On the other hand, the square of the normalized coefficients of the quasi-bosonic

theories (C2
s,qb) are related to the theory of a free real boson (C2

s,fb) as follows

C2
s,qb =

1

Ñ
C2
s,fb s > 0, (4.6)

C2
0,qb =

1

Ñ

1

(1 + λ̃2
qb)
C2

0,fb =
1

Ñ
C2

0,fb −
1

Ñ

λ̃2
qb

(1 + λ̃2
qb)
C2

0,fb, (4.7)

5via explicit numerical computation.
6For the conventions of normalization correlation functions please refer to appendix C.
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where Ñ and λ̃ are related to N and coupling λqb as

Ñ = 2N
sin(πλqb)

πλqb
, (4.8)

λ̃qb = tan

(
πλqb

2

)
. (4.9)

Note that unlike the normalized coefficients of the quasi-fermionic theories, in the quasi-

bosonic theories, the spin s = 0 and s 6= 0 coefficients given above have different factors

in front of their free bosonic counterparts. In order to account for the second term on the

r.h.s. of (4.7) one needs to add a conformal partial wave with spin-0 exchange which is

given by the well known D̄-function with the correct pre-factor [55]. We now proceed to

employ this technique for the supersymmetric case.

4.2 Double discontinuity and the supersymmetric correlators

Here, we utilize the technique described above to compute the four-point correlators for

spin-0 operators Jb0 and Jf0 in our supersymmetric theory. Since we are considering corre-

lators of identical external operators,7 only even spin operators will contribute to the block

expansion.

4.2.1 〈Jb
0(x1)J

b
0(x2)J

b
0(x3)J

b
0(x4)〉

The four point function of the Jb0 operators is expressed as follows8

〈Jb0(x1)Jb0(x2)Jb0(x3)Jb0(x4)〉 = disc +
1

x2
13x

2
24

F (u, v). (4.10)

Here, disc corresponds to the disconnected part given by

disc =
1

x2
12x

2
34

+
1

x2
13x

2
24

+
1

x2
14x

2
23

(4.11)

while F (u, v) is given by

F (u, v) =
1

u

∑
k

C2
OOOkG∆k,Jk(u, v) (4.12)

In order to determine the double discontinuity and hence the 4-point functions in the

supersymmetric case using the method described above, we need the normalized 3-point

function coefficients for the operators running in OPE of two Jb0 operators. For the case of

spin 0 operators, i.e. Jb0 , J
f
0 , these normalized coefficients can directly be obtained from our

explicit computations for the 2 and 3-point functions in (3.15), (3.19). For the contribution

of higher spin operators (Jbs , J
f
s ), these coefficients can be computed by relating to them

7Although we have all the three-point correlators required, we do not compute mixed correlators such

as 〈Jb0Jb0Jf0 J
f
0 〉 here, currently a free theory analogue for such correlators is not clear. We reserve this issue

for future investigations.
8Note that, it is useful to redefine operators such that the normalization is fixed to be 〈J0J0〉 = x−2∆ [55].

We work with this normalization in this section.
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to the regular boson (fermion) theories using the large N double trace factorization (see

e.g. [21]) of correlation functions. We relegate the computation of these to appendix C and

only collect the final result here.

For scalar operators Jb,f0 , we have

C
2(BBB)
0,susy =

1

Ñ

(1− λ̃2)2

(1 + λ̃2)2
C2

0,fb,

C
2(BBF )
0,susy =

8

π2

λ̃2

Ñ(1 + λ̃2)2
C2

0,fb.

For the higher spin operators, Jb,fs (s ∈ (2, 4, 6, . . .)), we get

C2(BBB)
s,susy =

1

Ñ(1 + λ̃2)2
C2
s,fb s > 0,

C2(BBF )
s,susy =

λ̃4

Ñ(1 + λ̃2)2
C2
s,fb s > 0.

(4.13)

Note that we may re-express the spin 0 coefficient C
2(BBB)
0,susy above as follows

C
2(BBB)
0,susy =

1

Ñ(1 + λ̃2)2
C2

0,fb +
λ̃4 − 2λ̃2

Ñ(1 + λ̃2)2
C2

0,fb. (4.14)

Observe that C
2(BBB)
s,susy in (4.13) and the first term of C

2(BBB)
0,susy in (4.14) have the same pre-

factor. This is similar to the case of the quasibosnic case given in (4.6) and (4.7) reviewed

earlier. Consider, now, the double discontinuity of the conformal blocks

dDisc [G∆,J (1− z, 1− z̄)] = sin2
(π

2
(∆− J − 2∆φ)

)
G∆,J(1− z, 1− z̄) (4.15)

where ∆φ being the conformal dimension of the external operator. Notice that for ∆ =

2∆φ+J+2m, the double-discontinuity vanishes. Therefore, for the double-trace exchange,

the double-discontinuity vanishes. That is why the OPE of single-trace operators are

sufficient to construct a function that has a double-discontinutiy equal to the four-point

correlator. However, notice that the single-trace exchange JFF0 with quantum numbers

(∆, J) = (2, 0) also vanish. Coincidently, the double-trace operator [Jb0 , J
b
0 ]0,0 also has the

same quantum numbers.9 By inspection, we can see that the function below has the right

double-discontinuity

F (u, v) =
1 + λ̃4

Ñ
(

1 + λ̃2
)2 ffb (u, v)

− 8

Ñ

2λ̃2

π5/2
(

1 + λ̃2
)2

[
D̄11 1

2
1
2

(u, v) + D̄11 1
2

1
2

(v, u) +
1

u
D̄11 1

2
1
2

(
1

u
,
v

u

)]
+ c1G

AdS
φ4 + c2G

AdS
(∂φ)4 + c3G

AdS
φ2(∂3φ)2 (4.16)

9[O,O]n,l = O�n∂µ1∂µ2 · · · ∂µlO − traces where O is a single-trace operator.
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where, the function ffb(u, v) is the free bosonic part given by.10

ffb(u, v) = 4
1 + u1/2 + v1/2

u1/2v1/2
(4.17)

The contact terms are explicitly provided in (E.18). Note that c1 contains contribution

from both single-trace and double-trace operators which we have separated in the following

equation as a1 and c̃1

F (u, v) =
1 + λ̃4

Ñ
(

1 + λ̃2
)2 ffb (u, v)

− 8

Ñ

2λ̃2

π5/2
(

1 + λ̃2
)2

[
D̄11 1

2
1
2

(u, v) + D̄11 1
2

1
2

(v, u) +
1

u
D̄11 1

2
1
2

(
1

u
,
v

u

)]
+ a1D̄1111 (u, v) + c̃1G

AdS
φ4 + c2G

AdS
(∂φ)4 + c3G

AdS
φ2(∂3φ)2 (4.18)

To determine a1 we take the OPE limit. In the OPE limit11 the conformal blocks behaves

as follow [63]

G∆,J(u, v) ≈ J !

2J(h− 1)J
u∆/2Ch−1

J

(
v − 1

2
√
u

) (
here h =

d

2
=

3

2

)
(4.19)

For (∆, J) = (2, 0) i.e. for Jf0 exchange, we have G2,0(u, v) ≈ u in the OPE limit. Since,

we are interested in the single-trace operator Jf0 , hence, we have

F (u, v) ≈ C2(BBF )
0,susy (4.20)

In the OPE limit, we have for φ4 contact term

D̄1111(u, v) ≈ 2 (4.21)

By only looking at the single-trace contributions we obtain

a1 =
C

2(BBF )
0,susy

2
(4.22)

Now, we focus our attention to double-trace operators. Coefficient c̃1 can now be deter-

mined by looking at the double-trace trace operator [Jb0J
b
0 ]0,0. Since, (∆, J) = (2, 0) for

the double-trace is same as that of the single-trace operator Jf0 , we use the same method

to obtain c̃1.12

10Note that we may have used two separate tree-level φ3 exchange Witten diagrams corresponding to

∆ = 1 and ∆ = 2 bulk exchange with arbitrary coefficients instead [62]. But Witten diagrams them-

selves admitting an expansion in contact terms would compound the problem. The D̄-functions, therefore,

represents the choice with the least number of contact terms and the right double-discontinuity.
11OPE limit: u→ 0, v → 1,with (v − 1)/u1/2 fixed.
12The procedure above thus determines the coefficient c̃1 of the first AdS4 contact Witten diagram in

term of the contribution of operators Jf0 and [Jb0J
b
0 ]0,0. We collect the formal relation below and leave the
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4.2.2 〈Jf
0 (x1)J

f
0 (x2)J

f
0 (x3)J

f
0 (x4)〉

The four point function of Jf0 is given by the following expression

〈Jf0 (x1)Jf0 (x2)Jf0 (x3)Jf0 (x4)〉 = disc +
1

x4
13x

4
24

G(u, v) (4.23)

where, “disc” denotes the disconnected piece given by

disc =
1

x4
12x

4
34

+
1

x4
13x

4
24

+
1

x4
14x

4
23

(4.24)

while F (u, v) is given by

G(u, v) =
1

u

∑
k

C2
OOOkG∆k,Jk(u, v) (4.25)

We now proceed to determine the four-point function Jf0 using the same technique as

above. The relevant normalized 3-point function coefficient squared are collected below13

(see appendix C for details)

C2(FFF )
s,susy =

1

Ñ(1 + λ̃2)2
C2
s,ff , (4.26)

C2(FFB)
s,susy =

λ̃4

Ñ(1 + λ̃2)2
C2
s,ff , (4.27)

where C2
s,ff is the normalized three point functions for free fermionic theory. Note that the

3-point functions of the spin-0 exchanges given by C
2(FFF )
0,susy and C

2(FFB)
0,susy are contact terms

in this case which, therefore, may be set to zero. This implies that the above relation is

trivially satisfied for the spin s = 0 case as the free fermionic coeffcient C2
0,ff = 0. Hence,

both the s = 0 and s 6= 0 coefficients in this case come with the same pre-factor. This

implies that the function which has the correct double discontinuity is given by

G(u, v) =
1 + λ̃4

Ñ(1 + λ̃2)2
fff (u, v) + c̄1G

AdS
φ4 + c̄2G

AdS
(∂φ)4 + c̄3G

AdS
φ2(∂3φ)2 , (4.28)

where fff (u, v) is the free fermionic part given by

fff (u, v) =
1 + u5/2 + v5/2 − u3/2(1 + v)− v3/2(1 + u)− u− v

u3/2v3/2
(4.29)

explicit computation of these OPE coefficients for future work.

c̃1 =
1

2

(
[C

2(BBB)
0,susy ](Jb

0)2 −
1

Ñ

4λ̃2

(1 + λ̃2)2π2
C2

0,fb −
1 + λ̃4

Ñ(1 + λ̃2)2
[C2

0,fb](Jb
0)2

)

Note that computationally [C̃
2(BBB)
0,susy ](Jb

0)2 =
〈Jb

0J
b
0(Jb

0)2〉
〈Jb

0J
b
0〉
√
〈(Jb

0)2(Jb
0)2〉

, the OPE coefficient involving double trace

operator (Jb0)2 is as difficult as computing 4-point function. However, it may be of use to write contact

term coefficients in terms of these ope coefficient.

13Note that CFFFs,susy =
〈Jf

0 J
f
0 J

f
s 〉

〈Jf
0 J

f
0 〉
√
〈Jf

s J
f
s 〉

and CFFBs,susy =
〈Jf

0 J
f
0 J

b
s〉

〈Jf
0 J

f
0 〉
√
〈Jb

sJ
b
s〉

.
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The coefficients c̄i can be related to OPE coefficients involving double trace operator

as discussed in the previous section. We leave this for future work.14

5 Summary and discussion

In this article, we have focused our attention on the N = 2 U(N) Chern Simons theory cou-

pled with a single fundamental chiral multiplet in the ’t Hooft large N limit and presented

the computations for the exact 2 and 3-point functions for the scalar supermultiplet. The

result are invariant under duality transformation (2.3) and can be seen as an independent

confirmation of the duality. For the case of 4-point function, though we are not able to

perform the direct computation for the full scalar supermultiplet, we are able to use a

combination of techniques from conformal bootstrap, factorization of 3-point functions via

double trace interactions along with the self duality of our theory to determine two of the

component 4 point function, namely 〈Jb0Jb0Jb0Jb0〉 and 〈Jf0 J
f
0 J

f
0 J

f
0 〉, up to 3 undetemined

coefficients. These undertermined coefficients can be fixed in terms of the OPE coefficients

involving specific double trace operators. We plan to report on this in near future.

Though we have focused on the N = 2 theory in this paper, the approach used to

compute the four point function can be straightforwardly applied to the one parameter

deformed N = 1 theory. These differ from our N = 2 theory only via a double trace term

in N = 1 superspace.15 The 2 and 3-point functions of the two theories can thus be related

via the double trace type factorization also used in this paper.

The approach used in this paper, following [55], to compute the Jb0 and Jf0 4-point

functions relies crucially on the fact that the double discontinuity of the 4-point function

in the interacting theory is almost the same as that of the free theory. We could thus write

down the full interacting 4-point function in term of the free 4-point function. For the case

of mixed 4-point functions, e.g. 〈Jb0Jb0J
f
0 J

f
0 〉, this approach is not directly useful as a free

theory analogue of such mixed correlator is not available since bosons and fermions decouple

from each other the mixed 4 point correlators vanish in λ → 0 limit. One approach that

might be useful in this regard is to first study the single trace OPE coefficients in the N = 1

deformed theory (for general w) in λ = 0 limit. We expect this limit to be significantly

simpler then N = 2 theory and one can compute not only the exact 2, 3 point functions

(see e.g. [59]) but perhaps even the exact 4-point function (we expect it to be non vanishing

for w 6= 0) of J0 operators in this limit since the only interaction term present is a double

trace term. If this indeed turn out to be the case, one can compare the double discontinuity

of mixed Jb0 , J
f
0 correlators in N = 2 theory with this limit and see these are closely related

in a similar way as in [55] and in this paper for the identical scalar 4-point function.

14The coefficient c̄1 can be evaluated easily and is given by

c̄1 =
3π1/2

8P
(2)
1 (0, 0)

(
[C̃

2(FFF )
0,susy ]

(J
f
0 )2
− 1 + λ̃4

Ñ(1 + λ̃2)2
[C̃2

0,ff ]
(J

f
0 )2

)

where P
(2)
1 (0, 0) is defined in appendix E.2.

15δS = πw
κ

∫
d3xd2θ(Φ̄Φ)2.
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As we have noticed in this paper, the coefficients {ci} can be determined in term of the

normalized 3-point function coefficients of specific double trace operator. An interesting

property of the AdS4 contact Witten diagrams is that their series expansions contain Log

terms. This implies that the coefficients {ci} not only contribute to the OPE coefficients

of double trace terms but also to their leading anomalous dimensions as well, but in a

coordinated way. The absence of Log term in the free 4-point function along with the van-

ishing of these coefficients for quasi-bosonic and quasi-fermionic theories [55] thus means

that these double trace operators in the leading large-N order do not receive corrections to

there anomalous dimensions in these theories. Whether this is also the case in the super-

symmetric theory studied in this paper, requires the computation of anomalous dimensions

of these double trace operators which we leave for future investigation.
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A Notations and conventions

Metric : ηµν = diag(−1, 1, 1)

Gamma Matrices : (γµ) β
α = (σ2,−iσ1, iσ3) β

α ⇒ {γµ, γν} = −2ηµνI2

Charge Conjugation : Cαβ = −Cβα =

(
0 −i
i 0

)
= −Cαβ = Cβα

Raising-Lowering : ψα = Cαβψβ ; ψα = −Cαβψβ = ψβCβα

⇒ ψ+ = iψ− ; ψ− = −iψ+

Vector ↔ Bi-spinor : pαβ = pµ(γµ)αβ =

(
p0 + p1 p3

p3 p0 − p1

)
=

(
p+ p3

p3 −p−

)
Squared Grassmann variables : θ2 =

1

2
θαθα, d

2θ =
1

2
dθαdθα
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Superspace integrals :

∫
dθ = 0,

∫
dθ θ = 1∫

d2θ θ2 = −1,

∫
d2θ θαθβ = Cαβ

Grassmann δ-function : δ2(θ) = −θ2

Superfields : Φ = φ+ θψ − θ2F, Φ̄ = φ̄+ θψ̄ − θ2F̄

Φ̄Φ = φ̄φ+ θα
(
φ̄ψα + ψ̄αφ

)
− θ2

(
F̄ φ+ φ̄F + ψ̄ψ

)

B Component 3 point functions

In this appendix, we write down the component 3 functions abstractly in term of the

functions {Ai} appearing in form of full superspace 3 point function (3.17) determined by

supersymmetric Ward identity.

〈Jb0(p)Jb0(−p− s)Jb0(s)〉 = 2A1

〈Jf0 (p)Jf0 (−p− s)Jf0 (s)〉 = 2(A3p
2
3 + s3(−A4p3 −A5p3 +A2s3))

〈Jb0(p)Jf0 (−p− s)Jb0(s)〉 = 2(A2 +A3 +A4 +A5)

〈Jf0 (p)Jb0(−p− s)Jf0 (s)〉 =
2

9
(9A6 + (p3 − s3)(3A4 − 3A5 +A1p3 −A1s3))

〈Ψ+(p)Jb0(−p− s)Ψ−(s)〉 = −2

3
(3A5 +A1(−p3 + s3))

〈Ψ+(p)Jb0(−p− s)Ψ−(s)〉 = −2

9
(−9A6 + p3(−3(3A3 +A4 + 2A5) + 2A1p3)

+ (9A2 + 3A4 + 6A5 + 5A1p3)s3 + 2A1s
2
3)

(B.1)

C 〈J0J0Js〉Tκ,N via double trace factorization

In this section, we will derive the expression for normalized 3-point coefficient used in

subsection 4.2 in the main text of the paper. The main idea is to use the fact the su-

persymmetric theory differs from the regular boson (fermion) theory only via double trace

interaction term involving the scalar and spin half operators. This allows one to use large N

factorisation to relate the 2 and 3-point function between the supersymmetric and regular

boson (fermion) theory.16

16From the diagrammatic point of view one might wonder as to how is possible to derive any such relation

since the supersymmetric theory contain more fields which can run in the internal loops of Feynman diagrams

in supersymmetric theory. It is easy to see that in these Chern-Simons vector models any diagrams which

has gauge boson converting into matter in the loops is suppressed in the large N ’t Hooft limit of interest

in this paper.
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Let us start by writing the action for our N = 2 theory in a way which makes it easier

to compare it with the regular boson (fermion) theory.

STκ,N =
iκ

4π
SCS(A) + Sb(φ,A) + Sf (ψ,A) + Sbf (φ, ψ)

where SCS(A) =

∫
d3x εµνρTr(Aµ∂νAρ − 2i

3
AµAνAρ)

Sb(φ,A) = Dµφ̄Dµφ , Sf (ψ,A) = −iψ̄γµDµψ,

Sbf (φ, ψ) =

∫
d3x

(
4π2

κ2
(φ̄φ)3 − 4π

κ
(φ̄φ)(ψ̄ψ)− 2π

κ
(ψ̄φ)(φ̄ψ)

)
.

(C.1)

Similarly, the action for regular boson (fermion) theory in term of these building blocks

can be written as follows

SBκ,N =
iκ

4π
SCS(A) + Sb(φ,A) +

λ6

3!N2
(φ̄φ)3

SFκ,N =
iκ

4π
SCS(A) + Sf (φ,A).

(C.2)

Note that the regular boson theory above has an extra parameter, λ6. To leading order in

the ’t Hooft large N limit, of interest in this paper, λ6 is exactly marginal while it develops

a non-trivial beta function at subleading orders. The question of beta function and fixed

points structure for this deformations have been studied in details in [24, 42, 59]. The

particular value of λ6 for the regular bosonic theory that will be relevant for us in this

paper is the one in supersymmetric theory, namely

λ6 = 24π2λ2. (C.3)

Henceforth, in this paper ‘regular boson theory’ should be understood as with this values

of λ6 coupling.

For notational convenience, we will use the subscripts Tκ,N ,Bκ,N and Fκ,N to refer to

quantities computed in the supersymmetric, regular boson (with (C.3)) and regular fermion

theory respectively. For later use, let us further define

S(BF)κ,N =
iκ

4π
SCS(A) + Sb(φ,A) + Sf (ψ,A) +

4π2

κ2

∫
(φ̄φ)3 . (C.4)

As discussed in section 2, our supersymmetric theory consists of a pair of approximately

conserved single trace higher spin operators at each value of half integer spin. At any

integers values ‘s′ of the spin, the two currents can be taken to be the ones existing in

theories Bκ,N and Fκ,N . We will refer to these current operators as Jbs and Jfs respectively.

The explicit expressions for these currents for low value of spins can be found in [1, 5, 31].
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Let us first consider 〈JbsJb0Jb0〉Tκ,N . Taylor expanding the double trace interaction terms

in the action, the path integral expression for the correlator can be written as follows

〈JbsJb0Jb0〉Tκ,N

=

∫
[DΦ] e−SBF

(
Jbs(p1)Jb0(p2)Jb0(p3) e

∫
d3q
(

4π
κ
Jb0(q)Jf0 (−q)+ 2π

κ
(ψ̄φ)(q)(φ̄ψ)(−q)

))
=
∞∑
n=0

1

n!

〈
Jbs(p1)Jb0(p2)Jb0(p3)

[∫
d3q
(

4π

κ
Jb0(q)Jf0 (−q)+

2π

κ
(ψ̄φ)(q)(φ̄ψ)(−q)

)]n〉
(BF)κ,N

≡
∞∑
n=0

1

n!

(
4π

κ

)n〈
Jbs(p1)Jb0(p2)Jb0(p3)

n∏
i=1

(∫
d3qi J

b
0(qi)J

f
0 (−qi)

)〉
(BF)κ,N

(C.5)

In the third line above we dropped the fermion double trace terms ((ψ̄φ)(φψ̄)) since they

do not contribute to the leading order result. The leading O(N) contribution from the last

line of (C.5) can be computed using large N factorization as we outline now. Let’s look at

the general n-th term in the sum〈
Jbs(p1)Jb0(p2)Jb0(p3)

n∏
i=1

(∫
d3qiJ

b
0(qi)J

f
0 (−qi)

)〉
(BF)κ,N

(C.6)

The leading O(N) contribution from this term comes from its factorization into a product

of (n+1) correlators, namely n 2-point functions and one 3-point function. Since SBF
doesn’t have any explicit interaction term between fermions and bosons, this can only

happen for even values of n (say n = 2m) in the ’t Hooft limit, in which case the factorized

contribution (schematically, suppressing the argument momenta) looks like

〈JbsJb0Jb0〉(BF)κ,N 〈J
b
0J

b
0〉n(BF)κ,N

〈Jf0 J
f
0 〉
n
(BF)κ,N

More precisely, there are three different type of such factorized contribution which are

represented in figure 7. The contribution from each of these type of factorization channels

is exactly the same.17 Carefully counting the numerical factor for each and summing up

gives the total contribution to be〈
Jbs(p1)Jb0(p2)Jb0(p3)

n∏
i=1

(∫
d3qiJ

b
0(qi)J

f
0 (−qi)

)〉
(BF)κ,N

= (n+ 1)〈Jbs(p1)Jb0(p2)Jb0(p3)〉(BF)κ,N

(
〈Jb0Jb0〉(BF)κ,N 〈J

f
0 J

f
0 〉(BF)κ,N

)n (C.7)

Now we further notice that the absence of explicit interaction terms between bosons

and fermions18 in the action SBF implies the following relations in the large N limit

〈Jb0(q)Jb0(−q)〉(BF)κ,N = 〈Jb0(q)Jb0(−q)〉Bκ,N
〈Jf0 (q)Jf0 (−q)〉(BF)κ,N = 〈Jf0 (q)Jf0 (−q)〉Fκ,N

〈Jbs(p1)Jb0(p2)Jb0(p3)〉(BF)κ,N = 〈Jbs(p1)Jb0(p2)Jb0(p3)〉Bκ,N

(C.8)

17This is because of the fact that the product 〈Jb0(q)Jb0(−q)〉〈Jf0 (q)Jf0 (−q)〉 is independent of the mo-

menta q.
18I.e. φ̄φψ̄ψ and φ̄ψφψ̄ terms.
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(A) (B)

(C)

Jb
0

<latexit sha1_base64="UYa0kMJuhDGip3wqICMGFELVIo4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4qmLbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPhzdRvPqHSPJEPZpRiENO+5BFn1FjJv+u6j2G3VHYr7gxkmXg5KUOOerf01eklLItRGiao1m3PTU0wpspwJnBS7GQaU8qGtI9tSyWNUQfj2bETcmqVHokSZUsaMlN/T4xprPUoDm1nTM1AL3pT8T+vnZnoKhhzmWYGJZsvijJBTEKmn5MeV8iMGFlCmeL2VsIGVFFmbD5FG4K3+PIyaVQr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQh18YMDhGV7hzZHOi/PufMxbV5x85gj+wPn8ATRXjkk=</latexit>

Jf
0

<latexit sha1_base64="SIrgt6mLKyDhrNhPiIGAlRm+cic=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4qmLbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPhzdRvPqHSPJEPZpRiENO+5BFn1FjJv+u6j1G3VHYr7gxkmXg5KUOOerf01eklLItRGiao1m3PTU0wpspwJnBS7GQaU8qGtI9tSyWNUQfj2bETcmqVHokSZUsaMlN/T4xprPUoDm1nTM1AL3pT8T+vnZnoKhhzmWYGJZsvijJBTEKmn5MeV8iMGFlCmeL2VsIGVFFmbD5FG4K3+PIyaVQr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQh18YMDhGV7hzZHOi/PufMxbV5x85gj+wPn8ATpnjk0=</latexit>

Jb
s<latexit sha1_base64="lduMQwu8DOPZ8E4IMY6cEEQ9rQk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4qmLbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPhzdRvPqHSPJEPZpRiENO+5BFn1FjJv+vqx7BbKrsVdwayTLyclCFHvVv66vQSlsUoDRNU67bnpiYYU2U4EzgpdjKNKWVD2se2pZLGqIPx7NgJObVKj0SJsiUNmam/J8Y01noUh7YzpmagF72p+J/Xzkx0FYy5TDODks0XRZkgJiHTz0mPK2RGjCyhTHF7K2EDqigzNp+iDcFbfHmZNKoV77xSvb8o167zOApwDCdwBh5cQg1uoQ4+MODwDK/w5kjnxXl3PuatK04+cwR/4Hz+AJppjow=</latexit>

Figure 7. Schematic representation of 3 type of diagrams contributing to the factorization via the

double trace term Jb
0J

f
0 in the action. The dots (crosses) connected with solid lines are factorized

correlation functions while the grey line connecting a dot with a cross means the corresponding

operators have same momenta.

Combining (C.5), (C.7) and (C.8) and summing the series over n, we arrive at the following

expression for the supersymmetric correlator

〈JbsJb0Jb0〉Tκ,N = 〈JbsJb0Jb0〉Bκ,N

[ ∞∑
n=0

((
4π

κ

)2

〈Jb0Jb0〉B〈J
f
0 J

f
0 〉Fκ,N

)n]2

(C.9)

Further using the relation [21]19

〈Jb0J
f
0 〉Tκ,N =

κ

4π

∞∑
n=1

((
4π

κ

)2

〈Jb0Jb0〉Bκ,N 〈J
f
0 J

f
0 〉Fκ,N

)n
, (C.10)

we can write (C.9) as

〈Jbs(p1)Jb0(p2)Jb0(p3)〉Tκ,N = 〈Jbs(p1)Jb0(p2)Jb0(p3)〉Bκ,N
[
1 +

4π

κ
〈Jb0J

f
0 〉Tκ,N

]2

. (C.11)

Following exactly the same procedure, one can also derive the following relation20

〈Jfs (p1)Jf0 (p2)Jf0 (p3)〉Tκ,N = 〈Jfs (p1)Jf0 (p2)Jf0 (p3)〉Fκ,N
[
1 +

4π

κ
〈Jb0J

f
0 〉Tκ,N

]2

. (C.12)

The correlators 〈Jfs (p1)Jf0 (p2)Jf0 (p3)〉Fκ,N and 〈Jbs(p1)Jb0(p2)Jb0(p3)〉Bκ,N are known

from [4] where the authors determined the all 3-point correlators of single trace opera-

tors in quasi bosonic and quasi fermionic theories in term of two abstract parameters λ̃

19This can also be derived in a very similar fashion using the large N factorization via double trace (Jb0J
f
0 )

interaction term in the SUSY lagrangian.
20We have difference in signs compared to [21] due to spinor convention difference.
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and Ñ using the constraints of weakly broken higher spin symmetry in these theories. The

result for the 2-point and 3-point functions relevant to our analysis are as follows

〈J̃0(x1)J̃0(x2)〉Bκ,N =
Ñ

1 + λ̃2
〈J̃0(x1)J̃0(x2)〉bos

〈J̃0(x1)J̃0(x2)〉Fκ,N =
Ñ

1 + λ̃2
〈J̃0(x1)J̃0(x2)〉fer

〈J̃s(x1)J̃s(x2)〉Bκ,N = 〈J̃s(x1)J̃s(x2)〉Fκ,N = Ñ〈J̃s(x1)J̃s(x2)〉bos

〈J̃s(x1)J̃0(x2)J̃0(x3)〉Bκ,N =
Ñ

1 + λ̃2
〈J̃s(x1)J̃0(x2)J̃0(x3)〉bos

〈J̃s(x1)J̃0(x2)J̃0(x3)〉Fκ,N =
Ñ

1 + λ̃2
〈J̃s(x1)J̃0(x2)J̃0(x3)〉fer

(C.13)

Here the subscript bos (fer) refers to the quantity computed in theory of a free single real

boson (Majorana fermion) respectively. Further, in above relation we denote the operators

with a tilde on top to emphasize that the normalization used in [4] is in general different

from the usual normalization used for these operators in Chern Simons vector models.

The exact relation between these operators normalizations and the abstract parameters

(λ̃, Ñ) to the parameter (λ,N) of the regular boson theory (Bκ,N ) were obtained in [5]

while the equivalent relations for the regular fermion theory (Fκ,N ) were obtained in [31]

via explicit computation of 3 point function for some of the low spin operators. These

relations are as follows

Bκ,N : (J̃0, J̃s) =

(
Jb0

1 + λ̃2
, Jbs

)
Fκ,N : (J̃0, J̃s) =

(
Jf0

1 + λ̃2
, Jfs

)

where (λ̃, Ñ) =

(
tan

(
πλ

2

)
, 2N

sin(πλ)

πλ

) (C.14)

Combining (C.11), (C.12), (C.13) and (C.14), we get the following expression for our

desired 3-point function in supersymmetric theory Tκ,N

〈Jbs(x1)Jb0(x2)Jb0(x3)〉Tκ,N =
Ñ

1 + λ̃2
〈J̃s(x1)J̃0(x2)J̃0(x3)〉bos

〈Jfs (x1)Jf0 (x2)Jf0 (x3)〉Tκ,N =
Ñ

1 + λ̃2
〈J̃s(x1)J̃0(x2)J̃0(x3)〉fer

(C.15)

with λ̃ and Ñ as in (C.14).

Now that we have all the requisite 2 and 3 point functions, we can compute the

normalization independent squared 3-point function coefficients to be

C
2(BBB)
0,susy =

(1− λ̃2)2

Ñ(1 + λ̃2)2
C2

0,fb

C2(BBB)
s,susy =

1

Ñ(1 + λ̃2)2
C2
s,fb s = 2, 4, 6 . . .

(C.16)
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where C2
s,fb (C2

s,ff ) denote the corresponding coefficients in a free real scalar (majorana

fermion) theory. The normalized coefficients above and in the rest of the paper can formally

be defined as follows. Conformal invariance uniquely fixes the position dependence of all

the 2 point functions and the relevant 3 point functions we are interested in, namely of

the type 〈J0(x1)J0(x2)J (s)(x3)〉. Lets define the normalization N∗ and 3 point function

coefficient C∗∗∗ as our operators to be

〈J (s)(x1, λ1)J (s)(x2, λ2)〉 = N2
s

P 2s
3

|x12|2
,

〈J (s)(x1, λ1)J0(x2)J0(x3)〉 = C̃s00
Qs1

|x12||x23|2∆0−1|x31|
,

where P3 =
λ1X12λ

2s
2

|x12|2
, Q1 =

λ1X12X23X31λ1

x2
12x

2
31

with X = xiσ
i.

(C.17)

We refer the reader to [64] for further details of the conformally invariant structures involved

in 2 and 3 point functions. The relevant normalized 3-point function coefficient squares we

are interested in are then defined as

C2
ijk =

C̃2
ijk

N2
i N

2
jN

2
k

(C.18)

where the i, j, k are just labels for the operators involved.

The mixed correlators 〈Jfs Jb0Jb0〉 and 〈JbsJ
f
0 J

f
0 〉 of our theory cannot directly be related

to correlators of Bκ,N or Fκ,N theories via double trace type factorization used above. We

will instead use the self duality of our theory to determine these correlators. Under the

self duality transformation (2.3) the operators in our theory map in the following way [21]

Jb0 ↔ Jb0 , Jf0 ↔ Jf0 , Jbs ↔ (−1)sJfs . (C.19)

Thus, we have following relations for the mixed 3-point functions

〈Jb0Jb0Jfs 〉Tκ,N = (−1)s〈JbsJb0Jb0〉T−κ,|κ|−N
〈Jf0 J

f
0 J

b
s〉Tκ,N = (−1)s〈Jfs J

f
0 J

f
0 〉T−κ,|κ|−N

(C.20)

The 2-point functions are, of course, invariant under the duality while the parameters λ̃

and Ñ transform as follows

Ñ → Ñ , λ̃→ λ̃−1. (C.21)

Using (C.20), the result of our explicit computation (3.19) for the mixed 3-point func-

tion 〈Jb0Jb0J
f
0 〉 and the duality transformation (C.21), we can determine the other 3 point

function coefficients, C
2(BBF )
0,susy and C

2(BBF )
s,susy to be

C
2(BBF )
0,susy =

2

π2

(2λ̃)2

Ñ(1 + λ̃2)2
C2
fb

C2(BBF )
s,susy =

λ̃4

Ñ(1 + λ̃2)2
C2
s,fb

(C.22)
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Figure 8. Convention for the definition of each vertex in the 4-point function. The ‘internal’

Grassmann variables, θ′i, θ
′′
i that are explicitly shown here are suppressed in figure 9 to avoid clutter.

These internal variables are integrated over in the computation of the correlation functions. The

convention of various momenta entering or leaving the vertex is also demonstrated here.

Note that since our result for the 2 and 3-point function (3.15) and (3.19) are obtained in the

momentum space, in order to compare C
2(BBF )
0,susy with C2

fb (as we have done in the first line

of (C.22)) we need to read out the 3-point function coefficient in position space by taking

the appropriate Fourier transform of our result to go to the position space expression. This

can be implemented in a straightforward manner, e.g. using the Fourier transform result

in [65]. This leads to the extra factor of (2/π2) in the first line of (C.22).

Using the method described above the relevant normalized 3-point function coeffi-

cients required for the Jf0 4-point function can also be computed. We simply quote the

results below

C2(FFF )
s,susy =

1

Ñ(1 + λ̃2)2
C2
s,ff

C2(FFB)
s,susy =

λ̃4

Ñ(1 + λ̃2)2
C2
s,ff

(C.23)

We do not write down the coefficients C
2(FFF )
0,susy and C

2(FFB)
0,susy since the corresponding

3-point functions are contact terms.

D Comments on direct computation of J (0) 4 point function

In this appendix, we describe the relevant diagrams, and corresponding integrals, con-

structed using the exact 4 point vertex which contribute to the full J (0) four point func-

tion. Figure 8 shows the exact 4-point vertex used to construct all the relevant diagrams

in figure 9.

For diagrams in figure 9, note that the exact vertex (3.10) is a function of two internal

grassmann variables (θ′i, θ
′′
i as depicted in figure 8). The internal propagators in figure 9

that emanate from/to the exact vertices connect these internal Grassmann variables, which

are integrated over in the computation of the relevant diagrams. In figure 9 the value of
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Figure 9. The contributing diagrams for the four point function of currents. The first diagram is

diagram type (a). The grey blob in (b), (c), (d) represents the all loop four point correlator. The

remaining diagrams are obtained by permutations of the external operators.

diagram (a) is given by

V (A)(q, q′, q′′, θ1, θ2, θ3, θ4)

= N

∫
d3p

(2π)3
d2θ′1d

2θ′′1d
2θ′2d

2θ′′1d
2θ′3d

2θ′′3d
2θ′4d

2θ′′4(
P (θ′1, θ

′′
4 , p+ q)P (θ′4, θ

′′
3 , p− q′ − q′′)P (θ′3, θ

′′
2 , p− q′)P (θ′2, θ

′′
1 , p)

V3(θ1, θ
′
1, θ
′′
1 , q, p)V3(θ2, θ

′
2, θ
′′
2 , q
′, p− q′)V3(θ3, θ

′
3, θ
′′
3 , q
′′, p− q′ − q′′)

V3(θ4, θ
′
4, θ
′′
4 ,−q − q′ − q′′, p+ q)

)
(D.1)

There are a total of 6 additional diagrams due to permutations of the operators. and the

interaction part is given by

V
(B)

4 (q,q′, q′′,θ1,θ2,θ3,θ4)

=N2

∫
d3p

(2π)3

d3k

(2π)3
d2θad

2θbd
2θcd

2θdd
2θ′1d

2θ′′1d
2θ′2d

2θ′′1d
2θ′3d

2θ′′3d
2θ′4d

2θ′′4(
P (θ′1,θ

′′
4 ,p+q)P (θ′4,θa,p−q′−q′′)P (θc,θ

′′
3 ,k−q′−q′′)P (θ′3,θ

′′
2 ,k−q′)P (θ′2,θd,k)P (θb,θ

′′
1 ,p)

V3(θ1,θ
′
1,θ
′′
1 , q,p)V3(θ2,θ

′
2,θ
′′
2 , q
′,k−q′)V3(θ3,θ

′
3,θ
′′
3 , q
′′,k−q′−q′′)

V3(θ4,θ
′
4,θ
′′
4 ,−q−q′−q′′,p+q)V4(θa,θb,θc,θd,p,−q′−q′′,k)

)
(D.2)
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The bosonic and fermionic correlators for the diagram figure 9 are given by

〈Jb0(q)Jb0(q′)Jb0(q′′)Jb0(−q − q′ − q′′)〉 = V
(1)

4 (q, q′, q′′, θ1, θ2, θ3, θ4)

∣∣∣∣
θ1→0,θ2→0,θ3→0,θ4→0

〈Jf0 (q)Jf0 (q′)Jf0 (q′′)Jf0 (−q − q′ − q′′)〉 =

4∏
i=1

∂

∂θαi

∂

∂θαi
V

(1)
4 (q, q′, q′′, θ1, θ2, θ3, θ4) (D.3)

Although we were able to successfully perform the integrals for the components p3, θp

and k3, θk in the expression for V
(B)

4 given by (D.2) ks and ps integrals out be intractable

analytically. Due to this difficulty we were not able to obtain a closed form expression for

the four point function of the scalar operatorsJb0 and Jf0 in (D.3).

E AdS contact diagrams

E.1 Closed-form

D̄1111(z, z̄) =
1

z−z̄
[ln(zz̄) ln

(
1−z
1−z̄

)
+2Li2(z)−2Li2(z̄)]

D̄2222(z, z̄) =
12uv

(z−z̄)5
+

1+u+v

(z−z̄)3
[ln(zz̄) ln

(
1−z
1−z̄

)
+2Li2(z)−2Li2(z̄)]

+
6

(z−z̄)4

(
(1+u−v)v lnv+(1+v−u)u lnu

)
+

2

(z−z̄)2
(lnuv+1)

D̄3333(u,v) =

(
1680u2v2

(z−z̄)9
+

(
240uv

(z−z̄)7
+

24

(z−z̄)5

)
(1+u+v)+

4

(z−z̄)3

)
×
[
ln(zz̄) ln

(
1−z
1−z̄

)
+2Li2(z)−2Li2(z̄)

]
+

((
840u

(z−z̄)8
+

100

(z−z̄)6

)
v2(1+u−v)+

480uv

(z−z̄)6
+

12(1+u)+76v

(z−z̄)4
)

)
lnv+u↔ v

+
260uv

(z−z̄)6
+

26

(z−z̄)4
(1+u+v) (E.1)

D̄(u,v)3322 =−∂uD̄2222(u,v)

D̄(u,v)4433 =−∂uD̄3333(u,v)
(E.2)

E.2 Decomposition in terms of conformal blocks

The contact diagrams may be written as an expansion in conformal blocks [66]

D∆∆∆′∆′(xi) =
∑
m

a∆∆
m α∆′∆′

m W∆m,0(xi) +
∑
n

a∆∆
n α∆′∆′

n W∆n,0(xi) (E.3)

D∆∆∆∆ (xi) =
∑
n

2a∆∆
n

∑
m 6=n

a∆∆
m

m2
n −m2

m

W∆n,0(xi) +
∑
n

(a∆∆
n )2 ∂

∂m2
n

W∆n,0(xi)

(E.4)
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where W∆,0 = β∆34β∆12W∆,0. For ∆i = ∆

D∆∆∆∆(xi) =
∑
n

2a∆∆
n η∆∆

n W∆n,0(xi) +
∑
n

(a∆∆
n )2 ∂

∂m2
n

W∆n,0(xi) (E.5)

=
∑
n

[
(2a∆∆

n η∆∆
n + (a∆∆

n )2)β2
∆n∆∆ +

∂

∂m2
n

β2
∆n∆∆

]
W∆n,0(xi)

+
∑
n

(a∆∆
n )2β2

∆n∆∆

∂

∂m2
n

W∆n,0(xi) (E.6)

with

η∆∆
n =

∑
m 6=n

a∆∆
m

m2
n −m2

m

(E.7)

β∆34 ≡
Γ
(

∆+∆34
2

)
Γ
(

∆−∆34
2

)
2Γ(∆)

(E.8)

m2
∆k

= ∆k(∆k − d)

a12
m =

(−1)m

β∆m12m!

(∆1)m(∆2)m
(∆1 + ∆2 +m− d/2)m

(E.9)

with the anomalous dimension being proportional to the coefficient of the third term which

involves derivative of the conformal block. Writing the above in terms of the D̄ functions

D̄∆∆∆∆(u, v) =
1

u∆

[∑
n

[
(2a∆∆

n η∆∆
n )β2

∆n∆∆ + (a∆∆
n )2 ∂

∂m2
n

β2
∆n∆∆

]
G∆n,0(u, v)

+
∑
n

(a∆∆
n )2β2

∆n∆∆

∂

∂m2
n

G∆n,0(u, v)

]
(E.10)

We will re-label

P
(∆)
1 (n, 0) = (2a∆∆

n η∆∆
n + (a∆∆

n )2)β2
∆n∆∆ +

∂

∂m2
n

β2
∆n∆∆

P
(∆)
0 (n, 0)γ

(∆)
1 (n, 0) = 2(a∆∆

n )2β2
∆n∆∆ (E.11)

so that

D̄∆∆∆∆(u, v) =
2Γ(∆)4

Γ(2∆− d/2)

1

u∆

∑
n

[
P

(∆)
1 (n, 0)G∆n,0(u, v)

+
1

2
P

(∆)
0 (n, 0)γ

(∆)
1 (n, 0)

∂

∂m2
n

G∆n,0(u, v)

]
(E.12)

satisfying [67]

P
(∆)
1 (n, 0) =

1

2
∂n

(
P

(∆)
0 (n, 0) γ

(∆)
1 (n, 0)

)
(E.13)
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Similarly, for (141)

D̄∆+1∆+1∆∆(u,v) =
2Γ(∆)2Γ(∆+1)2

Γ(2∆+1−d/2)

1

u∆[∑
m

P̄
(∆)
1 (n,0)G∆m,0(u,v)+

1

2
P̄

(∆)
0 (n,0)γ̄

(∆)
1 (n,0)

∂

∂m2
n

G∆n,0(u,v)

]
+β2

2∆a
∆∆
0 η∆+1∆+1

0 G2∆,0(u,v) (E.14)

P̄
(∆)
1 (n,0) = (a∆+1∆+1

n η∆∆
n +a∆∆

n η∆+1∆+1
n )β2

∆n∆∆+a∆∆
n a∆+1∆+1

n

∂

∂m2
n

β2
∆n∆∆

P̄
(∆)
0 (n,0)γ̄

(∆)
1 (n,0) = 2a∆∆

n a∆+1∆+1
n β2

∆n∆∆ (E.15)

E.2.1 Examples

D̄1111(u,v) =
2

π1/2u

∑
n

[
P

(1)
1 (n,0)G2+2n,0(u,v)+

1

2
P

(1)
0 (n,0)γ

(1)
1 (n,0)

∂nG2+2n,0(u,v)

8n+2

]
D̄2222(u,v) =

8

3π1/2u2

∑
n

[
P

(2)
1 (n,0)G4+2n,0(u,v)+

1

2
P

(2)
0 (n,0)γ

(2)
1 (n,0)

∂nG4+2n,0(u,v)

8n+10

]
D̄3333(u,v) =

256

105π1/2u3

∑
n

[
P

(3)
1 (n,0)G6+2n,0(u,v)+

1

2
P

(3)
0 (n,0)γ

(3)
1 (n,0)

∂nG6+2n,0(u,v)

8n+18

]
(E.16)

D̄3322(u,v) =
64

15π1/2u3

[∑
m

P̄
(3)
1 (m,0)G6+2m,0(u,v)+

1

2
P̄

(3)
0 (m,0)γ̄

(3)
1 (m,0)

∂

∂m2
n
G6+2m,0(u,v)

+β2
4a

22
0 η

33
0 G4,0(u,v)

]
D̄4433(u,v) =

1024

105
√
πu4

[∑
m

P̄
(4)
1 (m,0)G8+2m,0(u,v)+

1

2
P̄

(4)
0 (m,0)γ̄

(4)
1 (m,0)

∂

∂m2
n
G8+2m,0(u,v)

+β2
6a

33
0 η

44
0 G6,0(u,v)

]
(E.17)

Contact terms for bosonic correlator

GAdS
φ4 = D̄1111(u, v)

GAdS
(∂φ)4 = (1 + u+ v)D̄2222(u, v)

GAdS
φ2(∂3φ)2 = 2(u2D̄3322(u, v) + v2D̄3322(v, u) +

1

v3
D̄3322(1/v, u/v)) (E.18)

Contact terms for fermionic correlator

GAdS
φ4 = D̄2222(u, v)

GAdS
(∂φ)4 = (1 + u+ v)D̄3333(u, v)

GAdS
φ2(∂3φ)2 = 2(u2D̄4433(u, v) + v2D̄4433(v, u) +

1

v3
D̄4433(1/v, u/v)) (E.19)
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