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ABSTRACT: Correlation functions of the higher-spin current operators in large N Chern-
Simons theories are important to understand approximate higher-spin symmetries in these
theories. Moreover, they also provide stronger checks for conjectured dualities in these
theories. In this paper, we compute the two, three and four-point functions of the operators
in the spin zero multiplet of N/ = 2 Supersymmetric vector matter Chern-Simons theory
at large N to all orders of 't Hooft coupling. While the two- and three-point functions
are computed by solving the Schwinger-Dyson equation, this method becomes intractable
for the computation of the four-point functions. Thereby, we use bootstrap method to
evaluate four-point function of scalar operator Jg = 1) and Jg = ¢¢. Interestingly,
because <Jg J({ J8> is a contact term, the four point function of Jg operator resembles
the corresponding correlation function in the free theory, up to overall coupling constant
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dependent factors and up to some ‘bulk AdS’ contact terms. On the other hand the Jg four-
point function receives an additional contribution compared to the free theory expression
due to the J({ exchange. We find that the double discontinuity of this single trace operator
J(J; vanishes and hence it only contributes to AdS-contact term.
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1 Introduction

The perturbative technique to compute observables in quantum field theories involving

Feynman diagrams is effective only when the coupling is weak and breaks down in the

strong coupling regime. In the past few decades various strong-weak dualities have been

discovered which have proven to be extremely useful in understanding some of the most in-

teresting non-perturbative properties of strongly coupled quantum field theories. One such

class of dualities which have been studied extensively in recent times are the Bosonization



dualities in Chern Simons gauge theories coupled to fundamental matter at large N [1-7].
Though, one of the main indications for these dualities initially came from their holographic
duality with Vasiliev theories in AdSy [8-13], by now there exists a plethora of evidence
for these dualities coming from exact computations of correlation functions, thermal parti-
tion functions, anomalous dimensions, scattering amplitudes and RG flow analysis relating
these theories to known supersymmetric dualities [3-5, 14-36].

Primary example of these bosonization dualities are those among the quasi-fermionic
(critical bosonic and regular fermionic theory) and the quasi-bosonic theories (regular

L A particularly interesting case of these duali-

bosonic and critical fermionic theory).
ties is present in the N/ = 2 supersymmetric U(N) Chern Simons theory coupled to a
single fundamental chiral multiplet. This theory exhibits a strong-weak self duality [37-39]
generalizing the well known Giveon-Kutosov duality [37, 40]. The self duality of this su-
persymmetric theory serves as a parent duality for the non-supersymmetric bosonization
dualities mentioned above since they can obtained from the supersymmetric theory via
RG flows seeded by mass deformations [41, 42]. Taking hints from the supersymmetric
dualities and the Level-Rank duality of pure Chern Simons theory, finite N extensions for
the non supersymmetric dualities have also been proposed [43-52]. These theories were
also investigated recently in presence of background magnetic field [53].

In this article, we will focus our attention on the N' = 2 theory. Various large N
computations in this theory show remarkable features which are absent in the non super-
symmetric couterparts. For example, the all loop 2 — 2 scattering amplitude is tree-level
exact except in anyonic channel [27] and it was shown that these amplitudes are also in-
variant under Dual superconformal symmetry [27, 30]. [29] further showed that the tree
level m — n scattering amplitudes in this theory can be constructed using the BCFW
recursions relations.

Although many interesting non supersymmetric physical observables, as mentioned
above, are amenable to direct exact computations by solving corresponding Dyson-
Schwinger equations, the computation of 4-point correlation function of even the simplest
of single trace operators, namely the scalar operators ¢¢ and 1), appears prohibitively
difficult? to compute via this direct approach. Given the remarkable simplicity of the re-
sults for other known observables one expects the 4-point functions in this theory to also
have a simple structure. In the present article, our main goal will be to determine the
exact 2, 3 and leading connected 4-point correlation functions of scalar operators in this
supersymmetric theory.

For the quasi-bosonic and quasi-fermionic theories mentioned above, in [54-57], the
4-point correlation functions of various scalars as well as some higher spin operators were
determined using recently developed ideas from conformal Bootstrap. In particular, one
of the central objects used in [55] is the double discontinuity of the 4-point function which
determines the coefficients in the OPE expansion of external operators via the Lorenzian
inversion formula (LIF) discovered by Caron-Huot in [58]. The authors of [55] first demon-

In the terminology of [3, 4].
2See appendix D for a discussion of our attempt.



strated that for large-IN CF'Ts the double discontinuity of the 4-point function of identical
scalars determines the full 4-point function up to three AdS, contact Witten diagrams.
The authors further showed that for the quasi-bosonic and quasi-fermionic theories the
coefficients of these contact terms vanish. This is consistent with the results of [56] which
used the large spin perturbation theory developed in [54] instead of the LIF. In the present
work, we apply some of these ideas in conjunction with the self duality, to the case of scalar
4-point functions in our N = 2 theory.

Our article is structured as follows. In section 2, we review the A/ = 2 theory of interest
in this paper and its operators spectrum in some detail. In section 3, we determine the
scalar multiplet 2 and 3-point functions via a directl computation. In section 4, we deter-
mine the 4-point function of the bosonic and the fermionic scalar operators in this theory
using the double discontinuity technique developed in [55]. Finally, in the section 5, we
summarize our results and outline related open questions and future directions. In various
appendix, we collect our notation and conventions, some technical details of the results in
main text of the paper and briefly summarize our attempt at the direct computation of
4-point function.

Note added. While we were in the process of finishing up our article, we were informed
about the related work [59] by the authors which has overlap with the results of our
section 3.

2 N = 2 theory and its operator spectrum

In this paper, we are interested in N/ = 2 U(N) Chern-Simons theory coupled to single
chiral multiplet, ® = (¢,1), in the fundamental representation of the gauge group. The
position space Lagrangian for the theory is

21 - -
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(2.1)
The theory above has two parameters: the rank of the gauge group, N, and the
Chern-Simons level, x, which is quantized to take only integer values [60]. x~! controls the
strength of gauge interactions and the theory is perturbative for large values of k at any
finite V.
This theory is conjectured to be self-dual under a strong-weak type duality, [37]. In
the 't Hooft like large N limit

N
k—00,N =00 with A=— fixed (2.2)
K

of interest in this paper, the duality transformation is

K— —K, XA—X—sgn(A). (2.3)



Apart from the matching of many of the supersymmetric observables which can be
computed at finite N and k using supersymmetric localization techniques, recent exact
computation of many non-supersymmetric observables, e.g. the thermal partition function,
in the large N limit [1, 2, 5, 26, 31, 41] has provided ample evidence for this conjec-
tured duality.

The theory is quantum mechanically (super) conformal for all values of kK and N. In the
't Hooft limit, one can focus on the single trace superconformal primary operator spectrum
of the theory. Though our theory has N' = 2 superconformal symmetry, in this paper
we will work in the A/ = 1 superspace formulation to allow us to use the relevant results
of [27] for our computations. In the ' = 1 language, the operators spectrum of the theory
consists of a set of supercurrent operators [61]

r=0 r

2s
JO =3 (1) (2$> VIRVE TR, (2.4)

which are written in terms of the superfields,
O=¢+60p—0°F, &=3¢+0y—0°F.
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and the superscript s in (2.4) takes values in {0, 5,1, 5,...}. Here, we have also defined

J(S) =AM\ N2 Jaras..azs, V= A*Vq (2'5)

using the auxiliary commuting polarisation spinors, A%, which keep track of the spin; and
Vo, are the standard supersymmetry invariant gauge-covariant derivatives. Their action
on the matter superfields of our theory is given by,

Vo =D& — i@
Vao® = Dy® +il,® (2.6)
The explicit expressions for spin 0 operator and the first few spin-s currents are,
Jo = 0P
Jo=0V,® — V0P = 0D, ® — D, ®P — 2i®I,
Jag = @VQVBQ — QVa‘iv,g(I) + VQV5<f>¢>
Jopy = éVaV5V7<I> — 3VQ<I>V5V7<I> — 3Van<i>V7<I> + VQVBVV@I)

(2.7)

In the free limit of the theory i.e. A — 0, each of these supercurrents, J®) with s # 0,
satisfies the conservation equation

D~ <8()3\04J(5)> =0 (2.8)

and constitutes two component conserved current operators {.J () J (S+%)} in its 6 expan-
sion [61]. At finite A, the conservation equation (2.8) is violated at order % by double trace
operators for s > 2 [1, 61].



In this article, we are interested in the scalar operator Jy(#, x). There is no conservation
equation associated with this operator and it constitutes 2 scalar and 1 spin half operator
as follows

JOG,2) = Jy(x) + 09V o (z) — 62T () (2.9)

where

Jo(x) = 66(2),  Val2) = ($va +vad)(@), JJ(2) = Pib(2). (2.10)
In the subsequent sections, we compute the 2 and 3-point functions of the J(© operator
and two component of the 4-point function.

3 Correlation functions

In this section, we compute the two and three point correlation function of the Jy(6,p)
operator in momemtum space. Two of the main ingredients for these computations are the
exact propagator (3.2) and the renormalized four point vertex for the fundamental super-
field ®(0,p) (v4 in (3.3)). These were computed in [27] for a more general class of theories
with A = 1 supersymmetry which can be thought of as one parameter? deformation of the
N = 2 theory of interest in this paper. Below, we list these results for our N/ = 2 theory,
conveniently stated in term of the exact quantum effective action

S =5+54,

a3 _ an 0B
Sy = / (27:))3 d*0,d%6, [@(917 —P)e_elpaﬁezq’(@zyp)] :
Sy = 2/ (27T)3 (27T)3 (27r)3d 01d°0>d"03d"04

|:V4(91> 927 03a 04;]97 q, k)q)z(ela _(p + q))(i)z(g%p)(i](e& k + q)q)3(947 _k)

The quadratic part of the effective action receives no quantum corrections at large N in
the N/ = 2 theory. The propagator is thus tree level exact and given by

(B(01,p1)® (02, p2)) = (2m)°6°(p1 + pa2) P(61, 025 1)
—0205 (P1) s (3.2)
e U102
= (21)*8* (p1 + p2)——5——
by
The quartic superspace vertex, vy, does receive quantum corrections and takes the follow-
ing form

v4(01,62,03,04:p,q,k) = B%X'(p'elﬁq'alﬁkﬂ“?’)F4(912, 613, 043; D, 4, k),

with - Fy = 015043 | A(p. 0. k)015015013015 + Cp, 0. k)01 (3.3

+ D(p, q, k0130,

3Quartic superpotential term: —@ [ d*z d*0 (®®)?. w =1 is the N = 2 point.
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Figure 1. Diagrammatic representation of the exact four point vertex, vy in (3.3).

Here, we have used following notation for the sum and the difference of Grassmann variables
to avoid clutter,

X =302, 0% =005 (3.4)
=1

The overall exponential factor is determined by supersymmetric Ward identity (3.8), while
the coefficient functions A, C and D require explicit computation and given by [27]
i oy [tan—1 (265 ) a1 ( 22
Mg ) — 27 2o () o 3.
K

2A(p, 4. ) (3:5)

(k—p)-

Note that the vertex vy was computed in a special momentum configuration, namely

C(p,q.k) = D(p,q, k) =

¢+ =q- =0, (3.6)

while the momenta p and k are arbitrary.* For this reason, our computation of correlation
functions will also be restricted configuration in which the momentum of Jy operators are
restricted to lie only in the 3-direction. Diagrammatically, the exact four point vertex will
be represented as in figure 1.

3.1 Constraints on correlation functions from supersymmetry

To begin with, let us study the constraints on an arbitrary correlation function due to
supersymmetry. As stated earlier, although our theory has N/ = 2 supersymmetry, we will
be working in N/ = 1 superspace following [27]. A general n-point correlation function
of N = 1 scalar superfield is constrained by supersymmetry and translation invariance to
take the following form [27]

<Ol(917p1) e On(enypn»

4We refer the reader to appendix A for conventions for labelling momenta.

(3.7)
Fn({0n}; {pi})-




The §3(3, pi) follows from translation invariance while the overall Grassmann exponential
factor follows from invariance under N' = 1 supersymmetry. Note that the function F,
above only depend on the differences of the Grassmann coordinates. Following [27], the
form is easily derived as follows

0= [ZQ’
=1

- |5 Gy - o)

— (naXa Z(pz)agem> (01(01,p1) - .. On(0, pn))-

=1

Ol 01, pl) On(enapn»

M:

<01 (91,]91) ce On(enapn» (38)

In the last line above, we used the momentum conservation to replace p,, with Z?:_ll(—pi).
The factorized form in (3.7) follows as the solution to last equation in (3.8).
3.2 Jp-vertex

Before proceeding to the computation of correlation functions, it would be useful to com-
pute an intermediate quantity, the Jy-vertex. It is defined by stripping of the propagators
from (Jo®®) as follows

(Jo(01,p1)®(02, p2) @ (03, p3)) = (3.9)

d3p2 d3p3 2 2/ / '

and satisfies the same Ward identity as a three point function (3.7).

The vertex receives contribution both from the free propagation of the fundamental
field as well as from the interaction vertices in the theory. The free part vertex is simply
proportional to the momentum and the Grassmannian §-functions while the interacting
part of the vertex can be computed from the exact v4 vertex. Figure 2 shows the rele-
vant diagrams.

<J0(91,p)q)(92, T)‘i)(gg, S)>Ver = <J0(91,p)‘1’(927 T)‘i’((gg, 3)>ver,free
+ <J0(01,p)(1)(02, ’f’)(i)(eg, 3)>Ver,int

where

(Jo(61,p)®(02,7) (03, 8))ver free = (27)363 (D+7+5) 3 free(012,032;, 5)
= (27)383 (p+1+5)05505,015015
and

<J0(017p)(1)(92’ r)<f>(93, 5)>Ver,int

- npsrr+s) | [ 4%

_ (27‘(’)353(p—I—T‘—I-8)6%9123'(1?'9124—5'632)V3,int(912,932,]9, s) (3_10)

d29 d20b 73(91,9(1, q+p)7)(0ba 91;Q)”4(9aa eba 923 03a q,D, 5)
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Figure 2. Solid circle on the L.h.s. represents the full exact Jy vertex and the first diagram
on r.h.s. is the free vertex. The second diagram on r.h.s. includes all the interactions which are
accounted by insertion of exact 4 point vertex (3.3) connected to the external J(©) operator using
the exact propagator.

Explicit computation of the above integral, with constraint p; = p_ = 0 following from
the (3.6), leads to the following result for the full Jy-vertex factor
v3 = (V3 free + V3,int) (012,032, D, 5)

1 2iAtan—1( 25 + o+ 1 2ixtan—! ( 255 ) —imAsgn(ps) 4 -
:2s+|:].—6 (p3):| 032912+% € (p3) -1 932032

+ <1 + % <—4 + e2i/\tan_l<2ps;) + Sezi)‘tan_l(QPS;)_M)\SQ”(Z)S)>> 0203201501

(3.11)

The Jy-vertex computed above will be useful in further computations of 2 and 3 point
functions of the Jy operator.
3.3 (JoJo) correlation function

The 2 point function can be straightforwardly computed from the Jy-vertex determined in
the previous section by combining the exact vertex on one side with the free vertex on the
other side. Figure 3 shows the relevant diagram which leads to the following integral for
the two point function

(Jo(01,p)Jo(02,7))

—np (i) |V |

d3
(2753 d%0,d%0, v3(01,0a, 00, —p—q,q)P (04, 02; q+p)P (02, 0p; q)]
(3.12)

Again, the collinear constraint (3.6) restricts the momenta p and s to lie in 3-direction.
Computing the integrals with this constraint leads to the following result

1 — cos(m\)

= ) (3.13)

The result can be straightforwardly generalized for arbitrary external momenta to give

<J0(91,p)J0(92,T)> = (271')3(53(]?4-7“)]\[ + |p3|52(912)

e 0102 <sin(7r)\)
8|ps] A

1 — cos(mA)
m) (3.14)

+ [p|6*(612)

—01.p-02 (gin(r
(Jo(01,p)Jo(02,7)) = (2m)%6° (p + r)N6 < (m2)

8|p| A
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Figure 3. The full Jy 2 point function is obtained by connecting the exact Jy-vertex (solid circle)
to the free vertex (cross) with exact propagators (thick line).

The non vanishing component correlators can easily be read off to give

() I5(—p)) = Egjvmsingﬂ
o) =SS 315)
(@) () = ~ 3 L)

Let us compare the above two-point functions with the corresponding two-point func-
tions in the regular fermionic and regular bosonic theories studied in [5] and [31] respec-
tively.

Note that as opposed to the regular bosonic and regular fermionic theories studied
in [5] and [31], the A dependence of the two-point function of J§ and J({ operators is the
same as that of the higher spin currents in the non-supersymmetric cases. Further, using
the double trace factorization argument of [21] relating the two-point function of current
operators in the supersymmetric and the above mentioned non-supersymmetric theories, we
know that the two-point function of all the current operators in our supersymmetric theory
is exactly the same as those of the corresponding regular boson/fermion theory. Thus, we
see that in our theory the two-point function of scalar operators is the same as that for
the higher spin current operators. The reason for this is supersymmetry. Though we are
working in AV = 1 superspace language, our theory has underlying N' = 2 supersymmetry
under which the scalar operators Jg, Jg belong to the same supersymmetry multiplet as
the spin 1 conserved current and thus the two-point function of the two are thus related
by supersymmetry.

3.4 (JoJoJp) correlation function

The full 3-point function can be constructed by combining three Jy vertices with exact
propagators. There are two such diagrams shown in figure 4. Each of these two diagrams
can easily be shown to be cyclically symmetric and related to each other by pair-exchange
of any two Jy insertions. An explicit computation of the diagram shows that each of the
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Figure 4. The full Jy 3 point function is obtained by connecting three exact Jy-vertices with exact
propagators. There are two such diagrams, as shown above, which turn out to be equal.

diagrams is completely symmetric (cyclic as well as under pair-exchange) by itself and the
two diagrams are equal. The full 3 point function is then just twice the contribution of the

first diagram which we write down below.
(Jo(01,p)Jo(02,7) Jo(03, 5)) = (21)°6° (p + 1 + 5)G3(01, 02, 03; p, 5), (3.16)

where

f
d3q 2
G3(91,92,93;p, S) = 2N/ (27_‘_)3 (gd 9@) |:V3(9176a70b§p7 2 Q)
X V3(927 067 0d7 —-PpP—55— Q) V3(937 067 efa S, _Q)

X P(0a,0f;—q)P(04,05;s — q)P (O, Op; —p — q)

The overall factor of 2 in the above equation is from the sum over two triangle diagrams in
figure 4 which turn out to be equal while the factor of N results from index contractions.
Explicit computation of the above integrals in the collinear limit of the external momenta
gives the following result

G3(61,62,03;p,5) = 659123'@'912%'932)5’3(912, 032,p,5),
F5(012,032,p,5) =2N (A1 +A29f_291_2 +A30$9§2+A49E9§2+A59£91}+A69E91_29§'203_2)
(3.17)

The overall factor of 2 in the expression of F3 above is from the sum over two triangle
diagrams which turn out to be equal. The coefficients {A;} are given by

sin(27 ) 1
Al == - ’
2rA  8|psllssllps+ss]
. (sin(w\))? 1
Ao — —i (sin(w
2 7 8|ss||ps+ss|’
Ag=—i (sin(mA))? 1

A 8|ps||ps+s3|’

~10 -



in(27A

A4:_48p353(p3+33) sz(ﬁz )<—(p3+233)sgn(p3) (2p3+53)sgn(83)+(p3—53)sgn(p3+53)>

2
—&m()%mWﬂm(m+w mﬂﬂw)]
1 sin(2m\)

As = Bpssaa s | 2o — (p3+2s3)sgn(p3)+(2p3+s3)sgn(s3) + (p3 — s3)sgn(p3 +s3)

+3lsm( )Sgﬂ(p3+85)(p3+83| (Ip3|=+]ssl) )]
in(27A 1

—(p3+283)(2p3+S3)Sgn(p3+33)>} (3.18)

The non vanishing components of the three point functions can easily be extracted
from (3.17) and (3.18) to be

b b b __sin(2mX) N
(Jo(p3)Jo(s3)Jo(—ps—s3)) = 27\ 8|psss(ps+53)]

(T (53) 7 (53) T4 (=g —s)) = =L ()

(J8(p3) T (53) ] (—p3 —s3)) = T §|;N)‘

(I (93) 7] (53) T8(—p3—s3)) = 127NN

16]p3+ s3]
N N ( J > N sin(27A) ) )
(W (pa) W (53)J5(—p3=53)) = g5,y | T ) (1psl— 55|~ (ps—ss)sen(ps+s3))
(sin(r\))?
O )+l el ) )
N (27A)
(W4 (p3)W_(s3)J] (—ps—s3)) = 16pass <m27r;r(fp3+83| P3| —|s3])
. (sin(7)))?
D ) (sl )

(3.19)

Notice that in the above result for 3 point functions, two different functional forms

of \ dependences appear, namely Singz\r)‘) and Si‘i\”)‘. The two of them differ in a crucial

way. The first one has a finite A — 0 limit and is invariant under parity under which A
is odd. The second is odd under parity and vanishes in A — 0 limit. This result thus
provides some support for the conjecture made in [61] that the three-point functions in
N = 1 superconformal theories with higher spin symmetry have exactly one parity even
and one parity odd structure. The results (3.14) and (3.18) for the 2 and 3-point are clearly
invariant under the duality transformation (2.3).

4 Four point functions

In the previous section, we evaluated the 3-point functions involving the [Jp operator in
the N' = 2 supersymmetric theory by computing the required vertex. However, the direct

- 11 -
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Figure 5. Schematic for the conformal block expansion.

computation of the four-point function of Jy operator following the same technique has
proven to be intractable in our attempt till now. We describe our attempt to evaluate this
four-point function in momentum space through the required vertices in the appendix D.

In this section, we determine the four-point correlators of the J(l)’ and J({ operators
using a novel method developed in [55], which we briefly review below. Note that we will
be evaluating the 4-point correlation function in the position space as in [55].

Consider the position space four-point correlator of the identical external operators
with conformal dimensions A. The function A which is known as the reduced correlator is
defined as follows

1 1 1 1 Au,v)
(O(1)O(22)0(5) () = s - Afu,0) = @
ErE R

Here, u, v are the standard cross-ratios:

_ (|$12||~”634|)2 _ <|$14||3323|>2
u=——7"], v=|—"7—"] .
213 |z24] |z 13|z 24]
The conformal block expansion expressed in terms of the reduced correlator A(u,v) is
given as

A(u,v)

1
N = ud Z 0(2900;C Gag., (u,v) (4.2)
k

where G, . (u,v) is known as the conformal block corresponding to the operator Oy, with
scaling dimension Ay and spin Jj (see figure 5).

In the supersymmetric four point functions of Jy operators, the relevant exchanges are
schematically shown in figure 6.

4.1 Review of the double discontinuity technique

In [55], the authors determine the four-point correlation functions of the scalar operator
in the non-supersymmetric scalar/fermion coupled to Chern Simons gauge field i.e. quasi-
bosonic and quasi-fermionic theory respectively. In order to obtain the required four-point
functions, the authors utilize the inversion formula which relates the double discontinuity
to the OPE coefficients [58]. The authors first prove an interesting theorem that in the
large-N limit of a CF'T}, the double discontinuity constrains the four-point correlator up

- 12 —
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Jo Jo Jo Jo

Figure 6. Schematic for the exchanges relevant in the supersymmetric scalar correlators.

to three contact terms in AdSy1q1. Suppose there are two solutions G; and Ga to the
crossing equation with the same double discontinuity then they are related by the contact
interactions in the AdS as follows

G1 = Ga+ a1Gyi® + oG + 2GRy (4.3)

Furthermore, the authors showed® that for the four-point function of single trace scalar
operator in Chern-Simons coupled fundamental scalar /fermion theories these AdS, contact
terms do not contribute and hence the double discontinuity completely determines the four-
point functions.

Consider the normalized three point functions of the operators O;(i = 1,2,3).% In [3,
4, 55|, it was noticed that the square of this normalized coefficients in the quasi-fermionic
theories (032 o) are related to that of a single free Majorana fermion (C’f 1) as follows

1
Coar = 500 (4.9)
where N is related to the rank of the gauge group NN and coupling A,y by,
(4.5)

Note that the normalized coefficients of quasi-fermionic theory and free fermionic theory
are proportional to each other as given in (4.4). Hence, the double discontinuity of the
scalar four point function in the free fermionic theory is same as that of the quasi-fermionic
theories up to an overall factor which depends only on N and Agy.

On the other hand, the square of the normalized coefficients of the quasi-bosonic
theories (032 ) are related to the theory of a free real boson (Cf ) as follows

1
ngb = TC'ssz s > 0, (46)
b N 9
11 1 1 A
0ab = (1+ Agz) 0.0 = F0ON TR (1+ /\35) 0,fb (4.7)

Svia explicit numerical computation.
SFor the conventions of normalization correlation functions please refer to appendix C.
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where N and X are related to N and coupling Ay, as

N = 2NM, (4.8)
TAgh
< A
Agp = tan<7r2qb>. (4.9)

Note that unlike the normalized coefficients of the quasi-fermionic theories, in the quasi-
bosonic theories, the spin s = 0 and s # 0 coefficients given above have different factors
in front of their free bosonic counterparts. In order to account for the second term on the
r.h.s. of (4.7) one needs to add a conformal partial wave with spin-0 exchange which is
given by the well known D-function with the correct pre-factor [55]. We now proceed to
employ this technique for the supersymmetric case.

4.2 Double discontinuity and the supersymmetric correlators

Here, we utilize the technique described above to compute the four-point correlators for
spin-0 operators Jg and J({ in our supersymmetric theory. Since we are considering corre-
lators of identical external operators,” only even spin operators will contribute to the block
expansion.

4.2.1 (Jg(wl)Jg(wz)Jg(mg)J8($4)>
The four point function of the Jg operators is expressed as follows®
, 1
(Jo(21) T8 (0) TG (23) JE (x4)) = disc + ——5F(u,v). (4.10)
13724
Here, disc corresponds to the disconnected part given by

1 1 1
disc= 55+ 55+ 5 (4.11)
Liod3y  Tiglyy  Tiylag

while F'(u,v) is given by
1
F(u,v) = ~ > Co00,CGar (u,v) (4.12)
k

In order to determine the double discontinuity and hence the 4-point functions in the
supersymmetric case using the method described above, we need the normalized 3-point
function coefficients for the operators running in OPE of two J(l)’ operators. For the case of
spin 0 operators, i.e. Jé’ , J({ , these normalized coefficients can directly be obtained from our
explicit computations for the 2 and 3-point functions in (3.15), (3.19). For the contribution
of higher spin operators (J, JJ ), these coefficients can be computed by relating to them

" Although we have all the three-point correlators required, we do not compute mixed correlators such
as (JEJEJLJL) here, currently a free theory analogue for such correlators is not clear. We reserve this issue
for future investigations.

8Note that, it is useful to redefine operators such that the normalization is fixed to be (JoJo) = =~ 24 [55].
We work with this normalization in this section.
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to the regular boson (fermion) theories using the large N double trace factorization (see
e.g. [21]) of correlation functions. We relegate the computation of these to appendix C and
only collect the final result here.

b
For scalar operators Jo’f , we have

C2(BBB) _ 1(1-X)2

O,susy N m CO,fb,
8

iy N1+ )2 M (4.13)
For the higher spin operators, Jf’f s €(2,4,6,...)), we get
1
BBB
C? = mcz,fb 5>0,
2(BBF) _ 5 o2 s>0
s,susy N(l + x2)2 s,fb .
. . 2(BBB)
Note that we may re-express the spin 0 coefficient Co,susy above as follows
2(BBB 1 A — 22
C2BBB) _ —————Ci o+ mcgﬂ. (4.14)

0,susy N(l + 5\2)2

(BBB) .

Observe that CE,&%S@B) in (4.13) and the first term of C? in (4.14) have the same pre-

0,susy
factor. This is similar to the case of the quasibosnic case given in (4.6) and (4.7) reviewed

earlier. Consider, now, the double discontinuity of the conformal blocks
dDisc [Gas (1 — 2,1 — Z)] = sin® (g(A - 2A¢)> Gas(1—21-2) (4.15)

where Ay being the conformal dimension of the external operator. Notice that for A =
2A4+J 4+ 2m, the double-discontinuity vanishes. Therefore, for the double-trace exchange,
the double-discontinuity vanishes. That is why the OPE of single-trace operators are
sufficient to construct a function that has a double-discontinutiy equal to the four-point
correlator. However, notice that the single-trace exchange J{ F with quantum numbers
(A, J) = (2,0) also vanish. Coincidently, the double-trace operator [J§, J8]oo also has the
same quantum numbers.? By inspection, we can see that the function below has the right
double-discontinuity

14+
F (U, ’U) = ﬁfﬂ) (U, ’U)
N (1 + )\2)
8 222 _ _ 1 - 1w
— ﬁﬁ |:D11%; (u,v) +D11%% (v,u) + aDH%% <u, u>:|
71' (1 +A )
+ Cle;fS + CQG(Aad;)AL + C3G£2d(833¢)2 (4-16)

%10, O = OO, Oy - - - B, O — traces where O is a single-trace operator.
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where, the function fs(u,v) is the free bosonic part given by. 10

1+ ul/2 4 1/2
fro(u,v) = 4W (4.17)

The contact terms are explicitly provided in (E.18). Note that ¢; contains contribution
from both single-trace and double-trace operators which we have separated in the following
equation as a; and ¢;

1+ M
F(U,’U): ~ ~ fob(u,v)
N (1 + )\2)
8 2\2 _ 1. 1
-5 [Dn“(uav)‘i’Dn“(Uau)"'D1111 <’v>]
N7r5/2(1+)\2) 2 - U TEE AU
+ a1 D111 (u,v) + C1G¢4 + CQG(6¢)4 + C3G¢2(d3¢) (4.18)

To determine a; we take the OPE limit. In the OPE limit!! the conformal blocks behaves
as follow [63]

oIt apoh (v ~d 3
GA’J(U,U)~2J(h_1) C; 2\F hereh—2 =3 (4.19)

For (A,J) = (2,0) i.e. for J({ exchange, we have G o(u,v) ~ u in the OPE limit. Since,
we are interested in the single-trace operator J({ , hence, we have

F(u,v) ~ Cg ) (4.20)

In the OPE limit, we have for ¢* contact term
DHH(U, ’U) ~ 2 (421)

By only looking at the single-trace contributions we obtain
C2BBF)
a = 0% (4.22)

Now, we focus our attention to double-trace operators. Coefficient ¢; can now be deter-
mined by looking at the double-trace trace operator [J§.Jg]o0. Since, (A,J) = (2,0) for
the double-trace is same as that of the single-trace operator Jg , we use the same method

to obtain é.12

ONote that we may have used two separate tree-level ¢ exchange Witten diagrams corresponding to
A =1 and A = 2 bulk exchange with arbitrary coefficients instead [62]. But Witten diagrams them-
selves admitting an expansion in contact terms would compound the problem. The D-functions, therefore,
represents the choice with the least number of contact terms and the right double-discontinuity.

YOPE limit: u — 0, v — 1, with (v — 1)/u'/? fixed.

2The procedure above thus determines the coefficient ¢é; of the first AdSs contact Witten diagram in
term of the contribution of operators Jg and [Jng}o,o. We collect the formal relation below and leave the
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422 (I (1) T] (m2)J] (w3) I (1))
The four point function of J({ is given by the following expression
P\ T (oo T () T : 1
(Jo (@1)Jg (w2)Jy (23) Sy (24)) = disc + ——G(u,v) (4.23)
L1324

where, “disc” denotes the disconnected piece given by

1 1 1
disc = (4.24)
534112%%4 xﬁ‘3m‘2‘4 x%ﬂ%z&
while F'(u,v) is given by
1
G(u,v) = w Z C?QOOkGAk:Jk (u,v) (4.25)
k

We now proceed to determine the four-point function Jg using the same technique as
above. The relevant normalized 3-point function coefficient squared are collected below!3
(see appendix C for details)

1
O —— 4.26
,SUsy N(1+)\2)2 s, ff ( )
s,susy N(1+A2)2 s,ff

where 0527 ## is the normalized three point functions for free fermionic theory. Note that the

3-point functions of the spin-0 exchanges given by Cg,(sing) and Coz,(sig,B)

in this case which, therefore, may be set to zero. This implies that the above relation is

are contact terms

trivially satisfied for the spin s = 0 case as the free fermionic coeffcient C’g = 0. Hence,
both the s = 0 and s # 0 coefficients in this case come with the same pre-factor. This
implies that the function which has the correct double discontinuity is given by

1+ 2

g(u, ’U) = mfff(u, ’U) =+ 61G2§S + EQG‘(ABC:Z)SV + E3G£2d(%3¢)27 (428)

where frr(u,v) is the free fermionic part given by

14+ u?2 4052 —u32(1+v) =321 +u) —u—v
fri(u,v) = 153 /%3/)2 dtw) (4.29)

explicit computation of these OPE coefficients for future work.
1 2(BBB) 1 45? 2 14+ 2
=3 ([CO,susy lgyz — ﬁmco,fb - m[co,fb]ugﬂ

éQ(BBB)] - (1838 (I5%)
Osuey DR T BN IR))
operator (J(l)’)2 is as difficult as computing 4-point function. However, it may be of use to write contact

Note that computationally | the OPE coefficient involving double trace

term coefficients in terms of these ope coefficient.
fyf5f £ 1f b
13 FFF (JoJp J3) FFB (JoJo Js)
Note that C; susy = —Ihuorr and Cosuisy = 576 o
<J0 J0> (Js J5) <JO JO> <Jst>
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The coefficients ¢; can be related to OPE coefficients involving double trace operator
as discussed in the previous section. We leave this for future work.'4

5 Summary and discussion

In this article, we have focused our attention on the N' = 2 U(N) Chern Simons theory cou-
pled with a single fundamental chiral multiplet in the *t Hooft large N limit and presented
the computations for the exact 2 and 3-point functions for the scalar supermultiplet. The
result are invariant under duality transformation (2.3) and can be seen as an independent
confirmation of the duality. For the case of 4-point function, though we are not able to
perform the direct computation for the full scalar supermultiplet, we are able to use a
combination of techniques from conformal bootstrap, factorization of 3-point functions via
double trace interactions along with the self duality of our theory to determine two of the
component 4 point function, namely (J8JSJ5J8) and <J0f Jg Jg Jg ), up to 3 undetemined
coefficients. These undertermined coeflicients can be fixed in terms of the OPE coefficients
involving specific double trace operators. We plan to report on this in near future.

Though we have focused on the A/ = 2 theory in this paper, the approach used to
compute the four point function can be straightforwardly applied to the one parameter
deformed N =1 theory. These differ from our N' = 2 theory only via a double trace term
in A" = 1 superspace.’® The 2 and 3-point functions of the two theories can thus be related
via the double trace type factorization also used in this paper.

The approach used in this paper, following [55], to compute the Jé’ and Jg 4-point
functions relies crucially on the fact that the double discontinuity of the 4-point function
in the interacting theory is almost the same as that of the free theory. We could thus write
down the full interacting 4-point function in term of the free 4-point function. For the case
of mixed 4-point functions, e.g. (J(I)’J(I)’Jg Jg ), this approach is not directly useful as a free
theory analogue of such mixed correlator is not available since bosons and fermions decouple
from each other the mixed 4 point correlators vanish in A — 0 limit. One approach that
might be useful in this regard is to first study the single trace OPE coefficients in the N = 1
deformed theory (for general w) in A = 0 limit. We expect this limit to be significantly
simpler then A/ = 2 theory and one can compute not only the exact 2, 3 point functions
(see e.g. [59]) but perhaps even the exact 4-point function (we expect it to be non vanishing
for w # 0) of Jy operators in this limit since the only interaction term present is a double
trace term. If this indeed turn out to be the case, one can compare the double discontinuity
of mixed Jg , Jg correlators in N' = 2 theory with this limit and see these are closely related
in a similar way as in [55] and in this paper for the identical scalar 4-point function.

14The coefficient ¢, can be evaluated easily and is given by

3rt/? ( ~2(FFF) 14+ 2% ~ )
" spP(0,0) Comm Josr = Ty 3y Dorlo

where sz)(O, 0) is defined in appendix E.2.
1968 = I [ dPzd’0(PP)°.
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As we have noticed in this paper, the coefficients {¢;} can be determined in term of the
normalized 3-point function coeflicients of specific double trace operator. An interesting
property of the AdSy contact Witten diagrams is that their series expansions contain Log
terms. This implies that the coefficients {¢;} not only contribute to the OPE coefficients
of double trace terms but also to their leading anomalous dimensions as well, but in a
coordinated way. The absence of Log term in the free 4-point function along with the van-
ishing of these coefficients for quasi-bosonic and quasi-fermionic theories [55] thus means
that these double trace operators in the leading large-N order do not receive corrections to
there anomalous dimensions in these theories. Whether this is also the case in the super-
symmetric theory studied in this paper, requires the computation of anomalous dimensions
of these double trace operators which we leave for future investigation.

Acknowledgments

We would like to thank O Aharony, A Gadde, S Minwalla, Naveen Prabhakar and A.
Sharon for fruitful discussions. TS would like to thanks Antal Jevicki for many enjoyable
discussions on Chern Simons matter theories and related topics. SJ and KI also thank the
organizers of the Batsheva de Rothschild Seminar on Avant-garde methods for quantum
field theory and gravity, for hospitality. The work of KI was supported in part by a center
of excellence supported by the Israel Science Foundation (grant number 1989/14), the US-
Israel bi-national fund (BSF) grant number 2012383 and the Germany Israel bi-national
fund GIF grant number [-244-303.7-2013 at Tel Aviv University and BSF grant number
2014707 at Ben Gurion University. Research of SJ and VM is supported by Ramanujan
Fellowship. Reserach work of TS is supported by Simons Foundation Grant Award 509116
and Ramanujan Fellowship. AM would like to acknowledge the support of CSIR-UGC
(JRF) fellowship (09/936(0212)/2019-EMR-I). PN acknowledges support from the College
of Arts and Sciences of the University of Kentucky. Finally SJ, VM, AM would like to
acknowledge our debt to the steady support of the people of India for research in the
basic sciences.

A Notations and conventions

Metric : N = diag(—1,1,1)
Gamma Matrices : (V") 2 = (09, —io1,i03) S = {4*,7"} = =20 I,

Charge Conjugation : Cop = —Cgoq = <0 _Z> — (P = P«

t 0
Raising-Lowering : P* = Caﬁw/g; Yo = — a,@iﬁﬁ = @z)ﬁcﬁa
=t =i YT =iy
Vector <+ Bi-spinor : Pag = Pu(V")ap = <p0 TP ) = <p+ ps )
p3  Po— D1 b3 —p-
Squared Grassmann variables : 0% = %eaea, d%0 = %deadea
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Superspace integrals : / df =0, / doo=1

/d29 0% = -1, /d29 6°9° = C*P
Grassmann d-function :  §2(0) = —6?
Superfields : P =¢+0p—0°F, &=+ 0 —0°F
O = G¢ + 0% (pha + Yad) — 0% (F + oF + ¢1))

B Component 3 point functions

In this appendix, we write down the component 3 functions abstractly in term of the
functions {A;} appearing in form of full superspace 3 point function (3.17) determined by
supersymmetric Ward identity.

(J5(0) TG (—p — 9)J3(s)) = 244

(TS (D) (—p = 9)T{ (5)) = 2(Asp} + s3(— Aaps — Asps + Aas3))

(Jo(p) TS (—p — 8)JE(s)) = 2(As + A3 + Ay + As)

(T (p)Jo(—p — 8)J{ (s)) = 5(9146 + (p3 — 53)(3A4 — 3A5 + A1p3 — Ays3)) (B.1)

(W ()T~ — )0 () = —3 (35 + Ar(—ps + 53))

2
(W (p)Jy(—p — s)V_(s)) = —g(—9A6 + p3(—3(343 + As + 245) + 2A1p3)
+ (9A2 + 3A4 + 6A5 + 5A1p3)83 + 2A18§)

C (JoJoJs) 7. n via double trace factorization

In this section, we will derive the expression for normalized 3-point coeflicient used in
subsection 4.2 in the main text of the paper. The main idea is to use the fact the su-
persymmetric theory differs from the regular boson (fermion) theory only via double trace
interaction term involving the scalar and spin half operators. This allows one to use large N
factorisation to relate the 2 and 3-point function between the supersymmetric and regular
boson (fermion) theory.'6

16From the diagrammatic point of view one might wonder as to how is possible to derive any such relation
since the supersymmetric theory contain more fields which can run in the internal loops of Feynman diagrams
in supersymmetric theory. It is easy to see that in these Chern-Simons vector models any diagrams which
has gauge boson converting into matter in the loops is suppressed in the large N ’t Hooft limit of interest
in this paper.
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Let us start by writing the action for our N/ = 2 theory in a way which makes it easier
to compare it with the regular boson (fermion) theory.

ST = TScs(A) + Su(6, A4) + Sp(, A) + S (6, v)
where Scs(A) = / A3 €, Tr(AFO” AP — %A"A”A”)
Sb(d)v A) = DM(Z)DM(Zs? Sf(¢7 A) = —iq[;fy“'])uf(/)’

w2 T, - T
Sis(0,0) = [ o (G0 - Looriv) - 2

(C.1)
(w)(w)) |

Similarly, the action for regular boson (fermion) theory in term of these building blocks
can be written as follows

1K /\6 <3
SBen = 47508(14) + Sp(¢, A) + 3N (¢9) ©2)
Sr.n = %SCS(A) + Sy, A)

Note that the regular boson theory above has an extra parameter, Ag. To leading order in
the 't Hooft large IV limit, of interest in this paper, Ag is exactly marginal while it develops
a non-trivial beta function at subleading orders. The question of beta function and fixed
points structure for this deformations have been studied in details in [24, 42, 59]. The
particular value of A\g for the regular bosonic theory that will be relevant for us in this

paper is the one in supersymmetric theory, namely
A6 = 2472\2. (C.3)

Henceforth, in this paper ‘regular boson theory’ should be understood as with this values
of Ag coupling.

For notational convenience, we will use the subscripts 7. n, B n and Fj n to refer to
quantities computed in the supersymmetric, regular boson (with (C.3)) and regular fermion
theory respectively. For later use, let us further define

; 2
S8R = 1o Ses() + 5,6, 4) + 850 A)+ - [(Go°. (1)
As discussed in section 2, our supersymmetric theory consists of a pair of approximately
conserved single trace higher spin operators at each value of half integer spin. At any
integers values ‘s’ of the spin, the two currents can be taken to be the ones existing in
theories B, v and F, n. We will refer to these current operators as Jf and J! respectively.
The explicit expressions for these currents for low value of spins can be found in [1, 5, 31].
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Let us first consider (JJ8JS) 7. - Taylor expanding the double trace interaction terms
in the action, the path integral expression for the correlator can be written as follows

<J§J(l))‘](l))>7;,1v
= / [D®] =557 (ﬂ(pl) To(p2) S (ps) I a(% S0 (—q)+2:(¢¢><q><¢¢>(—q>)>

S A {00800 [ [ 0 (b0 i Z o))

1 [4r
=3 L () (o0 re e [T [ dari-a) ) ©5)
n=0'" \F i=1 (BF)r.N
In the third line above we dropped the fermion double trace terms ((1)¢)(¢v)) since they
do not contribute to the leading order result. The leading O(N) contribution from the last
line of (C.5) can be computed using large N factorization as we outline now. Let’s look at
the general n-th term in the sum
n
(082300 IT ( [ Patbiasd-a) ) ()
i=1 (BF)w,N
The leading O(N) contribution from this term comes from its factorization into a product
of (n+1) correlators, namely n 2-point functions and one 3-point function. Since Spr
doesn’t have any explicit interaction term between fermions and bosons, this can only
happen for even values of n (say n = 2m) in the 't Hooft limit, in which case the factorized
contribution (schematically, suppressing the argument momenta) looks like

(T2 By (TOT (57) ne TST 5y

More precisely, there are three different type of such factorized contribution which are
represented in figure 7. The contribution from each of these type of factorization channels
is exactly the same.!” Carefully counting the numerical factor for each and summing up
gives the total contribution to be

<J§(P1)J8(P2)J8(p3) ﬁ (/ d3qu3(qi)JJ(—qi)> >(B.7'—)KN

i=1

(C.7)
= (n+ D) T 02) T ) 67,0 (T8I 790 ) 571 )

Now we further notice that the absence of explicit interaction terms between bosons

18

and fermions™ in the action Spr implies the following relations in the large N limit

(T30 T8 (=0)) (8F) n = (J6(@) TG (—0)B,. x
(T3 (@) TS (=) 7). = (T (@I (—0)) Fon (C.8)
(J2(p1) I3 (2) IS (03)) (BF) o = (J2(01) I3 (02)T5 (P3))B,

"This is because of the fact that the product (J§(¢)J8(—q))(J{ (¢)J{(—q)) is independent of the mo-
menta q.

18 .e. ¢pdp1p and dpudd terms.

- 29 —



XX O—@  H—Heeoenn —e
o—»Jg
o — J
b
x — Jg
XX @@ KA :rrrren o—e
©)

Figure 7. Schematic representation of 3 type of diagrams contributing to the factorization via the
double trace term J¢ Jg in the action. The dots (crosses) connected with solid lines are factorized
correlation functions while the grey line connecting a dot with a cross means the corresponding
operators have same momenta.

Combining (C.5), (C.7) and (C.8) and summing the series over n, we arrive at the following
expression for the supersymmetric correlator

2

00 4 2 n
LTI T = (LTSI B ) BI(IT) 7 (C.9)
K
n=0
Further using the relation [21]*"
K e 47\ 2 "
<J(IJ)J({>7},N = E Z <</€> <J(IJ)J8>BK,N<J5J({>.FK,N> ) (0'10)
n=1

we can write (C.9) as

2
(J2(p1) IS (p2) IS (03)) 7o, e = (JE(D1) TG (02) T (P3)) B, [1 + Zl:UgJécmN} . (Ca)

Following exactly the same procedure, one can also derive the following relation®’

2
L ) (02) 5 (03)) 72 0 = (T (1) T3 (02) T3 (03)) 7, [HfugJJm,N] . (C12)

The correlators (JZ(p1)J (p2)J (ps)) 7, x and (J2(p1)JE(p2) T (ps))B,  are known
from [4] where the authors determined the all 3-point correlators of single trace opera-
tors in quasi bosonic and quasi fermionic theories in term of two abstract parameters X

19This can also be derived in a very similar fashion using the large N factorization via double trace (J(I,’J({)
interaction term in the SUSY lagrangian.
20We have difference in signs compared to [21] due to spinor convention difference.
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and N using the constraints of weakly broken higher spin symmetry in these theories. The
result for the 2-point and 3-point functions relevant to our analysis are as follows

N - -

(olan) o)), = 155 (o) ) e

(Jo(z1)Jo(2)) 7, = N f;\2< Jo (1) Jo (2)) er

(Js(21)Js(22))B,, . = (Js(@1)Js(@2)) 7,y = N (Ts(@1) Js(22)) bos (C.13)
oo o) o, = 1 o) o) e
o) o) ez = s ) o) e

Here the subscript bos (fer) refers to the quantity computed in theory of a free single real
boson (Majorana fermion) respectively. Further, in above relation we denote the operators
with a tilde on top to emphasize that the normalization used in [4] is in general different
from the usual normalization used for these operators in Chern Simons vector models.

The exact relation between these operators normalizations and the abstract parameters
(A, N) to the parameter (\, N) of the regular boson theory (B, ) were obtained in [5]
while the equivalent relations for the regular fermion theory (F, n) were obtained in [31]
via explicit computation of 3 point function for some of the low spin operators. These
relations are as follows

B (Jou J.) = < i Jb>
Kk,N - 0y¢s 1+ ;\2? s
Fn: G g = o g (C.14)
w,N - 0yJs 14 5\27 s .
where (A, N) = ( tan ™ ’2Nsm(7r)\)
2 TA

Combining (C.11), (C.12), (C.13) and (C.14), we get the following expression for our
desired 3-point function in supersymmetric theory 7, n

N

(T2 (1) Ty (w2) By (@a)) . = Y (T (1) Jo(@2) T (23) ) bos o
(H @) I (22) 7 (@3)) 70 = 7 f 55 (ae) Jo(w2) Jo(s)) e

with X\ and N as in (C.14).
Now that we have all the requisite 2 and 3 point functions, we can compute the
normalization independent squared 3-point function coefficients to be

1-X%)
C2(BBB) _ ~(70
0,susy N(l + )\2)2 0,fb (C 16)
1 .
052(55513) mc‘iﬂ) s=2,4,6...
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where C'527 b (Cf f7) denote the corresponding coefficients in a free real scalar (majorana
fermion) theory. The normalized coefficients above and in the rest of the paper can formally
be defined as follows. Conformal invariance uniquely fixes the position dependence of all
the 2 point functions and the relevant 3 point functions we are interested in, namely of
the type (Jo(x1)Jo(x2)J*)(23)). Lets define the normalization N, and 3 point function

coefficient Cl.4 as our operators to be

PZS
(T (@1, A) T (2, X)) = N2 —2,
|212]
(5) (1 A _A QF
(J (@1, M) Jo(2) Jo(x3)) C'soo’x12”$23|m0_1|x31|, (C.17)
AL X 12228 A1 X12X23 X351 A :
where szﬁ, Qi = SEEFEEEAN with X = a0,
1231

We refer the reader to [64] for further details of the conformally invariant structures involved
in 2 and 3 point functions. The relevant normalized 3-point function coeflicient squares we
are interested in are then defined as
C?
o) M p— . - (C.18)
22 N2
K NiNZNj
where the 4, j, k are just labels for the operators involved.

The mixed correlators <J5f JbJE) and (J? J({ J({ ) of our theory cannot directly be related
to correlators of B, ny or F, n theories via double trace type factorization used above. We
will instead use the self duality of our theory to determine these correlators. Under the
self duality transformation (2.3) the operators in our theory map in the following way [21]

Redb, Hedl, e (=12 (C.19)

S S
Thus, we have following relations for the mixed 3-point functions

<J8J8Jg>7},zv (_1)S<J£J8J(l))>7'—ﬁ,m|—zv

I T 7 = (0TI T T

(C.20)

K,|k|—N

The 2-point functions are, of course, invariant under the duality while the parameters A
and N transform as follows
N—=N, A=At (C.21)

Using (C.20), the result of our explicit computation (3.19) for the mixed 3-point func-
tion (J§JE J({ ) and the duality transformation (C.21), we can determine the other 3 point
function coefficients, Ca(sljng) and Cﬁ,&ﬁs@” to be
BBF) _ 2 (2\)? 2

cBBR) _ 2 A
e e )
C2(BBF) A 2

$,susy N(l T 5\2>2 Cs,fb
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Jo(8; p; = P2)
Jo(8;, Pi— P

¥, 6..6;.p.p;~ p)

Figure 8. Convention for the definition of each vertex in the 4-point function. The ‘internal’
Grassmann variables, 0/, 0% that are explicitly shown here are suppressed in figure 9 to avoid clutter.

» Y e

These internal variables are integrated over in the computation of the correlation functions. The
convention of various momenta entering or leaving the vertex is also demonstrated here.

Note that since our result for the 2 and 3-point function (3.15) and (3.19) are obtained in the

. 2(BBF
momentum space, in order to compare Cj (Susy )

with C?b (as we have done in the first line
of (C.22)) we need to read out the 3-point function coefficient in position space by taking
the appropriate Fourier transform of our result to go to the position space expression. This
can be implemented in a straightforward manner, e.g. using the Fourier transform result
in [65]. This leads to the extra factor of (2/72) in the first line of (C.22).

Using the method described above the relevant normalized 3-point function coeffi-
cients required for the J({ 4-point function can also be computed. We simply quote the

results below

1
CQ(FFF) - _ 02
TN+ Az C.23
C2(FFB) _ X (€.23)

2
s,susy N(l + S\Q)QCs,ff

since the corresponding

We do not write down the coefficients C2(FFF) and Cg (FFB)

,Susy ,Susy
3-point functions are contact terms.

D Comments on direct computation of J© 4 point function

In this appendix, we describe the relevant diagrams, and corresponding integrals, con-
structed using the exact 4 point vertex which contribute to the full J© four point func-
tion. Figure 8 shows the exact 4-point vertex used to construct all the relevant diagrams
in figure 9.

For diagrams in figure 9, note that the exact vertex (3.10) is a function of two internal
grassmann variables (6}, 0! as depicted in figure 8). The internal propagators in figure 9
that emanate from/to the exact vertices connect these internal Grassmann variables, which
are integrated over in the computation of the relevant diagrams. In figure 9 the value of
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Jo(0y.q) Joa. q")

P p+g+q

p+a+q+q”
Jo(04.4™) J0(03.4™
(a)
Jo@y.q) Jo(Ba.¢") Jo(@y.q) Jo(0r.4") Jo@y. q) Jo(03.4")
p+q k 6, 6 p p+q
iy Pra+q P Pra+q”
[} 0, 0, [
k+q +q¢"+q" r+q
Oy 0, Oy 0,
k (k+q+q k 4 Tk+q+q"
k+gq 1:(]' +q” ) g, o, ) k+gq +‘q' +q”
k+q+q" +q +q"
Jo(ba, ¢™) Jo(03.9") Jo(0y,4™) 7T Pra+q Jo(03.9") Jo(ba, ¢™) Jo02.4")

(b) () (d)

Figure 9. The contributing diagrams for the four point function of currents. The first diagram is
diagram type (a). The grey blob in (b), (c), (d) represents the all loop four point correlator. The
remaining diagrams are obtained by permutations of the external operators.

diagram (a) is given by

VW (q,q',q",61,02,05,04)

d3
N / (27:)?3d29’1d20’1’d20§d29’1’d29’3d20§d20§1d29§{

<P( /179Z7P+Q)P(9279g;p—q/_QH)P(%N g?p_q/)P( /27 lllap)
V3(917 37 ,1/7 Q7P)V3(927 Héa ega qup - q,)V3(037 0;‘)76.:/7)/7q”7p - q/ - q//)
V3(94,911,92’,—q—q’—q”7p+q)> (D.1)

There are a total of 6 additional diagrams due to permutations of the operators. and the
interaction part is given by

B
‘/4( )(Q7q,7q”791702’93794)

3 3
= N? / g 7;3 (;l ’;3 d?0,d*0,d?0,d*0,4d>6’, d*07 d>05d? 07 d*04d>65 d 0, d>0)]
T T

(P( /17911,,]94‘(])13(92179a;p—q,—q”)P(9079gak—q/—q”)P(aév /2/>k’—q,)P(9§a9d7k’)P(9b> lllap)

V3(917 /17 /1,7Q7p)v3(027 ,27 /2/7q/7k_q/)v3(0376§)79g7q//7k_ql_q”)

V3(947 0217 011,7 _q_q/_q”7p+Q)V4(0a7 91)7 007 Hdapa _q/_qll7 k)) (D2)
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The bosonic and fermionic correlators for the diagram figure 9 are given by

o) T T ) T (—a— ' — ¢")) = Vi, ¢, q", 61, 02,05, 64)

01—0,02—0,03—0,0,—0

4
o 0
@I @I @V (~a—d —d) =T] 55 ggaVa (@:4a"01,02,05,0)  (D3)
=1 T

Although we were able to successfully perform the integrals for the components p3, 8,
and k3, 0 in the expression for V4(B) given by (D.2) ks and ps integrals out be intractable
analytically. Due to this difficulty we were not able to obtain a closed form expression for
the four point function of the scalar operatorsjg and Jg in (D.3).

E AdS contact diagrams

E.1 Closed-form

Dinni(2,2) = i[ln(zz) m(tf) F2Lig () —2Lis(2)]

12uv +1+u+v
(z=2)°  (2-2)3

Dasoa(z,2) =

4 6) <(1+u yolnot(1+o— u)ulnu)—i-(

b 1680u21)2 240uv N 24 (Ltuto)t 4
u, ’U Uu+mv
3333 (z—2)7  (z2—z) (z—2)3

x [ln(zz) In (1_2) +2Lig(z) —2Liy (z)}

840u 100 2 o 480uv 12(1—|—u)+76v o<
(o5 g o g PG e
260uv 26
(2_2)64—(2 BL 7 (I+u+v) (E.1)
D(u,v)3322 = — 0y Dazoa(u,v) (£.2)

D(u,v) 4433 = —0y D3333(u,v)
E.2 Decomposition in terms of conformal blocks

The contact diagrams may be written as an expansion in conformal blocks [66]

Daanar () ZGAA m S Wa, o) + Y ap®an ™ Wa, o(:) (E.3)
n
AA ap®
Dannaa (i) ZQG Z mZ —m2, Wa,0(@i) + Z 8m2 =5 Wa,0(z:)
m#n
(E.4)

~ 98 —



where WA70 = ,BA345A12WA70. For Az =A

Danan(xi) Z2a oS Wa, (i) + Z n,0(7) (E.5)

0
= Z 20,072 + (a)?)BR a0 + ﬁﬁinAA Wa,0(@:)
om2

+ Z(GSA)Q/BQAnAAai Wa,o0(z:) (E.6)
with
qAA
M=) (E.7)
m¢n n m
Atdu N
Bags = al )(Ag ) (E.8)
al2 — (=™ (AD)m(A2)m (£.9)

™ Baniem! (A + Ay +m—d/2),

with the anomalous dimension being proportional to the coefficient of the third term which
involves derivative of the conformal block. Writing the above in terms of the D functions

_ 1 0
Danna(u,v) =% [Z [(2 2on )8R, an + (aﬁA)QwﬁinAA} Ga,0(u,v)

n

0
+Z 2263 BAG S GA ol v)] (E.10)
We will re-label
0
Pl(A) (n,0) = (2a5203% + (a52)%)BA, an + WﬁinAA
Py (0,001 (n,0) = 2(a52)?83, an (B.11)

so that

20(A)* 1
1“(2A(—)d/2)uA zn: [PI(A) (n,0)G A, 0(u, v)

1
+ iPéA) (n, O)fygA)(n, 0)

DAAAA(U: ’U) =

0
WGATL,O(U7U):| (E12)

n

satisfying [67]

P (n,0) = %an (A (.00 1Y (n,0)) (E.13)
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Similarly, for (141)

2T (A)*I(A+1)2 1
T(2A+1—d/2) ud

Datiarian(u,v) =

DL R UENRITRES LB 0,005 (1,0) =L G o)

omz,
+B3aa5 g T A Gon o (u,0) (E.14)
P (n,0)=(a AHAH%AA+G§AU$HAH)5MAA+G$Aa$+m+lai%ﬁinAA
Py (0,001 (n,0) = 2052 1A B3 44 (B.15)

E.2.1 Examples

— 2 1 anG n ;
D1111(u,v) = m Z [Pl(l)(n,O)G2+2n7g(u,v)+§Pél)(n,O)"yil) (n,O)M}

8n+2
8 1 OnGayonolu,
Daon(:0) = 5z O [P (1.0)Gisonoa0) 5 By (. 00217 (n,0) 2|
256 3 1.3 3 OnGoy2n.0(u,
Diss1:0) = feganyags D [PL (0. 0)Go om0 0)+ 5Py (n, 00" (n, 0) 22

n

(E.16)

0
D3322(u v 15771/%3 {ZP m,0)Ge12m.0(u, v)+ P( )(m 0)7! (3) (mao)mG6+2m,0(U,0)

+B3ad* 133 Guo(u, U)]

1024

_ 0
= 105/t [ZP m,0)Gy12m.0(u, v)—i— P(4)( 0)7&4)(m,0)mG8+2m,0(u,v)

Dayazs(u,v)

+ﬁ§ag3nO4G67o(u,v)] (E17)
Contact terms for bosonic correlator
Gﬁfs = D1111(u,v)
GASS, = (1+ D
(0p)4 = u +v) Dagaa(u, v)
_ _ 1 _
Gg’gd(sagd))z = 2(u2D3322 (’LL, U) + ’U2D3322 (U, u) + ED3322(1/’U, u/v)) (E18)
Contact terms for fermionic correlator
Ggfs = Dagoa(u,v)
G(Aad(bs)zl = (1 +u+ U)Dgggg(u, U)

_ _ 1 _
Gig(%3¢)2 = 2(u2D4433(u, U) + U2D4433(U, u) + 5D4433(1/U, u/v)) (E.lg)
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