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1 Introduction

First-order phase transitions (FOPTs) are common phenomena in daily life but are also
naturally predicted to have occurred in the early Universe by many models beyond the
Standard Model (SM). See, e.g., refs. [1–40] for a far from complete list of examples. FOPTs
are interesting not only because they can generate a stochastic background of gravitational
waves (GWs) [41–45], but also because they have far-reaching phenomenological applications.
Among other possibilities, they may be relevant for explaining the cosmic matter-antimatter
asymmetry [46–54] or the generation of dark matter [55–64].

Almost all the FOPT-related phenomena, as well as the generated GW signals, depend
crucially on the bubble wall velocity vw. For this reason, there have been a lot of works on
bubble wall dynamics in recent years [65–93]. To determine vw, one in principle needs to solve
the coupled equation of motion (EoM) of the order-parameter scalar field and the Boltzmann
equations for the particles that couple with the scalar field [94, 95]. See refs. [76, 93, 96–100]
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for some studies following this approach. In [101–106] the backreaction of the fluid onto the
expanding bubbles is incorporated by adding an effective friction term to the scalar field EoM.

Solving the Boltzmann equations and the scalar EoM is however challenging not only
because they are coupled integrodifferential equations, but also because the computation of
the collision terms suffers from large uncertainties. It is therefore highly desirable to derive
the upper and lower bounds of the wall velocity with simpler approaches, which is the goal of
the present work. Such upper and lower bounds can be very useful in the initial exploration of
a BSM model. For example, certain dark matter generation mechanisms require bubbles with
very slow walls [56, 57]. To find out whether a specific BSM realization can give successful
dark matter generation, one might first determine the upper and lower bound for the wall
velocity. These results can then motivate a more detailed computation of vw, including a
solution of the Boltzmann equations (or save one from wasting time and numerical resources).

Our estimates for the upper and lower bound of the wall velocity correspond to the two
limiting cases for the deviation from equilibrium of the particles in the plasma. Intuitively,
the larger the deviation from thermal equilibrium of the plasma, the greater the friction
the bubble wall experiences. One can imagine (and we will demonstrate in this work) that
the deviation from equilibrium is a monotonically decreasing function of the collision rate
Γ for the particles in the plasma. Let us assume that the interaction strength is infinitely
strong, i.e., Γ → ∞, particles can instantaneously relax to their equilibrium state after being
perturbed, and therefore, the plasma would remain in local thermal equilibrium as the wall
passes through. This is the local thermal equilibrium (LTE) approximation [68, 72, 81], which
can provide the lower bound of the friction experienced by the wall and the upper bound of
the velocity. Although in LTE there is no dissipative friction, there is still a backreaction
force due to hydrodynamic effects [101, 107], which could lead to a stationary motion of the
wall. Such hydrodynamic effects are caused by the inhomogeneous temperature and velocity
distributions near the wall. It was noted in ref. [72] that in LTE, the wall velocity can be
determined very simply and efficiently with a new matching condition in the hydrodynamic
quantities across the bubble wall due to the conservation of entropy. This method has been
more thoroughly studied in ref. [81].

In the opposite limit, Γ → 0, particles do not collide with each other, and the friction
can be studied by analyzing particle transmission across the wall. This is the ballistic
approximation that is usually used for ultra-relativistic bubble walls [108–114], but has also
been applied for slow walls in refs. [65, 90, 96]. In contrast to the LTE case, the inhomogeneity
in the plasma temperature and velocity distributions is usually not considered in the ballistic
approximation.1 Without considering it, the crucial hydrodynamic effects are ignored and
the estimate of the velocity could be misleading. In particular, it has been observed when
solving the scalar EoM and Boltzmann equations [69, 76] (see also refs. [75, 115]), but also in
a pure LTE analysis [81, 116] that the frictional pressure has a peak at the Jouguet velocity.
Such a peak is important as it tells us that the friction is not a monotonous function of
the wall velocity and thus one cannot simply use the asymptotic value of the friction in the
ultrarelativistic limit [108] to determine whether a bubble wall runs away or not [116]. In this

1An exception is the recent work [90] which considers the inhomogeneous distribution in the temperature
but not in the fluid velocity.
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Length scale Description Typical value
Wall thickness Lw

(wall frame)
Scalar fields’ variation length scale 1/mϕ

Mean free path LMFP
(plasma frame)

Plasma’s thermalisation length scale 1/Γ ∼ 1/(gnT )

Bubble radius Rbubble
(plasma frame)

Length scale of the macroscopic structures
(e.g. shock and rarefaction waves, bubble)

O(1− 10−5)× 1/H

δ

(wall frame)
Distance from the wall at which

the scalar fields are constant
δ ≫ Lw

and δ ≪ γwRbubble

δ′

(wall frame)
Distance at which the plasma has

reached its asymptotic equilibrium state
δ′ ≫ max(γwLMFP, Lw)

and δ′ ≪ γwRbubble

Table 1. Summary of the different length scales relevant for the phase transition dynamics. mϕ is
the scalar field’s mass and gn is some power of the coupling constant. We have also indicated in which
frame these quantities are defined.

work, we carefully account for the mentioned inhomogeneity in the plasma temperature and
velocity across the wall. As a result, we observe a similar pressure curve peaked at the Jouguet
velocity for the ballistic approximation, and we can extract a lower bound on the wall velocity.

The goal of this work is three-fold:

• We update the ballistic approximation to account for the inhomogeneous temperature
and velocity profile, promoting it such that it gives us a lower bound on vw.

• We demonstrate that the ballistic approximation gives the upper bound of the friction
(equivalently lower bound of the wall velocity), and the LTE approximation the lower
bound.

• We demonstrate in practice how the bounds on the velocity can be applied to simple
and realistic models.

In this paper, we will see a few different length scales for the phase transition (PT)
dynamics. Here we summarise them in table 1. The reader may refer to it when these
length scales are introduced.

The remainder of this article is as follows. In the next section, we give a brief review of
the general aspects of bubble wall dynamics and hydrodynamics. In section 3 we discuss the
two approximations used in this paper. We derive the ballistic distribution functions with
hydrodynamics correctly integrated and derive a new effective matching condition for the
ballistic approximation. In section 4, we argue that the LTE and ballistic limits establish
bounds on the wall friction and velocity. In section 5, we present our numerical results
both for a model-independent analysis and for an example model. We conclude in section 6.
For completeness, some technical details are left in appendices. Throughout we use the
metric signature (+,−,−,−).
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Figure 1. Sketch of bubble wall dynamics using the deflagration mode as an example. The bubble
wall and shock front are viewed as having zero size at the hydrodynamic scale. The hydrodynamic
quantities T and v are discontinuous at these fronts. To study the matching conditions, one then
needs to zoom in on these fronts.

2 A brief review of bubble wall dynamics and hydrodynamics

We illustrate the bubble wall dynamics in figure 1, taking a deflagration as an example. The
relevant quantities for a hydrodynamic description are the fluid temperature and velocity
distributions, T (ξ) and v(ξ), where ξ = r/t with r the radial coordinate and t the time
since nucleation. Since there is no other scale in the problem, the solutions for v and T are
self-similar, i.e., they only depend on ξ. The bubble wall and the shock front can be viewed
as having zero size at the hydrodynamics scale. T (ξ) and v(ξ) are continuous, except at the
bubble wall and the shock front. The quantities on both sides of these fronts (either the
phase front, i.e. bubble wall, or shock front) are therefore related by matching conditions.
To study the matching conditions at the wall and to determine the wall velocity, one needs
to zoom in on the fronts to a scale where the wall has a finite width. One uses the coupled
EoMs between the scalar field and the plasma to find the matching conditions. There are
two standard (hydrodynamic) matching conditions given by the conservation of the total
energy-momentum tensor. For both of the two approximations adopted in this work, there
is another matching condition with which one can fully determine the system for a given
nucleation temperature Tn.

2.1 Coupled scalar and plasma equations of motion

The analysis of the friction on bubble walls is usually based on the following coupled EoMs
for the background field and plasma [94–96],

□ϕ + dV (ϕ)
dϕ

+
∑

i

dm2
i (ϕ)
dϕ

∫ d3p
(2π)32Ei

fi(p, x) = 0 , (2.1a)

dfi

dt
= −C[f ] , (2.1b)

where □ = ∂µ∂µ, fi(p, x) are the particle distribution functions, and Ei =
√

p2
i + m2

i

the particle energies. V (ϕ) is the zero-temperature potential which may include quantum
corrections to the classical potential. Considering a bubble wall expanding in the z-direction,
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and working in the rest frame of the wall where the wall position is taken as z = 0, one can
obtain the driving and frictional pressures (see, e.g., ref. [116])

Pdriving = V (ϕs)− V (ϕb) ≡ ∆V , (2.2a)

Pfriction = −
∫ δ

−δ
dz (∂zϕ)

(∑
i

dm2
i (ϕ)
dϕ

∫ d3p
(2π)32Ei

fi(p, z)
)

, (2.2b)

where ϕs,b are the field values at the symmetric and symmetry-broken minima, respectively.2
Above, δ ≫ Lw is a length scale. Its value should be chosen such that |∂zϕ/(∆ϕ)2|±δ ≪ 1,
where ∆ϕ = ϕb − ϕs. For a wall described by a hyperbolic tangent, one may take, e.g.,
δ = O(5Lw). It can be effectively understood to be infinity in the context of the scalar
field EoM.

One can actually use conservation of total energy-momentum to write the frictional
pressure in a different way. The energy-momentum tensors for the scalar field and plasma read

T µν
ϕ = (∂µϕ)∂νϕ − gµν

(1
2(∂ϕ)2 − V (ϕ)

)
, (2.3a)

T µν
f = (ef + pf )uµuν − gµνpf , (2.3b)

where uµ is the fluid four-velocity, and pf , ef are the fluid contribution to the pressure and
energy density. Note that the perfect fluid form of the plasma energy-momentum tensor
already assumes LTE. Since these energy-momentum tensors will be used to derive the two
standard matching conditions, we will see how those can be properly interpreted even though
the plasma is out-of-equilibrium across the wall. Then

∂µT µν
ϕ = (∂νϕ)

[
□ϕ + V ′(ϕ)

]
= −(∂νϕ)

∑
i

dm2
i (ϕ)
dϕ

∫ d3p
(2π)32Ei

fi(p, x) , (2.4)

where in the last equality we have used eq. (2.1a). Taking ν = z, using total energy-momentum
conservation, and working in the rest frame of the wall, one has

∂zT zz
f = −(∂zϕ)

∑
i

dm2
i (ϕ)
dϕ

∫ d3p
(2π)32Ei

fi(p, z) . (2.5)

Therefore,

Pfriction =
∫ δ

−δ
dz ∂zT zz

f = T zz
f |in front of the wall − T zz

f |behind the wall ≡ ∆T zz
f . (2.6)

On the other hand, we know

T zz
f =

∑
i

∫ d3p
(2π)3

(pz)2

Ei
fi(p, z) . (2.7)

Once we know fi obtained from solving the Boltzmann equation, we can substitute them into
eqs. (2.7), (2.6) to obtain Pfriction without explicit dependence on ϕ. Note that, in calculating

2Although generally, FOPT does not necessarily involve symmetry breaking, we will use the terminology of
a symmetry-breaking FOPT throughout.
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Approximation Scale hierarchy Reference
LTE Rbubble ≫ Lw/γw ≫ LMFP [68, 72, 81]

Ballistic (this work) Rbubble ≫ LMFP ≫ Lw/γw section 3.2
Ballistic (previous literature) LMFP ≫ Rbubble ≫ Lw/γw [65, 96]

Table 2. Summary of the different approximations found in the literature and studied in this work,
and the scale hierarchies at which they are valid.

T zz
f , one should only include the degrees of freedom that respond to the passage of the wall

quickly enough so that they are not completely “invisible” to the wall. A condition on these
degrees of freedom could be that their mean free path should be much smaller than the
bubble radius (or the length of the shock wave or rarefaction wave), LMFP ≪ Rbubble.

If the interactions among the particles are very efficient, the plasma can remain close to
thermal equilibrium during the bubble expansion.3 In such a case, fi = f eq

i and one does
not need to solve the Boltzmann equation. This is the LTE approximation. This gives the
lower bound of the friction on the wall and hence the upper bound of its velocity. On the
other hand, if the interactions among the particles are extremely weak, one can take the
collision term to be zero in eq. (2.1b) and particles in the plasma do not collide with each
other while passing through the wall. Again, the Boltzmann equations become very simple
and solutions can be obtained straightforwardly. This is the ballistic approximation. These
two approximations dramatically simplify the problem but meanwhile, provide the lower and
upper bounds on the friction and hence are still very important.

Mathematically, the conditions for the LTE and ballistic approximation to be valid are

Lw/γw ≫ LMFP ∝ 1
Γ , (LTE condition) (2.8a)

Lw/γw ≪ LMFP ∝ 1
Γ , (ballistic condition) (2.8b)

where Lw is the wall width in the wall rest frame, LMFP is the mean free path in the plasma
frame, Γ characterizes the collision rate between the particles, and γw ≡ 1/

√
1− v2

w is the
Lorentz boost factor corresponding to vw. Furthermore, if LMFP ≪ Rbubble, which is usually
satisfied,4 the particles perturbed by the wall’s passage can relax to equilibrium sufficiently
fast inside and outside the bubble. Therefore, one can assume a well-defined temperature in
front of and behind the wall. We summarise the approximations used in this paper in table 2.

There are three ways to apply the ballistic approximation. The first way is commonly
considered in the literature [108–114]; one fixes the collision strength and hence LMFP to be
the one determined by the model under study, and condition (2.8b) is satisfied for sufficiently
large γw. Therefore, the ballistic approximation is used for ultrarelativistic bubble walls, i.e. in
the large γw limit. This is a faithful application of this approximation, but it only tells us the

3Whether the plasma can remain close to LTE also depends on the strength of the force imposed from the
wall on the particles.

4For example, for an electroweak PT with Tn ∼ 100 GeV, the mean free path is set by the weak interaction,
while 1/(RbubbleH) ∼ β/H ∼ 100 and the number of relativistic degrees of freedom g∗ ∼ 100. The scales
LMFP and the bubble radius at the moment of collision are separated by about 14 orders of magnitude.
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friction in the ultrarelativistic regime. In the other two approaches, one takes the limit Γ → 0
for given γw. In this way, one does not faithfully derive the wall velocity for the considered
model but uses the ballistic approximation to derive the upper bound of the friction and thus
the lower bound of the wall velocity (the same holds for the use the LTE approximation in
this work). In the approach of [65, 96], the plasma temperature and velocity were taken as
constant. In this work, on the other hand we also consider inhomogeneous plasma temperature
and velocity distributions, thus accounting for hydrodynamic obstruction [69, 76, 81, 107, 116].
We shall observe a higher pressure barrier in the ballistic approximation than in the LTE
approximation. This is a crucial observation made in this work.

2.2 The standard matching conditions and fluid equations

Two standard matching conditions. To study the matching conditions for the hydro-
dynamic quantities across the wall, it is convenient to work in the rest frame of the bubble
wall (see the right panel of figure 1). The matching conditions are usually formulated in
terms of the energy density and pressure with the tree-level scalar potential energy absorbed:
e = ef +V (ϕ), p = pf −V (ϕ) ≡ −Veff(ϕ, T ). Note that the fluid enthalpy is ω = ef +pf = e+p.
From energy-momentum conservation, we have in equilibrium

ω(z)γ2(z)v(z) = const , (2.9a)

ω(z)γ2(z)v2(z) + 1
2(∂zϕ(z))2 + p(z) = const , (2.9b)

where v > 0 is defined through uµ = γ(1, 0, 0,−v) and γ(v) = 1/
√
1− v2. To get the matching

conditions, we take z = ±δ′, (cf. table 1). Since the above equations are valid only for LTE
(due to the use of the perfect fluid energy-momentum tensor), δ′ has to be chosen to be
much larger than the mean free path in the wall frame γwLMFP (which should really be
understood as the mean free path of the particle with the smallest interaction rate). This
way, all particles relax to equilibrium at ±δ′. On the other hand, δ′ should be much smaller
than the macroscopic scale so that it can be essentially viewed as infinitesimally thin at
the hydrodynamics scale. Therefore, we have γwRbubble ≫ δ′ ≫ γwLMFP. Then we obtain
the following two well-known matching conditions

ω+γ2
+v+ = ω−γ2

−v− , (2.10a)
ω+γ2

+v2
+ + p+ = ω−γ2

−v2
− + p− , (2.10b)

where a subscript “±” is used to denote quantities in front of/behind the bubble wall. To be
clear, e+ = es(T+), e− = eb(T−) and similarly for p±. Now, the thermodynamic quantities
are understood to be the thermal equilibrium ones in the above matching conditions.

Eqs. (2.10) are definite only when p is a known function of T . This, in principle, requires
knowledge about the effective potential of a given model p = −Veff(ϕ, T ) where we have
included the ϕ-independent term in Veff . We are only interested in the pressures in the
symmetric phase ϕs(T ) and the broken phase ϕb(T ), which are determined by minimizing
the potential for a given T . Therefore, p can be understood as a function of the temperature
only. The other thermodynamic quantities of interest can then be obtained from p(T ), e.g.,

e = T
dp

dT
− p , ω = T

dp

dT
, s = ω

T
, c2 = dp/dT

de/dT
, (2.11)
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where s and c are the entropy density and sound speed respectively. With a known function
p(T ), eqs. (2.10) are two constraint equations for five quantities vw, T± and v±. Since T+,
v+ can be related to the nucleation temperature Tn and wall velocity vw, one actually has
only one unknown among the five quantities {vw, T±, v±} after imposing eqs. (2.10). In
section 3 we demonstrate how to supplement the system with a third matching condition,
such that all quantities are fixed.

To perform a model-agnostic analysis, one usually replaces an exact p(T ) with an assumed
equation of state (EoS). Often-used examples are the bag EoS or its generalisation, the
template model [117]. We briefly review the model-independent analysis of the hydrodynamic
matching relations [81] based on the template model in appendix A, which we also use
to provide a proof that the LTE approximation provides a lower bound on the friction
in section 4.1.

Fluid equations. Away from the bubble wall |z| ∼ Rbubble > δ, δ′), the fluid properties are
determined by the fluid equations: uν∂µT µν

f = 0, ūν∂µT µν = 0 , where ūµ is the normalized
vector orthogonal to uµ. For these equations, it is convenient now to work in the rest frame of
the bubble center. Then we have uµ = γ(1, v) and ūµ = γ(v, v/v). In spherical coordinates,
uµ = (γ, γv, 0, 0) and ūµ = (γv, γ, 0, 0). Since there is no characteristic scale in the problem,
the solution should depend only on the dimensionless variable ξ = r/t. The fluid equations
can be written in a more explicit form, see e.g. ref. [104].

The fluid dynamics scale is characterised by the bubble radius Rbubble while the bubble
wall dynamics scale is given by the wall width Lw. The condition Lw ≪ δ ≪ γwRbubble for
eqs. (2.2b) and (2.6) means that although δ can be effectively taken to be infinity in these
equations, it can also be effectively viewed as 0+ in terms of the dimensionless variable ξ in
the plasma frame. Therefore, in ξ-space, one essentially integrates from ξw − 0+ to ξw + 0+

to obtain the friction. This is reasonable as the friction on the wall only depends on the
local state of the plasma near the wall.5

3 Bubble wall velocity in the LTE and ballistic approximations

We have just discussed the two well-known hydrodynamic matching relations. Now, we will
discuss how we can obtain a third matching relation in the limit of LTE or the ballistic
approximation, which allows us to determine vw.

3.1 The LTE approximation

In the LTE approximation, there is an additional matching condition due to the entropy
conservation across the wall [72]

∂µ(suµ) = 0 ⇒ s+γ+v+ = s−γ−v− , (3.1)

where s ≡ ∂p/∂T is the entropy density. Using eq. (2.10a), it can be also written as

γ+T+ = γ−T− (LTE matching condition) . (3.2)
5In contrast, refs. [77, 84] define the friction as an integral from ξ = 0 to ξ = 1 so that the wall friction

receives additional contributions from regions far away from the wall.

– 8 –



J
H
E
P
0
2
(
2
0
2
5
)
1
1
9

This provides the third matching condition as an addition to the previous two given in
eqs. (2.10a) and (2.10b). And one can fully determine the wall velocity for any specified
effective potential Veff and a given nucleation temperature Tn. In section 4.1 we present a proof
that the LTE limit gives the upper bound on the wall velocity using the template model EoS.

3.2 The ballistic approximation

In the wall frame, a LTE distribution function takes the form

f eq(pz, z;p⊥) =
1

epµuµ/T ± 1
= 1

eβγ(E+vpz) ± 1
, (3.3)

where β ≡ 1/T , E =
√

p2 + m2(z). Note that all the quantities except for p should be
understood as a function of z.

In the ballistic approximation, particles across the wall are not in LTE. However, one
expects that the fluid in front of the wall and behind the wall can have a well-defined
temperature for particles moving towards the wall, given by T+ and T−, respectively. Fur-
thermore, the bulk velocities of the fluid in front of and behind the wall are given by v+, v−
respectively. The incident modes (modes that move towards the wall) are in thermal equi-
librium at z → ±δ (in the rest of this section, we will simply replace δ with ∞ to follow
the convention in the literature), i.e.,

f←∞ = 1
eβ+γ+(E+v+pz) ± 1

, (pz < 0, z → ∞, m = m+) , (3.4a)

f→−∞ = 1
eβ−γ−(E+v−pz) ± 1

, (pz > 0, z → −∞, m = m− > m+) , (3.4b)

where we have denoted m± = m(z → ±∞). Above and in the following, we assume that
the particles gain mass when they enter the bubble. In appendix C, we extend the analysis
to the case when particles lose mass as they enter the bubble.

The full distribution should be determined by the Liouville equation(
pz

E
∂z −

∂zm2

2E
∂pz

)
f(pz, z;p⊥) = 0 . (3.5)

Using ∂z = (∂zm2)∂m2 , one has

pz(∂zm2)
E

(
∂m2 − ∂pz2

)
f(pz, z;p⊥) = 0 . (3.6)

This simply means that f is a function of the combination m2 + pz2. As a consequence, it
should be straightforward to obtain the solution for a given boundary condition.

The solution to the Liouville equation with the boundary conditions (3.4) can be in-
terpreted physically [65, 96].

(1) Transmission from the symmetric phase (t+):

f t+(pz, z;p⊥) =
1

eβ+γ+
(

E−v+
√

pz2+m2(z)−m2
+
)
± 1

,

(
pz < −

√
m2
− − m2(z)

)
; (3.7)
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(2) Reflection (r):

f r(pz, z;p⊥) =
1

eβ+γ+
(

E−v+
√

pz2+m2(z)−m2
+
)
± 1

,(
−
√

m2
− − m2(z) < pz <

√
m2
− − m2(z)

)
; (3.8)

Note that above we do not have
√

pz2 + m2(z)− m2
+ multiplied with a factor of sign[pz],

in contrast to ref. [65].6

(3) Transmission from inside the bubble (t−):

f t−(pz, z;p⊥) =
1

eβ−γ−
(

E+v−
√

pz2+m2(z)−m2
−

)
± 1

,

(
pz >

√
m2
− − m2(z)

)
. (3.9)

The above solution completes the distribution function for all the pz-modes in front of the
wall (z → ∞) and behind the wall (z → −∞). Explicitly, at z → ∞, we have

f(pz,∞;p⊥) =


1

eβ+γ+(E+v+pz)±1
, pz < −

√
∆m2 , (t+-modes)

1
eβ+γ+(E−v+|pz |)±1

, −
√
∆m2 < pz <

√
∆m2 , (r-modes)

1

eβ−γ−(E+v−
√

pz2−∆m2)±1
, pz >

√
∆m2 , (t−-modes)

,

(3.10)
where ∆m2 ≡ m2

− − m2
+. In general ∆m2 is not equal to (∆m)2 ≡ (m− − m+)2 unless

m+ = 0. At z → −∞, we have

f(pz,−∞;p⊥) =


1

eβ+γ+(E−v+
√

pz2+∆m2)±1
, pz < 0 , (t+-modes)

1
eβ−γ−(E+v−pz)±1

, pz > 0 , (t−-modes)
. (3.11)

Note that behind the wall, there are no r-modes. This is reasonable as reflected particles
do not enter the wall. We also note that T+, T− are not defined for all the modes in front
of/behind the wall. Let us stress that there is an important difference between the approach
we take and the ballistic computation done in [65, 96]; we distinguish the fluid velocity and
temperature in front of and behind the bubble wall, whereas in [65, 96], these are taken to
be constant at vw and Tn respectively. As we will see explicitly in section 5.2, this has a
significant effect on the pressure, especially at velocities close to the Jouguet velocity (the
transition from hybrid solutions to detonations). With the assumption of a constant fluid
velocity and temperature, the ballistic approximation does not provide an upper bound on
the friction. On the other hand, the ballistic approximation studied here is the limit one
would obtain when solving the Boltzmann equation and slowly turning off the collisions
in the plasma (C[f ] → 0) which as we will show, makes it indeed the upper bound on the
friction and thus lower bound on the wall velocity.

6This observation has also been made in ref. [90]. However, our solutions differ from those given in ref. [90].
We have taken into account the inhomogeneity in the fluid velocity so that v+, v− enter the solutions. There
seem to be also some sign differences between our solutions and those in ref. [90].
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To compute the pressure on the wall, it is convenient to isolate the contribution from
each mode. Using eqs. (2.6) and (2.7), one can then write

Pb
friction(T+, T−, v+, v−) = Pt+ + Pt− + Pr , (3.12)

with

Pt+ =
∫

pz<−
√

∆m2

d3p
(2π)3

(pz)2

E+
f t+(pz,+∞)−

∫
pz<0

d3p
(2π)3

(pz)2

E−
f t+(pz,−∞) , (3.13a)

Pt− =
∫

pz>
√

∆m2

d3p
(2π)3

(pz)2

E+
f t−(pz,+∞)−

∫
pz>0

d3p
(2π)3

(pz)2

E−
f t−(pz,−∞) , (3.13b)

Pr =
∫

|pz |<
√

∆m2

d3p
(2π)3

(pz)2

E+
f r(pz,+∞) , (3.13c)

where E± = E(z = ±∞) and we did not make the p⊥-dependence in the distribution
functions explicit. These equations can be simplified by observing that

f t+(pz,+∞) = f eq(pz,+∞) , f t−(pz,−∞) = f eq(pz,−∞) , (3.14a)

f t+(pz,−∞) = f eq(−
√

pz2 +∆m2,+∞) , f t−(pz,+∞) = f eq(+
√

pz2 −∆m2,−∞)
(3.14b)

and f r(pz,+∞) = f eq(−|pz|,+∞) to replace all the ballistic distribution functions with the
corresponding equilibrium one. Then, with appropriate changes of variables, the pressures
can be written as

Pt+ =
∫

pz<−
√

∆m2

d3p
(2π)3

pz

E+

(
pz +

√
(pz)2 −∆m2

)
f eq(pz,+∞) , (3.15a)

Pt− =
∫

pz>0

d3p
(2π)3

pz

E−

(√
(pz)2 +∆m2 − pz

)
f eq(pz,−∞) , (3.15b)

Pr = 2
∫

−
√

∆m2<pz<0

d3p
(2π)3

(pz)2

E+
f eq(pz,+∞) . (3.15c)

The total frictional pressure in the ballistic approximation finally takes the simple form

Pb
friction =

∫ d3p
(2π)3

pz

E
∆pzf eq , (3.16)

where ∆pz is the exchanged momentum with the wall and f eq and E are evaluated at z → +∞
for r and t+ modes and z → −∞ for the t− mode. This last equation has a clear physical
interpretation: particles coming from ±∞ hit the wall with a flux pz

E±
f eq(pz,±∞) with each

collision transferring the momentum ∆pz to the wall. The final friction felt by the wall is
then obtained by integrating the product of these two factors.
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The integrals simplify if we approximate the Bose-Einstein/Fermi-Dirac distribution by
the Boltzmann distribution. Integrating over p⊥ analytically and with appropriate changes
of variables, we obtain

Pt+ = T 4
+

4π2γ+

∫
x>
√

∆m2/T+

dx x

(
x −

√
x2 −∆m2/T 2

+

)
e−γ+

(√
x2+m2

+/T 2
+−v+x

)
, (3.17a)

Pt− = T 4
−

4π2γ−

∫
x>0

dx x

(√
x2 +∆m2/T 2

− − x

)
e−γ−

(√
x2+m2

−/T 2
−+v−x

)
, (3.17b)

Pr = T 4
+

2π2γ+

∫
0<x<

√
∆m2/T+

dx x2 e−γ+
(√

x2+m2
+/T 2

+−v+x
)

. (3.17c)

We present the corresponding expressions of the various pressures for Bose-Einstein and
Fermi-Dirac distributions in appendix B.

At last,

∆V = Pb
friction(T+, T−, v+, v−) (ballistic matching condition) (3.18)

effectively provides an additional matching condition for {T+, T−, v+, v−} and hence we can
solve the wall velocity as we do for the LTE case. In reality, there are typically multiple
particle species that couple with the order-parameter scalar ϕ. In that case, one needs to
sum over all the contributions with parameters mi,±.

The ultrarelativistic limit. As mentioned earlier, the ballistic condition (2.8b) itself does
not necessarily require ultrarelativistic walls. However, it is interesting to see how the standard
Bödeker-Moore 1-to-1 thermal friction, derived in the γw → ∞ limit [108], can be recovered
from the above formulae. In the limit γw → ∞, the equilibrium distribution function (3.3)
is a very narrow distribution peaked at pz = −γT (see e.g. [114]). Therefore, from the
integral ranges in eqs. (3.15), one sees that Pt− and Pr are suppressed compared with Pt+ .
Furthermore, for γw → ∞, one can well assume that the bubble motion is in the detonation
mode and thus f eq in front of the wall is estimated at the nucleation temperature T+ = Tn.
Since only the narrow region near −γwTn makes the dominant contribution to the integral of
Pt+ , one can Taylor expand

√
pz2 −∆m2 ≈ pz− ∆m2

2pz , assuming |pz| ≫ ∆m2. Finally one gets

Pγw→∞ ≈ Pt+ ≈ ∆m2
∫

pz<−∆m

d3p
(2π)32E+

f eq(pz,+∞;Tn)

≈ ∆m2
∫ d3p

(2π)32E+
f eq(pz,+∞;Tn) (3.19)

m+=0=
{
∆m2T 2/48, fermions
∆m2T 2/24, bosons (3.20)

where the last expression is the standard Bödeker-Moore 1-to-1 thermal friction PBM which
is valid when m+ = 0.
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4 Demonstration that LTE and ballistic provide bounds on the wall
velocity

Having discussed how the LTE and ballistic approximations simplify the computation of
the bubble wall velocity, here we demonstrate that they indeed provide bounds on the wall
velocity and friction. We will first prove that the LTE gives an upper bound of the wall
velocity using the template model (cf. appendix A), following ref. [116]. Then, we give a
more general argument based on the linearized Boltzmann equation.

4.1 LTE as an upper bound on the wall velocity in the template model

In the general case where LTE is not maintained in the plasma, one cannot expect entropy
to be conserved across the wall. Therefore, eq. (3.1) must be replaced by the more general
condition of the non-negativity of entropy production [118]

v−γ−s− − v+γ+s+ = v+γ+∆s ≥ 0 . (4.1)

Here, ∆s quantifies the variation of entropy which depends on the deviation from equilibrium
across the wall, making it a highly model-dependent quantity. Nevertheless, as the total
entropy cannot decrease, ∆s is always positive, and this fact can be used to prove that the LTE
limit gives an upper bound of the wall velocity. We will restrict our proof to the template EoS.

Using eq. (4.1) instead of (3.1), the temperature behind the wall can now be expressed as

T− = γ+T+
γ−(1 + σ) , (4.2)

where we have defined

σ ≡ ∆s/s+ ≥ 0 . (4.3)

Substituting the above into eq. (A.7a) to remove the dependence on T−, one finally obtains

3να+v+v− =
[
1− 3α+ −

(
γ+
γ−

)ν Ψ+
(1 + σ)ν

](
1− v+v−

c2
b

)
, (4.4)

where the corresponding quantities are defined in appendix A. The above equation is the
same as the LTE matching equation (A.8) with the simple substitution

Ψ → Ψeff = Ψ
(1 + σ)ν

≤ Ψ , (4.5)

where the last inequality comes from σ ≥ 0.
We conclude that, within the hydrodynamic description, an out-of-equilibrium plasma

can be treated mathematically like an LTE plasma, with an effective Ψeff which gets reduced
compared with the physical Ψ by the entropy production. Note that this is just a mathematical
correspondence. In the presence of a deviation from LTE, Ψeff loses the original meaning as the
ratio of the enthalpies in the broken and symmetric phases. In LTE, a smaller value of Ψ leads
to a smaller wall velocity (see ref. [81]), as it means more particles can interact with the wall
leading to a higher friction force. Using the correspondence above, this means that entropy
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production typically makes the wall velocity smaller compared with the limit of no entropy
production. Hence the LTE approximation (σ = 0) gives the upper bound of the wall velocity.

Interestingly, in the limit Ψ → 0 where all the degrees of freedom become very massive
and cannot enter the bubble wall, one can see that LTE always gives an exact result as
Ψeff = Ψ = 0. This curious fact was already pointed out in ref. [87] and happens because in
this limit, there is no plasma on the broken side which implies s− = 0. With that constraint,
it is easy to see that the only non-negative value eq. (4.1) can have is 0. Therefore, entropy
must be conserved and LTE becomes exact.

4.2 Demonstration that LTE and ballistic approximations bound vw in the
linearized Boltzmann equation

The general Boltzmann equation for the deviation from equilibrium δf = f − f eq of a single
particle can be written as(

pz∂z −
1
2∂z(m2)∂pz

)
δf + λC[δf ](z, pz) = −

(
pz∂z −

1
2∂z(m2)∂pz

)
f eq ≡ S(z, pz) , (4.6)

where the parameter λ represents the strength of the interactions involved in the collisions.7
The ballistic limit can be obtained by taking λ → 0, while LTE is obtained in the limit
λ → ∞. In general, C[δf ](z, pz) is a nonlinear functional of δf (which is ultimately a function
of z and pz), but for simplicity, we will linearize it with respect to δf . We will also assume
∂z(m2) < 0, such that the particle becomes heavier when entering the bubble.

This equation can be simplified with the change of variable ρ =
√
(pz)2 + m2, which

leads to the equation

sign(pz)
√

ρ2 − m2 d
dz

δf(z) + λC[δf ]
(

z, sign(pz)
√

ρ2 − m2
)
= S

(
z, sign(pz)

√
ρ2 − m2

)
,

(4.7)

where δf(z) = δf(z, sign(pz)
√

ρ2 − m2(z)). We thus see that in terms of the ρ variable,
the modes with positive and negative momentum are governed by two distinct Boltzmann
equations. This can be written in a simpler form as

d
dz

δf(z)− λH[δf ](z, ρ, sign(pz)) = S(z, ρ, sign(pz)) , (4.8)

with

H[·](z, ρ, sign(pz)) = − sign(pz)√
ρ2 − m2C[·]

(
z, sign(pz)

√
ρ2 − m2

)
,

S(z, ρ, sign(pz)) = sign(pz)√
ρ2 − m2 S

(
z, sign(pz)

√
ρ2 − m2

)
= − d

dz
f eq(z) . (4.9)

To continue, it will be convenient to represent functions of ρ and sign(pz) as states of a
vectorial space V. The solution δf(z, ρ, sign(pz)) is now represented by a state |δf(z)⟩ ∈ V ,

7Note that λ does not correspond to a physical quantity and should be set to 1 in a calculation. We
introduce it here to study the variation of the solution with respect to the collision strength and to take the
different limits.
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and similarly S(z, ρ, sign(pz)) → |S(z)⟩ ∈ V . The parameter z here is analogous to the time
parameter in the Schrödinger equation. Finally, the functional H[·](z, ρ, sign(pz)) is now
represented by a map H(z) from V to V.

The Boltzmann equations can then be expressed as

d
dz

|δf(z)⟩ − λH(z)|δf(z)⟩ = |S(z)⟩ . (4.10)

To solve this equation, it will be useful to define the projection operators P± that project out
the negative and positive eigenvalues of H. In other words, H+ ≡ P+H = HP+ is positive
definite and H− ≡ P−H = HP− is negative definite. They also satisfy P2

± = P±, P+P− = 0,
and since H has no zero eigenvalues,8 P+ + P− = 1. Applying these operators on eq. (4.10),
the positive and negative eigenmodes decouple as

d
dz

|δf±(z)⟩ − λH±(z)|δf±(z)⟩ = |S±(z)⟩ , (4.11)

where |δf±⟩ = P±|δf⟩ and |S±⟩ = P±|S⟩. Physically, |δf±⟩ are deviations from equilibrium
generated by particles coming from ±∞, respectively.

Let us now define the evolution operators U±(z, z′) in terms of Dyson series as

U±(z, z′) = T exp
(

λ

∫ z

z′
dy H±(y)

)
=
∞∑

n=0

1
n!T

(
λ

∫ z

z′
dy H±(y)

)n

= 1+ λ

∫ z

z′
dy H±(y) + λ2

∫ z

z′
dy

∫ y

z′
dy′H±(y)H±(y′) + · · · , (4.12)

where T is the time-ordering operator (or position-ordering here), which arranges the H±
operators following it in order of decreasing distance from z′, such that the one most on the
left is evaluated at the point farthest from z′, and the one on the right is evaluated at the
point closest to z′. The evolution operators have the important properties that U±(z, z) = 1

and that their derivative with respect to z is

∂zU±(z, z′) = λH±(z) + λ2H±(z)
∫ z

z′
dy H±(y) + · · · = λH±(z)U±(z, z′) . (4.13)

Using these properties, it becomes straightforward to show that the solutions of
eqs. (4.11) are

|δf+(z)⟩ = −
∫ ∞

z
dz′ U+(z, z′)|S+(z′)⟩ , (4.14a)

|δf−(z)⟩ =
∫ z

−∞
dz′ U−(z, z′)|S−(z′)⟩ . (4.14b)

Notice that the U± appearing in these solutions are both exponentials of negative definite
operators, which guarantees that U± are positive definite and that the integrals converge

8The nonlinear collision operator does have zero eigenvalues, as it must satisfy C |f eq⟩ = 0. After linearising
this operator, this equation becomes Clinear |δf = 0⟩ = 0. However, a zero state cannot be an eigenstate.
Furthermore, zero eigenvalues lead to divergent solutions (see eqs. (4.14)), hence cannot exist.
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(because U±(z,∓∞) = U±(±∞, z) = 0). Finally, the complete solution of the Boltzmann
equation (4.10) is

|δf(z)⟩ = |δf+(z)⟩+ |δf−(z)⟩ = −
∫ ∞

z
dz′ U+(z, z′)|S+(z′)⟩+

∫ z

−∞
dz′ U−(z, z′)|S−(z′)⟩ .

(4.15)

We now wish to demonstrate how |δf(z)⟩ varies with the interaction’s strength, parametri-
zed by λ. It is straightforward to show that the derivative of the evolution operators with
respect to λ is

∂

∂λ
U±(z, z′) =

∫ z

z′
dy T

[
H±(y)U±(z, z′)

]
. (4.16)

Note that, from the definition of the time-ordering operator T , one has the relation
T [H±(z),H±(z′)] = 0. This implies the property U±(z, z′′) = U±(z, z′)U±(z′, z′′). Using this
relation, the variation of the solutions with respect to λ is

∂

∂λ
|δf+(z)⟩ = −

∫ ∞
z

dz′
∫ z

z′
dy T

[
H+(y)U+(z, z′)

]
|S+(z′)⟩

= −
∫ ∞

z
dz′

{
−∂z′

[∫ z

z′
dy

∫ ∞
z′

dy′ T [H+(y)U+(z, y′)]
∣∣S+(y′)

〉]
−
∫ ∞

z′
dy′ T [H+(z′)U+(z, y′)]

∣∣S+(y′)
〉}

=
∫ ∞

z
dz′

∫ ∞
z′

dy′ U+(z, z′)H+(z′)U+(z′, y′)|S+(y′)⟩

= −
∫ ∞

z
dz′ U+(z, z′)H+(z′)|δf+(z′)⟩ , (4.17)

where the first term of the second line is zero because it is a total derivative vanishing at the
boundaries, and we used eq. (4.14a) to get the fourth line. Similarly, we get

∂

∂λ
|δf−(z)⟩ =

∫ z

−∞
dz′ U−(z, z′)H−(z′)|δf−(z′)⟩ . (4.18)

These last two equations can be combined as

∂

∂λ
|δf(z)⟩ = −

∫ ∞
−∞

dz′ |U(z, z′)H(z′)| |δf(z′)⟩ , (4.19)

with |U(z, z′)H(z′)| = U+(z, z′)H+(z′)Θ(z′ − z) − U−(z, z′)H−(z′)Θ(z − z′), which is a
positive definite operator.

Going back to the representation in terms of functions of ρ and sign(pz), |UH| becomes
a functional which, due to its positive definiteness, maps every positive function to another
positive function and vice versa. Therefore, eq. (4.19) implies that as we increase λ, the
solution becomes closer and closer to zero, which corresponds to equilibrium.

However, in general, the solution of the Boltzmann equation δf is not positive for all values
of z, pz. In fact, because U± are positive definite operators and because S = −df eq/dz < 0
(the particle is more massive in the bubble at z → −∞ and therefore Boltzmann suppressed),
one can see from eqs. (4.14) that δf+ > 0 and δf− < 0. In practice, the pressure on the

– 16 –



J
H
E
P
0
2
(
2
0
2
5
)
1
1
9

m+ = 0, m− = 3Tn, αn = 0.3, b = 1 m+ = 0, m− = Tn, αn = 0.005, b = 0.1
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Figure 2. Different contributions to the ballistic pressure for a strong (left) and a weak (right) PT in
the model presented in section 5.1. In both cases, the t−-modes (which correspond to δf+) give the
smallest contribution. The points show the solutions satisfying Pb

friction/Pdriving = 1.

wall is dominated by the contribution from δf+, as it corresponds to particles coming from
the symmetric phase that are either transmitted to the broken phase or reflected, while
δf− contains particles transmitted from the broken to the symmetric phases. The latter
are typically Boltzmann suppressed since they are created in a phase where they are more
massive. Also, to interact with the wall, they need to be faster than vw to catch up with
it, which only a small fraction of the particles can do (intuitively, we expect this fraction
to go from 1/2 at vw = 0 to 0 at vw = 1). It is therefore a good approximation to neglect
δf− in the pressure calculation and set δf ≈ δf+. This fact can be seen explicitly in figure 2
which shows the contribution of the different modes to the ballistic pressure. In both the
strong and weak PTs, the t−-modes (which correspond to δf−) give the smallest contribution,
and they are completely negligible in the strong PT.

From eqs. (4.14) and (4.19), one finally gets δf > 0 and ∂λδf < 0. From eq. (2.2b), one has

Pfriction = PLTE −
∑

i

∫ δ

−δ
dz

dm2
i (ϕ(z))
dz︸ ︷︷ ︸
<0

(∫ d3p
(2π)32Ei

δfi

)
︸ ︷︷ ︸

>0

, (4.20)

where PLTE is obtained by substituting fi = f eq
i into eq. (2.2b). δfi > 0 means that out-

of-equilibrium effects add more friction compared with the LTE limit. While ∂λδfi < 0
means that the minimum is reached when λ → ∞ (LTE) and the maximum pressure is
reached when λ = 0 (ballistic limit).

5 Comparison between LTE and ballistic results

As the LTE and ballistic approximations respectively offer an upper and lower bound on the
true wall velocity, it can be useful to compare these two approximations to find constraints
on the wall velocity without having to solve a complicated system of Boltzmann equations
and scalar EoM. Not only are these equations challenging and computationally expensive
to solve, they also suffer from large theoretical uncertainties coming from the collision rates
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Γ that appear in the Boltzmann equations. These collision rates are typically computed to
leading-log accuracy, which is rather imprecise and can lead to errors of O(1) [69, 76, 94, 119].

The LTE and ballistic approximations allow us to avoid this problem since they correspond
to the limits Γ → ∞ and Γ → 0, respectively. Thus, even if Γ is completely unknown, one
can still obtain useful information on vw with these approximations in the form of an interval
in which it must reside.

Unfortunately, making a general comparison between LTE and ballistic is not a straight-
forward task as these two approximations depend on a different set of variables. In general,
this mapping from one approximation to the other cannot be made in a model-independent
way. It either necessitates specifying a model, in which case the mapping can be done exactly,
or making approximations which allows one to make more general conclusions that should
still hold at least qualitatively. We will explore both options in the following.

5.1 Model-independent analysis

To obtain a more general and qualitative understanding of how the LTE and ballistic
approximation compare to one another, we now study a set of simplified models. We will
assume that the plasma contains g̃⋆ massless degrees of freedom and g∗,ϕ degrees of freedom
with a mass of m+ and m− outside and inside the bubble, respectively. The pressure in
this model can therefore be expressed as

ps/b(T ) = π2g̃⋆

90 T 4 + g⋆,ϕ pM,s/b(T )− ϵ± , (5.1)

where ϵ± is the vacuum contribution (which is approximated to be independent of T ), and
pM,s/b is the thermal pressure of a single degree of freedom with mass m±. To simplify
the discussion, we will assume that pM,s/b is given by the one-loop Maxwell-Boltzmann
pressure, which is given by

pM,s/b(T ) = π4

90
m2
±T 2

2π2 K2

(
m±
T

)
, (5.2)

where Kn(x) is the modified Bessel function of the second kind. Above, we have added by
hand an extra factor π4/90 ≈ 1.08 so that pM reproduces the value of the Bose-Einstein
distribution for m± = 0. This way, g⋆,ϕ can be taken to be the effective number of degrees
of freedom coupling with the scalar ϕ,

g⋆,ϕ =
∑
iB

giB ,ϕ +
∑
iF

7
8giF ,ϕ , (5.3)

where giB ,ϕ is the number of internal degrees of freedom of boson iB, and giF ,ϕ of fermion
iF . When m+ = 0, the total number of relativistic degrees of freedom in the symmetric
phase is g̃⋆ + g⋆,ϕ ≡ g⋆.

It follows directly that the enthalpy and energy densities are given by

ωs/b(T ) = 2π2g̃⋆

45 T 4 + g⋆,ϕ
π4

90
m3
±T

2π2 K3

(
m±
T

)
, (5.4a)

es/b(T ) = π2g̃⋆

30 T 4 + g⋆,ϕ
π4

90
m2
±T

2π2

[
m±K3

(
m±
T

)
− TK2

(
m±
T

)]
+ ϵ± . (5.4b)
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At first sight, it could appear that the EoS (5.1) depends on six parameters (g̃⋆, g⋆,ϕ,
m± and ϵ±). However, one can see that the variables g̃⋆, g⋆,ϕ and ϵ± only appear in the
combinations

b = g⋆,ϕ

g̃⋆
, ϵ = ϵ+ − ϵ−

g̃⋆
, (5.5)

in all the matching equations. This effectively lowers the number of independent variables
in this model to four.

Finally, to simplify the LTE calculation, one can map the EoS (5.1) to the template model
(see appendix A) by computing the thermodynamic quantities α(Tn), cs/b(Tn) and Ψ(Tn)
with eqs. (A.6), (2.11) and (A.9). This typically gives a reasonable approximation and allows
one to use the method presented in ref. [81] to compute vw. However, to guarantee accurate
results, we will keep the full EoS (5.1) in what follows and use the WallGo package [93] to
find the LTE wall velocity (based on hydrodynamics [72]).

5.1.1 Results

We now move to comparing the wall velocity obtained within this model using the ballistic
and LTE limits. As argued previously, these limits give respectively a lower and upper bound
on the possible wall velocities and can therefore contain helpful information. We will be
particularly interested in the difference between these two predictions. If the difference is
large (or if they predict different types of solutions), the true wall velocity remains poorly
constrained and it is required to solve a set of Boltzmann equations to obtain a better
estimate. On the other hand, if the difference is small, the collision operator has very little
effect on the wall velocity and it may be unnecessary to solve the Boltzmann equations.

In what follows, it will be convenient to describe the strength of the PT with a slightly
different definition of α than the one defined in terms of the pseudo trace θ̄ (see eq. (A.6)).
Instead, we will use a definition based on the pressure difference:

αp(T ) = −(1 + 1/c2
b)
(

ps(T )− pb(T )
3ωs(T )

)
= α(T )− 1−Ψ(T )

3 . (5.6)

The two definitions are approximately equal for strong PTs, but slightly disagree for weaker
ones. In particular, by definition, αp vanishes when ∆V = 0, so it can always take values
from 0 to ∞, while α cannot be smaller than (1 − Ψ)/3. Furthermore, the wall velocity
always goes to 0 in the limit αp → 0. These properties make it easier to interpret and
present results expressed in terms of αp rather than α (one can of course always go easily
from one to the other if needed using eq. (5.6)).

Deflagrations/hybrids. To explore the properties of deflagration and hybrid solutions
we perform a scan varying αp and b while keeping m± fixed. The result of this scan is
shown in figure 3, with m+ = 0 and m− = Tn on the left panels and m+ = 0 and m− = ∞
(more formally m− ≫ γwTn) on the right panels. The former is meant to represent a typical
electroweak PT (with the Higgs acquiring a VEV v ∼ Tn), while the latter corresponds to
the large mass limit (LML) which has interesting properties that will be discussed in the
next subsection. For these two cases, one has Ψ(Tn) ≈ (1 + 0.89b)/(1 + b), Ψ(Tn) = 1/(1 + b),
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Figure 3. Contour plots of scans varying the parameters αp and b with fixed m+ and m− for
deflagration and hybrid solutions only. They show (from top to bottom) the ballistic solution vb

w, the
LTE solution vLTE

w , the difference between the ballistic and LTE solutions vLTE
w − vb

w and the entropy
fraction generated by the ballistic solution σ. The left side is with m+ = 0 and m− = Tn, and the
right side with m+ = 0 and m− = ∞ (the large mass limit).
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Figure 4. Contour plots of scans varying the parameters m+ and m− with fixed αp and b for
deflagration and hybrid solutions only. They show the same quantities as in figure 3. The left side
is for a rather weak PT with αp = 0.01 and b = 0.1, while the right side is for a stronger PT with
αp = 1 and b = 1.
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respectively. This means that the parameter b has a very different implication in these
two cases. For the former Ψ can never be smaller than 0.89, while for the latter, it can
be as small as 0.

The first two rows of figure 3 show the wall velocity computed in the ballistic limit vb
w and

in LTE vLTE
w . In all cases, we can see white regions where no deflagration or hybrid solutions

were found. In these regions, the PTs are simply too strong and the plasma too weakly
coupled to create substantial friction on the wall. The wall is therefore free to accelerate
beyond the Jouguet velocity and become a detonation or possibly a runaway solution. The
part of parameter space where a solution can be found is always larger when the ballistic
approximation is used rather than LTE, since the friction in the first case is higher and can
therefore stop the wall more easily. Note that the same conclusion does not hold if one uses
the Bödeker-Moore 1-to-1 thermal friction (3.19). This means that the asymptotic value of
the pressure in the γw → ∞ (when only the 1-to-1 processes are considered) is not necessarily
larger than the pressure peak at the Jouguet velocity [116].

Note that the m− = Tn and m− = ∞ cases behave in a very different way. In the former,
there is a maximal value of αp beyond which no deflagration or hybrid solutions are possible.
In the second case, if b is high enough, there will always be such a solution no matter how
strong the PT is. This fact was first observed in ref. [81] for LTE, and we can observe here that
it can also happen in the ballistic limit. Note however that the ballistic wall velocity can only
be interpreted as an upper bound as long as the size of the shock wave is larger than LMFP.

The third row of figure 3 shows the difference between vLTE
w and vb

w. An important
observation is that, in most of the parameter space, both limits agree on the type of solution.
Effectively, they both agree that a deflagration/hybrid solution exists in the colored region
and that no solution exists in the white region (which means the wall must be a detonation or
runaway). They only disagree in the narrow grey band where a ballistic solution can be found
but no LTE one. This implies that, away from this grey band, it is possible to determine
with certainty the solution type of a general model: deflagration/hybrid if a solution exists
in LTE, and detonation if no solution exists in ballistic.

If there is a solution in LTE, then the true wall velocity vw is in the interval [vb
w, vLTE

w ].
A simple estimate of vw can then be obtained with, e.g., vmean

w = (vb
w + vLTE

w )/2. As can be
seen in figure 3, the difference between vb

w and vLTE
w can be quite large in some parts of the

parameter space, and vmean
w could be off by at most ∼ 0.3. If that is the case, solving the

Boltzmann equations could be necessary if more precision is needed. There are two regimes
where vb

w and vLTE
w are approximately equal. The first one happens when Ψ ≈ 0 (or b ≫ 1

and m− − m+ ≫ Tn) where, as argued in section 4.1, Ψeff ≈ Ψ and the entropy production
has no effect on the wall velocity. vmean

w also becomes exact when αn ≫ 1/3 simply because
both vb

w and vLTE
w approach 1 for strong PTs. Both of these two cases can be seen on the

right side of figure 3. If a model is in one of these two situations (which often happens in
confining PTs or in models with conformal invariance), solving the Boltzmann equations
may become unnecessary as vb

w and vLTE
w agree very well.

Finally, the fourth row of figure 3 shows the entropy production fraction σ (eq. (4.3))
obtained in the ballistic approximation. This quantity can be useful to quantify the extent
to which the plasma can be out-of-equilibrium. It can also be used to compute Ψeff which
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Figure 5. Contour plots of scans varying the parameters αp and b with fixed m+ and m− for
detonation solutions only. They show the ballistic solution vb

w and the entropy fraction generated σ.
The left side is with m+ = 0 and m− = Tn, and the right side with m+ = 0 and m− = 5Tn.

allows one to describe mathematically the model using the LTE formalism, even if the
plasma has deviations from equilibrium. Furthermore, σ always vanishes in LTE, while it
is maximized in the ballistic limit, so the true entropy produced must always be smaller
than the value shown here.

We show different scans in figure 4 where αp and b are held fixed and m± are varied.
Again, there are two different scans: one with αp = 0.01 and b = 0.1 which are typical values
obtained in the singlet scalar extension of the SM, and the other one with αp = 1 and b = 1
which represents a stronger PT. One can observe that the wall velocity is minimized in the
LML (the upper left corner), where the mass variation is maximal. This is not surprising
as the large mass variation creates a large friction that slows down the wall more efficiently.
Furthermore, it can be seen that having a deflagration or hybrid solution requires having
a relatively small value of m+. If it is too large, the particles are completely Boltzmann
suppressed in front of the wall and they cannot generate any pressure, even if m− ≫ m+.
We note, however, that both vLTE

w − vb
w and σ are maximized in the LML.

Detonations. We now move to describe the detonation solutions. In contrast to deflagration
and hybrid solutions, it was shown in ref. [81] that stable detonations do not occur in
LTE. This is because in LTE the net pressure Pfriction(vw) − Pdriving, is a monotonically
decreasing function of vw after the Jouguet velocity. Even though there is a solution
Pfriction(vw) − Pdriving = 0 for vw > vJ , it cannot be stable. On the other hand, we will
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Figure 6. Same as in figure 5 but varying m± with αp = 0.01 and b = 0.1 (left) and αp = b = 1
(right).

see shortly that detonations do occur in the ballistic limit as now the net pressure is not
monotonically decreasing above vJ (see figure 8 below for an example). There are even
parameter points with several detonation solutions, but for simplicity, we will only consider
the solution with the smallest wall velocity in what follows.

We show in figures 5 and 6 the same scans as for the deflagration and hybrid branch. It
is quite clear from these scans that finding a stable static detonation solution requires some
amount of fine-tuning. If the PT is too weak, the driving force on the wall will simply be too
small to overcome the friction in the detonation regime. In that case, the net pressure on the
wall is always positive for vw ∈ [vJ , 1) and the only possible solutions are deflagrations or
hybrids. On the other hand, in the detonation regime the friction generated by the plasma
cannot be arbitrarily large (see the Bödeker-Moore limit in section 3.2), so if the PT is too
strong, the net pressure will always be negative for vw > vJ . In that case, although no
static detonations can be found, the wall can become a runaway as the negative pressure will
continue pushing the wall forward until it reaches an ultrarelativistic speed.

5.1.2 Large mass limit

An interesting case happens when the massive particles start nearly massless in the symmetric
phase and end up very heavy in the broken phase, which corresponds to the limit m+ → 0 and
m− → ∞ (or more specifically, m− ≫ γ+T+). This type of situation can naturally occur in
models where a scalar field acquires a very large VEV (e.g. in conformal models) or in confining
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PTs.9 In this large mass limit (LML), the plasma only contains massless particles everywhere,
as the heavy particles are completely Boltzmann suppressed in the broken phase, which thus
only contains the massless species. As we will see, this fact drastically simplifies the analysis.

The LML is not only simpler to analyze, it also provides an interesting limit. For a
fixed value of αp (or αn) and b, it becomes clear from the second row of figure 4 that the
LML gives the smallest value of the wall velocity. The LML thus provides us with a lower
bound on the ballistic wall velocity, which was already the lower bound on the wall velocity.
Put in another way, the LML gives the lowest lower bound on the wall velocity among all
particle physics models with a fixed αp and b.

Let us now demonstrate how the analysis simplifies in the LML. A first simplification
occurs for the equation of state of the LML. Since the plasma is completely radiation-
dominated, we always have c2

s/b = 1/3. This implies that the plasma can be represented
perfectly by the bag EoS. As mentioned before, Ψ = 1/(1 + b) for this case. Notice that these
thermodynamic quantities are all temperature-independent, which is not generally the case.

The second simplification happens in the calculation of the ballistic pressure. Because
m− → ∞, it can be seen in eqs. (3.17) that only the contribution from reflections Pr is
nonvanishing. Furthermore, the integral can be performed analytically which gives a total
friction force on the wall,

Pfriction(T+, v+) =
π2g⋆,ϕT 4

+
90 (1 + v+)3γ2

+ = 1−Ψ
4 ω+(T+)(1 + v+)3γ2

+ . (5.7)

Notice that this pressure asymptotically grows like γ2
+ when v+ → 1, and can therefore be

arbitrarily large. Therefore, there are no runaway solutions in the LML. This seems to be in
contradiction with the Bödeker-Moore limit [108] mentioned in section 3.2, which predicts
a finite pressure in the v+ → 1 limit. This discrepancy is a consequence of the order in
which the two limits are taken. By taking the LML first, we implicitly assume m−/T+ ≫ γ+,
which gives the friction (5.7). On the other hand, Bödeker-Moore assumes m−/T+ ≪ γ+,
which gives eq. (3.19). In realistic models, m− can be large, but it is finite. Thus, the LML
cannot be valid up to v+ = 1 and for a large enough wall velocity, the Bödeker-Moore limit
will become the correct description. We will however not consider such complications and
focus on the pure LML in what follows.

By requiring that Pdriving = Pfriction, one can derive a new condition valid in the
ballistic LML:

α(T+) =
1−Ψ
3 (1 + v+)3γ2

+ . (5.8)

Interestingly, this condition only depends on the plasma velocity and temperature measured
in front of the wall.

9At first glance, the ballistic treatment seems not particularly useful in the confining case. Particles cannot
simply be tracked from the deconfined phase into the confining phase, since both phases contain completely
different degrees of freedom. In the limit m− → ∞ however, only particles in the deconfined phase are relevant,
and the ballistic approximation can be used to describe those.
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Detonations. For detonation solutions which have v+ = vw and T+ = Tn, the wall velocity
can be determined directly to be

vdet
w =

√
3αn[8(1−Ψ) + 3αn]− 3αn

2(1−Ψ) − 1 . (5.9)

For this solution to be valid, it must be larger than the Jouguet velocity [81]

vJ = 1√
3

(
1 +

√
αn(2 + 3αn)
1 + αn

)
, (5.10)

otherwise, a shock wave would form in front of the wall and the solution would be a deflagration
or hybrid wall, not a detonation. This implies that to have a detonation solution in the
LML, one must satisfy

Ψdet > 1− 3αn(1− vJ)
(1 + vJ)2 . (5.11)

In particular, one can show that this bound is minimal when αn → ∞, in which case the
bound becomes Ψdet > (2 +

√
3)/4 ≈ 0.933. Therefore, in the ballistic LML, no detonation

solution can exist if Ψ is smaller than 0.933 no matter what αn is. For Ψ < 0.933, the wall
velocity would be too slow to prevent a shock wave from forming, and the solution would
eventually become a hybrid or deflagration.

As mentioned earlier, in realistic situations m− cannot be infinite. Therefore, the above
conclusion is valid only for

m−
Tn

≫ γdet
w , (5.12)

which gives an additional condition for m−/Tn for given αn and Ψ. In figure 7, we show γdet
w

together with the condition (5.11). It can be seen that for the plotted αp ≲ 100, a value of
m−/Tn of order O(10) − O(100) would justify the conclusion that there is no detonation
solution when Ψ ≲ 0.933.

Deflagrations/hybrids. The situation for deflagration and hybrid solutions is more compli-
cated since they have a shock wave propagating in front of the wall, so one cannot directly
relate v+ and T+ to vw and Tn. Nevertheless, one can use the new condition (5.8) to compute
the entropy production fraction σ defined in eq. (4.3). As described in section 4.1, this will
allow us to treat the system like it is in LTE, but with an effective value of Ψ

Ψeff = Ψ
(1 + σ)4 . (5.13)

This thus gives us a direct way to compare LTE to ballistic, since they can be treated
mathematically identically.

First, one can eliminate T− from the definition of σ by substituting eq. (2.10a) into (4.3)
and (4.1). By assuming that the plasma is described by the bag EoS (which is always the
case in the LML), one can show that

σ =
(

γ2
+v−

γ2
−v+

Ψ
)1/4

− 1 . (5.14)
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Figure 7. Contour plot of γdet
w (αp,Ψ) for the velocity given in eq. (5.9). The region below the red line

violates the condition (5.11). If further m−/Tn is much larger than γdet
w , then there is no detonation

solution for the parameter region below the red line.

One can then substitute eq. (5.8) into (A.7b) to obtain a matching equation independent
of T− and T+. It can be expressed in terms of the cubic equation

0 = (1−Ψ)v−v3
+ − 3Ψv−v2

+ + [1 + 3v−(1 + v− −Ψ)]v+ −Ψv− . (5.15)

In principle, one could use Cardano’s formula to solve this cubic equation for v+ and substitute
the result into eq. (5.14) to express σ completely in terms of Ψ and vw (remember that v− = vw

for deflagrations and v− = cb = 1/
√
3 for hybrids). However, the resulting expression is quite

complicated which makes it challenging to analyse and understand its qualitative behavior.
What will be much more instructive is to study different limiting cases. In particular,

we will be interested in the small v−, small Ψ and small 1−Ψ limits. In these limits, the
solution of eq. (5.15) is

v+ =


v−Ψ

1+3v−(1+v−−Ψ) , v− ≪ 1 or Ψ ≪ 1 ,

v− − v−(1+v−)3(1−Ψ)
1−3v2

−
, 1−Ψ ≪ 1√

3 − v− .
(5.16)

Substituting these into eq. (5.14), one obtains the entropy production fraction

σ =


(3+v−)
4(1−v−)v−(1−Ψ), v− ≪ 1 or 1−Ψ ≪ 1 ,
f(v−)√

γ−
− 1− 3v−Ψ

4f3(v−)√γ−
, Ψ ≪ 1 ,

(5.17)

with f(v−) = [1 + 3v−(1 + v−)]1/4 ≈ 1 + 0.675v−.
There are a few interesting consequences of these limiting behaviours. First, σ always

vanishes when v− = 0 or Ψ = 1. Also, it is an increasing function of v− and a decreasing
function of Ψ. This implies that for deflagration and hybrid solutions, σ is maximized when
Ψ = 0 and v− = 1/

√
3, at which point it takes the value σmax = f(1/

√
3)(2/3)1/4 − 1 ≈ 0.256.

Because the pressure in the ballistic LML is the absolute maximum a PT with a fixed αp and
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b can have, σmax is actually the largest entropy fraction a PT with deflagration or hybrid
expansion can produce, no matter what the model is and whether it is best described by
LTE, ballistic, or anything in between. However, note that for detonations, it can be shown
that σ grows asymptotically like α1/4 and can therefore be arbitrarily large.

Starting from eq. (5.17), it is quite easy to find a numerical fit that approximates σ well
for every value of Ψ and v−. For example, a good fit can be obtained with the simple function

σfit =
(

f(v−)√
γ−

− 1
)

1−Ψ
1− Av−Ψ

, (5.18)

with A ≈ 0.91 giving the best fit with a maximal error of less than 1% for Ψ ∈ [0, 1] and
v− ∈ [0, 1/

√
3]. Furthermore, this fit is exact when Ψ = 0, 1 or v− = 0. Once we have σfit, we

can substitute it into eq. (5.13) to get Ψeff(Tn) for a given Ψ(Tn). Then substituting Ψeff(Tn)
into the fit formula for the LTE wall velocity given in ref. [81], we obtain the resulting wall
velocity. Note that we are only using the correspondence mentioned in section 4.1 and are
still deriving the ballistic wall velocity here.

5.2 Example model: the Standard Model coupled to a gauge singlet

Let us now put our approximations to the test in a concrete example model. We choose the
Z2-symmetric xSM, where the Standard Model Higgs h is coupled to a new gauge singlet
s (see e.g. refs. [7, 76, 119–121]), with tree level potential

V (h, s) = −µ2
h

2 h2 + λh

4 h4 + 1
2

(
m2

s −
λhsv2

2

)
s2 + λs

4 s4 + λhs

4 h2s2 , (5.19)

where v = µh/
√

λh = 246GeV is the VEV of the SM Higgs h. ms is the mass of the scalar
singlet s at the vacuum (v, 0) given by ⟨h⟩ = v, ⟨s⟩ = 0. We consider a region of parameter
space where the PT proceeds in two steps: first, the singlet obtains a VEV, and in the second
step, the Higgs obtains a VEV and the singlet goes back to zero. We use Benchmark 1 defined
in ref. [93], with ms = 120GeV, λhs and λs = 1 and focus on the second step of the PT for
two choices of the nucleation temperature Tn = 90, 100GeV.

We implement the one-loop effective potential as in ref. [93]10 (based on refs. [67, 76]):
we include the one-loop thermal functions without high-temperature expansion, and the
Coleman-Weinberg potential, with a RG-scale at 125.0GeV. We include contributions to the
one-loop effective potential from the singlet, Higgs, Goldstones, W - and Z-bosons and the
top quark. We take the absolute value of the masses to avoid imaginary contributions to the
effective potential. We do not consider running couplings or daisy resummation. Note that
this treatment of the effective potential is expected to give rather large uncertainties [122–124],
but also note that a computation of the wall velocity with a consistent inclusion of higher-order
corrections to the effective potential has not yet been performed, and we therefore stick
here with the one-loop effective potential.

In figure 8, we compare the pressure obtained in four different approaches for Tn = 100GeV
(left) and Tn = 90GeV (right):

10The relevant model file can be found in the Models/SingletStandardModel_Z2 .
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Figure 8. Pressure as a function of the wall velocity in four different approximations for the xSM.

1. The ballistic approximation, as discussed in this work (solid magenta). We include the
contributions from the singlet, Higgs, Goldstone, W - and Z-bosons and the top quark.
The singlet loses mass when it enters the bubble, and we therefore use the expressions
of appendix C to include its contribution to the pressure.

2. The ballistic approximation with the same contributing particles, under the approxima-
tion that v+ = v− = vw and T+ = T− = Tn (dashed blue).

3. Solution to the scalar field EoM in LTE (dotted yellow).

4. Solution of the scalar field EoM, with friction from the top quark, without assuming
the ballistic approximation (dash-dotted green).

To obtain pressures 1, 3 and 4, we make use of the code WallGo [93]. For the ballistic
approximation, we only extract the hydrodynamic matching relations (T+, T−, v+, v−) as
a function of vw and compute the pressure using eqs. (3.15). For 3 and 4, the pressure is
directly returned by WallGo. In the computation, the bubble profile is approximated by
a Tanh-ansatz, and the pressure for each wall velocity is determined by finding the wall
widths and offsets that minimize the action (see ref. [69] for further details on this approach).
Note that there is a slight ambiguity in the definition of the pressure, because the static
equation of motion can not be applied for arbitrary vw. This ambiguity might explain why
the different approximations do not go to exactly the same value of P at vw → 0. Another
possible reason for the small difference at vw → 0 is that WallGo has been configured to
return the principal part of the potential for a negative mass squared, whereas we take the
absolute value in the ballistic computation.

For Tn = 100GeV, the four different approximations for the pressure yield vw =
0.36, 0.36, 0.62, 0.46, for ballistic, ballistic with constant v and T , LTE and WallGo re-
spectively. For Tn = 90GeV, we have vw = 0.58 (ballistic), 0.73 (ballistic, constant v and
T ), 0.63 (WallGo), while in LTE no static solution is found.

As anticipated, the pressure is smallest, and the wall velocity largest in the LTE ap-
proximation for both choices of nucleation temperature. We also see that the ballistic
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approximation with vw-dependent temperature and fluid velocity gives the largest estimate of
the pressure. The pressure with out-of-equilibrium top quark, with the (leading log) collision
integrals falls in between the two approximations. Interestingly, the ballistic approximation
of refs. [65, 96] (with fixed temperature and wall velocity) reproduces vw of our updated
ballistic approximation very well for Tn = 100GeV, but it underestimates the pressure for
Tn = 90GeV. As a result, it overestimates the wall velocity, and finds a detonation solution
rather than a hybrid.

6 Conclusions

The LTE and ballistic approximations are two approaches for estimating bubble wall velocities
in FOPTs. These approximations are typically applicable within specific regions of the
parameter space and wall velocities. For instance, the LTE approximation is generally
reliable for relatively low wall velocities (γw ≲ O(10)) and strong interactions among plasma
particles. In contrast, the ballistic approximation is suitable in scenarios with either very
weak interactions or very high wall velocities (i.e., when γw ≫ 1). In this work, however, we
use these approximations to derive general bounds on friction and wall velocity. The two
limits correspond to extreme collision rates: Γ → 0 for the ballistic regime and Γ → ∞ for
LTE. By linearising the general Boltzmann equation, we have analytically demonstrated that
the LTE and ballistic limits indeed establish upper and lower bounds on the wall velocity,
respectively, so that vw ∈ [vb

w, vLTE
w ].

As a key development in this work, we have demonstrated how hydrodynamics effects
can be incorporated into the ballistic approximation. To achieve this, we account for
inhomogeneities in the fluid temperature and velocity while solving the Liouville equation,
i.e., the collisionless Boltzmann equation. The resulting general solution depends on {T±, v±},
where T± and v± denote the fluid temperature and velocity in front of/behind the bubble wall,
respectively. From this solution for the particle distribution functions, we compute the friction
on the wall, Pb

friction(T+, T−, v+, v−). We have further shown that Pb
friction = Pdriving ≡ ∆V

can serve as an additional matching condition, enabling us to fully determine the wall velocity.
With hydrodynamics correctly integrated, we demonstrate that the ballistic pressure exhibits
a non-monotonic behavior, featuring a local peak at the Jouguet velocity. This finding aligns
with previous observations made using the LTE approximation or the complete solution of
the Boltzmann equation [69, 75, 76, 115, 116].

We have conducted an extensive scan for the wall velocities obtained in the two approx-
imations in a model-independent framework. We identify parameter regions with a small
difference in the two solutions (vLTE

w − vb
w), where solving the full Boltzmann equation is

not necessary, and those with a relatively large difference. For deflagration/hybrid motions,
we have observed that in some part of parameter space, there are ballistic solutions but no
LTE ones. This is reasonable as the ballistic pressure is always larger than the LTE pressure
so there are situations in which the ballistic pressure can beat the driving pressure before
reaching the Jouguet velocity while the LTE pressure cannot. While it has been shown in the
previous work [81] that there is no stable detonation solution in LTE, we have shown that
this is not the case for the ballistic approximation, although the parameter space allowing
for such solutions is relatively narrow. For the ballistic approximation, we also provide a
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detailed analysis of cases where particles become very massive after entering the bubble,
as occurs in models with conformal symmetry, for example. In these instances, we offer
either an analytic solution for the wall velocity in the detonation case or a numerical fit for
deflagration and hybrid cases. Finally, we have applied our methods to a specific model:
the Standard Model coupled to a gauge singlet, and obtained the wall velocities in different
limits, comparing them with the one obtained from solving the full Boltzmann equation using
the package WallGo recently released in ref. [93]. For the benchmark point we considered,
we have seen that the velocity obtained by solving the full Boltzmann equation does lie
between the LTE and ballistic bounds.

Our analysis remains valid as long as hydrodynamics applies. However, we have taken
eq. (2.1a) as our starting point, which accounts for the friction arising from condensate-
dependent mass terms only. There may also be condensate-dependent vertices, such as
ϕηχ2 (where η represents the fluctuation field of the order-parameter scalar upon the bubble
background), that could induce particle production processes like η → χχ. These processes
and the resulting friction can be captured by self-energy modifications to eq. (2.1a). We
anticipate that these additional contributions remain subdominant at relatively low values
of γw. For cases with γw → ∞, however, these modifications would need to be taken into
account. For a detailed analysis of bubble wall dynamics including self-energy corrections
in the scalar EoM, see refs. [125, 126].
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A Model-independent hydrodynamics with the template EoS

To have a model-independent analysis, one usually introduces an EoS for the plasma. A good
EoS is the so-called template model [117] that has been used in various studies [81, 87, 127]).
As a generalization of the bag model, the template model allows the sound speeds in both
phases to deviate from 1/

√
3. Explicitly, it reads

es(T ) = 1
3a+(µ − 1)T µ + ϵ , ps(T ) = 1

3a+T µ − ϵ , (A.1)

eb(T ) = 1
3a−(ν − 1)T ν , pb(T ) = 1

3a−T ν , (A.2)

where the constants µ, ν are related to the sound speed in the symmetric and broken
phases through

µ = 1 + 1
c2

s

, ν = 1 + 1
c2

b

. (A.3)

For µ = ν = 4, it reduces to the bag EoS.
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To formulate the matching conditions in terms of model-independent parameters, we
introduce the D operator through [127]

∆p = ps(T+)− pb(T−) = [ps(T+)− pb(T+)] + [pb(T+)− pb(T−)]
≡ Dp(T+) + δp(T+, T−) , (A.4)

and similarly for the energy density and enthalpy. Above we have defined Dp(T ) ≡ ps(T )−
pb(T ), the difference of a thermodynamic quantity in the two phases but at the same
temperature. δp depends on T+ and T− but only involves quantities in the broken phase.
A quantity that turns out to be of particular importance is

δp(T+, T−)
δρ(T+, T−)

= pb(T+)− pb(T−)
eb(T+)− eb(T−)

≡ ζ2(T+, T−) . (A.5)

In the template EoS, we have ζ(T+, T−) = cb which is constant.
Ref. [127, 128] then introduces the following quantity for the PT strength

α(T ) = Dθ̄

3ωs(T ) , θ̄ =
(

e − p

c2
b

)
. (A.6)

With the parameter α+ ≡ α(T+), one can write the matching conditions as

∆p

3ω+

(
1− v+v−

ζ2

)
= v+v−α+ , (A.7a)

v+
v−

=

(
v+v−

ζ2 − 1
)
+ 3α+(

v+v−
ζ2 − 1

)
+ 3v+v−α+

. (A.7b)

We have now two constraint equations for five unknowns {vw, v+, v−, T+, T−}. For deto-
nations, T+ and v+ are equal to the nucleation temperature Tn and vw, respectively. For
deflagrations/hybrids, T+ can be related to Tn through the fluid equations between the wall
and the shock front, while there is an additional condition either through v− = vw, or v− = cb.
One is essentially left with three unknowns. With the third constraint equation in the LTE or
ballistic approximations (see sections 3.1 and 3.2), one then has a closed system of equations
and all the unknowns can be determined, from which the wall velocity can be inferred.

For the LTE approximation, substituting eq. (3.2) into (A.7a) and using the EoS, one
gets [81]

3να+v+v− =
[
1− 3α+ −

(
γ+
γ−

)ν

Ψ+

](
1− v+v−

c2
b

)
, (A.8)

where

Ψ(T ) = ωb(T )/ωs(T ), (A.9)

and Ψ+ = Ψ(T+). Now, T− has been eliminated in the two matching conditions (A.7b) (with
ζ = cb) and (A.8). As T+ is related to Tn, either directly or through the fluid equations
and matching conditions at the shock front, the system of equations is closed and one can
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determine the wall velocity for a given Tn. More specifically, for detonations, T+ = Tn and
therefore α+ = αn ≡ α(Tn), Ψ+ = Ψn ≡ Ψ(Tn). For deflagrations/hybrids, one can first
express α+ or Ψ+ in terms of αn or Ψn from the template EoS

α+ = µ − ν

3µ
+ ωn

ω+

(
αn − µ − ν

3µ

)
, (A.10a)

Ψ+ = Ψn

(
ω+
ωn

)ν/µ−1
, (A.10b)

and then compute ωn/ω+ by integrating the fluid equations. In conclusion, within the
LTE approximation and the template model, the dynamics can be fully determined by four
thermodynamic quantities: αn, Ψn, cs and cb.

B Ballistic pressures for Bose-Einstein and Fermi-Dirac distributions

Here we present the expressions of Pt, Pt+ and Pt− for Bose-Einstein and Fermi-Dirac
distributions, analogous to those given in eqs. (3.17). We obtain

Pt+ = T 4
+

4π2γ+

∫
x>
√

∆m2/T+

dx x

(
x −

√
x2 −∆m2/T 2

+

)

×
[
±γ+

(√
x2 + m2

+/T 2
+ − v+x

)
∓ log

(
eγ+
(√

x2+m2
+/T 2

+−v+x
)
∓ 1

)]
, (B.1a)

Pt− = T 4
−

4π2γ−

∫
x>0

dx x

(√
x2 +∆m2/T 2

− − x

)

×
[
±γ−

(√
x2 + m2

−/T 2
− + v−x

)
∓ log

(
eγ−
(√

x2+m2
−/T 2

−+v−x
)
∓ 1

)]
, (B.1b)

Pr = T 4
+

2π2γ+

∫
0<x<

√
∆m2/T+

dx x2
[
±γ+

(√
x2 + m2

+/T 2
+ − v+x

)

∓ log
(
eγ+
(√

x2+m2
+/T 2

+−v+x
)
∓ 1

)]
, (B.1c)

where the upper/lower signs correspond to Bose-Einstein/Fermi-Dirac distributions.

C Particles that lose mass when entering the bubble

In certain scenarios, some of the particles actually lose mass, when entering the bubble.
An example of this is the xSM, where the singlet becomes is heavier in the singlet phase
than in the Higgs phase. For these particles, the distribution functions associated with
transmission and reflection are given by

(1) Transmission from the symmetric phase (t+):

f t+(pz, z;p⊥) =
1

eβ+γ+
(

E−v+
√

pz2+m2(z)−m2
+
)
− 1

,

(
pz < −

√
m2

+ − m2(z)
)
; (C.1)
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(2) Reflection (r):

f r(pz, z;p⊥) =
1

eβ−γ−
(

E+v−
√

pz2+m2(z)−m2
−

)
− 1

,(
−
√

m2
+ − m2(z) < pz <

√
m2

+ − m2(z)
)
; (C.2)

(3) Transmission from inside the bubble (t−):

f t−(pz, z;p⊥) =
1

eβ−γ−
(

E+v−
√

pz2+m2(z)−m2
−

)
− 1

,

(
pz >

√
m2

+ − m2(z)
)

. (C.3)

We see that m− got replaced by m+ in the conditions for pz and that reflection now happens
from the inside of the bubble.

The distribution at z → ∞ is

f(pz,∞;p⊥) =


1

eβ+γ+(E+v+pz)−1
, pz < 0 , (t+-modes)

1

eβ−γ−
(

E+v−
√

pz2+∆m2
)
−1

, pz > 0 , (t−-modes) , (C.4)

where ∆m2 ≡ m2
+ − m2

− = −∆m2. At z → −∞, we have

f(pz,−∞;p⊥) =



1

e
β+γ+

(
E−v+

√
pz2−∆m2

)
−1

, pz < −
√
∆m2 , (t+-modes)

1
eβ−γ−(E+v−|pz |)−1

, −
√
∆m2 < pz <

√
∆m2 , (r-modes)

1
eβ−γ−(E+v−pz)−1

, pz >
√
∆m2 , (t−-modes)

. (C.5)

The different contributions to the pressure are given by

Pt+ =
∫

pz<0

d3p
(2π)3

(pz)2

E+
f t+(pz,+∞)−

∫
pz<−

√
∆m2

d3p
(2π)3

(pz)2

E−
f t+(pz,−∞) , (C.6a)

Pt− =
∫

pz>0

d3p
(2π)3

(pz)2

E+
f t−(pz,+∞)−

∫
pz>
√

∆m2

d3p
(2π)3

(pz)2

E−
f t−(pz,−∞) , (C.6b)

Pr = −
∫

|pz |<
√

∆m2

d3p
(2π)3

(pz)2

E+
f r(pz,−∞) . (C.6c)

These equations can be simplified by observing that f t±(pz,±∞) = f eq(pz,±∞), as before,
and f t±(pz,∓∞) = f eq(∓

√
pz2 ∓∆m2,±∞) and f r(pz,−∞) = f eq(+|pz|,−∞)

Pt+ =
∫

pz<0

d3p
(2π)3

pz

E+

(
pz +

√
(pz)2 +∆m2

)
f eq(pz,+∞) , (C.7a)

Pt− =
∫

pz>
√

∆m2

d3p
(2π)3

pz

E−

(√
(pz)2 −∆m2 − pz

)
f eq(pz,−∞) , (C.7b)

Pr = −2
∫

0<pz<
√

∆m2

d3p
(2π)3

(pz)2

E+
f eq(pz,−∞) . (C.7c)

Note that all the above pressures are now negative.
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