
J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Received: June 5, 2024
Accepted: July 1, 2024

Published: January 30, 2025

DARK ENERGY SPECTROSCOPIC INSTRUMENT (DESI) SURVEY YEAR 1 RESULTS

Blinding scheme for the scale-dependence bias signature
of local primordial non-Gaussianity for DESI 2024

E. Chaussidon et al.
Full author list at the end of the paper

E-mail: echaussidon@lbl.gov
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become a standard practice in the cosmological analyses of such surveys. Blinding is especially
crucial when the impact of observational systematics is important relative to the cosmological
signal, and a detection of that signal would have significant implications. This is the case for
local primordial non-gaussianity, as probed by the scale-dependent bias of the galaxy power
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scale-dependent bias signature of local primordial non-gaussianity at the density field level
which consists in generating a set of weights for the data that replicate the scale-dependent
bias. The applied blinding is predictable, and can be straightforwardly combined with other
catalog-level blinding procedures that have been designed for the baryon acoustic oscillation
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but may find applications to other upcoming spectroscopic surveys.
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1 Introduction

In addition to providing tight constraints on the Universe expansion history, one of the
major roles of current [1, 2] or future spectroscopic surveys [3, 4] is to provide an accurate
measurement of the amount of primordial non-gaussianity (PNG) generated during inflation.
In particular, these surveys will be focused on the well-known local PNG parameterized by
f loc

NL [5] such that the primordial gravitational potential field Φ(x) reads

Φ(x) = Φg(x) + f loc
NL

(
Φ2

g(x) − ⟨Φ2
g⟩x
)

, (1.1)

where Φg is the Gaussian primordial potential field. A detection of |f loc
NL| ≫ 0.01 would

immediately rule out single field slow-roll inflation [6] as a valid paradigm to describe the
early Universe.
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Currently, the best constraints on local PNG are obtained from Planck data: f loc
NL = −0.9±

5.1 (68%) [7]. To circumvent the cosmic variance limit of CMB observations, spectroscopic
surveys use the enormous statistical power in the 3D galaxy clustering, probing a large
volume of the Universe. A promising approach to constrain local PNG is through detecting
the tiny imprint it leaves on the galaxy power spectrum at large scales, known as the scale-
dependent bias on large scales [8, 9]. With this method, the best measurement leads to
−23 < f loc

NL < 21 (68%) [10–12] and is obtained with the quasars of the extended Baryon
Oscillation Spectroscopic Survey (eBOSS) [13].

Current spectroscopic surveys, as the Dark Energy Spectroscopic Instrument (DESI) [1,
14] or Euclid [2], are expected to constrain local PNG with similar accuracy to Planck. At
the same time, future surveys are expected to reach a sensitivity of order unity [15], requiring
robust and confirmation bias-free analyses.

Besides, the large-scale modes of the power spectrum used in the scale-dependent bias
measurement may be strongly impacted by angular modes resulting from the dependence
of the target selection to the imaging quality [16]. This dependence, known as imaging
systematics, was the object of many studies carried out for the Sloan Digital Sky Survey
(SDSS) [17–24], the Dark Energy Survey (DES) [25–29], or more recently to prepare the
upcoming DESI clustering analysis [30–32]. Correction schemes mostly rely on template
fitting methods which need to be carefully calibrated to mitigate imaging systematics while
avoiding overfitting. Overfitting indeed leads to a deficit of power at large scales that biases
the analysis [33, 34]. Unfortunately, the efficiency of the systematic mitigation is typically
validated on the actual data through several summary statistics, including the power spectrum
itself, such that one may be influenced by previous detection (or non-detection) of PNG when
tuning the systematic corrections, resulting in an important confirmation bias.

Similarly to the seminal blinding method for the baryon acoustic oscillation (BAO) and
redshift-space distortion (RSD) analyses [35], we propose here a method that introduces at
the catalog level a fake signal mimicking the scale-dependent bias that allows us to investigate
the large scales of the power spectrum while protecting ourselves from confirmation bias.
Section 2 describes the blinding scheme. Then, in section 3, we validate the impact of this
method on the power spectrum. In section 4, we perform realistic tests with non-zero PNG
simulations and validate the combination of the blinding method with the imaging systematic
mitigation. We conclude in section 5.

2 Theoretical description

In the following section we first introduce the signature of local PNG that we aim at blinding.
We then describe the blinding scheme and its practical implementation, noting a shot noise
correction is required to remove the sensitivity of the blinding scheme with the tracer density.

2.1 Scale-dependent bias

Local primordial non-gaussianity leaves an imprint on the tracer power spectrum at large
scales known as the scale-dependent bias [8, 9]:

P (k, z) =
(

b(z) + bΦ(z)
α(k, z)f loc

NL

)2
Plin(k, z), (2.1)
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where Plin is the linear matter power spectrum, α(k, z) is a transfer function connecting the
primordial gravitational field Φ to the matter density perturbation such that

δ(k, z) = α(k, z)Φ(k), (2.2)

b(z) is the linear bias of the tracer and bΦ is the PNG bias given the response to the presence
of local PNG of the tracer.

The transfer function α(k, z) can be computed directly as:1

α(k, z) = TΦ→δ(k, z) =
√

Pδ(k, z)
PΦ(k)

, (2.3)

where the primordial potential2 power spectrum PΦ is defined as:

PΦ(k) = 9
25

2π2

k3 As

(
k

kpivot

)ns−1

, (2.4)

with ns is the spectral index and As the amplitude of the initial power spectrum at kpivot =
0.05 Mpc. Pδ is the linear matter power spectrum such that α(k, z) has the famous scale
dependency: α(k, z) ∝ k2 × TΦ→Φ(k, z) [8].

The PNG bias bΦ can be expressed as bΦ(z) = 2δc × (b(z) − p) with p = 1 [9] (universal
mass function) for tracers whose halo occupation distribution depends only on mass, although
the pertinence of this description is currently discussed [37–39]. Since bΦ and f loc

NL are fully
degenerate, in the following we assume the universal mass function to fix bΦ and we express
the blinding amplitude in terms of f loc

NL.

2.2 Blinding scheme

2.2.1 Mimicking the scale-dependent bias

Our proposed blinding consists in adding a fake signal to the galaxy catalog, such that the
measured power spectrum matches the large scale-dependent bias given in eq. (2.1) for a
specific value of f loc

NL, which we dub fblind
NL . This value is fixed randomly and is to remain

unknown for all the data consistency tests performed during the analysis. Hence, the expected
amount of PNG on the blinded data (assuming the chosen bΦ for the blinding is the true
one) is f loc

NL + fblind
NL where f loc

NL is the true value of the underlying cosmology and fblind
NL a

random, fixed and unknown value.
Analyses of current spectroscopic surveys traditionally weight the data to correct for

several observational effects as the completeness of the observations, the imaging dependence
of the target selection or even the spectroscopic efficiency, see [40] for the description of the
weights used in DESI. We alter the measured power spectrum at large scales by including
in the catalog an additional set of weights, multiplied by the traditional ones to make them
indistinguishable, such that δg → δg + a(k)δr, where δg is the galaxy density field and δr

is the real space density field. The proposed weights are

wd
blind(x) = 1 + wblind(x) (2.5)

1We use CLASS [36] wrapped by https://github.com/cosmodesi/cosmoprimo.
2Φ is normalized to 3/5R to match the usual definition of [9].
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where wblind(x) is the Fourier transform of

wblind(k) = bΦfblind
NL

bα(k) × δ̂r(k) ≡ a(k) × δ̂r(k), (2.6)

and δ̂r is an estimate of δr. The quantities b, bΦ and α(k) are computed at the effective redshift
zeff of the data (see, for instance, eq. (3.5) of [12]). A wrong effective redshift will increase
or decrease the real amount of added fake signal, such that the apparent value of fblind

NL will
be slightly different. Note that a wrong bias will also alter the estimation of the real space
density field. However all of these impacts will be neglected in the following, since we will use
the correct effective redshift. Let us now detail the implementation of this blinding scheme.

2.2.2 Computing blinding weights

The real space density field δ̂r(k) in eq. (2.6) is estimated by performing a reconstruction
process, see [41] for a complete description. First, the density field is built by painting the
particles (data and randoms) on a grid using the cloud-in-cell (CIC) assignment scheme.
The smoothed Fourier-space density field δ̂(k) is obtained with a Fast Fourier Transform
(FFT) and a product with the Gaussian kernel

S1(k) = exp
(

−1
2k2σ2

1

)
. (2.7)

RSD displacements are then estimated from δ̂(k), assuming a fiducial bias b and growth
rate f with the iterative FFT reconstruction algorithm [42] implemented in pyrecon.3 Data
particles are shifted back by the opposite of the RSD displacements, painted on a new grid,
which is again Fourier-transformed, divided by b and multiplied by another smoothing kernel
S2(k) = exp

(
−1

2k2σ2
2

)
to obtain an estimate of δ̂r(k).

Finally, wd
blind(x) is read at the galaxy positions with the CIC scheme from the FFT

of a(k)δ̂r(k).
Since we only need to reconstruct the real-space density field at large scales (where

PNG matters), we use a large smoothing radius σ1 = σ2 = 30 h−1 Mpc. The corresponding
kernel is displayed in figure 1 for several values of σ. The larger the smoothing parameter,
the more the fluctuations of the reconstructed density field on small scales (large k) is
suppressed. The smoothing parameter σ2 allows us to control which scales will be affected by
this blinding scheme, thereby preventing the BAO or RSD scales from being contaminated
by these additional weights. While, the smoothing parameter σ1 controls the scale where
the reconstruction is effective, see eq. (2.12). More details on the effect of smoothing will
be given in section 3.4.

3https://github.com/cosmodesi/pyrecon/tree/mpi. This branch is an MPI implementation and this is the
only difference with the main branch.
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Figure 1. Smoothing kernel for several values of smoothing radius parameter σ.

2.2.3 From galaxy catalog to the FKP field

Let us now describe the impact of the blinding weights obtained above on the estimated
galaxy power spectrum. The FKP field [43], including the blinding weights above, reads:

F (x) = ng(x) − αsns(x)
= W (x) (1 + δg(x)) (1 + wblind(x)) − W (x)
≃ W (x)δg(x) + W (x)wblind(x),

(2.8)

where we used the usual notation: αs = (
∫

dxW (x))/(
∫

dxns(x)) and ng (resp. ns) is the
galaxy (resp. randoms) density. The randoms samples the survey geometry, more specifically
the survey selection function W (x), which is the ensemble average of the galaxy density:
W (x) = ⟨ng(x)⟩ = ⟨αsns(x)⟩.

In eq. (2.8), the term δg(x)wblind(x) can be neglected since it is a second-order term in
δg. As described in appendix A, this assumption can be avoided by weighting the randoms
instead of the data, though our tests have shown no practical difference.

One can also remark that, under this approximation, the expected value of ng is unchanged
with the blinding scheme applied to the data. Indeed, the expected value reads:

⟨ng(x)⟩ = W (x)⟨1 + δg(x) + wblind(x) + δg(x)wblind(x)⟩
≃ W (x)⟨1 + δg(x) + wblind(x)⟩
= W (x),

(2.9)

where < wblind >= 0 as the result of the application of the linear operator a(k) to δr(k),
of zero ensemble average.

This provides a simple way to test this approximation by computing the change in
⟨ng(x)⟩, which corresponds to the change in mean data weights. This change is minimal,
typically about 10−4; see for instance the data blinding weights displayed in figure 9.

– 5 –
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2.3 Shot noise correction

2.3.1 Power spectrum with the blinding scheme

Applying the blinding weights eq. (2.5), the Fourier-space density field becomes δs′(k) =
δs(k) + a(k)δ̂r(k) where δs is the density field in redshift space and δ̂r is the estimation of
the field in real space. The associated power spectrum is, in the linear regime:

⟨|δs′
(k)|2⟩ = ⟨|δs(k)|2⟩︸ ︷︷ ︸

→ (b + fµ2)2Plin(k) + 1/n

+ 2a(k)Re(⟨δs(k)δ̂r⋆(k)⟩︸ ︷︷ ︸
→ X̃(k, n)

) + a(k)2 ⟨|δ̂r(k)|2⟩︸ ︷︷ ︸
→ Ỹ (k, n)

,

(2.10)
where 1/n is the shot noise.

Noting that, as described in section 2.2.2, δ̂r(k) is an estimate of the reconstructed real
space density field using a smoothing kernel S1(k), and then smoothed by S2(k), we find
that X̃(k, n) and Ỹ (k, n), in the linear regime, are

X̃(k,n) =
(
b+fµ2

)(
b+(1−S1(k))fµ2

)
S2(k)Plin(k)+ 1

n
S2(k)exp

(
−1

2k2µ2f2σ2
d

)
, (2.11)

Ỹ (k,n) =
(
b+(1−S1(k))fµ2

)2
S2(k)2Plin(k)+ 1

n
S2(k)2. (2.12)

The shot noise exponential term in eq. (2.11) comes from the displacement between
the redshift space and estimated real space density fields, see eq. (23) of [44], with variance
σ2

d given by:

σ2
d = 1

6π

∫ ∞

0
dkS1(k)2Plin(k). (2.13)

At k > 1/σ2, the X̃(k, n) and Ỹ (k, n) contributions are suppressed by the damping
factor S2(k). At lower k, the limit of infinite density (1/n → 0), eq. (2.10) converges to
the redshift space equivalent of eq. (2.1).

2.3.2 Shot noise contribution

The shot noise terms (1/n) in eq. (2.11) and in eq. (2.12) yield an extra contribution to the
estimated power spectrum. In addition, shot noise 1/n varies with the local average density
n, i.e. the survey selection function. In particular, n, and hence the shot noise, typically
varies with the redshift and across the footprint due to the imaging dependence of the target
selection.4 The varying shot noise may then lead to different apparent f loc

NL values as a
function of the redshift bin considered for the power spectrum estimation, preventing us from
dedicated study, including internal consistency check on the blinded catalog, such as splitting
the sample into several redshift bins. It is therefore crucial to correct for this shot noise effect.

To effectively treat this contribution, let us find a′(k) to recover the expected value of
the additional PNG power without the undesired shot noise term:

2a′(k)X̃(k, n) + a′2(k)Ỹ (k, n) = 2a(k)X(k) + a2(k)Y (k) ≡ A(k), (2.14)
4See, for instance, figure 11 for a survey selection function.
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where X(k) (resp. Y (k)) corresponds to the zero shot noise part (1/n → 0) of eq. (2.11)
(resp. eq. (2.12)). Solving the second-degree polynomial of eq. (2.14) gives:

a′(k, n) =
−X̃(k, n) ±

√
X̃(k, n)2 + Ỹ (k, n)A(k)
Ỹ (k, n)

, (2.15)

where the choice of the positive or negative solution of eq. (2.15) will be discussed in
section 2.3.3.

The new parameter a′ depends on both k and x via the shot noise term in X̃(k, n)
and Ỹ (k, n). To ensure that the amplitude of the PNG signal generated by the blinding
scheme in the power spectrum does not depend on the local survey selection function, we
want to keep the dependence on x in a′ and then for simplicity remove the dependence on
k. Hence, we choose a value of kp = (kp, µp) where the equality given in eq. (2.14) holds
and propose new, corrected, weights:

wd
blind(x) = 1 + a′(kp, µp, n(x))

a(kp) wblind(x) (2.16)

still with wblind(x) the Fourier transform of eq. (2.6) and a′(kp, µp, n)/a(kp) the corrective
factor to suppress the shot noise contribution.

2.3.3 Positive or negative solution?

The reduced discriminant ∆(k) = X̃(k, n)2 + Ỹ (k, n)A(k) of eq. (2.14) is always positive,
as displayed in figure 2, such that eq. (2.14) has two real solutions.

When fblind
NL > 0, it is clear with eq. (2.6) that we need to choose the positive solution

in eq. (2.15) to have a′(k) positive and mimic the positive behavior of local PNG. The
choice of the solution in eq. (2.15) for fblind

NL < 0, is motivated to have a corrective factor
(a′/a) that is in [0, 1], since Ỹ is always positive by definition. We want a′/a > 0 to do not
change the sign of the blinding signal and a′/a < 1 to reduce the amount of the blinding
signal in presence of shot noise, see eq. (2.10). This corrective factor is plotted in figure 2
for different values of fblind

NL and for different values of shot noises. One can check that the
corrective factors for the positive solution (blue/violet lines) are in [0, 1] for a reasonable
value of k as a function of the value of fblind

NL , while the corrective factors for negative solution
(orange lines) do not respect this requirement.

As explained in section 2.3.2, we fix the corrective factor (a′/a)(k, n) at a chosen kp value
to be in [0, 1] for the considered range of blinding. This choice follows from the numerical study
in eq. (2.15) and the fact that in the following, we will limit our study to fblind

NL ∈ [−50, 50].
Note that we expect to use a smaller range during the random choice of the blinding value
since, for the upcoming DESI study with the first data release, a statistical precision of
σ(f loc

NL) ∼ 15 is expected, such that a lower range of blinding value will be used. Hence, when
fblind

NL > 0, we choose kp = 4 · 10−3 h Mpc−1 in order to de-bias the PNG signal at scales of
interest. To avoid potential zero-crossing of the power spectrum when fblind

NL is negative, we
choose a slightly higher value of kp = 8 · 10−3 h Mpc−1. We use µp = 0.6 in all cases. The
impact of the choice of kp on the theoretical description of the power spectrum given by
eq. (2.10) is shown in figure 3. Note that the k-range on which the scale-dependent bias will be
fitted with the first data release of DESI will not include modes below kmin ∼ 3 ·10−3h Mpc−1.
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Figure 2. Numerical study of eq. (2.14) and of eq. (2.15). Top left: reduced discriminant ∆(k) =
X̃(k, n)2 + Ỹ (k, n)A(k) for several values of fblind

NL , µ = 0.6, and shot noise 1/n = 104 h−3 Mpc3. The
reduced discriminant is always positive, leading to two real solutions. Top right: contribution of the
different terms to the reduced discriminant. Bottom left: corrective factor for different values of fblind

NL
with n = 10−4 Mpc−3 h3 and µ = 0.6. The + solutions are in blue, and the − ones are in orange. For
fblind

NL < 0, we choose the + solution since we fix the value of kp to 8 · 10−3 h Mpc−1. Bottom right:
similar to Bottom left but for different values of shot noise with fblind
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(right) on the theoretical description of the power spectrum monopole for a shot noise value of
n = 10−4 Mpc−3 h3. The blue lines are the expected power spectrum monopoles, i.e., in the limit
n → ∞. The red lines are given by eq. (2.10) without the shot noise correction, while the green lines
have the correction.
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2.4 Shot noise with data weights

For the shot noise correction to work, we need an appropriate estimate of the shot noise.
We suggest using the same estimation as used in the power spectrum estimation,5 that is,
in each cell of volume dV centered around the position x:

n(x)−1 =
∑

dV w2
g

αs(
∑

dV wg)(
∑

dV ws)/dV
, (2.17)

where wg (resp. ws) represents the weights of the data (resp. randoms).
The denominator is an estimation of the integral

∫
dxW 2(x). We use αs(

∑
dV wg)(

∑
dV ws)

instead of (
∑

dV wg)2 as the latter estimate is biased due to shot noise, which the former
avoids under the assumption that data and randoms are uncorrelated.

2.5 Implementation

This method is implemented in mockfactory6 which is an MPI-parallel Python package
that bundles utility functions to transform a cubic box simulation to a realistic observation
mock, in particular, to reproduce the DESI observation. Although the official DESI blinding
pipeline [45] does not use it, mockfactory also offers an implementation of the BAO and
RSD blinding described in [35] under the same MPI framework.

3 Validation with mocks

In this section we use simulations to validate the blinding scheme derived in the previous
section. In particular, we first validate the theoretical description of the shot noise contribution,
and then the proposed correction to remove this contribution from the blinding scheme. Finally,
we emphasize the scales where the blinding scheme is effective and check the distribution
of the blinding weights.

3.1 Mocks

To validate the PNG blinding scheme we use a FastPM [46] simulation generated to validate
the DESI PNG analysis.7 We followed the parametrization of [47]. This simulation is a box
of 5.52 h−1Gpc side length with 6000 meshes per side, i.e., 2.16 · 1011 particles leading to a
dark matter particle mass of about 1011 M⊙. The initial dark matter field was generated
at z = 19 following the Planck18 cosmology [48] and using the “unitary method”, which
sets the initial white noise used to generate the initial density field to one, thus reducing
the cosmological variance in the simulation [49]. Then, the particles evolved up to z = 1.5
within 40 time steps. In the following, we use the snapshot z = 1.75.

From this snapshot, the halos are extracted with the popular Friend-of-Friend algo-
rithm [50, 51] with a linking length of 0.2 times the mean interparticle distance. In particular,
we use a slightly improved version of the MPI code [52]. Then, to emulate the linear bias
of the eBOSS quasars sample observed in [53], we select all halos with a mass larger than
2.25 · 1012 M⊙, which corresponds to at least 178 dark matter particles.

5https://pypower.readthedocs.io/en/latest/api/api.html#pypower.fft_power.normalization.
6https://github.com/cosmodesi/mockfactory/blob/main/mockfactory/blinding/catalog.py.
7We used the python version of FastPM: https://github.com/echaussidon/fastpm-python.
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Figure 4. Blinding scheme without the shot noise correction factor, where the shot noise contribution
is added to the prediction. Dots are the monopoles of the measured power spectra and the errors
are the theoretical prediction for the boxsize at the considered density. Left (resp. right) is for the
high (resp. low) density sample. Blue dashed lines are the monopoles the desired power spectra
with the corresponding values of f loc

NL without shot noise contribution, i.e., eq. (2.10) in the limit
n → ∞. The red ones are the prediction from including the shot noise contribution i.e. eq. (2.10)
with n = 1.05 · 10−3 h3 Mpc−3 for left and n = 5.24 · 10−5 h3 Mpc−3 for right. For simplicity, the
predictions with the shot noise contribution are not displayed on the left since the blue dashed lines
are almost identical.

Within this large box, the density of objects is n = 1.05 · 10−3 h3 Mpc−3. This full sample
will also be denoted as a high-density sample. Two additional subsamples from this full sample
are drawn to test the shot noise correction. The first one, of intermediate density, is obtained
via a 10× subsampling, yielding n = 1.05 · 10−4 h3 Mpc−3. The second one, of low density, is
obtained by a 20× subsampling, corresponding to n = 5.24 · 10−4 h3 Mpc−3. The shot noise is
expected to be negligible in the high-density sample, while the low-density sample represents
the typical density of the DESI QSO [54–56], where the shot noise cannot be neglected.

The power spectrum is measured with pypower8 that implements the optimal FFT-based
estimator of [57].

3.2 Model vs. mocks without shot noise corrective factor

Let us first apply the blinding scheme without adding the shot noise correction factor and
validate the theoretical description given by eq. (2.10). The blinded power spectra with
different values of fblind

NL are displayed in figure 4 for the high-density sample (left) and the
low-density sample (right).

The blue dashed lines are the expected power spectra for the corresponding f loc
NL values

(with a linear bias adjusted by eye) from eq. (2.10) in the limit 1/n → 0 i.e. without the shot
noise contribution. This is what the blinding should reproduce. The red lines correspond to
eq. (2.10) with the shot noise contribution. On the left, the blinding scheme is applied to a high-
density sample where the shot noise can be neglected, and we do not display the corresponding
red lines since they overlap almost perfectly with the blue lines. The blinding scheme is
correctly described in this high-density configuration without the shot noise correction.

8https://github.com/cosmodesi/pypower.
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Figure 5. Blinding with the shot noise correction factor for several values of fblind
NL for high-density

sample (left) and low-density sample (right). The blue dashed lines are the monopoles of the predicted
power spectra with the large scale-dependent bias for the corresponding f loc

NL = fblind
NL given by eq. (2.1)

and the errors are the theoretical prediction for the boxsize at the considered density. In both cases,
blinding with the shot noise correction reproduces the expected shape of the power spectrum.

For the low-density sample (right), the blinding scheme’s impact on the power spectrum
is accurately described only when the shot noise correction is included in the model prediction.
Once the blinding applied, the blinded data will be fitted with the theory given in eq. (2.1)
without any shot noise correction such that not applying the correction at the blinding level
yields a larger PNG signal. Hence, a coherent analysis of data split by their magnitudes
or redshifts is made impossible if the shot noise varies across the survey since the blinding
is applied only once to the entire sample.

3.3 Validation of the shot noise correction factor

Let us test the final blinding scheme, which includes the shot noise correction factor. The
blinded power spectra are shown in figure 5 for high and low-density samples. Here, the
predicted models are the power spectrum with the large scale-dependent bias given in eq. (2.1)
for f loc

NL = fblind
NL (with a linear bias adjusted by eye). The blinding procedure recovers the

desired shape of the power spectrum on large scales. In particular, the shot noise correction,
given our choice of kp, works as expected up to the minimal scale of the fitting range i.e.
kmin ∼ 4 · 10−3 hMpc−1.

One can validate this implementation by fitting the effective PNG signal introduced by the
blinding scheme. We use the same parametrization as in the latest eBOSS measurement [10–
12] where the power spectrum is expended on Legendre multipoles

Ptheo,ℓ(k) = 2ℓ + 1
2

∫ 1

−1
dµPtheo(k, µ)Lℓ(µ), (3.1)

with Ptheo(k, µ) a simple model including the Kaiser effect, a damping factor for small scales,
the scale-dependent bias, and a shot noise contribution:

Ptheo(k, µ) =

[
b + bΦ

α(k, zeff)f loc
NL + fµ2

]2

[
1 + 1

2 (kµΣs)2
]2 × Plin(k, zeff) + sn,0. (3.2)
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Figure 6. Posteriors obtained for non-blinded (f loc
NL = 0) and blinded (with f loc

NL ∈ {−20, 20}) power
spectra. Posteriors for the high-density sample are shown in blue, the intermediate-density sample
in red, and the low-density sample in grey. As discussed in section 3.4, the measured bias changes
significantly depending on the fblind

NL value.

The fits are performed with iminuit [58], and posterior samples are drawn with the zeus
sampler [59, 60] wrapped into the desilike9 framework.10 We fit only the monopole and
the quadrupole for k ∈ [0.004 hMpc−1, 0.08 hMpc−1] with a binning width of 0.002 hMpc−1.
The impact of the blinding scheme on the high-order multipoles is shown in appendix B. We
fix bΦ with the universal mass function assumption bϕ = 2δc × (b − 1). Finally, the power
spectrum covariance is computed analytically in the Gaussian approximation without window
effect taking into account the DESI DR1 QSO number density, volume and linear bias.

We fit the high-density sample (full sample) and the low-density sample (20× subsam-
pling), as well as the intermediate-density sample (10× subsampling). The posteriors of
(f loc

NL, b, sn,0, Σs) are displayed in figure 6 and the best-fit values with the errors from the
posteriors for f loc

NL and b in figure 7. Note that, as expected, the errors decrease with the
density of the sample.

As illustrated in figure 6, fitted f loc
NL are consistent with input fblind

NL value for all density
samples.

9https://github.com/cosmodesi/desilike.
10A simple example of this model in this framework is given here:https://github.com/echaussidon/desilike/

blob/main/nb/png_examples.ipynb.
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value of the linear bias and the expected blinded value fNL.

3.4 Blinded range of scales

As illustrated in figure 7, there is a shift in the measured bias as a function of the fblind
NL value.

This discrepancy can be understood by examining the ratio between the blind and non-blind
power spectrum monopoles displayed in figure 8. The scale-dependent bias generated by
the blinding scheme, given in eq. (2.10) is altered by S2(k) that erases the small scales.
The measured ‘high’-k PNG signal is therefore damped by the kernel S2(k), as explained
in section 2.2.1.

The dashed lines in figure 8 are the theoretical prediction without S2(k) and the black
dotted lines are the theoretical prediction (P (k, f loc

NL)/P (k, 0) − 1) multiplied by S2(k). Note
that this an approximation since S2(k) also has a square contribution11 leading to the small
discrepancy at k ∼ 7 · 10−2 hMpc−1 between the prediction (black dotted lines) and the
measured blinding power spectrum (colored lines). Hence, the blinding scheme slightly
changes the amplitude of the power spectrum leading to a smaller effective bias.

The contribution of S2(k) is not included in the fitted model used in section 3.3, thereby
explaining the different bias values displayed in figure 6. This is not considered as an issue,
as the galaxy bias is typically marginalized over, and the blinding scheme simulates the
correct value of f loc

NL within error bars.
Another crucial point is the impact of the f loc

NL blinding is then negligible beyond k ∼
0.06 hMpc−1, which should reduce its impact on BAO or RSD measurements, as demonstrated
in appendix C.

11See the right term in eq. (2.10).
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Figure 8. Both figures represent the ratio between the blinded power spectrum monopole and the
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NL . The measured power spectra
are from the high-density sample to avoid any mismatch due to the shot noise term. Dotted (resp.
dashed) lines are the model predictions multiplied by the smoothing kernel S2(k) (resp. not multiplied
by S2(k)) from the reconstruction smoothing and mesh assignment. The smoothing kernel damps the
PNG signal, such that it goes to zero faster than the theory.

3.5 Distribution of blinding weights

Since this blinding scheme relies on applying additional weights to the data catalog, the
variations in these weights must be small enough compared to those of other typical weights
(e.g. to correct for observational systematics) to not provoke accidental unblinding.

The expected standard deviation of the blinding weights, see eq. (2.16), for constant
density n is

σ2
wd

blind
=
〈(

1 + a′(kp, µp, n)
a(kp) wblind − ⟨1 + a′(kp, µp, n)

a(kp) wblind⟩
)2〉

=
(

a′(kp, µp, n)
a(kp)

)2

⟨wblind(x)wblind(x)⟩

=
(

a′(kp, µp, n)
a(kp)

)2 1
(2π)6

∫
dk
∫

dq ei(k+q)xa(k)a(q)⟨δ̂r(k)δ̂r(q)⟩

=
(

a′(kp, µp, n)
a(kp)

)2 1
2π2

∫
dk k2a(k)2S2(k)2

(
b2Plin(k) + 1/n

)
,

(3.3)

where in the last equation we have approximated the contribution of
(
b + (1 − S1(k))fµ2)

to b, in order to perform the integration.
Since the simulation box size is of finite size, the integration has to be performed only

from kmin = kf = 2π/L with L the box size to kmax = kN the Nyquist frequency.12

Figure 9 shows the dispersion of the blinding weights for the corresponding values of
f loc

NL (−20 on the left and 20 on the right) for the different density samples. Note that the
high density sample has a larger dispersion in blinding weights. This is expected since a′/a is
bigger for higher density sample as displayed in the lower right panel of figure 2.

12In fact, kmax does not really matter since the integrand goes to 0 really quickly for high k.
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Figure 9. Distribution of the blinding weights in colored lines from the high/intermediate/low-density
sample in blue/red/green and the normal distribution with dispersion computed with eq. (3.3) in
dashed black lines. The shift and standard deviation measured from the mocks, and predicted standard
deviation are given in the legend.

For each configuration, the shift and standard deviation measured from the mocks and
as predicted from eq. (3.3) are given in the legend. The blinding weights have tiny offset
(less than 10−3) and very small standard deviation (less than 10−2) such that they can be
discreetly mixed with other weights without breaking the blinding procedure. Indeed, for
comparison, realistic photometric systematic weights for DESI DR1 data have a standard
deviation of ∼ 5 · 10−2, see [40].

4 Test with realistic cutsky mocks

The ultimate aim of this blinding procedure is to perform systematic and consistency tests
on the data without any confirmation bias. Therefore, we have to check whether this method
works also in the case of non-zero underlying PNG and if the added fake signal is insensitive
to large angular scale imaging systematics and their mitigation. In the following, the blinding
scheme is tested with realistic simulations that mimic the DESI DR1 QSO sample.

4.1 Realistic cutsky mocks

To build a more realistic simulation, the cubic box (x, y, z) is transformed into a cutsky
geometry (R.A., Dec., z) where the density, the redshift distribution, the sky mask, as well as
the completeness are matched to the expected DESI QSO DR1 sample [56]. All of these steps
were performed with mockfactory. Note that despite the large size of this box (5.52 h−1Gpc),
one can only emulate either the North Galatic Cap (NGC) or the South Galactic Cap (SGC)
of the DESI Survey. In the following, we decide to emulate the SGC part of the survey.

As mentioned above, the DESI QSO density corresponds to that of the low-density
sample. Hence, 16 different subsamples can be extracted from the full sample. Although they
are not entirely independent, we use the average on these 16 subsamples to reduce shot noise.
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In the following, instead of using the analytical Gaussian approximation for the covariance
matrix, we estimate it from 1000 EZMock fast simulations that match the DESI QSO DR1
SGC sample in the same manner as the cutsky FastPM. These EZMocks generated for DESI
are very similar to the ones described in [61] (see [62] for an assessment of the covariance
matrix from EZMocks).

Additionally, to account for the effect of the survey mask in the measured power spectra,
all the fits are performed by convolving the theoretical power spectrum by the corresponding
window function as explained in [63]. The window functions are also computed with pypower.
We do not account for the negligible global integral constraint for this test.

4.2 Blinding with non-zero PNG simulations

First, we test the blinding procedure in the presence of a non-zero PNG signal. Similarly to
the f loc

NL = 0 FastPM simulation described in section 3.1, we have also produced one simulation
with f loc

NL = 25, from which 16 subsamples matching the DESI QSO DR1 SGC are extracted
following the procedure described above. This simulation was produced with the same initial
conditions, i.e., using the same initial density field, that is rescaled for the PNG case, to
generate the initial particle distribution, see [64]. The fits are performed on the mean of
these 16 subsamples without rescaling the mock-based covariance matrix.

The DR1 SGC power spectra for the non-blinded case and blinding values of fblind
NL ∈

{−25, 10} and the corresponding posteriors are displayed in figure 10. The best-fit values
are 19+9

−9 (non-blinded), 31+9
−8 (blinded + 10) and −9+12

−10 (blinded - 25) where the errors are
the 1σ credible intervals. Note that the errors are smaller than expected for the real DESI
analysis since the value of bϕ is computed with p = 1, see [9]. We mostly recover the expected
behavior for the blinded power spectra down to the scale of interest (kmin = 4 · 10−3 h Mpc−1).
Note that there is some small difference between the non-blinded power spectrum and the
model, which is propagated to the blinded cases.

This difference in the non-blinded case is from the fact that halos in our FastPM simulations
are extracted with a FoF halo finder which is known to produce halos that are not correctly
described by the universal relation used for bΦ, see [65, 66] for an extensive study. One
explanation could be that FoF algorithm creates non-spherical halos, while the universal
relation for bΦ is derived from only spherical halos. This discrepancy will not impact our
study since our simulation with f loc

NL = 25 has just a lower apparent amount of PNG signal.

4.3 Blinding with a mispecified survey selection function (remaining
systematics)

The ultimate test is to ensure that the blinding scheme is not altered by the presence of
imaging systematics and by the mitigation applied for the correction. For this purpose, each
subsample is contaminated by realistic imaging systematics. The footprint and the redshift
distribution of one of this subsample are shown in figure 11. Based on the density fluctuation
in the sky observed in the DESI DR1 sample, we start with a subsample with a higher density
than observed and we remove real objects in each pixel on the sky to match the density
fluctuation at HEALPix [67] level with nside = 256. We then apply the blinding scheme, and
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Figure 10. (a) The brick line is the mean (over the 16 subsamples) measured power spectrum
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NL = 25,
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Orange and blue lines show the power spectrum monopoles blinded with f loc

NL ∈ {−25, 10} respectively.
The dashed vertical line is about the minimum scale used in the fit. (b) Posteriors for the three power
spectrum monopoles in (a). The posterior of the FastPM (non-blinded) power spectrum is slightly
shifted to a lower f loc

NL value than input, which propagates to the blinded cases.
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Figure 11. (a) Angular density distribution of one subsample of the FastPM simulation contaminated
by realistic imaging systematics. The dark grey region is the expected final DESI footprint. (b) Redshift
distribution of the same subsample.

finally the imaging systematics are corrected either with the inverse of the contamination or
with regressis13 [32]. The measured value of f loc

NL is expected to recover the input fblind
NL .

The means of the 16 subsamples of the power spectra for the different cases are shown
in figure 12. Note the importance of the imaging systematic mitigation in extracting the
PNG signal.

13https://github.com/echaussidon/regressis.
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Figure 12. Mean of 16 subsamples mimicking the DESI QSO DR1 SGC sample. The errors are from
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f loc
NL posteriors, for the mean of the 16 subsamples, are displayed in figure 13. Here, we

use the covariance matrix from the DR1 footprint instead of the one from the SGC footprint
to reflect DR1 uncertainty. Note that in the fits we used p = 1.0 since this is the value used
during the blinding step. However, in the case of the QSO, one certainly wants to use p = 1.6
instead of p = 1.0 [9] during the fit, such that the expected errors with DESI DR1 will be a
little bit larger than these ones. We recover the input blinding value fblind

NL = 10 well within the
DR1 uncertainty both if no contamination is applied and including the imaging systematics,
with the exact inverse correction. In the latter case, we obtain a slightly lower value of f loc

NL.
The correction with regressis is slightly farther off (1.4σ), but no fine-tuning of regressis
was performed at this stage such that the imaging weights computed here are not optimal.

5 Conclusion

We have developed a method to blind the PNG signal that manifests as a large scale-dependent
bias in the power spectrum. The proposed blinding scheme provides a set of weights to be
applied to the data or the randoms such that the density field is altered at large scales to
mimic a chosen scale-dependent bias. In particular, we have shown how shot noise propagates
into our blinding scheme and how we can correct for it. This correction is significant and
ensures a consistent fake PNG signal within a sample with varying density. We have also
verified (in appendix C) that the addition of this blinding does neither alter the measurement
of the BAO and RSD parameters at the statistical accuracy of DR1 measurements nor alter
the blinding setup for BAO and RSD.

As a result, this blinding was introduced into DESI’s clustering analysis pipeline, and
since forecasts predict a sensitivity on f loc

NL of 10 to 15 at 68% of confidence level with the DR1
data, we drew a single blinded random value for all the DESI tracers fblind

NL ∈ [−15, 15] [45].
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Figure 13. Blue contours correspond to the blinding applied on the uncontaminated sample. Violet
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weights given by the inverse of the contamination (resp. with regressis). We almost recover the
input blinding value: fblind

NL = 10 in the three cases. Here, we fit the power spectrum from SGC cutsky
with the full DR1 covariance matrix containing both NGC and SGC, leading to expected uncertainties
for the DR1 analyses.

Although it was not the purpose here, the blinding scheme proposed could be tested
and adapted to work for any other promising summary statistics as the CMB lensing [33],
skew spectra [68, 69] or bispectrum [70]. Note that this blinding scheme will only alter
the scale-dependent bias and is not able to blind the PNG signal coming from the matter
density field. This is particularly relevant since, for instance, CMB lensing is not sensitive
to the same systematics as the galaxy power spectrum and can help to provide an unbiased
measurement. Finally, we emphasize also that this method can be easily adapted to any
search of signal that changes the bias, for instance, the detection of relativistic contributions
to galaxy clustering [71].

Data availability. The blinding scheme is publicly available here: https://github.com/cos
modesi/mockfactory, as well as all the other tools mentioned in this article: https://github
.com/cosmodesi/. All the material needed to reproduce all the figures of this publication
is available here: https://doi.org/10.5281/zenodo.11270652.
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A Weights applied on data or randoms?

Blinding weights can be applied either on the data: 1 + wblind(x) or on the randoms:
1 − wblind(x). For the latter configuration, the FKP field reads

F (x) = W (x) (1 + δg(x)) − W (x) (1 − wblind(x))
= W (x)δg(x) + W (x)wblind(x).

(A.1)

To recover the expected FKP field in eq. (2.8), we have neglected the contribution of
δg(x)wblind(x) that does not appear in eq. (A.1). The difference between the two cases is
negligible, as shown in the figure 14 for the low-density subsample, where the difference
is expected to be the highest.

To keep the definition of randoms as sampling the survey selection function,14 with as
little correlation as possible, we decided to apply the blinding weights to the data.

B Impact of blinding scheme on the quadrupole and hexadecapole

As described in eq. (2.10), the blinding scheme is expected to modify the quadrupole (ℓ = 2).
However, the hexadecapole (ℓ = 4) in the linear regime is P4(k) = 8

35f2Plin(k) and does not
depend on the bias such that the blinding procedure should not modify it.

The quadrupole and hexadecapole for multiple values of fblind
NL and for the high-density

sample are displayed in figure 15. We recover the expected behavior for both quadrupole
14Then randoms are the same for blind and non-blind data.

– 20 –

https://www.desi.lbl.gov/collaborating-institutions


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

10−2 10−1

k [hMpc−1]

104

P
(k

)
[h
−

3
M

p
c3

]
` = 2

fblind
NL :

-50

-10

50

10

10−2 10−1

k [hMpc−1]

−20

0

20

40

k
P

(k
)

[h
−

2
M

p
c2

]

` = 4

Predicted model

Measured

Figure 15. Quadrupole (left) and hexadecapole (right) for the high-density sample with the blinding
scheme applied with the shot noise correction for several values of fblind

NL . The corresponding monopole
is displayed on the left panel of figure 5. The blue dashed lines are the predicted power spectra with
the scale dependent bias and adjusted linear bias. For simplicity, the gaussian errors (black lines) are
only displayed for fblind

NL = 10.

and hexadecapole. Note that the statistical power at large scales for the hexadecapole is
very weak and our measurements match well enough the expected theoretical prediction
without PNG signal.

C Impact on the BAO / RSD measurement

As explained in section 3.4, the window function related to the reconstruction prevents small
scales from being impacted by the PNG blinding scheme. Hence, we quantify here the impact
of this blinding scheme on the BAO/RSD measurement and how it can be incorporated
with the BAO and the RSD blinding given in [35]. In this section, we are using the DESI
blinding pipeline described in [45].15

For this test, we used the 25 mock catalogs from the AbacasSummit N-body simula-
tions [72, 73] that are transformed into light-cone to mimic the DESI DR1 Luminous Red
Galaxy sample (LRG) [74] and use the full redshift range (0.4 < z < 1.1). The associated co-
variance with this sample is produced by TheCov16 [75–77]. We use the monopole, quadrupole
and hexadecapole for 0.02 < k[hMpc−1] < 0.2 with a binning of dk = 0.005 hMpc−1.

We perform a standard full shape analysis using the 1-loop power spectrum computed by
velocileptors17 [78, 79]. As usual, we parameterize the Alcock-Paczynski (AP) effect [80]
with q∥, q⊥ such that the power spectrum in the true cosmological coordinates is related to
the power spectrum in observable coordinates by

P obs (kobs) = q−2
⊥ q−1

∥ P (k), kobs
∥,⊥ = q∥,⊥k∥,⊥, (C.1)

with q∥ and q⊥ the shifts along and perpendicular to the line-of-sight, respectively. We denote
Xfid the value of X in the fiducial cosmology used to transform redshift into distances. See,
for instance, [81] for a complete description.

15https://github.com/desihub/LSS/blob/main/scripts/main/apply_blinding_main_fromfile_fcomp.py.
16https://github.com/cosmodesi/thecov.
17https://github.com/sfschen/velocileptors.
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In addition to the AP parameters (q∥, q⊥), we also fit the growth rate f via df = f/ffid

and the ShapeFit parameter m. The parameter df is extracted thanks to the RSD terms.
The ShapeFit parameter m was introduced by [82] in order to collect additional information
thanks to the shape of the power spectrum. It modifies the linear power spectrum as

Plin(k) = P fid
lin (k) exp

(
m

a
tanh

[
a ln

(
k

kpiv

)])
, (C.2)

where we use a = 0.6 [82] and kpiv = π/rd is the pivot scale. P fid
lin is the linear power spectrum

of the fiducial theory that is fixed during all the fit.
We test several different blinding configurations based on two BAO/RSD blinding

configurations:18 blind-1 (w0, wa = −1.2, 0.75) and blind-2 (w0, wa = −0.8, −0.75), for which
we test a PNG blinding value of fblind

NL ∈ [−15, 0, 15]. For comparison, we also test, for the
same PNG blinding value, a configuration without the BAO/RSD blinding.

The posteriors are drawn from the mean power spectrum of the 25 mocks to reduce the
cosmic variance, but we use the covariance for the DR1 sample. They are obtained with
emcee [83] and displayed in figure 16. Note that we have a larger value of df than expected
due to wrong velocities for this version of simulation. This was corrected in the latter versions,
however it will not impact the discussion here. Adding the PNG blinding appears to have
no impact on the BAO/RSD parameters and slightly impacts the ShapeFit parameter m,
as already noticed with simulations with PNG signal [84] since the PNG blinding changes
the large-scale slope of the power spectrum.

To quantify the deviation, the ratios between the parameters measured with the different
blinded configurations and with the non-blinded case are plotted in figure 17. The parameters
are computed as the mean in the MCMC chains, while the errors are the 1σ credible interval
from the chains in the blinded cases. The gray lines are the ratios between the expected
value from the blinding and those measured in the non-blinded case.

We note that the PNG blinding scheme, as expected, does not impact the scales where the
BAO and RSD parameters (q∥, q⊥, df) are measured and, therefore, can be included without
biasing the further analysis of these measurements. The discrepancy on m is expected, as
explained in [84]. It is not a major issue however, as shifts remain below the statistical
uncertainty, and the blinding procedure primarily aims at hiding (q∥, q⊥, df) and f loc

NL.

18See [45] for a description of the BAO/RSD blinding values.
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measurements on blinding mocks are imperfect, the PNG blinding scheme does not impact q∥, q⊥, df .
m is slightly impacted, see figure 17.
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Figure 17. Ratios or difference between the parameters measured with the different blinded
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blinded cases. The gray lines are the ratio between the expected value from the blinding and the ones
measured in the non-blinded case.

– 23 –



J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

References

[1] DESI collaboration, The DESI Experiment Part I: Science,Targeting, and Survey Design,
arXiv:1611.00036 [INSPIRE].

[2] Euclid collaboration, Euclid preparation. I. The Euclid Wide Survey, Astron. Astrophys. 662
(2022) A112 [arXiv:2108.01201] [INSPIRE].

[3] SPHEREx collaboration, Cosmology with the SPHEREX All-Sky Spectral Survey,
arXiv:1412.4872 [INSPIRE].

[4] S. Ferraro et al., Inflation and Dark Energy from Spectroscopy at z > 2, Bull. Am. Astron. Soc.
51 (2019) 72 [arXiv:1903.09208] [INSPIRE].

[5] E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background
bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].

[6] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function,
JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

[7] Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity,
Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

[8] N. Dalal, O. Doré, D. Huterer and A. Shirokov, The imprints of primordial non-gaussianities on
large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D 77
(2008) 123514 [arXiv:0710.4560] [INSPIRE].

[9] A. Slosar et al., Constraints on local primordial non-Gaussianity from large scale structure,
JCAP 08 (2008) 031 [arXiv:0805.3580] [INSPIRE].

[10] eBOSS collaboration, Redshift-weighted constraints on primordial non-Gaussianity from the
clustering of the eBOSS DR14 quasars in Fourier space, JCAP 09 (2019) 010
[arXiv:1904.08859] [INSPIRE].

[11] eBOSS collaboration, Primordial non-Gaussianity from the completed SDSS-IV extended
Baryon Oscillation Spectroscopic Survey II: measurements in Fourier space with optimal weights,
Mon. Not. Roy. Astron. Soc. 514 (2022) 3396 [arXiv:2106.13725] [INSPIRE].

[12] M.S. Cagliari, E. Castorina, M. Bonici and D. Bianchi, Optimal constraints on Primordial
non-Gaussianity with the eBOSS DR16 quasars in Fourier space, arXiv:2309.15814 [INSPIRE].

[13] eBOSS collaboration, The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Quasar
Target Selection, Astrophys. J. Suppl. 221 (2015) 27 [arXiv:1508.04472] [INSPIRE].

[14] DESI collaboration, Overview of the Instrumentation for the Dark Energy Spectroscopic
Instrument, Astron. J. 164 (2022) 207 [arXiv:2205.10939] [INSPIRE].

[15] C. Heinrich, O. Doré and E. Krause, Measuring fNL with the SPHEREx multitracer redshift
space bispectrum, Phys. Rev. D 109 (2024) 123511 [arXiv:2311.13082] [INSPIRE].

[16] eBOSS collaboration, Primordial non-Gaussianity from the completed SDSS-IV extended
Baryon Oscillation Spectroscopic Survey — I: Catalogue preparation and systematic mitigation,
Mon. Not. Roy. Astron. Soc. 506 (2021) 3439 [arXiv:2106.13724] [INSPIRE].

[17] A.D. Myers et al., First measurement of the clustering evolution of photometrically-classified
quasars, Astrophys. J. 638 (2006) 622 [astro-ph/0510371] [INSPIRE].

[18] BOSS collaboration, Ameliorating Systematic Uncertainties in the Angular Clustering of
Galaxies: A Study using SDSS-III, Mon. Not. Roy. Astron. Soc. 417 (2011) 1350
[arXiv:1105.2320] [INSPIRE].

– 24 –

https://doi.org/10.48550/arXiv.1611.00036
https://inspirehep.net/literature/1495394
https://doi.org/10.1051/0004-6361/202141938
https://doi.org/10.1051/0004-6361/202141938
https://doi.org/10.48550/arXiv.2108.01201
https://inspirehep.net/literature/1898420
https://doi.org/10.48550/arXiv.1412.4872
https://inspirehep.net/literature/1334478
https://doi.org/10.48550/arXiv.1903.09208
https://inspirehep.net/literature/1726392
https://doi.org/10.1103/PhysRevD.63.063002
https://doi.org/10.48550/arXiv.astro-ph/0005036
https://inspirehep.net/literature/552978
https://doi.org/10.1088/1475-7516/2004/10/006
https://doi.org/10.48550/arXiv.astro-ph/0407059
https://inspirehep.net/literature/653715
https://doi.org/10.1051/0004-6361/201935891
https://doi.org/10.48550/arXiv.1905.05697
https://inspirehep.net/literature/1735190
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.48550/arXiv.0710.4560
https://inspirehep.net/literature/765328
https://doi.org/10.1088/1475-7516/2008/08/031
https://doi.org/10.48550/arXiv.0805.3580
https://inspirehep.net/literature/786486
https://doi.org/10.1088/1475-7516/2019/09/010
https://doi.org/10.48550/arXiv.1904.08859
https://inspirehep.net/literature/1730375
https://doi.org/10.1093/mnras/stac812
https://doi.org/10.48550/arXiv.2106.13725
https://inspirehep.net/literature/2142919
https://doi.org/10.48550/arXiv.2309.15814
https://inspirehep.net/literature/2703644
https://doi.org/10.1088/0067-0049/221/2/27
https://doi.org/10.48550/arXiv.1508.04472
https://inspirehep.net/literature/1388476
https://doi.org/10.3847/1538-3881/ac882b
https://doi.org/10.48550/arXiv.2205.10939
https://inspirehep.net/literature/2086621
https://doi.org/10.1103/PhysRevD.109.123511
https://doi.org/10.48550/arXiv.2311.13082
https://inspirehep.net/literature/2725555
https://doi.org/10.1093/mnras/stab1730
https://doi.org/10.48550/arXiv.2106.13724
https://inspirehep.net/literature/1870382
https://doi.org/10.1086/499093
https://doi.org/10.48550/arXiv.astro-ph/0510371
https://inspirehep.net/literature/695014
https://doi.org/10.1111/j.1365-2966.2011.19351.x
https://doi.org/10.48550/arXiv.1105.2320
https://inspirehep.net/literature/899350


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

[19] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Observational systematics and baryon acoustic oscillations in the
correlation function, Mon. Not. Roy. Astron. Soc. 464 (2017) 1168 [arXiv:1607.03145]
[INSPIRE].

[20] eBOSS collaboration, The Completed SDSS-IV extended Baryon Oscillation Spectroscopic
Survey: Large-scale structure catalogues for cosmological analysis, Mon. Not. Roy. Astron. Soc.
498 (2020) 2354 [arXiv:2007.09000] [INSPIRE].

[21] BOSS collaboration, Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies:
The Measurement, Systematics and Cosmological Implications, Astrophys. J. 761 (2012) 14
[arXiv:1201.2137] [INSPIRE].

[22] B. Bahr-Kalus et al., A map-based method for eliminating systematic modes from galaxy
clustering power spectra with application to BOSS, Mon. Not. Roy. Astron. Soc. 482 (2019) 453
[arXiv:1806.02789] [INSPIRE].

[23] eBOSS collaboration, The completed SDSS-IV extended Baryon Oscillation Spectroscopic
Survey: Large-scale Structure Catalogues and Measurement of the isotropic BAO between redshift
0.6 and 1.1 for the Emission Line Galaxy Sample, Mon. Not. Roy. Astron. Soc. 500 (2020) 3254
[arXiv:2007.09007] [INSPIRE].

[24] eBOSS collaboration, Removing Imaging Systematics from Galaxy Clustering Measurements
with Obiwan: Application to the SDSS-IV extended Baryon Oscillation Spectroscopic Survey
Emission Line Galaxy Sample, Mon. Not. Roy. Astron. Soc. 499 (2020) 3943
[arXiv:2007.08992] [INSPIRE].

[25] DES collaboration, Mapping and simulating systematics due to spatially-varying observing
conditions in DES Science Verification data, Astrophys. J. Suppl. 226 (2016) 24
[arXiv:1507.05647] [INSPIRE].

[26] DES collaboration, No galaxy left behind: accurate measurements with the faintest objects in the
Dark Energy Survey, Mon. Not. Roy. Astron. Soc. 457 (2016) 786 [arXiv:1507.08336]
[INSPIRE].

[27] DES collaboration, Dark Energy Survey year 1 results: Galaxy clustering for combined probes,
Phys. Rev. D 98 (2018) 042006 [arXiv:1708.01536] [INSPIRE].

[28] N. Weaverdyck and D. Huterer, Mitigating contamination in LSS surveys: a comparison of
methods, Mon. Not. Roy. Astron. Soc. 503 (2021) 5061 [arXiv:2007.14499] [INSPIRE].

[29] DES collaboration, Dark Energy Survey Year 3 Results: Measuring the Survey Transfer
Function with Balrog, Astrophys. J. Supp. 258 (2022) 15 [arXiv:2012.12825] [INSPIRE].

[30] E. Kitanidis et al., Imaging Systematics and Clustering of DESI Main Targets, Mon. Not. Roy.
Astron. Soc. 496 (2020) 2262 [arXiv:1911.05714] [INSPIRE].

[31] M. Rezaie, H.-J. Seo, A.J. Ross and R.C. Bunescu, Improving Galaxy Clustering Measurements
with Deep Learning: analysis of the DECaLS DR7 data, Mon. Not. Roy. Astron. Soc. 495 (2020)
1613 [arXiv:1907.11355] [INSPIRE].

[32] E. Chaussidon et al., Angular clustering properties of the DESI QSO target selection using DR9
Legacy Imaging Surveys, Mon. Not. Roy. Astron. Soc. 509 (2021) 3904 [arXiv:2108.03640]
[INSPIRE].

[33] DESI collaboration, Constraining primordial non-Gaussianity from DESI quasar targets and
Planck CMB lensing, JCAP 03 (2024) 021 [arXiv:2305.07650] [INSPIRE].

– 25 –

https://doi.org/10.1093/mnras/stw2372
https://doi.org/10.48550/arXiv.1607.03145
https://inspirehep.net/literature/1475231
https://doi.org/10.1093/mnras/staa2416
https://doi.org/10.1093/mnras/staa2416
https://doi.org/10.48550/arXiv.2007.09000
https://inspirehep.net/literature/1807787
https://doi.org/10.1088/0004-637X/761/1/14
https://doi.org/10.48550/arXiv.1201.2137
https://inspirehep.net/literature/1084114
https://doi.org/10.1093/mnras/sty2655
https://doi.org/10.48550/arXiv.1806.02789
https://inspirehep.net/literature/1676884
https://doi.org/10.1093/mnras/staa3336
https://doi.org/10.48550/arXiv.2007.09007
https://inspirehep.net/literature/1807791
https://doi.org/10.1093/mnras/staa2742
https://doi.org/10.48550/arXiv.2007.08992
https://inspirehep.net/literature/1807778
https://doi.org/10.3847/0067-0049/226/2/24
https://doi.org/10.48550/arXiv.1507.05647
https://inspirehep.net/literature/1384083
https://doi.org/10.1093/mnras/stv2953
https://doi.org/10.48550/arXiv.1507.08336
https://inspirehep.net/literature/1385717
https://doi.org/10.1103/PhysRevD.98.042006
https://doi.org/10.48550/arXiv.1708.01536
https://inspirehep.net/literature/1614459
https://doi.org/10.1093/mnras/stab709
https://doi.org/10.48550/arXiv.2007.14499
https://inspirehep.net/literature/1809221
https://doi.org/10.3847/1538-4365/ac26c1
https://doi.org/10.48550/arXiv.2012.12825
https://inspirehep.net/literature/1838123
https://doi.org/10.1093/mnras/staa1621
https://doi.org/10.1093/mnras/staa1621
https://doi.org/10.48550/arXiv.1911.05714
https://inspirehep.net/literature/1764766
https://doi.org/10.1093/mnras/staa1231
https://doi.org/10.1093/mnras/staa1231
https://doi.org/10.48550/arXiv.1907.11355
https://inspirehep.net/literature/1746487
https://doi.org/10.1093/mnras/stab3252
https://doi.org/10.48550/arXiv.2108.03640
https://inspirehep.net/literature/1901987
https://doi.org/10.1088/1475-7516/2024/03/021
https://doi.org/10.48550/arXiv.2305.07650
https://inspirehep.net/literature/2659379


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

[34] M. Rezaie et al., Local primordial non-Gaussianity from the large-scale clustering of photometric
DESI luminous red galaxies, Mon. Not. Roy. Astron. Soc. (2024) [arXiv:2307.01753] [INSPIRE].

[35] S. Brieden, H. Gil-Marín, L. Verde and J.L. Bernal, Blind Observers of the Sky, JCAP 09 (2020)
052 [arXiv:2006.10857] [INSPIRE].

[36] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS)
II: Approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

[37] A. Barreira, Can we actually constrain fNL using the scale-dependent bias effect? An illustration
of the impact of galaxy bias uncertainties using the BOSS DR12 galaxy power spectrum, JCAP
11 (2022) 013 [arXiv:2205.05673] [INSPIRE].

[38] E. Fondi et al., Taming assembly bias for primordial non-Gaussianity, JCAP 02 (2024) 048
[arXiv:2311.10088] [INSPIRE].

[39] J.M. Sullivan, T. Prijon and U. Seljak, Learning to concentrate: multi-tracer forecasts on local
primordial non-Gaussianity with machine-learned bias, JCAP 08 (2023) 004
[arXiv:2303.08901] [INSPIRE].

[40] DESI collaboration, The Construction of Large-scale Structure Catalogs for the Dark Energy
Spectroscopic Instrument, arXiv:2405.16593 [INSPIRE].

[41] DESI collaboration, Optimal Reconstruction of Baryon Acoustic Oscillations for DESI 2024,
arXiv:2404.03005 [INSPIRE].

[42] A. Burden, W.J. Percival and C. Howlett, Reconstruction in Fourier space, Mon. Not. Roy.
Astron. Soc. 453 (2015) 456 [arXiv:1504.02591] [INSPIRE].

[43] H.A. Feldman, N. Kaiser and J.A. Peacock, Power spectrum analysis of three-dimensional
redshift surveys, Astrophys. J. 426 (1994) 23 [astro-ph/9304022] [INSPIRE].

[44] eBOSS collaboration, Reducing the Variance of Redshift Space Distortion Measurements from
Mock Galaxy Catalogues with Different Lines of Sight, Mon. Not. Roy. Astron. Soc. 500 (2020)
259 [arXiv:2007.11417] [INSPIRE].

[45] DESI collaboration, Validating the Galaxy and Quasar Catalog-Level Blinding Scheme for the
DESI 2024 analysis, arXiv:2404.07282 [INSPIRE].

[46] Y. Feng, M.-Y. Chu, U. Seljak and P. McDonald, FastPM: a new scheme for fast simulations of
dark matter and haloes, Mon. Not. Roy. Astron. Soc. 463 (2016) 2273 [arXiv:1603.00476]
[INSPIRE].

[47] Z. Ding et al., The DESI N-body Simulation Project — II. Suppressing sample variance with fast
simulations, Mon. Not. Roy. Astron. Soc. 514 (2022) 3308 [arXiv:2202.06074] [INSPIRE].

[48] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641
(2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

[49] R.E. Angulo and A. Pontzen, Cosmological N -body simulations with suppressed variance, Mon.
Not. Roy. Astron. Soc. 462 (2016) L1 [arXiv:1603.05253] [INSPIRE].

[50] J.P. Huchra and M.J. Geller, Groups of galaxies. I. Nearby groups, Astrophys. J. 257 (1982) 423
[INSPIRE].

[51] W.H. Press and M. Davis, How to identify and weigh virialized clusters of galaxies in a complete
redshift catalog, Astrophys. J. 259 (1982) 449.

[52] Y. Feng and C. Modi, A fast algorithm for identifying friends-of-friends halos, Astron. Comput.
20 (2017) 44 [arXiv:1607.03224].

– 26 –

https://doi.org/10.1093/mnras/stae886
https://doi.org/10.48550/arXiv.2307.01753
https://inspirehep.net/literature/2674563
https://doi.org/10.1088/1475-7516/2020/09/052
https://doi.org/10.1088/1475-7516/2020/09/052
https://doi.org/10.48550/arXiv.2006.10857
https://inspirehep.net/literature/1802150
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.48550/arXiv.1104.2933
https://inspirehep.net/literature/896300
https://doi.org/10.1088/1475-7516/2022/11/013
https://doi.org/10.1088/1475-7516/2022/11/013
https://doi.org/10.48550/arXiv.2205.05673
https://inspirehep.net/literature/2080220
https://doi.org/10.1088/1475-7516/2024/02/048
https://doi.org/10.48550/arXiv.2311.10088
https://inspirehep.net/literature/2723342
https://doi.org/10.1088/1475-7516/2023/08/004
https://doi.org/10.48550/arXiv.2303.08901
https://inspirehep.net/literature/2643113
https://doi.org/10.48550/arXiv.2405.16593
https://inspirehep.net/literature/2790563
https://doi.org/10.48550/arXiv.2404.03005
https://inspirehep.net/literature/2774185
https://doi.org/10.1093/mnras/stv1581
https://doi.org/10.1093/mnras/stv1581
https://doi.org/10.48550/arXiv.1504.02591
https://inspirehep.net/literature/1358905
https://doi.org/10.1086/174036
https://doi.org/10.48550/arXiv.astro-ph/9304022
https://inspirehep.net/literature/353907
https://doi.org/10.1093/mnras/staa3244
https://doi.org/10.1093/mnras/staa3244
https://doi.org/10.48550/arXiv.2007.11417
https://inspirehep.net/literature/1808461
https://doi.org/10.48550/arXiv.2404.07282
https://inspirehep.net/literature/2776427
https://doi.org/10.1093/mnras/stw2123
https://doi.org/10.48550/arXiv.1603.00476
https://inspirehep.net/literature/1425650
https://doi.org/10.1093/mnras/stac1501
https://doi.org/10.48550/arXiv.2202.06074
https://inspirehep.net/literature/2032282
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.48550/arXiv.1807.06209
https://inspirehep.net/literature/1682902
https://doi.org/10.1093/mnrasl/slw098
https://doi.org/10.1093/mnrasl/slw098
https://doi.org/10.48550/arXiv.1603.05253
https://inspirehep.net/literature/1429623
https://doi.org/10.1086/160000
https://inspirehep.net/literature/187824
https://doi.org/10.1086/160183
https://doi.org/10.1016/j.ascom.2017.05.004
https://doi.org/10.1016/j.ascom.2017.05.004
https://doi.org/10.48550/arXiv.1607.03224


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

[53] eBOSS collaboration, Clustering of quasars in SDSS-IV eBOSS: study of potential systematics
and bias determination, JCAP 07 (2017) 017 [arXiv:1705.04718] [INSPIRE].

[54] DESI collaboration, Validation of the Scientific Program for the Dark Energy Spectroscopic
Instrument, Astron. J. 167 (2024) 62 [arXiv:2306.06307] [INSPIRE].

[55] DESI collaboration, The Early Data Release of the Dark Energy Spectroscopic Instrument,
Astron. J. 168 (2024) 58 [DOI:10.5281/zenodo.7964161] [arXiv:2306.06308] [INSPIRE].

[56] E. Chaussidon et al., Target Selection and Validation of DESI Quasars, Astrophys. J. 944 (2023)
107 [arXiv:2208.08511] [INSPIRE].

[57] N. Hand, Y. Li, Z. Slepian and U. Seljak, An optimal FFT-based anisotropic power spectrum
estimator, JCAP 07 (2017) 002 [arXiv:1704.02357] [INSPIRE].

[58] H. Dembinski et al., scikit-hep/iminuit, DOI:10.5281/zenodo.4310361, (2020).

[59] M. Karamanis and F. Beutler, Ensemble slice sampling, Stat. Comput. 31 (2021) 61
[arXiv:2002.06212] [INSPIRE].

[60] M. Karamanis, F. Beutler and J.A. Peacock, zeus: a python implementation of ensemble slice
sampling for efficient Bayesian parameter inference, Mon. Not. Roy. Astron. Soc. 508 (2021)
3589 [arXiv:2105.03468] [INSPIRE].

[61] eBOSS collaboration, The completed SDSS-IV extended Baryon Oscillation Spectroscopic
Survey: 1000 multi-tracer mock catalogues with redshift evolution and systematics for galaxies
and quasars of the final data release, Mon. Not. Roy. Astron. Soc. 503 (2021) 1149
[arXiv:2007.08997] [INSPIRE].

[62] T. Zhang et al., Covariance matrices for variance-suppressed simulations, Mon. Not. Roy.
Astron. Soc. 518 (2022) 3737 [arXiv:2112.10845] [INSPIRE].

[63] F. Beutler and P. McDonald, Unified galaxy power spectrum measurements from 6dFGS, BOSS,
and eBOSS, JCAP 11 (2021) 031 [arXiv:2106.06324] [INSPIRE].

[64] R.E. Angulo and O. Hahn, Large-scale dark matter simulations, Living Rev. Comput. Astrophys.
8 (2022) 1 [arXiv:2112.05165] [INSPIRE].

[65] V. Desjacques, U. Seljak and I. Iliev, Scale-dependent bias induced by local non-Gaussianity: A
comparison to N-body simulations, Mon. Not. Roy. Astron. Soc. 396 (2009) 85
[arXiv:0811.2748] [INSPIRE].

[66] M. Biagetti et al., Verifying the consistency relation for the scale-dependent bias from local
primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc. 468 (2017) 3277 [arXiv:1611.04901]
[INSPIRE].

[67] K.M. Górski et al., HEALPix — A Framework for high resolution discretization, and fast analysis
of data distributed on the sphere, Astrophys. J. 622 (2005) 759 [astro-ph/0409513] [INSPIRE].

[68] A. Moradinezhad Dizgah, H. Lee, M. Schmittfull and C. Dvorkin, Capturing non-Gaussianity of
the large-scale structure with weighted skew-spectra, JCAP 04 (2020) 011 [arXiv:1911.05763]
[INSPIRE].

[69] J.-P. Dai and J.-Q. Xia, Constraints on Primordial Non-Gaussianity Using the Multitracer
Technique for Skew Spectra, Astrophys. J. 905 (2020) 127 [arXiv:2008.02970] [INSPIRE].

[70] D. Jeong and E. Komatsu, Primordial non-Gaussianity, scale-dependent bias, and the bispectrum
of galaxies, Astrophys. J. 703 (2009) 1230 [arXiv:0904.0497] [INSPIRE].

[71] F. Beutler and E. Di Dio, Modeling relativistic contributions to the halo power spectrum dipole,
JCAP 07 (2020) 048 [arXiv:2004.08014] [INSPIRE].

– 27 –

https://doi.org/10.1088/1475-7516/2017/07/017
https://doi.org/10.48550/arXiv.1705.04718
https://inspirehep.net/literature/1599493
https://doi.org/10.3847/1538-3881/ad0b08
https://doi.org/10.48550/arXiv.2306.06307
https://inspirehep.net/literature/2668108
https://doi.org/10.3847/1538-3881/ad3217
https://doi.org/10.5281/zenodo.7964161
https://doi.org/10.48550/arXiv.2306.06308
https://inspirehep.net/literature/2668141
https://doi.org/10.3847/1538-4357/acb3c2
https://doi.org/10.3847/1538-4357/acb3c2
https://doi.org/10.48550/arXiv.2208.08511
https://inspirehep.net/literature/2138916
https://doi.org/10.1088/1475-7516/2017/07/002
https://doi.org/10.48550/arXiv.1704.02357
https://inspirehep.net/literature/1590849
https://doi.org/10.5281/zenodo.4310361
https://doi.org/10.1007/s11222-021-10038-2
https://doi.org/10.48550/arXiv.2002.06212
https://inspirehep.net/literature/1781034
https://doi.org/10.1093/mnras/stab2867
https://doi.org/10.1093/mnras/stab2867
https://doi.org/10.48550/arXiv.2105.03468
https://inspirehep.net/literature/1862704
https://doi.org/10.1093/mnras/stab510
https://doi.org/10.48550/arXiv.2007.08997
https://inspirehep.net/literature/1807785
https://doi.org/10.1093/mnras/stac3261
https://doi.org/10.1093/mnras/stac3261
https://doi.org/10.48550/arXiv.2112.10845
https://inspirehep.net/literature/1995145
https://doi.org/10.1088/1475-7516/2021/11/031
https://doi.org/10.48550/arXiv.2106.06324
https://inspirehep.net/literature/1868157
https://doi.org/10.1007/s41115-021-00013-z
https://doi.org/10.1007/s41115-021-00013-z
https://doi.org/10.48550/arXiv.2112.05165
https://inspirehep.net/literature/1987973
https://doi.org/10.1111/j.1365-2966.2009.14721.x
https://doi.org/10.48550/arXiv.0811.2748
https://inspirehep.net/literature/802770
https://doi.org/10.1093/mnras/stx714
https://doi.org/10.48550/arXiv.1611.04901
https://inspirehep.net/literature/1498059
https://doi.org/10.1086/427976
https://doi.org/10.48550/arXiv.astro-ph/0409513
https://inspirehep.net/literature/659804
https://doi.org/10.1088/1475-7516/2020/04/011
https://doi.org/10.48550/arXiv.1911.05763
https://inspirehep.net/literature/1765050
https://doi.org/10.3847/1538-4357/abc420
https://doi.org/10.48550/arXiv.2008.02970
https://inspirehep.net/literature/1810592
https://doi.org/10.1088/0004-637X/703/2/1230
https://doi.org/10.48550/arXiv.0904.0497
https://inspirehep.net/literature/817230
https://doi.org/10.1088/1475-7516/2020/07/048
https://doi.org/10.48550/arXiv.2004.08014
https://inspirehep.net/literature/1791660


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

[72] N.A. Maksimova et al., AbacusSummit: a massive set of high-accuracy, high-resolution N-body
simulations, Mon. Not. Roy. Astron. Soc. 508 (2021) 4017 [arXiv:2110.11398] [INSPIRE].

[73] L.H. Garrison et al., The abacus cosmological N-body code, Mon. Not. Roy. Astron. Soc. 508
(2021) 575 [arXiv:2110.11392] [INSPIRE].

[74] DESI collaboration, Target Selection and Validation of DESI Luminous Red Galaxies, Astron. J.
165 (2023) 58 [arXiv:2208.08515] [INSPIRE].

[75] D. Wadekar and R. Scoccimarro, Galaxy power spectrum multipoles covariance in perturbation
theory, Phys. Rev. D 102 (2020) 123517 [arXiv:1910.02914] [INSPIRE].

[76] Y. Kobayashi, Fast computation of the non-Gaussian covariance of redshift-space galaxy power
spectrum multipoles, Phys. Rev. D 108 (2023) 103512 [arXiv:2308.08593] [INSPIRE].

[77] O. Alves, Analytical covariance matrices of DESI galaxy power spectrum multipoles, in
preparation (2024).

[78] S.-F. Chen, Z. Vlah and M. White, Consistent Modeling of Velocity Statistics and Redshift-Space
Distortions in One-Loop Perturbation Theory, JCAP 07 (2020) 062 [arXiv:2005.00523]
[INSPIRE].

[79] S.-F. Chen, Z. Vlah, E. Castorina and M. White, Redshift-Space Distortions in Lagrangian
Perturbation Theory, JCAP 03 (2021) 100 [arXiv:2012.04636] [INSPIRE].

[80] C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological constant, Nature
281 (1979) 358 [INSPIRE].

[81] M. Maus et al., An analysis of parameter compression and full-modeling techniques with
Velocileptors for DESI 2024 and beyond, arXiv:2404.07312 [INSPIRE].

[82] S. Brieden, H. Gil-Marín and L. Verde, ShapeFit: extracting the power spectrum shape
information in galaxy surveys beyond BAO and RSD, JCAP 12 (2021) 054 [arXiv:2106.07641]
[INSPIRE].

[83] D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer, Publ.
Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

[84] S. Brieden, H. Gil-Marín and L. Verde, Model-independent versus model-dependent interpretation
of the SDSS-III BOSS power spectrum: Bridging the divide, Phys. Rev. D 104 (2021) L121301
[arXiv:2106.11931] [INSPIRE].

– 28 –

https://doi.org/10.1093/mnras/stab2484
https://doi.org/10.48550/arXiv.2110.11398
https://inspirehep.net/literature/1950356
https://doi.org/10.1093/mnras/stab2482
https://doi.org/10.1093/mnras/stab2482
https://doi.org/10.48550/arXiv.2110.11392
https://inspirehep.net/literature/1950371
https://doi.org/10.3847/1538-3881/aca5fb
https://doi.org/10.3847/1538-3881/aca5fb
https://doi.org/10.48550/arXiv.2208.08515
https://inspirehep.net/literature/2138949
https://doi.org/10.1103/PhysRevD.102.123517
https://doi.org/10.48550/arXiv.1910.02914
https://inspirehep.net/literature/1757812
https://doi.org/10.1103/PhysRevD.108.103512
https://doi.org/10.48550/arXiv.2308.08593
https://inspirehep.net/literature/2689363
https://doi.org/10.1088/1475-7516/2020/07/062
https://doi.org/10.48550/arXiv.2005.00523
https://inspirehep.net/literature/1793880
https://doi.org/10.1088/1475-7516/2021/03/100
https://doi.org/10.48550/arXiv.2012.04636
https://inspirehep.net/literature/1835458
https://doi.org/10.1038/281358a0
https://doi.org/10.1038/281358a0
https://inspirehep.net/literature/151332
https://doi.org/10.48550/arXiv.2404.07312
https://inspirehep.net/literature/2776467
https://doi.org/10.1088/1475-7516/2021/12/054
https://doi.org/10.48550/arXiv.2106.07641
https://inspirehep.net/literature/1868359
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.48550/arXiv.1202.3665
https://inspirehep.net/literature/1089369
https://doi.org/10.1103/PhysRevD.104.L121301
https://doi.org/10.48550/arXiv.2106.11931
https://inspirehep.net/literature/1869741


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

Author List

E. Chaussidon a,b,∗, A. de Mattia b, C. Yèche b, J. Aguilara, S. Ahlen c, D. Brooksd,
T. Claybaugha, S. Cole e, A. de la Macorra f , P. Doeld, K. Fanning g,h, E. Gaztañagai,j,k,
S. Gontcho A Gontcho a, C. Howlett l, T. Kisner a, A. Lamberta, L. Le Guillou m,
M. Manera n,o, A. Meisner p, R. Miquelq,o, G. Niz r,s, N. Palanque-Delabrouille b,a,
W.J. Percival t,u,v, F. Prada w, A.J. Ross x,y,z, G. Rossiaa, E. Sanchez ab, D. Schlegela,
M. Schubnellac,ad, H. Seo ae, D. Sprayberryp, G. Tarlé ad, M. Vargas-Magaña f , B. A. Weaverp,
H. Zou af

a Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A.
b IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
c Physics Dept., Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
d Department of Physics & Astronomy, University College London,

Gower Street, London, WC1E 6BT, U.K.
e Institute for Computational Cosmology, Department of Physics, Durham University,

South Road, Durham DH1 3LE, U.K.
f Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P. 04510, México
g Kavli Institute for Particle Astrophysics and Cosmology, Stanford University,

Menlo Park, CA 94305, U.S.A.
h SLAC National Accelerator Laboratory, Menlo Park, CA 94305, U.S.A.
i Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
j Institute of Cosmology and Gravitation, University of Portsmouth,

Dennis Sciama Building, Portsmouth, PO1 3FX, U.K.
k Institute of Space Sciences, ICE-CSIC, Campus UAB,

Carrer de Can Magrans s/n, 08913 Bellaterra, Barcelona, Spain
l School of Mathematics and Physics, University of Queensland, 4072, Australia

m Sorbonne Université, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE),
FR-75005 Paris, France

n Departament de Física, Serra Húnter, Universitat Autònoma de Barcelona,
08193 Bellaterra (Barcelona), Spain

o Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,
Campus UAB, 08193 Bellaterra Barcelona, Spain

p NSF NOIRLab, 950 N. Cherry Ave., Tucson, AZ 85719, U.S.A.
q Institució Catalana de Recerca i Estudis Avançats,

Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
r Departamento de Física, Universidad de Guanajuato – DCI, C.P. 37150, Leon, Guanajuato, México
s Instituto Avanzado de Cosmología A. C.,

San Marcos 11 – Atenas 202, Magdalena Contreras, 10720, Ciudad de México, México
t Department of Physics and Astronomy, University of Waterloo,
200 University Ave W, Waterloo, ON N2L 3G1, Canada

u Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo, ON N2L 2Y5, Canada
vWaterloo Centre for Astrophysics, University of Waterloo,

200 University Ave W, Waterloo, ON N2L 3G1, Canada
w Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, s/n, E-18008 Granada, Spain
x Center for Cosmology and AstroParticle Physics, The Ohio State University,

191 West Woodruff Avenue, Columbus, OH 43210, U.S.A.
y Department of Astronomy, The Ohio State University,

4055 McPherson Laboratory, 140 W 18th Avenue, Columbus, OH 43210, U.S.A.
z The Ohio State University, Columbus, 43210 OH, U.S.A.

aa Department of Physics and Astronomy, Sejong University, Seoul, 143-747, Korea
ab CIEMAT, Avenida Complutense 40, E-28040 Madrid, Spain

– 29 –

https://orcid.org/0000-0001-8996-4874
https://orcid.org/0000-0003-0920-2947
https://orcid.org/0000-0001-5146-8533
https://orcid.org/0000-0001-6098-7247
https://orcid.org/0000-0002-5954-7903
https://orcid.org/0000-0002-1769-1640
https://orcid.org/0000-0003-2371-3356
https://orcid.org/0000-0003-3142-233X
https://orcid.org/0000-0002-1081-9410
https://orcid.org/0000-0003-3510-7134
https://orcid.org/0000-0001-7178-8868
https://orcid.org/0000-0003-4962-8934
https://orcid.org/0000-0002-1125-7384
https://orcid.org/0000-0002-1544-8946
https://orcid.org/0000-0003-3188-784X
https://orcid.org/0000-0002-0644-5727
https://orcid.org/0000-0001-7145-8674
https://orcid.org/0000-0002-7522-9083
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-6588-3508
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-3841-1836
https://orcid.org/0000-0002-6684-3997


J
C
A
P
0
1
(
2
0
2
5
)
1
3
5

ac Department of Physics, University of Michigan, Ann Arbor, MI 48109, U.S.A.
adUniversity of Michigan, Ann Arbor, MI 48109, U.S.A.
ae Department of Physics & Astronomy, Ohio University, Athens, OH 45701, U.S.A.
af National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Rd., Chaoyang District,

Beijing, 100012, P.R. China

∗ Corresponding author

– 30 –


	Introduction
	Theoretical description
	Scale-dependent bias
	Blinding scheme
	Shot noise correction
	Shot noise with data weights
	Implementation

	Validation with mocks
	Mocks
	Model vs. mocks without shot noise corrective factor
	Validation of the shot noise correction factor
	Blinded range of scales
	Distribution of blinding weights

	Test with realistic cutsky mocks
	Realistic cutsky mocks
	Blinding with non-zero PNG simulations
	Blinding with a mispecified survey selection function (remaining systematics)

	Conclusion
	Weights applied on data or randoms?
	Impact of blinding scheme on the quadrupole and hexadecapole
	Impact on the BAO / RSD measurement
	Author List

