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Probing gravity with weak lensing and clustering from mock galaxy surveys

by Cristian Nery VIGLIONE MUNOZ

English version

The quest for a theoretical explanation of the Universe’s observed accelerated expansion has
necessitated the inclusion of the cosmological constant (A) as a dark energy component.
This constant behaves as a negative pressure, or effectively as "repulsive" gravity, on large
cosmological scales. Alternatively, several modified gravity models have been proposed to
account for this acceleration without relying on a cosmological constant. The proliferation of
these gravity theories has highlighted the need to develop robust methods for testing their
validity.

As part of the main project of this thesis, we present the first computation of the gravity
model testing parameter Eg using realistic simulated galaxy mocks. The study focuses on
measuring the E¢ estimator within the framework of General Relativity (GR) and f(R) grav-
ity models, leveraging high-fidelity simulated galaxy catalogs. Our primary aim is to assess
the potential of future galaxy surveys to detect deviations from standard gravity using this
widely adopted estimator that combines galaxy clustering and weak gravitational lensing.
Our findings indicate that, for an all-sky galaxy survey and without accounting for observa-
tional systematics, Fg can be estimated accurately and with minimal bias for both gravity
models across all redshifts. However, the error bars are too large to definitively distinguish
between the theories. Alternatively, we propose a straightforward null test of gravity based
on redshift-space distortion (RSD) clustering. This test suggests that, with precise modeling
of small-scale behavior in future galaxy surveys, significant departures from standard gravity
could potentially be detected.

We developed tools to probe gravity from 2-point correlation functions for galaxy clustering
and galaxy weak lensing. For galaxy clustering, we primarily conducted linear galaxy bias
calculation using angular power spectra and growth rate estimates derived from multipoles of
the correlation function. For gravitational lensing, we computed the magnification bias factor
and performed 3x2pt analyses on GR and f(R) galaxy mocks. This expertise enabled us
to deliver accurate calculations for various forecasts for the Fuclid mission and some minor
contributions for the DESI mission.

In this thesis, we detail the methodologies and tools developed throughout the PhD research,
which facilitated the achievement of these results. These tools include advanced techniques for
calculating galaxy clustering and lensing statistics, which also served to validate the simulated
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mocks used in the study. During this process, we identified and resolved errors in the gener-
ation of the dark matter and galaxy catalogs through persistent testing and troubleshooting.
While these setbacks delayed progress and complicated the production of final results, they
provided valuable insights into theoretical implementations and cosmological simulations, ul-
timately enriching our understanding of these topics.

Spanish version

La busqueda de una explicaciéon tedrica para la expansion acelerada observada del Universo ha
requerido la inclusion de la constante cosmologica (A) como un componente de energia oscura.
Esta constante actiia como una presién negativa o, efectivamente, como una "gravedad repul-
siva" a escalas cosmoldgicas grandes. Alternativamente, se han propuesto varios modelos de
gravedad modificada para explicar esta aceleraciéon sin depender de la constante cosmolégica.
La proliferacién de estas teorias de gravedad ha resaltado la necesidad de desarrollar métodos
solidos para probar su validez.

Como parte del proyecto principal de esta tesis, presentamos el primer calculo del parametro
FE¢ para probar modelos de gravedad utilizando catalogos simulados de galaxias realistas. El
estudio se centra en medir el estimador E¢ en el marco de la Relatividad General (GR) y
los modelos de gravedad f(R), aprovechando catalogos simulados de galaxias de alta fidel-
idad. Nuestro objetivo principal es evaluar el potencial de futuras sondas de galaxias para
detectar desviaciones de la gravedad estandar utilizando este estimador ampliamente adop-
tado que combina galaxy clustering y galaxy lensing. Nuestros resultados indican que, para
una poblacién de galaxias de todo el cielo y sin considerar sisteméticas observacionales, Eg
puede ser estimado con precisiéon y con sesgo minimo para ambos modelos de gravedad en
todos los redsfhits. Sin embargo, las barras de error son demasiado grandes para distinguir
de manera concluyente entre las teorfas. Como alternativa, proponemos una hipoétesis nula
sencilla de la gravedad basada en el clustering de distorsiones en el espacio de redshifts (RSD).
Esta prueba sugiere que, con un modelado preciso del comportamiento a pequena escala en
futuras sondas de galaxias, podrian detectarse potencialmente desviaciones significativas de
la gravedad estandar.

Hemos desarollado herramientos para calcular las funciones de correlacion de dos puntos para
galazy clustering y el galaxy weak lensing. Para galary clustering, realizamos principalmente
célculos del linear galaxy bias utilizando angular power spectrums y del growth rate utilizando
los multipolos de la funcién de correlacién. Para galazy lensing, calculamos el factor del
magnification bias y realizamos analisis 3x2pt en simulaciones de galaxias bajo GR y f(R).
Esta experiencia nos permitio6 realizar célculos precisos para diversas predicciones de la misién
FEuclid y algunas contribuciones menores a la mision DESI.

En esta tesis, detallamos las metodologias y herramientas desarrolladas a lo largo de la inves-
tigacién doctoral, las cuales facilitaron la obtencion de estos resultados. Estas herramientas
incluyen técnicas avanzadas para calcular las estadisticas del clustering y lensing de galaxias,
que también sirvieron para validar los catalogos simulados utilizados en el estudio. Durante
este proceso, identificamos y resolvimos errores en la generaciéon de los catilogos de materia
oscura y galaxias mediante pruebas persistentes y procesos de depuraciéon de codigo. Aunque
estos contratiempos retrasaron el progreso y complicaron la obtencién de los resultados finales,
proporcionaron valiosas perspectivas sobre las implementaciones tedricas y las simulaciones
cosmolodgicas, enriqueciendo en iltima instancia nuestra comprensién de estos temas.
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Chapter 1

Cosmological background

Cosmology, as the scientific study of the universe in its entirety, seeks to unravel the mys-
teries of its origin, evolution, structure, and ultimate fate. It encompasses a wide range of
phenomena that can be observed and deduced from the electromagnetic waves (mostly light)
that arrives us. Due to the limited speed of the light, our telescopes capture light emitted
at different time periods allowing us to obtain information of the formation and evolution of
the universe. Cosmologists have formulate many theoretical predictions in order to explain
and reproduce the history and the contents of our Universe which are included on the current
most accepted standard model of cosmology known as Lambda cold dark matter (or ACMD).
This model despise having many observational agreements is still under testing since there
are many things that cosmologists do not understand. One of this things is the very same
substance that gives the A name to the model. Describing this model will be the starting point
to the theoretical framework since current alternative theories to this paradigm are derived
from it due its impressive validity with current observations. In this introductory chapter we
provide descriptions and information for key concepts in cosmology that will be crucial to
understand the previous chapters of this thesis.

1.1 The Cosmological principle

The cosmological principle is a foundational concept in cosmology which asserts that, when
observed on sufficiently large scales, the Universe exhibits two key characteristics: homogene-
ity and isotropy.

Homogeneity refers to the idea that the Universe, when viewed over large distances, is uniform
and appears the same in its structure and composition. This means that, on these vast scales,
there is no special or preferred location within the Universe; every region of the Universe has
a similar distribution of matter and energy.

Isotropy, on the other hand, implies that the Universe looks the same in all directions when
observed from any given point. This means that, regardless of the direction in which we look,
the overall appearance of the Universe remains the same, with no particular direction being
unique or different from any other.

The cosmological principle suggests that when the Universe is viewed on a sufficiently large
scale, the properties of the universe are the same for all observers. This amounts to the
strongly philosophical statement that the part of the universe which we can see is a fair
sample, and that the same physical laws apply throughout. In essence, this in a sense says
that the universe is knowable and is playing fair with scientists [96].

The principle breaks down at sufficient small scales due to formation of matter structures. It
is apparent that when we see at the sky we can see different structures in different directions:
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like planets, stars, galaxies, clusters, etc... which breaks isotropic. The same can be said
about homogeneity since there are regions of the universe with less matter, like voids, and
some with more, like galaxy clusters. But this idea of the cosmological principle at sufficient
large scales, which implies that we are not in any special part of the universe, was vital to
formulate the idea of the Big Bang theory as we will see in the following chapters.

1.2 The expanding universe and Hubble’s Law

In 1929, the astronomer Edwin Hubble observed and determined the distances and radial
velocities of numerous galaxies, discovering that the majority were receding from us, with
their speed increasing the farther they were from Earth.

Hubble’s Law describes the relationship between the radial velocity v, of a galaxy and its
distance from an observer on Earth [99]:

v, = zc = Hod (1.1)

In this equation, z represents the redshift of the galaxy’s observed spectrum. This redshift
occurs because the wavelength of light stretches as it travels through the expanding universe,
causing the galaxy’s spectrum to shift toward the red end. By measuring this redshift, we
can determine the velocity at which the galaxy is receding from us. The Hubble constant,
Hy, quantifies the rate of this expansion and is defined as the inverse of a time period. The
existence of this constant Hy indicates that the universe is expanding, with more distant
galaxies receding faster due to the greater amount of space between them and us.

The Hubble constant also serves as a biased estimator of the universe’s age. Specifically,
Hio represents the time when the universe was compressed into a single point. Since Hy
is time-dependent, its current value is approximately 100 A km/s/Mpc, where h denotes the
measurement uncertainty. Recent observations suggest h is between 0.68 and 0.74 [7], which
corresponds to an estimated age of 14.4 billion years. However, this estimate assumes non-

accelerated expansion, which is not the case for our Universe.

Since the Hubble parameter depends on time, for galaxies at different distances from us the
observed light comes from different times due to the finite speed of the light. Then the
Hubble’s law expressed in Eq. (1.1) is only valid for small distances and therefore is called
the local Hubble’s law. To account for this, we introduce the scale factor of the universe, a,
which ranges from 0 at the Big Bang to 1 at the present time. This scale factor represents
the relative size of the universe compared to its current size. For example, a = 0.2 indicates
the time when the Universe was five times smaller.

The scale factor a relates proper coordinates to comoving coordinates, which do not change
with the Universe expansion, as described in:

dr = a(t)dx (1.2)

This equation shows that, by convention, the comoving coordinates match the proper coordi-
nates at the present time. It also implies that:

_dr_ dalt) dx = gdr = Hdr (1.3)

do= & _
VT T T at




1.3. The Metric of the Universe 3

Here, H = % indicates that H is a function of time. Combining Equations (1.1) and (1.3),

we get:

dx a da da dX
2c=c—=—-dr=c— = — = — 1.4
A a a a A (14)
This result implies that, during a short time interval dt, the fractional change in a photon’s
wavelength is equal to the fractional increase in the universe’s size. This phenomenon is
known as cosmological redshift. From this, we derive:

y = )\observed - Aemitt@d _ a(treception) - a(temission) (15)

)\emitted a(temission)

Taking the reception time as the present time (a = 1), we get:

1
142z

a(t) (1.6)

This equation directly relates the observed redshift to a specific time in the universe’s history,
reflecting its relative size. Since redshift is easier to measure, this method effectively estimates
cosmic time.

Using Eq. 1.4, we can derive the exact form of Hubble’s Law for an arbitrary H(t) over a
time interval (¢, t2):

da 1/t2da 1/1t2
z2=—=— —dt = — a(t) H(t)dt 1.7
= | e nw (1.7)

The adimensional reduced Hubble constant is normally used, which is defined as:

Hy

h=_ 0
100 km/s/Mpc

Il
—

—

3
~—

1.3 The Metric of the Universe

As presented in Eq. 1.2, the scale factor is the key to describe an expanding universe trans-
forming from comoving distance to the proper distances at any given time. Typically, a metric
is used to carry out this transformation, providing an essential framework for making quantita-
tive predictions within a universe in constant expansion. The metric that accurately describes
an expanding, homogeneous, and isotropic universe is the FLRW! metric [58]. Using General
Relativity this metric can be derived as an exact solution to Einstein field equations, but its
general form can be derived from the fundamental principles of homogeneity and isotropy
without directly invoking Einstein’s equations. In this context, the spacetime interval ds in
spherical coordinates is represented as:

ds® = —c2dt* + d*(t) (dx2 + f,?(x)dQQ) , (1.9)

"Which is an abbreviation of the names of the scientists that developed this metric: Friedmann, Lemaitre,
Robertson and Walker



4 Chapter 1. Cosmological background

where x is the radial comoving distance, €2 represents the solid angle, and fj is a function
that accounts for the radius of curvature k of the space, expressed as:

VE! sin(xVk) if k=41 (closed space),
fx) = { x if k =0 (flat space), (1.10)

V ‘k‘_l sinh(x+/|k|) if K = —1 (open space).

The curvature parameter k has units of length™2. A positive curvature indicates a spherical or
closed Universe, whereas a negative curvature corresponds to a hyperbolic or open Universe.
However, since observational data suggests that the universe is flat or nearly flat, this thesis
will proceed under the assumption that the Universe is completely flat.

One of the key advantages of this metric is its capacity to incorporate gravity directly. Rather
than treating gravity like an external force influencing objects with mass within a gravitational
field, this metric integrates gravity into the structure of space-time itself, allowing particles to
move freely within this curved framework. This approach is especially important for under-
standing phenomena such as gravitational lensing, which will be examined later in this thesis,
as it requires analyzing light propagation through a not completely homogeneous universe.

1.4 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the radiation emitted from the last scattering
surface during the epoch of recombination at redshift z ~ 1100. As the Universe expands, the
temperature of this radiation decreases due to the stretching of wavelengths, as described in
the previous section. In the Big Bang model, the Universe began in a hot, dense state where
electrons could not bind to nucleons. Consequently, photons were unable to escape the plasma
because free electrons caused Thompson scattering over short distances. Once the Universe
cooled to a temperature of approximately 3300 K, the first atoms began to form, allowing
electrons to decouple from matter and travel freely through space. The CMB is composed of
these photons, which have now reached us. These photons have also been redshifted by the
cosmological expansion, resulting in a measured temperature of approximately 2.73 K [99].
This corresponds well with the results predicted by Eq. 1.4 for black-body radiation which
became a good indicator of the validity of the Hubble parameter and the Big Bang Theory
as a whole.

The CMB radiation is nearly isotropic in all directions; however, precise instruments have
detected small variations of around 10~* K. These anisotropies arise from inhomogeneities in
the atom distribution at the time of recombination, caused by initial quantum fluctuations.
These fluctuations created density variations in the primordial Universe, as described by Eq.
(1.11), causing photons escaping these regions to expend more energy to overcome higher
gravitational potentials, resulting in slightly higher cooling. This phenomenon is known as
gravitational redshift.

s=P—P (1.11)

where p is the mean density of the Universe. These density fluctuations grew linearly over
time by accreting more matter due to their increased gravitational influence. Eventually, these
fluctuations became large enough to form the large-scale structures observed today, resulting
in an inhomogeneous Universe on small scales. On these scales, fluctuations grow non-linearly,



1.5. The ACDM model 5

F1GURE 1.1: Full sky map of the CMB with observable anisotropies as color
variations: warmer regions are redder and cooler are bluer. Image obtained
with Planck

necessitating approaches such as higher-order perturbation theory or non-analytic models like
N-body simulations (see Chapter 3).

The CMB anisotropies provide valuable information. They not only reveal the initial mech-
anisms that seeded large cosmological structures but also offer insights into the composition
and geometry of the Universe. By measuring the angular spectrum of the CMB small tem-
perature anisotropies (see Section 2.6.4) and comparing them to theoretical predictions, we
infer that the Universe is flat, with Qi = 1. Currently, uncertainties in the value of ot
make it challenging to conclusively determine the Universe’s flatness. Since as the flatness
problem establishes is hard to believe that from all the possible values that 2, could take it
had to be exactly 1. From the CMB angular spectrum, we also deduce the Universe’s com-
position, obtaining present-day density values: €g; ~ 0.05, Qo pm ~ 0.27, Qg = 5 x 1075,
and QoA ~ 0.68 [7].

Since the CMB is sensitive to the total matter distribution along its path to the observer,
this allows us to infer details regarding structure evolution in the Universe. In this regard,
cosmologists have used the gravitational lensing of CMB to study the evolution of density
perturbations.

1.5 The ACDM model

The ACDM model serves as the prevailing framework for describing the Universe. This
model establishes an expanding, accelerating Universe driven by a mysterious component
known as Dark Energy, characterized by the cosmological constant A. The majority of the
Universe’s mass consists of Cold Dark Matter (CDM), which is non-relativistic and clusters
under gravitational influence in matter halos, where galaxies reside. Dark Matter, which does
not emit light, is inferred through its gravitational effects, with gravitational lensing providing
a crucial method for mapping the Universe’s mass distribution by observing the deflection of
light caused by Dark Matter’s gravitational pull.
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The ACDM model integrates the theory of the Big Bang as the origin of the Universe, adhering
to the cosmological principle that the Universe is homogeneous and isotropic on large scales.
It is compatible with the concept of cosmological inflation, which explains the uniformity and
fluctuations observed in the Cosmic Microwave Background (CMB). Furthermore, the model
assumes that General Relativity governs gravitational interactions on cosmological scales.

In this model, the Universe is described as flat (Euclidean), comprising Dark Energy (A), Dark
Matter (CDM), baryonic matter, and radiation.To fully specify the ACDM model, one must
provide the values of €,,, 2, the Hubble constant Hy, the optical depth at reionization 7, the
spectral index ng, and the curvature fluctuation amplitude A (or og). All other cosmological
parameters can be derived from these six fundamental values which will be covered in the
following chapters.

1.6 General Theory of Relativity

Einstein’s Theory of General Relativity (GR) describes gravity as a geometric property of
space and time, providing an extension to Newton’s law of universal gravitation and special
relativity. According to this theory, the presence of mass and energy distorts the space-time
fabric, causing objects to travel along paths called geodesics, which represent the paths of
least action in a curved space-time framework, unless influenced by an external force. This
curvature results in the bending of light along geodesic lines, directing it towards masses that
distort space-time.

1.6.1 Einstein—Hilbert action

The usual starting point to GR is the Einstein—Hilbert action, which is the one that encap-
sulates the dynamics of the gravitational field in general relativity. This action allows to
obtain the Einstein’s field equations which are a fundamental part of this theory. It takes the
following form? [149]:

Sen = i /R\/—gd4m, (1.12)

In this equation, kK = 871G where G is the gravitational constant, g is the determinant of
the metric, R is the Ricci scalar related to the Ricci tensor : R = g, R*”. The Ricci tensor
depends on the metric and its derivatives:

ory, ora,
py = 833’/” - 8.%,;‘ +F;)10' Z)\_Fzz/rlof-a (113)

Here, P;/\w denotes the Christoffel symbols of the second kind:

1 dgx Oy O0Guy
A T AR M . M
P = 29 < ox¥ + ozt Oxr ) (1.14)

The FLRW metric in this notation can be defined as a 4-dimensional manifold:

2For simplicity, natural units where ¢ = 1 are assumed.
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c? 0 0 0
10 —a(t)? 0 0
0 0 0 —a(t)2

The first element on the diagonal, ggg, corresponds specifically to the time coordinate, while
the remaining diagonal elements, gi1, g22, and gs3, represent the spatial components of the
metric. The absolute value of ggg is equal to ¢, the speed of light.

Returning to (1.12), we need to incorporate a Lagrangian term, Ly, corresponding to the
matter field and the cosmological constant in order to account to the accelerated expansion
of the Universe.

S = /[ (R—2A) + Ly | /—g d*= (1.16)

This Lagrangian is related to the energy-momentum tensor 7),,, which assuming a perfect
isotropic fluid can be expressed as:

p 0 0 0
0 —p 0 0

-

T 0 0 —p 0| (1.17)
00 0 —p

where p is the density and p is the pressure. The non-diagonal components are zero to
preserve isotropy, as required by the cosmological principle. The energy-momentum tensor
T}, is symmetric, with components representing energy density Tpo, energy flux or momentum
density Tp;, pressure Tj;, and momentum flux or shear stress 7;;.

1.6.2 Einstein’s field equations

Einstein’s field equations encapsulate General Relativity, detailing the core relationship be-
tween space-time and mass/energy. Solving these non-linear differential equations for a homo-
geneous and isotropic universe yields the FLRW metric, as described in section 1.3. However,
gravitational lensing requires consideration of the Universe’s inhomogeneities on smaller scales.
In this section we will perform the derivation of these equations [149].

With the action defined in (1.16) we can apply the stationary-action principle, which tells us
that the variation of the action with some fixed constraints is zero.

55 =0 (1.18)

where the variation of each component is given by:

1

8/75) = —57==0

1 1
9=35vV=9 (9" 0g) = A (9u09"") (1.19)

0R

W — ny (120)
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SA =0 (1.21)
0L
T,LLI/ = 2(5 "y + g,uyﬁM (122)

For the last equation the definition for the energy-momentum tensor has been used and its
relation to the matter Lagrangian. The same goes to the Ricci scalar and its relation to the
Ricci tensor.

If we apply the variation to the Einstein—Hilbert action:

0S8 = /

AoV

K oghv

V= 0R | R5y~g

2K 59“1’ 2k dgtv

MM NCa] P
M5 g

(1.23)

So now we can apply the relation of the action principle defined in (1.18) to the expression in
brackets in the previous equation:

LR R 1 ayg AL 0YTg 00 Lu 0Ty
2k OgHv 2/5\/7 Sghv m\/i Sglv Sgv T \J—g Sgv '

where we have divided everything by /—¢. Now we can use the relations defined in (1.19)
and (1.20) to obtain:

%R,W - gg,w + %g,w + (iﬁﬁ — L gg”) =0 (1.25)
Multiply by 2x:
R — gg;w +Aguw + £ (2 (;5}% — EMgW) =0 (1.26)
Apply relation (1.22):
Ry — gg,w +Agy — KT =0 (1.27)

Finally we express the final relation with the energy term to the right and using k£ = 87G to
obtain the Einstein field equation:

1
R, — §R9W — Ag = 87GTy,. (1.28)

1.6.3 Friedmann equation

In the FLRW metric, the scale factor a(t) is the only parameter that changes with time in
a flat Universe. Understanding and predicting the evolution of a(t) is fundamental to any
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cosmological model. By using (Eq. 1.28), the Friedmann equations establish a link between
a(t) and the contents of the Universe.

Although the Einstein field equation are complex, the FLRW metric simplifies it into an
exact solution. Within this framework, the Christoffel symbols from (Eq. 1.14) vanish when
involving two or three temporal indices, leaving two types of non-zero Ricci tensor components:
Ryo and R;;. Using the FLRW metric with zero curvature (k = 0) [58]:

i
Roo=—=3—, Too=p, goo=1 (1.29)
While the Ricci scalar is given by:

R= —% (da +a* + k) (1.30)

Applying these results to Eq. 1.28 with u,v = 0:

N\ 2
k
3 (“) +3— — A& = 8xGp, (1.31)
a a
which can be rewritten as:
L\ 2
a e A k
oY) = R & & 1.32
<a> 3 /T3 (1.32)

This differential equation, known as the first Friedmann equation, describes how the rate of
change of the scale factor is connected to the physical properties of the Universe.

Now, considering the spatial components with ¢ = j:

2k + 242 + ai

Rij = —gij ( 2 ) » Tij=—p, 9ij = —a? (t=17) (1.33)

a

and substituting them into Eq. 1.28:

i 1 /a\? Ak
2422 (2) =4 A
a '3 <a> mGp 2 2a?

Subtracting half of the first Friedmann equation from this yields the second Friedmann equa-
tion:

gy mr =
a

e

3 Bp+p)+ /; (1.34)

This time the equation describes how the scale factor acceleration is connected to the physical
properties of the Universe.
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1.7 Fundamental Components of the Cosmos

In order to continue the relation between Universe’s physical properties and the energy content
we need to account for all the different energy components since each one of them has evolved
in a different manner due to the expansion [58].

1.7.1 Radiation

Radiation consists of massless photons, with their energy determined by their wavelength:

E=" (1.35)

where hp represents the Planck’s constant (where the index P is used to distinguish it from
the reduced Hubble parameter), and A, is the photon’s wavelength. This relationship has
significant consequences: as the Universe expands, the density of radiation decreases due
to the increasing volume, and the energy/frequency of the photon also diminishes, as their
wavelength stretches in proportion to the scale factor a. Since the photon density scales
inversely with the cube of a and their energy scales inversely with a, the energy density of
radiation scales inversely with the fourth power of a. Thus,

pr = proa” . (1.36)

1.7.2 Matter and Dark Matter

Matter can be related to energy using Einstein’s mass-energy equivalence principle:

E =md, (1.37)

indicating that energy and mass are directly proportional. The Universe can be considered
a closed system so matter conservation can be assumed, then the energy density of matter
depends solely on the volume. The matter energy density decreases because the same amount
of energy is spread over a larger volume when the Universe increases in size. Since space has
three dimensions, any physical volume scales with the cube of the scale factor a(t), leading to
the matter energy density being inversely proportional to the cube of the distance. Setting
the current scale factor a(tg) = 1 and denoting the present-day matter density as pmo, the
matter density at any time ¢ can be related to the current density by:

oy = Lm0
m a3'

(1.38)
This density encompasses both visible matter (baryonic matter) and dark matter. Dark matter
is inferred from multiple observations (e.g., galaxy rotation curves, gravitational lensing) but
remains undetected by direct means, with its exact nature still unknown. Also, dark matter is
typically considered to interact only through gravity, which means that it does not experience
collision due to electromagnetic repulsion nor emits or absorbs electromagnetic radiation.
However, on cosmological scales, where gravity dominates, both baryonic and dark matter
can be treated similarly in their gravitational effects.
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1.7.3 Dark Energy

The cosmological constant, A, from Eq. (1.28), can be interpreted as a form of energy density
that remains constant over time, independent of the scale factor a(t). To integrate this
constant energy density into the total energy density of the universe, it must share the same
units as the matter and radiation energy densities, which is expressed as:

A
=—. 1.39
PA= 8 (1.39)
Since A is constant, this implies:
PA = PAO- (1.40)

This equation suggests that A is equivalent to a vacuum energy density, intrinsic to space
itself, persisting even in the absence of matter. This energy is known as dark energy and it
is thought to drive the accelerating expansion of the Universe within the framework of the
Friedmann equations. However, the true nature of dark energy remains a mystery.

As of now, the cosmological constant is the most commonly used model for dark energy,
leading to the nomenclature of the ACDM model. But alternative models are also explored
since we still have little information about the meaning of this constant. The behavior of these
alternative dark energy forms is often presented as an equation of state, typically written as:

P = wp. (1.41)
where:
-1 for vacuum energy (or cosmological constant),
w =< w(a) for variable dark energy, often corresponding to a scalar field,

< —1 for phantom energy (a form of unstable vacuum energy).

The parameter w and the equation of state are also applicable in modeling the behavior of all
the substances of the universe. For example, w = 1/3 for radiation (accounting for radiation
pressure) and w = 0 for matter (treated as a fluid without pressure).

1.7.4 Evolution of Energy Densities

To analyze the different epochs of the Universe, it’s essential to determine the relative contri-
butions of each component. We define dimensionless cosmological parameters as:

Qi 0= pi,O, (142)

where p; o represents the current density of the i-component and p,, is the critical density:

3H?

o = . 14
P —e (1.43)
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The critical density is the density required for a flat universe (kK = 0) given the Hubble
parameter Hy. If the actual density exceeds this density, the space is closed; if it is lower, the
space is open. The first Friedmann equation can be expressed as [58]:

H2(2) = HZ |Qno(1+ 2)% + Qo1+ 2)* + Queo(1 + 23059 4+ 0 o(1 + 2)2} o (1.44)

.

where ), = —12-
0

This leads to the consistency relation:
>+ =1, (1.45)
i
where 7 includes all components except curvature.

Radiation (Q,xa™*) —— Matter (Q,,xa3) —— Dark Energy (Q xa®)

1.0 1

0.8 1

0.6 1

Matter Dominated

0.4

Density Parameters (Q)
Dark Energy Dominated

0.2 1

0.0

10~° 107 103 1073 1071
Scale Factor (a)

FIGURE 1.2: Evolution of the density parameters throughout the Universe’s

expansion. The dashed lines indicate the epochs of radiation-matter equality

and matter-dark energy equality. The cosmological values used are from the
Flagship 2 mock (flat cosmology) with an arbitrary Q, = 1075.

Figure 1.2 illustrates the evolution of different density parameters with the scale factor up to
the present epoch. The points where two components have equal densities are referred to as
equality (or turnover) scales. For example, the radiation-matter equality can be computed by
solving:

Py g =2m0 1. (1.46)

Pm0 Pro

—4 -3
Pro@ = PmoQd T —> Qeg =
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The minimal set of cosmological parameters required to characterize the properties of the
Universe’s expansion includes: {;}, Qx, Hp, w. Accurate measurements of these parameters
are crucial for understanding the Universe’s history and future. Observations from the CMB
provide precise constraints on these parameters. Current measurements (from Planck + BAO,
[7]) indicate that the Universe is nearly flat. Radiation, once dominant, is now a minor
component compared to matter and dark energy. Dark matter, more abundant than baryonic
matter, is categorized into cold dark matter (CDM), denoted as 2., and baryonic matter, 2,
with €,, = Qp + Q..

Current values are approximately [7]:

Q. = 0.001 £ 0.002
Q, ~107°
Q,, = 0.315 + 0.007
Qh? = 0.0224 £ 0.0001

1.8 Cosmological Distances

As discussed in Section 1.2, the
relationship between redshift (an

observable quantity) and comoving 107 |—— Angular diameter
distance is determined by the Uni- Comoving
verse’s expansion history, charac- 106 Luminosity

terized by H(z). In cosmology,
there are several definitions for dis-
tances which can be useful in dif-
ferent situations to extract infor-
mation about the Universe through
the relation between distance and
redshift [58].

105 4

104 4

Distance (Mpc/h)

103 4

1.8.1 Comoving Distance ,
1044

Using physical distances in an ex-
panding universe is complex. In-
stead, cosmology often uses comov-
ing distances, which remain con-
stant for objects moving with the

Hubble flow.

101 3 T T T T
1072 1071 10° 101 102 103
Redshift z

FI1GURE 1.3: Plot showing the evolution of different distances
with redshift, using the cosmological parameters from the

Consider a source emitting light in >
Flagship 2 mock.

the past, arriving to an observer af-
ter a certain period. In this time
interval, light would have traveled
a physical distance of:

¢ dt = a(t)dy, (1.47)



14 Chapter 1. Cosmological background

where the comoving distance between the source and the observer is given by dx. This follows
from the metric equation for radially traveling light, where the spacetime interval is zero.

To find the total comoving distance to the observed object, integrate from the time of emission
te to the time of observation tg:

x(te) Z/Oa'lt- (1.48)

Substituting ¢ = 9% and using H = a

dt
9 ceda L cda
x(a) = /a v /ae 2H(a)’ (1.49)

By expressing this equation as function of redshift (Eq. 1.44 and Eq. 1.6), we get:

% cdz

o H(2)

This equation is referred at the distance-redshift relation. The collection of parameters used
to calculate cosmic distances is known as the fiducial cosmology: Hy and ; (Eq. 1.44).

\(z) = (1.50)

1.8.2 Transverse Comoving Distance

The transverse comoving distance Dj; measures the separation between two points at the
same redshift but separated by an angle Af on the sky. It relates to the line-of-sight comoving
distance D¢ as follows:

S sinh (YPeE) 0, >0

Dy(z) = { De(z) Q=0 (1.51)

Ci?z | sin < J mZI?C(Z)) QL <0
V k

Here, dg is the Hubble distance, and €2 is the curvature parameter, distinguishing between
open, flat, and closed universes.

1.8.3 Angular Diameter Distance

The angular diameter distance D4 allows us to infer the physical size of an astronomical
object from the angle its extremes defines on the sky from the observer point of view. Using
the small angle approximation, it is given by:

Dy = (1.52)

55
where [ is the object’s physical size and 6 is the observed angle. The object has a transversal
comoving size of [/a, while the angle can be expressed as 6 = 1/7[1 Then the angular diameter
distance in a flat universe is related to the comoving distance by:

Dﬁat — X(Z) . 1
A =T (1.53)
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For Universes with curvature, expression 1.53 can be generalized to:

. {Sinh (VQrHox) Q>0 (1.54)

Dy=——F—=1.
Ho/Iu] \sin (VIWIHox) % <0
These expressions recover the flat case when €, approaches zero.

1.8.4 Luminosity Distance

The luminosity distance Dy, relates the flux F' observed from a source object to its intrinsic
luminosity L. In a non-expanding universe, the flux is:

L

F =
And?’

(1.55)

where d is the physical distance to the object. Both the distance and luminosity evolve over
time when the Universe expands. Expressing in terms of the scale factor:

L(a)

PO = ey

(1.56)

where L(a) is the luminosity passing through a comoving spherical shell of radius x(a). Due
to expansion, L(a) is reduced by two factors: (1) photon energy is redshifted by a, and (2)
the number of photons per unit time is reduced by a. Therefore, the observed luminosity is
reduced by a factor of a?:

L(a) = Lsourcet®. (1.57)
Thus, the observed flux becomes:
Lsourcea2
= . 1.58
Ay (a) (1.58)

Defining the luminosity distance Dy, as:

X
D == 1.59
L a ) ( )
the flux observed in an expanding universe can be expressed as:
F — Lsource (1,60)

4w D?(a)’

This relationship enables cosmologists to infer distances from the observed flux, given the
source’s intrinsic luminosity.
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Chapter 2

Large scale structure in the universe

As mentioned in the introduction, the description of the Universe as homogeneous and
isotropic is only valid on large cosmological scales. In the early Universe, everything was
tightly packed together, and all components were in equilibrium [99]. In this state, structures
could not form because the gravitational potential was uniform, leaving no preferred positions
for mass to coalesce. Cosmologists believe that the well-defined structures we see today orig-
inated from random quantum fluctuations in the early Universe, which acted as "seeds" for
the formation of these structures [118].

2.1 Timeline of the Universe

In this section we will give a brief description of the story of the Universe as an introduction
as how structures originated and evolved [58].

2.1.1 The Big Bang

By extrapolating Hubble’s Law, we can infer that all the energy of the Universe was once
confined to a very small space. In this state, the Universe was extremely hot and dense, with
temperatures around 1 MeV /kB. Neutral atoms and bound nuclei could not exist because the
intense high-energy radiation would immediately destroy any atom or nucleus that formed.

One of the most crucial insights from studying the CMB is that the early Universe was very
smooth, showing no anisotropies initially. However, in 1992, the COBE satellite mission
discovered anisotropies in the CMB [58], revealing that the early Universe was not entirely
uniform. These small perturbations in the cosmic plasma manifested as fractional temperature
fluctuations of about 107°.

2.1.2 Inflation

The inflationary theory, introduced by Alan Guth in 1981 [78], revolutionizes our understand-
ing of the early Universe by proposing a phase of rapid, exponential expansion. This theory
was initially developed to solve two major cosmological puzzles: the flatness problem and the
horizon problem.

The flatness problem arises from observations showing that the Universe is extraordinarily flat,
far beyond what would be expected by chance alone. This extreme flatness suggests that the
Universe’s geometry is incredibly close to being perfectly flat, which requires an explanation
beyond mere coincidence. The horizon problem involves the uniformity of the Universe on
scales that exceed the distance light could have traveled since the Big Bang. This implies that
regions of the Universe that seem too homogeneous should not have been in causal contact,
as they are separated by distances greater than the cosmological horizon.
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Inflationary theory proposes that in the
very earliest moments, approximately
10732 seconds after the Big Bang, the
Universe underwent a period of exponen-
tial expansion [78]. During this brief yet
intense phase, the scale factor a of the
Universe grew by an enormous factor, at
least 10%6. This extraordinary expan-
sion stretched any pre-existing quantum
fluctuations to cosmic scales, effectively
"freezing" them into the fabric of the
Universe. These amplified fluctuations
laid the groundwork for the tiny varia-
tions observed in the Cosmic Microwave
Background (CMB) and the large-scale
structure (LSS) of the Universe.

By addressing the horizon and the flat-
ness problems, inflationary theory pro-
vides a compelling framework for un-
derstanding the initial conditions of the
Universe and the origins of its observed
large-scale structure.

2.1.3 Radiation Dominated Era

Following the end of inflation, the
Universe entered a radiation-dominated
phase. In this period, the Universe was
extremely hot and dense, but the expan-
sion rate slowed compared to the infla-
tionary phase. In a radiation-dominated
Universe, the scale factor a evolves as
a o t'/2, based on the first Friedmann
equation and the radiation density equa-
tion with A = 0.

As the Universe expanded and cooled,
key processes unfolded [58]:

e Baryogenesis: Quarks combined to
form protons and neutrons, the
building blocks of atomic nuclei.
This process led to the formation
of baryons, including protons and
neutrons, which constitute the ob-
servable matter in the Universe.

FI1GURE 2.1: Diagram showing the timeline of the Uni-
verse from the Big Bang to the present day. Source:
NASA.
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e Neutrino Decoupling: Neutrinos, which interact weakly with other matter and radiation,
decoupled from the rest of the particles and began to travel freely. This decoupling
suggests the existence of a cosmic neutrino background, though it is challenging to
detect.

e Big Bang Nucleosynthesis (BBN): Protons and neutrons combined to form the first
atomic nuclei, primarily hydrogen and helium, with trace amounts of lithium. This
primordial nucleosynthesis set the initial abundances of these elements, which have
been confirmed by observations.

The end of the radiation-dominated era occurred when the energy densities of radiation and
matter became comparable. This transition is estimated to have happened at a redshift of
approximately z., ~ 3600 [58].

2.1.4 Matter Dominated Era

After the radiation era, matter became the dominant component of the Universe. During
this matter-dominated phase, the Universe’s expansion rate continued to slow down, with the
scale factor evolving as a o t2/3 when considering only matter density. This change led to
the formation of cosmic structures under the influence of gravity, as radiation pressure was
no longer significant.

Key events in the matter-dominated era include [58]:

e Photon Decoupling: When the Universe cooled to about zgprp ~ 1100, photons decou-
pled from matter and began to travel freely. This decoupling led to the formation of
the Cosmic Microwave Background (CMB) radiation. At the same time, electrons and
protons combined to form neutral hydrogen atoms.

e Recombination and Dark Age: Immediately after recombination, the Universe was dark
and opaque because neutral hydrogen could absorb radiation. This period, known as
the "dark age," lasted until the first stars and galaxies formed.

e Reionization: The formation of the first stars and galaxies led to the ionization of
hydrogen, gradually making the Universe more transparent. This process, known as
reionization, began around z ~ 20 and concluded around z ~ 6. After reionization, the
Universe became more transparent, and observations of galaxies became possible.

2.1.5 Dark Energy Dominated Era

In more recent times, dark energy has emerged as the dominant force in the Universe. This
shift occurred at approximately z ~ 0.3, where the energy density of dark energy (pa) became
greater than that of matter [58]. The presence of dark energy causes the expansion of the
Universe to accelerate. According to the ACDM model, this accelerated expansion follows
an exponential growth pattern, with the scale factor a o< e!, assuming only the A term is
considered. This ongoing exponential expansion implies that the observable Universe will
continue to shrink relative to distant objects. Eventually, objects not gravitationally bound
to our local group will become unreachable.

Figure 2.1 illustrates these different stages of the Universe’s evolution, highlighting key events
from the end of the CMB era to the present-day dark energy-dominated phase.
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2.2 Structure Formation

Following the inflationary period, the Universe began to form structures through the growth
of small density fluctuations [58]. These fluctuations, initially tiny, played a crucial role
in shaping the cosmic landscape we observe today. After inflation, the Universe was filled
with regions of slightly different densities. An overdense region had a stronger gravitational
pull than the surrounding average density. This increased its ability to attract more matter,
causing further growth of the fluctuation. The density contrast, or overdensity J, quantifies
these variations and is defined as:

5, 1) = L&D = plt), (2.1)

where p(Z,t) is the matter density at a given location & and time ¢, and p(t) is the average
density of the Universe at that time. Initially, these fluctuations are assumed to be Gaussian.
Given the Universe’s initial homogeneity and isotropy, the statistical properties of these fluc-
tuations should reflect the same symmetries, implying that the average overdensity across the
Universe is zero:

(8(Z)) = 0. (2.2)

To understand the clustering of matter, we use the two-point correlation function £&. This
function measures how density fluctuations at two different points are correlated. It gives the
probability of finding an excess density at one point relative to another:

§(7) = &(T1, 72) == (0(71)0(72)), (2.3)

where ¥ = ¥ — ¥y represents the separation between the points. Due to the Universe’s
homogeneity and isotropy, & depends only on the distance || between the points, not their
absolute positions.

The power spectrum is a more convenient tool for theoretical analysis and observational
comparison. It is the Fourier transform of the two-point correlation function and provides a
measure of how different scales contribute to the overall structure:

PRy = / £(F)e= T by, (2.4)

-,

where P(k) represents the power per unit volume at a specific wavenumber k.
To connect the two-point correlation function with the power spectrum, we start with the

Fourier transform of the overdensity field:

5(%) = (2;)3 / Bk 5(F)e* 2, (2.5)

where § (/2) is the Fourier transform of the overdensity field. Inverting this equation yields:

3(k) = / 5(Z)e” FE 3y, (2.6)
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—

We then calculate the expectation value of &(k)0* (k'):

GG (7)) = ( / 5 e~k d3:1:1> ( / 5k > d3x2) . (2.7)

Introducing R = % and 7 = ¥, — ¥, we obtain:

= / eI R PR / £(7) e EET o,
The first integral evaluates to a Dirac delta function:

while the second integral is the power spectrum:

P(k) = | &@e "7 d3r. (2.10)

Combining these results, we get:

—

(BE)S () = (2m)8%(F — ) P(R). (2.11)

Here, (27)? is a normalization factor, and the Dirac delta function &3, signifies that differ-
ent wavenumbers are uncorrelated. This indicates that the power spectrum represents the
variance of density fluctuations on different scales [99]: a larger power spectrum means more
pronounced density variations, while a smaller power spectrum indicates a smoother distri-
bution.

The power spectrum and the two-point correlation function are essential tools for analyzing
cosmic structure. The power spectrum provides a clear view of the distribution of matter
across different scales in Fourier space, while the two-point correlation function offers insights
in real space. In this thesis, we will utilize both methods to derive and interpret results related
to structure formation.

2.2.1 Baryon Acoustic Oscillations

In the radiation-dominated era, a region of primordial plasma with an overdensity expe-
rienced gravitational attraction, drawing in additional matter. At the same time, intense
photon-matter interactions generated substantial outward pressure. This interplay led to os-
cillatory phenomena similar to sound waves in a medium, which propagated over time. As
the Universe cooled and matter decoupled from radiation, baryons were no longer influenced
by radiation pressure, causing these acoustic oscillations to "freeze" [58|. This freezing left
a lasting imprint on the distribution of baryons: locations corresponding to the wave fronts
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just before decoupling, representing the maximum distance the waves traveled during the
radiation era, exhibit higher than average baryon densities.

This feature in the large-scale structure of the Universe is known as baryon acoustic oscillations
(BAO). The BAO distance acts as a standard ruler because the pressure waves "froze" at
suficient large scales to be affected by gravitational collapse, remaining constant in comoving
space. Consequently, BAO observed in the LOS direction can be used to measure the Hubble
parameter at a given redshift. BAO can be detected through clustering statistics, such as
the two-point correlation function (2PCF), and the BAO wiggles are included in the transfer
function when modeling the power spectrum.

2.2.2 Theoretical evolution of the density field

Another advantage of utilizing the power spectrum is that it simplifies the construction of
theoretical models for the evolution of this observable [58]. Accurate theoretical models are es-
sential in cosmology for estimating cosmological parameters through data fitting. These mod-
els must account for the varying physical properties of the Universe across different epochs,
as well as the independent evolution of each wavenumber mode (k-mode). To simplify the
analysis, we initially consider only linear evolution, where matter falls into gravitational wells
without any external interactions. However, as the overdensities grow, gravitational interac-
tions between them become significant, leading to non-linear evolution. In this regime, more
sophisticated equations are required, which are often too complex to solve analytically. See
Fig. 2.2 to observe the impact of the nonlinear corrections on the power spectrum.
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FIGURE 2.2: Predicted matter power spectrum for the linear (smooth line) and
non-linear (dashed line) regime for different Redshift. The data was obtained
using the code pyCCL with the cosmological values for the Flagship 2 mock.

Linear evolution

The initial conditions are set by primordial fluctuations, which gave rise to perturbations that
created gravitational potential wells, attracting matter and subsequently forming large-scale
structures. This primordial fluctuations are thought to be produced by a Gaussian quantum
field [58]. As a result, the primordial power spectrum immediately following inflation is also
expected to conform to a Gaussian distribution, characterized by a power-law form:

P(k) = A" (2.12)
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Here, A represents the amplitude of the primordial power spectrum, serving as a normaliza-
tion factor, while ns; denotes the scalar spectral index, which, based on both observational
data and theoretical predictions, is close to unity. The most recent results from the Planck
Collaboration report a value of ngy = 0.9649 £ 0.0044 [7].

The value of A; is typically determined by normalizing the power spectrum to match a specific
observable quantity [58]. The conventional statistic used for this normalization is og, which
represents the standard deviation of the matter overdensity field within a sphere of radius
R=8 Mpc/h at redshift z = 0:

0% =4r /Ooo dr [Wr(r)[?r?6(r)? = 2%2 /OOO dk |Wgr(kR)[(k)k*P(k) (2.13)

where Wy (k) and W, (r) are the window functions that define the range of integration in
Fourier and configuration space, respectively:

7 3 orr
Wh(r) = {g/(4 ) ior . ig (2.14)
Wr(kR) = ?’jlk(]’;m (2.15)

where j1(kR) is the spherical Bessel function of the first kind of order one.

It is standard practice to use R = 8 Mpc/h when estimating the standard deviation of
overdensities, as this scale encompasses a sufficiently large volume for reliable measurements.
Distances are expressed in Mpc/h to eliminate dependence on the Hubble parameter, h,
particularly given the existing discrepancy, known as the Hubble Tension, between the value
of h derived from CMB data (h ~ 0.67) and that obtained from local measurements (h &~ 0.74).

However, as demonstrated in [128] and [129], when the linear power spectrum is expressed in
units of Mpc, all evolution parameters exhibit an exact degeneracy. This implies that their
combined influence can be effectively captured by a single parameter. A convenient choice for
this parameter is o192, the root mean square of matter fluctuations within spheres of radius
R = 12 Mpc, which is equivalent to og for h ~ 0.67.

Transfer function

The change in the initial power spectrum P (k) over time is described by the transfer function
T(k, z), which relates the initial power to the power spectrum at different redshifts:

P(k,z) = T?*(k,2)P(k) (2.16)

The transfer function T'(k, z) models the evolution of different modes from the radiation era
through to the matter era. It is represented as a squared function because it was originally
designed to model the gravitational potential power spectrum, which is proportional to the
density contrast J, rather than the matter-matter power spectrum, which is proportional
to 00. This transfer function depends on the content distribution of the Universe, making
it a function of the cosmological model. Consequently, the power spectrum is sensitive to
cosmological parameters.
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For instance, the peak observed around k/h ~ 1072 — 10~! h/Mpc in Figure 2.2 is influenced
by the epoch of matter-radiation equality, providing a probe of the ratio €2, /€.

Following the end of inflation, the primordial power spectrum, begins to evolve in response
to the physical conditions of the Universe.

Equations of motion

To understand the evolution of large-scale structures, it is essential to quantify how the
gravitational field affects fluctuations in the density field. Within the ACDM cosmological
model, matter is often approximated as an ideal fluid [58]. This approximation allows us to
describe the motion of matter using a set of fundamental equations:

e The continuity equation (Eq. 2.17): This equation describes the conservation of mass
in the fluid, ensuring that mass is neither created nor destroyed.

e The Euler equation (Eq. 2.18): This equation governs the conservation of momentum,
accounting for the forces acting on the fluid, including pressure gradients and gravita-
tional forces.

e The Poisson equation (Eq. 2.19): This equation relates the gravitational potential to the
density fluctuations in the fluid, linking the distribution of matter to the gravitational
field.

These equations form the basis for analyzing the dynamics of the Universe’s matter distribu-
tion and understanding the growth of structures under the influence of gravity.

dp
el - (p¥) = 2.1
51 +V-(p0)=0 (2.17)
o |
V20 = 47Gp (2.19)

where p represents the density, P is the pressure (with P < p, indicating that the pressure is
negligible compared to the density), ¥ denotes the physical velocity, and @ is the gravitational
potential. These equations describe how these quantities vary within the context of physical
coordinates.

Since we are interested in comoving coordinates (to describe an expanding universe), we need
to convert some quantities starting with the velocity:

T=aZ +ad = aZ + (2.20)

In this equation, @ is known as the peculiar velocity, which ignores the movement caused by the
expansion of the universe. This velocity is important to consider since it introduces systematic
errors when estimating the redshift of an astronomical object. The radial component of the
peculiar velocity is added to the radial component of the total velocity in Hubble’s Law (Eq.
1.1), modifying the calculated redshift value. We will return to this topic when discussing
redshift space distortions (RSD) in sec. 2.3.

To transition to the comoving coordinate system, we need to modify the time derivative as
follows:
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d > < 0 > "
- =\ = - H(x : vcomoving)a (221)
< ot physical ot comoving

with Veomoving = aVphysical- The gravitational potential ® can be decomposed into two
components relative to the background:

= 1
®(d,t) = (&, t) + §adx2. (2.22)

where ¢ represents the perturbation component of ®, while the second term accounts for
the background potential. The perturbation potential does not include dark energy since it
is uniformly distributed. In a Universe composed of matter and dark energy, the Poisson
equation for the perturbed potential becomes:

V2 = 4nGa?pé(T,t), (2.23)

where the derivatives have been transformed to comoving coordinates, and §(Z, t) is the same
overdensity defined at (Eq. 2.1).

Lastly, we can obtain the following relation between pressure and density if we consider the
conservation of the energy-moment tensor (Eq. 1.17):

p=—3H(p+ P) (2.24)

With all these derivations the continuity and the Euler equations expressed in the comoving
coordinate system are given by:

95 1 o
oF o 1 1

where we have also used p = p(d + 1) derived from (Eq.2.1).

Linear Regime

Analytical solutions to equations 2.25 and 2.26 are not feasible due to their non-linear nature.
To simplify this, we use first-order perturbation theory in §, which assumes that density and
velocity perturbations are minimal (6 < 1), applicable only on large scales. By perturbing
the variables, we write:

Equations 2.25 and 2.26 can then be approximated as follows:

@Jrév-a:o (2.28)
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ou 1 Ve

9 Hi=——vep - 27F 2.2

T + Hu aﬁV5 " (2.29)
Vip = 41Gp*6 (2.30)

where according to equation 2.27, we have P = P + 6P and p = p+ dp = p(1 + §). Now, by
differentiating the linearized continuity equation with respect to time, applying a divergence
to the linearized Euler equation, subtracting the first to the latter, and substituting in the
continuity and Poisson equations while neglecting the pressure term (since VP < pVp), the
equation for linear perturbations is derived:

9?6 09

— +2H— =47Gpd 2.31

gz g TP (2:31)
This is a second-order differential equation for §(Z,¢). For a matter-dominated universe (i.e.,
with A = 0), the first Friedmann equation (Eq. 1.32) simplifies to:

87G
H? = %pm (2.32)

Using the critical density p. (Eq. 1.43) and the density parameter €, (Eq. 1.42), we can
rewrite equation 2.31 as:

3
O oHEom(k, 2) =0 (2.33)

Om(k, z) + 2H (2)0m (k, 2) — 5.3

The linear solution for the evolution of overdensities can be expressed with the growth factor
D(z):

(2.34)

where z; is a reference redshift in the matter-dominated epoch. The growth factor is typ-
ically normalized so that D(z = 0) = 1, corresponding to the present time ¢3. With this
normalization:

5(k, ) = D(2)d(k, 0) (2.35)

The growth factor, which depends on the universe’s composition, describes how density fluc-
tuations evolve with redshift. Thus, the linear perturbation equation can be expressed as:

.. . 3
D +2H(2)D — 5Qm,olﬁfg(l +2)>D =0 (2.36)

Alternatively, it can be written in terms of the growth rate parameter, defined as [58]:

f(Oma) = 22 2 dlnD@)

HD = dim(its MmN (2.37)
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Linear galaxy bias

Until now when we have considered the matter field we have not distinguished between dark
matter and ordinary (baryonic) matter. However, galaxies, which are predominantly com-
posed of ordinary matter, play a unique role in cosmology. Ordinary matter interacts with
radiation and can emit light, making galaxies observable. It is expected that ordinary matter
tends to accumulate in regions of higher gravitational potential, where astronomical structures
such as galaxies form [58]. These regions, which are the evolved overdensities with time, are
known as halos, or more specifically, dark matter halos in the context of the ACDM model.

Galaxies are therefore considered to be biased tracers of the total underlying matter distri-
bution, residing predominantly at the centers of these dark matter halos. The concept of
galaxy bias refers to the relationship between the observed distribution of galaxies and the
underlying matter field. In the linear approximation, this relationship can be expressed as:

b = 5—9, (2.38)
)
where §, represents the density fluctuations of the galaxy distribution, and 0 represents the
density fluctuations of the matter field. The subscript "1" is used to denote the linear bias
term, distinguishing it from higher-order, non-linear corrections that will be discussed in the
subsequent chapter.

Since direct observation of matter density fluctuations § is not feasible, galaxy bias is typically
inferred using the power spectrum. The observed galaxy power spectrum Pyq(k,2) is then
related to the matter power spectrum Pjs(k, z) through the linear galaxy bias as:

Pyq(k, 2) = bi(2)*Pss(k, 2) (2.39)

This relationship holds true only on linear scales. The value of the linear galaxy bias by
is often found to be greater than 1, reflecting the tendency of ordinary matter to be more
strongly clustered due to interactions such as collisions and other baryonic processes, which
are absent in dark matter. Also, note that different populations of galaxies, obtained with
different selection criteria like luminosity cuts, may have a different galaxy bias.

2.2.3 Non-Linear evolution

Once the matter perturbations grow to a considerable size (§ = 1), they start to exert gravita-
tional interaction between them [58]. Thus the matter evolution can no longer be considered
linear and the equations from the previous section no longer have an analytical solution. In
the context of the ACDM, dark matter forms these virialized structures that, as presented in
the previous section, are called halos. So for dark matter, it is standard to use the Halofit
model, which was originally developed by [134]| and has since been updated, most notably by
[140]. This model assumes that all matter is distributed within dark matter halos, which are
considered gravitational bound structures (i.e. the gravitational potential is stronger that the
expansion of the Universe).

Due to their great gravitational potential, halos start to attract other halos forming a cosmic
web like structure, see Fig. 2.4. In other cases, halos merge forming a bigger halo. In this
cases, if both halos contain a central galaxy, and there is no direct collision between the
galaxies, one will orbit the one closer to the center of mass. In this cases the one (or ones)
further from the center of mass of the new halo are called satellite galaxies.
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We usually need to use N-body simulations
(Chapter 3) in order to make models of the N
non-linear interactions and structure forma-
tions |58]. These models can be used to make
predictions for observational data by fitting
a varied amount of parameters specifics to
that model. These non-linear parameters are
usually non-local since each region will have
endure a different non-linear evolution due to
the universe no longer being homogeneous.

There are numerous models aimed at pre-
dicting the behavior of non-linear scales, a
field still under active development due to
the significant challenges in modeling small-
scale structures. Most of these models are
based on the halo model, where the descrip-
tion of the nonlinear matter density field
heavily depends on halo statistics. In pertur-
bation theory, halo statistics are expressed in
terms of bias parameters, which multiply op-
erators constructed from the matter density
field. These operators generally include pow-
ers of the matter density, tidal fields, and
convective time derivatives of these quan-
tities [105]. Among these, the most well-
studied and phenomenologically significant

Time

FI1GURE 2.3: Diagram showing the merge history
of a halo. Central galaxies of the original halos are
shown as stars. The final halo contains the central
bias parameters on large scales are those re-  galaxy of the most massive halo (green) merged,
lated to the powers of the matter density which is located close to the center of mass (darker
field: area) of the new halo. The other galaxies (blue
and red) are considered satellite galaxies of the halo
that may orbit the central one or may collide with
the central one at some point.

On = biT; + bad® + 036 + O(6Y) + ... (2.40)

where §j, represents the fractional number density perturbation of a given halo sample and b;
are different levels of nonlinear biases (except for by).

Before diving into the details, it’s important to clarify the concepts of Lagrangian and Eulerian
halo bias. Lagrangian bias connects the abundance of dark matter halos to the density
perturbations in Lagrangian space, describing the relation between protohalos (matter in the
process of forming a halo) in the initial conditions and the initial linear density perturbation
field. In contrast, Eulerian bias links halos identified at a specific redshift z to the nonlinear
density field 6, at the same redshift. For local bias parameters, there is an exact nonlinear
mapping between the Lagrangian bias parameters bﬁ and their Eulerian counterparts b,,,
a relationship that is utilized in both theoretical predictions and measurements [59, 105].
Describing in detail this two methods is outside of the scope of this thesis so we refer the
reader to [29] to expand on the mathematical description. Although we will expand a bit
more on the Eulerian model when talking about redshift space distortions on the next section
since it will be relevant for one the projects presented on this thesis.

An alternative method for modeling galaxy clustering involves using an approach that is not
reliant on specific galaxy formation models [158]. This method operates under the assumption
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FIGURE 2.4: Artistic interpretation of the cosmic web formed by dark matter

in the ACDM paradigm. The brighter regions contain more mass, which corre-

sponds to the center of the dark matter halos and where galaxies are supposed
to form. Credits: Volker Springel, ESA website.

that the galaxy field depends solely on the underlying matter density and velocity distribution.
The model’s effectiveness hinges on the accuracy of the matter field description and the
robustness of the chosen biasing function. The biasing scheme can be represented in several
ways: it may be defined in Eulerian coordinates, which describe the final state of the matter
field, or in Lagrangian coordinates, which correspond to the initial state. It may also involve
expansions of the density field, incorporate the effects of tidal forces and other nonlocal
influences, or include density field derivatives.

While directly modeling galaxy formation can impose specific constraints related to physical
processes and necessitate distinct models for different types of biased tracers, the agnostic
approach provides greater flexibility. It allows a single model to account for biased tracers with
diverse properties. Additionally, hybrid approaches have been developed to address nonlinear
galaxy density fields by applying perturbation theory for large scales—thereby circumventing
finite-volume issues in simulations—while using numerical N-body simulations to capture
smaller, nonlinear scales. The Bacco simulation exemplifies this methodology by employing
hybrid Lagrangian modeling in conjunction with simulations to predict galaxy clustering and
Redshift space distortions [120].

2.3 Redshift space distortions

In the previous section peculiar velocities were introduced with Eq. 2.20 as the relative radial
velocity of an object, with respect to the observer, independent of the universe expansion. This
velocity causes a Doppler effect that is equivalent to the cosmological redshift produced by
the expansion of space. This introduces an error on the estimated redshift which consequently
introduces an incorrect determination of the physical distance to the object through Eq. 1.50.
The redshift with the contribution of the peculiar velocities is called observed redshift, zgps,
since it is the one that we can capture in observations. While when referring to only the
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cosmological redshift we usually use the expression true redshift, zi;ue, since it is the one that
relates to the true position of the object. The relation between the redshifts is given by [132]:

“"(F))_l , (2.41)

1+ Zobs — (1 + ztrue) (1 - T

where u denotes the radial velocity also known as the line-of-sight (LOS) component of the
peculiar velocity. The conversion from positions in real space! "r" to positions in redshift

space "s":

(1 + Ztrue)u” (m 7

F= 7t
H(Ztrue)

(2.42)

The second term is often neglected because its relative variation with respect to the comov-
ing distance is minimal. However, the peculiar velocity term disrupts rotational invariance,
leading to anisotropy in redshift-space clustering. This anisotropy has significant effects on
matter clustering, depending on the scale:

Redshift Space

Finger of God Kaiser

e

Real Space

Line of sight

Non-linear Linear

Scale (transversal distance)

FIGURE 2.5: Diagram showing the effects of the redshift space distortions on
the matter clustering on real and redshift space. The red arrows show the
direction of the matter.

e Large Scales (Linear Regime): In overdense regions on large scales, galaxies closer to
us are moving toward the center of the overdense region, which means they are moving
away from us. As a result, these galaxies appear farther from us in redshift space and

'From now on, by real space we will refer to the space with true redshifts instead of the one with physicals
variables, in contrast to fourier space, to which we will refer as configuration space.
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closer to the center of the overdense region than they actually are. This compression of
distances in redshift space is known as the Kaiser effect.

e Small Scales (Non-Linear Regime): At smaller scales, velocities are typically higher,
and more importantly, the displacement into redshift space becomes significantly larger
relative to the distance separating two correlated galaxies. Since clustering on small
scales involves galaxies that are close together, this effect results in an elongation of
distances in redshift space, known as the Finger of God effect.

This two effects constitute what is known as redshift space distortions (RSD). It is important
ot quantify the effect of RSD since in observations we are always inflicted by peculiar velocities
which makes obtaining the true redshift of an object unlikely.

2.4 Two dimensional two-point correlation function

Since the RSD breaks down the isotropy of the standard correlation function £°(s) # £°(s),
we need a way to estimate the effects of the anisotropic clustering.

We usually use what is known as the 2D correlation function, £(o, ) [40], where we separate
the radial direction (along the LOS) 7 from the one parallel to the separation in the plane of
the sky . We can see then that this variables are related to the distance s as:

s=vn?+ 02 (2.43)

We can also define the correlation function in terms of g which is the cosine of the angle
between s and the LOS:

m
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In Figure 2.6 we show the 2D correlation function for the simulated catalog Flagship 2 mock at
z=0.55 with observed redshifts. We can appreciate how the two effects of the RSD distortions
are combined on redshift space by looking at the yellow lines. At small scales, o << 5 Mpc/h,
we appreciate the Finger of God effect elongating the LOS, x, clustering. While, in contrast,

at large scales, 0 > 5 Mpc/h, we can see how the Kaiser effect takes place squashing the LOS
clustering.

2.4.1 Modeling RSD: Kaiser factor

The Doppler-induced effects on the galaxy power spectrum due to redshift-space distortions
(RSD) may initially appear as a complication, but they actually offer a significant advantage.
By analyzing these effects, we can directly measure the rate at which structures in the universe
grow, since as we will see in the next section it is related to the growth rate f, providing a
valuable probe for investigating dark energy and gravity.

In a similar way that in the previous section, we can predict the linear effect (Kaiser) of RSD
on the power spectrum by analyzing the velocity divergence field.

On the linear regime we can take the continuity equation that we derived in Eq. 2.17 to
obtain [132]:

98(Z, 1)
at

V- -ti=—-a

(2.45)
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FIGURE 2.6: Heatmap showing the 2D correlation function of the Flagship 2

mock at z=0.55 with a redshift bin of 0.1. The yellow lines show points with

the same level of correlation. The values where obtained with the corrfunc
code using data x 2 number of randoms.

If we apply Eq. 2.35 we obtain:

96(% 96 D D
B0 DD 502 = @ H () (2.46)

where we have used the definition of the growth factor (Eq. 2.37). Then we can define the
velocity divergence field as [132]:

V - u(Z)
0(%) = — 2.47
(x) aHf ? ( )
So that we have that:
0(%) = do(Z) (2.48)
The Fourier transform is given by
R
u(k) = —zaHf?G(k:). (2.49)
Now, considering the density conservation from real to redshift space, we have:
. s ! .
) = |5 ) -1, (2.50)
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which in Fourier space is given by

)= [ i) - 1y 2 s, o5

where the line-of-sight (LOS) direction is fixed as Z, and the directional cosine is defined as

Il
ral e

p=k-z (2.52)

Note that this expression is exact under the distant observer and global plane-parallel ap-

proximations?.

To derive the redshift-space distortion (RSD) correction at linear order, known as the Kaiser
formula, we drop the second term in the exponential factor, yielding:

s = = 7:_‘~LI,‘—’ 1 6 dgk/ _Z-_'/.f —
5H;L(k:):5m(k)—/d3mek /(%)Se iy (7)

- d?’]{/ i(k—k! fk'zk{z 7
=5m(l<:)+f/ (2ﬁ)3/d3xe(k e 0K (2.53)
= (k) + fu*0(k)
= (1+ fu?)ok(k),

resulting in the redshift-space power spectrum at linear order:

Pyt (k) = Pyt (k. p) = (1+ fu?)* Py (k). (2.54)

For the galaxy number density, with 6, = b16y, (Eq. 2.38), the power spectrum similarly
becomes:

PEE(k) = B2t (ko n) = B2(1 + Bu?)? PA(K), (2.55)

where we define the quantity 8 known as the RSD factor:

B=f/b (2.56)

It’s important to note that the anisotropic term originates from the velocity field and, there-
fore, does not depend on bias. This is why RSD measurements are often parameterized by
the amplitude of the peculiar velocity field, fog(zirue) [132].

To understand the significance of RSD, we can expand the anisotropic power spectrum using
the Legendre polynomials:

Po(k,p) =Y Po(k)Lo(p),
¢

2041 [* 5
Py(k) = —— 1duP (ky 1) Lo(p),

(2.57)

2This approximation considers that all pairs of galaxies have the same line-of-sight, which we take to be
the Z-direction.
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where Ly(p) are the Legendre polynomials. The first three even Legendre Polynomials are:

Lo(p) =1
3u? —1

Lo(p) = 5 (2.58)
35ut — 30u2 + 3

Lo(puy =2~ T2

8

The expression derived in Eq. 2.57 are known as the multipoles of the correlation function,
and since the Kaiser formula includes terms up to u*, only the monopole (¢ = 0), quadrupole
(¢ = 2), and hexadecapole (¢ = 4) are non-vanishing:

Peia(t) = (14 36+ 36°) 2°PK(0)
Py p=2(k) = (;LB + 47162) v PL(k), (2.59)
Pyp=a(k) = %BQbQPrﬁ(kz).

Additionally, the multipoles of the correlation function in configuration space is related to the
power spectrum multipoles as follows:

® k2dk
Gl =i [ g P R)ieko), (2.60)

where jy(z) is the spherical Bessel function of order ¢. In a similar fashion we can obtain the
transformation from configuration to Fourier space:

P (k) = dn(—i)' /0 " 2ds €(s)ju(ks) (2.61)

Similarly to Eq. 2.57 we can express the 2D correlation function in configuration space using
Legendre Polynomials as [40]:

Elo,m) = E(s, ) = Y &(s)L(). (2.62)
=0

2.5 Modeling RSD: Non-linear effects

Modeling the Finger of God effect is significantly more complicated than modeling the Kaiser
effect due to the complicated nature of non-linear interactions as we have seen in section 2.2.3.
As mentioned in that section, there are many models for nonlinear interactions with a different
parameter space. Each model presents different considerations when treating nonlinearities
and can work better or worse depending on the galaxy sample and the scales considered.
Regarding the galaxy power spectrum in redshift space, i.e. including RSD, effective field
theory (EFT) [89, 50| has gained popularity recently since it is very versatile. To show this
versatility, EF'T allows to incorporate several kind of extra parameters to describe models
of modified gravity. It also introduces counterterms parameters in order to correct that the
energy-momentum tensor (Eq. 1.17) is no longer homogeneous and isotropic at small scales,
i.e. off-diagonal elements are no longer 0. Although many models try to incorporate as many
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parameters to have more freedom to describe nonlinear processes this is usually not recom-
mended due to the complications of having to evaluate such a substantial parameter space.
On top of that, there may be projection effects, where different parameters contribute to the
model, or the power spectrum in this case, in a similar manner, i.e. the parameters are degen-
erated with each other. This could be very prejudicial to the estimation of the cosmological
parameters which are the one of interest for cosmologists. The nonlinear parameters are usu-
ally considered nuisance parameters since they are local and do not give much information
about the composition of our Universe (no particular scientific interest).

In this section we will give an introduction to another perturbative model called the velocity
difference generating function (VDG) model [139, 60]. This model will be very relevant for
the purposes of this thesis as we will see later when calculating the EG estimator in Chapter
4. The reasons for the selection of this model over others are related to the reported level
of accuracy of this model at small scales when comparing results with simulated catalogs.
We will discuss the topic with more depth in Chapter 4. So for now we will describe the
mathematical description of the model.

2.5.1 The VDG model

This model differ from the EFT approach only on its treatment of redshift-space distortions.
While EFT performs a full expansion of the real-to-redshift space mapping, VDG partly
retains the non-perturbative nature of this mapping. The model was originally proposed in
[139] to describe the matter power spectrum in RSD, in [60] it is referred as VDG due to
its relation to the velocity difference generating function to account for the virialized velocity
impact via an effective damping function.

In order to describe the VDG model we summarize the key points from [60], so we encourage
the reader to check this reference if they want a more detailed explanation.

In redshift space the density perturbations can be expressed as®:

—

T

bs(k, 2) = /eiE'feikavz(f)Ds(f) (2.63)

where Dy(Z) = §4(Z) + fV.v.(Z) is a combination of the galaxy density contrast d, and the
gradient of v, along the line-of-sight. The velocity v is related to the normalized divergence
field defined in Eq. 2.47:

V=—fHau—0=VvV=4 (2.64)

Expanding § and ¥ in perturbation theory yields the perturbation theory kernels in redshift-
space Z, [131]:

5.(F.2) = pr@)/ﬁ (R = Frn) Za(Ru, ... R
n=1 kl?"'vkn (265)

X 87 (k1) -+ 0p(Ky)

This Z,, kernels can be found on appendix A of [60]. Although Z; is given by the expression
relating the real space and redshift space power spectrum in Eq. 2.54.

3For the configuration and Fourier space integrals we use the short-hand notation: respectively ff1 . =
&z Papand [ o= [dPh/(27)° - dka/(27)°

,,,,,



36 Chapter 2. Large scale structure in the universe

Zy (k) = b (1 + B?) (2.66)

where the linear galaxy bias appears since this kernels are related to the galaxy power spec-
trum. In perturbation theory, predicting the clustering of biased tracers like galaxies involves
relating their over-densities to various properties of the underlying dark matter field. This
process, known as galaxy bias expansion (see Eq. 2.40), involves a series of operators that
capture how the large-scale environment affects galaxy formation and evolution, with each
operator associated with specific galaxy bias parameters. While these bias parameters cannot
be calculated from first principles and depend on the selected tracer population, the relevant
operators at each perturbative order can be determined based on symmetry considerations.

Tree and one-loop power spectrum

The galaxy bias expansion relevant for the power spectrum at next-to-leading order is given
by:

b
(59 =b1d+ 52 (52 + o gg(q)v) + Y21 ggl(gog, (,01) + bv2V25 +eg+ ..., (2.67)

where b1,by are linear and quadratic bias parameters, 2,721 are parameters for Galileon
operators, and by2 represents a higher-derivative bias. The operators Go(®,) and Ga1 (2, p1)
measure the effects of large-scale tides at different orders.

Different bases for galaxy bias exist, and their parameters can be transformed into the pa-
rameters in the above expansion. The higher-derivative term by2V?2§ accounts for the finite
size of galaxy formation regions, becoming relevant on scales comparable to this size. This
term is absorbed into a counterterm in some models.

If we want to expand to power spectrum to orders higher than linear theory (which is called
the tree level), we usually start by the one-loop power spectrum which contains terms that
are quadratic in the initial density perturbations:

Pyspr(k) = 2,

() PL(k) (2.68)
piler®) =2 [ (2~ q.0)] PR~ a)Pr(a)
q

—

6 Pu(R) / Z3(k. 7~ Pu(a) (2.69)

we are using the plane-parallel approximation, so the wave vector k is described by its mag-
nitude k and its cosine p (Eq. 2.52). Pr(z) represents the linear power spectrum derived in
the previous section.

Velocity generating function

To connect the power spectrum in the VDG model with the Standard Perturbation Theory
(SPT) computation, we begin with the exact expression for the redshift-space galaxy power
spectrum. This can be derived from Eq. 2.42 and involves the pairwise velocity generating

function M(A,7) [131]:

Pyy(F) = /ek (14 &4y () MW7) — 1], (2.70)
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where {44(r) is the real-space galaxy correlation function at separation r, and A = —i fkpu.

The pairwise velocity generating function can be broken down into components that include
connected correlators, which are sensitive to small-scale modes. The VDG model treats
the velocity difference generating function non-perturbatively by using an effective damping
function W (), which accounts for small-scale velocity dispersion. This damping function
is defined as:

Wao(\) L. ( Yoy > 2.71)
0o = X _— 5 .
/1_)\2a‘2]ir P 1—)\2a2

vir
where ayi; is a free parameter that controls the non-Gaussianity of velocity differences.

The remaining terms in the expression are treated perturbatively, expanding the exponentials
to one-loop order. This involves galaxy bias, stochastic terms, and counterterms from small-
scale modes, all evaluated using BAO-damped linear power spectra. The additional terms

-,

AP(k) from this expansion, with respect to EFT, are given by:

2
AP(k. ) = X% Po,p, (ko) = ¥ | 5 Puta) Po.p, (F— ), (2.72)
q

where Pp.p, and Pyg are the power spectra of the density and velocity divergence fields,
respectively, and o2 is the linear velocity dispersion given by:

(2.73)

21 Pee(k)_l/PL(k‘)
v 3k k2 3 k2

The stochastic power spectrum

The stochastic field €, captures highly non-linear effects in galaxy formation that are uncor-
related with large-scale fields and are considered stochastic at large scales. The contribution
of this stochasticity to the galaxy power spectrum, P ¢, (k), can be expanded as:

P,

€g€g

1
(k:):%(NéD—i—NQI?OkQ—l-...), (2.74)

where 7 is the mean number density of tracers, and Néj , NQP o are stochastic bias parameters.

Additionally, redshift-space distortions introduce a stochastic term related to the gradient of
the line-of-sight velocity field, P, 06Vav, (k, i), which can be expressed as:

N
Peyec., (k1) = —2Lo(u) ¥, (2.75)

where Lo(1) is the second Legendre polynomial.

The total stochastic contribution to the galaxy power spectrum is:
PEON (b, 1) = Pryey (K) + Peyes, (. 1) (2.76)

In the VDG model, the impact of small-scale velocities is captured by the effective damping
function W, making the contribution from the stochastic velocity term less significant.
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Counterterms power spectrum

In perturbation theory, the loop integrals involved in predicting the galaxy power spectrum
extend over all scales, including those where the perturbative approach breaks down. To
maintain a consistent theoretical framework, it becomes necessary to introduce counterterms.
These counterterms have adjustable amplitudes (free parameters) that are designed to absorb
any sensitivity to non-linear modes in the large-scale limit. There some studies like [53] that
have shown that the leading counterterms for the galaxy power spectrum in redshift space
typically scale as ~ p?" k% Pp(k), with n = 0,1,2. For simplicity, these are assumed to be
local in time.

The first of these counterterms scales identically to the higher-derivative bias term V2§ (Eq.
2.67), allowing us to absorb the coefficient by2s into the corresponding counterterm parameter.
This same counterterm also captures the leading effect from deviations in the perfect fluid
approximation for the matter field . The other two counterterms, corresponding to n = 1 and
n = 2, can account for relevant velocity bias effects, which have been neglected so far.

Then, three free parameters: cg, co, and ¢4, are introduced to define the contribution of
leading-order (LO) counterterms to the galaxy power spectrum as follows:

2
Pygt(k,p) = =2)  can Lon(p) K> PL(k) (2.77)
n=0

where Lo, (1) are the Legendre polynomials of order 2n. This choice of polynomials instead
of 12" involves a linear transformation of the counterterm parameters, ensuring that each
primarily contributes to a single power spectrum multipole. This means that ¢; will contribute
mostly to P, ;—; for i = 0,2,4.

Infrared Resummation
Considering all the parts derived in the previous subsections, the VDG model power spectrum
is given by:

Pygvpa(k) = Wao(k) | PSpp(k) + Py SR (k) + Pot (k) + P (k) — AP(k)| . (2.78)

Although this model accurately describes the general behavior of the anisotropic galaxy power
spectrum at mildly non-linear scales, it struggles to represent the amplitude of the Baryon
Acoustic Oscillation (BAO) wiggles with precision. These wiggles are especially sensitive to
large-scale bulk flows, which can blur the BAO signal due to extensive relative displacement
fields.

In a perturbative approach, the corrections to the matter power spectrum can be resumed at
each wavemode k, accounting for the effects of fluctuations on larger scales. At leading order,
this resummation manifests as a damping factor that primarily impacts the BAO wiggles. A
common practice is to decompose the linear matter power spectrum into a smooth component
and a wiggly component as follows:

PL(k) = in(k) +Pw(k)7 (2'79)

Following the leading order approximation, the infrared-resummed matter power spectrum is
then expressed as the sum of the smooth component and the damped wiggly component:

PO (k) = Py (k) + e ¥ Py (k), (2.80)
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where the damping factor 32 is given by:

2 1 s

. q . q
2o Pu(q) |1 — 2 2.81
672 J, (9) [ Jo <kosc> + 272 <k086>] dg (2.81)

Here, j, represents the n-th order spherical Bessel function, k,sc = 1/fos. corresponds to the
wavemode at the BAO scale £y = 110 h~"Mpc, and k, denotes the ultraviolet integration
limit.

At next-to-leading order, the infrared-resummed matter power spectrum receives further con-
tributions, including standard one-loop corrections sourced by higher powers of the density
field. The full expression is then:

PIRNLO (k) = Py (k) + (14 £252) e3P, (k) +

2.82
+ Pl—loop [PHIIE{H—LO] (k), ( )

where the square brackets indicate that the one-loop integrals are computed using the leading
order IR-resummed power spectrum instead of the linear power spectrum.

When extending this approach to the redshift-space galaxy power spectrum, the most signif-
icant change is that the damping factor now depends on the line-of-sight angle p. At leading
order, this can be written as:

POk 1) = (b1 + F1?)” | Pra(h) 50 Py (k) (2.83)

The angular dependence of the new damping factor X2, (u) is given by:

Sop(n) = [1+ fu?(2+ )] 22 + f2p?(p® — 1)dx?, (2.84)
where
a2 = [ p@n (L) (2.85)
- 271'2 0 nw\qd) J2 kosc q. .

At next-to-leading order, the expression becomes :

IR 9 _p2n2

Py N0 (e, 1) = (by + f122)” [ Paw (k) + (14 K252,() e F 200 P, (k)| +
+ Pgsg,l—loop [in} (k})+ (286)
+ eikQEtQOt(H) (Pgsélfloop [in + Pw] (k) - Pgsg,lfloop [in] (k)> ’

where, as before, the square brackets indicate that the one-loop terms are evaluated using
either the total linear matter power spectrum (P, + P,) or just the smooth component

(Pow)-

Modeling multipoles of the correlation function

When considering the redshift of our galaxy sample we need to consider a fiducial cosmology
in order to convert from observed redshfits to redshift space (§ or E) If the selected fiducial
cosmology deviates from the true cosmology, this results in an incorrect rescaling of both
the parallel and perpendicular components relative to the line of sight. Such discrepancies
in rescaling can significantly affect the two-point statistics, which are central to the analysis
presented in this work.
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The anisotropic distortions that arise from an incorrect choice of fiducial cosmology are, to
some extent, degenerate with anisotropies induced by the peculiar velocity field. Therefore,
to accurately interpret the information contained within the galaxy power spectrum, it is
imperative to account for these potential distortions.

To correct for the effects of the chosen fiducial cosmology, a standard approach is to rescale
the model power spectrum along the directions parallel and perpendicular to the line of sight.
The rescaling is defined as follows:

K =gk, kﬁ%d =q k|, (2.87)

where g and ¢ are known as the Alcock-Paczynski parameters. This parameters quantify
the ratios of the angular diameter distance Djys(z) and the Hubble distance Dp(z) between
the true and fiducial cosmologies, and are given by:

_ Dp(z) = Dy(z) HT()
QJ_(Z) - D]]:}['d(z)v Q||< )_ D};id(z) = H(Z) (2.88)

With these definitions, the Alcock-Paczynski corrected wavenumber k(k/%, 11/*?) and the co-
sine of the angle to the line of sight u(k‘f L id) can be expressed as:

) . . fidy2p _(pfidy2 |2
k(kfld,ufld) — RJid (n 5 ) + (g ) , (2.89)
9 U
1
fid fid\2 _(, fid\2 ]| 2
id | piay _ B0 L)1 — (W)
p(k, i) = + : (2.90)
q Qﬁ i

Finally, the corrected galaxy power spectrum multipoles Py(k/) are evaluated as:

piay 241 [T fid  fid fid . fid fid . fid fid
L —

where L, represents the Legendre polynomial of order ¢. This approach ensures that the
derived power spectrum is correctly interpreted within the context of the selected fiducial
cosmology, thereby allowing for accurate cosmological inferences from observational data.

2.6 Weak Gravitational Lensing

All observed light from distant galaxies undergoes some degree of gravitational lensing due
to the inhomogeneous nature of the universe, which is filled with density fluctuations on
smaller scales. These fluctuations generate a tidal gravitational field that causes light to bend
at various angles [58]. Consequently, the images of light-emitting galaxies we observe are
distorted. The degree and direction of this distortion are directly related to the size and
shape of the matter distribution projected along the line of sight.

Lensing can be categorized into two regimes based on the deflection angle: strong lensing
and weak lensing. Strong lensing occurs when the lensing object lies between the source and
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the observer along the line of sight. This regime can produce multiple images of point-like
sources or create rings around the lensing object for extended sources. In contrast, weak
lensing, which is less pronounced, results in subtle distortions such as isotropic magnification
(convergence) and anisotropic stretching (shear) [58]. Strong lensing is less common as it
requires lenses with very high masses, like black holes, while weak lensing is more prevalent.
Although weak lensing effects are subtle and challenging to detect, statistical methods applied
across many galaxies can reveal trends caused by weak lensing. This will be explored in more
detail later when discussing shear and convergence. For now, we will focus on calculating the
deflection angle in the weak lensing regime using the metric defined in General Relativity and
Fermat’s principle, as described by equation (2.92).

2.6.1 Deflection angle

Going back to Eq. (1.9), which represents the line element of the homogeneous expanding
universe, and adding first-order perturbations to homogeneity with the potentials ¥ and &
for time and space respectively, the line element is given by [58]:

20 20
ds® = — <1 + 02> dt? + a*(t) (1 - c2> (dx* + SE(x)dQ?), (2.92)

The potentials ® and ¥ describe weak gravitational fields, as long as ¥,® < ¢?. This
potentials are equal in GR.

Introducing the propagation condition for light, ds=0, we obtain:

A [1+20/c2 20
= — = — 5 & 1+ — 2.
CTaTN\1o 20 /c? ¢ ( Tz > (2.93)

Where we have used a first-order Taylor expansion using that for weak lensing ®/c? << 1.
The upper index in ¢’ represents the speed of a light ray in a weak gravitational field. So we
can define an effective index of refraction as:

n=—=1->= (2.94)

Where n > 1 as ® is always negative. We can now apply Fermat’s principle [58], which asserts
that a light ray follows the path between two fixed points along which it takes the least time

to traverse.
1 1 20
ot =~ dr = — 1——|dr= 2.95
C/n(r)r c/( 62>7’O (2.95)

From here we can get the Euler-Lagrange equations for the refractive index. Integrating these
equations along the light path results in the deflection angle between the directions of emitted
and received light rays:

Qv

= —622/6L<I>(r)dr (2.96)

The gradient of the potential is taken perpendicular to the light path, with respect to physical
coordinates. This integral is hard to calculate over the actual light path. Since for weak
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lensing deflection angles are on the order of arc seconds or smaller, the integration path can
be approximated by a straight line. Doing the integral this way, over the unperturbed ray, is
called the Born approximation [57].

In Figure (2.7) is showed a thin lens approximation of a gravitational lensing system. In this
approximation the deflection occurs in the plane of the lens, considered much thinner than
the overall extent of the system Dg. Then the path light from the observer to the source can
be approximated by straight lines from the observer to the lens impact parameter ¢ and from
there to the source. The D parameters in Figure 2.7 represents angular diameter distances
(sec. 1.8.3) so we can derive a relation between the angles that holds true for any curvature
of the Universe:

Dsf = Dgf — Dyg@ (2.97)

M mage

observer

FIGURE 2.7: Sketch of a gravitational lens system. The angle between the

source and the optical axis is 3, the angle between the image and the optical

axis is 6, while the deflection angle caused by the lens is &. The deflection angle
traced from the observer is o. Credit: Michael Sachs, Wikimedia commons.

The angle a which represents the deflection angle from the observer is given by:

a="tg (2.98)

Which is useful to trace back a light ray from the observer since we can express the position
to the source as:
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B=0-a (2.99)

If we express the gradient in Eq. (2.96) with respect the angular position 0 instead of using
perpendicular distances we obtain:

a =V (2.100)

Where Vg = D; V| and ¢ is the lensing potential defined as [57]:

. 2 Dig
Y = ZD,Ds /@(r)dr (2.101)

The lensing potential is a 2D potential, the gravitational potential projected into the sky,
that contains all imaging properties of a gravitational lens. So is convenient to express all the
others lensing observables as a function of this potential.

To obtain Eq. (2.101) we were still assuming the thin lens approximation which is not ap-
propriate for gravitational lensing by the large scale structures. To obtain the expression for
extended lenses we just need to incorporate the distance factor Dyg/Dy Dg inside the integral
over the line of sight as comoving distances (Born approximation).

A2 [ xs—Xx
0 _/ d(y7 y)d 2.102
V(o) = o (xg> x)dx (2.102)

Where x g is the comoving distance to the source. The expression (ys—X)/xsX is the extended
form of the expression Dys/DyDg from Eq. (2.101).

2.6.2 Convergence and shear

We can linearize the lens equation (2.99) with the Jacobian matrix A=08/00 that relates the
lensed coordinates € to the the unlensed coordinates 5. The matrix elements are given by:

9pi doi %Y

A= 2t =8 — =t = i — ——
790, 7 96; "7 96,00,

(2.103)

The matrix A is then symmetrical. If we parametrize its components with the scalar term
convergence x and the two-component spin-two term shear v we get:

A= [ L=r=m = } (2.104)
72 l1—k+m

Where v = v1 + iv2. With this parametrization the definitions of convergence and shear are
given as second derivatives of the lensing potential [57]:

1o, 1 (0% 0% 9%
R= gV '71_2<8ef 02 ) 27 96,00, (2.105)

We can separate the matrix A from Eq. (2.104) into two parts:
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C(1—g 10 cos(2¢)  sin(2¢)
A=(1-r) [ 01 ] 7 [ sin(2¢) —cos(29) (2.106)

Where ¢ is the angle between & and the optical axis (see Figure 2.7). This shows more clearly
that the convergence, the diagonal part, is an isotropic increase or decrease of the observed

size of a source image. While the shear, the trace-free part, is an anisotropic stretching turning
the light distribution into an ellipse.

@ ®
| @

FIGURE 2.8: Effects of a negative/positive convergence and shear over the
image (black line) of a source object (yellow area).

Looking back at equation (2.105) we see that the convergence is related to the lensing potential
1 via a 2D Poisson equation so it represents a projected surface density. The gravitational
potential ® is related to the density fluctuations d, Eq. (1.11), by a 3D Poisson equation:

30, H2
2

V20 = b (2.107)

Then we can re-express the convergence in terms of the density fluctuations combining Eq.
(2.102), (2.105) and (2.107):

H(ev X) =

30,HE X 1 x—%
0/ o XX 6 X)X’ (2.108)
0

22 X)X

We had to replace the 2D Laplacian of the convergence of Eq. (2.105) with the 3D Laplacian
for the gravitational potential. So we would have had to add a second-order derivative along

the comoving coordinate but this term vanishes in average while integrating along the line of
sight [57].

The weight factor (x —x’)/x’ represents a parabola centered at half the distance of the source,
i.e X' = xg/2, which is an analogy to the lens efficiency from standard optics.

So expression (2.108) corresponds to the convergence of a thin lens whose effects are equiv-
alent to those caused by the actual extended matter distribution. Since it is related to the
density fluctuations we can use the convergence to estimate the matter distribution at differ-
ent redshift. But obtaining the convergence directly is very complicated since we cannot know
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how much the image of a galaxy is enlarged (or reduced) as we cannot observe the unaltered
object. The only thing we can observe and distinguish is the shear. Actually we observe the
reduced shear g, Eq. (2.109) [57]. But given that for the weak lensing regime the distortions
are small we have that kK ~ 0 and g ~ 7.

(2.109)

The shear of an individual galaxy is also hard to measure. This is because galaxies have
an intrinsic ellipticity €® so is hard to determine if the ellipticity is caused by shear or not.
Besides shear is usually very small in the weak regime, the typical cosmic shear is around
0.01, while galaxies have an intrinsic ellipticity dispersion of about 0.4. Then we need to use
an statistical approach by averaging the ellipticity of several nearby galaxies in the sky. Since
we would expected that intrinsic ellipticities are oriented at random then the average of this
term should be close to 0 [57].

<e>rRCESHIY>IR Iy > (2.110)

The mean value of the shear does not vanish since nearby galaxies are affected by almost
the same lens distribution so there is a correlation between the ellipticity direction given by
shear. Although some systematic effects or tidal effects caused by gravity can produce intrinsic
galaxy alignments that can be detected and corrected using high-order statistical functions.

So the typical approach for obtaining information from weak lensing starts by estimating
the reduced shear by averaging the ellipticity over a small patch of the sky. Then using
the relations of Eq. (2.105) we can obtain the lensing potential and from there estimate
the convergence related to the density fluctuations. We can 3D map the mass distribution
by obtaining the shear distribution at different redshift. This technique is called cosmic
shear and in practice has many more complications not discussed in this thesis related to
higher redshift estimations, shear estimations, high order corrections to statistical functions
or approximations (like Bors). Although we will have a little more of insight on some of
these issues when we talk about the power spectrum. Despite all these complications, the
phenomenon of weak lensing is a continuous research field since its results look very promising
in theory [57]. We hope to solve some of this problems by using analytical simulations (sec.
3.3) that allow us to study the predictions of weak lensing and test possible solutions to the
issues listed above.

In the next section we will introduce the magnification which is an estimator of the conver-
gence, as an alternative to the reduced shear as estimator of the shear.

2.6.3 Magnification

We have seen that the convergence and shear change the size of the image of a galaxy. This
causes the total flux received from the galaxy to change too. Gravitational lensing also
conserves surface brightness as a consequence from the Liouville’s theorem for optical systems
[57]. These effects are produced by what is known as gravitational magnification.

The magnification is defined as the ratio of the lensed to the unlensed flux or, since surface
brightness is conserved, the ratio of total size between image and original source. So going
back to the lens equation (2.99) we can see that we can define the magnification p as the
determinant of the Jacobian matrix A [57]:
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image size 1

Al s e L2 2.111
actual size 4] (1—r)2— |2 2K ( )

Where the approximation is only valid for the weak lensing regime. We see that the magnifi-
cation is a direct estimator of the convergence as an alternative to use the shear to obtain the
2D potential. Although it is much harder to measure since we cannot know if the flux of a
galaxy is altered by magnification. In this case we cannot average the intrinsic (or unaltered)
flux over many galaxies since it cannot cancel out. Besides there are other effects like dust
absorption that can alter the observed flux of a galaxy. Despite these hardships we can obtain
some information from magnification.

In real cosmological observations the measuring instrument has a flux limit below which it
cannot detect the light of a galaxy. But cosmological surveys with a given flux limit can
detect galaxies below the flux threshold due to magnification. While some galaxies above
the threshold may not be detect for 4 < 1. This produces a change in the density of source
galaxies [57]. On the other hand, lensing not only changes the object sizes but stretches (or
compresses for ;1 < 1) the region of sky behind a lens changing also the density of sources. So
for a given value of p these two magnification effects compete always in opposite directions by
reducing and raising the local density of background sources, see Figure 2.9. The net effect
of this alteration of the source density counts is called magnification bias.

Lensing
pu<i u>1
D — —

FI1GURE 2.9: Effects of magnification bias. The observed area is the yellow

square and the galaxies above the flux limit are marked as yellow. The lensed

case is determined by the value of p following the convention written in the
figure.

To quantify the magnification bias we can start by considering that the cumulative number
of galaxies, for a magnitude limited survey of area A, above a flux limit f scales as N,(>) ~
Af~® Where « is the power-law slope of the cumulative apparent magnitude m function
of the background sources at flux limit f [65]. Then the magnification p modifies the flux
limit as f — f/u and the observed survey area as A — A/u. Note that for a g > 1 the flux
limit is reduced because galaxies increase their shape and flux. The survey area is stretched
so the observed area is a portion of the original area then the value A is also reduced by
magnification for p > 1 (see right image of Figure 2.9). Then we have that the magnified
number count is given by:

NN~ (L) = ) (2.112)

So the net effect of magnification bias depends on the magnification value y and the slope of
the cumulative apparent magnitude function of background sources « at flux limit f. Then if
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1 > 1 the number counts increase as the value of « raises. We can interpret this as follows, a
higher value of a means that at the magnitude limit there are more galaxies with a magnitude
a bit higher (flux a bit lower) than the limit. This galaxies are the most probable to enter the
flux limit by magnification increasing the number count. The same argument can be done for
< 1 for low values of «.

From Eq. (2.111) we know that g = 1 4+ 2k where |k| << 1 so we can Taylor expand the
magnification bias term as:

pt a1+ 2(a - 1)k (2.113)
Therefore the magnified overdensity of background sources is given by:

N — N,
6(1[[ = T == 6m + 5p == 2(0& — 1)I€ = (58 — 2)/{ (2114)

Where §,, = 2ak is the contribution to counts from magnified magnitudes (flux limit) and
dp = —2k is the contribution to counts from lensed positions (area distortion). These two
contributions cannot be distinguished observationally [65]. The value s is the the logarithmic
slope of the background number counts for a magnitude limit m at redshift z:

dLogioN (< m, 2)
dm

s =2a/b = (2.115)

M=miim

In sec. 3.6.3 we describe the steps we take to calculate this parameter in simulations.

2.6.4 The lensing angular power spectrum

The 2 point correlation function (2PCF) defined in Eq. 2.3, < z(r)z(r + dr) >, corresponds
to the average of a certain quantity (galaxy counts, convergence, shear, etc...) over many
distances. Until now we have limited this function to study overdensities, but in observations
the real observable tracers are galaxies. So we can use this function to study the correlation
of other properties like the shear or the magnification. Since lensing correlations are only
affected on the sky position of the objects (no effect on the radial component) we can use the
angular correlation function defined as:

— — —

§w(0) = (V(0) v(0' +0)), (2.116)

where 0 is the angular separation on the sky, v and v are the quantities being correlated.
If v = v we refer to an autocorrelation, otherwise we use the term cross-correlation. An
advantage of using angular correlations is that we do not need to calculate the redshifts which
can be expensive and inaccurate on galaxy surveys.

In a similar fashion we can express this correlations functions in Fourier space to obtain the
power spectrum of different quantities. This function contains a lot of information of density
fluctuations at different scales. We have already explained in sec. 1.4 that the CMB angular
power spectrum was used to determine the composition percentages of our Universe.

We can define the angular power spectrum Cp, which is analogous to the 3D power spectrum
but projected onto the sky, where it is expressed in terms of the 2D wave number ¢ (multipoles)
[58]. This function is determined using spherical harmonics Yy, (6, ¢), which form a complete
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set of orthogonal functions on the sphere and satisfy Laplace’s equation (see Figure 2.10).
Similar to how any 1D function can be represented by a Fourier series, any function on a sphere
can be expanded as a sum of spherical harmonics. Each spherical harmonic is characterized
by two integer indices: ¢, which relates to the scale k, and m, which ranges from —¢ to £.

The angular power spectrum C} is defined as:

_ 1 2
Cy = 1 > aem*), (2.117)

m

where ay,, are the coefficients of the spherical harmonic expansion, related to the correspond-
ing Yy, and the density perturbations. This expression is particularly useful in cosmology
because it accounts for the isotropy of the universe, making Cy independent of the orientation
on the sky.

The angular power spectrum can also be understood as the Fourier transform of the angular
correlation function £(0):

Cyt) = /d20 £(6) =9, (2.118)

where 7 is the 2D wave vector conjugate to the angular separation g and with module £.

We can express the angular power spectrum for two quantities v and v as [61]:

C)¥ = 4rn df: P(k) A (k) A% (k) (2.119)

where P is the primordial power spectrum, A, are the transfer functions of the tracers. For ex-
ample for the galaxy density fluctuations (without including RSD distortions or magnification
effects):

AD — / dz i (2)b() Ty (k. 2)jelkex (2)), (2.120)

where Ty is the matter density transfer function and j, is the spherical Bessel function of
order £. Calculating the angular power spectrum this way is computational expensive due to
having to integrate two spherical functions.

To simplify the computation of lensing power spectra, the Limber approximation is often used.
In this approximation the Bessel functions are given by je(z) ~ /7/(2( +1)(¢ + 1/2 — x)
which are much faster to evaluate. This approximation is valid when the quantities 7(5) and
1/(5), which are projected onto the sky, originate from 3D quantities v(7) and v(7) via a window
function W(x), where x represents the comoving distance. Specifically, the projections are

given by:

— — —

Xlim Xlim .
+(6) = /0 DW,00100, %), v(0) = /0 dx Wi () VOB, X)- (2.121)

Under the Limber approximation, the angular cross-power spectrum of v and v is expressed

Cy(0) = /OX“m dxm(XiQWPw (i) , (2.122)
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where P, (k) is the 3D cross-power spectrum of the fields v and v, evaluated at the 3D wave
number k ~ ¢/x. This relation between k and ¢ is an approximation given by the projection of
a 3D-dimensional fluctuations onto the 2D-dimensional sky. We can also relate the multipole
¢ to the angular scale by the following approximation:

(= %, with € in radians (2.123)

The Limber approximation holds when the fields v and v vary over length scales much smaller
than the characteristic scale of the window functions W, and W, [61]. This means that at
large scales this approximation breaks down, so an alternative is to use limber after a certain
£. With Limber we can compute the statistics of any projected quantity as an integral over
the 3D statistics.

mf-z m=-1 mTO m?1 mTZ

CDC(O)

L R — (] )

FIGURE 2.10: Firsts low order spherical harmonics plotted in the sphere. Note

as £ increases the harmonics show amplitude variations over smaller scales. For

£ = 0 the function represents an amplitude normalization factor. Credits: Ville
Heikkila.

Going back to Eq. (2.108) we can express the converge Cj under the Born and Limber
approximation as:

CR(2) = 9H, %, / P(k,z)de (2.124)

4ct x2a?

Where P(k, z) is the 3D density power spectrum at redshift z.

The Cys, due to its analogy to the correlation function, also contains statistical information
about the density fluctuations at different scales. Besides it is very useful to calculate since it
relates all the lensing observables, Eq. (2.105), by a linear transformation with the multipole

¢ [65].

tm = 50+ Ve aem = —/ AT Dot (2.125)
Yem = % (E'i_ 2)(62 - 1)¢Zm

So we can save a lot of time and resources by calculating the angular power spectrum of one
of this quantities and obtaining all the other observables from the 2D gravitational potential
in spherical harmonics.
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2.6.5 Shear correlations

The shear components y; and s are initially defined with respect to a Cartesian coordinate
frame [58]. However, when considering the distortion of background galaxies by a foreground
mass, it is often more useful to evaluate these components in a rotated reference frame centered
on the lens object. The shear is oriented tangentially to the center of mass of a nearby (in
angular coordinates) a lens object since the part closer to the center of the lens is more
deflected than the part further from the center as shown in Fig. 2.11.

FIGURE 2.11: Effects of the shear on a galaxy close to foreground object. The

green lines represent the angular deflection that the light from the background

galaxy experiences due to gravitational potential of the lens object. The parts

closer to the lens experience a higher deflection distortion than the outer re-

gions. The results is that the original image on the left is distorted becoming
the elongated image tangential to the lens object on the right.

For any given lens-source galaxy pair, it is useful to define the tangential and cross components
of the shear as:

v = —Re ['ye_%ﬁ} , Yx = —Im [fye_%ﬁ] , (2.126)

where the minus sign is a convention to ensure that ; is positive for tangential alignment
around a mass overdensity, 8 is the position angle of the source galaxy with respect to the
horizontal axis of the Cartesian coordinate system centered on the lens galaxy (as shown in
Fig. 2.12). The reason for the angle to be multiply by 2 is that the direction of the shear is
irrelevant since it is expressed as a symmetric quantity around the component axis. So if we
rotate the shear components 1802 we obtain the same values. This means that the shear field
is considered a spin-2 field. If we expand Eq. 2.126:

= —71. cos(25) — 2 sin(25), (2.127)

Yx = 71 8in(28) — 2 cos(23).
The tangential component 7; captures the gravitational lensing signal for a spherically sym-
metric mass distribution, while the cross-component vy vanishes in such a case. The cross-
component has a curl pattern, which cannot be produced by a scalar field like the convergence
k [57]. Consequently, vy« serves as a null test to ensure the measurement is free from systematic
€rTors.
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FIGURE 2.12: Representation of tangential and cross component of a lens-
source pair system. The angle § is defined with respect to the lens object as
a origin on the Cartesian system chosen and the separation line between the
lens-source pair. If the shear is mostly perpendicular to the separation line
the tangential component is positive (positive correlation), while if it is mostly
parallel, the tangential component is negative (negative correlation).

The benefit of using the shear two-point correlation function, as opposed to its Fourier trans-
form, lies in the fact that it can be computed by simply multiplying the ellipticities of galaxy
pairs and then averaging the results. Three distinct two-point correlators can be derived from
the shear components: (v7:), (Yx¥x), and (yyx). In a Universe that is parity-symmetric,
the last correlator disappears, while the first two are combined to form the two components
of the shear two-point correlation function [57]:

§+(0) = (77 (0) = (372) (0) + (vx 1) (0),

By (2.128)
£-(0) = Re [(y)(0)e ™| = (370) (9) — (7x7) (0).

As shown in Fig. 2.13, the cosmic shear field form distinctive patterns that like in electromag-
netism can be classified as E-modes and B-modes. The tangential shear should reproduce a
E-mode which can be positive in over-dense regions and negative in under-dense regions. The
so called B-modes are not originated by cosmic shear and have these vortex/curl like patterns.
Cosmologist are trying to find the presence of B-modes in the CMB signal since they may
correspond to artifacts of inflation and gravitational waves in the CMB signal. Although the
presence of B-modes can also be related to a systematic on the signal.
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FIGURE 2.13: Polarization modes of light (shear). Top figures show the

E-modes corresponding to the pattern that cosmological shear should follow

around over-dense (E>0) and under-dense (E<0) regions. The B-modes repre-

sent the curl pattern which should not be presented in shear measurement or
at very least not caused by shear. Credits: [148]
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Chapter 3

Clustering in Galaxy surveys

3.1 Galaxy Surveys

In real cosmological observations, cosmologists use telescopes to capture the radiation (mostly
in the form of light) from source objects. Since cosmology aims to discover the contents and
formation of the Universe, we need to obtain information from far away objects to trace the
full history of the Universe. At such large distances the objects cosmologists can capture and
resolve are mainly galaxies (or galaxy clusters) since they are the most massive bound objects
that emit light, i.e. the brightest objects. In the previous chapter we talked that galaxies are
tracers of the underlying matter distribution so they are a good analysis tool. Galaxy surveys
capture the image of an area of the sky which corresponds to a vast volume of the Universe
depending on the depth, i.e. flux limit of the survey. The surveys collect an extensive dataset
of galaxies using telescopes, providing key physical properties such as position and redshift.
In the following section we will see that galaxy surveys can be spectroscopic, photometric or
both depending on the instrument used.

Several major galaxy surveys are currently shaping our understanding of cosmology. The
Sloan Digital Sky Survey (SDSS)! [109], a combined photometric and spectroscopic sur-
vey, has produced detailed 3D maps of the universe and contributed significantly to studies
of galaxy evolution and large-scale structure. The Dark Energy Survey (DES)? [42], a
photometric survey, has mapped over 5,000 square degrees of the sky, offering crucial data on
galaxy clusters and weak gravitational lensing to study dark energy. Kilo-Degree Survey
(KiDS-1000)? [93], another photometric survey, focuses on weak lensing to map dark matter
distribution, while the Dark Energy Spectroscopic Instrument (DESI)? [43], a purely
spectroscopic survey, aims to map 35 million galaxies and quasars, providing precise measure-
ments of the universe’s expansion. The Vera C. Rubin Observatory’s LSST® [159] is a
photometric survey expected to revolutionize cosmology with its deep, repeated imaging of the
southern sky. The Hyper Suprime-Cam Survey (HSC)° [8] provides deep photometric
imaging for galaxy formation and dark matter studies. Lastly, the Euclid Space Mission’
[44], which will be discussed later in section 3.2 due to its relevance to this thesis, is a space-
based survey combining photometric and spectroscopic data that will map the Universe to
study dark matter and dark energy.

"https://www.sdss.org/
’https://www.darkenergysurvey.org/
3https://kids.strw.leidenuniv.nl/
‘https://www.desi.1bl.gov/
Shttps://rubinobservatory.org/
Shttps://hsc.mtk.nao.ac.jp/ssp/
"https://www.cosmos.esa.int/web/euclid
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https://www.desi.lbl.gov/
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3.1.1 Redshift estimation

While galaxy redshift surveys are rich in information, they are also expensive and time-
consuming because measuring redshifts is much more difficult than simply determining the
angular positions of galaxies. For this reason, cosmological surveys are generally classified as
either spectroscopic or photometric, depending on how they estimate galaxy redshifts [99].

Spectroscopic surveys

Spectroscopic surveys provide precise redshift measurements by sampling the full energy spec-
trum of galaxies with high resolution. Using a spectrograph the full spectrum is extracted
from each individual galaxy and the redshift is determined with Eq. 1.5 by using a stan-
dard absorption or emission line as reference. Since the individual spectrum of each galaxy is
needed, this process is very slow and expensive.

Photometric surveys

Photometric surveys use multi-band filters to observe galaxies, allowing them to trace many
more objects in a shorter time, though at the expense of reduced redshift accuracy. A standard
set of filters is used, each of which blocking a certain part of the spectrum. By comparing
the intensity received from each filter we can estimate the redshift and the galaxy color
classification (blue, red, green) using some fitting functions. The redshift obtained through
this technique is called photo-z which usually contains a Gaussian error with respect to the
true redshift. In current surveys [44, 109], telescopes are equipped with both an spectrograph
and a photometer in order to use the spectroscopic redshift as a reference to improve the
photo-z using machine learning techniques.

3.1.2 Magnitudes

Every observable object in the Universe emits light that can be capture by survey telescopes
as a surface density of photons per unit of time (brightness). Cosmologists quantify the
brightness, or more commonly known in cosmology as flux, of an object using the magnitude.

The flux was already defined when talking about the luminosity distance in sec. 1.8.4 via
Eq. 1.55, although the expression for an expanding universe is given by Eq. 1.58. The flux
decreases the farther the source object is from the observer since the radiation is spread over
a larger area (concentrically to the source). This means that farther objects have a lower flux
on average making them harder to detect since telescopes have a minimum flux under which
can no longer detect the source. In this regard, galaxy surveys have a specific survey depth
(in redshift or Mpc) depending the limit of flux that the survey instrument can capture.

Flux are captured on passbands (optical filters) to select or filter out specific ranges of frequen-
cies (bands) of light as explained when talking about photometric surveys. Telescopes usually
only capture the intensity of the light, so passbands are used to block certain wavelengths of
the light spectrum to determine the intensity of the color that the filter lets through. For this
reason fluxes and magnitudes are usually given on a specific band to express the flux that
passes through that filter. Each galaxy surveys use different sets of filters and calibrations so
the flux for the same band on different surveys may differ significantly. In any case, in most
cases the importance of the flux comes from the relative comparison between objects in the
same survey, e.i in order to determine the galaxy color classification or the magnified fluxes
due to magnification. In this aspect, the magnitude is used to quantify the flux from a source
adimensionaly in two ways.
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Apparent magnitude

The apparent, or relative, magnitude (m) is the one that describes the brightness of an object
as seen from an observer at any given distance. On a given a-band is defined as [58]:

Fao
Mo = —2.5 loglo <F>, (31)
a,0

)

where Iy, o is a reference flux for the a-band of the photometric filter for a given observational
instrument.

Due to the minus sign on the definition, a brighter object will have a lower magnitude, which
can be anti-intuitive but this nomenclature is given by historical reasons [58]. The log helps
when comparing huge differences in fluxes which are common in galaxy surveys since a 5 point
decrease in apparent magnitude corresponds to an object with 100 more brightness.

Absolute magnitude

The problem with fluxes and consequently apparent magnitudes it is that the value is rel-
ative to the observer, for these reason the apparent magnitude can also be called relative
magnitudes. Knowing the luminosity of an object can be useful since it is an intrinsic value
so it can be related to other intrinsic properties. For example, more massive galaxies are
thought to be more luminous since they may contain more stars or luminous objects. For this
reason cosmologist have defined the quantity known as the absolute magnitude (M) which is
just the apparent magnitude of an object if it were observed from a distances of 10 parsecs
(3.0857 - 10'7 meters).

D
My = mq — 51OglO ﬁa (32)

where Dy, is the luminosity distance (Eq. 1.59) to the object in parsecs (pc) and my is the
apparent magnitude of the object in a given a-band.

Evidently, the absolute magnitude cannot be calculated directly since the distance to the
object is needed which means that information about the cosmological parameters is also
needed (Eq. 1.50).

3.1.3 Error estimation

A crucial part of any observation is the estimation of the accuracy of our results. In cosmology,
we already have to deal with instrumental errors when making observations, but in this section
we focus only on the systematics errors due to the variance of the data.

Jackknife resampling

Jackknife resampling is a way to check how much a statistic can change when you remove one
data point at a time. Leaving out one observation, calculating your statistic without it, then
repeating this for every single data point in your set. By comparing how much the statistic
changes with each leave-out, you can get a sense of how reliable or stable your result is. It
is really good technique to estimate the error in cosmology directly from the data accounting
for all the possible systematics [113]. This is mostly useful for large scales where we do not
have enough different "iterations" to predict the error since we only have one Universe so the
variance tend to be higher.
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Nk

Nk —1 N N
2 JK 2
UK TN ;(e(k) — 01x)%, (3.3)

where Nk is the number of Jackknife resampling, 0 JK is the average over all the Jackknife
resamples, and é(k) is the estimate for the kth-Jackknife resample (which excludes the k-
region). Following Eq. 3.3 if we have more than one data point we can generate a Jackknife
covariance matrix [113]:

Nyg — 1% X A .
Cik,ij = ‘K,{T ; (@,(k) - 9¢,JK) (9]»,(1@ - <9j,JK) ) (3.4)

The value of Njg should be chosen to ensure that there are enough resamples to provide
an unbiased estimate of the variance while avoiding an excessively small subtracted region,
which would result in insufficient variation in the data. Typically, there exists an optimal
range for Njg, where small adjustments to its value result in convergent errors that do not
vary significantly [113].

Theoretical errors

Another way to estimate errors is using theoretical predictions to get an estimate of the vari-
ance of the data. Assuming Gaussianity on the random primordial fluctuations we can get an
estimate for the cosmic variance at any scale. This allows to generate Gaussian theoretical
covariance matrix for different kinds of correlation functions. This can be further expanded
with numerical simulations, sec. 3.3, which allow to reproduce the volume and density of the
data an allow to calculate more precise covariances. Theoretical errors are not only valuable
for estimating uncertainties when no other alternatives are available but also play a crucial
role in cross-checking systematic errors derived from the data.

For the purpose of this thesis, we mostly use the theoretical errors for the density autocorre-
lation angular power spectrum to cross-check our Jackknife errors. For a given Cy the errors
are calculated as [58]:

2

AC) = | 77
TV e+ fay

(C™° + No), (3.5)

where fqy is the observed fraction of the sky, Cgrue are the Cys without shot noise, N,. The
shot noise is the error that originates from considering a continuous field like the overdensity
field as a discrete quantity. This increases the signal with a constant term that depends on:

_ 471—fsky
- )
Ndata

N, (3.6)

where ngata represents the number of data points, which in this case refers to galaxies. The
shot noise, being constant, has a greater impact on smaller scales, where the signal tends to
diminish.
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3.2 Euclid mission

The Euclid mission®? [44], developed by the European Space Agency'’ (ESA) as part of its
Cosmic Vision 2015-2025 program, was launched on July 1, 2023. The mission addresses
some of the most fundamental questions in cosmology, with a focus on the nature of dark mat-
ter, dark energy, and the overall geometry of the Universe. Its primary goal is to understand
the cause of the Universe’s accelerated expansion.

Euclid will map the large-scale structure (LSS) of the Universe by surveying a vast portion
of the extragalactic sky, capturing the shapes, positions, and redshifts of billions of galaxies.
The mission employs two key cosmological probes: galaxy clustering and weak gravitational
lensing to study the distribution of matter and cosmic structures over time. These probes
will directly address questions about dark energy’s influence on cosmic expansion and dark
matter’s role in structure formation [44].

The first public data release is anticipated in 2025, with subsequent releases providing more
comprehensive datasets, including galaxy shapes, redshift estimates, and spectral data.

3.2.1 Scientific Objectives
The primary scientific goals of Euclid include:

e Measuring Dark Energy: Euclid aims to explore whether dark energy behaves as a
cosmological constant, as suggested by the Lambda Cold Dark Matter (ACDM) model,
or whether it evolves over time.

e Mapping Dark Matter: Through weak lensing, Euclid will map the distribution of
both visible and dark matter, offering insights into cosmic structure formation.

e Testing General Relativity: By studying the LSS and the expansion history of the
Universe, Euclid will test general relativity on cosmological scales.

The key cosmological probes are:

e Galaxy Clustering (GC): Euclid will map the 3D distribution of galaxies, revealing
the underlying dark matter structure. This will allow scientists to study baryon acoustic
oscillations (BAO, sec. 2.2.1) and redshift-space distortions (RSD, sec. 2.3), which are
critical for understanding cosmic expansion and the growth of structures.

e Weak Gravitational Lensing (WL): Euclid will detect weak lensing, sec. 2.6, by
measuring tiny distortions in galaxy shapes caused by the gravitational influence of
massive objects. These measurements will provide a map of dark matter distribution,
including regions where visible matter is absent.

By combining these two techniques, Euclid will probe both geometrical and dynamical aspects
of cosmic expansion, improving our understanding of dark energy’s nature and the evolution
of cosmic structures.

3.2.2 Instruments and Payload

Euclid is equipped with two primary instruments:

e Visible Imaging System (VIS): VIS captures high-resolution optical images, essen-
tial for measuring galaxy shapes and weak lensing effects. It has a field of view (FoV)

Shttps://www.cosmos.esa.int/web/euclid
Shttps://www.euclid-ec.org/
DOhttps://wuw.esa.int/
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of 0.53 square degrees and is optimized for detecting minute distortions caused by grav-
itational lensing.

e Near-Infrared Spectrometer and Photometer (INISP): NISP operates in the
near-infrared (NIR) range, providing both photometric and spectroscopic data. The
photometric channel is used for redshift measurements, while the spectroscopic channel
provides precise measurements of galaxy spectra, enabling 3D mapping of galaxies.

Together, these instruments will survey over 14,000 square degrees of the extragalactic sky,
covering approximately 1.5 billion galaxies. This dataset will be crucial for advancing our
understanding of dark matter and dark energy [44].

3.2.3 Survey Design and Strategy
Fuclid’s mission comprises two main surveys:

e Wide Survey: Covering around 14,000 square degrees of extragalactic sky, the wide
survey focuses on obtaining high-precision measurements of galaxy shapes and redshifts
over a large area.

e Deep Survey: In addition to the wide survey, Euclid will conduct a deep survey of
smaller sky patches, targeting fainter galaxies to explore earlier cosmic epochs and study
galaxy formation during the early Universe.

The spacecraft is positioned at the L2 Lagrange point, a stable location where the gravitational
forces of the Earth and Sun balance. This environment provides a thermally stable platform,
essential for precise observations.

TABLE 3.1: Summary of scientific requirements for weak lensing and galaxy
clustering observations in Euclid [104].

Spectroscopic Galaxy Clustering
Spectroscopic redshift accuracy o, < 0.001(1+ z)
Redshift range 0.7 < 2<2.05
Photometric Galaxy Clustering and Weak Lensing
Photometric redshift accuracy o, < 0.05(1+ 2)
Redshift range 0<z<?2
Error in mean redshift in bin A(z) < 0.002(1 + (2))
Catastrophic failures 10%
Density of galaxies > 30 galaxies/ arcmin®

Following its launch, Euclid entered a Performance Verification phase from August to Novem-
ber 2023, during which it produced over 21 terabytes of raw data—surpassing the data output
of the Hubble Space Telescope over its entire operational life. Initial observations confirmed
that both VIS and NISP are functioning as expected, although some challenges, such as stray
light contamination in VIS, were mitigated through calibration.

The Euclid Flagship Simulation ([47], section 3.3.3) models the expected observational
data, enabling the refinement of data processing pipelines. These simulations are crucial for
ensuring the efficient processing of the large datasets Euclid will collect by performing several
forecasts of different observables.

3.2.4 Cosmological Probes and Expected Contributions

Euclid is expected to make significant contributions to several key areas of cosmology:
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e Dark Energy and Dark Matter: Euclid’s measurements of the Universe’s expansion
rate and the growth of cosmic structures will provide crucial data on dark energy. It
will help determine if dark energy behaves as a cosmological constant or evolves over
time. Weak lensing and galaxy clustering data will map the distribution of dark matter.

e Testing General Relativity: Euclid will allow for rigorous tests of general relativ-
ity on cosmological scales by comparing observed structure formation with theoretical
predictions.

e Neutrino Mass: Euclid may provide constraints on the mass of neutrinos, which play
a critical role in the formation of large-scale structures.

Fuclid’s observations are complemented by ground-based surveys that provide additional pho-
tometric bands, improving the accuracy of photometric redshift estimates. Key collaborations
include the Legacy Survey of Space and Time (LSST), the Dark Energy Survey (DES) and the
Dark Energy Spectroscopic Instrument (DESI). These ground-based surveys provide essential
data for enhancing redshift estimates and deepening the understanding of faint galaxies.

3.2.5 Impact on Cosmology and Astrophysics

Over its six-year mission, Fuclid will significantly enhance our understanding of dark matter,
dark energy, and cosmic structures. The mission will:

e Constrain models of dark energy and test if it evolves over time by providing precise
measurements of the cosmic expansion rate across different epochs. Second, it will
offer unprecedented insights into the distribution of dark matter through weak lensing
observations.

e Map the distribution of dark matter with high precision, improving our understanding
of its role in structure formation. It will complement surveys like the Dark Energy
Survey and the Hyper Suprime-Cam [26].

e In addition to its focus on dark energy, Euclid will also contribute to our understanding
of galaxy evolution and the distribution of dark matter. Comparing Euclid’s observa-
tions with theoretical models of structure formation will help refine our understanding
of how galaxies and galaxy clusters form and evolve over cosmic time [94].

e Provide data to test general relativity on cosmological scales. In particular, Euclid’s
data will be used to test alternative theories of cosmic acceleration, such as modified
gravity theories. Studies like those by [41] and [94] propose modifications to general
relativity as an alternative to dark energy (see Chapter 4 and 5). Euclid’s precision
measurements will help determine whether these theories provide a better explanation
for cosmic acceleration than dark energy models.

e The mission is expected to significantly improve constraints on key cosmological param-
eters, building on results from previous missions like Planck, which mapped the cosmic
microwave background (CMB). While Planck offered insights into the early Universe,
Euclid will extend these observations to more recent epochs when dark energy began to
dominate [119, 10].

Euclid is a collaborative project involving over 1,500 scientists from Europe, the United States,
and other countries, reflecting the global interest in understanding dark energy and dark
matter. This large-scale collaboration draws on the expertise and resources of the ESA and
NASA, among others [10].
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The data collected by Euclid will be made publicly available, ensuring that the scientific
community can continue to analyze the results long after the mission’s operations end. Euclid’s
survey will serve as a reference for future cosmological studies and will likely inform the design
of next-generation observatories and telescopes.

3.3 Numerical simulations

In section 2.2.3 it was mentioned the need for non analytical models to describe the non-
linear regime at smaller scales due to the complications of the equations that describes these
regions. In section 2.6.2 it was mentioned that obtaining information from weak lensing is still
in development due to some hardships so we can use simulations to study and test predictions.
In both cases it was referring to the so called numerical simulations. These simulations are
generated by powerful computers that can operate with many particles at the same time in
order to reproduce a system like our Universe as similar as possible [147].

Numerical simulations

Observations Theory

F1GURE 3.1: "Cosmic triangle" that shows the interconnected relation between
the numerical simulations to the standard paradigm of theory-observation.

As briefly showed in Figure 3.1 numerical simulations are very useful to complement the lack
of information from an observable, like weak lensing, or for obtaining a theoretical approach
for an observable difficult to observe/predict (non-linear regime/ matter distribution). At the
same time numerical simulations are built to follow the theory and reproduce the observable.
If the simulation is in good agreement with the observable, then we can test if the theory is
valid comparing the obtained statistical functions, like the power spectrum, to the predictions
from the same theory. The most popular numerical simulation is the N-body.

3.3.1 N-body simulations

N-body simulations consist of a cube of side L in the order of Gpc/h that contain billions of
dark-matter particles [51]. These particles are given a random initial condition with a position
and velocity. Additional cosmological parameter are also included as initial conditions for
the simulation. Then the system is evolved under only the presence of gravity between the
particles as a collisionless system. So by taking discrete time steps the acceleration of each
particle is calculated from the gravitational potential for each step. The system evolves during
the time interval until the acceleration has to be recalculated, due to the new positions of the
particles. A softening length is defined in order to establish a distance until which particles
are affected by the gravitational potential of other particles to avoid infinite accelerations.

Eventually the particles in the N-body simulation collapse to form the dark matter halos
structures and filaments between them, Figure 3.2. This is in good agreement with the
theory about dark matter halos formation, as mentioned in sec. 2.2.3, and allows the study
of the matter distribution and inhomogeneities at small scales. At this point a halo catalog
is generated by running diverse algorithm, like friends of friends (FoF) [142, 126], to find and
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FIGURE 3.2: Simulation box for a N-body after many steps where filaments
and halos (brighter compacted regions) can be seen. Source: UC Riverside

label the halos. This algorithms are usually purely based on the proximity among particles, i.e.
two particles are linked if their metric (usually Euclidean distance) is less than a predefined
“linking length”. For example a FoF group corresponds to a set of particles linked to each
other, although several improvements are being performed to this algorithms to attribute other
considerations like the shape of the halos [126]. The next step is to place the galaxies in the
halos simulation by using several techniques related to some properties of the halos. The most
typical approach is the halo occupation distribution (HOD) [23]|, where more massive halos
contain more galaxies, and the halo abundance matching (HAM) [98|, where more luminous
galaxies occupy more massive halos. Once the galaxies are placed inside halos a simulated
galaxy mock has been generated that can we used to test observables for future real surveys.

All the simulations that we use in this thesis have lensing data for all their galaxies (deflection
angle, shear, convergence). For simulated catalogs obtaining this information is quite different
than in real surveys. Since in simulations we start with different conditions: we know the
mass distribution (positions of the N-body dark matter particles) but we cannot "observe"
(know the position of) the image of the galaxies as there is no actual light coming from them.
Theoretical modeling of weak-lensing observables is challenging because the lensing correla-
tions on small angular scales are described by the non-linear regime of gravitational clustering.
There are methods that use ray-tracing technique in which light rays are propagated from the
observer to the source by computing the distortion and magnification effects from multiple
(from tens to a hundred) of equally spaced projected-mass lens planes. Back-tracing the weak
lensing observables for each galaxy is very demanding in CPU time and memory usage so it
is only used in small patches [67].

In this thesis, the galaxies in all the simulations are distributed over a large region (at least
an octant of the full sky). Therefore, a different method is used to calculate weak lensing
observables. All the simulations use a technique called the "onion" Universe [67| by con-
structing a lightcone simulation by replicating the simulation box (and translating it) around
the observer. The dark-matter lightcone is then decompose into a set of all-sky concentric
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spherical shell of width dz= 0.003(1+z) around the observer until z=1.4. Each dark matter
“onion shell” is then projected onto a 2D pixelized map using the Healpix (see section 3.4.1)
tessellation. In this way, maps of the matter distribution at different redshift (from the ob-
server) are obtained. Then we can obtain convergence maps at different redshift by summing
the maps of lower redshift multiplied by the appropriate lensing weights as in Eq. (2.108).
In this approach (all-sky limit) we can take spherical transforms to represent the maps and
obtain the other observables with relations to Eq. (2.125). The Cy(k) are given by:
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Which is the discrete expression of Eq. (2.124) since we are integrating over a finite number
of "onion shells". As the convergence is calculated from Eq. (2.108) then the method uses
the Born approximation by projecting the matter in the light of sight.

With the convergence angular spectrum calculated we can use Eq. (2.125) to obtain the shear
and deflection angle angular power spectrum. With Healpix ( sec. 3.4.1) we can generate the
all-sky shear and deflection angle maps from the angular spectrum. Then each galaxy receives
the corresponding shear and deflection value depending the values of the lensing maps at the
position of the galaxy. The deflection position is calculated from the deflection angle using
Eq. (2.99) where the components of « are given by:

a = acosé €y + asind €, (3.8)

Where 6 is the angle between the deflection vector and the polar basis vector €j.

In the following sections we introduce two of the simulated catalogs relevant for the projects
presented in this chapter: MICE and Flagship.

3.3.2 MICE Grand Challenge

The Marenostrum Institut de Ciéncies de I'Espai (MICE) galaxy mock simulations |66, 49, 65]
are aimed to reproduce with unprecedented detail the history of the universe, from much before
the first stars formed up to nowadays. In order to determine how well future astronomical
surveys, such as the DES, PAU, EUCLID, VHS, and PLANCK can answer these fundamental
open questions [65].

MICECAT is a simulated galaxy mock originated from the parent MICE-Grand Challenge
(MICE-GC) lightcone N-body simulation containing about 70 billion dark-matter particles in
a (3 Gpc h™1)? comoving volume [66, 49]. To build the galaxy mock a combination of the
HOD and HAM technique were used to place galaxies inside halos. Assumes a flat concor-
dance LCDM model with €, = 0.25, Qp = 0.75, Q, = 0.044, ny = 0.95, 0g = 0.8 and h = 0.7
[65]. The mass resolution is m, = 2.93-101%471 M, and has a softening length ls,g = 50 kpc/h.

The catalog incorporates lensing properties by assigning a magnified position and shear to all
its 200 millions galaxies, as explained in the previous section, which cover around an octant
of the full sky [65].
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3.3.3 Euclid Flagship 2 Galaxy mock

The Euclid’s Flagship 2 (FS2) Simulation is a comprehensive mock galaxy catalog developed
to support the scientific exploitation of the Euclid space mission (see sec. 3.2). The Flagship
simulation plays a key role in optimizing the mission’s observational strategies and testing its
scientific output [47].

Technical Specifications

The Flagship simulation is based on a large-scale N-body simulation, involving approximately
4 trillion dark matter particles. The simulation generates a lightcone extending up to a
redshift of z = 3, covering a cosmological volume that spans more than 10 billion years of
cosmic history. The lightcone covers one octant of the sky, or one-eighth of the celestial
sphere, and is designed to approximate the survey volume of Euclid.

The simulation mimics with very high precision large-scale structure of the Universe as it
incorporates around 4.8 billion galaxies (20 times more galaxies than MICE-GC) up to z=3.
It is based on the Flagship N-body simulation halo catalog with two trillion dark matter
particles in a 3.6 Gpc/h box with a mass resolution of m, = 10° h=! M. The cosmological
parameters are [47]: Q,, = 0.319, €, = 0.049, Q5 = 0.681, 03 = 0.83, A, = 2.1-107?,
ns = 0.96 and h = 0.67.

N-body Simulation

The N-body simulation was performed using the PKDGRAV3 code on the Piz Daint supercom-
puter at the Swiss National Supercomputing Centre (CSCS). It features a simulation box
with a size of 3600 h~! Mpc per side, containing 16,000% particles, corresponding to a particle
mass resolution of 10°A~1 M. This resolution allows the simulation to resolve halos hosting
the faint galaxies that Euclid will observe, down to a limiting magnitude of Hg < 26.

Halo Catalog

The simulation identified ~ 16 billion dark matter halos using the ROCKSTAR halo finder
[22]. These halos were populated with galaxies using the Halo Occupation Distribution (HOD)
and Halo Abundance Matching (HAM) techniques. These methods ensure that the galaxy
population in the mock catalogue follows observed correlations between halo mass and galaxy
properties. This process was calibrated using real-world data from surveys such as the Sloan
Digital Sky Survey (SDSS) [157], the Dark Energy Survey (DES) [2], and the Kilo-Degree
Survey (KiDS) [102].

FI1GURE 3.3: An excerpt of the Flagship v1 galaxy mock simulation. In the left

we can see today’s Universe at z—=0 with dense halo structures (red dots) formed

while at the right we can see the early Universe (3 billion years old) where

the matter distribution is more homogeneous. Credits: J. Carretero (PIC),

P. Tallada (PIC), S. Serrano (ICE) and the Euclid Consortium Cosmological
Simulations SWG
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Galaxy Properties

The final catalog contains about 3.4 billion galaxies, selected with a magnitude limit of Hg <
26, to match Euclid’s observational capabilities. Each mock galaxy is assigned properties such
as positions, velocities, redshifts, stellar masses, star formation rates, and spectral energy
distributions (SEDs). These properties are consistent with observations, ensuring that the
mock catalog realistically reproduces key features of galaxy clustering and weak lensing signals.
The galaxies are assigned to halos following HOD while luminosities are assigned following
HAM.

Lensing Properties

Weak gravitational lensing, one of Euclid’s primary scientific probes, requires highly accurate
measurements of galaxy shapes and their distortions due to the gravitational field of inter-
vening large-scale structures. The Flagship simulation includes detailed lensing properties for
each galaxy, allowing scientists to model the weak lensing signal observed by Euclid. This is
critical for constraining cosmological parameters, particularly the nature of dark energy |9,
151].

The lensing properties are assigned using the same method than for MICE-GC.

Improvements from Flagship 1 to Flagship 2

The current version of the simulation, Flagship 2 (FS2), includes several important improve-
ments over its predecessor, Flagship 1 (FS1):

e Increased Mass Resolution: FS2 has twice the mass resolution of FS1, with a particle
mass of 10°h =1 M. This allows the simulation to resolve galaxies one magnitude fainter
at all redshifts.

¢ Extended Redshift Coverage: The lightcone in FS2 extends to z = 3, compared to
z = 2.3 in FS1, covering a larger cosmological volume.

e Improved Spectral Energy Distributions: The method for assigning SEDs to galax-
ies was revised to match observed photometric properties more closely.

Applications of the Flagship Simulation

The Flagship simulation is instrumental in optimizing Euclid’s mission design. Simulated
mock data are used to test how well the mission can measure galaxy clustering and weak
lensing, which in turn helps minimize systematic errors and refine observational strategies.

The simulation plays a crucial role in developing and validating Euclid’s data processing
pipelines, which handle large volumes of data from the mission. This includes algorithms
for detecting and measuring galaxy shapes, estimating redshifts, and analyzing weak lensing
data.

The Flagship simulation helps scientists measure cosmological parameters, such as the equa-
tion of state of dark energy, and test different cosmological models. It is particularly useful
for comparing General Relativity and alternative dark energy theories [68, 7].

While the simulation was developed for Euclid, it is valuable for a wide range of other cos-
mological studies and surveys, including the Dark Energy Spectroscopic Instrument (DESI)
[55] and the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) [90]



3.4. Tools for analyzing clustering statistics in simulated data 65

3.3.4 Accessing simulated data: Cosmohub

Cosmohub!! [33, 141], is an interactive data analysis tool which contains data from observed
and mostly simulated galaxy catalogs. It has a very simple to use interface where the desired
properties are selected by marking them (halo mass, positions, shear, etc...) as shown in
Figure 3.4. It also allows filtering the data by adding conditions by properties or by selecting
random subsets of the total galaxy population. All the selected options for the query are
showed in a programming window, the expert mode, which can also be edited manually.

Step 1: Columns - Sefect the fields you need Step 3: Filters - Add conditions to refine your search

halo_id (= [ sooc0d x

E  0|= ™=
+ Add

O true_redshift_gal
O observed_redshift_gal
[ true_redshift_halo

Step 2: Sampling - Select a subset and get faster results

1/256

Size .

& Expert Mode

Step 5: Analysis - Explore the selected data

Seed 1 3¢ Random

BB Table % Scatter Al Histogram # Heatmap

FIGURE 3.4: Cosmohub’s interface: Left) shows some of the properties to
mark for selecting data and the random subset selector, Right) shows the filter
option, the expert mode, and the data plot analysis tool. Source: Cosmohub

Once the query is finished, Cosmohub has the option to show the selected data as a table,
scatter plot, histogram or heatmap. The x/y limits and scale and the number of bins for
the heatmap/histogram can be customized inside the same interface. The selected query’s
data (as the data from any generated plot) can also be generated as a Parquet, CSV, FITS
or ASDF file format.

All the data for each one of the simulations that we use in this thesis can be accessed from
Cosmohub. Only the data for MICECAT is public to anyone, while the others need special
permission to access the data, e.g. Flagship (1 and 2) is only accessible for Euclid members
or collaborators. The name of the properties for each catalog can be different (e.g. the
selection field for the true redshift for MICECAT is simply called "z" while for Flagship is
called "true redshift gal") so it is important to read the small description at the end of each
field to make sure the correct property has been selected.

3.4 Tools for analyzing clustering statistics in simulated data

In this section, we described the most essential and important packages needed to achieve the
majority of the results in this chapter and the ones that follow.

3.4.1 Healpy: Generating clustering maps

In order to obtain the angular power spectrum of the lensing observable we need first to
generate all-sky maps from the Cosmohub’s data. In order to do this we used the HEALPix'?
Software [76], or more specifically the python implementation of this package healpy'®. This
code allows the subdivision of a spherical surface in pixels all covering the same area. This is
very convenient to make density maps since this way there is no need to divide each pixel by

"https://cosmohub.pic.es/home
2https://HEALPix.sourceforge.io/
Bhttps://github.com/healpy/healpy
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its area since it is the same everywhere. Then the map can be obtained by simply counting
the galaxies in each pixel. This tool, following its original purpose, has been very useful to
study CMB anisotropies as it also allows obtaining the angular spectrum from its own maps.

FI1GURE 3.5: Orthographic view of HEALPix partition of the sphere at different
number of pixels (from left to right): 12, 48, 192, 768. Source: HEALPix
documentation

Maps are simply numpy arrays where each array element refers to a location in the sky as
defined by the HEALPix pixelization schemes'®. The number of pixels is defined by the Ngige
parameter whose value must be a power of 2, then the total number of pixels is given by
Npiz =12 N, SQide. In order to use the spherical harmonics transform functions we had to use
the RING pixelization scheme as shown in Figure 3.6. Then to produce the maps we wrote
a Python code to obtain the maps directly from reading the Cosmohub data as parquet files.
HEALPix has a python module to use its main functions directly from python called healpy

that we used. While to read the parquet files we used the pandas library.

The general procedure to generate the maps was the following: First we download a query
from Cosmohub with the right ascension (RA) and declination (DEC) positions, which are
given usually in degrees, for a given observable (more properties were added depending on
the purpose of the map that we will specify latter). Then we obtain the corresponding pixel
order number of the RING pixelization for the RA/DEC positions with healpy functions. We
count the number of galaxies in each pixel to establish its frequency value. We generate a
python list with the frequency value of each pixel at the proper list RING order value of the
pixel.

3.4.2 PolSpice: Calculating angular power spectrum

The healpy package already has a way to directly calculate the angular power spectrum from
maps with the anafast module, but it does not allow to use masks. Masks are important to
define regions of the sky that are not observed or not considered for the analysis. In the case
of Flagship and MICE we want to mask the regions of the sky that the simulations do not
cover, i.e. 7/8 regions of the sky. In the case of anafast, even if you apply a mask with a
package like numpy, the code will treat the masked regions as 0 which is not correct since in
reality we do not know, or we do not want to consider, the value in this region. Masks are
equally important in observations since surveys have a limited sky observation range (usually
smaller than simulations), in the same regard than in simulations cosmologists may want to
excluded certain regions due contamination or noise in the observed area.

For this reason in this thesis we use the package PolSpice'” to calculate any kind of angular
power spectrum. This package is specifically designed to compute the correlation function,
and its Fourier transform (i.e. the angular power spectra), of astronomical maps (including

Yhttps://HEALPix.sourceforge.io/pdf/intro.pdf
https://wuw2.iap.fr/users/hivon/software/PolSpice/
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FIGURE 3.6: Comparison between the RING and NESTED scheme for pixel
numbering with Ng;4. = 2 HEALPix cylindrical projection. Source: HEALPix
documentation

HEALPix maps), particularly those related to CMB data. It also allows to use masks in order
to take into account incomplete sky coverage.

The mask is simply another HEALPix map in which masked (hidden) pixels are assigned a
value of 0, while non-masked pixels are given a value of 1'°. This code enables us to compute
the angular power spectrum from one or more HEALPix maps (for cross-spectra), with the
option to apply a mask to each map along with other parameters. Additionally, the code
provides options to limit certain correlation parameters, such as thetamax, to avoid calculat-
ing correlations at angular distances larger than the region or mask boundary. For instance,
when using an octant mask, it is recommended to set thetamax < 90°, as exceeding this
value could introduce large, unwanted fluctuations into the angular spectrum. The parameter
apodizesigma controls how the correlation function transitions into the masked region, where
the amplitude rapidly diminishes, and should generally be close to the value of thetamax.
Essentially, this parameter governs the width (standard deviation) of the Gaussian smoothing
applied during apodization (gradual tapering to zero).

The package outputs the Cy values to a text file, along with the corresponding multipoles.
If the correlation is polarized, the Cy values are organized into different rows corresponding
to the TxT, ExE, BxB, TxE, TxB, and ExB components, where T is the scalar (amplitude)
value and E/B are the modes defined in Fig. 2.13.

3.4.3 pyCCL & CAMB: Theoretical predictions for clustering

In the previous chapter we have introduced linear theory, and even some non-linear models, to
predict observables in clustering like the power spectrum. As mentioned there, it is important

16When working with numpy, the 1/0 values are inverted.
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to have a precise and accurate modeling of the observables in order to estimate cosmological
parameters in order to understand the Universe better. In that regard, two of the most
utilized codes in cosmology nowadays to make predictions of 2pt correlations in configuration
and Fourier space, are CAMB sources'” and pyCCL'® [39].

Both codes allow to calculate the matter power spectrum at any redshift for user defined flat
ACDM cosmologies which accounts for: £,,, Qp, os, As, ns and Hg. They also have several
advance options to account for neutrino mass, non-flat cosmologies or RSD. Both codes also
can input several models for the transfer function and the nonlinear matter power spectrum.
In this thesis we always use the Boltzmann CAMB transfer function, which is based on the
Boltzmann solver implemented on CAMB, and the Halofit matter power spectrum from [140]
(already mentioned in sec. 2.2.3). In the previous chapter we have already shown the matter
power spectrum calculated with this codes using Halofit in Fig. 2.2. In this section, we will
work with the angular power spectrum since as we explained in the previous chapter it is more
efficient to obtain clustering information since it is less sensitive to redshift determination.
Both CAMB and pyCCL have a module to directly calculate the angular power spectrum by
integrating the power spectrum at different z depending the input redshift distribution (or
n(z)). They allow to use different tracers to perform the Cy calculation, using Eq. 2.119, like
the shear, convergence or density fluctuations.

CAMB has been the standard code for different clustering emulations for several years, while
pyCCL is more recent and have some advantages and extra options like nonlinear biases or
MG models implemented. In this thesis we started using both codes in order to crosscheck
the predictions, which as seen in Fig. 3.7 they are quite similar differing not more than a
1%. Also, pyCCL until recently only allowed Limber calculations (the non-Limber calculation
it is still only implemented in the developer version), so until then we were using CAMB
when non-Limber was needed to get better results. Once we were able to use the pyCCL’s
non-Limber calculation we mostly used this code since it is usually more efficient, easier to
use and as discussed previously it has some extra features.

3.4.4 MultiNest & emcee: Fitting cosmological parameters

In cosmology, the parameter space is typically extensive because it encompasses a wide range
of cosmological parameters that need to be simultaneously fit to a given dataset. Alongside
these cosmological parameters, there are additional parameters known as nuisance parame-
ters. These parameters are not of direct scientific interest but must be included because they
can significantly influence the model’s predictions or likelihood. To isolate the cosmological
parameters of interest, nuisance parameters are typically marginalized by integrating over
their likelihood, effectively removing their influence on the results.

Nuisance parameters often account for uncertainties, systematic effects, or background pro-
cesses, ensuring the robustness of the analysis. In cosmology, they frequently describe more
complex nonlinear interactions or noise terms. As highlighted in Sec. 2.5, nuisance parame-
ters are generally local in nature, meaning they do not provide meaningful insights into the
Universe’s global properties. Nevertheless, they are crucial for achieving an accurate and
consistent description of the model, as demonstrated in the treatment of the VDG model in
Sec. 2.5.1.

https://camb.info/sources/
8https://github.com/LSSTDESC/CCL
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F1GURE 3.7: Comparison of matter angular power spectrum between the em-

ulators pyCCL (red) and CAMB (blue) sources for the same cosmology (FS2)

and same redshift. The dashed line corresponds to the Limber approximation
used for CCL.

Due to the typically large and complex parameter spaces in cosmological models, advanced
techniques such as Markov Chain Monte Carlo (MCMC) sampling or other specialized sam-
plers are widely employed for parameter fitting. In the following sections, we introduce two
of the most commonly used software tools for performing these fits.

MultiNest'” is a Bayesian inference tool used for sampling from complex posterior distribu-
tions, especially those that may have multimodal distributions (i.e., multiple peaks or regions
of high probability) or strong degeneracies [62]. It is based on the nested sampling algorithm
[133] which focuses on finding high-likelihood regions, with tester points called live-points,
and then progressively shrinking the parameter space to that region. This method is partic-
ularly well-suited for computing the Bayesian evidence (marginal likelihood), a key quantity
in Bayesian model comparison.

Conversely, emcee?’ is a highly efficient and popular Python library for Markov Chain Monte
Carlo (MCMC) sampling [64]. It uses an affine-invariant ensemble sampler, a variant of
MCMC particularly effective in high-dimensional parameter spaces, especially when parame-
ters exhibit complex correlations or significant degeneracies. The user can initialize multiple
random walkers, which will explore the parameter space, increasing the likelihood of moving
towards higher-likelihood regions until eventually converging at a local maximum.

In general, we have found that emcee is more convenient when the parameters are not mul-
timodal, meaning they lack multiple local maxima or significant degeneracies with other pa-
rameters. Additionally, emcee requires an initial starting point, which can be adjusted to
favor a particular solution, helping the code to converge more quickly. In contrast, MultiNest

Yhttps://github. com/JohannesBuchner/MultiNest
Onttps://github. com/dfm/emcee


https://github.com/JohannesBuchner/MultiNest
https://github.com/dfm/emcee

70 Chapter 3. Clustering in Galaxy surveys

is more suited to explore the entire parameter space, especially when priors or fiducial values
are uncertain, or when there are expected degeneracies between many parameters.

3.5 Results for galaxy clustering

With the main tools and theory explained we can start presenting our results. In this section,
we present the methodology and some results for galaxy clustering, which are mostly related
to the linear galaxy bias. We have calculated this parameter in simulated catalogs for several
projects, that we will describe in Chapter 6. This is a rather simple parameter to obtain,
when you assume a fiducial cosmology like we will do here since we are always dealing with
simulations, so we consider this to be the most suitable starting point for the methodology
used in this thesis. We will detail how we continuously implemented improvements to the
determination of this parameter which was adapted later in more complex projects. In this
chapter we work only with linear regime, while the projects that use more complex (nonlinear)
models are presented in the next chapter since despite dealing with clustering observables their
main focus relay in modified gravity.

3.5.1 Calculating the linear galaxy bias

The most simple observable in galaxy clustering is the linear galaxy bias (b;) since as described
in Eq. 2.38 it represents a global amplitude factor between the matter and galaxy power
spectrum. The linear galaxy bias is typically regarded as a nonlocal quantity because, under
the assumption of a homogeneous and isotropic Universe, it should remain constant across
different regions for a given redshift. However, the value can vary depending on different
galaxy sample cuts, as the relationship between various galaxy populations and dark matter
may differ.

The most straightforward way to estimate the linear galaxy bias is directly from its definition,
using any type of clustering observable. In this thesis, we primarily use the angular power
spectrum, as discussed in Sec. 3.4.3, since it helps mitigate redshift errors, especially when
employing a wide redshift bin to also suppress RSD effects. Another advantage of the angular
power spectrum is that it allows for faster correlation calculations, as it works in a 2D plane
rather than using 3D positions required for the power spectrum. We opt for Fourier space
instead of configuration space because in Fourier space, the errors—discussed later—are easier
to estimate, and it becomes simpler to separate scales (as described in Sec. 2.2, where different
wavenumbers k are uncorrelated). This is crucial for us, as we aim to distinguish between
linear and nonlinear scales, since as right now we only want to consider linear scales to estimate
the linear bias.

In angular power spectrum notation, we have that the matter-matter and galaxy-galaxy Cy
are given by:

pom _ [ g, H@) n(2)’(2) _lr12
Ce ‘/d ¢ x(2) P"“"(’“‘ x(z) ) 39
z an y4

where we use the Limber notation for simplification, x(z) is the comoving distance and the
term n(z) is the redshift distribution of objects dN/dz.

Since we have Eq. 2.39 related the linear bias between power spectrums we have that:
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ng
by = £ 3.11
1= o (3.11)

So the estimation will require the calculation of C§, corresponding to the data, and C}"™,
corresponding the to theoretical prediction (since the underlying matter distribution cannot
be directly observed).

Obtaining the theoretical prediction

As discussed in sec. 3.4.3 we will use the emulators pyCCL and CAMB to obtain predictions
for this part. We have already mentioned that both codes allow to integrate the power
spectrum given a n(z) to obtain the angular power spectrum.

We adopt the same redshift distribution as the data to define n(z), which we use to compute
Cy. To work with the emulators, n(z) must be discretized into bins. Increasing the number of
bins generally improves accuracy, though we must avoid setting it so high that considerable
fluctuations occur between adjacent bins due to a low galaxy count per bin. Given the high
resolution and large number of galaxies in the simulations used for this thesis, we can use a
substantial number of bins. We select a consistent value of 200 bins for each redshift width
of Az=0.1.

In Fig. 3.8, we see the shape of the n(z) distribution for the full octant sky FS2 sample,
with zyue = 0.50 £ 0.05 and myis < 23. Since we are using true redshift values for both
galaxy cuts and n(z) data, the distribution appears flat or shows a slight increase or decrease
depending on the magnitude cut. As redshift increases, the lightcone volume expands to
include more galaxies, although fainter galaxies become unobservable at greater distances.
Thus, n(z) serves as a window function, filtering out redshifts that are not used in the Cj
integration.

Both pyCCL?' and CAMB accept n(z) defined from any minimum and maximum z (as long
as all the relevant z are included).

The next step is to configure the cosmology for the emulator. In pyCCL, this involves setting
the parameters Q., Qp, h, As, and ng. Next, we define the tracer type, which in this case is the
NumberCountsTracer module, used to account for density fluctuations. This module requires
the galaxy redshift distribution n(z) along with the linear galaxy bias and magnification bias
for each bin. We set the galaxy bias to 1 as a reference, and since we are excluding weak
lensing effects, we turn off magnification by choosing an s value of 0.4 (as seen in Eq. 2.114).
With the tracer defined, we can use the angular cl function to compute the theoretical Cp,
inputting the tracer twice for autocorrelation. We also specify the multipoles £ where we
want to calculate Cyps and set £j;,, as the limit up to which non-Limber integration is used.
Typically, £, is set to 1000, which is a very conservative choice though calculations are
almost instantaneous regardless.

In Fig. 3.9 we show the corresponding prediction for the case defined in this section. pyCCL
allows to calculate the Cys with linear or nonlinear theory so we show the difference in the
figure. We can see that when not considering nonlinear corrections we have a decrease in
power due to not taking into account the irregularities (variance) that nonlinear interactions
introduce. The y-axis is usually multiplied by ¢(¢+1) /27 in order to have a better visualization
of the fluctuations at small scales since the amplitude drops significantly there.

21The developer version of pyCCL right now has a bug where if the n(z) is not defined from z=0 (up to the
maximum z) the predictions are not correctly calculated.
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FIGURE 3.8: Redshift distribution, n(z), for a full octant FS2 sample with
Zirue = 0.50 £ 0.05 and my rg<23.
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FI1GURE 3.9: pyCCL theoretical predictions for the FS2 sample 2y = 0.50
0.05. The orange line shows prediction only applying linear theory while the
blue line shows the prediction with the nonlinear boost from Halofit.

Generating the masks

The first step is to generate the mask, which, as stated in sec. 3.4.2 , are HEALPix maps
with 0 and 1 values. For masks we want to consider all the regions that we do not observe,
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either because they are outside the observation range or regions that we purposely want to
avoid due to systematics. For simulated catalogs we usually ignore systematics so we generate
masks to specify the observed area. In our case, we usually want to consider the maximum
area in order to have the highest amount of galaxies (signal). So in the case of the FS2 and
MICE catalogs we generate 7/8 octant masks to cover the regions outside the octant of the
sky these catalogs cover. In Fig. 3.10 we show how the octant mask, 145° <RA< 235° and
0° <DEC< 90°, looks using the HEALPix visualization module. Since PolSpice multiplies
the data map by the mask map, the 1 values (red) correspond to the unmasked regions, and
the other way around for 0.

FS2 Octant Mask

20 Jackknife Regions Octant Sky

F1GURE 3.10: Top: HEALPix visualization of the octant mask used for the

FS2 mock. Bottom: Two of the Jackknife resampling regions for an octant of

the sky for Ny = 20. The blue (0) regions are masked, following PolSpice

convention, while the red (1) regions are unmasked (observed). The center of
the maps correspond to (180°,0°) in RA, DEC.

We aim to incorporate error estimation into our results, which is why we employ the Jackknife
resampling technique outlined in section 3.1.3. To achieve this, we need to generate the
Jackknife regions as masks since they will be excluded during each resampling. We use the
code kmeans radec®”, to generate same size regions on the sphere. This code applies the
k-means clustering algorithm to separate positional data en n.e, groups (clusters) where each
data point is closer to the nearest mean (cluster center). We use a totally random dataset on
the sphere, which can be generated with:

RA . = (RAmaX — RAmin) -r 4 RAmin, roe U(O, 1) (3.12)

22https ://github. com/esheldon/kmeans_radec
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DEC;an = arcsin ([sin(DECpax) — sin(DECpin)] - 7 4+ sin(DECmin)), 7~ U(0,1), (3.13)

where 7 is a uniform random generator function between 0 and 1, the suffixes max and min
represent the respective maximum and minimum value of DEC and RA for the given region.
These randoms are only valid for a well defined and uniform mask which is our case for the
mock catalogs. Since the randoms do not have a preferred positions the k-means clusters will
be equally spaced. So the Jackknife regions, the ones that we will extract in each resampling,
are generated by labeling the pixels of the mask to the nearest k-means cluster. So we simply
generate Njkg masks where in each one we subtract a different Jackknife region to the full
mask of our dataset. The bottom plots of Fig. 3.10 show two arbitrary Jackknife masks for
the octant of the sky using Njyk = 20, the same we can observe in the top maps of Fig. 3.11
for the full sky using Njx = 100. The bottom map show all the Jackknife regions for the full
sky where we can observe that they represent different same size regions that cover the full
observation area without repetitions. We select Nyx = 20 and Njx = 100 for octant and full
sky respectively, which represent similar Jackknife areas, after checking that the covariance
matrix of the final results is stable as discussed in 3.1.3.

[
0 1

100 Jackknife Regions Full Sky

rastt

FiGURE 3.11: Top: Two of the Jackknife resampling regions for the full sky

using Ny = 100. The blue (0) regions are masked, following PolSpice con-

vention, while the red (1) regions are unmasked (observed). Bottom: Map

showing the 100 Jackknife regions for the full sky in different arbitrary colors.
The center of the maps correspond to (180°,0°) in RA, DEC.

Calculating the data vectors

To calculate the observed Cys from data we will use the code PolSpice (sec. 3.4.2) which needs
the data into a HEALPix map. The specifics to converted the galaxy positional data into
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HEALPix maps were already established in sec. 3.4.1. We wrote a simple and efficient python
code that uses healpy modules to convert RA and DEC positions in degrees from the mocks
data to HEALPix pixel positions. With the number of galaxies per pixel we can generate the
density fluctuation per pixel, dpix, following the definition in 2.1 as:

Spix = M’ (3.14)
TNpix

where npix is the number of galaxies in that given pixel and fpix is the mean number of
galaxies per pixel over all the unmasked pixels. In Fig 3.12 we show the density map for the
sample case described in this section. We can see that due to the definition of overdensity,
the values can go to negative which represents a region with an underdensity. For galaxy bias
determination, we usually use a nside of 1024 that roughly corresponds up to an accurate
limaz = 2 * nside + 1, which is more than enough to capture the linear scales at any z. At
practice, we found that f,,,,; = nside, which is the reason why we choose 1024 instead of a
lower value like 512 that would speed up considerable the calculations.

FS2 z=0.5 density

-1 15.0501

FIGURE 3.12: HEALPix density, §, map for FS2 at z = 0.50 4+ 0.05. The gray
area is unseen (masked).

Now, we can use the density maps and masks as input in PolSpice. Since we are dealing with
an auto-correlation there is no need to input a second pair of data map and mask. We activate
the option to correct the finals Cys by the window function of the pixels and run the software
for each one of the Jackknife masks. In each iteration the Cys, for each ¢ €[0, 2 x nside-+1],
for each Jackknife resampling are generated and saved into a file. The values produced for
each £ by PolSpice tend to be very noisy so we need to bin the results by averaging all the
Cys inside each bin. We usually take equidistant bins of A¢ =20, although in cases when we
include smaller scales is more convenient to take log-spaced bins. Before binning the results
we subtract the shot noise using Eq. 3.6, which for this particular case fgo, = 1/8. After
binning we can obtain the final values averaging all the Cys for each Jackknife resampling and
calculate the covariance matrix using Eq. 3.4. Note that for calculating the covariance we
include the shot noise in the Cys since it is a source of error.

In Fig. 3.13 we show the results for the case described here. We can see how the raw results
from PolSpice (light green solid line) are very noisy and how binning reduces the noise. We
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can also check how the shot noise becomes more significant at smaller scales. In this case we
have around 19M galaxies on an octant of the sky so the shot noise is relatively small. The
pyCCL theoretical prediction is below the galaxy Cys as expected (b; > 1). In the plot below
we show the calculation of the linear galaxy bias where we calculate the squared root ratio
of the galaxy Cys over the predicted matter Cys. The linear scales are chosen by checking
the maximum multipole at which the ratio is somewhat constant. In this case, we can tell
that after £ = 600 the ratio decreases which marks the maximum multipole. We also ignore
the smallest multipoles since they tend to very noisy. We can also check that the theoretical
errors (shaded area) are similar to the Jackknife errors in the ratio. The Jackknife errors tend
to slightly over-estimate the error as is the case here.

With the scales selected we can calculate the linear galaxy bias with a x?:

x> =(R-b)C Y R-bT, (3.15)

where R is the square root ratio and b is a specific value of the linear bias that we want ot
test. The most probable value of b will be given by the one that minimizes the y2. We can
also calculate the 1o error, as the b value corresponding to min(x?) + 1.

The value for the linear galaxy bias as shown in Fig. 3.13 for FS2 z=0.5 is by = 1.27 £ 0.01.
This is the methodology that we apply to every calculation of the galaxy bias on this thesis,
with the major contributions to projects listed in the next chapter.

3.6 Results for galaxy lensing

Now it is turn to present the methodology and results regarding weak lensing. The most
important result in this section is the validation of the Flagship vl magnification bias. We
originally found an issue while testing this observable on the mock which led to identify an
error while producing the mock. This was later corrected on the production of the Flagship
v2 mock. Many of the other validations that we perform here are actually tests to check and
identify the source of the issue with FS1. Nevertheless, these tests are perfectly useful on its
own and that’s why we are presenting them separately from the magnification bias results.

3.6.1 RMS of magnified positions

One of the initial steps to validate lensing observables is to verify whether the lensed (or
magnified) positions are accurately generated. For this purpose, we conducted our first test
directly on Cosmohub using its heatmap tool. By selecting both unmagnified and magnified
positions, we created two heatmaps showing galaxy counts in the same patch of the sky at
z = 1. We focused on a region of the sky with a pronounced lensing effect, identified by first
locating areas with more massive halos at z = 0.5%3. To achieve this, we generated another
heatmap on Cosmohub, filtering galaxies associated with halos of mass My, > 1014M@ /h
within the redshift range z = 0.45 to z = 0.55 using Cosmohub’s query tools.

Fig. 3.14 shows the heatmaps for the magnified and unmagnified positions. While subtle,
there is a discernible trend where the galaxies appear slightly shifted upward and to the left
due to the deflection angle. This effect becomes more noticeable when the number of bins
is increased, although comparing the heatmaps side by side remains challenging. To better

Z3This selection follows the lens efficiency factor described in Eq. 2.108, where z is related to distances via
its connection to the scale factor in Eq. 1.6.
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F1GURE 3.13: Top: Shows the density autocorrelation angular power spectrum
for FS2 z=0.5. The light green solid line shows the values without any binning,
while the black solid line show the binned results with A¢ = 20 and Jackknife
errors. The red solid line is the same as the black but without the shot noise
subtraction. The dashed blue line is the theoretical prediction for the dark
matter. Bottom: The solid blue line show the squared root ratio of the calcu-
lated Cys over the predicted Cyps. The solid green line shows the regions used
to fit the linear galaxy bias, whose mean value is shown by the black dashed
line. The shaded area represents the theoretical errors for the calculated Cys.
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FIGURE 3.14: Heatmaps of galaxy counts at z—=0.95-1.05 for a 0.5x0.5 deg

patch of the sky obtained with Cosmohub’s interface. At left it shows the

unlensed positions and at right the lensed positions. RA/DEC axis values are
in degrees.
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visualize the shift, we conducted the test using 100 bins and overlaid one heatmap on top
of the other. By toggling rapidly between the two heatmaps, we confirmed that the lensed
positions are correlated, as nearby sources are influenced by the same lenses.

Following a more statistical approach we can calculate the RMS of unmagnified to magnified
positions. The RMS stands for the Root Mean Square and is calculated in the following way:

(3.16)

where the sum is extended over all the N galaxies in the query. In this case the 6 variable
of Eq. (3.16) represents the angular distance between the unmagnified and the magnified
position. The angular distance is given by:

6 = arccos(sin(d; ) sin(d2) + cos(d1) cos(d2) cos(ag — az)), (3.17)

where a € [0°,360°] corresponds to RA and § € [-90°,90°] corresponds to DEC. The sub-
script 1 and 2 indicates indifferently the lensed or unlensed position.

Using Eq. 3.17 within the definition of Eq. 3.16, we compute an RMS of 1.082 arcminutes for
Flagship v1, considering all galaxies at z = 1.00 4+ 0.05. For now, we can compare this result
to that obtained from MICECAT, which gives an RMS of 0.959 arcminutes at z = 1. We
use MICE as a reference catalog in these section since this catalog has already been correctly
validated [65]. The lower RMS for MICECAT is reasonable, as its Q,, value (0.25) is smaller
than Flagship’s (0.319). Since €, is directly related to the matter density, it influences the
average lensing strength (see Eq. 2.108).

3.6.2 Lensing angular power spectrum

In this section, we will evaluate whether the convergence and shear spectra (see Sec. 2.6.2)
agree with the theoretical predictions provided by the revised Halofit model [140]. Following a
similar approach to our analysis of the density angular power spectrum, we generate HEALPix
maps for the shear and convergence.

The shear and convergence information is obtained from the galaxy catalogs in Cosmohub,
with the shear represented by its two components, y; and 2. The assigned values correspond
to those in the original convergence and shear maps, with Ng;4. = 8192, derived from the
final particle distribution of the simulations. Each galaxy inherits the pixel value of the map
corresponding to its location.

The convergence and shear maps are generated differently since the pixel values no longer
represent the galaxy counts within that pixel. Instead, they reflect the mean shear or con-
vergence values of the galaxies inside each pixel. Given that lensing studies focus primarily
on interactions at small scales, we create maps with higher resolution, using Ngge = 4096.
While Ngige = 8192 would provide a closer 1:1 match with the original map values, this res-
olution is computationally prohibitive for us when generating the maps and calculating the
Cy values. Since the information is derived from the galaxy distribution, we must address
pixels without galaxies, which are effectively unobserved. To account for this, we generate a
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mask tailored to each galaxy sample by marking empty pixels and incorporating regions not
observed by default in the mock/sample. Figure 3.15 illustrates the appearance of the mask
with the empty masked pixels. Additionally, the Jackknife and survey masks are included to
demonstrate the final combined mask. For observables like deflection and shear, which have
two components, we generate a TQU (or TEB) map by combining three HEALPix maps. The
first map corresponds to the amplitude (a scalar, left empty in this case), while the other
two represent the first and second components of the observable. Next, we use PolSpice to
compute the Cy values, enabling the polarization mode when dealing with two-component
observables. For shear, our primary focus is on the E x E Cy values (see sec.3.4.1), as the
shear only has an E-mode component.

FS2 convergence mask

 — _—
0 1

FIGURE 3.15: Mask for the convergence where the pixels without information
(galaxies) are masked since we cannot predict the convergence or shear. We
also combine the observational mask and Jackknife mask.

Using relations in Eq. 2.125 we can convert the shear Cys into Cy’s for comparison.

2(1+1)?
- (z+(2)(+12)—1)05 (3.18)

Figure 3.16 shows that the convergence spectra agrees very well with the dark matter predic-
tion. However, some discrepancies and fluctuations are observed at smaller scales (high /),
likely due to resolution effects. Additionally, we compare the shear power spectrum (C}) with
the convergence power spectrum (Cy) using Eq. (3.18). Although the shear power spectrum
is significantly noisier, its values remain within the 1o error bounds, indicating that these
observables are appropriately applied to the mock data.

3.6.3 Magnification bias factor

As outlined earlier, our goal in this section is to establish the relationship between source den-
sity fluctuations caused by magnification and the convergence responsible for such magnifica-
tion. Referring to equation (2.114), we see that the key step is to calculate the magnification
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F1GURE 3.16: Flagship convergence angular spectrum at z=1 for the DM and

galaxies with Ng;q. = 4096. The theoretical prediction from the revised Halofit

model is also included to verify the lensing observables. We also plot the shear
C} transformed to C by using Eq. (3.18).

bias factor s, which corresponds to the logarithmic slope of the cumulative background num-

ber counts at a given redshift and magnitude limit. This term can be derived using equation
(2.115).

To calculate the parameter s, we selected a query for a redshift bin A, = 0.1 centered around
the desired z value and retrieved data for the Euclid-VIS (or Evig) magnitude band, which is
less impacted by non-cosmological signals such as dust extinction. Using Cosmohub’s plotting
tool, we generated a histogram of magnitude counts for 745 values ranging from 21 to 25,
with a bin width of A; = 0.1. The histogram was configured to display a cumulative plot on
a logarithmic Y-scale (number counts), as shown in Figure 3.17. Since the function is cumu-
lative for m < myjy, it naturally incorporates brighter galaxies for a given m = myy, value.
The slope of this cumulative plot at a specific m corresponds to the s-value at my, = m for
the given redshift. To determine this slope, we exported the plot data and processed it using
a Python code. The slope at each magnitude bin was approximated by considering the values
from the adjacent bins and fitting the function locally to a linear model. This procedure was
repeated for various redshifts, and we subsequently plotted the value of 5s — 2 (as per Eq.
(2.114)) against the respective myiy,, as shown in Figure 3.18.

Figure 3.18 shows that the magnification bias decreases as we move to dimmer magnitude
limits. This trend arises because fewer faint galaxies exceed the flux threshold. When 5s — 2
reaches 0 (corresponding to av = 1), the magnification bias is nullified, resulting in no change
to the density of background sources. Beyond this point, the competing effect of area dilution

becomes more significant, reducing the number counts of sources®*.

24These effects are valid under the assumption of k£ > 0 or p > 1.
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FI1GURE 3.17: Cumulative logarithmic histogram for Evig magnitude for z=1
obtained with the plotting tool of Cosmohub.
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FIGURE 3.18: Magnification bias plot for Flagship at different redshifts using
magnitude cuts in Fyis.

With the s-values derived for various magnitude limits and redshifts, we can now make mag-
nification bias predictions for the catalogs. In the next section, we will assess whether the
galaxy distributions align with these predictions. This will help determine whether the mock
catalogs correctly implement the magnification bias.

3.6.4 Magnification from galaxy cross-correlations

To confirm that the magnification bias induces the expected density variations, we will cross-
correlate the density fluctuations of source galaxies with the lens galaxies responsible for these
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variations®. Specifically, we aim to compute the cross-spectrum of the density fluctuations
of sources and lenses, (0(2;)d(z5)). The cross-spectrum measures the correlation between the
pixel values of two maps: one map for the lenses and another for the sources.

The source maps were generated at z = 1.00 + 0.05 with a magnitude limit of Fy1g < 23.
For the lens map, we selected galaxies at z = 0.50 + 0.05, corresponding to the point of
maximum lensing efficiency, which occurs approximately halfway between the observer and
the source. To separately analyze the two competing effects of magnification bias, we created
four different source maps:

e Nomag: Contains the galaxies’ unlensed positions.

e Magpos: Contains the galaxies’ lensed positions.

e Magmag: Contains the galaxies’ magnified magnitudes but with unlensed positions.
e Magall: Contains galaxies with both magnified magnitudes and lensed positions.

The term magnified magnitudes refers to the modification of flux due to lensing effects (mag-
nification). This is mathematically expressed as:

5
Am = —2 logyg p = ~2.5logyo(1 +9,) = (3.19)

_lnlOH

To produce these maps, we selected three queries from Cosmohub:
e One with the unlensed and lensed positions at z = 0.5.
e Another with the unlensed and lensed positions at z = 1 and m; < 23.

e A final one with the unlensed and lensed positions at z = 1 and [m; — (5/1n 10)x] < 2320
to account for magnified magnitudes, as described in Eq. (3.19).

We also checked the total number of galaxies of the maps: 8712473 for Nomag, 8710679 for
Magpos, 8731314 for Magmag, 8728530 for Magall and 25352156 for Lens. Since the gain
of galaxies is greater than the loss of galaxies, as (5 — 2s) > 0 for our conditions, we have
more galaxies in Magall than in Nomag. The same mask was applied to all maps to ensure
consistency. For the lensed position maps (Magpos and Magall), the area dilution effect is
partially accounted for by removing galaxies that move outside the unmasked region.

The magnification modify the density fluctuation in the following way:

§ =08y + Abmag = b + (55 — 2)65, (3.20)

where dg, 0y, 9, are galaxy, matter and convergence fluctuations respectively. Then when we
perform a cross-correlation of lenses and sources:

(5°5") = b <5fn5£n> b (58t — 2) <5fnag>

£ (55" —2) (3L,02) + (55— 2) - (55° — 2) {8157 (3.21)

#5This methodology is based on the MICE Grand Challenge Lightcone Simulation paper [65].
26This can be done using the expert mode in Cosmohub.
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where the upper-index "s" and "1" correspond to sources and lenses. We observe that four
terms appear, but only the second term is relevant. The first term is zero because there is
no correlation between arbitrary galaxies without magnification at different redshifts when
there is no overlap between sources and lenses. Similarly, the third term, which represents
the magnification of lenses due to sources, is zero because the sources do not influence the
light propagation of lenses that are closer to the observer. The fourth term is not exactly
zero, as there is a slight correlation between the convergence of lenses and sources, since the
convergence includes all the matter between the object and the observer. However, this cor-
relation is very small, primarily due to the varying lensing efficiency across different redshifts.
Therefore, the final expression simplifies to:

<555l> ~ b (55 — 2) <5fﬂ(52> (3.22)

Then the predictions for the magnification bias Cys can be calculated as follows:

Cy¢(Nomag) = 0
Cy(Magpos) = -2b C}?
Cy(Magmag) = 5b-s C,¢
Cy(Magall) = b(5s-2)C,",

where CZ I = <5‘;6,l£> represents the cross-spectrum between the convergence at z = 1 and the
galaxy density fluctuations at z = 0.5. The value of s is determined by referring to Figure 3.18
for a magnitude limit < 23 and z = 1, yielding a value of s ~ 0.6. The parameter b = 659 is

the bias factor at z = 0.5, which was calculated in section 3.5.1 with a value of b1:1.271.)M

In Figure 3.19, we present the initial results of the magnification bias cross-spectra for all
source maps with the lens map. The Cy values obtained from PolSpice exhibited significant
noise, with high-frequency oscillations. Additionally, we show the predictions based on the
values of b; and s. At low ¢, it is difficult to discern whether the values align with the pre-
dictions due to substantial fluctuations caused by sample variance. At higher ¢, the unlensed
terms (Nomag and Magmag) closely match their expected amplitudes. For Magmag, the am-
plitude is somewhat lower, likely due to resolution effects that dilute the signal, a behavior
also observed in the MICE plot from [65]. The lensed terms appear to follow a similar tra-
jectory to their respective un/magnified counterparts. Thus, we are not detecting the lensed
position term (area dilution) in the cross-correlation.

We can suppress sample variance to a very good degree by obtaining each term as a subtraction
of other terms to cancel out the noise (as all the maps should carry the same sample variance
noise). We have that Cy(Magall) = Cy(Magpos) + Cy(Magmag) so we can obtain the sample
variance free Cy as:

Cy(Magpos) = Cy(Magall) - Cp(Magmag)
Cy(Magmag) = Cy(Magall) - Cy(Magpos)
Cy(Magall) = 2Cy(Magall) - Cy(Magmag) - C;(Magpos)

In Figure 3.20 we can observe the same plot with the suppression of sample variance. The
unlensed Cy now follow with perfect agreement the predictions at low ¢, while at high ¢ we still
have the resolution effects that dilutes the signal. Now is clear that the lensed terms (Magpos
and Magall) do not trace the prediction at all. This indicates that there is something wrong
with the magnified positions since the signal for this term seems to be 0.

In order to crosscheck our methodology we reproduced the magnification bias cross-spectrum
for MICECATV1 as found in the paper [65]. So we repeated the procedure for data of MICE
using the values of s=0.767 and b=1.35 given in the same paper for the predictions. In Figure
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FIGURE 3.19: Magnification bias cross-spectrum for Flagship for lenses at
z=0.5 and sources z=1. The corresponding predictions are showed as dashed
lines with the same legend color. Jackknife errors with Njx = 20 are included.
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FI1GURE 3.20: Magnification bias cross-spectrum for Flagship with suppression
of sample variance.

3.21 we can see that all the terms follow the predictions in very good agreement at the plot
without sample variance. The expected resolution effect at high ¢ is also present just as in
the MICE-GC paper’s plot.
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FIGURE 3.21: Magnification bias cross-spectrum for MICE at iap < 23: At

top we present our obtained results to compare with the MICE-GC paper’s

plots below. At right we have the corresponding plot w/o sample variance.
Source (bottom plots): [65]

The agreement in the results from Figure 3.21 seem to indicate that our methodology is well
executed. Then the disagreement in the lensed term for Flagship may indicate some issue
with the catalog data originated from a bad implementation of the lensed position calculation.

We conducted extensive tests with Flagship to identify the source of the issue. In Figure 3.22,
we present a Cartesian projection of a small patch from all the Flagship source maps to gain
some insight into their validity. From the projection, it appears that the maps themselves are
not problematic. For Magpos, we observe the expected correlated displacement of galaxies in
the same direction (downward). In the Magmag map, there are small variations in the pixel
number density counts. Finally, Magall represents the sum of both effects.

We also performed tests with lenses and sources at different redshift bin widths and attempted
to generate the cross-spectrum from maps with lower resolution (Ngge = 2048) without
significant changes in the results. Ideally, we would like to increase the resolution further, but
as mentioned in a previous section, generating maps at resolutions higher than N4, = 4096
proved too demanding in terms of RAM and CPU resources. We had already optimized
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NO MAG DEC(-120.5,-120) RA(11,11.5) MAG POS DEC(-120.5,-120) RA(11,11.5)

FiGUrE 3.22: HEALPix Cartesian projection of the same 0.5x0.5 deg patch
for all the 4 Flagship source maps. Horizontal dashed lines are for position
reference between maps.

our code to generate maps at Ngge = 4096 without running out of memory, and PolSpice
took about 30 minutes to produce the four cross-spectra at this resolution, making it time-
consuming to test multiple solutions. Looking back at Figure 3.22, it appears that the galaxies
shift by one pixel due to lensing, which is expected given that for Ng;45. = 4096, the pixel
size is 0.85 arcminutes, while the 6r)sg of the unlensed-lensed distance is 1.08 arcminutes
for Flagship. This suggests that many galaxies may have a lensed distance smaller than the
pixel size, given the close proximity of the 6rprg value, which could explain why we are not
capturing the lensed position in the cross-correlation.

To verify whether Flagship’s data from Cosmohub was properly produced, we conducted a
final test by re-obtaining the Flagship lensed positions using the SQL query that was originally
used to retrieve the lensed positions stored in Cosmohub. We were provided with the SQL
code, which we then rewrote in Python to calculate the positions using the unlensed positions
from the CSV files and the DM deflection maps. The RMS of the angular distance between
the lensed positions from Cosmohub and those obtained with our Python implementation of
the SQL query is 1.533 arcminutes for Flagship and 0.025 arcminutes for MICE. This suggests
that there may be an issue with Flagship’s data, as we would expect this value to be close
to zero. For MICE, the discrepancy is small enough, especially considering that the limited
accuracy of the numpy trigonometric functions may have contributed to the increase in this
value.

After several months of testing, we were able to find the origin of this issue which we detail
in the following section.
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3.6.5 Final validation of the magnification bias

After reviewing the internal data of the halo catalog for the mock by validating the original
deflection, convergence, and shear maps, we identified discrepancies in the deflection and shear
maps when derived from the convergence map (Eq. 2.125). The issue was traced to the code
used for generating these maps, which relied on a deprecated healpy function called alm2map.
This function no longer accounted for the spin of the ag, coefficients (see Eq. 2.117). We
resolved this issue by updating the code to use the newer alm2map spin function, which
explicitly allows setting the spin value for the ag,,: spin 1 for deflection and spin 2 for shear.
Despite this error, it did not affect the E-mode of the angular power spectrum, which is why
the issue was undetectable in Figure 3.16.

With the corrected maps, we revisited the magnification bias validation. As shown in Figure
3.23, the results now align with predictions. We also tested fainter magnitude limits at
FEyis < 24, where the magnification bias is nearly nonexistent due to the cancellation of the
two contributing effects, (5s — 2) ~ 0.
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F1GURE 3.23: Final results for the magnification bias validation in FS1. The
top plots show the results for Eyis < 23 while the bottom for Evig < 23. The
right plots show the values with the sample variance subtraction.

This validation was essential for the development of the improved Flagship v2 mock (Sec.
3.3.3), enabling the correct generation of shear and magnified galaxy positions.






89

Chapter 4

Probing gravity with non-linear
clustering in redshift space

Using the primary tools for galaxy clustering and galaxy lensing described in Chapter 3, in
the following chapters we present the main projects and contributions made throughout the
course of this thesis. The two main projects, for which we are the primary authors, focus
on modified gravity models and will be described in detail. In this chapter, we detail the
core project of this thesis, which involves the Fg estimator applied to a pair of twin GR
and modified gravity f(R) simulated mocks. This chapter is essentially a reproduction of the
final paper submitted for publication (Viglione C. et al., 2025). In Chapter 5, we discuss a
related project that performs a 3x2pt analysis on the same mocks. A paper for this project is
currently in preparation (Viglione C., Alemany M. et al., in preparation). Lastly, in Chapter
6, we present the contributions made to the Euclid mission [44], which are reflected in several
published papers where we are listed as co-authors: [107, 46, 108, 47].

In the project presented in this chapter we present the first computation of the gravity model
testing parameter Eg on realistic simulated galaxy mocks. The analysis is conducted using
two twin simulations presented in [16]: one based on general relativity (GR) and the other
on the f(R) Hu & Sawicki model with f = 1075 (F5). Both simulations share an identical
fiducial background cosmology and initial conditions, and they are calibrated against low
redshift observations. This study aims to measure the Eg estimator in GR and f(R) gravity
models using high-fidelity simulated galaxy catalogs. The ultimate goal is to asses to what
extent future galaxy surveys can detect deviations with respect to standard gravity using this
widely used gravity estimator.

4.1 Introduction

The need of a theoretical explanation for the observed accelerated expansion of the universe
has forced the inclusion of the cosmological constant (A) as a dark energy component that acts
as a negative pressure or effectively "repulsive" gravity on large cosmological scales. Little
advances have been achieved in determining the nature of the cosmological constant since its
introduction, despite massive recent observational efforts (SDSS [109], DES [42], BOSS [89)],
DESI [43]). Several alternative gravity models [88] are also able to explain this accelerated
expansion without the need of a cosmological constant. So far, the validity of general rel-
ativity (GR) has been mainly tested on relatively small scales [91, 101]. However modified
gravity models apply corrections to GR that only become important at cosmological scales
much larger than the Solar System where screening effects make deviations from standard
gravity vanish. In particular, current galaxy surveys are trying to break the degeneracy be-
tween modified gravity models and dark energy models in observations by sampling the largest
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accessible scales.

The large number of theories of gravity that have been proposed in recent years have motivated
the need develop methods to probe the validity of these models. Of particular interest are
those approaches that focus on those observables directly related to the underlying theory of
gravity. One of the first observables that was put forward, presented in [160], provides a direct
test for gravity on larger scales. The Eqg estimator corresponds to the ratio between curvature,
related to the ® and ¥ gravitational potentials, with the velocity field, related to the growth
rate of structures f. In GR, since these relations follow Einstein’s equations this observable
takes a scale-independent relation that only depends on the matter density parameter and the
growth rate at the given redshift. This is very useful to test the validity of GR since any de-
viation from this value could indicate that GR breaks down on the largest cosmological scales.

Observationally, the velocity field, related to redshift space distortions, can be estimated with
density (galaxy) auto-correlations, while the curvature field can be estimated from the corre-
lation between the weak gravitational lensing (shear) of background galaxies with foreground
galaxy positions. In this analysis the correlation functions are calculated in Fourier Space, or
rather its curved sky generalization, spherical harmonic space, using a pseudo-Cys estimator
in order to have a better separation of large and small scales. Previous analysis [71, 156, 122,
123, 5, 152 have used CMB lensing in order to estimate the convergence field, since this esti-
mator is not affected by systematics related to intrinsic alignments and it has a broad kernel
that samples dark-matter clustering at higher redshifts. We instead opt for using galaxy-
galaxy lensing since this allows us to be self-consistent with the data as we can extract the
galaxy source information directly from the same lightcone simulation. This also gives us the
opportunity to select different source sample populations to optimize the gravity estimator.
In this context, we leave for future work the potential impact of intrinsic alignments in our
analysis.

Estimating the value of the growth rate can be difficult since it suffers from a degeneracy with
galaxy clustering bias and the scalar amplitude Ag or og when parameterized from the power
spectrum alone. So working with multipoles of the correlation function have become a com-
mon approach to break this degeneracy as each multipole exhibits a different dependence on
these clustering amplitude parameters. In this context, several emulators have been proposed
to produce fast and accurate predictions of the clustering multipoles for a given cosmology
that are also able to reproduce different sources of non linear effects. For this analysis the
public code COMET-EMU [60] is used to predict the multipoles of the correlation function
which allows to emulate non-linear galaxy clustering in redshift space using different pertur-
bation theory approaches (EFT, VDG). In this study, we incorporate both the monopole and
quadrupole in configuration space to adopt a more robust approach [30]. We note others ways
to estimate the growth rate not studied here. [48] uses the angular galaxy-galaxy autocorrela-
tion to estimate f, which is further expanded in [70] and [18] by using additional weak lensing
cross-correlations between redshift bins. While [81] uses the shape of the reduced three-point
correlation and a second method with a combination of third-order one- and two-point cumu-
lants to estimate the linear growth factor D.

Modified gravity models often introduce an additional scalar degree of freedom, which gener-
ates a fifth force [45]. In this study, we examine the f(R) gravity model, where the fifth force
has a finite range, denoted by A.. Within this range, the force strength in the linear regime
is equivalent to one-third of the standard gravitational force, effectively modifying G to %G
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on small scales (r « A.), while preserving the standard G on larger scales. Such a significant
modification would be incompatible with observations if not for the presence of a screening
mechanism, which suppresses these changes in regions of high density.

In this paper, we perform the first self-consistent calculation of the Eg estimator from a syn-
thetic galaxy mock that follows an f(R) Hu & Sawicki modified gravity model [16]. Potential
deviations from GR are estimated by comparing measurements of the gravity estimator in this
mock with respect to a reference galaxy mock that uses the same galaxy assignment pipeline
applied to a ACDM simulation (i.e, same cosmological parameters and initial conditions, but
standard gravity force). The fact that we use simulated data allows us to ignore systematics
that affect the estimator in observations, namely the effect of lensing and magnification that
can produce errors on the Eg estimation of up to 40% on high redshift photometric samples
[156, 71]. Moreover, since we want to assess whether it is possible at all to distinguish gravity
models that are consistent with the set of current observational data, we focus as a working
case on an ideal all-sky survey, and neglect sources of astrophysical systematics such as intrin-
sic alignments or photometric errors. We adopt the refined E¢ estimator introduced by [152],
which builds upon the traditional method of using the angular power spectrum, as presented
by [122]. Additionally, [77] proposed a novel, entirely model-independent E¢ estimator that
combines galaxy velocity measurements from surveys with the Weyl potential. However, this
new approach is not explored in this study.

Due to the nature of f(R) in the Hu & Sawicki model the value of the growth rate f is
scale dependent. Consequently, we will estimate this parameter across different scales. In
GR, this parameter is typically calculated by fitting a model to the multipoles of the cor-
relation function over a broad range of scales, under the assumption of scale independence.
Estimating this parameter over limited scales introduces several complexities, which we will
address throughout this paper. To the best of our knowledge, such an approach has not been
previously attempted in the literature.

This paper is organized as follows: in section 4.2 we introduce the f(R) Hu & Sawicki model
and emulators to calculate the dark matter and growth-rate boost, in section 4.3 we explain
the theoretical predictions for the Eg estimator for F5 and GR, while in section 4.4, we
introduce the COMET emulator and the VDG model that we use to perform the fits to the
growth rate. Then we present the GR and F5 simulated catalogs that we use to obtain the
data vectors in Section 4.5. A description of the different ingredients that enter in the Eg
estimator and how can they be accurately computed is presented in section 4.6. Our main
results are discussed in 4.7, and we propose a null test of gravity in 4.8, as a simple alternative
test to distinguish between GR and F5 using the 2-point clustering in redshift space. Finally,
in sections 4.9 and 4.10 we discuss our main findings in detail, and present our conclusions
and future work.

4.2 The f(R) Hu & Sawicki model

The f(R) gravity model, a widely studied modified gravity (MG) framework, extends GR by
introducing a scalar function f(R), where R is the Ricci scalar, into the gravitational action:

5= /d4 {R;fé ) +£m] , (4.1)
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where ¢ is the determinant of the spacetime metric, £,, represents the matter field’s La-
grangian, and G is the gravitational constant. In this model, f(R) serves as a generalization
of the cosmological constant, or, when constant, it represents the cosmological constant itself.
From this action, one can derive the modified Einstein equations.

By varying the action with respect to the metric, one derives the field equations, commonly
referred to as the Modified Einstein Equations [16]:

ny + fRRy,I/ - (g

— DfR> 9w — ViV fr =81GT),, (4.2)
where V represents the covariant derivative with respect to the metric, [0 = V,V" is the
d’Alembert operator, and 7T}, is the energy-momentum tensor for the matter fields. R, is
the Ricci tensor, and fr = %}?) is the derivative of the scalar function with respect to the
Ricci scalar R.

The form of the f(R) function depends on the specific model chosen. To simulate the observed
structure formation, a functional form for f(R) must be selected. According to [87], an
appropriate f(R) function should satisfy the following conditions: (1) it should reproduce the
ACDM model at high redshifts (consistent with CMB observations), (2) at low redshifts, it
must behave similarly to a cosmological constant, driving accelerated expansion, (3) it should
include free parameters to model various low-redshift phenomena, and (4) it must recover GR
results at small scales (e.g., solar system scales) to be consistent with observational constraints.
The Hu-Sawicki (HS) model satisfies these criteria and takes the following form:

m201}(%%)n )
02( ) +1

m?2

F(R) = - (4.3)

where m? = QmHg, and C7, Cy, and n are model parameters. For this work, n = 1 is used.

Additionally, the derivative of f(R) respect the Ricci scalar is given by:

oy ()1
fr=-n—1" ) . (4.4)
R n
[CQ (m) + 1}
In the high curvature regime (R > m?), as shown by [117], Eq. 4.4 becomes:
Cl mg n+1
o, (m” 45

In [87] was demonstrated that a background resembling the standard ACDM model can be
recovered by enforcing the condition:

1 Qa0
— =6 4.6
CQ Qm,(]’ ( )

where (25 o and 2, ¢ represent the present-day densities of dark energy and matter, normal-
ized by the critical density. This condition reduces the number of free parameters in the
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equation to one: either ' or Cy), since as established earlier n=1 for this work.

The remaining free parameter is described by the scalar field’s background value at redshift
z =0, denoted fro, which is treated as a free parameter to constrain the HS f(R) model:

n+1
G__lg <RO> o (4.7)
n

2 2
Cs m

By appropriately selecting this parameter, the f(R) model can recover GR in high-density
regions, ensuring consistency with solar system tests via the chameleon mechanism [87].

In cosmological simulations based on standard gravity, it is common to use the Newtonian
limit of GR, which assumes weak gravitational fields and a quasi-static evolution of matter
fields. This approximation is also applied in most modified gravity simulations, including
those in this work. The limitations of this approach, specifically in the context of f(R) grav-
ity, are explored in [130].

Under the Newtonian limit, the complex 16-component field equation (Equation 4.2) simplifies
to two key equations. The first is the Modified Poisson Equation:

16m& Spma’ — ldR, (4.8)

2
V45_3 6

where ¢ represents the total gravitational potential, dp,,, = pm — pm is the perturbation from
the background matter density pp,, and dR is the perturbation from the background value
of the Ricci scalar, i.e., the background curvature. The second equation describes the scalar
degree of freedom fg:

1
Vifr = 3 (OR —87Gopp). (4.9)
Combining Eq. 4.8 and Eq. 4.9, the Modified Poisson Equation is expressed as:

Vi = ?5%@2 — %VQ fr, (4.10)
where it is more clear that fr/2 acts as the potential for the modified gravity force. The equa-
tion approaches the standard GR expression within the Solar System, thanks to the chameleon
mechanism [97, 87]. In scenarios with small values of fg,, the background expansion remains
indistinguishable from that in ACDM [100]. In observations, numerous constraints on HS
f(R) gravity focus on fgr,. On cosmological scales, constraints have been derived from cluster
number counts, CMB, supernovae, and BAO data, with [37] placing log | fr,| < —4.79, [84]
finding log | fr,| < —4.5, [83] setting log |fr,| < —4.15 and [100] finds log|fr,| < —4.61. On
more local scales constraints arise from galactic studies, with [114] setting log|fgr,| < —6.1
through galaxy rotation curves, and [54] obtained log | fr,| < —7.85 based on galaxy morphol-
ogy. This means that low scale measurements force practically all astrophysical objects to be
screened, i.e. behave like GR. In [45] an upper limit of log |fr,| < —5.6 is constraint with no
observational systematics using dark matter simulations with baryonic effects.
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Despite these tight bounds, f(R) gravity remains a valuable framework for exploring devia-
tions from GR on cosmological scales. In this study, we explore the f(R) gravity model using
a |fr,| = 107° (also known as F5), which, while slightly conflicting with local observational
constraints unless environmental screening is considered, is within the HS constraints on cos-
mological scales [16]. F5, with its more significant deviation from GR compared to other
studied deviations like F6, provides key insights into the effects of gravity modifications on
large-scale phenomena such as weak lensing and clustering statistics. Understanding these
effects is crucial for upcoming large-scale structure surveys like DESI, Euclid and LSST, which
aim at testing GR as one of its main scientific goals.

[34] performs a forecast for precise constraints on f(R) for the Euclid mission. For a fiducial
value of log | fg,| = —5.30, Euclid can constrain log,q | fr,| to 1% accuracy by combining both
spectroscopic and photometric observations. Additionally, Euclid is expected to distinguish
between larger values such as logy | fr,| = —4.30, smaller values like log;, | fr,| = —6.30, and
ACDM with a confidence level exceeding 3o.

4.2.1 Dark matter power spectrum boost

The matter power spectrum, despite not being a direct observable, is one of the basic theo-
retical tools that can be modeled to characterize the growth of cosmic structures. This power
spectrum allows the construction of predictions for other observables, like the galaxy power
spectrum, which are useful to estimate cosmological parameters. So an accurate estimation
of the dark matter spectrum for f(R) is a key ingredient of the EG estimator to calculate the
E¢ estimator. Perturbation theory (PT) can be used to predict the matter power spectrum
on quasi-linear scales [24| with great precision. In the non-linear regime, PT breaks down
and one needs to resort to measurements from N-body simulations to achieve accurate predic-
tions. This makes the use of cosmic emulators crucial, as they allow for analytical predictions
of non-linear scales by interpolating results from a vast number of N-body simulations cover-
ing a wide parameter space. These emulators enable a more complex modeling of matter and
galaxy clustering on small scales.

Many emulators exists for ACDM, but in the past years some emulators have appear for ex-
tended Dark Energy models, including modified gravity theories like f(R). For linear matter
power spectrum calculations, Boltzmann codes such as mgecamb [163, 82, 164, 150|, MG Halofit
[162] and MGCLASS [127] are commonly used for different gravity theories including f(R).
Additionally, there are simulation-based emulators that extend into the mildly non-linear
regime, like ELEPHANT [154], COLA (COmoving Lagrangian Acceleration)) [124]; FORGE
[15], E-MANTIS [138] and Sesame [111|. Another prominent tool is ReACT |28, 27|, which
applies a halo model reaction framework validated using N-body simulations.

Cosmological simulations for f(R) models require significantly more computational time given
that they have to compute the intrinsically non-linear evolution of the scalar field that me-
diates the modified gravity force. These emulators typically work by comparing the power
spectrum results of modified gravity models to those of ACDM emulators. In this paper, we
use the emulator E-MANTIS [138] (Emulator for Multiple observable ANalysis in extended cos-
mological TheorleS), which is specifically designed for the Hu & Sawicki f(R) gravity model.
The E-MANTIS emulator provides a boost for the f(R) gravity matter power spectrum, defined
as:
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B(k) = Prry(k)

= Proom (k) (4.11)

where Pp(r)(k) and Pycpm(k) are the matter power spectra for f(R) gravity and ACDM,
respectively. This boost is less sensitive to statistical and systematic errors and exhibits a
smoother dependence on cosmological parameters than the raw power spectrum. Since both
f(R) and ACDM simulations start from the same initial conditions, the minimal impact of
f(R) gravity on large scales preserves the strong cancellation of cosmic variance and large-
scale errors. Similarly, small-scale systematic errors due to limited mass resolution also cancel
out. By focusing solely on this boost, the emulator significantly reduces computational de-
mands, as less precise simulations are required to achieve the desired accuracy for the boost
compared to the raw power spectrum.

The power spectrum boost is mainly influenced by three cosmological parameters: fr,, Qn,
and og. Variations in other parameters, such as h, ng, and €2, have a negligible impact, with
less than 1% variation up to scales of k = 10h Mpc~!. The emulator does not account for the
effect of baryonic physics on the matter distribution, which affects the matter power spectrum
boost in f(R) gravity for scales k < 2hMpc™! [13]. However, [138] anticipates that using
a ACDM emulator, which incorporates the baryonic impact on the matter power spectrum,
to apply the boost will correct for this in the f(R) power spectrum. In this study we will
use the Halofit matter power spectrum from [140| which despite no including baryonic impact
accounts for accurate nonlinear corrections.

Using simulations with an effective volume of (560 h~!Mpc)? and a particle mass resolution
of Mpart ~ 2 X 10'° A= M, the power spectrum boost can be determined with better than
3% accuracy for the range 0.03hMpc™! < k < 7hMpc~! and redshifts 0 < z < 2. Although
the systematic error on the boost varies with fg, redshift, and scale, the 3% estimate is
conservative, as most cases achieve better than 1% accuracy [138].

4.2.2 Scale dependence in the growth rate

At the linear perturbation level in the comoving gauge, the modified Einstein equations for
f(R) gravity lead to the following equations in Fourier space for the evolution of matter
overdensities. These describe how perturbations in the matter density evolve over time [144,
112]:

S + <2H T fR) G — L

2fr ] " 2fr (412)
1 k2 : .
=5 Kaz — 6H2> Sfr +3HSfr+36fr ]
.. . 2 . .
Ofr+3HSfr + (];:2 + ?;;IZR — ?) 0fr = %pm(sm + fROm. (4.13)

In these equations, k is the comoving wavenumber, a = (1+2)~! is the scale factor (normalized
to unity today), p., is the matter density, and d,,(a) = dpm,/pm is the matter density contrast.
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The Hubble parameter H is given by H = a/a, and dots represent derivatives with respect
to cosmic time. Lastly, frgr is the derivative of fr respect to R.

dfp _n(n+1)a <”§)n+2, (4.14)

fRR—ﬁ 5

2
m Cs

where we take the approximation from Eq. 4.5

For cosmologically viable f(R) models, fr changes slowly, meaning | fR| < H fr. Under this
approximation, for fr, the time derivatives can be neglected and the oscillatory modes are
insignificant compared to those driven by matter perturbations. Additionally, for modes well
inside the Hubble radius, k2/a? > H?, further simplifying the equations. These approxima-
tions lead to the following equation for the evolution of the matter density contrast:

Om + 2Hb — 471G epmOm =~ 0, (4.15)

where Geg replaces the standard gravitational constant G from ACDM cosmology. Geg is the
effective gravitational constant, defined as:

The dependence of Geg on scale introduces scale-dependent effects in the formation of cosmic
structures, distinguishing f(R) models from standard cosmology. From Eq. 4.15 the growth
rate is usually calculated. The growth rate f is typically defined as:

din D _a dD

fla) = dlna ~ D da

(4.17)

where D(t) is the growth factor corresponding to the time factorization of the linear growth
of matter perturbations. We assume that the growth of perturbations can be factored into a
time-dependent part and a spatially dependent part:

5(x,t) = 8o(x)D(t) (4.18)

The growth factor can be calculated as solution to the linear perturbation theory differential
equation:

D(t) 4+ 2H(t)D(t) — 47 Gegpm (t)D(t) = 0 (4.19)

which happens to be the same than in ACDM but using Geg instead of G. This means than
since Gog now depends on the scale k, the growth rate in f(R) will also depend on k.

In this work we use the public code MGrowth!' which allows to obtain the value of the growth
rate for several models of gravity. One of the gravity models is HS f(R) for any value of
redshift, wavenumber and fr, between 1072 and 10~2. This code basically works by solving

"https://github.com/MariaTsedrik/MGrowth/blob/main/docs/MGrowth. rst
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FIGURE 4.1: Comparison of the effects of f(R) gravity on the dark matter
power spectrum (Left plots) and the growth rate (Right plots) for the three
redshifts used in this analysis. We show the results on k-wavenumbers and the
corresponding commoving distance separation (Top plots). On a separate plot
(Bottom plots), due to the dependence on a different projected commoving
transversal distance for each z, we show the equivalent multipoles. Note that
for the DM spectrum, we show the ratio (boost), while for the growth rate we
show the values for GR and MG separately since the ratio is quite similar for
each z.

Eq. 4.19 numerically using the Gog defined in this section. In Figure 4.1 we plot the values
of the growth rate for the three redshifts bins that we will use for GR and MG. Within the
limber and small angle approximation, we can obtain a simple approximate relation between
Fourier wavemodes and projected scales:

(=7 (4.20)
O~ (4.21)

12 T
ks~ (4.22)
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where x(z) is the commoving distance and 6 the angular scale. The final relation between
k and s (Eq. 4.22) should be taken as a reference only since it comes from combining three
approximations between variables.

4.3 The E; estimator

The original definition of the E¢ estimator in harmonic space as introduced in [160] is the
following;:

FE*(p — )
3H2(1+ 2)0(k)’

Eg(k,z) = (4.23)

where 6 is the divergence of the peculiar velocity field. The potentials ¥ and ¢ are, respectively,
the time and spatial component of the perturbation fields of the metric. For a flat universe
governed by the Friedmann-Robertson-Walker (FRW) metric and under the assumption of
negligible anisotropic stress and non-relativistic matter species, the Einstein field equations
for time-time and momentum components in GR can be expressed in Fourier space as follows

[82]:

k2 = —4nGa®ppm(a)d

4.24
(b = _wv ( )

pm represents the background matter density, a is the scale factor and § denotes the matter
density perturbation. In modified gravity models, these equations are usually generalized to:

k) = —4nGa®pu(k, ) pu(a)8

(4.25)
¢ = —(k,a)y,

where p(k,a) and v(k, a) are arbitrary functions of k and a. The p function parametrizes the

effective strength of gravity, and ~ is the gravitational slip that quantifies the difference in

the gravitational perturbation fields. These functions reduce to p =~ =1 in the GR case in

order to recover Eq. 4.24.

Combining the equations in 4.25 we can then rewrite the numerator of Fg in Eq. 4.23 as
[122]:

B (6~ ) = SHAmo(1+ 2)alk, )y (k) + 118 (4.20)

87 Gpo
3HZ
at linear scales. Combining this relation with Eq. 4.26, the expression for Fg becomes:

where €, 0 = with ppm(a) = pmoa=3. The velocity perturbation 6 is given by 6 = fd

Ea(k,2) = Smo (k’a;[}y(k’a) Lt g Qm’()i(k’a), (4.27)

where we have re-parameterized as ¥ = % w(1+~) [152], which represents the lensing param-
eter. This is the parameter that the Eg more directly measures, which is 1 for GR. From this
equation we can clearly see that for GR, the value of Eq is given by:
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Qm,O
f(z)’

which can be readily computed using that, since f in GR can be approximated as f(z) =~
Q. (2)%5°. This means that for GR the value of Eg is predicted from the background expan-
sion only using a constraint on {2, o and it is thus independent of sample-specific parameters
like the galaxy bias and its potential systematic effects. This value is predicted to be scale in-
dependent for GR at linear scales. In contrast, for f(R) and other MG theories this estimator
depends on scale, what is a potential smoking gun for detecting deviations with respect to GR.

EGh =

(4.28)

Returning to the f(R) model the functions p and v can be parameterized as [122]:

1 1+ (2/3)Bok?a®
SR (1 g )= v 4.29
Wk 4 ) =T 1+ (1/2)Bok%a® (4.29)
14 (1/3)Bok?a®
) (g, )= 1+ (1/3) Bok”a (4.30)

1+ (2/3)Bok2as’

Where k = k - [2997.9Mpc/h], and h = Hy/[100km/s/Mpc], with s = 4 for models that
follow the A-CDM expansion history. The parameter By is a free variable associated with
the Compton wavelength of an additional scalar degree of freedom, and it is also proportional
to the curvature of f(R) at present times. Current observational constraints place a limit of
By < 5.6 x 107 at a 1o confidence level [122]. Implementing this parametrization into the
general expression from Eq. 4.27 one gets:

f(R) 1 Lo
E k,z) = . 4.31
G ( 72) 1— B0a871/6 ff(R)(k, Z) ( )
Since the constraints establish that Bpa® << 1 then we can simply the expression to:
fR) (o) = Stmo
E 7 (k,z) = I (o, 2) (4.32)

Therefore, in the large scale limit, the Fg estimator in f(R) will only differ from the one in
GR through the scale and redshift dependence of the growth rate. Since as we have seen in
the previous section, the growth rate depends on the scale for f(R) so the value EGY (B) will
do so. Going back to the ¥ parameter defined in Eq. 4.27, we have that just like GR X =1
for the HS f(R) model. The reason behind this is that, unlike other modified gravity theories,
HS f(R) has negligible impact on the propagation of light in the weak-field limit [83], since
f(R) models have a conformal coupling. The actual value of ¥ in f(R) is given by [45]:

1

R e e

(4.33)

Since the maximum value of |fr(2)| is given by |fro| we can ignore this effect in this study.

In summary, in order to differentiate HS f(R) from GR we shall need to accurately estimate
the linear growth rate of perturbations. In Figure 4.2 we plot the predictions of Eg for F5
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FIGURE 4.2: Plots showing the difference between the prediction of E¢ for
GR (dashed line) and F5 (solid line) at the three redshift bins. The lower plots
show the respective ratio of the prediction for F5 over GR.

and GR with the respective ratio of the former over the latter. We can see that contrary to
the growth rate prediction, since F¢g is inverse to this parameter now the prediction for Fj
decreases with the scale and it is always lower than the one for GR which is scale independent.
We also note that the ratio between both predictions increases as we move to lower redshifts.
This suggests that attempting to identify differences at these lower redshifts could be bene-
ficial. However, as we will later demonstrate, nonlinear effects at smaller scales significantly
complicate matters, thereby increasing the error.

4.4 Modelling RSD: Non-linear effects

The impact of (peculiar) velocities of galaxies away from the Hubble flow introduce a per-
turbation in the estimation of distances to galaxies as expected from the Hubble law. This
systematic effect distorts the pattern of galaxy clustering in a way that depends on the growth
rate. Therefore one can exploit the so-called redshift space distortions (RSD) as a powerful
probe of dark-energy and gravity. By analyzing these effects, we can directly measure the rate
at which structures in the universe grow, since it is related to the growth rate f, providing a
valuable probe for investigating dark energy and gravity.

In the linear regime, the galaxy clustering patter suffers a characteristic squashing distortion
along the line of sight, known as the Kaiser effect. In this limit, one can obtain a rather
simple expression that relates the linear power spectrum with the RSD power spectrum using
the growth rate. But modeling also the nonlinear contribution, known as the Finger of God
effect, is significantly more complicated due to the complicated nature of non-linear interac-
tions. There are numerous models, each with its own parameter space. These models address
nonlinearities in different ways and may perform better or worse depending on the galaxy sam-
ple and the scales being analyzed. Regarding the galaxy power spectrum in redshift space,
i.e. including RSD, effective field theory (EFT) [89, 50] has gained popularity recently since
it is very versatile.
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The versatility of EFT allows to incorporate several kind of extra parameters to describe
models of modified gravity. It also introduces counterterms parameters in order to correct
that the energy-momentum tensor is no longer homogeneous and isotropic at small scales, i.e.
off-diagonal elements no longer vanish. Although many models try to incorporate as many
parameters to have more freedom to describe nonlinear processes this is usually not recom-
mended due to the complications of having to evaluate such a substantial parameter space.
On top of that, there may be prior volume effects in the language of Bayesian statistics, also
called "projection effects", where different parameters contribute to the model, or the power
spectrum in this case, in a similar manner, i.e. the parameters are degenerated with each
other. This can significantly bias the estimation of the cosmological parameters. The non-
linear parameters are usually considered nuisance parameters since they describe systematics
and do not give much information about the composition of our Universe.

In this section we will give an introduction to another perturbative model called the velocity
difference generating function (VDG) model [139, 60|. We will use this model in this paper
to estimate the § parameter for the calculation of the Eg estimator. We choose this model
over others due to the reported level of accuracy at small scales when comparing results
with simulated catalogs. The reason behind this is related to the better description of the
PDF of "pairwise velocities" [31]| (compared to the EFT model), which primarily captures
the Fingers of God (FoG) effect. The COMET emulator [60| implements the VDG model,
alongside an EFT implementation with a similar parameter space. We will use this emulator
for the purposes of this paper.

4.4.1 COMET-EMU

The emulator contains a reduced parameter space thanks to the evolution mapping approach
from [129] which separates the parameter space in: shape parameters, which determine the
shape of the liner power spectrum (physical densities €2; and the spectral index ng) and
evolution parameters, which determine the amplitude and evolve with redshift (the scalar
amplitude of the primordial power spectrum Ag and the parameters defining the curvature
and the dark energy model).

The emulator also works with the parameter 019 as the RMS of matter fluctuations in spheres
of radius R=12 Mpc. This parameter is determined from the evolution and shape parameters
when emulating a ACDM model, but it becomes a free parameter (in which case As is no
longer needed) when selecting a None cosmology. The emulator uses 12 instead of the most
conventional og (RMS of matter fluctuations in spheres of radius R=8 Mpc/h) since as shown
in [128] is better to express the power spectrum in Mpc instead of Mpc/h to have the correct
scaling. The hubble parameter h and As are completely (perfect) degenerated with respect
the amplitude of the power spectrum. So using Mpc units breaks the dependency of h in
the normalization parameter ¢. In any case, with a standard value of h=0.67 012 and og
represent the same scale. The predictions of COMET are limited to the range of scales
k € [6.95-107%,0.35028] Mpc~!, although it can make power-law extrapolations on both
sides.

4.4.2 The VDG model

This model differ from the EFT approach only on its treatment of redshift-space distor-
tions. While EFT performs a full expansion of the real-to-redshift space mapping, VDG
partly retains the non-perturbative nature of this mapping including the exponential-type
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PDF (damping factor) for the pairwise velocities. The model was originally proposed in [139]
to describe the matter power spectrum in RSD, in [60] it is referred as VDG due to its relation
to the velocity difference generating function to account for the virialized velocity impact via
an effective damping function.

The VDG model implemented in COMET is very complex so in sec. 2.5.1 we summarize the
key points from [60], we encourage the reader to check this reference if they want a even more
detailed explanation. In sec. 4.6.3 we present and give a brief description of the space of
COMET’s parameters that we will use to perform the MCMC chains with MultiNest.

4.5 Simulations

4.5.1 Nbody simulations

We take our data from the General Relativity and f(R) Modified Gravity mock presented in
[16]. The f(R) simulation was obtained using the cosmological simulation code MG-GADGET3,
which is a modification of the code P-GADGET3 that allows to run collisionless simulations
in the Hu-Sawicki f(R)-gravity model. Four collisionless cosmological simulations were con-
ducted. Each simulation was run twice: once using the f(R) model and once with a ACDM
cosmology, both utilizing identical initial conditions. In this paper we use the pair of sim-
ulations with the higher resolution placing 20483 particles in a 768 Mpc/h sidelength box,
which give a mass resolution of Mp,rs = 3.6 10° Mg /h. The mocks have a fiducial cosmology
following [6] cosmology of €, = 0.3089, Qx = 0.6911, O = 0.0486, h = 0.6774, og = 0.8159
and ns = 0.9667.

To solve the equation for the scalar degree of freedom in modified gravity (Eq. 4.2), MG-
GADGET applies an iterative Newton-Raphson method combined with multigrid acceleration
on an adaptive mesh refinement (AMR) grid. Instead of solving directly for fg, the code
solves for u = log(fr/fro) to avoid unphysical positive values of fr in the simulation, a
technique first introduced by [117]. Once fg is determined, it is used to calculate an effective
mass density, incorporating all f(R) effects, including the chameleon mechanism:

Opet = =0p — T&R. (4.34)

The total gravitational acceleration can then be computed by adding this effective density
to the real mass density and using the standard Tree-PM Poisson solver implemented in P-
GADGETS3.

Each simulation includes a 2D lightcone output, consisting of 400 HEALPIX maps [76] be-
tween redshifts z = 80 and z = 0. These maps, spaced evenly in lookback time, have a
resolution of 805,306,368 pixels. They are constructed using the ’Onion Universe’ method
[67], where the simulation box is repeated in all directions to cover the volume up to a given
redshift z;, and particles within a thin spherical shell at z; are binned onto a HEALPIX map.
The shell thickness is chosen to ensure space-filling lightcone output. From this lightcone
HEALPix maps, the convergence maps are generated for each redshift bin from which all the
lensing properties for all the galaxies of the catalog are extracted, like the deflection angle
and the cosmic shear [85].
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For the simulations a 3D halo catalog is generated on the fly. Halos are identified using
a shrinking sphere method applied to objects found by the Friends-of-Friends (FOF) halo
finder in P-GADGET3. The catalog stores properties such as the halo’s mass, velocity, center
of mass, and tensor of inertia, along with their positions. The simulations also produce time-
slice outputs and halo catalogs generated using the SUBFIND algorithm [135].

4.5.2 Galaxy mocks

The galaxy assignment method used for the simulations of this paper are described in detail
in Tutusaus et al. (in preparation). Below we summarize the main steps in the galaxy mock
production and calibration. Following [63], the galaxy population is added to these halos
based on a combination of models: the Halo Occupation Distribution (HOD) and Halo Abun-
dance Matching (HAM), following recipes and strategies from [32] and [19]. In this setup,
the model includes two key parameters for populating galaxies within each halo. The first
parameter, M7, establishes a mass threshold that controls the presence of central galaxies in
the halos. For each halo that surpasses this mass threshold, a central galaxy is assigned. The
second parameter, ALys, introduces scatter in the pseudo-luminosity assigned to galaxies,
which helps match the observed galaxy distribution and luminosity scatter seen in the survey
data. Satellite galaxies are then assigned to each halo following a Poisson distribution, and
they are positioned according to a Navarro-Frenk-White (NFW) profile within each halo to
approximate the realistic clustering patterns.

After generating this initial galaxy catalog, calibration is applied to ensure that the mock
galaxy catalog closely mirrors observed galaxy clustering statistics [63]. This calibration
involves optimizing the M7 and ALj; parameters across tomographic bins that represent dif-
ferent redshift intervals. An automated calibration process is used, employing a differential
evolution algorithm to find parameter values that minimize the difference between the angu-
lar correlation function measured from the mock catalog and that from the real data. This
angular correlation function is computed over three specific angular scales, chosen to best
capture the clustering signal.

Due to computational constraints, the calibration is initially performed using a subset of five
mock datasets. The differential evolution algorithm refines the parameter values iteratively,
adjusting the clustering pattern in the simulated catalog to achieve a close match with the
actual survey data. Once this process achieves satisfactory accuracy across the redshift bins,
the calibrated parameters are applied to the entire set of simulations, yielding a galaxy cat-
alog that faithfully represents the spatial distribution and clustering properties observed in
the universe.

The F5 and the GR mock data are found on separated datasets with identical structure. As
shown in [13], most of the differences in dark-matter clustering between f(R) and GR models
appear at low redshift. Therefore in our analysis we study the Eg estimator in 3 redshift
bins at z < 1. In particular we choose bins centered at z = 0.35, 0.55 and 0.8, each one with
bin-width of A, = 0.1. The lensing source sample is selected at z = 1.0 with a bin-width of
A, = 0.2. We always select all the galaxies over the full sky within each case, imposing a
relative magnitude cut on the SDSS r-band of r < 24.

In order to test the robustness of our results to sample selection, we select six different
galaxy samples: 1) the full sample of galaxies, which is our baseline or reference case, 2)
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GR MG
Observed . N? densit Angular . N¢ densit Angular
Sample Redshift N galaxies (h/Mpc)3y densitfr (sr7h) N® galaxies (h,”l\'Ip(:)3y densitff (sr71)
0.35+£0.05 | 125,758,470 | 4.35 x 102 1.00 x 107 119,326,008 | 4.13 x 102 9.50 x 106
All galaxies 0.55+0.05 | 171,038,806 | 3.01 x 102 1.36 x 107 182,214,423 | 3.21 x 102 1.45 x 107
0.80+£0.05 | 71,500,296 | 7.94 x 102 5.69 x 106 75,675,455 | 8.41 x 1073 6.02 x 106
0.35+0.05 | 73,832,083 | 2.55 x 102 5.88 x 106 76,231,335 | 2.64 x 102 6.07 x 106
Central galaxies | 0.55+0.05 | 117,723,717 | 2.07 x 102 9.37 x 106 124,580,224 | 2.19 x 102 9.91 x 106
0.80+£0.05 | 55,051,493 | 6.12 x 103 4.38 x 106 61,317,982 | 6.81 x 1073 4.88 x 106
0.35+0.05 | 42,963,500 | 1.49 x 102 3.42 x 106 31,651,738 | 1.09 x 102 2.52 x 106
Red galaxies | 0.55+0.05 | 47,592,520 | 8.38 x 10~° 3.79 x 106 46,889,007 | 8.26 x 1073 3.73 x 106
0.80+£0.05 | 15828156 | 1.76 x 103 1.26 x 10° 16,745,570 | 1.86 x 1073 1.33 x 10°
0.35+0.05 | 67,289,748 | 2.33 x 1072 5.35 x 106 70,419,462 | 2.44 x 1072 5.60 x 106
Blue galaxies | 0.55=+0.05 | 105,853,959 | 1.86 x 102 8.42 x 106 115,424,023 | 2.03 x 1072 9.19 x 106
0.80+£0.05 | 52,725,554 | 5.86 x 1073 4.20 x 106 56,066,342 | 6.23 x 1073 4.46 x 106
0.35+0.05 | 84,652,259 | 2.93 x 102 6.74 x 106 87,599,150 | 3.03 x 1072 6.97 x 106
Bright galaxies | 0.55+0.05 | 51,431,683 | 9.06 x 103 4.09 x 106 53,406,408 | 9.41 x 1073 4.25 x 106
0.80+0.05 | 3,302,610 3.67 x 1074 2.63 x 10° 3,581,404 3.98 x 1074 2.85 x 10°
0.35+0.05 | 19,848,022 | 6.86 x 103 1.58 x 10° 10,869,529 | 3.76 x 1073 8.65 x 10°
Faint galaxies | 0.55+0.05 | 84,989,583 | 1.50 x 1072 6.76 x 106 93,461,750 | 1.65 x 1072 7.44 % 10°
0.80+0.05 | 58,350,416 | 6.48 x 1073 4.64 x 106 61,392,659 | 6.82 x 1073 4.89 x 106
Source galaxies | 1.0+0.1 58,903,889 | 3.28 x 1073 4.69 x 106 64,311,850 | 3.58 x 103 5.12 x 106

TABLE 4.1: Table with all the galaxy: count number, number density and
angular density; for each sample and gravity simulation.

only the central galaxies of the halos, 3) a red galaxy sample, 4) a blue galaxy sample, 5)
a faint sample, selected by imposing a magnitude cut, 23 < r < 24, 6) a bright sample,
obtained with a relative magnitude cut of r < 22.5. For the color and central/satellite
classification, CosmoHub already has this information for each galaxy for both catalogs. The
color classification is defined using a g — r cut [47]. In table 4.1 we present the number of
galaxies and number densities for both catalogs for each galaxy sample and redshift bin.

4.6 Methodology

In this section we specify how we calculated the E¢ estimator for both catalogs (F5y GR). The
expression in Eq. 4.23 cannot be directly calculated since the quantities involved correspond
to fields. A good alternative is to use the 3D power spectrums to estimate E¢g with observables
[122, 152]:

E(;(k Z) _ c2pv2(¢—¢)9(k’z)
’ SHZ(1+ 2)Pay(k, 2)’

(4.35)

where Py2(,,_g), 1s the galaxy and gravitational potential perturbations cross-power spectrum,
V2(1p—¢), and Py, is the galaxy-peculiar velocity cross-power spectrum, while the hats denote
estimates based on observable quantities. We can already tell that the estimator does not
depend on the galaxy bias since ]599 o by and pV?(w—qS)g x by as well. From Eq. 4.26 we get
that:

VA~ 0) = S Himo(L + 2)lk, )y (k, ) + 119 (4.36)

which fortunately is true for both GR and f(R) so we can change the divergence velocity-
galaxy correlation by: (V2(v — ¢)g) o (§g) o (kg), where & is the convergence, which is an
actual observable unlike §. Later we will perform the connection between this two properties
when building the final expression for the Eg. Projecting 3D power spectra into angular
quantities, we can estimate Eg as:
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_ 2026;2(¢_¢)9

nl4
Bgle) = — H2FCT (4.37)

where C’gg is the angular auto-power spectrum of the galaxy sample, while C’; W99
gravitational potential perturbations-galaxy cross-spectrum and § = f/by (since this is the
continuity equation to linear order § = —fd,) is derived from a RSD analysis at the same
effective redshift as the auto-correlation. The correlation in the denominator comes from the
approximation ng(k, z) = ,Bpgg(k, z). Under the limber approximation, the angular power
spectra can be expressed as:

AT () 1 H(z) Wi(2) -
Gy = 2/ dzc(li—)z) Xzf((z))P v2(p-e)g (ks 2)- (4.38)
2) W2(z
Cy = /dz H£ ) X;’((Z)) Pyg <k = 6;(1—(;/2’2)7 (4.39)
wo [ g, WelWoz) p () E+1/2
o= / T R <"" T o) ) (440

the last term is the convergence-galaxy or lensing angular power spectrum. The terms Wy(z)
and Wy(z) are the window function for the galaxy sample and lensing respectively and x(z)
is the comoving distance. These kernels are given by:

dN
3HZQm 0
We(z,25) = 3702’0W,$(z,zs) (4.42)

We(z,25) = (1 + 2)x(2) <1 — ;((zz))> . (4.43)

From Eqs. 4.40 and 4.39 we can tell that the dependence on the galaxy bias still cancel
out in angular notation. We have that ng x bg and ]359 x by, while the 8 term adds an
extra galaxy bias on the numerator. This bias needs to estimated in such a way that is
consistent with the Cy’s. The effective redshifts of auto- and cross-correlations for the same
galaxy sample generally differ, which may introduce a bias in the estimation of Eg. The effec-
tive redshifts for the auto and cross-correlation are given by the following expression [38, 152]:

cross __ de X_2VA[{H(2)WQ(Z)Z

o [z x2W,(2)W,(z)
auto __ fdz X_Z(Z)H(Z)C_IWQQ(Z)Z
eff deX_2(Z)H(Z)C_1Wg2(z) .

(4.44)

(4.45)
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We follow the same methodology than in [152] and we equate the effective redshift by weighting
the galaxy sample of the cross-correlation using:

. dN* dN
Wg = dz wa(z) (446)
with: 1
wx (z2) = Wy— , 25
&)= W (25)
where:
W7 (2)
I = /dz ~ , (4.47)
Wi(2)

where I is selected to normalize the weighted galaxy distribution | Wydz = 1. Following still
the steps in [152] , we use this re-weighting and get express Eq. 4.37 as,

C,VQ(w—¢)g ~ H(zeg)I deH(z)W;(Z)]E’K (k, 2)
¢ ¢ X2 (%) ! (4.48)
_ H(Zeff)IC;g*’
c

where we have used that Wy (z) = Wy(2)wx(z) and pVQ(zpﬂz;)g ~ Py,, which holds for both
GR and f(R) (Eq. 4.36). Here, the term C;%, equivalent to the expression in brackets in
Eq. 4.48, represents the cross-correlation measurement using the reweighted galaxy sample.
The term H(z) is moved outside the integral as it varies slowly over the redshift sample.

The final estimator for E¢ is given by [152]:

R CK,g*
Eé(zeff) ~ F(zeff) £ > (4.49)
iy
where:
2cH (zoft) W2 (2)
r = 4.
(o) = 5 / et (4.50)

and zeg is the effective redshift of the observables as defined by Eq. 4.45.

In Figure 4.3 we can appreciate how the f(R) boost on C7? is the same than in C}? for any
redshift. This confirms the theoretical prediction from Eq. 4.32 since the MG boost will
cancel out on Eq. 4.49 leaving all the discrepancy with GR on the growth rate. For the
f(R) model however, re-weighting the Cys does not change the fact that the Fg estimator
is only sensitive to the underlying gravity model through the growth rate (i.e, is not sensi-
tive to the ratio between the galaxy-lensing cross-correlation over the galaxy auto-correlation).

This definition of the Fg estimator is the one considered more accurate until now as claimed
by [152] when taking observable quantities. Previous to this work, most analysis were using
the expressions found by [122] and [123], where they average the redshift instead of using the
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FIGURE 4.3: F5 boost (By ratio, analogous to Eq. 4.11 impact on the Cjs
for auto-galaxy correlation (continuous line) and convergence-galaxy cross-
correlations (dashed line) for the 3 redshifts bins. In the plot below, we have
the ratio between the dashed and continuous line above for each z. We can
appreciate how the boost is practically the same for each case. The theoretical
Cys from the plots are obtained with pyCCL. The F5 boost, implemented on
the 3D matter power spectrum, is calculated with e-mantis using a F5 gravity

more accurate effective redshift. [123] proposes a correction term but it can only be obtained
numerically using N-body simulations. Without this correction the estimated value was dif-
fering a 5% from the predicted value for Eg.

[152] already compared the accuracy of Pullen and their own estimator and showed that
their estimator has an accuracy better than 3% on all scales. We also calculate the relative
difference between the analytic value calculated with Eq. 4.27 and the value obtained with
theoretical predictions from pyCCL using Eq. 4.49. To calculate the Cys and I', Eq. 4.50,
we use the fiducial values of the simulations, the n(z) from our full sample for GR and F5
respectively and, since the linear galaxy bias is irrelevant for E¢, we leave the default value of
1. For the F5 calculation we use e-mantis [138] to estimate the Cys boost, although as shown
in Figure 4.3 this is also irrelevant when doing the ratio, and MGrowth to estimate the scale
dependent growth rate. The Pullen estimator is calculated following Eq.(16) from [123] where
they use C’; 9 instead of C’; 9% and a different I which does not take into account the effective
redshift. In Figure C.1 we show the accuracy results and we find that evidently, the Wenzl
estimator is more accurate than the one by Pullen. It depends on the redshift, but in the two
extreme cases the relative difference for the Pullen estimator is doubled over the relative dif-
ference of the Wenzl estimator. One thing that we notice is that the accuracy gets worse as we
go to higher redshifts, although for the Wenzl estimator the difference does not surpass the 2%.
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In the following sections we detail the calculation of all the components needed to calculate
the E¢ from expression 4.49.

4.6.1 Linear galaxy bias

The linear galaxy bias by = b1, can be obtained from the RSD analysis using clustering mul-
tipoles. But since we want to break as much as possible the degeneracy of the parameters on
the RSD analysis we estimate the linear galaxy bias in a separate step in order to obtain an
estimate of b; that we can use to constraint the values on the RSD analysis.

In order to estimate the galaxy bias, we calculate the galaxy angular auto-correlation and
compare with theory predictions from the public code pyCCL?.

The calculation of the galaxy angular auto-correlation is performed with the routine anafast
from the HEALPY? package. For each sample (case, redshift, catalog) we generate a HEALPix
map with an nside=1024 where each pixel corresponds to:

5= piz — N (4.51)

n

where np;, is the number of galaxies that fall inside that pixel, while 7 is the mean galaxy
value of all the pixels. Although we are working with full sky, which would indicate that
we do not need any mask, we still generate 100 masks to define Jackknife regions. Each
Jackknife mask extracts a different 1/100 same size region of the sky for which we use a k-
means algorithm called kmeans-radec* to select the regions. The Cys are calculated with the
software POLSPICE® for each Jackknife region using a corresponding pizelwindow for the given
nside. POLSPICE calculates the Cys for each individual ¢, but this is normally very noisy so
we average the signal by binning the results in equidistant bins of A¢ = 20 between £,,,;,, = 30
and £,,q, = 1024. We subtract the shot noise to the binned values using:

47 1

Ngal ' pixelwindow(£)*

Nshot = , (4.52)

which is the standard definition of area/ Ngal, With ngq; being the total number of galaxies (see
Table 4.1) and the area is given by the full sky (47 radians) with a correction by the pixel
window to be consistent with the correction done to the Cjs.

The binned values are then averaged over each Jackknife region to obtain the final ng s, while
the Jackknife covariance matrix is given by:

Nig—1 Nk ~ ~
B LS (o) - Cubicuo); - o) (4.53)

ij=1

o5, (CY) =

*https://github.com/LSSTDESC/CCL/blob/master/readthedocs/index.rst
3https://healpy.readthedocs.io/
‘https://github.com/esheldon/kmeans_radec
"https://www2.iap.fr/users/hivon/software/PolSpice/


https://github.com/LSSTDESC/CCL/blob/master/readthedocs/index.rst
https://healpy.readthedocs.io/
https://github.com/esheldon/kmeans_radec
https://www2.iap.fr/users/hivon/software/PolSpice/

4.6. Methodology 109

where the top bar indicates the mean value over all the Jackknife regions while the suffix ¢, j
indicates i, j-region calculated Cy.

Using the code pyCCL we obtain the prediction using the fiducial cosmology of the mocks
since we wish to only estimate the galaxy bias in this step to have the best constraints pos-
sible. We use the CAMB code to compute the transfer function and the non-linear power
spectrum given by Halofit [140]. The n(z) for the prediction are obtained from the same
sample and it is binned in 15000 equidistant z-bins in order to have a precise definition of the
n(z). We integrate the Cys exactly, ie, without the Limber approximation in order to have a
more accurate estimation on linear scales.

[cgs
b = 07256 (4.54)

where Cgé is the matter angular power spectrum. We can obtain the covariance matrix of b;
directly since we do not assign any error to C’f‘;. With the covariance matrix we can estimate
the bias as the E value that minimizes the following y? since we assume the Jackknife errors
to be Gaussian:

The linear galaxy bias is estimated as:

X2 = (b1 = )" (07;(01) [lmin : maz)) ™" (b1 — E) (4.55)

where by is the mean value of by given by Eq. 4.54 in the region [€min : fmaz] considered.
The £,,;n is fixed at £ = 50 while £,,,, will depend on the redshift since we need to con-
sider only linear scales. For z=0.8 we estimate the ratio between Cfg and Cg‘s deviates
significantly from the linear model at ¢ ~ 500 from which we extract that the wave-number
Ekiin < 0.119h~'Mpc by using the small-angle approximation k& ~ £/x4(z) where xq is the
commoving distance. Similarly, at z=0.35 and z=0.55 we obtain a l,,4, of 250 and 372 respec-
tively. The values of b; obtained for each sample are shown in Table 4.2, while the individual
ratios for the Full Sample are shown in Figure 4.4. The errors are given by the 1-¢ error, i.e.

O(b1) = b1 (X2yn) — b1(XP £ 1)

For the F5 mock data, we use the emulator e-mantis to apply the f(R) boost, with |fro| =
1077, to the matter power spectrum at each n(z) bin from which the Cys are calculated. We
also perform an extra case were we assume that the F5 mock follows GR and we estimate b;
without using the boost for this mock. As we can see in 4.2 this does not apply any change
on the linear galaxy bias which makes sense since the boost is only noticeable at smaller
non-linear scales (see Figure 4.1 or Figure 4.3). We also notice that the galaxy bias on GR is
usually significant larger than F5. The clustering is stronger in F5 so the galaxy bias is lower
to compensate in order to get a similar amplitude consistent with the simulation calibration.

4.6.2 Multipoles of the correlation function

The growth rate is completely degenerated with og when only taking into account the angular
power spectrum [152]. The multipoles of the correlation function can break this degeneracy.
Using only the monopole (¢ = 0) and the quadrapule (¢ = 2) is enough to break the degen-
eracy with the linear galaxy bias. Although the hexadecapole (¢ = 4) further breaks this
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Case z—0.35 z—0.55 z—0.8
All F5 1.047 4+ 0.004 | 1.104 £ 0.003 | 1.305 £ 0.002
All GR 1.077 &£ 0.004 | 1.147 £ 0.003 | 1.353 £ 0.002
Central F5 0.778 £ 0.003 | 0.856 & 0.002 | 1.185 4+ 0.002
Central GR 0.815 £ 0.004 | 0.895 £ 0.002 | 1.213 4+ 0.002
Red F5 1.246 4+ 0.006 | 1.342 £ 0.004 | 1.393 £ 0.003
Red GR 1.282 4+ 0.006 | 1.441 £ 0.004 | 1.639 £ 0.003
Blue F5 0.830 £ 0.004 | 0.888 £ 0.002 | 1.140 4+ 0.002
Blue GR 0.825 £ 0.004 | 0.900 £ 0.002 | 1.158 4+ 0.002
Bright F5 1.057 + 0.004 | 1.196 4 0.003 | 1.705 £ 0.004
Bright GR 1.090 4 0.004 | 1.233 £ 0.003 | 1.780 £ 0.004
Faint F5 1.047 4+ 0.004 | 1.041 £ 0.003 | 1.232 £ 0.002
Faint GR 1.067 4+ 0.004 | 1.086 + 0.003 | 1.278 £ 0.002
All (F5 assumed as GR) | 1.047 &+ 0.004 | 1.104 £+ 0.003 | 1.305 £ 0.002
TABLE 4.2: Linear galaxy bias values and standard deviation for all the dif-
ferent cases studied.
GR mock linear galaxy bias F5 mock linear galaxy bias
e b —— z=0.55 e b —— 2=0.55
1.5 —— z=035 —— z=0.8 15 —+ z=035 —— z=0.8
£ g 149
g g
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FIGURE 4.4: Linear galaxy bias estimated as root squared ratio of of the
galaxy-galaxy and matter-matter Cys, the latter obtained with pyCCL (and
also e-mantis for F5) for the three redshifts bins using the full sample. The
black lines show the linear regions we have considered to estimate the linear
galaxy bias. The dashed lines show the value of the estimated linear galaxy bias
for each redshift using x? minimization. The left plot shows the results for the
GR mock while the right plot for the F5 mock. The errorbars are given by 100
Jackknife regions. The shaded areas correspond to the theoretical Gaussian

€rror.

degeneracy with additional information, we have decided to leave this contribution out of the
analysis as its measurement in our mocks turns out to be very noisy in practice.

We calculate the multipoles using the recent code Fast-Correlation-Function-Calculator [161]
due to its high calculation speed. Even though the code allows the direct calculation of the
even multipoles we decide to calculate the 2D anisotropic correlation function £(r, ) since
this will be useful to calculate the Jackknife error. The parameter u represents the cosine of
the angle between the line of sight direction and the direction between the galaxy pairs.
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We use 20 radial projected bins with a s, = 0.5 Mpc/h and a Sy = 200 Mpc/h. We
use 200 bins on the p parameter which goes from [0, 1] since the code only calculates even
multipoles which are symmetric, which means that Eq. 2.91 should be multiplied by 2.

Similarly to the linear galaxy bias, the errors are calculated using Nj;, = 100 Jackknife
resampling of the data. We use once again the code kmeans-radec to generate 100 equidistant
regions on the sky and we assign each galaxy to a region. In order to speed up the calculation
instead of performing the calculation of each individual Jackknife region we take a different
approach. We calculate the £(r, 1) correlation of the full dataset with each individual region,
i.e. each region that is subtracted from each Jackknife region, we then subtract the pair count
of this crosscorrelation from the full dataset auto-correlation. We also have to do the same
for the random dataset, which we generate with a quantity of 2 times the data. Since we
are using the full Landy-Szalay estimator [103] we also need to subtract the cases for the DR
terms, where D corresponds to the data and R to the randoms. The final estimator for each
Jackknife region would be given by:

(DD — DDZ) — (2DR — DR; — DzR) + (RR — RRl)
(RR — RR;)

€, = (4.56)

where the suffix on D; (and R;) correspond to the data (random data) of the region i not
included on Jackknife region N;. Each set of pairs in expression 4.56 are normalized by di-
viding individually the total number of pairs for the total number of data points, in this case
galaxies, of each dataset that compose the pair. This method has allow us to calculate the
Jackknife errors fairly quick by not having to repeat several common pairs in each region.

Since calculation are done in configuration space the definition of the multipoles is given by:

1
o) = P2 [ et Pl (4.57)

where P is the Legendre polynomial of degree ¢. The Jackknife covariance matrix is obtained
in a similar fashion than in the previous section.

In Figure 4.5 we show the Jackknife covariance matrix for the GR mock at z=0.55 for the joint
monopole and quadrupole. We will also fit the results using a Gaussian theoretical covariance
matrix, also shown in the same figure, obtained with the code BeXiCov® with the same
simulation volume and particle density. We can check that both matrices are similar, specially
when considering the global amplitude, which is a good indicator that the Jackknife resampling
was correctly generated. Both matrices are very close to be singular which may complicate
the inversion for likelihood determination. We find that despite this, both matrices can be
properly inverted using the python module mpmath”. Although we find that the theoretical
covariance, which is more close to singular than the Jackknife one, have complications to
correctly estimate the likelihood of the chains so we needed to apply a negligibly perturbation
of a 0.1% increase to the diagonal elements. We have checked that using the SVD and Cholesky
decompositions does not improve this, and we need to add this same small perturbation to
the diagonal elements to be able to invert the covariance matrix.

Shttps://gitlab.com/esarpal/BeXiCov/-/tree/main
"https://mpmath.org/
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FI1GURE 4.5: Monopole-quadrupole joint covariance matrix of the multipoles of

the correlation function for the GR mock z=0.55 all galaxies case. The values

are in configuration space and the bins represent the 24 linear s-bins chosen

for the full range [20,140]Mpc/h. Left figure shows the Jackknife covariance

obtained from the data while the right plot shows the theoretical Gaussian
covariance obtained with BeXiCov.

4.6.3 Estimating the growth rate using MCMC

With the multipoles calculated, we need a method to compare them to theoretical predictions
in order to parametrize the growth rate and the galaxy bias. As previously mentioned, we use
the VDG model implemented in COMET-EMU [60] to obtain a reliable estimate of nonlinear
effects. Our goal is to calculate the growth rate at both large and small scales to test for
scale dependence in f(R) gravity. We also perform the calculation on both scales on GR in
order to check that there is no scale dependence in this case as expected which would validate
our methodology. For F5, we simply multiply the final multipoles by the boost provided by
e-mantis at the respective redshift z. However, since e-mantis only calculates the boost for
the dark matter power spectrum, we are uncertain whether it can be directly applied to the
final multipoles, which account for galaxies and RSD effects. Unfortunately, COMET does
not allow the input of a custom matter power spectrum outside of those already incorporated
into the code, which limits our ability to modify this aspect of the analysis. However, we
expect the approach to perform well as an approximation. Looking at appendix 2.5.1 and the
final expression for the multipoles wedges, Eq. 2.86, it appears that the relationship remains
linear with the matter power spectrum, as the galaxy power spectrum terms, Eq. 2.78, are
also linear with the matter power spectrum. The final expression for the multipoles, Eq. 2.91,
integrates the wedges over the angle u, but since the boost is independent of i, we can simply
exclude it from the integral.

Estimating the growth rate at small scales can be quite challenging since we do not have many
data points to work with and there are more parameter degeneracy due to the higher amount
of non-linear parameters on top of linear ones that affect all scales. For this reason we try to
constraint as many parameter as we can like the linear galaxy bias in the previous section.
Fortunately COMET-EMU let us work with a reduced parameter space from which we select
the following:

e by : We will use a Gaussian prior centered on the value of the linear galaxy bias
calculated with the Cys and with a deviation given by the obtained standard deviation
of the measurements. Although we also tried to set it as a free parameter between [0.5,2]
which did not produce significant changes on the posteriors.
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f : Since the growth rate is the parameter of interest, we leave this parameter as
completely free between the broad limits of the emulator ([0.5, 2]).

012 : Since we are not assuming a cosmological model with COMET-EMU for any of the
mocks we can leave this parameter as a free parameter. Although in the final setup we
ended up fixing this value to the fiducial value of the mocks, which is similar to what
[30, 152] did in order to avoid degeneracies between f, by and og. For f(R) this should
not be a problem as mentioned in a footnote in [138] the og (and consequently o12) are
considered the same for both ACDM and f(R).

b2 : The second order bias can be estimated from the Cys using non-linear models
like Eulerian or Lagrangian Perturbation theory. In some other analysis, is set with a
Gaussian prior centered at 0 with a variance of 1. We tried some of these approaches,
but we decided to leave it as a free parameter (between [-2, 2|) since we have checked
our analysis are robust to different choices for the prior range used.

v2,7v21 : The tidal biases are highly non-linear parameters, that in most cases are
completely degenerated with by and between themselves. In GR exists a empirical
relation with the linear galaxy bias [139]: 7o = 0.524 — 0.547b; + 0.046b? and o1 =
(2/21)(by — 1) + (6/7)y22, which helps break the degeneracy. Originally, we tested that
fixing the values of the tidal biases with the galaxy bias helped when using only the
monopole and quadrupole, since otherwise the degrees of freedom (when not using the
hexadecapole) seemed to be very small for the amount of parameters and we obtained
many projection effects between the biases. Although when we fixed the value of 19,
the degeneracies with or without fixing the values of the tidal bias disappeared so we
opted to leave them as free parameters since it is unclear whether these relations are
valid for our MG model.

Co,C2,C4 : The counterterms are implemented to correct the assumption of a zero
energy-stress tensor. So these parameters are defined as non-linear parameters but
they actually affect significantly all scales depending on their value. Each ¢; parameter
affects mostly the corresponding ¢ = ¢ multipole, while its effect on the other multipoles
is negligible unless its value is extremely high. Since we opt to leave the hexadecapole
out of the analysis we do not consider ¢4, otherwise we add degeneracy to the other
parameters.

ayir : This parameter is exclusive to the VDG model and it is related to the virialized
velocities. Since it only appears on Eq. 2.71 as a squared quantity, we define so we need
only take positive values. We set the limits given by the emulator of |0, §].

dlo, qtr : The AP parameters quantify how well we recover the fiducial or input cosmo-
logical parameters used in our simulations.

We use the code MULTINEST to perform the MCMC fitting with 1200 live points, a sampling
efficiency of 0.8 and an evidence tolerance of 0.01 (this settings are guided from previous
analysis like [4]). As mentioned above, we do not use the hexadecapole since we considered
to be very noisy so it would not bring much more additional information to our analysis.
Although one last consideration is that COMET-EMU obtains predictions in Fourier scale (k-
wavenumbers) and our data is in configuration space. Then we use the algorithm hankl® to
convert the comet multipoles from Fourier space to configuration space using a Fast Fourier
Transform for each evaluation:

8https://github.com/minaskar/hankl/blob/master/docs/source/index.rst
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Gr) = /0 " K2k (2) Py(k)ju (k) (4.58)

where j; are the Spherical Bessel function of order I. To avoid numerical instabilities in
the above integral, the COMET multipoles are first smoothed by multiplying by the factor

exXp (_ (k : Tsmooth)2>7 where Tsmooth = 0.29 MpC/h.

The reason behind using configuration space instead of Fourier space to compare directly
with COMET are the stochastic terms (see sec. 2.5.1). In configuration space these terms
disappear since they average out. This helps reducing the parameter space eliminating three
terms: N(f , Nf 2 NQI? o- The first term Néj is completely degenerated with parameters like by
that control the full amplitude of the multipoles while the other two are partially degenerated
with parameters that depend on the scale. We performed a quick test using pypower? to
calculate the multipoles in Fourier space, but parameter fitting was unsuccessful due to the
high amount of parameters. On top of that the multipoles in Fourier space that were obtained
were very noisy at large scales which made parameter fitting more difficult. So we decided
to continue our analysis only on configuration space despite other potential issues that this
choice may bring, as we shall comment below.

For the small scale we select the data points from [20, 50] Mpc/h, while for the large scales
we select the data points from [50, 140] Mpc/h for all redshifts. This leaves us with 6 data
points for small scales and 18 data points for large scales. We performed some several tests by
fitting the COMET parameters with a data vector (DV) generated with the COMET itself.
We deduced that for small scales 6 data points were not enough, even in an idealized case like
this, to correctly estimate and converge so many parameters. For this reason we came up with
the following methodology: 1) We first perform a fit on the full range of scales [20, 140] Mpc/h
with everything as a free parameter but by, which contains a Gaussian prior from the Cys as
detailed earlier, and s12 which is fixed to the fiducial value, 2) then we use the obtained values
for by, ba, ¥2, Y21, co and ¢y as Gaussian priors, with their corresponding standard deviation
as the variance of the Gaussian, for the parameters of large and small scale fits. Using the
COMET DV we obtained good results using this methodology so it is the one we use for the
final setup.

4.6.4 Calculating the lensing power spectrum

Having C’é’g already calculated when estimating the linear galaxy bias, the last ingredient to
calculate the Eg estimator is the C’Z 9% corresponding to the weighted lensing angular power
spectrum defined in Eq. 4.48.

The procedure is the same than when calculating the C7?, with similar HEALPix maps and
Jackknife regions. In this case we are dealing with a cross-correlation of the source sample
at z=1.0 (see Table 4.1) with a Az = 0.2. We have chosen this particular source z-bin as a
working example, but we do not expect our main results to change significantly by selecting
another source sample. The convergence k is directly obtained from the catalog for each
galaxy and it is averaged on each pixel as the average convergence value of all the galaxies
inside that pixel.

https://github.com/cosmodesi/pypower
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Since we are using the weighted estimator C;9* from [152] Eq. 4.48 we have to account for
re-weighting of the galaxy sample. For that we just calculate w(z) using Eq. 25 and we
assign to each source galaxy a weight corresponding to wy (since it is already normalized
by definition) at its respective z. Then we proceed as in sec. 4.6.1 where ny;; Eq. 4.51 is
given by the average value of the weight of all the galaxies inside that pixel, the same goes to n.

Since we are dealing with a cross correlation this time we need not subtracting any kind of
shot noise.

4.6.5 Calculating the F; estimator

In order to combine the previous observables that comprise the E estimator we use a similar
approach than in [152] with the ratio distribution. As mentioned in that reference, the
ratio between Gaussian values (Jackknife resampling, which mostly contains Gaussian sample
variance directly from the data) it is not guaranteed to be also Gaussian so it is convenient
to do the ratio distribution. They perform a double ratio distribution by first combing the
angular power spectra as:

R=TC;%/CY, (4.59)

which includes the I" parameter, Eq. 4.50, which we treat as factor without attributed error,
just like [152]. Then the second ratio distribution is perform by combining R with the RSD
parameter as R/ = E¢. We instead perform only one ratio distribution since we directly
combine the observables C;9*/C{ given that we use the same collection of Jackknife masks
for each kind of Cy. In this regard, we are actually doing the ratio in each Jackknife region and
then obtaining directly the Jackknife variance for this ratio. This a luxury that [152] could
not afford since they did not have enough area to calculate the Jackknife properly they had
to resort to the theoretical Gaussian covariance estimate. Then the probability distribution
of the E¢ estimator is given by the ratio distribution of 8 = f/b; and R = T'C;"/CJ?. The
ratio distribution is then:

pio(EclCr?, €)= [ 4818 br(Ee - a(®) (4.60)
w9

where pp is considered a multivariate Gaussian distribution with mean given by Cfg;)
X

calculated with the Njx = 100 regions for each of the ¢ £-bins. The variance of this distribution
is given by:

N,
o2 = Nox = 1 zﬂf Cri _ Cri CLH’? _ Cﬂ (4.61)
Yoo Nk g |G \CGE)| |G \C |

4.7 Results

In this section, we provide the final results for the F¢ estimator and the observables that
comprise it for each sample analyzed in this study.
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4.7.1 Angular power spectrum ratio

Below we discuss how we compute the parameter R, defined in Eq. 4.59. The I' parameter,
Eq. 4.50, uses the n(z) computed from the mock catalogs, that enters in the calculation of
Wg. For the rest of parameters we use the fiducial values of the simulation to set Hy, H (zcf)
and to calculate the comoving distances needed for W,,. The mean effective redshifts for the
samples at z = [0.35,0.55,0.8], are, respectively, zeg = [0.353,0.546,0.791]. We obtain the
same results using Eqs. 4.44 and 4.45. In view of this, we do not assign any additional theo-
retical error to the value of I' in relation to the total error budget of Fq.

In order to build the Eg estimator, we decompose it in two different contributions. The first
involves the ratio of (real space) angular power spectra, as given by Eq. 4.59, and a second
term given by the linear growth rate. Focusing on the first of these contributions, we have
already shown above the results for the galaxy auto-correlation, C?Y, when calculating the
linear galaxy bias in Figure 4.4. We then include the cross-correlation between source shears
and lens galaxy positions, C;?, to estimate the ratio estimator, R. More interestingly, we can
define a (linear) galaxy-bias independent estimator, R, = b1 R, where the linear galaxy bias,
b1, is estimated using the full range of scales (within the scale-cuts used, see Fig 4.4). Within
the approximation that the galaxy bias is linear (for the range of scales considered here) R,
does not depend on scale for both gravity models used (F5 and GR). This is shown in Figure
4.6 where most measurements of Ry are within errors for all redshift bins explored, and thus
consistent with the theory prediction. At larger scales the values fluctuate more due to the
sample variance which in turn increases the error-bars.

On the other hand, using our small-scale cut set in configuration space, sy, = 20 Mpc/h,
we can define the corresponding largest multipole at each redshift bin. Using Eqs. 4.20 and
4.21, we get £ =~ [150,225,300] at z=[0.35, 0.55, 0.8]), respectively. We assume that within
the resulting multipoles ranges (see Figure 4.4), the galaxy bias is approximately linear, what
is in agreement with the fact that we observe no deviation from a scale-independent behavior
for the ratio estimator, Ry (see Figure 4.6). We note that this is consistent with our assump-
tion that our Eg gravity estimator is also defined on linear scales. The observed multipole
bin-to-bin fluctuations largely cancel out when taking the average over the range of scales
of interest (i.e., for the used split in the so-called" large" or "small" scales in the plot). In
fact, the statistical average for Ry follows a ratio distribution (see Eq. 4.60) with 8 = 1/b;.
Although we see that for F'5, in the low redshift bins, some small-scale values tend to be above
the theory prediction beyond the 1-o errors, overall the measurements agree with theory.

The errors attributed to Rp come mostly from the C’fg , since b; and C’fg have negligibly
small uncertainties. In particular, the statistical errors scale with the lensing efficiency (see
Eq. 4.43), i.e, the larger the lensing signal, the smaller the errors in Cch9 , and vice versa.
Given that we choose our source sample at z = 1.2, i.e, at a distance ~ 2600 Mpc/h, the
lensing efficiency peaks at half this distance, ~ 1300 Mpc/h. Therefore, given that the lens
planes for the three redshift bins (z = [0.35,0.55, 0.8]) are located at ~ [960, 1430, 1940]Mpc/h
respectively, the highest z-bin has about a factor of 2 lower signal and correspondingly larger
statistical error in its measurement of the Cfg . In turn this reflects in a larger error in Ry, as
shown in Fig 4.6.
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FIGURE 4.6: Results for the growth rate independent part of the Eg estimator
for the all galaxies case. The white filled data points show the values at which
the Cys are binned. The black, blue, and red data points represent the full,
large and small scales mean result, respectively. The solid vertical black line
represents the scale at which we separate the small and large scales.
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4.7.2 RSD [ parameter fitting results

The redshift space contribution to the Eg estimator is given by the linear growth rate-related
quantity, 8, see Eq. 4.49, which is a derived parameter. It is calculated from the fitted poste-
rior distributions for the linear galaxy bias, b1, and the linear growth rate, f, using an Markov
chain Monte Carlo (MCMC) approach with the MultiNest sampler [62|. In the upper plots
of Figure 4.7 we show the marginalized posterior profiles (over the full parameter space) for
by and f, for both catalogs at z = 0.55 (for the equivalent plots for the other two redshifts
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FI1GURE 4.7: Top plots show the contours results for b; and f and the cor-
responding derived /3 parameter for small, large and full scales for GR (Left)
and F5 (Right). The dashed lines show the predictions for f and b (estimated
from the Cys) for GR (black), and F5 small (red) and large (blue) scales. The
bottom plots show the PDF for the EG estimator for the respective scales, the
solid lines show the mean of the respective same color PDF while the dashed
lines represent the predictions of the respective same color solid lines.

check the appendix for Figures C.2 and C.3 ). We also show the density profile for 5 which
is derived from the posterior distributions of the other two parameters. We can see in these
plots that the growth rate at small scales has a variance around 3 times bigger than the other
two cases, which is expected, since there are much fewer (uncorrelated) modes available for
measurements on such small (non-linear) scales.

For completeness, in Figure C.4 and C.5 we show the posterior distribution of the full 10-
dimensional parameter space of the VDG model for the intermediate redshift bin, z = 0.55.
As shown in Figures C.4 and C.5, most of the model parameters seem to converge well al-
though we observed a double peak on the local quadratic bias parameter, by, for GR when
constrained to large scales only. We note that this is not the case for the F5 model, where
even this parameter exhibits a well defined peak, and away from zero, at variance with the
large-scale fit. The fact that this non-linear parameter shows this double peak at large scales
could be the result that these particular scales do not have enough non-linear information
to properly fit this parameter. For the rest of parameters, they seem to follow the expected
behavior. The counterterms (co, ¢z, g2, go1) are consistent with zero and the AP parameters
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FIGURE 4.8: Multipole data vectors values for the F5 and GR mock using
the all galaxy sample. The monopole is the yellow line and the quadrupole is
the green line. The best fit to the VDG model using the Jackknife covariance
matrix is plot as dashed lines for the full (black), small (red) and large (blue)
scales. The respective reduced x?2 of the best fit is shown in the legend, while
Diag(x2) is calculated with only the diagonal terms of the covariance matrix.

are consistent with 1 (although only when considering 2-sigma contours for the full scales
case) since the data vectors are using the fiducial cosmology of the mock.



120 Chapter 4. Probing gravity with non-linear clustering in redshift space

As mentioned before, for small scales we can appreciate how the contours are much bigger
for parameters such as the growth rate or the AP parameter. This is arguably caused by
the few data points included in the "small scales" range, and the large correlation between
them induced by the non-linear clustering, which results in very few effectively independent
modes to constrain the model parameters. This is usually called "projection effects" from
the prior volume of the multi-dimensional parameter space that is intrinsically largely degen-
erate and, thus, it needs many independent modes to break such degeneracies. In order to
alleviate this, we first derive Gaussian priors for the counterterms of the VDG model by first
running a MCMC chain using the full scales with fix cosmology. Then we use the derived
constraints on these counterterms to run the full MCMC chains letting both the cosmology
and contermterms parameter change for the small and large scales cases. in particular, we
have observed that this prior step is crucial to avoid a large amount of projection effects in
our constraints on the growth rate.

In Figure 4.8 we show the results for the multipoles of the correlation function alongside the
COMET theoretical data vectors using the corresponding best-fit parameters. The best-fit
shown reproduces overall the measurements, although there are discrepancies specially on
large-scales. We note however that the large covariance between scales makes the fit appear
worse than it is in practice. We can see that the quadrupole is quite noisy in comparison with
the monopole, specially at large scales. This is induced by the higher error-bars at this scales
due to sample variance. It seems that COMET can hardly fit both the monopole and the
quadrupole simultaneously. Since the monopole have smaller error-bars the MCMC chains
seem to favor fitting the monopole over the quadrupole. This is illustrated by the fact that
the monopole exhibits a good fit overall, with only a poorer model fitting around the baryon
acoustic oscillation feature at 100 Mpc/h scales. Similarly, the quadrupole is well described
by the non-linear theory model overall, except for the redshift bin at z = 0.55 where the
theory deviates from the simulation on large scales.

In order to quantify the model fitting we define a reduced x?2 test as,

2

2 X
= 4.62
Xv N — 1y ( )

where ng is the number of data points combined between monopole and quadrupole (48 for
the standard case) and n, the number of free parameters (=10 for most cases), while x? has
the same definition as in FEq. 4.55.

Overall the results for all redshift bins and scales yield large x2 values (see legends of the
different panels in Figure 4.8). This, at face value, suggest a poor fit to the theory model.
There might be several reasons for this. On one hand, the particularly small error-bars, spe-
cially at small scales, exacerbate this excess in the resulting x2 value. But this is also true,
although with somewhat lower values, for the full and large scales. This is specially surprising
for the case at z = 0.8, where the mock data vectors seem to be in very good agreement
with the best-fit, at least visually (i.e, in chi-by-eye). In fact, one would expect to obtain
better fits as we go to higher redshift where clustering has a lower degree of non-linearity.
However, one thing that seems to artificially increase the value of x?2 is that the Jackknife co-
variance is close to singular. Moreover if we only take the diagonal elements of the covariance
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matrix the value of x2 drops by a factor of 2 or more at large scales, yielding a value consis-
tent with unity in all cases, except for the GR model in the lowest redshift bin (see Figure 4.8).
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FIGURE 4.9: Comparison of the multipoles: monopole (orange) and

quadrupole (green) at small scales for GR and F5. The solid lines represent

the ratio of the data vectors while the dashed line is the ratio of the best fit of

each case (for both the ratio is defined as F5 over GR). The errors represent
the propagated Jackknife errors of each data vector.

Since it is on the smallest scales that we expect the specific gravity theory has larger impact
on the clustering (related to the non-linear power boost in the matter power spectrum in
MG with respect to GR), we further investigate in Figure 4.9, where we plot the ratio of
the data vectors and the corresponding ratio of the best fits of F5 over GR. This provides
a direct way to see to what extent is possible to distinguish between the two models. Note
that the errors, obtained with the Jackknife method applied to each catalog, are big enough
as compared to any small numerical perturbation in the ratio of the data vectors. Looking at
the correlation function multipoles ratios We find that the theory prediction for the monopole
ratios closely follow the ratio of data vectors. For the quadrupole there is some degree of



122 Chapter 4. Probing gravity with non-linear clustering in redshift space

discrepancy between theory and simulations, although not significant, given the errors. This
puts into perspective that, despite the small errors, they are still large enough to shadow
possible deviations with respect to standard gravity even for (ideal, i.e, systematics free) all
sky surveys as we model in this paper. In section 4.8 we further quantify our results from the
small-scale clustering in redshift space in terms of a null test of gravity.

4.7.3 Results for the E; estimator

Having estimated all the ingredients of the gravity estimator, i.e, the RSD 8 parameter'?, as
discussed in the previous section, and the real-space clustering ratio, R (see Eq. 4.59), we
are ready to compute the Fg statistic. In order to derive the posterior for this estimator, we
shall apply the ratio distribution, as given by Eq. 4.60.

In the plots below Figure 4.7 (and C.2 and C.3), we show the posterior PDF obtained for the
FE¢ estimator using the ratio distribution given by Eq. 4.60. We simultaneously plot the re-
sults for the small and large scales alongside the full range of scales. The E¢ estimator seems
to follow a Gaussian distribution as obtained in [152]. The corresponding best-fit values with
error-bars are provided in Figure 4.10 what provides a more direct comparison of the marginal
differences between the gravity theories fitted to the simulations. Given that the Eq estimator
is inversely proportional to the growth rate its value decreases when going to smaller scales
at a given redshift. Taking into account that the clustering ratio R, Eq. 4.59, is not expected
to change in F5 with respect to GR the (see 4.7.1), the E¢ estimator is only sensitive to the
underlying gravity theory through the linear growth rate parameter. This is illustrated in
detail in Figure 4.10 which summarizes the main results of this paper and tests the robust-
ness of them with respect to the analysis choices used, as we shall discuss in more detail below.

Overall, as shown in Figures 4.7, C.2 and C.3, the values of the gravity estimator for the full
scales of GR and F5 seem to agree with the respective prediction within 1-o errors. However,
for F5 at z = 0.8, the estimated value of the growth rate is biased low at around 2-o, but
since the value of Ry for F'5 is slightly biased high, this tends to compensate for the estimated
FE¢ value. Moreover, for this case, the GR and F5 simulation results can not be distinguished
given the statistical errors. For the other redshift bins, z = 0.35 and z = 0.55, the values for
both simulations appear to align closely with the best-fit models. While for small scales the
values are vastly over-predicted despite the larger errors, contrary to the F5 prediction. For
the redshift bin at z=0.35, it follows the opposite trend, making the estimated F5 values agree
better with the theory prediction. For completeness, we have also included the case where we
try to fit an F5 simulated data vector with a GR model. This is a direct way of testing (sort
of a "null test") how well the estimator is able to distinguish between close gravity theories
such as F5 and GR. Our results yield best-fit values to GR and F5 theory that are statisti-
cally consistent, suggesting that assuming the wrong theory might not significantly bias our
results. We have checked that even at higher redshifts (e.g, using a mock sample at z = 1 with
lensing sources at z = 1.2), where the clustering is closer to the linear regime, we find that the
F5 results are biased high at all scales, while for GR results are unbiased except on large scales.

The results in all the previous plots were for the all galaxies case, where we consider the full
sample of galaxies in a given redshift bin and the relative magnitude cut on the r-band of
r < 24. As stated in the sec. 4.5, we also perform the same calculations on several different

19As described in [38] we can ensure that we can combine all our results since the correlations have the same
effective redshift. The same goes for the § parameter which is estimated from a 3D distribution at the same
effective redshift.
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The vertical solid line separates the small and the large scales. The black filling
of the data points represent the baseline case (All) for both GR and F5 (using
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fits (GR theo). The dot (dashed) line represent the theoretical prediction for
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FIGURE 4.11: Summary of the main results for the various cases analyzed in
this paper. The black, blue, red points and error-bars represent the full, large
and small scales result, respectively. Results displayed are for both gravity
theories, with the left plots showing the EG estimator and the right plots

showing the growth rate results.

The dashed lines show the fiducial values

where the F5 have the respective values for small and large scales.
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samples and analysis choices. In Figure 4.11, we present the mean and standard deviation for
the gravity estimator for all the cases considered. Below we summarize the cases explored,

e 1) AllL reference case used in this. It uses the full-sky mock, all galaxies sample, with
a cut in relative for r < 24 for the SDSS r-band. The rest of sample-specific cases 3)-7)
are derived from this one by applying additional selecting criteria.

e 2) GR theo: same as above but using a best-fit GR theory to analyze the F5 simulated
data.

e 3) Red: same as reference, but for red-color galaxies classified using a g—r cut following
[32].

e 4) Blue: same as reference, but for a blue galaxy sample, following [32].

e 5) Faint: same as reference sample, but for faint galaxies, obtained by imposing a
relative magnitude bin, 23 < r < 24.

e 6) Bright: same as reference, but for a bright galaxy sample defined by imposing a
relative magnitude cut r < 22.5.

e 7) Central: same as reference case, but only selecting the central galaxy of each halo.

e 8) g2 fix: same as reference case, but setting the tidal bias parameters, go and g9 as
derived parameters from the linear galaxy bias by, using the relations: go = 0.524 —
0.547b1 + 0.046b% and go1 = (2/21)(by — 1) + (6/7)g2 [139)].

e 9) Diag cov: same as the reference case but using only the diagonal elements of the
Jackknife covariance matrix.

e 10) Mpc: same as the reference case but extending the minimum scale to 10 Mpc/h. The
full range is now defined as [10, 140] Mpc/h and the small scale goes from [10,40] Mpc/h,
while the large scale range remains the same.

e 11) Theo cov: same as the reference case but using the theoretical Gaussian covariance
matrix to calculate the likelihood.

In summary, our extended analysis shows that our results are robust to changes in the galaxy
sample selection and analysis choices made. The general trend is usually the same as the
reference "All" galaxies case, where at small scales the values for Eq are over-predicted and
for large scales are under-predicted. The same behavior is observed for the F5 simulation, with
a larger tension with respect to the theory than for the GR case. In particular, the recovered
scale dependence goes in the opposite direction to that predicted by theory. In the cases where
we put specific cuts on the sample such as for the red, blue, faint, bright and central samples,
the values deviate more from the prediction than the "All" galaxies case. This is mostly
notorious with the full scales since for the reference case the results are no longer consistent
with the prediction at 1-o. The rest of cases depict different analysis choices relative to the
reference case. When we fix the tidal biases (g2, g21), it does not seem to have significant
impact on the growth rate posteriors. The tidal biases obtained are slightly different, e.g. for
z = 0.55 the estimated value for go; turn out positive instead of the negative value we find in
Figures C.4 and C.5. It seems that these parameters are highly nonlinear and are not largely
degenerate with a linear parameter like the growth rate. In addition, we have also tested the
impact of the choice of covariance matrix in our results. For this purpose we have compared
the case when using the theoretical (Gaussian) and diagonal matrix and they seem to produce
similar results to the Jackknife covariance with the exception at z = 0.35 where results worsen
significantly. A possible explanation for this is that at lower redshifts the off-diagonal terms
of the covariance become larger, and the accuracy in the computation of these may have
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a larger impact in our results. Lastly, we have tested how including even smaller scales in
the analysis may impact our findings. This is specially relevant since we expect these small
non-linear scales to be the ones most sensitive to the underlying gravity model. With this in
mind we have extended the range of the "small scales" case from 20 Mpc/h (in the reference
case) to 10 Mpc/h. However, including these smaller scales does not appear to significantly
reduce the estimator biases; in fact, it worsens the fit in certain cases. This suggests that
the non-linear model used is already breaking down at the minimum scale used, for all the
redshifts explored.

4.8 A null test of gravity from small scales clustering in z-space

From the comprehensive analysis presented in section 4.7.3 above, we conclude that the Eg
has clear limitations to constrain gravity, mainly due to projection effects coming from the
multi-dimensional parameter space of the non-linear model used. Besides, most of the devia-
tions in the clustering statistics are expected to show up on small (non-linear) scales, where
the perturbative model we have used (VDG model) is expected to break-down. In Fourier
space, the limiting scale of the model is at k£ > 0.35h/Mpc, see [60], what should translate,
according to Eq. 4.22, into projected scales of about 10 Mpc/h. In particular, we have also
checked that this conclusion is robust to the specific perturbative model used (EFT or VDG),
although we have found that the VDG model outperforms the EFT for the RSD modeling,
what has been our criteria to select the former as our reference model for the analysis.

All things considered, we find that, with the current state-of-the-art modeling tools, the Eg
estimator is not well suited to differentiate between both gravity theories, even for an ideal
survey set-up. Alternatively, in this section we explore whether one can set constraints on
gravity using all the information contained in the basic 2-point clustering statistics in redshift
space. In order to quantify the expected differences in RSD clustering, we compute the ratio of
the 2D correlation function £(m,7,) between the F5 and the GR mocks, where 7 is the line of
sight (LOS) distance and r), is the project distance on the plane of the sky. Figure 4.12 shows
this projected clustering ratio, where we factor out the dependence on the linear galaxy bias
of both mocks by multiplying by (6¢7/bM&)2. Our results show the only significant (> 10%)
differences show up at rather small projected scales < 10 Mpc/h, where the Finger of God
effect becomes prominent, what renders the widely-used perturbative models (VDG or EFT)
largely inaccurate. This is a good indicator that properly modeling even smaller scales than
those investigated in this work would be a critical improvement to detect potential deviations
from standard gravity. Unfortunately, current models do not allow to predict these scales
with enough accuracy.

In order to quantify the observed differences from the small scales in the projected clustering,
we decompose the data vectors into their correlation function multipoles, according to Eq.
4.57, to quantify the differences between both gravity simulations. Specifically, we compute
the x? statistic for the difference between the data vectors of GR and F5, as well as for differ-
ence between data vectors and the best-fit to theory. The x? estimator thus defined provides
a simple "null test" to measure the ability to distinguish between the two theories. Since the
simulations were generated using the same cosmology, except for the gravity theory. Once
these mocks are calibrated against observations at very low redshifts (see [32]), any observed
differences in the clustering at higher redshift are expected to be caused by the different un-
derlying gravity model used to produce each synthetic galaxy catalog.
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FIGURE 4.12: 2D correlation function in 7 (LOS distance), r, (projected dis-
tance). The color scale indicates the clustering amplitude ratio of the F5 over
the GR mocks, where each correlation is normalized by its corresponding linear
galaxy bias, b1, at z = 0.55.
z=0.35 | z=0.55 | z=0.8
5 67.99 129.27 | 124.46 | Small Scales
XD 9117 | 20322 | 166.39 | Full Scales
5 79.86 119.61 | 43.54 | Small Scales
XT 775071 | 149.10 | 70.88 | Full Scales
2 76.46 131.90 | 40.73 | Small Scales
XGR 712399 | 180.46 | 86.31 | Full Scales
TABLE 4.3: x? values for a comparison between data vectors (MG vs GR,
denoted as x%), for the data vectors vs. each corresponding theory (x2), and
for the data vectors (F5 and GR) against the GR theory (x%y). The values
are calculated using the fiducial range for the small scales, s € [20,50] Mpc/h,
and the Jackknife covariance of the GR catalog.
Table 4.3 summarizes the results for this section, where we define three y? statistics: X%)»

representing the difference between the data vectors; X2T7 quoting the difference between the
data vectors and the corresponding best-fit gravity models; and XQGR, giving the difference
between each data vector (for both F5 and GR) when assuming standard gravity (i.e, GR)
as the theory model. In all cases the y? values are computed using the Jackknife covariance
derived from the GR mock data vectors, which closely resemble that of F5. The computation
follows the method outlined in Eq. 4.55. The high X% values demonstrate that the theories
can be clearly distinguished, in terms of such null test, despite the associated uncertainties.
Dividing the quoted x? values by the number of data points within the scales (6 points for
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the small-scales) we get that the data vectors are drawn from distributions that differ at a
significance level of 3-4.50, for each of the redshift bins studied. If we use the best-fit theory
models instead, the null test (X%, and even X%: ) yields similar significances, what suggests
that the models seem to describe the correlation function multipoles of the mocks well enough.
Additionally, the table includes results for the same test applied to the full scales range. Here
the x? values are approximately double those obtained for small scales. Given that the full
scale range involves 3 times more data points (24 measurements) the test, normalized to the
number of degrees of freedom, suggests that, as expected, most of the discriminating power
resides on small scales (< 50 Mpc/h).

The results indicate that the differences between the models are significant enough to dis-
tinguish the underlying gravity model. Developing more precise theoretical models that can
accurately predict behavior even at small scales would be a valuable step toward improving
model differentiation. However, while these findings hold for the idealized case of simulations,
it remains essential to test their applicability to real observations, where higher levels of un-
certainty and sources of systematic error would degrade the ideal survey case presented in
this work.

4.9 Discussion

4.9.1 Novelty and challenges of growth rate estimation at different scales

This paper represents a pioneering effort to model the growth rate and the Eg gravity esti-
mator across multiple scales for modified gravity models. While most previous studies [122,
123, 152] assumed a scale-independent growth rate, calculated from the full range of scales,
this approach clearly limits the fundamental purpose of Eg as a general test of gravity mod-
els. Probing the scale dependence is crucial since the gravity estimator and the linear growth
rate are predicted to vary with scale in most non-standard theories and thus require a proper
framework to accurately model from large (linear) to small (quasi-linear or fully non-linear)
scales. From the observational standpoint, this is what past analyses have studied, e.g. [123]
and [152] measured the value of Eg at different harmonic multipoles, ¢, in a similar way to
what we have done with the clustering ratio, Ry, as shown in Figure 4.6. However these anal-
yses have overlooked the consistent estimation of the scale of the growth rate, specifically the
[ parameter, and its possible scale dependence, to accurately derive the E¢g gravity estimator.

However, this is inherently challenging due to the limited availability of accurate non-linear
models in redshift space. The present study develops a well defined framework to address
this issue, using state-of-the-art perturbative models, and emphasizing the importance of
separating the analysis into large- and small-scale regimes. In practice, small scales are
especially difficult to model due to strong non-linear effects related the so-called Fingers-of-
God effect, that demand a proper account of the distribution of pairwise velocities and how
those impact the 2-point clustering in redshift space.

4.9.2 The Role of priors in the parameter estimation

This study also demonstrates the pivotal role of imposing (Gaussian) priors to the countert-
erms of the VDG perturbation theory model for improving the robustness of parameter fits,
especially when working with small-scale data. Small scales present significant challenges due
to the limited amount of uncorrelated information and complex parameter degeneracies within
the multi-dimensional model parameter space, the so-called "projection effects". One example
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of such degeneracies arise between the growth rate parameter and the clustering amplitude
(0g or o12). The inclusion of Gaussian priors helps to stabilize the fitting procedure, enabling
faster convergence and reducing variance in the results. For large scales, the posteriors can
still be reasonably accurate without Gaussian priors, particularly if nonlinear biases are not
included. However, the large error bars at these scales result in high variance in the posteriors.

Most of the considerations discussed here were analyzed individually, although some may be
specific to our dataset. Certain aspects have already been addressed in previous studies, such
as fixing the value of 019, as done in [152] for og. This step was crucial to mitigate the strong
degeneracy between f and o1o. The latter parameter can, however, be estimated through
alternative analyses, such as a 3z2pt approach, that combines 2-point statistics of clustering
and weak-lensing. This reasoning also underpins our decision to use the fiducial cosmological
parameters the simulation for the background cosmology {y,, O, H} in COMET, and in the
Cy theory predictions. In any case, we incorporate Alcock-Paczynski parameters to account
for deviations in cosmological parameters, and these have been observed to align reasonably
well with 1 (i.e, unbiased cosmology) within statistical errors.

Regarding the linear galaxy bias, a tight Gaussian prior based on the estimates from the
harmonic space galaxy clustering is not strictly necessary in most cases, as fits to the corre-
lation function multipoles tend to yield consistent values. This is further validated in Annex
C.4, where we apply a more sophisticated non-linear model to jointly fit the linear (b1) and
quadratic bias (by), improving the estimate of b; from the Cy. Using this method, we finding
consistent values, and thus similar Gaussian priors, for b;. While the Gaussian prior on b; is
not critical, it significantly accelerates chain convergence and helps avoid degeneracies with
non-linear biases in specific cases. For the rest of non-linear parameters, although these priors
could theoretically introduce parameter biases, the analysis confirms they allow sufficient wide
sampling of the parameter space. The triangular plots for the derived parameter constraints
(Appendix C.3) demonstrate that the priors are not overly constraining (i.e, not too informa-
tive), as we can see that the parameters for the small and large scales are able to variate over
the values (priors) for the full scales. This particular approach proves particularly important
for small scales, where degeneracies and irregular fits are otherwise unavoidable.

4.9.3 Small Scales as the critical testing ground for gravity models

When analyzing the full range of scales, the results are generally robust. This agrees with
previous work where [ is calculated over an extensive range of scales, such as in [123] and
[152]. In our case, the use of all-sky lightcone simulations yield relatively small error bars,
with a relative error of approximately 3-5% for E¢, which makes the agreement with the-
oretical predictions even more remarkable. For comparison, [152] reports a relative error of
about 15-25% for Eg using the BOSS survey. It is also important to note that the observable
estimate for F¢, based on the method in [152], is biased low by approximately 1-3%, as il-
lustrated in Figure C.1. However, the error bars are not small enough to distinguish between
the F5 and GR theory models clearly, as their average predictions differ by only about 5%
at these scales. Observational estimates of the gravity estimator are also affected by complex
real-world systematics that substantially increase the overall error budget, thus further com-
promising the power of the estimator to discriminate gravity theories.

We note that this work places particular emphasis on small scales, where deviations between
F5 and GR models are expected to be most pronounced. Unfortunately, this is also the
regime where fitting challenges are greatest, even under ideal simulation conditions. Specially
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at scales below 10 Mpc/h where we seem to find the highest deviations in the RSD (see
Figure 4.12). Again, the large non-linearities and limited amount of uncorrelated modes on
these scales undermine the ability of the estimator to distinguish between competing models.
Despite these challenges, the methodology underscores the potential for enhanced small-scale
estimations with novel hybrid approaches that combine perturbative and fully non-linear (N-
body) tools such as the BACCO emulator [120], and and higher-quality observational data.
This is particularly promising since much of the error budget at these small scales appears to
originate from the growth rate-related parameter, 5.

Tests like the Eg estimator do not currently provide sufficient constraints to distinguish
between models. The results in Section 4.8 suggest that, at least in simulations, the data is
robust enough to achieve at least a significant detection (30 for the F5 model) of deviations
from GR at small scales across all the redshifts studied (for z < 1). However, in observational
contexts, this approach is more limited, as we only have access to a single Universe with
an unknown gravity model. This means that we cannot perform such model dependent
comparisons, and most of the relevant information will be captured by nuisance parameters,
e.g. the linear galaxy bias being higher in GR than F5, that we cannot use to directly
distinguish gravity models. A better approach, would be to directly measure model dependent
parameters like frg as they do in [34], although a model of gravity, in this case f(R), needs
to be assumed.

4.9.4 Limitations of the theory modeling and future directions

The reliance on GR-based assumptions for estimating certain cosmological parameters (e.g.,
f) introduces biases into the Eg calculation for F5 models, a limitation acknowledged in
the analysis with the "GR theo" case (see sec. 4.7.3). These biases are inherent to the
model-dependent nature of parameter fitting and underscore the difficulty of achieving truly
model-independent estimates for Eg. In Section 4.4, we highlighted that the emulator has
a kmaz = 0.3502Mpc™! (or kyee = 0.5171h/Mpc for the mocks used). Using equation 4.22,
this gives a S, &~ 6Mpc/h. However, this may not be sufficient for our s, = 20Mpc/h,
as shown in equation 2.91, where we need to integrate over the entire range of Fourier scales,
k. Additionally, our implementation of E-MANTIS’s amplitude boost to the final multipoles,
rather than applying it to the original matter power spectrum, could introduce a bias in the
results at small scales. At these scales, the relationship between the correlation multipoles
and the power spectrum is not necessarily linear, which may further affect the accuracy of the
model. Nonetheless, the study demonstrates that, despite these limitations, the results remain
consistent within acceptable error margins, highlighting the robustness of the methodology.
However, the potential impact of using GR theory (e.g, perturbation theory counterterms) to
estimate cosmological parameters for the F5 model remains uncertain. A forthcoming paper
(Viglione et al., in preparation) will describe a 3x2pt analysis to constrain gravity using the
mocks presented in this work.

Moreover, the x2 test when comparing data to best-fit models are unusually high, even for
the full-scale case. We are confident that this is not an issue with the modeling done with
COMET, as this emulator has been successfully used to fit other simulated catalogs with
good agreement (Camacho et al., in preparation). At small scales, it is evident that the small
error-bars (as compared to the large scales) make the x2 increase, specially considering that
the perturbative model seems to start breaking down. On the other hand, for large scales,
the off-diagonal terms of the covariance matrix seem to boost the value of x2 since setting
them to zero (i.e, taking only the diagonal part) tends to keep the value close to 1. Typically,
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these fits are performed at high redshifts to avoid large non-linear effects, but even at redshifts
around z = 1, the results do not improve in any significant way.

Another consideration is that the relationship between the wavenumber k£ and the projected
distance s (as given by Eq.4.22) is based on several approximations that are only valid at small
scales. This could potentially affect the accuracy of the predictions for the growth rate and the
FE¢ in multipoles, although we have not investigated this in detail. An alternative approach
would be to perform the fits in Fourier space, using the power spectrum multipoles, but as
previously discussed, this introduces additional complications, such as extra noise parameters
and noisy measurements of the multipoles, particularly when trying to split the measurements
in small and large scales.

Future improvements may involve employing Fourier-space fits, and state of the art new em-
ulators such as the BACCO emulator [120] that combine perturbative and fully non-linear
approaches, for greater accuracy. These advancements could address the current limitations,
but this is left for future work.

On the other hand, we note that in the current analyses we have neglected a number of real-
world effects that would potentially degrade our constraints, including the finite survey mask
(that limits the number of uncorrelated modes available), photometric redshift errors, and
astrophysical systematics such as intrinsic alignments of galaxies (not present in alternative
analyses that use the CMB lensing instead of the galaxy lensing, see e.g, [122]) or the impact
of shape noise.

4.10 Conclusions

In this paper we have presented an end-to-end cosmological analysis pipeline to constrain
gravity using one of the largest modified gravity simulations to date (see [13]). In particular,
we use a comprehensive galaxy mock built out of a N-body simulation of the Hu & Sawicki f(R)
model, with amplitude fr, = 107> (denoted as F5), that is still viable given current obser-
vational constraints, and a twin LCDM simulation that assumes General Relativity (denoted
as GR) with the same cosmological parameters and initial conditions, to investigate whether
future surveys (in the limit of an ideal noise-free full-sky survey) can detect deviations from
standard gravity using the so-called E¢ estimator [160]. This estimator combines 2-point
statistics of galaxy clustering in real and redshift space, along with weak-lensing (galaxy-
galaxy lensing). A key advantage of this estimator is that it is independent of the galaxy bias
on large scales, and it is a direct test of gravity.

We have presented a well defined and comprehensive framework to compute this gravity es-
timator across distinct scales, including a number of theoretical and modeling improvements
with respect to previous studies (see e.g, [122, 123]). Traditional approaches, which assume
the scale independence of the estimator on large scales, are potentially biased by the break
down of this assumption, in particular related to the linear growth rate estimation in non-
standard gravity models. Dropping this assumption, this work investigates the impact of the
scale-dependent in the theoretical modeling of the Fg estimator, specially in the context of
distinguishing between GR and similar (in terms of expansion rate and clustering) yet alter-
native models, such as the F5.
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Our main results can be summarized as follows:

e Even for ideal all-sky galaxy surveys, the widely used Fg estimator is unable to clearly
distinguish between the currently viable, e.g, F5 and GR, gravity theories (see section
4.7.3). This is mainly due to two reasons. First, the large degeneracies between per-
turbative and cosmological parameters of current state-of-the-art non-linear models for
galaxy clustering in redshift space (such as VDG or EFT), that bias the linear growth
rate estimation at the low redshifts explored. Secondly, the fact that such perturba-
tive models can not accurately model RSD clustering on small-enough scales (typically
< 10 Mpc/h) where most of the constraining power resides.

e We have proposed a simple null-test, based on the correlation function multipoles, to
quantify the optimal detection level for deviations with respect to standard gravity, that
we illustrate for the working example of the F5 model. We find that detection levels at
about 4 o significance can be reached for all the low-redshift (lens) samples we have used.
This result holds when using either a purely data-based approach or a model-dependent
one (see section 4.8).

Finally, this work identifies several promising directions for future research. The use of Fourier-
space fits, combined with advanced emulators such as BACCO, that effectively extend the
range of (small) scales that are accurately modeled, could significantly enhance the precision
and accuracy of the growth rate and Eg estimations. These emulators offer improved mod-
eling of the galaxy bias parameters in the non-linear regime and allow for direct estimation
of noise parameters, potentially addressing many of the limitations identified in this study.
Expanding the analysis to include alternative simulations and novel tools for modeling clus-
tering in the non-linear regime will also provide new pathways to constrain gravity using the
next generation of galaxy surveys.

In conclusion, this study presents an end-to-end cosmological analysis pipeline to constrain
gravity using high-fidelity galaxy mocks. We have used a very large lightcone simulations
of one the most popular models (F5) that is still viable given observational constraints, to
asses whether a widely used estimator for gravity, the Fg statistic can be effectively used
to detect deviations with respect to standard gravity (GR). Our results show the limitations
of such estimator even for ideal next generation surveys, what opens the door to alternative
approaches that combine multiple observables to break degeneracies between nuisance (e.g,
galaxy bias) and cosmological parameters. In particular, we envisage that using the now
standard combination of photometric galaxy clustering and weak-lensing observables, known
as the 3x2pt analysis, can provide a more optimal way of breaking the observed parameter
degeneracies and provide more competitive constraints of gravity. We leave this study for
future work (Viglione et al. in preparation).
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Chapter 5

Probing gravity with the 3x2pt
analysis

In this project, we explore an alternative probe of gravity, alternative to the Eg estimator
presented in the previous chapter. The proposed estimator uses a combination of photomet-
ric galaxy clustering and weak-lensing from a given galaxy survey (usually know as 3x2pt
analysis) on the same pair of twin simulations described in Chapter 4. The primary goal of
this work is to investigate potential biases arising from assuming GR theory while analyzing
data generated under a f(R) gravity framework. To validate our methodology, we use the GR
mock as a benchmark. A paper on this work (Viglione C., Alemany M. et al.) is currently
under development, as we are finalizing the results.

5.1 Introduction

Cosmology has entered an era of precision and massive data volumes, driven by stage IV
surveys, yet the fundamental nature of the cosmological constant (A) and cold dark matter
(CDM) in the standard ACDM model remains unresolved. Efforts to derive A from quantum
field theory face the "cosmological constant problem," with theoretical predictions differing
from observations by over 50 orders of magnitude [110]. Besides, from the thorough inves-
tigation of the huge amount of new high-quality data, a number of "cosmological tensions"
have merged when trying to fit the same standard model to data spanning a wide range of
scales (from galactic to the cosmological) and cosmic times (from the the CMB last scatter-
ing surface to the present), see [56, 137]. This has prompted the development of alternative
models, based on modified gravity (MG) models, to explore deviations from standard gravity
that can potentially provide a better explanation of all the available observational data.

The new generation of galaxy surveys, such as DESI, Euclid and LSST, will collect a wealth
of unprecedented high-quality data, underscoring the need for reliable modeling methods to
extend beyond current scale cuts and strengthen constraints on gravity theories [1]. These
surveys will map the 3D distribution of galaxies over increasing cosmological volumes, which
are crucial for understanding both the physics of the early Universe and the mechanisms that
govern structure formation in the later (non-linear) stages. In turn, these galaxy catalogs will
provide new and more powerful tests of the standard model.

Interpreting galaxy clustering requires careful modeling of the galaxy bias [95], which de-
scribes the relation between the observed galaxy distribution and the underlying matter dis-
tribution, predicted by theoretical models. To address potential degeneracies between the
galaxy bias and the cosmlogical model parameters, additional observational probes, such as
weak gravitational lensing, are needed. Weak lensing, especially cosmic shear, provides a di-
rect, bias-independent measurement of the matter distribution. Additionally, galaxy—galaxy
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lensing, which analyzes the correlation between the positions of lens galaxies and the distorted
shapes of background galaxies, offers a complementary handle on the nature of galaxy bias.

By combining galaxy clustering, cosmic shear, and galaxy—galaxy lensing, collectively known
as the 3x2pt analysis, due to its reliance on three two-point correlation functions, it be-
comes possible to separate galaxy bias from basic cosmological parameters [86, 25, 92, 116].
This method has long been recognized as a powerful tool for extracting complementary in-
formation while minimizing the impact of nuisance parameters, such as systematic errors or
non-cosmological factors.

The combination of large-scale structure and weak lensing measurements, specially in tomo-
graphic analyses, can strongly constrain how structure formation develops in the late Universe
[80, 3]. In observations, by comparing these results with constraints derived from the cosmic
microwave background (CMB) [7], we can perform a fundamental test of the ACDM model,
checking whether cosmological parameters inferred from late-Universe observations match
those derived from the early Universe, i.e, whether the model is consistent over three orders
of magnitude in the scale factor of the Universe.

Traditionally, testing gravity has spanned over two well-studied regimes: the Solar System
scales, validated through parameterized post-Newtonian (PPN) methods [153], and the largest
available (linear) cosmological scales, assessed using the quasi-static approximation in pertur-
bation theory |20, 72|. However, the non-linear regime of cosmological structure formation,
lying between these two regimes, remains poorly tested. Modeling this regime is computa-
tionally demanding, even in ACDM, and the lack of robust MG modeling techniques, beyond
specific cases like f(R) or DGP gravity, limits our ability to unlock the full power of cosmo-
logical observables to probe gravity.

There are numerous studies in the literature that employ Fisher forecasts for phenomenological
MG to evaluate the improved constraints achievable with Stage IV surveys [36, 12, 35]. These
studies typically parameterize the gravity theory across all cosmological scales using the post-
Friedmann formalism [143], which involves a rescaling of the Poisson equation in general
relativity (quantified by the parameter 1) and a rescaling of the ratio of gravitational potentials
in general relativity (quantified by the parameter n). This particular studies assume specific
functional forms for p(z) and 7(z) derived from established models or phenomenology. A
more recent study [136] has adopted a model-agnostic binning approach, arguing that it is
premature to apply such techniques given that non-linear modeling has not yet been formally
validated for multiple yu(z) bins.

In this study, however, we aim to test deviations from GR using a high-fidelity simulated
galaxy catalogs that are based on an underlying f(R) Hu & Sawicki modified gravity theory.
We use the two twin simulations presented in [16]. In particular, the pair of simulations used
are an f(R) (F5) and a fiducial ACDM (GR) gravity with identical fiducial cosmology, initial
conditions, and matched calibration against observations at low redshift. We shall use the GR
simulation as a reference case to test the validity of our methodology. Our objective is to test
what biases arise in the posteriors of the basic set of cosmological parameters when analyzing
datavectors from a MG galaxy mock, but assuming the standard GR gravity theory.

5.2 Galaxy mocks

Similar to the work discussed in Chapter 4, our data is taken from the General Relativity and
f(R) Modified Gravity mock catalog presented in [16]. These mocks assume the following
cosmological parameters: €, = 0.3089, Q2 = 0.6911, 5 = 0.0486, h = 0.6774, og = 0.8159,

and ny = 0.9667. The catalogs contain consistent information for galaxy clustering (i.e,
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angular position and observed redshifts) and weak lensing information (convergence, shear,
magnified positions).

For both catalogs, we take 6 photometric redshift bins centered at redshift: 0.3, 0.5, 0.7, 0.9,
1.1 and 1.3. Each bin has a width of Az = 0.2. We impose a cut on absolute magnitude in
0.1-r-band of <-18, which effectively removes only the very faintest galaxies in the catalog,
and include all galaxies on the full sky (i.e, over a solid angle of 47 radians). In Figure 5.1, we
present the n(z) of the true (spectroscopic) redshifts of the 6 z-bins taken for both catalogs.
Note that the catalogs are defined up to redshift z=1.4 which explains the sudden cut on the
distribution of high-z-bins. In Table 5.1 we summarize the number of galaxies and densities
for each z-bin consiedered in the analysis.

GR mock f(R) mock
44 44
31 \ 34
w N
=3 =3
21 21
1 11
0 T T T — T T T 0 T T T — T T T
00 02 04 06 08 10 12 14 0.0 02 04 06 08 10 12 14
Ztrue Ztrue
1 z=0.3 [ z=0.5 1 z=0.7 z=0.9 1 z=1.1 1 z=13
FIGURE 5.1: True redshift distribution normalized, n(z), for the 6 bins taken.
The left plot shows the distribution for the GR mock while the right plot shows
the distribution for the F5 mock.
GR MG
Photometric ° . N? density Angular o . N©@ density Angular
Redshift N® galaxies ((h/Mpc)?) | density (sr~!) N® galaxies ((h/Mpc)?) | density (sr~!)
0.3+0.1 145,601,195 3.2x1072 1.16x107 147,659,571 | 3.25x1072 1.18x107
0.5+0.1 299,222,068 | 3.01x1072 2.38x107 309,071,652 | 3.11x1072 2.46x107
0.7+0.1 436,205,899 | 2.82x1072 3.47x107 466,771,685 | 3.02x1072 3.71x107
0.9+0.1 557,384,860 | 2.75%x1072 4.44%107 594,969,701 | 2.93x10~2 4.73%x107
1.1+0.1 628,732,986 | 2.59x1072 5.00x 107 678,940,196 | 2.80x1072 5.40x107
1.34+0.1 533,445,424 | 1.96x1072 4.25%x107 583,179,162 | 2.14x1072 4.64%107

TABLE 5.1: Table with all the galaxy: count number, number density and
angular density; for each catalog.

5.3 Methodology

Our model testing is based on MCMC analysis that uses a nested sampling algorithm, Poly-
chord [79], as implemented in the CosmoSIS* framework [165]. Polychord is a robust nested
sampling algorithm that incorporates methods to better sample multi-modal posteriors and
high-dimensional models. It has been previously used in leading cosmological surveys, i.e,
DES-Y3 [3], KiDS [17]) or Planck [7]. We employ Polychord with the following choices:
Nyive = 100 (live points), tolerance=0.1 and default settings for the rest of the configuration.
Next we shall describe the 3x2pt observables, that is, the angular power spectra for weak

https://cosmosis.readthedocs.io/
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lensing, galaxy-galaxy lensing and galaxy clustering, and the covariance matrix used, along
with the metric we use to quantify the statistical significance of a bias with respect to the
baseline cosmology.

We aim to perform a harmonic 3x2pt analysis combining all the tomographic information
by computing the autocorrelations (A-C) within the same z-bin, and cross-correlations (C-C)
across different z-bins. For galaxy clustering (GC), we compute only the six A-Cs within the
same bin, generating six data vectors. For weak lensing (WL), we calculate six A-Cs and 15 C-
Cs across all combinations of bin pairs, resulting in 21 data vectors. In galaxy-galaxy lensing
(GGL), the distinction between lenses (density) and sources (shear) breaks the symmetry of
C-Cs, leading to 30 C-Cs and six A-Cs, producing 36 data vectors. Altogether, this yields a
total of 63 data vectors for our 3x2pt analysis.

5.3.1 Data Vectors

To compute the Cy data vectors, we use the publicly available code PolSpice?, which requires
the data in the form of a HEALPix map. These maps are created by converting the right
ascension (RA) and declination (DEC) coordinates into pixel indices using the healpy module
with nside=1024. The galaxy count within each pixel is then used to determine the corre-
sponding frequency value. We construct a list containing the frequency values for each pixel,
indexed by their respective pixel numbers. Subsequently, we generate the lens and source
galaxy sample maps that are needed for the galaxy clustering (GC), galaxy-galaxy lensing
(GGL), and the weak lensing (WL) observables.

e Lens galaxy density map: using the number of galaxies per pixel we can generate
the density fluctuation per pixel, dpix, following the definition in 2.1 as:

Npix — 77Lpix (51>

Y

Opix =

e ﬁpix

where npix is the number of galaxies in that given pixel and 7npix is the mean number of
galaxies per pixel over all the unmasked pixels.

e Source shear map: we need to generate two sets of maps: one for v; and another for
72, the two components of the (complex) shear field, v = 41 + i72. The values on each
pixel represent the averaged shear component of all the galaxies inside that pixel.

Since the catalogs cover the entire sky, no mask is required to exclude specific regions. How-
ever, for shear maps, which derive information from the galaxy distribution, it is necessary
to handle pixels without galaxies, as these are effectively unobserved. To address this, we
generate a mask specific to each redshift bin leaving out the empty pixels.

To incorporate error estimation into our analysis, we use the Jackknife (JK) resampling tech-
nique. This involves generating JK regions within the mask, which are excluded (one JK
region at a time) during each resampling iteration. We employ the kmeans-radec’® code to
create equal-area regions on the celestial sphere, producing 100 JK regions to estimate the co-
variance matrix of each data vector. We have checked that increasing/decreasing the number
of JK subsamples by a factor of two, does not change our results in any signficant way.

We proceed in the analysis as follows: we run the pseudo-Cy code PolSpice for the data maps
and corresponding masks®, computing the angular power spectrum for each JK mask. For the

’https://www2.iap.fr/users/hivon/software/PolSpice/
3https://github.com/esheldon/kmeans_radec
4we deconvolve the raw C; values by the pixel window function
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WL observables, such as the deflection (spin-1) and shear (spin-2) maps with two components,
we construct a TQU (or TEB) map array containing the corresponding three HEALPix maps:
one for the amplitude (a scalar, left empty in this case) and the other two maps are for v;
and ~s.

The individual Cy values computed by PolSpice are typically noisy, even for the full-sky mock,
so we bin them in band powers. In particular, we use 10 logarithmically spaced bins between
£ =30 and £ = 1000. Before binning, we subtract the shot noise contribution, calculated as:

AT foky 1
Ngal pixelwindow ()2’

N, shot =

where ng, is the galaxy number density, and fq, = 1, given the full-sky coverage. Note
that the pixel window correction is also included here for consistency with the corrections
applied to the signal Cy’s. Once binned, the final binned angular power spectra are obtained
by averaging across all JK resampling iterations.

The covariance matrix is then estimated using:

2(C —MMK Co(0); — Co(O)] [Co(0); — Cy(l
0:;(Ce) = N .Zl[z( )i = Co(0)] [Ce(0); — Co(0)],
1,j=

where Njk = 100 represents the number of Jackknife regions.

5.3.2 Analysis pipeline

The 3x2pt analysis is a powerful way of constraining cosmology, including the nature of the un-
derlying gravity theory. The derivation of observable predictions from a cosmological model,
namely from ACDM, involves the modeling of the evolution of matter over-densities in the
primordial universe in a statistical sense. A field of matter over-densities in the primordial
universe will result in clumps of matter than progressively cluster into structures by the action
of gravity and against the expansion of the universe. Give the over-density matter field in the
early universe, we derive its spatial correlations in terms of the matter power spectrum.

The matter power spectrum quantifies the distribution of matter density fluctuations d(x)
across different scales. These fluctuations are defined as the excess of matter density at a
given region compared with the mean matter density of the Universe:

S(x) = LX) =P (5.2)

Where p(x) is the matter density at position x and p is the mean density. The power spectrum
P, (k) is defined as the Fourier transform of the two-point correlation function £(r), which
measures the clustering strength between two points (in this case, galaxies) separated by a
distance r.

(3(k)5*(K)) = (27)*3p(k — k') P (),

Where 0 (k) is the Fourier transform of §(x), dp is the Dirac delta function, and P, (k) is the
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matter power spectrum. This expression defines Py, (k) as the variance of density fluctuations
per unit wavenumber.

We generate the matter power spectra using the CAMB implementation in CosmoSIS. In or-
der to include the non-linear evolution of the density field, we make use of the revised Halofit
boost [140] to model the the non-linear power spectrum, P (k), from the linear power spec-
trum.

We have divided the distribution of galaxies in our catalogs into a series of tomographic bins
in which to compute the observables as projected into a flat sky, with the distance measure
for our correlation functions in real space being the angular separation in the sky. We com-
pute those observables in harmonic space, with our observables in the analysis thus being the
angular power spectra for our set of three datavectors (for GC, GGL and WL, respectively).

Given a cosmological model we then generate theoretical predictions for the angular power
spectra of each probe and use those predictions for our pipeline of parameter inference. We
compute the angular power spectra for GC, GGL and WL within the Limber approximation.
In this formalism the equations for the angular power spectra of the three probes is as follows:

X2 (X) (+1/2
o= " o T e (Fecr): (53)
a X a0V () L [0+1)2
i _/0 o fE(x) Fin < fr(x) ’X> ’ (54)
gy ()b(X) (+1/2
o= [ i SR () (55)

Where b is the galaxy bias and the kernel for each probe is defined as:

dn

dgg(X) = ng(z(X))a (5.6)
o 00 = 295 X [ (a0 S5 X (5.7

Given that the Limber approximation can yield inaccurate results for large scales (low ¢),
we compared predictions from CosmoSIS, which use the Limber approximation, against an
independent code, Core Cosmological Library ° [39], which performs the exact integration.
We find that only the GC angular power spectra is inaccurate at £ < 200 when using Limber.
Therefore, for this multipole range, we use the exact calculation, which is expressed as follows:

2 > dk 3 pnl 2
op=2 /D kS Pl ()22, () (5.8)

With Agg(k:, ) being:

Shttps://ccl.readthedocs.io/en/latest/
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Al;g(kve) = /deQ(z)QQg T6g jZ(kX) (59)

Where Ts, being the transfer function of the primordial power spectrum and je(xk) is the
Bessel function.

In terms of non-cosmological parameters, we consider the galaxy bias in our predictions. The
linear galaxy bias parameter, as an overall effective scaling factor for the amplitude of the
GC and GGL angular power spectra, is expected to compensate for the excess clustering of
matter in an f(R) universe with respect to the GR ACDM model. On the other hand, we
note that the simulated galaxy catalogs do not contain shape noise or intrinsic alignments
and therefore these sources of systematic error are not modeled in our analysis. According
to this, our modeling is only limited by the validity of the linear galaxy bias assumption and
thus we should only include those scales where this assumption holds. In order to accomplish
that we defined a series of scale-cuts to the data vectors to avoid biases in cosmology due to
non-linear galaxy bias contributions.

In practice, our criteria to define scale-cuts is based on the agreement between theory and
measurement in the GR simulation, discarding the scales in which the measured data vectors
deviate from the theoretical prediction generated with the fiducial cosmological parameters of
the simulation (and after re-scaling the data-vectors using the fitted galaxy bias parameters in
each redshift bin). More in detail, for GGL we discard those scales were theory and simulations
disagree by more than 3. For GC data vectors we use a different criteria since error-bars
are significantly smaller than for GGL what is some cases could lead to disregard data-points
that are roughly consistent between simulation and theory predictions or, in other words,
the criteria used for the GC scale-cuts would be too aggressive. Alternatively, we implement
scale cuts for GC data-vectors whenever the deviation of simulations with respect to theory
is above 5%. We note however that applying this criteria strictly would lead to somewhat
inhomogeneous cuts depending on redshift bin, so we have opted for using homogenized scale-
cuts per observable, that work on average for all the redshift bins considererd in the analysis.
Lastly, for WL we do not observe any significant deviations between theory and simulations
up to £mer = 1000. Therefore, the resulting scale cuts for the different probes are: for GC
Cinin = 50, linae = 400, for GGL £, = 50, ez = 250, and for WL £,,;,, = 30, £inee = 1000.

We include in the discussion of scale-cuts the removal of the data from two tomographic
bins for our final cosmological analysis. The last tomographic bin resulted in unexpected
behaviour in the WL shear measurements due to the abrupt cut of the galaxy catalogs at
redshift z=1.4, which was not included in the theoretical modelling. We also removed the
first redshift bin from the analysis due to the large dominance of non-linearities in the GC
and GGL. The inclusion of those tomographic bins in the analysis could lead to biases in the
inferred cosmology, so we performed the final analysis with 4 z-bins, centered at z—(0.5, 0.7,
0.9, 1.1). While those bins are removed from the pipeline of cosmological parameter inference
we nonetheless include them in our comparative discussions regarding measurements in a GR
or f(R) universe.
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5.3.3 Covariance matrix estimation

In order to generate our covariance matrix we use the public code OneCovariance® [125]. We
compute the Gaussian terms of the covariance with the addition of the Super Sample Covari-
ance (SSC) which describes the inherent variance introduced by surveys of limited volume not
encapsulating density fluctuation beyond the survey size. We neglect non-Gaussian sources of
uncertainty but nonetheless compare with the JK estimated covariance to assess their impact
and compare it with our analytic estimates. We defer to [125] for the details on the derivation
of the covariance terms.

We can think of our analytic covariances as the sum of a Gaussian covariance and the matrix
encapsulating the effects of SSC, mostly present in lensing probes at large scales (low £).
Those SSC contributions will mostly be on the off-diagonal terms of the covariance.

Cov = CovCaussian | Coy95¢ (5.10)

This is illustrated in Figures 5.2 and 5.3, as well as the comparison with the JK-estimated
covariance. We will discuss the validation of our covariance in this section.

The first step in our validation consists in comparing the purely Gaussian CosmoSIS-based
analytic covariance with either the OneCovariance-based Gaussian + SSC covariance, or the
JK-estimated one. JK covariance estimates are susceptible to numerical fluctuations that
result in non-definite positive matrices, which makes them unfit for our parameter inference
analysis. However, the JK covariance can inherently capture non-Gaussian contributions to
the covariance that are expected to originate from the bispectrum and trispectrum of the
data maps, as well as small-scale non-linear behavior that may be not properly characterized
in the analytic Gaussian estimate. It does not properly characterize SSC, which means that
with our three-way comparison we can discern the impact of the different contributions to the
covariance.

In Figure 5.2a we present the ratio between the diagonal elements of the GC submatrix of the
covariance of either the OneCovariance Gaussian + SSC or the Jackknife and the CosmoSIS
Gaussian covariances. We see that the uncertainty estimates from Jackknife are generally
larger than the Gaussian and at the same time we see how the addition of SSC into the co-
variance does not have a substantial impact for GC, as expected. Similarly in Figure 5.2b the
uncertainties are still generally larger for the JK estimate, especially when taking into account
that our previously detailed scale-cuts remove the high multipole data points of each data
vector where JK yields a lower estimate. This increased uncertainty points at the importance
of the contributions not accounted for in the Gaussian estimate.

We briefly tested the use of a rescaled Gaussian matrix in order to account for these effects.
The rescaled matrix consists in the CosmoSIS-based Gaussian covariance estimate being mul-
tiplied by the diagonal elements of the Jackknife covariance in the following way:

Covf}esc‘ = Covf;-”‘ (\/COV%K\/COV}]JK> / < Covim Cov%”') (5.11)

Shttps://github.com/rreischke/OneCovariance
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Resulting in a covariance that somewhat accounts for the measured uncertainty in the data
with the Jackknife estimate despite still neglecting the contribution from off-diagonal terms.
However, since issues related to possible numerical instabilities were still present in our tests
we limited our analysis to the purely analytical covariance estimations.

As for WL, in Figure 5.2¢c we see how the impact of SSC is rather large when compared
with the Gaussian estimate, this is expected and especially so at the larger scales (low /)
corresponding to the lower indexes for each data vector, as seen in the plot. We also recover
substantially lower uncertainties for WL and high multipoles when using the Jackknife esti-
mation, like with the case of GGL, and this result is not fully understood.

In Figure 5.3 we can explicitly see the contribution of SSC to the Gaussian matrix. The SSC
effects introduce off-diagonal contributions that are not present in the Gaussian estimate,
introducing mostly positive correlations in WL and negative correlations in GGL and, to a
lesser extent, GC. The introduction of those terms does not affect the numerical stability of
the Gaussian + SSC covariance. The OneCovariance-based Gaussian + SSC was chosen as
our covariance for the analysis.

Regarding the JK-based estimate for the covariance matrix, we present the full correlation
matrix in Figure 5.4 where we see a large number of off-diagonal terms in all of the sub-
matrices. While those off-diagonal terms do capture the previously mentioned effects that
are not characterized in the Gaussian matrix, the noisy nature of the computation and the
consequent numerical instability of the matrix prevents its use in the analysis.

5.3.4 Metrics

The quantification of statistical discrepancies for the parameters of a model can become
difficult when trying to capture discrepancies that are lost upon the projection of the posteriors
into 1-D. We decided to use the Mahalanobis distance as our metric, which is defined as follows:

da = /(i — )T CovP** (i — 7) (5.12)

Where 7 is the set of central values on our roughly Gaussian posteriors, [ is the set of fiducial
values used in the simulations and Cov’? is the covariance matrix from the combined 2-D
posterior for a pair of variables, defined as:

COVPost — |:U$i7xi O'a:i,acj:| . (513)

Ozjxz; Oxzjx;

While the discussion of an appropriate metric may need further consideration (see for example
[106]), it is enough for our work to consider the present metric to provide an estimate of the
strength of the bias from erroneous modeling of gravity is cosmology.
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FIGURE 5.2: Ratios between CosmoSIS-based (Gaussian) and OneCovariance-

based (Gaussian + SSC) analytic and Jackknife covariance matrix diagonals

By comparing the CosmoSIS-based Gaussian matrix with the OneCovariance-

based we directly see the effect of SSC, present mostly in WL and in GGL to
a lesser extent.
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FIGURE 5.3: Analytic correlation matrices for 3x2pt. The CosmoSIS-based
Gaussian correlation and the OneCovariance-based Gaussian + SSC correla-
tion. Each matrix is subdivided, from left to right, into GC, GGL and WL. We
see how the addition of SSC mostly increases WL uncertainties, as expected.

00 10

-02 08

-04 06

-08 02

-10 00

FIGURE 5.4: JackKnife correlation matrix estimate Ny = 100 for the 4 to-
mographic redshift bins used for the GR catalog.
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FIGURE 5.5: Full joint Jackknife Njx = 100 correlation matrix for the 6 zbins
for the f(R) catalog. The order of the data vectors are given by: GC, GGL,
WL

5.4 Results

5.4.1 Data Vector Comparison

In this section we present the data vectors by plotting the ratio of the values for f(R) over GR.

In Figure 5.6, we present the galaxy clustering results. The GR mock exhibits a stronger clus-
tering signal compared to f(R). This is based on the fact that the mass function in the F5
model is shifted toward higher masses (at a given redshift) compared to GR. This occurs be-
cause the gravitational growth (or rate of structure formation) is enhanced in the F5 model.
Thus, at a given z, the abundance of halos at a specific mass (for masses above a certain
threshold, roughly corresponding to an absolute magnitude cut) will be higher in F5 than in
GR. Consequently, the halo bias will be lower in F5 (since greater abundance leads to lower
bias) [16]. This trend should become more pronounced as one moves to lower z. However, in
the galaxy mock catalogs, this effect is somewhat masked by the calibration, which enforces
the same clustering for F5 and GR, to match observations. In our case, we are using a very
faint magnitude cut which corresponds to effectively selecting mostly those galaxies found at
the center of the (low-mass) halos. This central galaxies serve as halo proxies and trace a dis-
tribution with a lower signal in f(R) than GR due to the reduced halo bias as explained above.

The ratio of clustering remains approximately constant across all redshift bins, with a dif-
ference of around 10%, except at z = 0.3. At small scales in this redshift bin, the ratio
approaches unity, which aligns with expectations since the mocks were calibrated at low red-
shifts, leading to similar clustering.

In Figure 5.7, we present the weak lensing results. Here, the signal is stronger for f(R) grav-
ity compared to GR, with the difference becoming increasingly significant at smaller scales.
Since cosmic shear directly traces the underlying matter distribution, the clustering reflects
the enhanced matter spectrum in f(R) gravity relative to GR, as described in [16].
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FIGURE 5.6: Ratio of f(R) over GR of all the galaxy clustering data vectors.
Note we do not include the cross-correlation between z-bins in the analysis. The
errors are given by the error propagation of the JK errors of each catalog.
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FIGURE 5.7: Ratio of f(R) over GR of all the weak lensing data vectors. The
errors are given by the error propagation of the Jackknife errors of each catalog.

Lastly, in Figure 5.8, we present the galaxy-galaxy lensing results. The ratio is consistent
with 1 overall, with GR displaying a slightly stronger signal at large scales, whereas the op-
posite trend is observed at smaller scales. In this scenario, in f(R) gravity, the enhanced
weak lensing (matter) signal and the reduced galaxy signal appear to compensate, resulting
in a ratio close to unity. For cases where the sources lie behind the lenses, the ratio exhibits
fluctuations due to the signal being largely noise-dominated, as indicated by the substantial
error bars.

In Figure 5.5, we present the full JK correlation matrix for the joint analysis of all 63 data
vectors for f(R). Due to the large size of the 6300x6300 matrix, the covariance matrix is not
invertible.
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FIGURE 5.8: Ratio of f(R) over GR of all the galaxy-galaxy lensing data
vectors. The errors are given by the error propagation of the Jackknife errors
of each catalog.

5.4.2 Parameter inference

Our cosmological analysis pipeline was applied to the data vectors measured from the sim-
ulations. We perform the parameter inference for different sets of cosmological parameters,
namely (Q,, As) and (Qy,, Qp, A, h, ng), the latter still in preparation, applying CMB-based
priors in the latter case to account for the reduced constraining power of LSS for certain
parameters. Our only systematic present in the measured data vectors, the galaxy bias (for
each redshift bin), is included in our sampling. As previously discussed, in an f(R) universe,
how baryons trace the underlying dark-matter changes, and thus the galaxy bias would differ
from a GR universe. In this section we compare the inferred cosmology when assuming the
correct (or not) gravity theory, and quantify the cosmological bias in the inferred parameters
for the ACDM parameters, for different sub-sets of them.

In Figure 5.9 we see that for €2,,, and A, using GR mock measurements one recovers the input
cosmological parameters of the simulation, as the true values for the parameters fall within
the narrow 2 — o contour. In contrast, when the data vectors of the f(R) universe are used,
the inferred cosmology is significantly biased. This is indeed a detection of Modified Gravity.
Using our previously defined Mahalanobis metric the deviation between the true values and
the mean values of the posterior is of ~ 40 — . The deviation in the 2-D likelihood contours
is thus highly significant.

It is interesting to note that, as expected, when fitting the F5 data within the ACDM
paradigm, one estimates an excess in §2,,, and Ay, since the positive shift in these two param-
eters mimic the accelerated growth of structure due to the fifth force of the MG model. In
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FIGURE 5.9: Constraints on all the sampled parameters in our 3x2pt analysis

for our 2, and A, case. Here the galaxy bias constraints are shown explicitly

and will be omitted henceforth. The input values of the cosmology of the
simulations is shown as a set of black lines.

addition, the galaxy bias parameters are also expected to differ in an f(R) universe as galaxies
on average tend to populate smaller mass dark matter halos. This is precisely what we see in
the panels for the galaxy bias parameters for each tomographic bin in Figure 5.9, where the
inferred galaxy bias in an f(R) universe is smaller than in GR with high statistical significance.

The other parameter of interest in our comparative analysis is Sg, directly related to struc-
ture formation in the modern universe and thus heavily impacted by the change in structure
formation due to modified gravity. We present in Figure 5.10 the constraints on Sg along with
Q. While the fiducial values of parameters for the simulation are mostly recovered right at
the 2 — o level for the GR universe, we find that the recovered Sg in the f(R) universe is
significantly biased. The deviation for the f(R) case is estimated to be at ~ 38 — ¢ using our
Mahalanobis distance estimator.

Comparing the biases in 2, and A to those in Sg, the bias in the first two of them is de-
pendent on the correlation between the two parameters and thus "orthogonal" to the true
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value, with the 1-D marginalized posterior for those parameters containing the fiducial values.
However, for the latter, the shift is highly statistically significant even in the marginalized
1-D posterior. This result may be of particular interest in the discussion of the observed Sg
tensions, in particular those that arise from probes of the primordial (CMB) and the local
universe (galaxy surveys). Given that LSS probes have yielded lower values for Sg (KiDS:
Sg = 0.759 + 0.02, DES-Y3: Sg = 0.776 £ 0.017, HSC: Sg = 0.780 4+ 0.03) while the Planck
measurements obtained a higher value (Sg = 0.834 + 0.016), our results suggest that a slight
deviation in the gravity theory, such as that between F5 and GR, could change the physics
of the low redshift universe, thus reconciling the amplitude of clustering (i.e., Sg) in the low
and high redshift universe. This idea would be in line with recent measurements of the Weyl
potential that hint at Modified Gravity being the origin of the og tension between LSS and
CMB probes [145].

— GR universe
— f(R) universe

Ss
o o} o o o]
o, %, %y %o, %o

F1GURE 5.10: Constraints on the derived parameter Sg and €2,,. The corre-
sponding values for the cosmology of the simulations is shown as the two black
lines.

While the best constrained parameters in LSS probes are those most related to structure
formation, with photometric clustering being less sensitive to the shape of the primordial
power spectrum or to the Hubble parameter, it is important to understand how the bias in
Q,, and A changes when the rest of the parameters can vary freely in order to assess the
robustness of such a bias in the inferred cosmology.
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Chapter 6

Other contributions: scientific
preparation of new generation galaxy
surveys

In this section, we outline the contributions we made to other collaborations (within Euclid
and DESI) during the course of this thesis, applying the methodologies developed throughout
the research.

6.1 Euclid mission

6.1.1 Euclid preparation: XIX. Impact of magnification on photometric
galaxy clustering

This study, presented in [107], provides a forecast for the Euclid mission, assessing the impact
of weak lensing magnification on the cosmological constraints of the Euclid mission derived
from the photometric galaxy clustering.

In this work, my contribution was to estimate the linear galaxy bias and magnification bias for
the analysis. In detail, we used the Flagship galaxy mock to model galaxy distributions, biases,
and luminosity slopes to evaluate the impact of magnification on cosmological parameter
estimation using photometric clustering. In order to generate the photometric redshifts, we
used the galaxy distributions based on the fiducial selection from [121]|, where photometric
redshift estimates were generated for objects across 400 square degrees of the Flagship catalog.
Using the Directional Neighbourhood Fitting (DNF) algorithm, two redshift estimates were
provided for each galaxy: 2zmean, the average redshift of galaxies in the neighborhood of
similar colors and magnitudes, and z,., a Monte Carlo sampling of the photometric redshift
probability density function. The sample used included galaxies with zpean between 0 and 2,
divided into 13 equal-width bins. For theory predictions, the final redshift distribution n(z) is
derived from the values of z, in each bin. Despite equal bin widths in zpean, non-Gaussianity
in zp, causes the mean redshift (z) of the bins to be unevenly spaced.

The linear galaxy bias is calculated following the same detailed methodology presented in
section 3.5.1. This implies obtaining the square-root ratio between the angular galaxy-galaxy
power spectrum, C%, from the different n(z) samples and the angular matter-matter power
spectrum, Cg(s. The Cégg is obtained from the maps of the fractional overdensity of galaxies,
generated using healpy with Ngge = 4096 maps. We estimated the angular power spectra
using POLSPICE. Mask effects for the 400 square degrees photo-z region are also accounted
for the harmonic space analysis. The resulting C, values are corrected for shot noise using
Cyo = Cp — A7 foky /Ngal, Where fq, is the fraction of the sky covered by the photo-z sample
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and ng,) is the number of galaxies in the sample. The Cgé is modeled with the pyCCL using
the fiducial cosmology of the Flagship simulation. We use Limber’s approximation for every
multipole, since at the time pyCCL did not allow using a non-Limber framework. The linear
galaxy bias is calculated as the mean value across the multipoles range ¢ € [50, 500] to avoid
non-linear (or higher order) bias effects. While as described in Section 3.6.3, the magnification
bias factor is derived from the local count slope.

In terms of galaxy sample selection, we used the observed magnitudes in the Euclid VIS
band, incorporating error realizations and assuming a 100 magnitude limit of 24.6. A cut
at magnitude 24.5 was applied for our subsequent analysis. To determine the slope, we
computed a binned cumulative magnitude distribution for the photometric redshift sample
across different redshifts. The slope at the magnitude cut was then estimated using bins
centered at 24.45 and 24.55. In Figure 6.1 and Table 6.1 we show all the results provided and
presented on the paper.

TABLE 6.1: Number density (in units of gal/bin/arcmin?), galaxy bias and
local count slope used in each photometric bin. Values extracted from the
Flagship simulation.

Z  nga(%)[gal/bin/arcmin®]  b(z) (%)

0.14 0.758 0.624 0.023
0.26 2.607 0.921 0.135
0.39 4.117 1.116  0.248
0.53 3.837 1.350 0.253
0.69 3.861 1.5639 0.227
0.84 3.730 1.597 0.280
1.0 3.000 1.836 0.392
1.14 2.827 1.854 0.481
1.3 1.800 2.096 0.603
1.44 1.078 2.270 0.787
1.62 0.522 2.481 1.057
1.78 0.360 2.193 1.138
1.91 0.251 2.160 1.094

All the values that we provided are later used when analyzing the angular power spectra
and their dependence on redshift. They incorporated linear perturbation theory (using the
CLASS code) and estimated the uncertainties on the cosmological parameters using a Fisher
matrix formalism for clustering and lensing effects.

The linear galaxy bias was obtained by fitting the full sky angular power spectrum of the data
to the corresponding fiducial prediction for each n(z). Similarly to what we detailed in sec.
3.5.1 the angular power spectrum was obtained using PolSpice with a mask to generate 100
Jackknife regions that we use to calculate the covariance matrix. We subtract the shot noise
of each resample using an analytical expression that accounts for the total number of galaxies
in each n(z). The prediction is obtained using CAMB sources with the fiducial cosmological
parameters values of the Flagship simulation. The linear scales considered go from power
spectrum multipoles £ = 80 to a given £,,,q, that increases as we go to higher redshifts (as the
effective non-linear galaxy bias scale shifts to larger multipoles, i.e, smaller angular scales),
starting at ¢ ~ 300 for z=0.90 to ¢ ~ 500 for z=1.8.

The results of this paper demonstrate that, including the magnification consistently in the



6.1. FEuclid mission 151

—~ 4 . o0 g
~— s .
= 2] .
a0 .
= ¢ ey
0 s
o 2
N
)
1<
1.0 o
oY A
3/ 0.5 *
o L T
0.0+ | |
0.0 0.5 1.0 1.5 2.0

Z

FIGURE 6.1: Values provided for [107] of the galaxy number density in units of

gal /bin/arcmin® (top panel), galaxy bias (middle panel), and local count slope

(bottom panel) as a function of redshift. These results are obtained from the
Flagship simulation.

analysis, significantly improves parameter precision and reduces the biases observed when ne-
glecting magnification. Including magnification also reduces uncertainties in basic cosmologi-
cal parameters such as matter density (€2,,) and dark energy (wg, w,) by 20-35%, depending
on the accuracy of the galaxy luminosity slope. Failing to include magnification results in
substantial biases, with best-fit parameter shifts up to 1.60 in galaxy clustering and over
60 in joint analyses. These effects are most pronounced at large angular scales and when
cross-correlating distant redshift bins, where magnification becomes dominant. This means
that magnification must be integrated into analyses of the Euclid mission to avoid biases and
potentially threaten the overall scientific goals of the mission. In fact, by including magnifi-
cation, the survey can better test dark energy models, achieve tighter constraints on ACDM,
and enhance the overall accuracy of parameter estimates. This study sets a precedent for
future photometric surveys, emphasizing the necessity of accounting for lensing magnification
in cosmological analyses.

6.1.2 Euclid preparation. Impact of magnification on spectroscopic galaxy
clustering

In this analysis, presented in [46], we investigate the impact of lensing magnification on
the analysis of galaxy clustering using the Euclid spectroscopic survey (in contrast with the
photometric surveys used in the previous section). Similarly to the previous contribution, we
also provided an estimation of the linear galaxy bias and the magnification bias using the
high-fidelity Flagship galaxy mock.
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Magnification is often ignored in spectroscopic analyses due to the dominance of other effects
like redshift-space distortions. We selected 13 equidistant bins, between z=0.90 and z=1.8,
in real space redshift distribution, n(z). We imposed a cut in H, flux, log (F H,) > —15.7
ergs/s/cm?.

The linear galaxy bias was analyzed similarly to the previous section, with some modifications.
The analysis considered linear scales ranging from ¢ = 50 to an £, that increases with
redshift. This reflects the shift of the effective non-linear galaxy bias scale to higher multipoles
(smaller angular scales), starting at fpax ~ 300 for z = 0.9 and reaching fy,ax ~ 500 for
z = 1.8. Due to the limitations in pyCCL, the Limber approximation was employed once
again. At the scales analyzed, this approximation introduces up to a 4% variation in the
predicted angular power spectrum, corresponding to an error of less than 2% in the galaxy
bias estimation. Additionally, 100 Jackknife regions were generated to measure the local count
slope and calculate the variance of the results. In Figure 6.2 we show the values provided and
presented for this paper.

2.4

291 Flagship
0- fit

1001 --k- Flagship
— fit

1.0 1.2 1.4 1.6 1.8

FIGURE 6.2: Values provided for [46] galaxy bias (top panel) and the local

count slope (lower panel) with linear interpolation (dashed), as used in our

analysis, along with their associated error bars, as well as a polynomial fit
(solid).

This study assesses the significance of lensing magnification in two main cosmological analyses:
a model-dependent analysis based on ACDM and its extension to dynamical dark energy, and
a model-independent analysis aimed at measuring the growth rate of structure in redshift bins.
Using both Fisher matrix formalism and Markov Chain Monte Carlo (MCMC) techniques, the
paper forecasts the shifts in best-fit parameters and changes in parameter constraints caused
by neglecting magnification. The results show that ignoring lensing magnification introduces
biases of 0.4-0.7 standard deviations in ACDM parameters and up to 1.2 standard deviations
in growth rate estimates at the highest redshifts. These biases could undermine efforts to test
general relativity and alternative gravity models. To mitigate these biases, the paper proposes
incorporating a simple template for lensing magnification into the modeling process. This
approach, which assumes fixed fiducial cosmological parameters, effectively removes biases
while requiring minimal additional computational effort. However, when magnification is
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included as part of the analysis with unknown parameters, it slightly increases degeneracies,
modestly worsening constraints on some cosmological parameters.

In conclusion, the study finds that in order to get unbiased cosmological constraints from the
spectroscopic 2-point galaxy clustering statistics from the Euclid mission lensing one should
appropriately include magnification in the modeling.

6.1.3 Euclid: Relativistic effects in the dipole of the 2-point correlation
function

We also contributed to the scientific preparation of the Euclid mission in [108]. This paper
explores relativistic effects captured in the dipole, or £ = 1, for the multipoles of the correlation
function, within the framework of the Euclid spectroscopic galaxy survey. The analysis aims
to isolate and measure subtle relativistic effects like gravitational redshift and Doppler effects,
which contribute to the odd multipoles of the correlation function.

Relativistic effects in the dipole of the two-point correlation function arise from subtle cor-
rections introduced by general relativity in the observed redshifts and positions of galaxies.
These effects include gravitational redshift, Doppler effects (caused by peculiar velocities) and
related phenomena, which together contribute an antisymmetric component to the correlation
function, manifesting as a dipole.

Gravitational redshift occurs because galaxies are located in gravitational potential wells,
and photons escaping these regions lose energy, causing a shift in their wavelength. This
effect introduces an asymmetry in the observed redshifts of galaxy pairs, depending on their
positions relative to these potential wells. Additionally, the peculiar velocities of galaxies along
the line of sight induce Doppler shifts in their observed redshifts, further contributing to the
dipole. Galaxies moving towards the observer appear to have a higher clustering amplitude,
while those moving away appear less clustered, creating a directional asymmetry.

Another contributing factor is wide-angle effects, which arise when the assumption of parallel
lines of sight for a pair of galaxies breaks down. These effects add further asymmetry by
accounting for the angular separation between galaxies and the observer. While other rela-
tivistic corrections, such as the integrated Sachs-Wolfe effect and Shapiro time delay, play a
smaller role in shaping the dipole, they still subtly influence galaxy redshifts by modifying
photon travel times and energy along their paths due to evolving gravitational potentials or
delays.

The dipole signal emerges prominently when analyzing cross-correlations between two distinct
galaxy populations, such as "bright" (more massive) and "faint" (less massive) galaxies. These
populations experience gravitational redshift and Doppler effects differently due to variations
in their distribution within large-scale structures, leading to an antisymmetric feature in
their correlation function. The strength of the dipole is particularly sensitive to the bias
contrast between the two populations—greater differences amplify the signal. On smaller
scales, typically below ~ 30 h~! Mpc, the dipole is dominated by nonlinear gravitational
potentials, as the deep potential wells of massive halos enhance the gravitational redshift
contribution. The detection and analysis of the relativistic dipole have profound implications
for cosmology and astrophysics. Since the dipole is closely tied to gravitational potentials,
it provides a novel test of general relativity, including the equivalence principle and local
position invariance. Furthermore, the dipole offers insights into the nature of dark energy
and the interplay between modifications to gravity and new forces in the dark sector. On
an astrophysical level, the dipole helps improve our understanding of the distribution of
galaxies and the underlying matter that shapes large-scale structures in the Universe. Thus,
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while challenging to measure, the relativistic dipole is a subtle yet powerful probe of the
fundamental physics governing the cosmos.

This study uses the Flagship mock, simulating galaxy distributions under various relativistic
corrections. The methodology involves:

e Splitting Galaxy Populations: Dividing galaxies into "bright" and "faint" categories
based on flux to create a differential bias that enhances the dipole signal.

e Modeling Relativistic Effects: Including contributions from nonlinear gravitational po-
tentials using Navarro—Frenk—White profiles for halos and implementing corrections for
gravitational redshift in simulated data.

e Statistical Analysis: Estimating the dipole from cross-correlations of galaxy populations
in different redshift bins and scales, and calculating the signal-to-noise ratio (S/N) using
theoretical and Jackknife-based covariance matrices.

Once again we provided the values for the linear galaxy bias and the magnification bias slope
factor for this project in order to model the predictions. Since in this cases the studies relays
in performing cross-correlations between two samples of galaxies: one faint and one bright;
we needed to generate the samples. We selected the spectroscopic data from the Flagship
simulation, version 2.1.10, using the following criteria. Objects are included based on their
Ho flux, applying a threshold of Fyq, 1im = 2X 1070 ergem =2 s~ 1. Two samples are considered:
one containing only central galaxies and another including both central and satellite galaxies.
The simulated dataset spans a redshift range from 2y, = 0.9 to zmax = 1.8. This range is
divided into four redshift bins centered at z = 1, 1.2, 1.4, 1.65, with corresponding half-bin
widths of oz = 0.1, 0.1, 0.1, 0.15.

The luminosity distance is influenced by perturbations, which means the measured fluxes
are also subject to relativistic effects, including magnification and Doppler corrections. In
the Flagship mock, the observed fluxes account for some observational effects, such as dust
extinction, but do not include magnification from lensing or Doppler effects. To incorporate
these relativistic effects, we adjusted the fluxes using the relation:

(14 2)*

_— 6.1
(1+Zobs)4 b, ( )

Fmagn = FFS

where Frg represents the fluxes stored in the mock, Fiagn denotes the corrected (magnified)
fluxes, and pp, is the magnification factor due to gravitational lensing. This magnification
factor is expressed in terms of the convergence « and the shear v = v, + i~2 as follows:

1
L=k =i =93

ML= (6.2)

Thus, the magnified fluxes Fiyagn are influenced by gravitational lensing through pup, and by
Doppler effects and gravitational redshift through zops.

Using the magnified fluxes, two primary splitting schemes for the samples were proposed:
one with an even 50%-50% division into faint and bright galaxies, and another with a 90%-
10% split, favoring faint galaxies. To explore other configurations, we calculated the linear
galaxy bias and magnification bias for additional split ratios, including 1%-99%, 10%-90%,
20%-80%, 80%-20%, and 99%-1%. From these tests, we determined that the highest signal-to-
noise ratio (S/N) was achieved for the two cased selected. The splits were generated by sorting
galaxies based on their magnified flux Fihagn in Ha flux, with the bright sample comprising
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galaxies above the corresponding split percentage and the faint sample including those below
it. The bright and faint galaxy populations result from two flux thresholds: the one in Ha flux
(FHa, 1im) and another in Yg-band flux (Fy;, 1im) to perform the magnification bias calculation.
Magnification can alter the population counts in two ways: shifting galaxies across the Fyjq, 1im
threshold and transferring galaxies between the faint and bright populations across Fy; 1im-
An effective count slope for the bright and faint populations, sp/p o, combines contributions
from both flux thresholds:

SB/Feff = SB/F,Ha T SB/F,Yg » (6.3)

where each term is defined using the logarithmic derivative of the galaxy counts with respect
to the luminosity at the respective flux threshold. The counts of bright (Ng) and faint (Ng)
galaxies depend on their luminosities in both bands, Ly, and EYE- Due to the flux threshold
Fy,, 1im, bright and faint populations are interdependent, leading to a relation between their
slopes:

Ng
SEYp = T 5B (6.4)
To estimate these slopes, we used a deeper mock catalog for Fpa, 1im and calculated sg/p pa
with fixed Yg-band flux cuts. For spy;, we analyzed the cumulative luminosity function (LF)
of the bright population at Fy;, 1im, accounting for redshift-dependent Yg-band cuts. The final
effective slopes are averaged across sub-bins, weighted by the number of objects in each bin.

In Figure 6.3 we show the provided values for the central galaxies for the galaxy bias and the
magnification bias for the two split configurations.

The dipole signal was detected in simulations, particularly on scales smaller than 30 h~! Mpc.
The significance of detection varied by redshift. In the two lowest redshift bins, detection
significances were 40 and 3o, respectively. While at higher redshifts, the significance fell
below 2 0. The overall detection significance across the survey was estimated at approximately
6 0. Nonlinear gravitational potentials were identified as the primary contributors to the
small-scale dipole.

This paper demonstrates the feasibility of detecting relativistic dipole effects in future Euclid
data releases, with implications for understanding the interplay between general relativity and
large-scale structure. The findings suggest that Euclid’s spectroscopic survey can robustly
measure these relativistic signals, enabling tests of fundamental cosmological principles, such
as the equivalence principle and local position invariance, and distinguishing between modified
gravity theories and dark sector forces.

6.1.4 Euclid. V. The Flagship galaxy mock catalogue: a comprehensive
simulation for the Euclid mission

During the realization of this Thesis we used the Flagship mock several times to compute basic
2-point statistics such as the clustering and lensing angular power spectra. By comparing
results from this simulation to theory predictions in order to estimate the linear galaxy bias,
the growth rate, or the magnification bias factor, we provided several validations of the mock.
One of the most important validations was that of the magnification signal in the catalog
which, as described in section 3.6.5, resulted in to the estimation of the lensed galaxy positions
in the mock catalog.
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FIGURE 6.3: Values provided for [108] galaxy bias (top panel) and the local
count slope (lower panel) for the two split cases studied. The dashed line
correspond to the faint sample and the solid line to the bright sample.

In [47]) we presented the Flagship galaxy mock catalog, based on a record-setting Nbody
simulation including 4 trillion dark-matter particles, and that is the reference dataset for the
scientific preparation and exploitation of the Euclid mission. The paper presents an end-to-
end galaxy assignment pipeline to produce a massive simulated galaxy catalog that covers
one octant of the sky up to z = 3, with about 400 properties per galaxy for several billions
of galaxies. This mock consistently models the main probes of Euclid, galaxy clustering and
weak lensing, along with many other galaxy formation related properties.

Our contribution to this paper was to provide a set of measurements of the magnification bias
factor for the various mock galaxy samples at different redshifts and VIS magnitude cuts, as
shown in Figure 6.4. We also provided a polynomial fit up to third order of f(z,z = VIS mag)
which are given by:

f(z =0.2,z) = —0.000342> + 0.026152% — 0.667652 + 5.87909,

f(z=04,7) = —0.002912> + 0.211172% — 5.11843x + 41.63343,

f(z=0.6,z) = —0.011262> + 0.812852% — 19.57029z + 157.44804,

f(z =0.8,z) = —0.022942> + 1.667852% — 40.45909z + 327.83286,
( )

f(z = 1.0, ) = 0.000982° + 0.0132622 — 2.483462 + 38.85953,
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f(z=1.2,2) = 0.00909z> — 0.582612> + 12.00675z — 77.66596,
f(z=14,2) = —0.01782z3 + 1.285382 — 31.15011x + 254.31386,
f(z=1.6,x) = —0.015092> + 1.0987z2 — 26.92731x + 222.83778,
f(z=1.8,2) = —0.01347z> + 1.044352% — 27.16381x + 237.44937.

Magnification bias
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FIGURE 6.4: Values provided for [47] of the magnification bias factor for dif-
ferent z and VIS magnitude cuts. The dashed lines are fitted polynomials up
to 3rd order.

This fit is meant to serve as a modeling tool that can be ingested in the theoretical predictions
for cosmological analysis pipelines that shall be used by the Euclid collaboration during the
scientific exploitation of the mission data.

6.2 DESI mission contributions

Within the DESI mission we collaborated within the galaxy lensing working group in two
different aspects.

First, we provided the linear galaxy bias and magnification prediction for the angular correla-
tion function (£(6)) for the Buzzard simulations [52] used for DES forecasts. We did not have
access to the simulated data so we were directly provided with the density angular autocorre-
lation function for 4 redshift bins of the simulation: 0.1 < z < 0.3,0.3 < 2 < 0.5,0.5 < 2 < 0.7
and 0.7 < z < 0.9. We used, as in other analyses presented in this Thesis, the code pyCCL
to calculate the prediction for this simulations using the fiducial values: €, = 0.286, h =
0.7, g = 0.82, ng = 0.96 and € = 0.046. pyCCL has a module to calculate the angular
correlation function (in configuration space) from the angular power spectrum. We obtained,
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on scales lower than 2 deg: b =1.24 for 0.1 < 2 < 0.3, b = 1.65 for 0.3 < 2 < 0.5, b = 1.89
for 0.5 < z < 0.7 and b = 2.21 for 0.7 < z < 0.9. We were later provided with the values
for the magnification bias slope, s, and calculated the magnified angular correlation function
prediction for each pair of lens and sources bins where z; < z;.

As a second contribution, we originally started the Eg estimator project within the same
working group. We planned to use a set of modified-gravity simulations developed within the
DESI collaboration to calculate Eg, but due to time constraints we ended up using the F5
and GR simulations from [13] and presented in this Thesis (see Chapters 4 & 5).

Within the DESI collaboration the Eq gravity estimator was calculated using KiDS-1000 and
BOSS data in configuration space. The Eq(R) statistic, in configuration space, is defined as:
1 Tgm<R7 RO)

Eg(R) = B (R o)

(6.5)

where R is the projected distance and Ry is the reference distance at which Y4, (R, Rg) = 0.
The quantities Ty, and Ty are defined as:

Yeo(R, Ro) = Z Ciwy(R (6.6)

where (k, 7) are the bins containing (R, Ry), and the coefficients C; are given by:

R?max_RlQmm =7,
Ci = Rz2max Rz2m1n J<i< k, (6'7)
—R? i=k.

2, min

Here, wy(R;) is the projected two-point correlation function, and p. is the critical mass density
of the Universe.

Ten(R, Ro) = AS(R) — 1O AL(Ry), (6.8)

where AY(R) is the surface mass density contrast:

_ le WWsW1sCt s (R/XZ)EC’I’ (Xl7 Xs) . er wrwswrset,rs(R/Xr)Ecr(Xr, Xs)

AY(R
( ) er Wy W sWrs er WyrWsWrs

. (69)

wy, ws, wr (X1, Xs, Xr) are weights (commoving distance) for galaxies in the lenses, sources
and random dataset; wys, wys are weights for the lens-source pair and the random lens-source
pair. The parameter e; correspond to the transversal shear component of the lens-source pair
(see Eq. 2.127). Lastly, X (X1, xs) is defined as:

_ 2 D,
" AnG DDy’

(6.10)

where G is the gravitational constant, c¢ is the speed of light and D; (Djs) is the angular
diameter distance to the lenses (sources), Djs is the angular diameter distance between the
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lenses and source sample.

To compute AY(R), the code dsigma' was developed for the DESI collaboration. This tool
enables the efficient calculation of AYX(R) by using a k-d tree algorithm to rapidly pair lens-
source groups. It computes e; by first determining the projected distances between lens-
source pairs and grouping them into concentric bins centered on the lens. Previously, we
developed our own code for calculating e; so we were asked to validate dsigma using our own
implementation. The details of our code are provided in Appendix B. In brief, it works by
preliminarily limiting the potential source pairs for each lens (halo) using an angular cut,
which efficiently filters out unrelated sources. However, because our approach processes each
halo individually, it is significantly slower when applied to large halo samples.

In contrast, dsigma is optimized for any sample size, as its k-d tree structure allows it to
simultaneously account for all sources. For validation, we computed A (shear profiles) for
a sample of 30 Flagship halos at z = 0.50 4+ 0.01 and shear for sources at z = 1.00 £ 0.01,
focusing on halos with FoF masses between 1044 and 10'4® M. To enhance the signal,
we selected halos with similar masses and combined their signals by averaging the tangential
shear values within the same radial bins across all halos. This technique, known as halo
stacking, is commonly employed in the literature to amplify weak or noisy lensing signals
[146, 21, 73, 74, 75]. As shown in Figure 6.5, the validation was successful, with both codes
producing identical shear profiles. We use bootstrap resampling [113]| to estimate the error
where instead of taking random regions we take random individuals halos to generate a new
iteration with the same number of lenses as the original with repetitions.

Shear profile Flagship
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FIGURE 6.5: Shear profile calculated for a Flagship mock sample of 30 stacked

halos at z = 0.50 £ 0.01 with a halo mass between 10**4 and 10'*® M. The

signal calculated by the code dsigma (red dashed line with purple errorbars)

and our code (green line with yellow purple errorbars) have errors using 100
samples in the bootstrap resampling.

https://github.com/johannesulf/dsigma


https://github.com/johannesulf/dsigma
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Chapter 7

Future work

In this final chapter, we briefly summarize the work that we plan to pursue following the
completion of this thesis.

7.1 New probes of gravity

In Chapter 4 and 5, we have already discussed possible avenues to expand the work presented
in them. In particular, we plan to investigate the following points:

e We have outlined our intention to further explore de virtues and limitations of the Eg
estimator, expanding the study that forms the main result of this Thesis (Chapter 4).
Specifically, we plan to write a follow-up paper using the BACCO hybrid emulator,
that combines perturbation theory with Nbody simulations, in Fourier space, targeting
smaller scales (< 10 Mpc/h or k > 0.4h/Mpc).

e We shall also complete the project on probing gravity using 3x2pt analysis, whose main
(preliminary) results are presented in Chapter 5. While our primary contributions are
already finalized, we plan to explore the robustness of our main findings and explore ad-
ditional constraints on dynamic DE cosmologies (w,w,CDM). We shall also investigate
how our gravity constraints degrade when finite survey area and sources of systematic
errors (e.g, shape noise, intrinsic alignments, and photo-z errors) are included.

7.2 Magnification Halo Profiles

In this section, we present a side project undertaken during the course of this thesis, that
was developed in parallel to the main projects (Chapters 4 and 5 of the Thesis), and that
was intended as an application of the code developed in 6.2 in the context of the scientific
preparation of the DESI experiment. The ultimate goal is to investigate whether magnification
profiles can be used as a new test of gravity, complementary to the shear profiles, that are a
much more standard probe of large scale structure. As a first step in this direction, below we
present some preliminary results focusing on GR simulations, specifically on the MICE and
Flagship mocks.

This project involves the computation of halo profiles, where we fit the density distribution
around a halo (or a group of similar halos) to a halo model, such as the Navarro-Frenk—White
(NFW) profile [115]. Typically, the density distribution is estimated using the shear signal
around the halo. However, in this project, we propose to use the magnification signal as an
alternative approach. This approach has already been applied in previous analyses, such as
[146, 21|, where magnification profiles were successfully calculated, and the halo mass was
estimated with good agreement with the ACDM model, although partly due to the large
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error-bars. In our study, we will use simulated data to attempt to recover the halo mass from
the halo catalog using different galaxy samples.

The shear profiles were already introduced in sec. 6.2 which corresponds to the surface mass
density AX. The profiles are generated with lenses (halos) and sources nearby to the lenses
on the projected sky in order to check how the lensing signal changes around the halo due
to its density distribution. This is a good way to estimate the mass distribution of a halo
since we can fit this halo profiles to halo models like the NF'W profile to obtain important
properties of the halo like the average mass over a certain radial distance or the concentration.
The surface mass density of a spherical symmetric lens can be expressed as [21]:

S(R) = 2 /0 T o(R, 2)dz, (7.1)

where R = Dgy/6? + 03 is the projected radius relative to the center of the lens.

The convergence can be expressed in terms of the surface mass density as:

k(0) = (7.2)

AY (0
(0) = k(< 0)—k(0) = Z( ) (7.3)
Since k can be expressed as (see sec. 2.6.3):
dc
= —, .4
e (7.4

where 0. are density fluctuations and « is the slope of the magnitude at the magnitude cut
of the sample.

Then the surface mass density is given by [21]:

5, = OcXer. (7.5)

Qc

where the subscript ¢ indicates that the calculation is obtained through galaxy count fluctu-
ations instead of magnitude fluctuations. This means that §,, is given by:

§e = — — 1, (7.6)

313

where 7 is the observed mean density over the entire sky. To estimate 7, we use the observed
mean density as a proxy for the unlensed density n,. While a. is defined as [21]:

. = 2.5

am. logo no(m < my) — 1, (7.7)

where m, is the apparent magnitude limit of the survey.
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We use the subscript c since there is another way to estimate the magnification trough the rel-
ative changes in the magnitude (flux) fluctuations due to magnification. With the convergence
given by [21]:

Om
where now we use the subscript m:
2.5 dm
O = — 1— 2 7.9
In(10) ( dm*> " (7.9)
where T is the mean magnitude.
2.5 dm
m = -1 1
“ In(10) ( + dm*> (7.10)

Then the surface mass density can also be expressed using magnitude fluctuations as:

6mEC’I"
S = : (7.11)

200,

In Figure 7.1 we show different values for the two defined « at various redshift using magnitude
cut of Fyrg < 23.

Flagship n(z) mag bias m;<23 Flagship n(z) mag bias m;<23
2.5 —0.351
2.0 —0.40
1.5
o o —0.451
& 1.0 £
N A —0.50 1
0.5
0.0, —0.551
-0.54 —0.60+
06 07 08 09 1.0 11 12 13 14 06 07 08 09 1.0 11 12 13 14
Ztrue Ztrue

FIGURE 7.1: Values for the magnification bias factor for the magnitude fluc-
tuations (right plot) and count fluctuations (left plot) at different z. The mag-
nitude cut is at Ey g < 23.

In our study, we aim to calculate the surface mass density for a group of lenses using the
stacking technique (see sec. 6.2) to enhance the signal-to-noise ratio. Observationally, it
is challenging to detect sufficient lens galaxies close to the source, where the magnification
effect is more prominent. To account for the redshift dependence of lens galaxies, the stacked
expression for X(r) is given by:

(7.12)
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where n; is the number of source galaxies associated with a given cluster within the corre-
sponding annular bin. In the case of count fluctuations we need to estimate n, using:

*

Z;ﬂ 7’LZ'(’I“ = Rmax)
Nhalos * T - R— T)2 '

(7.13)

Neg =

To compute the density fluctuations in annular bins centered on each cluster using the stacking
methodology, we employ:

5(r) = - -1AT Z - ivzwgzr) ~1, (7.14)

which corresponds to n/m — 1. Here, n is the total density of source galaxies in a given bin
over all clusters containing unmasked regions within that bin. NN} represents the number of
source galaxies for a given cluster in the bin, A, is the bin area (constant for all clusters at a
given 7 in Mpc), and m is the mask ratio in the bin region for each cluster.

To compute n,, the mean unlensed density, we use:

n*

=

1 DN,
Ny =

_1—mTi1A.’

(7.15)

e

where the sum is taken over the same clusters used to calculate n for the corresponding bin.
N; is the total number of source galaxies for each cluster (regardless of distance), Az, is the
total physical area of the catalog at each cluster’s distance, and my is the mask ratio for the
catalog, constant across all distances.

In order to calculate the surface mass we developed a new code that combines our original
code for calculating shear profiles presented in appendix B with the fast calculations of the
dsigma code structure presented in 6.2. We modified dsigma to allow the magnification profiles
calculations with the specifics mentioned here.

7.2.1 Galaxy mocks

We use data from two simulated catalogs: MICE v2 and Flagship v2, both accessible via
Cosmohub. Clusters are selected based on their log;q(halo mass) in Mg /h at z = 0.3, using
a redshift bin width of Az = 0.4. Source galaxies are selected at z = 1 with Az =0.2 and a
magnitude limit of < 23 in the Evyig-band.

Both catalogs provide complete lensing information for all galaxies, enabling direct selection
of convergence and magnified magnitudes based on RA and DEC. The magnified magnitude
is calculated as described in Equation 3.19.

Tables 7.1 and 7.2 present the halo mass ranges used to divide the sample, along with the
total number of clusters in each bin.

7.2.2 Fitting the halo profile
We aim to fit the halo profiles to NFW density profile, which is expressed as [155]:

. depe
o) = Gy @t ) (7.16)
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TABLE 7.1: Values for the different richness bins for Flagship’s halos

Imhalo (M FoF/h) Mean Ilmhalo N@ clusters Mean z

14.00-14.20 14.09 8733 0.353
14.20-14.40 14.29 3940 0.345
14.40-14.60 14.48 1497 0.339
14.60-14.80 14.68 500 0.326
14.80-15.00 14.88 127 0.326

TABLE 7.2: Values for the different richness bins for MICE’s halos

Imhalo (M FoF/h) Mean Imhalo N© clusters Mean z

14.00-14.20 14.09 4753 0.363
14.20-14.40 14.28 2271 0.359
14.40-14.60 14.48 976 0.347
14.60-14.80 14.68 321 0.345
where p. = % represents the critical density of the universe at the halo’s redshift z, H(z)

is the Hubble parameter at the same redshift, and G is Newton’s gravitational constant. The
scale radius s = Rggp/c is a characteristic radius of the cluster, with ¢ being the dimensionless
concentration parameter. The term J. is the characteristic overdensity of the halo, given by:

200 o

= S Mt —c/(ite)

(7.17)

The virial radius Raqp is defined as the radius within which the average density of the halo
equals 200p. [115]. The total mass of an NFW halo within Rag is therefore:

8007 8007 j(2)
Maoo = M (Ra00) = ?PcRgoo = T@Rgom (7.18)

where p(z) denotes the mean mass density of the universe at redshift z, and €(z) is the density
parameter at the same redshift.

To simplify calculations [155], we introduce a dimensionless radial distance * = R/rs. By
integrating Eq. 7.16 along the line of sight, the radial dependence of the surface mass density
for an NFW lens can be expressed as:

27’56cpc 2 1—x
e [1 - i arctanh /1701, 2 <1,
Snpw (@) = & 2edere T =1, (11)

2rs0cpe o 2 z—1
o [1 T arctan /|, «>1L

We define 24 logarithm radial bins from 0.1 Mpc to 10 Mpc. For each case we perform 5
calculations:

e J. : Using density fluctuations from expression 7.6.
e §,, : Using magnified fluxes from expression 7.9.
e x : Using directly the value of the convergence from the catalog.

e 0.(nomag) : Using density fluctuations but turning off the magnification.
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e op: Using the shear and calculating AY in order to compare the NFW parameters
obtained.

In Figure 7.2, we present preliminary results for the 14.40-14.60 halos in the Flagship sim-
ulation. The x profile exhibits excellent agreement with the NF'W profile, as the values are
directly extracted from the dark matter simulation (convergence maps). Similarly, the shear
profile follows the NF'W profile but shows a lack of signal at small scales, likely due to resolu-
tion effects on the maps, as shear is a two-component quantity. Despite these limitations, both
cases recover the Moy value well, comparable to the FoF mass of the halos. The errorbars
are given by 100 bootstraps resampling of the halos [113].

It is not expected for M p,r and Mogg to match perfectly, as they arise from different estimation
methods; however, they should agree in order of magnitude. Using magnified magnitudes
results in significant noise, yielding an underestimated Msgg. Conversely, magnified counts
provide a less noisy signal but result in an overestimated Msgy. Interestingly, the unmagnified
sample produces a similar amplitude to the magnified counts, leading to a comparable halo
mass. This suggests a potential issue in how we calculate the density within annular bins,
possibly due to inaccuracies in computing the area.

As mentioned earlier these results are preliminary, and further work is needed to refine the
analysis. In particular, we plan to apply this tool to investigate potential deviations with
respect to standard gravity using accurate measurements of magnification profiles e.g, around
clusters of galaxies. We also plan to study the effects of systematics like blending (pairs
merged due to proximity) and obscuration (galaxies not observed due to the atmosphere,
extinction or data reduction) on the magnification [69].
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FI1GURE 7.2: Halo profiles for Flagship halos at z=0.3 for each case discussed.

The top left plot shows all the magnification profiles results combined. While

the bottom right plot shows the results for the shear profile using the same

sample. The values for the NFW fit are displayed in each respective individual

plot text box. The parameter "c" corresponds to the halo concentration. The

range given on Moo is given by the maximum and minimum value given by
the errors for Raqg.
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Chapter 8

Global Conclusions

In this thesis, we investigated galaxy clustering and gravitational lensing within the frame-
work of two gravity models: the standard General Theory of Relativity assumed in the ACDM
model, and the Hu-Sawicki f(R) model, one of the most promising alternatives to GR. Modi-
fied gravity models have emerged as valuable tools for studying accelerated cosmic expansion
without relying on the cosmological constant A, which currently lacks a definitive physical
interpretation or observational evidence. Our focus has been on developing techniques to dis-
tinguish between these gravity models and identify potential deviations from GR. Analyzing
clustering in Modified Gravity models is more challenging due to the increased complexity in-
volved in the theory predictions for these models. Such models introduce an additional degree
of freedom, often referred to as a fifth force, which renders current GR emulators insufficient
for accurately reproducing the data.

In Chapter 4, we present the first computation of the gravity model testing parameter Fg
on GR and f(R) gravity models using high-fidelity simulated galaxy catalogs. Our analysis
demonstrates a method to accurately measure the scale-dependent growth rate predicted by
non-standard gravity models. To capture this scale dependence, we divide the estimation of
the RSD f parameter across distinct scale ranges, explicitly separating large (quasi-linear)
scales from small (non-linear) scales. Using samples of mock galaxies in low-redshift bins
(z < 1), we show that this estimator can be reliably measured, highlighting its strong dis-
criminating power in distinguishing between competing gravity theories within this redshift
range. Overall, we find that for an all-sky galaxy survey, and under the assumption of negligi-
ble observational systematics, accurate and largely unbiased estimates of Eg can be achieved
for both gravity models across all redshifts. However, the error bars remain too large to deci-
sively differentiate between the theories. Specifically, when attempting to measure the scale
dependence of the Eg estimator—a potential "smoking gun" for deviations from General
Relativity in redshift space—we find that limitations in state-of-the-art theoretical model-
ing, combined with intrinsic "prior volume effects," hinder the ability to obtain reliable and
unbiased constraints. As an alternative, we propose a simple null test of gravity based on
RSD clustering. We demonstrate that, provided future galaxy surveys can accurately model
small-scale effects, this approach could potentially detect significant deviations from standard
gravity.

In Chapter 5, we delve deeper into the biases that arise when assuming GR while analyzing
a dataset generated under f(R) gravity. Specifically, we examine whether the now-standard
combination of photometric galaxy clustering and weak-lensing observables, known as the
3x2pt analysis, could provide a more effective method for breaking parameter degeneracies
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and yielding more competitive constraints on gravity. We observe notable biases in the es-
timates of €2, and Ay, which are systematically overestimated relative to the fiducial values
of the simulation. In particular, the enhanced structure formation in the f(R) model leads
to an apparent increase in these two cosmological parameters. Additionally, the value of Sg,
that encodes the amplitude of clustering, is biased towards higher values, potentially offering
an explanation for the now well-established Sg tension within the ACDM model.

In Chapter 6, we presented how the tools developed in the course of this Thesis for galaxy
clustering and gravitational lensing were applied to the scientific preparation of the Euclid
and DESI experiments. Specifically, we provided precise estimations of the linear galaxy bias
and magnification bias in galaxy mocks across different redshifts to enable accurate model
predictions, thereby evaluating the capability of these missions to constrain cosmological pa-
rameters. Looking ahead, we anticipate beginning work with real observational data from
Euclid in the near future (e.g, DR1).

Lastly, in Chapter 7, we outline potential future directions of the work carried out in this
thesis. These efforts reflect our goal of refining our methodology with more accurate models
and completing the projects we are currently pursuing. Omne area of particular interest is
a side project focused on calculating halo profiles, which involves detailed modeling at very
small scales, a sharp contrast to the larger scales predominantly examined in this thesis. Once
we achieve more conclusive results from this project, we plan to extend the analysis to f(R)
simulations to explore how modified gravity influences halo density. However, it is likely that
we will initially need to rely on halo models developed for GR until dedicated predictions for
f(R) become available.

All the data used in this work is derived from simulated mock catalogs. Cosmological numeri-
cal simulations are powerful and reliable tools for replicating observables, enabling the testing
of theoretical models under idealized conditions. However, these simulations are vulnerable
to computational or human errors during their generation. In the course of this research, we
encountered two significant issues related to catalog generation, which caused delays in our
progress as we initially attributed these problems to flaws in our methodology. Resolving these
issues was essential to achieving reliable results. Specifically, incorrect peculiar velocities in
the GR/F5 galaxy mocks affected the determination of the growth rate discussed in Chapter
4, while errors in the deflected positions in FS2 impacted the validation of magnification bias,
which could have potentially influenced the halo profiles addressed in Chapter 7. Although
addressing these issues delayed the primary projects, it provided an invaluable opportunity to
deepen our understanding of simulation validation techniques and the generation of improved
halo and galaxy mock catalogs.
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Appendix A

Validating the growth rate on the
GR/F5 mocks

While we were working on the Eg project from Chapter 4, we found an issue with the peculiar
velocities in the GR and F5 mocks, which we will detail here. The initial fits performed with
COMET-emu using the multipoles of the correlation function for these mocks exhibited a
significant discrepancy in the value of the growth rate. As shown in Figure A.1, the best-
fit value for the growth rate in the GR mock, indicated in the legend, is f = 0.5. This
is considerably lower than the fiducial value of f = 0.77 at z = 0.55, as shown on the
y-axis. While the fits appeared to follow the theoretical predictions reasonably well, some
discrepancies were observed, particularly for the monopole, where deviations exceeded 20.
This prompted us to investigate whether parameter degeneracies might explain the mismatch.
Since the value of 012 was fixed, the most plausible degeneracy affecting f would involve the
linear galaxy bias. However, even considering such a degeneracy, the observed discrepancy in
the growth rate was too large to be explained by this effect alone.
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F1GURE A.1: First fits performed to the multipoles of the correlation function
of the GR mock. The best-fit parameters are depicted on the legend, while the
fiducial value of the growth rate is given on the y-axis label.
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Following these results, we decided to fix the growth rate f to its fiducial value at the corre-
sponding redshift and redo the fits. In Figure A.2, we observe that while the fits now avoid
the large disagreement in f, they still fail to fully reproduce the expected behavior. The
linear galaxy bias primarily influences the global amplitude, shifting both the monopole and
quadrupole in the same direction. In contrast, the growth rate governs the relative amplitude
between the monopole and quadrupole. The remaining discrepancies suggest that it is this
relative scaling—controlled by f—that is not being captured accurately in the fits.
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FIGURE A.2: Fits performed to the multipoles of the correlation function of
the GR mock with the value of the growth rate fixed at its fiducial value. The
best-fit parameters are depicted on the legend.

This discrepancy in the value of the growth rate prompted us to further investigate the mock
catalogs. First, we verified our methodology by successfully re-obtaining the growth rate in
the FS2 mock at a comparable redshift. Subsequently, we began exploring mock properties re-
lated to redshift-space distortions (RSD). For instance, we recalculated the observed redshifts
using the peculiar velocities of each galaxy provided by CosmoHub, expressed in Cartesian
components ([vg, vy, v;]) as described in Equation 2.41. We also calculated the 2D correlation
function &(rp, m) (see sec. 2.4) for both mocks and we did not see any visual artifact as shown
in Figure A.3. Despite these efforts, we could not identify the source of the error, so we turned
our attention to the halo catalog from which the galaxy catalog was derived [14].

We were provided with three snapshots’ data of the halo catalog at z = 1 (step = 175), z = 0.5
(step = 255), and z = 0 (step = 400) in the simulation box. The data contained the position,
velocities and mass of the halo groups detected by the Friends-of-Friends algorithm of P-
Gadget3/MG-Gadget. In order to investigate the halo properties, we utilized a sample from
CosmoHub, extracting all available information on halo positions, velocities, true redshifts,
and masses at the snapshots’ redshifts. To focus solely on central halos/galaxies, we filtered
the dataset for entries using kind = 0. To adapt the halo positions from CosmoHub to the
periodic box framework, we applied corrections to each coordinate, adding or subtracting
multiples of the box size (L = 768) h/Mpc to respect periodic boundary conditions. The
adjusted halo positions from the periodic box catalog were compared with those provided by
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F1GURE A.3: 2D correlation function for the GR mock at z=0.55. 7 represents
the LOS distance and r, the projected distance over the sky.

the snapshots. Since the halos in Cosmohub and the snapshots had different ID classification
we had to developed a code to match halos in each dataset by their position. Discrepancies
were identified, with position differences exceeding 1% in some cases. To address this, we
defined a threshold A, = 0.2 for the coordinate components (p = [z, y, z]) to identify matches.
Using this criterion, the majority of halos in the CosmoHub dataset matched a corresponding
halo in the periodic box catalog.

For instance, in a test involving 10,000 halos at step = 175, only 374 halos lacked a match, and
no cases of multiple matches were detected. This mismatch is likely attributable to precision
limitations during the transformation of periodic box data into the lightcone framework and
subsequent storage in CosmoHub. Nonetheless, the high rate of successful matches and the
strong similarity in properties like halo mass and velocity support the validity of the matching
process. Using the matched halos, we analyzed velocity components by calculating the ratios
between CosmoHub and periodic box catalog values. For each one of the steps, velocity ratios
clustered around 1, indicating good agreement. However, rare outliers exhibited discrepancies
up to 300%, which were excluded from the analysis. For step 400 is harder to tell due to the
very small dataset since we are dealing with a very small volume at z=0.

The snapshots’ dataset also had information for the subhalos instead of the halo groups used
until now. Extending this analysis to subhalos revealed a systematic discrepancy: velocities
from the periodic box catalog (vpB, subhalo) Were consistently larger than those from CosmoHub
(VCH, subhalo), scaling approximately as:

UPB, subhalo & UCH, subhalo * (1 + 2). (A1)

This trend was observed across all velocity components (v, vy, v,) and simulation steps, as
illustrated in the Fig. A.4. Initially, we computed multipoles using subhalo data due to a
lack of clarity regarding the distinction between halo groups and subhalos. Upon switching
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FIGURE A.4: Distribution of ratios of x-component of the velocity of halos of
the snapshots over the Cosmohub velocities.

to halo groups’ data for the calculations, the results aligned closely with those derived from
CosmoHub. Specifically, the quadrupole moment P»(k) exhibited the known amplitude dis-
crepancy from Figure A.1 and A.2. This confirmed that the values stored in Cosmohub had
the halo group data. Analyzing the P-Gadget3’s data structure, we found parallels with the
data structure of the Illustris simulation!, which specifies that group velocities (GroupVel) are
box velocities. While Subhalo velocities (SubhaloVel) are peculiar velocities which confirms
why there is this discrepancy with the Cosmohub values from Fig. A.4. To derive peculiar
velocities for the group halos, these must be rescaled by the factor 1+ z (see sec. 2.3):

Upeculiar = Ubox ° (]— + Z)- (AQ)

This correction was missing in the original CosmoHub dataset, explaining the discrepancies
in observed redshift (zgrsp) calculations. The center galaxies acquire the same velocities as
the their respective halo so we can apply eq. A.2 directly. The peculiar velocities components
for the satellite galaxies are obtained from a Gaussian centered at the respective velocity
component of the center galaxy with a variance of 0? = 0.3. Adjusting satellite galaxy
velocities required translating them to align with the corrected mean velocity of their central
halo. For each velocity component p = [z, y, z], the correction was:

"https://www.illustris-project.org/data/docs/specifications/


https://www.illustris-project.org/data/docs/specifications/
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1, , hal hal
vgorrected = gl 4 pbalo (1 4 Zirue, halo) — VRO (A.3)
This ensured the proper dispersion of subhalo velocities without introducing artificial scaling

effects. Using this corrected velocities we can obtain the corrected observed redshift using eq.
2.41.

Recalculating the multipoles using corrected velocities led to significant improvements, par-
ticularly in the quadrupole amplitude, bringing it closer to the fiducial value. The fit quality
improved, except at large scales for the quadrupole as we can see in Figure A.5. Using
this correction we concluded that the problem was solved and we continued with the fitting
procedure.

Multipoles GR z=0.55 + 0.05 magAB(sdss_r)<24
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F1GURE A.5: Fits performed to the multipoles of the correlation function of
the GR mock with the corrected data vectors. The best-fit parameters are
depicted on the legend.

Identifying this issue took nearly a year, representing a significant setback in the development
of the main project of this thesis. Nevertheless, it provided a valuable opportunity to deepen
our understanding of the internal structure and processing of halo mock catalogs, as well as
the implementation of redshift-space distortions (RSD) in simulations.
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Appendix B

Code for calculating Halo density
profiles

In this appendix we paste our original code described in sec. 6.2 to validate the DESI code

dstgma. This code calculates the shear and shear density profile of stacked halos, see Chapter

5.

import pandas as pd

import numpy as np

from astropy.table import Table, join, vstack
from astropy.cosmology import LambdaCDM

from astropy.utils import NumpyRNGContext
from astropy.stats import bootstrap

from astropy import units as u

# Input cosmology

h = 0.67 # reduced hubble constant
Omega_m = 0.319 # Matter density parameter
Omeda_de = 0.681 # Dark matter density parameter

# Cosmology model
cosmology_model = LambdaCDM(HO=h * 100, OmO=Omega_m, O0de0O=Omeda_de)

# Constants
SPEED_QF_LIGHT = 3e5 # [km/s]
GRAVITATIONAL_CONSTANT = 4.301e-3 # [pc Msun~-1 (km/s) 2]

# Cluster and halo parameters
halo_log_mass = 14.05

# Load cluster data and filter

cluster_data = pd.read_csv('clusters F.csv', delimiter=',', comment='#"')

cluster_data = cluster_datal
(cluster_data['ra_gal'] < 85) & (cluster_data['ra_gal'] > 5) &
(cluster_data['dec_gal'] < 80) & (cluster_data['dec_gal']l > 0.65) &
(cluster_data['halo_1m'] < halo_log_mass + 0.05) &
(cluster_datal['halo_1m'] > halo_log_mass - 0.05)

]

cluster_data.reset_index(drop=True, inplace=True)

# Load source data

source_data = pd.read_csv('sources shear F.csv', delimiter=','

, comment='#"')

def angular_separation(lonl, latl, lon2, lat2):
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mmnn
Calculate the angular separation between two points on a sphere.
sin_delta_lon = np.sin(lon2 - lonl)
cos_delta_lon = np.cos(lon2 - lonl)
sin_latl = np.sin(latl)
sin_lat2 = np.sin(lat2)
cos_latl = np.cos(latl)
cos_lat2 = np.cos(lat2)
numeratorl = cos_lat2 * sin_delta_lon
numerator2 = cos_latl * sin_lat2 - sin_latl * cos_lat2 * cos_delta_lon
denominator = sin_latl * sin_lat2 + cos_latl * cos_lat2 * cos_delta_lon
separation = np.arctan2(np.sqrt(numeratorl**2 + numerator2**2), denominator)
return separation
def equatorial_to_polar(ra, dec, ra_center, dec_center):
Convert equatorial coordinates to polar coordinates centered at a specified point.
mmnn
ra_prime = ra - ra_center
ra_prime[ra_prime < 0] += 2 * np.pi # Convert to positive RA wvalues
quadrants = {
"Q1": (ra_prime < np.pi) & (dec > dec_center),
"Q2": (ra_prime < np.pi) & (dec < dec_center),
"Q3": (ra_prime > np.pi) & (dec < dec_center),
"Q4": (ra_prime > np.pi) & (dec > dec_center),
¥
# Calculate separation and azimuthal angle
separation = angular_separation(ra_prime, dec, 0, dec_center)
# Spherical cosine law
x = angular_separation(0, dec, O, dec_center)
y = angular_separation(ra_prime, dec, 0, dec)
cos_theta = (np.cos(y) - np.cos(x) * np.cos(separation)) / (np.sin(x) * np.sin(separation))
# Handle rounding errors
cos_theta = np.clip(cos_theta, -1, 1)
uncorrected_theta = np.arccos(cos_theta)
# Assign angles to correct quadrants
theta = np.zeros_like(uncorrected_theta)
theta[quadrants["Q1"]] = uncorrected_theta[quadrants["Q1"]]
theta[quadrants["Q2"]] = np.pi - uncorrected_thetal[quadrants["Q2"]]
theta[quadrants["Q3"]] = np.pi + uncorrected_thetal[quadrants["Q3"]]
thetal[quadrants["Q4"]] = 2 * np.pi - uncorrected_thetal[quadrants["Q4"]]
return separation, theta
def calculate_bootstrap_errors(values_tangential, values_cross, n_iterations):

mmnn

Calculate bootstrap errors for tangential and cross components.

mmnn

indices = np.arange(len(values_tangential))
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95 with NumpyRNGContext(1):

96 bootstrap_indices = bootstrap(indices, n_iterations)

97 bootstrap_tangential = values_tangential[bootstrap_indices]

98 bootstrap_cross = values_cross[bootstrap_indices]

99

100 weights = np.ones(len(values_tangential))

101 tangential_means = np.average(bootstrap_tangential, axis=1, weights=weights)
102 cross_means = np.average(bootstrap_cross, axis=1, weights=weights)

103

104 return np.std(tangential_means), np.std(cross_means)

105
106 # Prepare lists to store results

107 tangential_shear_list = []

108 cross_shear_list = []

100 distance_list = []

110 delta_critical_list = []

111 redshift_list = []

112 ra_list = []

113 dec_list = []

114

115 # Process each cluster

116 for idx in range(len(cluster_data)):

117 cluster_row = cluster_data.iloc[idx]

118 sources_near_cluster = source_datal[

119 (source_data['ra_gal']l < cluster_row['ra_gal']l + 4) &

120 (source_data['ra_gal']l > cluster_row['ra_gal'] - 4) &

121 (source_data['dec_gal'] < cluster_row['dec_gal']l + 0.7) &

122 (source_data['dec_gal'] > cluster_row['dec_gal']l - 0.7)

123 ]

124 sources_near_cluster.reset_index(drop=True, inplace=True)

125

126 cluster_ra = cluster_row['ra_gal'] * np.pi / 180

127 cluster_dec = cluster_row['dec_gal'] * np.pi / 180

128 source_ra = sources_near_cluster['ra_gal'] * np.pi / 180

129 source_dec = sources_near_cluster['dec_gal'] * np.pi / 180

130

131 separation, theta = equatorial_to_polar(source_ra, source_dec, cluster_ra, cluster_dec)
132 theta += np.pi / 2 # Convention adjustment

133

134 # Compute distances and critical density

135 redshift = cluster_row['true_redshift_halo']

136 angular_diameter_distance = cosmology_model.angular_diameter_distance(redshift).to(u.pc)
137

138 # Calculate tangential and cross shear components

139 gammal = -sources_near_cluster['gammal']

140 gamma? = sources_near_cluster['gamma2']

141 tangential_shear = -(gammal * np.cos(2 * theta) + gamma2 * np.sin(2 * theta))
142 cross_shear = -gammal * np.sin(2 * theta) + gamma2 * np.cos(2 * theta)

143

144 tangential_shear_list.extend(tangential_shear)

145 cross_shear_list.extend(cross_shear)
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Appendix C

Extra plots

In this appendix we add the extra plots for the Eg project from Chapter 4. This appendix
was also included in the respective paper (Viglione C. et al. (2025))

C.1 Accuracy of the E; estimator

Below we show how the different theory estimators for the E¢ estimator compare to the fidu-
cial expression given by eq.(4.27).

k (h/Mpc) k (h/Mpc) k (h/Mpc)
0.05 010 015 0.21 0.26 0.31 0.36 0.04 0.07 0.11 0.14 0.18 0.21 0.25 0.03 0.05 0.08 0.10 0.13 0.15 0.18

[z=0.35] [z=0.55 _ [z=0.80

(Eg — Ec)/Eg - 100%

50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350
Multipole Multipole Multipole
--- GR theory —— F5 theory -=-- GR Wenz!| — MG Wenzl === GR Pullen —— MG Pullen

FIGURE C.1: Testing the accuracy of the estimator given by [152] (red lines)
and [123] (blue lines). Each column represents one of the redshift bins (from
left to right: 0.35, 0.55, 0.8). The dashed (solid) lines represent the theoretical
prediction (Eg in eq.(4.27)) for GR (F5). The black lines represent the ob-
servable quantities (EY*"* in eq.(4.49)) with theoretical Cys. The plots below
show the respective relative difference of EY*** and EE™" with respect to the
theoretical prediction using the same color legend. The F5 relative difference is
not included due to overlapping since it is the same difference as for the same
model in GR.
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C.2 Additional plots for E; and 5 PDF

In this section we show the same plots for Figure 4.7 but for the other two redshift bins used
in this work: z=0.35 (Figure C.2) and z=0.8 (Figure C.3).

GR z=0.35 mmm Small scales F5 z=(0.35 mmm Small scales
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Ficure C.2: Same as plot 4.7 but for the lowest redshift bin z=0.35. Top
plots show the contours results for b; and f and the corresponding derived 8
parameter for small, large, and full scales for GR (Left) and F5 (Right). The
dashed lines show the predictions for f and b; (estimated from the Cys) for GR
(black), and F5 small (red) and large (blue) scales. The bottom plots show the
PDF for the EG estimator for the respective scales, the solid lines show the
mean of the respective same color PDF while the dashed lines represent the
predictions for the same cases discussed earlier.
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FIGURE C.3: Same as Figure C.2 but for the highest redshift bin z=0.8.
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C.3 Full parameter space triangle plots for z = 0.55.
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cosmology of the simulation (bl is from the Cys fit).
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C.4 An improved estimation of the linear galaxy bias

In section 4.6.1 we estimated the linear galaxy bias using pyCCL up to linear theory. In most
cases this should be enough since we are estimating the linear bias, but due to the small
redshifts used in this work this left us with a small dataset to work with at large (linear)
scales since things get nonlinear fast, e.g for £,,,, = 250 at z = 0.35. For this reason we used
the non-linear models implemented in pyC'CL in order to extend the scales over which we can
estimate the linear bias by also fitting the nonlinear bias b. We use the Eulerian perturbation
theory and hybrid Lagrangian bias expansion correlations using the emulator baccoemu [11]
to fit b1 and by over a maximum multipole of 700 independently of the redshift.

The results using the BACCO simulation model are shown in Figure C.6. We can see that
for the smallest redshift bin, i.e. z=0.35, the models seems to break down as it is incapable
of finding a good fit between data and theory despite that the parameters have converged,
which results in a very high reduced x,. The values are consistent with the ones from Ta-
ble 4.2, although they are not within one sigma errors due to the small error-bars in both cases.

Just as we did in section 4.6.1 we use the values and standard deviation of by obtained here
as Gaussian priors for the MCMC. The value for by obtained here are not used as a Gaussian
prior since we cannot ensure that the by from Eulerian and Bacco model corresponds to the by
from the VDG model. The fitted growth rate did not change much which makes sense since
as stated earlier the value of by is close to the one used in the standard case (Table 4.2).
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