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Abstract

Nearly all of public-key cryptosystems that are being used for real-world applications are not

secure against quantum adversaries. With the fast-track development of quantum computers

over the last few years there is an ever growing need to develop new cryptosystems that are

believed to be resistant to quantum adversaries. The field of post-quantum cryptography aims

to explore the construction and security of these cryptographic systems and has gained attraction

over the last few years.

Among the various known approaches for constructing post-quantum cryptosystems is one

based on isogenies between elliptic curves. The fundamental idea is that the problem of finding

an isogeny between two elliptic curves is believed to be hard for both classical and quantum

adversaries. Isogeny-based cryptosystems attain their security assuming the hardness of such

isogeny problems. Certain cryptosystems require a more constrained isogeny problem in order

to prove their security. These constrained problems are tasked to find an isogeny that has some

additional structure. We note that some of these constrained problems have proved detrimental

to the longevity of certain cryptosystems.

In this thesis we identify cryptographic protocols that either do not have an instantiations

based on isogenies or could do with an improvement. This not only includes novel construc-

tions of advanced protocols but also includes contributing to parameter generation of existing

protocols. In particular we demonstrate novel constructions of a commitment scheme and an

updatable public-key encryption scheme. We prove the security of these constructions based on

either well studied isogeny problems that are believed to be hard or based on novel well motiv-

ated assumptions. Additionally, we explore new techniques for parameters for the isogeny-based

signature scheme SQISign through the problem of constructing twin-smooth integers. This is

a fundamental problem to study when searching for suitable parameters. To date, existing

SQISign parameters only attain 128 bits of classical security. With our techniques, we are able

to find parameters that attain 192 and 256 bits of classical security.
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Chapter I

Introduction

Before the 1970s, cryptography was based on shared secret keys, the idea being that two parties,

let us call them Alice and Bob, perform cryptographic operations using a pre-shared key. De-

pending on the specific circumstances, establishing this shared key can be difficult to achieve

in a secure manner. At that time there would typically be some trusted third party in order to

handle this exchange. Requiring such a trusted party is not necessarily the best option. This

type of cryptography is commonly referred to as symmetric cryptography whereby a single key

is used by both parties to do their respective cryptographic operations.

In the 1970s, this idea would be built on with the emergence of public-key cryptography (also

referred to as asymmetric cryptography). Here the idea is that each party possesses a public and

private-key pair. The public-key is made publicly available and the private-key is kept private.

If Alice is the owner of a particular public-key pair, then she would do cryptographic operations

with both her public and private-key while Bob will solely use her public-key if he wishes to

establish communication with Alice.

The security of a vast array of modern public-key schemes are based on computationally hard

problems in number theory. In other words if you believe that some problem in number theory is

computationally infeasible to solve with any amount of computation time, then the underlying

cryptosystem is secure. Some of these computational problems include the “integer factorisation

problem" and the “discrete logarithm problem" which forms the basis of many cryptosystems

used in the real world including RSA [RSA78] and ElGamal [ElG85]. The evolution of public-

key cryptography has not eliminated the need for secret-key based cryptography, but it seeks

to enhance it with the exploitations of public-key cryptography. For instance the classic Diffie

Hellman protocol [DH76], is a trustless solution to the problem of establishing a shared secret

key as mentioned previously. This Diffie Hellman protocol is an example of what is commonly

referred to as a non-interactive key-exchange protocol.

Over the last five decades, public-key cryptography has opened the doors to more advanced

cryptographic protocols. Each of which was designed to serve a specific application. One such

idea has already been mentioned in the previous paragraph regarding non-interactive key ex-

change. Additionally, many of these advanced protocols that were originally of theoretical in-

terest have featured in real world applications.

Public-key cryptography as we know it is going through a transformation. The number-
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theoretic problems of factoring and computing discrete logarithms that were conjectured to be

resistant to classical adversaries are actually not resistant to quantum adversaries. In essence a

large enough sized quantum computer could efficiently solve these number-theoretic problems

and thus make the underlying cryptosystem obsolete. This is in large part due to the celebrated

work of Shor [Sho94]. Modern symmetric-based cryptosystems such as AES [DR01] also suffer

from quantum attacks, but these are not as devastating compared to their public-key counter-

parts. This is largely due to Grover’s algorithm [Gro96] which takes an input to a black box

function that has a specific output using O(
p

N) evaluations where N is the size of the domain

of the function. Classical computations require O(N) evaluations to produce such a output.

As a result there is a need to develop new public-key cryptosystems that are believed to be

secure against both classical and quantum adversaries. The field of post-quantum cryptography

is the study of such cryptosystems both from a constructive perspective but also a cryptanalytic

perspective. Since 2016, the National Institute of Standards and Technology (NIST) has worked

on standardising post-quantum cryptography especially as the advancement of quantum com-

puters gets stronger [The16]. The main focus of this standardisation effort is on the selection

of public-key encryption, key encapsulation mechanisms and digital signatures which are the

most foundational and important cryptosystems that need replacing. Over the past year, a par-

tial conclusion to this standardisation effort has been announced with the selection of several

candidates for standardisation - see [The22]. Broadly speaking, there are six categories of post-

quantum cryptosystems that are or have been considered in this standardisation process. Each

category is based on either a hardness assumption or uses symmetric primitives as a building

block for new primitives with post-quantum security. These categories are summarised below.

• Code-based cryptography [McE78,ABB+17]: builds cryptosystems that uses error-correcting

codes such as Goppa codes. Well known cryptosystems include McEliece and BIKE – both

of which are still in the NIST standardisation process. Pros: the security assumptions have

been studied for close to five decades, so the confidence in its security is strong. Cons:

public-key sizes are quite large;

• Hash-based cryptography [BHH+15]: builds cryptographic protocols from the security of

hash functions. SPHINCS+ has been selected for standardisation by NIST. Pros: There is

a strong confidence in its security. Cons: key sizes are quite large;

• Multivariate-based cryptography [DS05]: based on the hard problem of solving a set of

multivariate polynomial equations. Pros: reasonable signature sizes and performs well in

practice. Cons: confidence in its security is low at the moment;

• Lattice-based cryptography [BDK+18, DKL+18, FHK+18]: build cryptosystems based on

hard problems using lattices such as shortest vector problem and bounded distance de-

coding to name a few. A number of lattices-based schemes have been selected for standar-

isation by NIST including Kyber, Dilithium and Falcon. Pros: Most well rounded when it

comes to key sizes, performance and security. Cons: some security assumptions have been

questioned and so over reliance on lattices may not be well advised;

• Isogeny-based cryptography [JAC+17]: builds cryptosystems based on computing iso-

genies of elliptic curves. Numerous protocols have been designed that resemble classical
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public-key protocols. Pros: shortest key sizes among all categories. Cons: orders of mag-

nitude slower than other candidates;

• MPC-based cryptography [CDG+17]: uses symmetric primitives such as psuedo random

functions combined with a multi-party computation to build cryptographic primitives.

Pros: the use of certain symmetric primitives give rise to short signatures. Cons: needs to

stand the test of time in order to gain confidence in its security.

We also note that there are other bodies around the world that are attempting to standardise

post-quantum cryptography [ETS].

In this work we explore isogeny-based cryptography as an avenue to construct post-quantum

cryptosystems. As mentioned in the above summary, the field of isogeny-based cryptography

builds cryptosystems based on computing isogenies between elliptic curve. It relies on the fact

that given two elliptic curves for which there exists an isogeny between them, finding an isogeny

is conjectured to be hard for both classical and quantum adversaries. We note that by Tate’s

theorem [Tat66], there are polynomial-time algorithms to check whether there exists an isogeny

between two elliptic curves. It can be thought of as a quantum resistant alternative to classical

elliptic curve cryptography (ECC) which for the most part relies on the hardness of computing

discrete logarithms within the group of points on an elliptic curve and has seen numerous real

world applications.

Isogeny-based cryptography started in 1997 thanks to Couveignes through an unpublished

manuscript [Cou06]. His idea was not made publicly available until it was independently re-

discovered by Rostovtsev and Stolbunov [RS06]. They were the first to consider to possibility

of isogeny-based cryptosystems as a candidate to achieve post-quantum security. These ini-

tial cryptosystems used ordinary elliptic curves owing in large part to the widespread use of

such curves in traditional ECC. In more recent years supersingular elliptic curves have paved

the way for more efficient cryptosystems that also attain stronger security. The most notable

cryptosystems based on supersingular curves are: the CGL hash function [CLG09], the SIDH

key exchange protocol [JDF11], the CSIDH key exchange protocol [CLM+18] and the SQISign

digital signature [DFKL+20]. In particular, the key exchange protocol SIDH formed the basis for

a submission to the NIST standardisation process called SIKE [JAC+17]. The security of SIKE

relies on a slightly modified isogeny problem whereby some extra auxillary information is given.

Over the years, this problem has received a huge amount of scrutiny - ultimately resulting in the

protocol being completely broken and hence is no longer in the NIST standardisation process.

The other protocols mentioned above still remain secure against both classical and quantum

adversaries.

Despite the effort from the standardisation bodies to standardise post-quantum cryptography,

the focus of their endeavours has been on the standardisation of these foundational cryptosys-

tems. As a result, a majority of the research community has focussed on the construction and

analyses of these foundational cryptosystems. While these will be important to set the founda-

tions of real-world post-quantum cryptography over the coming years, there are more advanced

cryptosystems that have real-world value and require a post-quantum solution. Over the last

few years, this area of research has been gaining more attention not only from the perspective of

post-quantum cryptography as a whole, but also for isogeny-based cryptography. In this thesis,
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we aim to construct or improve upon existing cryptosystems based on isogenies. This not only

includes exploring the foundational cryptosystems, but also exploring some advanced protocols.

Thesis structure and the author’s main contributions. The work presented here is in two

parts. Part 1 introduces the necessary cryptographic and mathematical background that is used

in the work that follows, while Part 2 details our contributions to the field of isogeny-based

cryptography.

In Chapter II we give an introduction to the fundamental cryptographic primitives that have

played a key role within the advancement of isogeny-based cryptography. Most notably this

includes public-key encryption and digital signatures which have been the focus of the NIST

standardisation effort. In Chapter III we introduce the necessary mathematical background that

is relevant for the thesis. This not only includes a study of elliptic curves and isogenies but

also other number theoretic tools which are used in the thesis. In Chapter IV we showcase

the published and ongoing work that encompasses isogeny-based cryptography. This includes

looking at algorithmic tools for isogenies as well as presenting some well-known cryptosystems.

The focus of Chapter V is on work that was presented at Mathcrypt 2021 and published

in a special issue of the Journal of Mathematical Cryptology [Ste21]. Concretely, we define

the notion of commitment schemes and formalise how one can construct such a scheme based

on walks in supersingular isogeny graphs. This is something that, prior to this work, had not

been achieved in the literature. The idea behind the commitment scheme is based on the well-

known and generic construction based on hash functions but formalising the security in a way

that does not require any random oracles. In Chapter VI we present an extension of the work

from [BSC+22] which has been has been accepted to Asiacrypt23. The focus of the chapter is

on finding parameters for the isogeny-based signature scheme SQISign which is discussed in

Chapter IV. At the heart of these parameters, one requires a prime, p, of cryptographic size such

that p2−1 has a large smooth cofactor. We develop a new method for finding SQISign friendly

primes based on the evaluation of certain polynomials. Inputs to these polynomials are found

using an algorithm, referred to as CHM, that finds twin-smooth integers. These polynomials not

only include that classical polynomials, pn(x) = 2xn − 1, that has been used in prior works on

this topic but also new polynomials that are particularly favourable in this setting. In Chapter

VII we present work from [GS23]. In it we explore the construction of an updatable public-

key encryption scheme based on cryptographic group actions. While other updatable public-

key encryption schemes based on such group actions have been presented in the literature,

none have been designed with the intent of applying it to the specific setup within CSIDH. Our

scheme achieves this property. To achieve this, we provide a construction of an asychronous key

generation scheme that is then transformed into an updatable public-key encryption with the

aid of a public-key encryption scheme.

Finally, in Chapter VIII, we give a summary of the core contributions that have been made

in this thesis as well as layout some interesting open problems that could serve as future work.
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Chapter II

Modern Cryptography

We begin by introducing some of the important notions and primitives that are seen in modern

day cryptography and are also fundamental to many applications. As one would imagine the

potential scope of primitives to dive into is vast. So in this chapter, we start off by looking

into primitives that have been central to the development of isogeny-based cryptography. This

includes cryptographic hash functions, non-interactive key exchange, public-key encryption and

signature schemes – the specific applications built from isogenies will be discussed in Chapter

IV. Later chapters other cryptographic primitives will be introduced. These will be introduced to

serve the purpose of the contribution of said chapter. For a wider scope of primitives to explore,

we refer the reader to books by Katz and Lindell [KL20] and Smart [Sma15].

Definition II.1 (Negligible function). Let ε : N→ R>0 be function. We say that ε is negligible if

for every polynomial, p, there is an integer N ∈ N such that for all n≥ N we have

ε(n)≤
1

p(n)
.

Throughout this text, a negligible function will often be written as negl(·) (or simply negl).

A probabalistic polynomial-time (PPT) algorithm with respect to a parameter n, is an al-

gorithm such that the expected run time is polynomial in n. In other words, it runs in O(nk) for

some positive integer k. Throughout this thesis, there will be an implicit input 1λ in each of the

algorithms presented. Here λ is called a security parameter and refers to a measure of security

of a cryptographic protocol. An adversary, which will be typically be denoted by A , is a PPT

algorithm with respect to a security parameter λ.

II.1 Symmetric Cryptography

In this section we discuss the symmetric primitives that are foundational to some of the isogeny-

based applications. In particular we discuss cryptographic hash functions.
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Exppre−image
H ,y,A (λ)

1 : pp← KeyGen()

2 : x ←A (pp,H , y)

3 : return 1 ifH (x) = y else 0

Exp2nd−pre−image
H ,x ,A (λ)

1 : pp← KeyGen()

2 : x ′←A (pp,H , x)

3 : return 1 ifH (x) =H (x ′) else 0

ExpcollisionH ,A (λ)

1 : pp← KeyGen()

2 : (x , x ′)←A (pp,H )
3 : return 1 ifH (x) =H (x ′) else 0

Figure 1: The pre-image, second pre-image and collision resistance experiments for a cryptographic
hash function.

II.1.1 Cryptographic Hash Functions

A hash function is a deterministic map that takes as input data of arbitrary size and outputs a

fixed length bit string. One can informally turn these hash functions into a cryptographic hash

function by imposing a “one-way" property on it. In other words it is computationally infeasible

to invert the hash function. In addition, we also need the function to be resistant to collisions –

so it is computationally infesible to provide two inputs that hash to the same output.

More formally, a cryptographic hash function consists of two algorithms: KeyGen() and

H (·). KeyGen() is a PPT algorithm that outputs the necessary public parameters and H (·) is

a deterministic algorithm that takes as input a value x and outputs the result H (x) ∈ {0,1}λ.

We formally define the necessary security properties for these hash functions. Throughout these

upcoming definitions, we letH is a cryptographic hash function andA is a PPT adversary.

Definition II.2 (Pre-image resistance). The pre-image resistance advantage for an adversaryA ,

denoted by Advpre-image
H (A ), is defined to be

Pr
�

Exppre−image
H ,y,A (λ) = 1

�

.

where Exppre−image
H ,y,A (λ) is the pre-image resistant experiment as defined in Figure 1. We say that

the hash functionH is preimage resistant if, for every adversaryA , there is a negligible function,

negl, such that the advantage is bounded above by negl(λ).

Definition II.3 (Second pre-image resistance). The second pre-image resistance advantage for an

adversaryA , denoted by Adv2nd-pre-image
H (A ), is defined to be

Pr
�

Exp2nd−pre−image
H ,x ,A (λ) = 1

�

.

where Exp2nd−pre−image
H ,y,A (λ) is the second pre-image resistant experiment as defined in Figure 1. We

say that the hash function H is second preimage resistant if, for every adversary A , there is a

negligible function, negl, such that the advantage is bounded above by negl(λ).

Definition II.4 (Collision resistance). The collision resistance advantage for an adversary A ,

denoted by Advcollision
H (A ), is defined to be

Pr
�

ExpcollisionH ,A (λ) = 1
�

.
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where ExpcollisionH ,y,A (λ) is the collision resistant experiment as defined in Figure 1. We say that the

hash functionH is collision resistant if, for every adversaryA , there is a negligible function, negl,

such that the advantage is bounded above by negl(λ).

The Random oracle model. In an ideal world, one would like to prove the security of a

cryptographic protocol in the standard model. This model does not make any assumptions on

any aspect of the underlying cryptography that could be deemed as suspicious. However, in

many security proofs of cryptographic protocols, one requires a strong randomness assumptions

about the outputs of certain functions which includes hash functions. The random oracle model

(ROM) is a model that allows one show the security of a protocol holds if an attacker could

understand the behaviour of such a random looking function. Cryptographic hash functions

functions are common examples of functions that can be modelled as a random oracle.

II.2 Asymmetric Cryptography

In this section we discuss the asymmetric (also referred to as public-key) primitives that are

foundational to some of the isogeny-based applications. In particular we discuss non-interactive

key exchange, public-key encryption and digital signature schemes.

II.2.1 Non-Interactive Key Exchange

A non-interactive key exchange protocol is an technique to establish a shared secret between

two parties in a way that requires no interaction between the parties. The basic framework for

such a protocol involves each party establishing a public-key and private-key pair and once the

respective public key is revealed, the other party can perform computations on the public key

in such a way to establish a shared secret. The idea of such a scheme dates back to the classical

Diffie-Hellman protocol [DH76]. In this scheme, exponentiation in a finite group is used in

order to obtain a shared secret. Recently, formal security models have been propsed for such

protocols [CK01,FHKP13].

II.2.2 Public-Key Encryption

A public-key encryption scheme allows participants to encrypt a message using the recipient’s

public key. Decrypting a ciphertext can only be done with the possession of a corresponding

secret key which is stored secretly by the owner of the public key.

More formally, a public-key encryption scheme (PKE) consists of three algorithms: KeyGen(),
Enc() and Dec(). KeyGen() is an algorithm that returns the necessary public parameters along

with a key pair (sk, pk). Enc() is an algorithm that takes as input a public key pk, a plaintext

m along with some (optional) randomness r and outputs a ciphertext c. Dec() is an algorithm

that takes as input a ciphertext c along with a secret key sk and outputs a plaintext m.

The correctness of a PKE scheme is a property that requires that the ciphertext produced

with pk for a plaintext m should either always decrypt to m using sk or do so with extremely

high probability. Informally, the one-way security of a PKE scheme says that it should be hard

to take a ciphertext and recover the plaintext without the possession of a secret key. There is a
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ExpIND-CPA
PKE,A (λ)

1 : (pk, sk)← KeyGen()

2 : (m0, m1)←A
3 : b←$ {0,1}
4 : c← Encrypt(pk, mb)

5 : b′←A (c)

6 : return b
?
= b′

ExpIND-CCA
PKE,A Odec (λ)

1 : (pk, sk)← KeyGen()

2 : (m0, m1)←A Odec

3 : b←$ {0, 1}
4 : c← Encrypt(pk, mb)

5 : b′←A Odec(c)

6 : return b
?
= b′

Odec(c∗, c)

1 : assert c∗ ̸= c

2 : m←Decrypt(sk, c)

3 : return m

Figure 2: The IND-CPA and IND-CCA experiements for a public key encryption scheme as well as
the decryption oracle Odec. For the IND-CCA experiment, the adversaryA Odec is given access to the
decryption oracle Odec.

stronger notion of security of a PKE scheme. The issue with one-way security is that it does not

cover the possibility of recovering partial information about the plaintext. This is rectified by

introducing indistinguishability games. The idea is that one is given the ciphertext of one of two

messages and you are tasked to recover which message was used to get the ciphertext. This is

formalised this through the upcoming definitions and we write PKE= (KeyGen(),Enc(),Dec())
for a public-key encryption scheme.

Definition II.5. The indistinguishability under chosen-plaintext attack (IND-CPA) advantage

for an adversaryA , denoted by AdvIND-CPA
PKE,A (λ), is defined to be

2

�

�

�

�

Pr
�

ExpIND-CPA
PKE,A (λ) = 1
�

−
1
2

�

�

�

�

.

where ExpIND-CPA
PKE,A (λ) is the IND-CPA experiment as defined in Figure 2. We say that the public-key

encryption scheme PKE is IND-CPA-secure if, for every adversaryA , there is a negligible function,

negl, such that this IND-CPA advantage is bounded above by negl(λ).

In the following slightly stronger definition of security, the adversary is given access to a

decryption oracle Odec. The idea is that on top of the knowledge of the ciphertext of either m0

or m1 the adversary can query the ciphertext of other plaintexts m that differ from m0 and m1

– using this information to see if it can learn anything about the challenged ciphertext.

Definition II.6. The indistinguishability under chosen-ciphertext attack (IND-CCA) advantage

for an adversary A Odec that has access to a decryption oracle as defined in Figure 2, denoted by

AdvIND-CCA
PKE,A (λ), is defined to be

2

�

�

�

�

Pr
�

ExpIND-CCA
PKE,A Odec (λ) = 1

�

−
1
2

�

�

�

�

.

where ExpIND-CCA
PKE,A Odec (λ) is the IND-CCA experiment as defined in Figure 2. We say that the public-

key encryption scheme PKE is IND-CCA-secure if, for every adversary A , there is a negligible

function, negl, such that this IND-CCA advantage is bounded above by negl(λ).

Key encapsulation mechanisms. In recent years, a key encapsulation mechanism (KEM)

[Sho01,CS03] has been proposed with a goal of establishing a secret secret between two parties
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ExpEUF−CMA
DS,A OSign

(λ)

1 : (pk, sk)← KeyGen

2 : QueryList← {mi}ni=1

3 : (m∗,σ∗)←A OSign(mi )(pk)

4 : assert m∗ ̸∈QueryList

5 : return Verify(pk,σ∗, m∗)

OSign(m)

1 : σ← Sign(sk, m)

2 : return σ

Figure 3: The EUF−CMA experiement for a digial signature scheme as well as the signing oracle
OSign.

that own a public key through the means of some encryption. One can think of these mechan-

isms as a key exchange protocol that has some interaction. More precisely, it consists of three

algorithms: KeyGen(), Encap() and Decap(). KeyGen() is just like for a public key encryption

scheme. The encapsulation algorithm Encap() takes a public key pk as input an outputs a pair

(k, c) where k is a key within some key-space and c is a corresponding cipher text. The decapsu-

lation algorithm Decap() takes as input a secret key sk and a outputs a key k′. The correctness

of a KEM ensures that for all outputs of the encapsulation algorithm (k, c) on some public key

pk, the application of the decapsulation algorithm on the corresponding secret key sk either

always results in k = k′ or does so with extremely high probability. Moreover one can define

IND-CPA and IND-CCA security of a KEM in a similar way as done for public-key encryption

schemes.

II.2.3 Digital Signatures

A digital signature scheme allows the owner of a public key pair (pk, sk) to sign a message on

his secret key sk. This produces a signature which can be sent to other parties in such a way so

that along with the message the signature can authenticate the signer of the message.

More formally, a digital signature scheme consists of three algorithms: KeyGen(), Sign()
and Verify(). KeyGen() is an algorithm that returns the necessary public parameters along with

a key pair (sk,pk). Sign() is an algorithm that takes as input a secret key sk and a message

m and outputs a signature σ. Verify() is an algorithm that takes as input a public key pk, a

signature σ and a message m and outputs a boolean value b ∈ {0,1} according to whether the

signature σ is a valid signature of the message m on the public key pk.

The correctness of a signature scheme is a property that requires that the signature produced

with sk for a message m should either always accept the verification algorithm along with pk

or do so with extremely high probability. A common security notion of a signature scheme is

called unforgeability. The basic idea behind it is that someone who does not own the secret key

sk associated to a public key pk, should not be able to produce a valid signature of a message

under that public key even if it is given a collection of message and signature pairs. This is

formalised in the following definition and we write DS = (KeyGen(),Sign(),Verify()) for a

digital signature scheme.

Definition II.7. The unforgeability under adaptive chosen message attack (EUF−CMA) ad-

vantage for an adversaryA OSign that has access to a signing oracle as defined in Figure 3, denoted
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by AdvIND-CCA
DS,A (λ), is defined to be

2

�

�

�

�

Pr
�

ExpEUF−CMA
DS,A OSign

(λ) = 1
�

−
1
2

�

�

�

�

.

where ExpEUF−CMA
DS,A OSign

(λ) is the EUF−CMA experiment as defined in Figure 2. We say that the

public-key encryption schemePKE is IND-CCA-secure if, for every adversaryA , there is a negligible

function, negl, such that this IND-CCA advantage is bounded above by negl(λ).

Identification and Sigma Protocols. An identification scheme is a protocol between a prover

and a verifier in which the prover wants to prove his identity to the verifier. Sigma protocols is

in some sense an abstraction of these identification protocols in which a prover wants to prove

that it knows a witness to a statement within some NP-relation. In the setting of identification

protocols, the witness is typically a public key and the statement is a private key. For both

identification and sigma protocols, they typically consist of three stages: the prover produces

a commitment which it sends to the verifier; the verifier issues a challenge which it sends to

the prover; and finally the prover produces a response from the challenge which it sends to the

verifier. Then the verifier either accepts or rejects the response.

The correctness of such a protocol ensures that the verifier always accepts a valid response.

The soundness of such a protocol ensures the existence of an efficient extractor such that given

two transcripts (or valid interactions of a prover) will output the underlying statement. Finally

the zero-knowledge of such a protocols ensures that there is a simulation algorithm that takes

as input a witness and a challenge and outputs a commitment and a response such that one can

simulate such a protocol with these values.

Fiat-Shamir Transform. From the description of these identification and sigma protocols,

there is some level of an interaction between the prover and the verifier. In particular, the

interaction consists of the exchange of the commitment, challenge and response values. The

Fiat-Shamir transform [FS87] is a technique that can make these identification and sigma pro-

tocols non-interactive with the inclusion of cryptographic hash functions. The idea is to simulate

a seemingly random challenge by hashing the commitment value along with the witness. This

transform has been used to turn an identification protocol into a signature scheme which satis-

fies the unforgeability condition from Definition II.7 in the random oracle model. We note that

a variant of this Fiat-Shamir tranform due to Unruh [Unr15] deals with the quantum-resistant

option.
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Chapter III

Number Theory

In this chapter we introduce the necessary number theoretic tools and results that are found-

ational to the work that follows. We begin by giving a background on elliptic curves that is

central to the cryptographic applications that arise from them. This also includes background

on isogenies between elliptic curves which is the main topic of exploration for this thesis. We

also introduce the class group and the Deuring correspondence, as well as results on smooth

numbers and how they are distributed. There are many excellent resources that give a thor-

ough introductions to all of these tools. For elliptic curves and isogenies, the books by Silver-

man [Sil09] and Galbraith [Gal12] are excellent resources; for the algebraic number theory and

in particular class groups, we refer the reader to Stewart and Tall’s book [ST15]; for quaternion

algebras, a comprehensive background is given in Voight’s book [Voi21]; and for the analytic

number theory that underpins not only smooth numbers but also prime numbers, we refer the

reader to [Ten06,Ten15] as well as some [Sho09], which addresses computation aspects.

Throughout this chapter we will use affine and projective space. Affine space of dimension

n over a field k, written An(k), is the set n-tuples with entries in k. We write elements in this

affine space as (x0, . . . , xn−1). Projective space of dimension n, written Pn(k), is the set An+1 \
{(0, . . . , 0)}modulo the following equivalence relation∼. For two elements x= (x0, . . . , xn),y=
(y0, . . . , yn) ∈ An+1 \ {(0, . . . , 0)}, we say x∼ y is there is an α ∈ k∗ := k \ {0} such that x i = αyi

for all i. We write elements in this projective space as [X0 : . . . : Xn]. Sometimes An and Pn will

be written instead of An(k) and Pn(k) when the field in question is understood.

Projective space of dimension n can be thought of as a copy of affine space of dimension

n along with some additional points. For an element X ∈ Pn either Xn is zero or non-zero. If

Xn ̸= 0 then, by means of the equivalence relation, we can scale this to 1 and get an affine point

x ∈ An with x i = X i/Xn. If Xn = 0 then we do not get an affine point and we call such a point a

point at infinity.

The algebraic closure of a field k, is an algebraic extension K/k for which every polynomial

in K[x] has a root in K . One can show that an algebraic closure always exists and is unique up

to isomorphism. Typically we write k := K for the algebraic closure of k. In the specific situation

when k is a finite field with q = pn elements for a prime p and a positive integer n, we write

k = Fq and k = Fp for its algebraic closure.



14 III. NUMBER THEORY

III.1 Elliptic Curves

A general Weierstrass equation over a field k is a curve in P2(k) given by an equation of the form

E : Y 2Z + a1X Y Z + a3Y Z2 = X 3 + a2X 2Z + a4X Z2 + a6Z3

with coefficients ai ∈ k. There is only one point at infinity on this curve1, namely the point

OE = [0 : 1 : 0]. So one can define such a Weierstrass equation in affine coordinates by including

this additional point at infinity. From now on, unless stated otherwise, all Weierstrass equations

(and other equations) will be written in affine coordinates. For a general Weierstrass equation,

define the following quantities:

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4

+ a2a2
3 − a2

4

c4 = b2
2 − 24b4

∆(E) = −b2
2 b8 − 8b3

4 − 27b2
6 + 9b2 b4 b6

j(E) =
c3

4

∆

(III.1)

We call the quantity ∆(E) the discriminant and the quantity j(E) the j-invariant of the Weier-

strass equation. These quantities will be important to the theory of elliptic curves. When the

characteristic of the field k is not 2 or 3, then by applying some linear transformations we can

turn a general Weierstrass equation into a short Weierstrass equation which, in affine coordin-

ates, has the form: y2 = x3 +Ax + B. For short Weierstrass equations, these quantities simplify

to ∆(E) = −16(4A3 + 27B2) and j(E) = 1728 4A3

4A3+27B2 .

Definition III.1. Let E/k be a general Weierstrass equation over k and OE be its associated point

at infinity. We say (E,OE) is an elliptic curve if it is smooth in the sense that it’s discriminant,

∆=∆(E), is non-zero.

There are different models to define elliptic curves other than using the Weierstrass model.

These include Montgomery curves [Mon87]which are defined by the equation B y2 = x3+Ax2+x

and (twisted) Edwards curves [Edw07,BBJ+08]which are defined by ax2+y2 = 1+d x2 y2. These

alternative models are widely used in practical implementations that use elliptic curves - due to

a faster underlying arithmetic. For the purpose of this thesis, most elliptic curves will be given

by a short Weierstrass equation. Unless directly stated otherwise, one can assume this is the

case.

III.1.1 Group Structure

Despite the geometric definition of these elliptic curves, there is an algebraic structure that can

be associated to the points on the elliptic curve. For an elliptic curve E over a field k given in

general Weierstrass form and a field extension K/k, we denote by E(K) the set of K-rational

points on this curve including the point at infinity, namely

E(K) := {(x , y) ∈ K2 : y2 + a1 x y + a3 y = x3 + a2 x2 + a4 x + a6} ∪ {OE}.
1Often referred to as the distinguished point on E.
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•
P

•
Q

•
P +Q

•
P

•
2P

Figure 4: Visual depiction of the chord and tangent rule for point addition and point doubling on
an elliptic curve over R.

This set of K-rational points has a special addition rule, denoted by +, which takes as input

two points in E(K) and returns another point on E(K). This addition rule on an elliptic curve is

called the chord and tangent rule and proceeds as follows. Let P,Q ∈ E(K) be K-rational points

on the curve. If P (Q resp.) is the point at infinity, then we define P + Q := Q (P + Q := P

resp.). Now assume that the points P,Q are not the point at infinity. Then they both have affine

coordinates of the form P = (x0, y0) and Q = (x1, y1). If x0 = x1 and y0 = −y1, then we define

P +Q := OE . If x0 = x1 and y0 = y1 (so P = Q), then set m = (3x2
0 + A)/2y0 and otherwise set

m= (y1 − y0)/(x1 − x0). Then define

P +Q := (x2,−y2),

where x2 = m2− x0− x1 and y2 = y0+m(x2− x0). When P =Q, we write 2P := P + P and for

an integer m≥ 3 we write mP := (m− 1)P + P = P + · · ·+ P. This is often referred to as scalar

multiplication of a point on the elliptic curve. Additionally, for an affine point P = (x0, y0), we

write −P := (x0,−y0) and, more generally, write (−m)P := −(mP) for a positive integer m. For

the point at infinity, we write −OE := OE .

Equipping the set E(K) with this chord and tangent rule turns it into a group. For a detailed

justification of why this forms a group, we refer the reader to [Sil09, Proposition III.2.2]. By

very definition, the point at infinity acts as the identity of the group and the inverse of a point

P is the point −P. See Figure 4 for an visual illustration of the chord and tangent rule for an

elliptic curve over the real numbers.

Division polynomial. For m ∈ Z, we call a point P an m-torsion point if mP = OE . The

multiplication-by-m map is the map between point on E over the algebraic closure of k, [m] :

E(k) → E(k), where P 7→ mP. For divisors d of m, d-torsion points lie in the kernel of

this multiplication-by-m map. The m-torsion subgroup, denoted by E[m], is the kernel of

the multiplication-by-m map. Furthermore, for a field extension K/k, we set E(K)[m] :=
E[m]∩E(K) to be the subgroup of m-torsion points that are defined over the extension K . Recall
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the quantities b2, b4, b6, b8 as defined in Equation III.1, the mth-division polynomial, denoted by

ψm, is defined through the following iterative process:

ψ1(x , y) = 1, ψ2(x , y) = 2y + a1 x + a3,

ψ3(x , y) = 3x4 + b2 x3 + 3b4 x2 + 3b6 x + b8,

ψ4(x , y) =ψ2(x , y)
�

2x6 + b2 x5 + 5b4 x4 + 10b6 x3 + 10b8 x2

+(b2 b8 − b4 b6)x + (b4 b8 − b2
6)
�

,

ψ2n+1 =ψn+2ψ
3
n −ψn−1ψ

3
n+1,

ψ2n = (ψ
2
n−1ψnψn+2 −ψn−2ψnψ

2
n+1)/ψ2.

(III.2)

Furthermore, set φm = xψ2
m −ψm+1ψm−1 and ωm = (ψ2

m−1ψm+2 +ψm−2ψ
2
m+1)/4y . Then for

a point P ∈ E(k), we have mP =
�

φm(P)
ψm(P)2

, ωm(P)
ψm(P)3

�

[Sil09, Exercise 3.7]. Viewing this formula

from a projective perspective, we can deduce that a point P is an m-torsion point if and only if

P vanishes on the mth-division polynomial, ψm.

When the characteristic of k is zero or the characteristic does not divide m then we have

E[m]∼= Z/mZ×Z/mZ and if p is the characteristic of k then E[pe] is isomorphic to either Z/peZ
or {OE} [Sil09, Corollary III.6.4]. We say E is ordinary if, for all exponents e, E[pe] ∼= Z/peZ
and E is supersingular if E[pe]∼= {OE}.

III.1.2 Elliptic Curves over Finite Fields

For an elliptic curve over a finite field, E/Fq, the number of Fq-rational points on E is finite

and satisfies the Hasse-Weil bound: writing #E(Fq) = q + 1 − t, we have |t| ≤ 2
p

q [Sil09,

Theorem V.1.1]. The quantity t is called the Trace of Frobenius. One can also ask a more direct

question: how many points are there on E? Schoof’s algorithm [Sch85] counts points on an

elliptic curve over a finite field in polynomial time. The idea is, for a set S of small primes whose

product is slightly larger than 4
p

q, compute the trace of Frobenius t modulo primes s ∈ S and

then recover t through the chinese remainder theorem.

The number of points on a supersingular curve satisfy the following congruence condition

[Was08, Proposition 4.3.1]
#E(Fq)≡ 1 mod p. (III.3)

When p ≥ 5 and the supersingular curve is defined over Fp (or Fp2 respectively) then, by the

Hasse-Weil bound, this condition is the same as the trace of Frobenius being t = 0 (or t =
0,±p,±2p respectively).

III.1.3 Isogenies, Endomorphisms and Isomorphisms

For two elliptic curves E/k and E′/k, an isogeny is a map between points on these curves over

the algebraic closure, φ : E(k)→ E′(k), that is given by rational functions and is also a group

homomorphism. By rational functions we mean a quotient of polynomials, namely φ is given

by φ(x , y) = ( f (x , y), g(x , y)) where f (x , y) = p1(x , y)/q1(x , y), g(x , y) = p2(x , y)/q2(x , y)
and p1, p2, q1, q2 are polynomials with coefficients in k. In fact, it turns out isogenies can be

defined in this simplified form: φ(x , y) = (r(x), ys(x))where r, s are rational functions [Was08,

Section 12.2]. For a field extension K/k, we call the isogeny K-rational if the coefficients of the



III.1. ELLIPTIC CURVES 17

rational functions lie in K . We say E/k and E′/k are isogenous if there exists an isogeny between

them. With the exception of the zero map, which maps points on E to the identity on E′, every

isogeny is surjective [Sil09, Theorem II.2.3]. The set of all elliptic curves that are isogenous

to E forms an equivalence class which we call the isogeny class of E. We say that an isogeny

φ : E → E′, that map points (x , y) ∈ E(k) to points (u(x)/v(x), y · s(x)/t(x)) ∈ E′(k) for

polynomials u, v, s, t ∈ k[x], is separable if the formal derivative (u(x)/v(x))′ is not identically

zero and say it is inseparable otherwise. Over fields of characteristic zero, every non-zero isogeny

is separable. For fields of characteristic p > 0, the isogeny can be decomposed into a composition

of a separable isogeny with some power of the p-power Frobenius. We summarise this in the

following theorem.

Theorem III.2. [Sil09, Corollary II.2.12] Let E/k and E′/k be elliptic curves defined over a field

k of characteristic p > 0 and φ : E → E′ be an isogeny. Then there is a seperable isogeny φs and

an integer n≥ 0 such that

φ = φs ◦πn.

Here π is the p-power Frobenius map where π(x , y) = (x p, y p). In particular we have deg(φ) =
pn deg(φs).

The degree of a non-zero isogeny φ given in the simplified form with r(x) = u(x)/v(x),
denoted deg(φ), is equal to max{deg(u), deg(v)}. The degree of a composition of two isogenies

is equal to the product of the degrees of each isogeny [Gal12, Exercise 8.1.12]. For any isogeny

φ, its kernel is finite and its order is equal to the degree of the separable part of φ, namely

# ker(φ) = deg(φs) [Sil09, Theorem III.4.10]. In the special case when the isogeny is separable,

the order of the kernel is deg(φ). For any isogeny φ : E → E′, there is a unique isogeny

φ̂ : E′ → E, called the dual isogeny, such that composing these isogenies in either direction

gives the multiplication-by-deg(φ) map on their respective elliptic curves: φ ◦ φ̂ = [deg(φ)]E′
and φ̂ ◦φ = [deg(φ)]E [Sil09, Theorem III.6.1].

An endomorphism of E is an isogeny from E to itself. The multiplication-by-m maps are ex-

amples of endomorphisms and we call these the trivial endomorphisms. All other endomorph-

isms are called non-trivial endomorphisms. Denote the set of all endomorphisms including the

zero map by End(E). By equipping End(E) with the structure of addition and composition, this

set forms a ring which we call the endomorphism ring. This ring has an embedding of Z in it

as it contains the multiplication-by-m maps. When End(E) ̸= Z, then we say E has complex

multiplication (CM). Every elliptic curve over a finite field Fq has CM since it comes equipt with

the Frobenius map, π : (x , y) 7→ (xq, yq). The trace of Frobenius, t, arises from the following

identity which holds for the Frobenius map π: π2− [t]π+[q]≡ [0] [Was08, Theorem 4.10]. If

E has CM then either it is an order in an imaginary quadratic field (a rank two Z-module) or it

is a maximal order in a quaternion algebra ramified at the characteristic of the field, p, and∞
(a rank four Z-module) [Sil09, Corollary III.9.4]. When E is defined over a finite field, then E is

ordinary if and only if the endomorphism ring has rank two and E is supersingular if and only

if the endomorphism ring has rank four [Sil09, Theorem V.3.1]. Moreover, we define the Fq-

rational endomorphism ring, denoted by Endq(E), to be the set of Fq-rational endomorphisms

again equipped with the structure of addition and composition. We note that for supersingular
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elliptic curves over a prime field Fp, the Fp-rational endomorphism ring is a proper subring of

the full endomorphism ring and thus is an order in an imaginary quadratic order.

An isomorphism is an isogeny of degree 1. We call two elliptic curves isomorphic if such an

isomorphism exists. Just like for isogenies, we can form the isomorphism class of E consisting of

curves which are isomorphic to E. Two elliptic curves are isomorphic if and only if they share the

same j-invariant [Sil09, Proposition III.1.4(b)]. In other words isomorphism classes of elliptic

curves can be labelled by their j-invariant. If an isomorphism is k(
p

d)-rational for a squarefree

integer d then we call it a quadratic twist. A common example of quadratic twists that are used

in cryptography is the following map between the Montgomery curves d y2 = x3 +Ax2 + x and

y2 = x3 + Ax2 + x: (x , y) 7→ (x ,
p

d y). An automorphism is an isomorphism that is also an

endomorphism. The set of all automorphisms of an elliptic curve naturally forms a group and the

possible automorphism groups of an elliptic curve have been classified [Sil09, Theorem III.10.1].

There is a one-to-one correspondence between finite subgroups of an elliptic curve E and

separable isogenies that start at E, up to composition of isomorphisms. This fact has become

a key component in the applications of isogenies to cryptography that we shall see in later

chapters. We give a formal statement of the correspondence.

Theorem III.3. [Sil09, Theorem III.4.12] Given an elliptic curve E over a field k and a finite

subgroup G ⊆ E(k), then, up to isomorphism, there is a unique elliptic curve E′ such that there is

an isogeny φ : E → E′ whose kernel is G. The elliptic curve E′ and the isogeny φ are defined over

a finite extension of the field k. In the setting where we know an explicit description for the kernel

of the isogeny, namely ker(φ) = G, we will often write E′ = E/G. We call the isogeny cyclic if its

kernel subgroup, G, is cyclic as a group; in other words, there is a point P ∈ G such that G = 〈P〉.

III.2 Isogeny Graphs

Two elliptic curves defined over a finite field Fq are isogenous if and only if the number of Fq-

rational points on these curves are the same [Tat66]. Hence isogeny classes in finite fields are

characterised by their trace of Frobenius. In particular, since we have the congruence condition

on the number of points on a supersingular elliptic curve, the number of supersingular isogeny

classes is far fewer than ordinary isogeny classes. In particular, Mestre [Mes86] showed that,

for a fixed characteristic p, all supersingular elliptic curves lie in a single isogeny class.

Definition III.4. Let ℓ, p be primes with ℓ ̸= p. The ℓ-isogeny graph is a graph whose vertex set is

the isomorphism classes of E/Fp, labelled by their j-invariants, and two vertices are connected by a

directed 2 edge if there is a separable ℓ-isogeny between these isomorphism classes.

For a fixed elliptic curve E/Fp, we define the ℓ-isogeny graph attached to E to be the subgraph

of the ℓ-isogeny graph whose vertex set is the isogeny class of E.

For a prime ℓ ̸= p, since the ℓ-torsion subgroup of an elliptic curve is isomorphic to a product

of cyclic groups, E[ℓ]∼= (Z/ℓZ)× (Z/ℓZ), then the curve E has exactly ℓ+1 subgroups of order

ℓ. In the ℓ-isogeny graph, this corresponds to ℓ + 1 outgoing edges in the ℓ-isogeny graph

2This graph can almost be viewed as an undirected graph since every ℓ-isogeny has a dual isogeny of degree ℓ. How-
ever there are some exceptions (depending on the automorphism structure of certain elliptic curves), see [Gal12, Re-
mark 25.3.2] for details.
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at the vertex j(E). Isogeny graphs have two main components: the ordinary component and

supersingular component.

When E is ordinary, the ℓ-isogeny graph attached to E is well understood. This is in large

part due to Kohel who in his thesis completely classified the behaviour of ordinary isogeny

graphs [Koh96]. In particular, these ordinary isogeny graphs have a volcano structure. We refer

the reader to [Sut13] for more details of this volcano structure.

When E is supersingular, the ℓ-isogeny graph attached to E has a different structure. There

are finitely many isomorphism classes that arise from supersingular elliptic curves and all such

isomorphism classes have j-invariants in Fp2 [Sil09, Theorem V.3.1]. More precisely, this finite

number of supersingular isomorphism classes is exactly ⌊p/12⌋+εp [Sil09, Theorem V.4.1]where

εp =











0 : p ≡ 1 mod 12,

1 : p ≡ 5 or 7 mod 12,

2 : p ≡ 11 mod 12.

Hence, any supersingular elliptic curve over Fp has a representation defined over Fp2 . From

now on all supersingular curves in question will be defined over Fp2 . In subsequent work the

following result was obtained, the first part is attributed to Mestre [Mes86] and Kohel [Koh96],
and the second part is attributed to Pizer [Piz90,Piz95].

Theorem III.5. The supersingular component in the ℓ-isogeny graph is a connected and (ℓ+ 1)-
regular (multi)-graph. Moreover this graph is also an expander graph and satisfies the so-called

Ramanujan property.

Due to this connected property we will often refer to the supersingular component of the

ℓ-isogeny graph as the supersingular ℓ-isogeny graph. The Ramanujan property implies a rapid

mixing on the graph, in the sense that for a O(log(p)) length random walk in this graph the

induced distribution on the vertices is statistically close to the stationary distribution. In addition

this rapid mixing is optimal among all expander graphs in the sense that the length of the walk

necessary to approach this stationary distribution is as small as possible.

III.3 The Class Group and the CM Action

Throughout this section K is a number field, O is an order in K and a is an ideal in O . The norm

of the ideal a, denoted by N(a), is equal to N(a) := gcd({N(α) : α ∈ a}). A fractional ideal of

O is an O -submodule of K that is of the form a := 1
d b for d ∈ K∗ := K \ {0} and an O -ideal

b. We say that a fractional O -ideal, a, is invertible if there is a fractional O -ideal a′ such that

aa′ = O and denote this ideal by a−1 := a′ when it exists. We note that any principal ideal, αO
for α ∈ K∗, is an invertible fractional ideal since α is non-zero.

Let I(O ) and P(O ) (respectively) denote the set of invertible fractional O -ideals and prin-

cipal O -ideals (respectively). As mentioned previously, P(O ) is contained in I(O ). Equipping

I(O ) with ideal multiplication, we can turn it into an abelian group with P(O ) being a normal

subgroup. Thus we can talk about the quotient of these groups. More precisely, define the

ideal-class group of O to be

cl(O ) := I(O )/P(O ).
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Representatives of a fractional ideal a within the ideal-class group are typically denoted with

a square bracket by [a]. Moreover, every ideal class [a] ∈ cl(O ) has an integral representative.

By this we mean there exists an ideal a′ that is contained in the order O and [a′] = [a] as ideal

classes.

The CM action. Let E be an elliptic curve defined over Fp and Endp(E) be the Fp-rational

endomorphism ring of E. This ring is isomorphic to an order O in an imaginary quadratic

field K = Q(
p
−d) for some positive and squarefree integer d that not only contains the p-

power Frobenius endomorphism, π, but also the order Z[π]. Additionally, as an order in K

it is a suborder of the ring of integers in K . In the case when E is supersingular and p ≥ 5,

the Frobenius endomorphism satisfies π2 = [−p]. So its Fp-rational endomorphism ring is an

order in Q[
p
−p]. The class group of such a field depends on the congruence of p modulo

4. When p = 1 mod 4, there is only one ideal within its class group and so we always have

Endp(E) = Z[π]. When p = 3 mod 4, there are two distinct representatives of ideals within its

class group and so we either have Endp(E) = Z[π] or Endp(E) = Z[(1+π)/2].
For an invertible O -ideal a, in accordance to Theorem III.3 there is an elliptic curve E/a along

with an isogeny φa : E→ E/a whose degree is N(a). In accordance to Theorem III.2, let φas
be

the separable component of φa, so φa = φas
◦πn for some positive integer n. Then the kernel

of the separable isogeny φas
is equal to ∩α∈as

ker(α) where we treat α as an endomorphism

in Endp(E). We remark that as O -ideals, we have a = as · (πnO ). Since principal ideals in O
correspond to endomorphisms, then for two ideals a,b we have E/a = E/b if and only if they

belong in the same ideal class in cl(O ). Additionally, we have the converse and every Fp-rational

isogenyψ : E→ E′ between elliptic curves whose Fp-rational endomorphism ring is isomorphic

to O can be constructed in this way. This results in a free and transitive group action which was

originally proved by Waterhouse [Wat69] and later corrected in an erratum by Schoof [Sch87].
The precise statement is the following:

Theorem III.6. Let O be an order in an imaginary quadratic field such that the set of elliptic curves

over a prime field Fp whose Fp-rational endomorphism ring is non-empty. Denote this set of curves

by Ep(O ,π) where π corresponds to the p-power Frobenius endomorphism on such curves. Then

the ideal-class group, cl(O ) acts freely and transitively on Ep(O ,π) via the map

cl(O )×Ep(O ,π)) → Ep(O ,π))
([a], E) 7→ a ⋆ E := E/a

where a is chosen as an integral representative within its ideal class.

III.4 Deuring Correspondence

Recall that for a supersingular elliptic curve E over a finite field Fq of characteristic p, its endo-

morphism ring, End(E), has rank four. Hence there are four linearly independent endomorph-

isms ψ1,ψ2,ψ3,ψ4 such that every endomorphism, ψ, in the endomorphism ring is a Z-linear

combination of them namely, ψ = aψ1 + bψ2 + cψ3 + dψ4 for some a, b, c, d ∈ Z. Moreover,

since supersingular elliptic curves have j-invariants that lie in Fp2 , each endomorphism ψi has

a representation that is Fp2 -rational. Typically ψ1 is written as 1 which is the identity map on
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E since the collection of multiplication maps on E forms a suborder of the endomorphism ring.

Additionally aψ1 refers to the composition of ψ1 with the multiplication-by-a map, [a].

Not only does it have rank 4 but it is isomorphic to a maximal order in a quaternion algebra

that is ramified at p and∞. This means that it lives inside the algebra Q[i, j], where i2 = −α,

j2 = −β and i j = − ji for some positive α,β ∈Q. We omit the precise definition of ramification

but the choice of α and β here depends on this ramification [Piz80].

This association of an endomorphism ring of a supersingular elliptic curve by such a maximal

order can be turned into an equivalence of categories. This is commonly known as the Deuring

correspondence [Deu41]. We omit the precise details of this correspondence but we refer to

either Voight’s book [Voi21] or Leroux’s PhD thesis [Ler22] for a comprehensive and modern

background on this correspondence.

Through this correspondence, the supersingular ℓ-isogeny graphs introduced earlier can be

reformulated in the setting of quaternion algebras ramified at p and∞. Now the supersingular

j-invariants that make up set of vertices of the graph are replaced by the set of maximal orders

in the quaternion algebra up to conjugacy and the ℓ-isogenies that made up the edges of the

graph are replaced by connecting ideals of norm ℓ.

III.5 Smooth and Rough Integers

For integers n, B, we say that n is B-smooth if for every prime divisor p | n we have p ≤ B.

We also say that n is B-rough if for every prime divisor p | n we have p ≥ B. We will often

abuse this notation by dropping the B and say that n is smooth (resp. rough) when there is

either an implicit choice of B or we simply want n to have small (resp. large) factors. When

this notation is not abused, we call B the smoothness (resp. roughness) bound of the integer

n. These sorts of numbers have been an interest for mathematicians to study but also seen a

number of interesting applications.

One natural question to ask is, for some bound B, how many B-smooth (rough) numbers

are there up to some threshold bound X . Fortunately this question has been well studied and

we give an overview of the results. To do so we define the functions Ψ(X , B) and Φ(X , B) that

count the number of B-smooth and B-rough integers up to a bound X . In other words,

Ψ(X , B) = #{1≤ N ≤ X : N is B-smooth},

Φ(X , B) = #{1≤ N ≤ X : N is B-rough}.

III.5.1 Distribution of Smooth Numbers

The function Ψ(X , B) was shown, by Dickman and independently by de Bruijn, to be related

to the now-called Dickman-rho function [Dic30, DB66] which we denote by ρ : R+ 7→ R+. It

is a function that is continuous at u = 1, differentiable for u > 1 and satisfies the following

difference differentiable equation

uρ′(u) = −ρ(u− 1), (u> 1);

ρ(u) = 1, (0≤ u≤ 1).
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Then, as X →∞, it is known that

Ψ(X , B)∼ ρ(u)X ,

where u = log(X )/ log(B). This shows that, as X → ∞, the probability that a number less

than X chosen uniformly at random is B-smooth is asymptotically equal to ρ(u). This will be

used to calculate smoothness probabilities in subsequent chapters. More precisely, Hildebrand

[Hil86] showed that for fixed ε > 0 and uniformly in the domain X ≥ 3 and X ≥ B ≥
exp{(log log X )5/3+ε}, we have

Ψ(X , B) = ρ(u)X +O
�

ρ(u)X log(u+ 1)
log(B)

�

, (III.4)

where u= log(X )/ log(B) (this result can also be found in [Ten15, Chapter III.5, Corollary 9.3]).

Smooth values of polynomials. For a polynomial f ∈ Z[x], we say that an integer n generates

a B-smooth value of f if the evaluation f (n) is B-smooth. In this case we call n a B-smooth value

of f (x). In the specific scenario when f (x) = x(x + 1) then we call a B-smooth value of f (x)
a B-smooth twin or twin B-smooth integers. This refers to the fact that the consecutive integers

n, n+1 are B-smooth. Moreover, for an arbitrary polynomial f , we define the function Ψ f (X , B)
to be the number of B-smooth values of the polynomial f up to a threshold bound X . In other

words,

Ψ f (X , B) = #{1≤ N ≤ X : N is a B-smooth value of f }.

There has been numerous works that have looked into the quantityΨ f (X , b) and heuristically

one can argue that the probability of smoothness of f (n) is equal to the product of the probab-

ilities of smoothness of each irreducible factor of f . While this heuristic is proven for a certain

ranges of X , B [Mar99, Theorem 1.1], these ranges do not apply for the specific ranges that are

of cryptographic interest. This having been said, experimentally these estimates are very close

to those of cryptographic interest. So now restate the heuristic as given in [CMN21, Heuristic 1].

Heuristic III.7. Suppose that a polynomial f ∈ Z[x] has distinct irreducible factors over Z[x] of

degrees d1, · · · , dk ≥ 1 respectively. Then, as X →∞, we have

Ψ f (X , B)∼ ρ(d1u) · · ·ρ(dku)X ,

where u= log(X )/ log(B).

III.5.2 Distribution of Rough Numbers

The function Φ(X , B)was shown, by Buchstab, to be related to the now-called Buchstab function

[Buc37]which will be denoted byω : R+ 7→ R+. It is the unique continuous solution to following

difference differentiable equation

(uω(u))′ =ω(u− 1), (u> 2);

ω(u) =
1
u

, (1≤ u≤ 2).
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For convenience, we write ω(u) = 0 for u< 1. Then, as X →∞, it is known that

Φ(X , B)∼ω(u)
X

log(B)
,

where u= log(X )/ log(B). More precisely, we have the following. For fixed ε > 0 and uniformly

in the domain X ≥ 3 and X ≥ B ≥ exp{(log log X )5/3+ε}, we have

Φ(X , B) = (ω(u)X − B)
eγ

ζ(1, B)
+O

�

ω(u)X
log2(B)

�

, (III.5)

where u= log(X )/ log(B) and ζ(1, y) =
∏

p≤y p/(p−1) (an account of this result can be found

in [Ten15, Chapter III.6, Corollary 7.5]).

III.5.3 Integers with a Large Smooth Divisor

In the later chapters, we will be interested in estimating the probability that a given integer

has a large smooth divisor. To do this we introduce the function Θ(X , B, D) that counts positive

integers N ≤ X for which there exists a B-smooth divisor d | N with d > D. In other words,

Θ(X , B, D) = #{1≤ N ≤ X : D < largest B-smooth divisor of N}.

This function has been previously studied in the literature, see for example [Ten06, Ten15].
In an effort to combine the asymptotic expansions for Ψ(X , B) and Φ(X , B) mentioned in Equa-

tion III.4 and Equation III.5, Banks and Shparlinski showed the following asymptotic expansion

for the function Θ(X , B, D).

Theorem III.8. [BS06, Theorem 1] For fixed ε > 0 and uniformly in the domain

X ≥ 3, B ≥ exp{(log log X )5/3+ε}, B log B ≤ D ≤ X/B,

we have

Θ(X , B, D) =
�

ρ(u) +Cω,ρ(u, v)
�

X − γCω,ρ′(u, v)
X

log B
+O(E (X , B, D)),

where u= (log X )/(log B), v = (log D)/(log B), γ := limn→∞
�

(
∑n

k=1 1/k)− log(n)
�

is the Euler–

Mascheroni constant, C f ,g is the partial convolution of f with g (as defined in [BS06, pg. 2]),

and

E (X , B, D) =
X

log B

�

ρ(u− 1) +
ρ(v) log(v + 1)

log B
+

ρ(v)
log(v + 1)

�

.

We use this asymptotic expansion to estimate the value ofΘ for X , B, D in the relevant range.
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Chapter IV

Isogeny-based Cryptography

In this chapter we start to introduce the cryptographic applications that arise from isogenies

between elliptic curves. In order to do this we start by giving a description of how to compute

isogenies from its kernel in correspondence to Theorem III.3. This will serve as a foundation

to building cryptosystems which will be presented later in this chapter. Additionally, we formu-

late the necessary computationally hard problems in order to guarantee the security of these

cryptosystems.

In terms of the concrete cryptosystems, in this chapter we present some of the most well-

known cryptosystems. These include the CGL hash function [CLG09], the SIDH key exchange

protocol [JDF11, DFJP14], the CSIDH key exchange protocol [CLM+18] and also the SQISign

signature scheme [DFKL+20]. As well as giving a concrete description of each of these protocols,

we will give an up to date account of their security as well as their developments over the last

few years.

IV.1 Algorithmic Tools for Isogenies

If we wish to build cryptosystems based on computing isogenies then we would hope to be

able to have efficient algorithms for computing isogenies. Unfortunately, there is currently no

one size fits all approach to compute isogenies efficiently. In some circumstances, we do have

efficient algorithms to achieve this. In addition, there are other constructive algorithms that are

needed in the construction of cryptographic primitives. These will also be highlighted.

IV.1.1 Computing Isogenies

Historically, the first algorithm presented to compute isogenies is due to Vélu [Vél71]. We

present an overview of the algorithm in the general Weierstrass form:

Theorem IV.1. Let E/k : y2 + a1 x y + a3 = x3 + a2 x2 + a4 x + a6 be an elliptic curve and let

G ⊆ E(k) be a finite subgroup of points on E. Decompose the subgroup G as a disjoint union of the

form

G = {∞}∪ G2 ∪ G+ ∪ G−
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where G2 is the set of 2-torsion points in G and G+, G− contain non 2-torsion points of G such

that if P ∈ G+ then P ̸∈ G− and −P ∈ G− (and vice-versa). For each point Q ∈ G (except Q =∞)

set g x
Q := 3x2

Q + 2a2 xQ + a4 − a1 yQ, g y
Q := −2yQ − a1 xQ − a3, uQ := (g y

Q)
2 and if Q ∈ G2 set

vQ := g x
Q and otherwise set vQ := 2g x

Q − a1 g y
Q . Furthermore, set S = G+ ∪ G2, v :=

∑

Q∈S vQ and

w :=
∑

Q∈S(uQ + xQ vQ). Then there is an elliptic curve of the form

E′ : y2 + a1 x y + a3 = x3 + a2 x2 + (a4 − 5v)x + (a6 − (a2
1 + 4a2)v − 7w)

such that there is an map φ : E→ E′ that maps points (x , y) 7→ (X , Y ) where

X = x +
∑

Q∈S

�

vQ

x − xQ
+

uQ

(x − xQ)2

�

,

Y = y −
∑

Q∈S

�

uQ
2y + a1 x + a3

(x − xQ)3
+ vQ

a1(x − xQ) + y − yQ

(x − xQ)2
+

a1uQ − g x
Q g y

Q

(x − xQ)2

�

,

which defines an isogeny between E and E′ whose kernel is the finite subgroup G.

As remarked in Theorem III.3, this isogeny is uniquely determined up to composition of

isomorphisms. We refer to [Was08, Section 12.3] for more details towards the proof. Following

this, these formulas have been adapted by Elkies [E+98] and Kohel [Koh96] which show that

an algorithm for computing isogenies can be done as long as you know the kernel polynomial,

namely the polynomial
∏

Q∈S

�

x − xQ

�

.

The presented formulas are based on the general Weierstrass form of an elliptic curve. There

are other similar formulas when we are working with a different model for the elliptic curve. For

instance, Costello and Husil [CH17] presented formulas in the Montgomery model of an elliptic

curve which has been widely adopted in the implementation of many isogeny-based protocols.

The complexity of computing the rational functions of Vélu’s formula is determined by the

size of the subgroup G. If N = #G, then this can be done with a complexity of Õ(N). Moreover,

for simply evaluating an isogeny at a point, Vélu’s formula can evaluate it in linear time O(N).
For a full justification of this we refer to [Gal12][Exercise 25.1.14]. This complexity is exponen-

tial in the bit size of N . This means that in general this algorithm is not very practical especially

if we wish to use it for cryptographic purposes. However, in some circumstances this can be

made practical. We illustrate this using the following theorem for which the proof can be found

in [Gal12, Theorem 25.1.2].

Theorem IV.2. Let E, E′ be elliptic curves over a field k and letφ : E→ E′ be a separable k-rational

isogeny. Then we can write

φ = φ1 ◦ · · · ◦φn ◦ [m]

where φ1, · · · ,φn are prime degree k-rational isogenies and deg(φ) = m2
∏n

i=1 deg(φi).

So isogenies have a decomposition property. This can be exploited to efficiently compute

isogenies whose degree is large and smooth. The idea being that instead of using Vélu all in

one go to compute the isogeny, one can compute a chain of small degree isogenies and then

compose them together to get the intended isogeny. For instance we can compute an isogeny

whose degree is a power of two, 2a, as a composition of 2-isogenies. In this specific instance,

we get polynomial-time algorithm for computing isogenies which is very efficient in practice.
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We remark that, in accordance with the notation given in Theorem IV.2, the isogeny φ is

cyclic if and only if for any decomposition of φ of the type in the Theorem, we have m= 1.

Computing a chain of isogenies using division polynomials. Let ℓ be a small prime. In

order to use Vélu’s formula to compute an ℓ-isogeny, we need an ℓ-torsion point. If we wish to

compute a chain of ℓ-isogenies, then we need a method for generating such torsion points within

each step of the isogeny chain. Recall that a point P is an ℓ-torsion point of a curve E if and only

if ψℓ(P) = 0 where ψℓ is the ℓth-division polynomial as defined in Equation III.2. Also recall

that for odd ℓ, by reducing the division polynomial modulo the defining curve equation, we can

turn this into a univariate polynomial in x . Therefore we can compute the roots of the division

polynomial to give us appropriate torsion points which can be used to compute isogenies. More

precisely, to get the next curve in a chain of ℓ-isogenies for odd ℓ, we first compute the irreducible

factors (of degree up to (ℓ−1)/2) of the ℓ-division polynomial. As just mentioned, roots of these

factors correspond to the x-coordinate of points of order ℓ [Gal12, Section 25.2]. Choosing one

of these points gets you the next step in the chain.

When ℓ = 2 and the defining equation of E is a general Weierstrass form, then finding 2-

torsion points amounts to solving a system of two equations. The first of these equations is

ψ2(x , y) = 2y + a1 x + a3 = 0 and the second is the equation that defines elliptic curve itself.

When the short Weierstrass model is used, this translates to computing the roots of the defining

polynomial. This strategy also works in the setting when either ℓ is large or ℓ is composite

but computing the ℓ-division polynomial is more expensive so might not be feasible in certain

circumstances.

Computing a chain of isogenies from an explicit kernel subgroup. Suppose we are given

the description of a cyclic subgroup G = 〈S〉 ∈ E(Fq). We wish to compute an isogeny from E

whose kernel is G. Again for simplicity, let us assume that the order of G is a prime power ℓe.

As mentioned before, if ℓ is small then we can efficiently compute this isogeny as a composition

of ℓ-isogenies. Additionally, one can make use of the explicit description of G to compute this

chain of isogenies.

The point S has order ℓe, so the subgroup ℓe−1S has order ℓ. Hence this point will be the

kernel of the first isogeny in the chain. When iteratively defining the points S0 = S and Sk =
φk−1(Sk−1) where φk−1 is the kth isogeny in the chain, the point ℓe−i−1Sk will give the kernel

of each ℓ-isogeny in the chain. Thus the isogeny whose kernel is G is the composition of these

ℓ-isogenies.

Vélusqrt. As it shall be noted later, there are some applications for which we have no choice but

to evaluate isogenies of relatively large prime degree. So we cannot exploit the decomposition

property to compute the isogeny faster. In 2020, Bernstein et. al. [BFLS20] presented the first

significant improvement to Vélu’s formula by showcasing an algorithm to evaluate an isogeny at

a point, P, with a complexity3 of Õ(
p

N) if N is the size of the kernel subgroup. The idea behind

this speed-up is based on a baby-step giant-step approach to compute the kernel polynomial
∏

Q(xP−xQ). Instead of computing this sequentially for all points in the subgroup, one computes

3The Õ accounts for some logarithmic factors in the complexity.
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two products whose size is roughly
p

N and then uses the theory of resultants to recover this

evaluation. We omit the precise details of the algorithm, but we remark that the algorithm is

similar to the deterministic factoring algorithm due to Strassen [Str76]. Experimentally, they

showed that for parameters of cryptographic size, their algorithm could perform better than

their Vélu counterparts when N is prime that is not too small (say N > 150).

IV.1.2 Constructive Deuring Correspondence

As mentioned in Section III.4, there is a correspondence between supersingular elliptic curves

and maximal orders in a quaternion algebra through the endomorphism ring of the elliptic

curve. In this section we explore the following problem known as the constructive Deuring

correspondence: For a fixed maximal order O in the quaternion algebra ramified at p and ∞,

find a supersingular elliptic curve whose endomorphism ring is isomorphic to O . This is a

problem that has seen constructive applications, so being able to do this efficiently is necessary

for these applications.

In order to do this in polynomial-time, one needs the following algorithm due to Kohel,

Lauter, Petit and Tignol (often abbreviated as KLPT) [KLPT14]. This algorithm aims to solve

the quaternion isogeny path problem, namely given two maximal orders find a path in the

quaternion ℓ-isogeny graph or equivalently a connecting ideal of norm ℓe. We omit the precise

details of this algorithm and refer the reader to [KLPT14] for these details.

Solving the constructive Deuring correspondence can be done as follows (as described in

[EHL+18]). Suppose that we have a maximal order O within the quaternion algebra. Our goal

is to find a supersingular elliptic curve such that End(E)∼= O . In order to do this, first construct

a supersingular elliptic curve, E0, whose endomorphism ring can be efficiently computed and

is isomorphic to a maximal order O0. For instance, when p = 3 mod 4, the elliptic curve of

j-invariant 1728, E0 : y2 = x3 + x , is supersingular and has an endomorphism ring equal to

End(E) = 〈1, ι,
ι +π

2
,
1+ ι ◦π

2
〉,

where π is the p-power Frobenius and ι(x , y) = (−x , i y) with i2 = −1. Outside of this setting

there are other such supersingular elliptic curves [Brö09]. Once one has this curve, one uses the

KLPT algorithm applied to the maximal orders O0 and O to find a connecting ideal I between

them. We then define the kernel subgroup of E0 associated to I , namely the subgroup E[I] =
∩α∈I ker(α) ⊆ E0(Fp) and use the isogeny computation tools mentioned previously to compute

an isogeny φI : E0→ E0/E[I]. Then the elliptic curve E := E0/E[I] has an endomorphism ring

isomorphic to O and thus solves the constructive Deuring correspondence.

This original formulation of the solution to the constructive Deuring correspondence by

Eisentraeger et al. [EHL+18] is only a heuristic polynomial-time solution. In 2021, Weso-

lowski [Wes22] showed that one can get a provable polynomial-time solution assuming the

generalised Riemann Hypothesis (GRH). We remark that while for practical applications one

would use specially chosen primes to suit the application, implementations of this algorithm

has been done in general characteristic [Ray18,KYN+21,EPSV23]
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IV.2 Computationally Hard Isogeny Problems

In the previous section we focused our attention on computing isogenies directly from a kernel

subgroup. In order to build cryptosystems based on these isogenies one would hope that the

converse problem is intractable – namely, given two supersingular elliptic curves find an isogeny

between them. Here we discuss these hard problems and the known general strategies for

solving them. We focus our attention on the supersingular variants of these problems. We refer

the reader to other sources for the ordinary analogue of these problems [Koh96, Gal99, BS11,

CJS14,Rob22].

A priori, all elliptic curves should be defined over Fp. However, since we are interested

in supersingular elliptic curves and every such curve has a representation that is defined over

Fp2 , we can assume that all supersingular elliptic curves discussed here are defined over Fp2 .

Occasionally supersingular elliptic curves will be defined over the algebraic closure purely for

the sake of generality.

IV.2.1 Hard Problems for Security

Fundamental to all of isogeny-based cryptography are the following isogeny problems.

Problem 1 (Supersingular isogeny problem). Given two supersingular elliptic curves E/Fp and

E′/Fp, find an isogeny φ : E→ E′.

Problem 2 (Supersingular ℓ-isogeny path problem). Given two supersingular elliptic curves E/Fp

and E′/Fp, find a path in the ℓ-isogeny graph that connects j(E) and j(E′).

Both problems are tasked to find an isogeny between two elliptic curves that lie in an iso-

geny class. We note that, by Tate’s theorem, determining whether two elliptic curves lie in the

same isogeny class can be translated to counting points on the respective elliptic curves and,

as mentioned in Section III.1.2, can be done in polynomial-time. The main difference between

the two problems is that the later problem asks one to find a specific type of isogeny that has a

certain degree. The first attempt to solve these problems is due to Galbraith [Gal99].

The best known algorithms for solving these problems have an exponential classical and

quantum complexity. Concretely, the Delfs-Galbraith algorithm [DG16] solves the general prob-

lem with a complexity Õ(pp). The idea behind the algorithm is starting from each the curve

E and E′ go on a walk until you reach subfield curves E0 and E′0 that are defined over the

prime field Fp. Solving the isogeny problem from E0 to E′0 is now easier and can be done in

O(p1/4) [DG16, Algorithm 1] – from which you solve the isogeny problem from E to E′. There

are around O(pp) subfield vertices in the isogeny graph [Cox89] among the p/12 total vertices.

So on average one would expect to have to go on a walk of length O(pp) before one finds these

subfield curves – thus yielding the O(pp) complexity for the algorithm. Recently, Santos, Cos-

tello and Shi [CRSCS22] provided a variant of the Delfs-Galbraith algorithm which achieves the

same complexity but incorporates some speed-ups in the process of finding the subfield curves.

So in practice it performs better than the original algorithm. The best quantum algorithm to

solve the isogeny problem is due to Biasse, Jao and Sankar [BJS14] and achieves a complexity

of Õ(p1/4).
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The algorithms described above do not assume any structure on the underlying isogeny and

just ask us to find an isogeny between the curves. If the degree of the isogeny is known and is not

too large in comparison to an average isogeny, then a meet-in-the-middle strategy could solve

the isogeny problem faster. The idea is that you go on multiple walks whose length is around the

square root of its degree from both sides and store all elliptic curves that result from the walk.

Since the degree is small and there is a known isogeny between the curves, then there should

be a collision between these sets – thus giving an isogeny between the curves. Unlike the Delfs-

Galbraith algorithm, this is not memory free and requires roughly the same amount of storage

compared to its runtime. The van-Oorschot Wiener (vOW) algorithm [VOW99] is a variant

of the meet-in-the-middle algorithm which requires less storage at a cost of a slightly lower

complexity. In practice for cryptographic sized parameters, the van-Oorschot Wiener algorithm

performs better over its meet-in-the-middle counterpart [ACVCD+19].

Next we look at computing endomorphisms of a supersingular curve.

Problem 3 (Supersingular endomorphism ring problem). Given a supersingular elliptic curve

E/Fp, compute its endomorphism ring End(E). Equivalently, find four endomorphisms of E that

forms a basis for the ring.

Problem 4 (One supersingular endomorphism problem). Given a supersingular elliptic curve

E/Fp, compute a non-trivial and cyclic endomorphism of E whose degree is either smooth or some

prime power.

These two computational problems date back to the thesis Kohel [Koh96], who gave an

algorithm for computing a rank 4 suborder of the endomorphism ring that probabilistically

terminates with an expected Õ(p) operations in the underlying finite field. The idea behind

the algorithm is to go on walks in a supersingular isogeny graph until cycles in the graph are

found. These cycles constitute endomorphisms of the starting curve. Thus one can view the one

supersingular endomorphism problem as a special case of the supersingular endomorphism ring

problem. The current state-of-the-art when it comes to computing endomorphism rings is due

to Eisentrager et al. [EHL+20]. Their probabilistic algorithm runs in Õ(p1/2) time and follows a

similar approach undertaken by Kohel.

Remark IV.3. There is a relationship between the isogeny problems and endomorphism ring prob-

lems. As just described, an isogeny graph is used to compute endomorphisms. Conversely, the KLPT

algorithm gives a method to find isogenies between supersingular elliptic curves given their endo-

morphism rings. Thus these problems are equivalent. This equivalence was heuristically proved by a

series of authors [PL17,EHM17,EHL+18], but recently Wesolowski [Wes22] proved this equivalence

assuming the GRH.

IV.2.2 Hard Problems without a trusted setup

In recent years, a number of protocols require starting with a supersingular elliptic curve such

that no one (not even the individual who finds the supersingular curve) knows its endomorphism

ring [DFMPS19, BDF21]. This includes the protocol described in Chapter V of this thesis. We

call such a supersingular elliptic curve a hard supersingular curve. This task is very much related



IV.3. CGL HASH FUNCTION 31

to finding a random supersingular j-invariant since for such a j-invariant the endomorphism ring

of the corresponding elliptic curve should be unknown and infeasible to compute.

Currently there are no known solutions to construct such a hard supersingular curve that

do not require a trusted setup. The idea to do this with a trusted setup is to have multiple

parties work together to compute an isogeny composition of large degree. Each party will know

some part of the isogeny chain but recovering the whole isogeny chain would require solving an

isogeny problem. This was recently formalised by Basso et al. [BCC+23]. It is worth noting that

some attempts have been made [BBD+22,MMP22] to find these hard curves without a trusted

setup. However each method is shown to reveal some information about its endomorphism ring

and so cannot be used as hard curves.

IV.3 CGL Hash Function

Proposed in 2006 by Charles, Goren and Lauter [CLG09], the CGL hash function was the first

protocol designed using supersingular isogenies. The idea behind this hash function is to start

at a known supersingular elliptic curve and go on a non-backtracking walk on a supersingular

isogeny graph determined by the functions input. The resulting vertex/j-invariant at the end

of this walk would be the hash of the input. It exploits the Ramanujan property of these su-

persingular isogeny graphs to ensure the output of the hash for small enough inputs appears to

be chosen uniformly at random among all supersingular j-invariants. We give a more detailed

description of this hash function as originally formulated by Charles, Goren and Lauter as well

as state some recent developments.

IV.3.1 Protocol Description

Let E0/Fp2 be a known supersingular elliptic curve given by a short Wierstrass equation, E0 :

y2 = x3 + A0 x + B0, and m = [m0, · · · , mk−1] ∈ (Z/2Z)k be a length k binary string with

k = O(log(p)). The 2-division polynomial of E0 is 2y and hence the 2-torsion points on this curve

have x-coordinates that are roots of the defining polynomial which we shall call x0,0, x0,1, x0,2.

Based on the bit value m0 we choose one of these roots and compute a 2-isogeny, φ0, whose

kernel is generated by the corresponding 2-torsion point. This gives us a supersingular curve E1

defined by an equation y2 = x3+A1 x+B1 = (x−x1,0)(x−x1,1)(x−x1,2)which is 2-isogenous to

E0. Before we do the next step we make a note of which of these new roots takes us back to E0,

this constitutes as backtracking in the graph which we want to avoid. Recall that this amounts

to computing the kernel of the dual isogeny ker(φ̂0) and noting which of these roots generates

this kernel. Without loss of generality, we assume this root is x1,2. For the next step we use the

bit m1 to choose one of the other two roots, x1,0, x1,1, and again compute a 2-isogeny, φ1, whose

kernel is generated by the corresponding 2-torsion point. We repeat this for all bits in the bit

string m and end up with a path from E0 to a supersingular elliptic curve Ek. This final curve

(or it’s j-invariant j(Ek)) will be the hash of the message m. It will be convenient to give some

notation to this. We shall call Φ2(E0, m) := Ek. More generally, for a small prime ℓ we denote

by Φℓ(E, m) the elliptic curve obtained by going on a walk in the ℓ-isogeny graph attached to E

starting at E and dictated by an input m ∈ Z/(ℓ+ 1)Z× (Z/ℓZ)k−1.
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A variant of this hash function was proposed by Doliskani, Pereira and Barreto [DPB17] in

which they exploit choosing primes of the form p = 2n f − 1 and doing isogeny computations

from a kernel subgroup. They show that their hash function is significantly faster than the

original CGL hash function. Additionally, a generalisation of this function was presented as part

of the work by De Feo et al. [DFDdSGF+21].

Remark IV.4. The description given above is specific to the case of using supersingular isogeny

graphs. The original article phrased a more general framework by constructing hash function

from expander graphs and Ramanujan graphs. These include the Lubotzky-Phillips-Sarnak (LPS)

expander graphs. The idea is the same, the only difference is that you work on a different graph. The

hash function based on the LPS graphs has been extensively cryptanalysed [PLQ08] which conclude

that computing preimages of such a graph is not as difficult as first imagined.

IV.3.2 Cryptanalysis

The hash function described above was proved to be preimage resistant and collision resist-

ant against the problems defined in the previous section. More specifically, if the isogeny path

problem is computationally hard then the function is preimage resistant and if the one endo-

morphism problem is computationally hard then the function is collision resistant. With regards

to the one endomorphism problem, it specifically targets finding an endomorphism of degree

ℓ2k since that constitutes a cycle in the isogeny graph.

In some sense, the knowledge of the endomorphism ring of the starting elliptic curve could

reveal certain endomorphisms that could counter the collision resistance claim mentioned above.

More concretely, with aid of the constructive Deuring correspondence, work by Eisentraeger et.

al. [EHL+18] showed that the preimage and collision resistance claims are equivalent to the

endomorphism ring problem. Hence the hash function is not secure if one knows the endo-

morphism ring of the starting elliptic curve.

When the starting curve is a hard curve, namely when no one knows its endomorphism ring

including the person who found the curve, then the hash function remains secure and there are

no known ideas to break this function in this setting. As mentioned in Section IV.2.2, current

known techniques for achieving this require a trusted setup. This is not ideal but it is the only

solution to accomplish this.

IV.4 SIDH/B-SIDH

Supersingular Isogeny Diffie Hellman (or SIDH) is a key exchange protocol proposed by Jao

and De Feo [JDF11, DFJP14]. The idea is that in order for Alice and Bob to establish a secret

shared key, Alice performs computations solely within one supersingular ℓ-isogeny graph and

Bob will do computations in another supersingular ℓ-isogeny graph. The exchange mimics the

traditional Diffie-Hellman protocol in which each party performs some computation, exchanges

some information and repeats their computation with the new information. In order for the

scheme to commute and both Alice and Bob to obtain a shared secret, some additional inform-

ation needs to be revealed. As shall be noted later, this additional information has proved fatal

to the security of the scheme. Figure 5 summaries the key exchange.
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Alice

Bob

E

φB

φA

ker(φA)=〈PA+kAQA〉

ker(φB )=〈PB+kBQB 〉

EA,φA(PB),φA(QB)

EB ,φB(PA),φB(QA)

φBA

φAB

ker(φBA)=〈P
′
A+kAQ′A〉

ker(φAB )=〈P
′
B+kBQ′B 〉

EBA

EAB

Figure 5: Supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol.

IV.4.1 Protocol Description

Let ℓA,ℓB be distinct small primes (typically 2 or 3) and let p := ℓa
A · ℓ

b
B ± 1 be a prime of

cryptographic size for which ℓa
A ≈ ℓ

b
B. Construct a supersingular elliptic curve E/Fp2 [Brö09] that

has (p ∓ 1)2 points (when the trace of Frobenius is ±2p), namely we have #E(Fp2) =
�

ℓa
Aℓ

b
B

�2
.

This makes the ℓa
A and ℓb

B-torision subgroups of E entirely contained within Fp2 -rational points

of E. Let PA,QA, PB,QB ∈ E(Fp2) be points on E that generate their respective torsion subgroups:

〈PA,QA〉= E[ℓa
A], 〈PB,QB〉= E[ℓb

B].

The key exchange protocol works as follows. Alice chooses a secret scalar kA ∈ Z/ℓa
AZ and

computes the point SA = PA + kAQA. Then using Problem 1 from the previous section, she

computes an isogenous elliptic curve, EA, along with an isogeny φA : E → EA whose kernel

is generated by the point SA. Alice will also compute the images of the points PB, QB under

this isogeny, φA(PB),φA(QB). Whilst this is happening, Bob will similarly choose a secret scalar

kB ∈ Z/ℓb
BZ and compute the point SB = PB + kBQB. Then he computes an isogenous elliptic

curve, EB, along with an isogeny φB : E → EB whose kernel is generated by the point SB as

well as the images of PA, QA under this isogeny, φB(PA),φB(QA). Alice (and Bob) store the

triple [EA,φA(PB),φA(QB)] (and [EB,φB(PA),φB(QA)]) as their public keys and they exchange

these keys with one another. Alice now computes the point S′A = φB(PA) + kAφB(QA) and an

isogeny φBA : EB → EBA whose kernel is generated by S′A. Similarly, Bob computes the point

S′B = φA(PB) + kBφA(QB) and an isogeny φAB : EA→ EAB whose kernel is generated by S′B. After

all of this, Alice and Bob arrive at the curves EBA and EAB which have the same j-invariant which

they use as their shared secret key. These j-invariants are the same since the composition of the

isogenies φBA ◦φB and φAB ◦φA have the same kernel.

The idea behind this key exchange can be turned into an ElGamal style public key en-

cryption scheme when working in the random oracle model. In order to encrypt a message

m ∈ {0,1}λ on a public key [EA,φA(PB),φA(QB)], one computesH ( j(EAB)), whereH is a cryp-

tographic hash function that is modelled as a random oracle, and one produces a ciphertext

c = (EB,φB(PA),φB(QA), m⊕H ( j(EBA))). Here ⊕ is the standard XOR operation on binary

strings. To decrypt this ciphertext c, one uses the SIDH triple (EB,φB(PA),φB(QA)) and com-

putes H ( j(EBA)). Since this is the same as H ( j(EAB)), then the message can be recovered as

m= c ⊕H ( j(EBA)).
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Exploiting the twisted torsion. In the SIDH protocol, there is flexibility in choosing how many

points we require our supersingular elliptic curves to have and work with this throughout the

scheme. One chooses a prime of a particular form, say p = ℓa
A · ℓ

b
B − 1, as well as fix a quadratic

twist, namely supersingular curves with p + 1 points, and work solely with those curves. One

could loosen this and attempt to construct something that uses both quadratic twists. This was

initially exploited by Costello [Cos20] who designed the key agreement protocol B-SIDH as an

adaptation of SIDH. The idea here is for Alice to do isogeny computations solely within the p+1

and Bob to do isogeny computations solely within the p−1 torsion and follow the same design

as has been done in SIDH. A priori, this would require working over Fp4 in order to be able

to work with the appropriate quadratic twist. However if you work in the Montgomery model

and only do x-only arithmetic then you can do everything within Fp2 . The main advantage

here is that you can make the size of the prime a lot smaller in comparison to standalone SIDH.

This is because each party does overall more computation – here an isogeny computation of

size p is done versus
p

p as in SIDH. This gives you much smaller keys over SIDH. The tricky

aspect of this is finding suitable primes p such that both p+ 1 and p− 1 are smooth. Unlike in

SIDH, we can not make this smoothness optimally small. According to the current literature, the

smallest smoothness bound of p2 − 1 for a prime p of around 240-256-bits that has been found

is around 215 [CMN21, Appendix A]. This large smoothness bound impacts the performance

of the scheme and therefore makes it a lot slower. Since this idea came to light, the topic of

finding primes such that p±1 are both smooth (or at least contain a large smooth cofactor) has

been looked into by others [DFKL+20,CMN21,DFDdSGF+21]. This is related to the problem of

finding twin-smooth integers. If (m, m+1) is a smooth twin and their sum p = 2m+1 is prime

then p2 − 1 is also smooth. This topic will be explored further in Chapter VI.

IV.4.2 Security Analysis and Cryptanalysis

Fundamental to the security of SIDH is the so-called “supersingular isogeny with torsion points"

problem. The task here is given (E, PB,QB, EA, P ′B,Q′B), to recover the isogeny of degree ℓeA
A that

connects them. This can be thought of as a constrained version of the more general supersingular

ℓ-isogeny path problem since we are given more information about the isogenies structure that

was previously not given. For a long time it was thought that the meet-in-the-middle approach

and the vOW alternative were the best algorithms to solve this isogeny problem. We note that

this approach does not use the torsion point images, rather that we know the degree of the

isogeny and that it is relatively short in comparison to an expected degree of an isogeny between

supersingular elliptic curves.

Since its inception, it had been suspected that the additional torsion point information given

in the public key could be exploited to make the isogeny used in SIDH easier to compute than

its more general counterpart. This thinking has had its own evolution over the last few years.

We give a brief overview of the main points and takeaways.

Adaptive security. From the perspective of the public key encryption scheme based on SIDH,

we have a security reduction that shows that the scheme is IND-CPA secure, but there has

been no security proof to show that it is IND-CCA secure. The main difference now is that in

the IND-CCA game the adversary is given access to a decryption oracle. In 2016, Galbraith
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Petit Silva and Ti [GPST16] showed that this would never hold for the SIDH scheme. More

precisely, they showed that given access to the oracle O defined below, there is a polynomial-

time algorithm to recover the secret scalar kA given the public key EA, P ′B,Q′B. The oracle takes

as input a tuple consisting of a supersingular curve and two torsion points of the correct order

on the curve and outputs the shared key that would be obtained using the scalar kA.

We give an overview of the attack in the setting when ℓA = 2 and refer to [GPST16] for some

details when ℓA is odd. The idea is to query the oracle with a slightly altered triple to what the

public key actually is in such a way that one can obtain a bit of the secret scalar kA. This can be

carried out as follows. Let EB, P ′A,Q′A be a public key obtained honestly by the attacker through a

secret scalar kB and j(EBA) be the shared key that the attacker would obtain from Alice’s public

key. Then the oracle is queried on the modified triple (EB, P ′A,Q′A+2a−1P ′A) to obtain a j-invariant

j. The inclusion of the additional 2-torsion point here means that j = j(EBA) if and only if kA is

even [GPST16, Lemma 3.1]. So from this, a single bit of information about kA is revealed. One

can continue the attack in a similar fashion whereby each query to the oracle reveals another

bit of information. We omit these details here but they can be found in [GPST16, Section 3.2].

A number of countermeasures have been proposed in an attempt to prevent the possibility of

such an attack. The initial countermeasure presented by [GPST16] is to simply apply a variant

of the Fujisaki Okamoto transform [FO99,KLM+15]. The adoption of such a transform was used

in the submission of the NIST post quantum standardisation of SIKE (Supersingular Isogeny Key

Encapsulation) [JAC+17]. It was presented as an IND-CCA secure KEM. There have been other

countermeasures proposed which modify the construction at the isogeny level [AJL18, UJ20,

FP21a], however each of these countermeasures have been shown to have an adaptive attack of

some description [DGL+20, BKM+20, GL22]. The only countermeasure which allows for SIDH

to remain as a non-interactive key exchange requires proving in zero-knowledge that you know

the secret kernel [DFDGZ23]. We note that this requires performing multiple rounds of SIDH

and thus is a very costly procedure.

Initial torsion point attacks. The oracle needed in the previous attack makes the adversary

quite strong. In reality, an attacker may not have access to such an oracle. The first passive

attack that explicitly utilised the torsion point information was due to Petit [Pet17] from 2017.

His attack does not break SIDH as described above but breaks a unbalanced variant of SIDH. For

convenience, denote M := ℓeA
A and N := ℓeB

B . The idea behind the attack is to use information

about the endomorphism ring of the input curve E to find an endomorphism of the output

curve E′ whose degree is of the form Ne for some smooth and/or small e and to compute it

using the torsion information of our isogeny. From this endomorphism, one can recover the

secret isogeny. In the case when E is the curve with j-invariant 1728, one requires the following

unbalanced parameters M > p and N > M4 to make this attack practical. In 2021, this approach

was revisited and improved [dQKL+21]. Instead of finding an endomorphism on E′ of degree

Ne and recovering the secret isogeny from this endomorphism, they are able to it from an

endomorphism of degree N2e. This means that they can reduce the size of the unbalanced

parameters to p > M and N > pM . Despite these improvements, they are not applicable to

parameters used for SIDH since M ≈ N ≈ pp. Nevertheless, they were able to show that a

group key agreement protocol based on SIDH [AJJS19] could be broken with 6 or more parties.
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Higher-dimensional isogenies. In 2022, a series of papers forever changed the outlook for

SIDH in its current form as a viable scheme for practical use. In the first of these works by

Castryck and Decru [CD23], a polynomial-time algorithm was presented that solves the super-

singular isogeny with torsion points problem assuming that one knows the endomorphism ring

of the starting curve E. In the work by Maino and Martindale [MMP+23] they presented a subex-

ponential time algorithm that solves this problem without the knowledge of the endomorphism

ring. Subsequently, Robert [Rob23] presented a polynomial-time algorithm without knowledge

of the endomorphism ring.

In all of these algorithms a common theme is used. One takes the isogenies and torsion points

and embeds them into an isogeny of higher dimension through a lemma by Kani [Kan97]. Then

one solves this corresponding isogeny problem with the help of this lemma. In [CD23,MMP+23]
isogenies in dimension 2 are used, while in [Rob23] isogenies in dimension 4 and 8 are used.

The main feature which makes these attacks work is that not only do we know the degree of

the isogeny which we want to recover but we also know the torsion point images and exactly how

they are related to the torsion points on the base curve. As part of a countermeasure to these

attacks proposed by Fouotsa, Moriya and Petit [FMP23], two schemes have been presented.

The first one, which they call M-SIDH, masks the torsion point images by multiplying them by

a random quadratic square root of 1. The second one, which they call MD-SIDH, hides the

degree of the isogeny. Both of these countermeasures require the size of the parameters to be

larger than for SIDH been currently which makes the use of these countermeasures in a practical

setting unlikely.

Remark IV.5. The upshot of all of this is that one should be careful revealing torsion point images

on a whole basis unless it is masked in some appropriate way. Not only is the security of traditional

SIDH broken but also so are number of other protocols that uses the SIDH framework [YAJ+17,

GPS17, BKW20, DFDdSGF+21, EJKM22]. We note that a recent protocol based on SIDH has been

proposed that incorporates these countermeasures to the SIDH attacks [Bas23].

IV.5 CSIDH

Commutative Supersingular Isogeny Diffie-Hellman (or CSIDH) is another key exchange pro-

tocol which unlike the SIDH counterpart still remains secure. It was proposed by Castryck,

Lange, Martindale, Panny and Renes [CLM+18] and utilises the CM-action introduced in Sec-

tion III.3. It has a bit more history compared to SIDH and the underlying idea goes back

to the work of Couveignes [Cou06] and was independently rediscovered by Rostovtsev and

Stolbunov [RS06]. In these original constructions they used ordinary curves and were very

slow [DFKS18]. The difference in CSIDH is that not only are supersingular curves used but they

are also able to pick parameters that make the scheme reasonably efficient. Figure 6 summaries

the key exchange.

IV.5.1 Parameter Setup

Let ℓ1, · · · ,ℓn be small odd primes such that p = 4ℓ1 · · ·ℓn − 1 is a prime of cryptographic size.

Let E/Fp be a supersingular elliptic curve whose Fp-rational endomorphism ring is Z[π]. A
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Figure 6: Commutative supersingular isogeny Diffie-Hellman (CSIDH) key exchange protocol.

typical choice is the elliptic curve with j-invariant 1728: E : y2 = x3 + x .

For such a prime p, the supersingular ℓi-isogeny graph attached to E is a disjoint union

of cycles [CLM+18, Theorem 4]. One such cycle consists of the subset of curves whose Fp-

rational endomorphism is Z[π]. The ideal class group of Z[π] contains the ideals of the form

li := (ℓi ,π− 1) and li := (ℓi ,π+ 1). We note that the principal ideal generated by ℓi splits into

these two ideals. In particular, the action of one of these ideals on E constitutes a step in the

cycle mentioned above. Moreover, the kernel of the isogeny generated by the ideal li consists

of Fp-rational points of order ℓi .

Ideally, for what will be described, one would like to sample elements of the class group

uniformly at random. This would require precomputing the class group which as mentioned

previously is an expensive computation which has only been done for some parameters [BKV19].
However, one can get around this via some heuristic arguments related to the ideals li . Namely,

that the number of pairs of ideals of the form l
e1
1 l

e2
2 · · · l

en
n for small exponents ei that coincide

within the class group is negligible. So one can sample ideal classes by choosing exponents ei

within some range, ei ∈ {−mi , · · · , mi} for some mi and compute the ideal le1
1 l

e2
2 · · · l

en
n . Assuming

the heuristic, this distribution of ideals within the class group is statistically close to uniform.

IV.5.2 Protocol Description

The key exchange protocol works as follows. Using the special ideals defined in the previous

section, Alice samples an ideal a ∈ cl(Z[π]) and computes the curve Ea := E/a = a ⋆ E. Whilst

this is happening Bob also samples an ideal b ∈ cl(Z[π]) and computes the curve Eb := E/b =
b ⋆ E. Alice (and Bob respectively) store Ea (and Eb respectively) as their public keys and

they exchange these public keys. Upon receiving Bob’s public key, Alice computes the curve

Eb/a= a⋆Eb. Similarly, upon receiving Alice’s public key, Bob computes the curve Ea/b= b⋆Ea.

Since the group action is free and transitive, the curves Eb/a and Ea/b will be the same curve

and hence both parties use this as their shared key.

The natural way of turning CSIDH into a public key encryption scheme is through a similar

ElGamal technique as presented in the context of SIDH. Once again this requires the use of a

hash function and one obtains a ciphertext by xoring a message with the hash of the shared

secret. The inclusion of the hash function is something that one would like to avoid. The
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formalities of the security proof was carried out by Stolbunov [Sto09] in the setting of the

ordinary instantiation, but can be easily adapted to the supersingular setting.

This was remedied by [MOT20] in which an IND-CPA secure public key encryption scheme

called SiGamal is constructed. An IND-CCA version of SiGamal was presented in [FP21b]which

is called SimS. In these protocols, the use of hash functions is replaced by the use of torsion point

images and the prime is changed to one of the form p = 2rℓ1 · · ·ℓn − 1, for some large enough

exponent r. In particular, the torsion points used in the protocol have order 2r . The inclusion of

these torsion points might seem suspicious especially since the recent polynomial-time attacks

on SIDH explicitly use the torsion points. However, in this scheme, we are only given one

torsion point image rather than the image of a full basis. Also, the degree of the isogeny used in

CSIDH/SiGamal/SimS is not publicly revealed, unlike its SIDH counterpart. This makes running

the attack in this setting rather difficult.

Cryptographic group actions. The idea behind this key exchange can be viewed in terms

of abstract group actions. After all, this protocol specifically uses the CM action so one could

replace this with any other action. In particular, if one replaces this group action with the group

action that exponentiates a group element then you recover traditional Diffie-Hellman. The

concept of cryptographic group actions will be explored further in Chapter VII.

CSIDH on the surface. In the original description of CSIDH, the Fp-rational endomorphism

ring is fixed to be Z[π]. However, when p = 3 mod 4, one can also have supersingular elliptic

curves whose Fp-rational endomorphism ring is Z[(1+π)/2] and do the CSIDH style protocol

but using these supersingular curves. This was explored by Castryck and Decru in their protocol

CSURF [CD20] and requires to select a prime which is of the form p = 8ℓ1 · · ·ℓn − 1.

Signatures Schemes. There has been work constructing signature schemes based on the group

action used in CSIDH [DFG19a, DPV19, BKV19]. The underlying idea here is to construct an

identification protocol similar in design to the graph isomorphism identification protocol. Here

one constructs a commutative diagram of isogenies and reveals certain ideals within the dia-

gram depending on some bit challenge. Doing this solely with the ideals mentioned in Section

IV.5.1 is not straightforward since there would be some leakage of the secret ideal as part of the

interaction. The solution adopted by [DFG19a, DPV19] uses rejection sampling in order to fix

these leakages, but this is fairly expensive. The solution adopted in [BKV19] completely avoids

the need for rejection sampling by doing an expensive precomputation of the underlying class

group. One can then sample an element of the class group uniformly at random. While this

makes for a faster signature algorithm, this precomputation was only done for the CSIDH-512

parameter set and it does not scale to large parameters. This is because the class group pre-

computation requires an algorithm which takes subexponential complexity which is expensive

for these larger parameters. As part of recent work [FFK+23], an alternative approach has been

explored that makes it possible to scale this class group precomputation slightly but results in

very slow performance benchmarks and hence would not currently be considered for practical

purposes.
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sk=τ

com=ψ
ϕ◦ψ◦τ̂

resp=σ

chal=ϕ

E0 pk= EA

E1 E2

Figure 7: The SQISign identification protocol. The dotted lines indicate that the isogeny between
the curves is kept secret and otherwise the isogeny is publicly known.

IV.5.3 Cryptanalysis

The isogenies between E and Ea, Eb are Fp-rational. So the fundamental hard problem that un-

derpins the security of CSIDH is a restricted case of Problem 1 where one is tasked to recover an

Fp-rational isogeny. As already mentioned in IV.2.1, the best algorithm to find such an isogeny

classically uses Õ(p1/4) time and quantumly takes subexponential time. The quantum subex-

ponential algorithm is related to the Kuperberg’s hidden shift algorithm [Kup05] which can be

adapted to these isogenies through the class group action [CJS14, BJS14]. Recent analysis of

Kuperberg’s algorithm applied to CSIDH [BS20, Pei20] suggests the parameters first proposed

for CSIDH [CLM+18] fall well short of their intended quantum security target and thus one

would need to increase the size of the parameters in order to counter this attack.

Outside of the techniques mentioned above, there are no other known methods to solve the

underlying CSIDH problem.

IV.6 SQISign

SQISign (short quaternion isogeny signatures) is a high-soundness one-round identification pro-

tocol which is turned into a signature scheme using the Fiat Shamir (or Unruh) transform. It

was proposed by De Feo, Kohel, Leroux, Petit and Wesolowski [DFKL+20] and is inspired by

the GPS signature scheme by Galbraith, Petit and Silva [GPS17] whereby one adopts the KLPT

algorithm to compute new isogenies between two supersingualar curves when given their en-

domorphism rings. The resulting isogeny is then used to generate the signature. We now give

a high level description of the signature scheme as originally formulated in [DFKL+20] as well

as give some recent developments in making the scheme faster. Figure 7 summarises the iden-

tification protocol that underpins SQISign.

IV.6.1 Identification Protocol

Choose a prime p such that p2 − 1 = ℓ f TR where ℓ is a small prime (typically ℓ = 2), f is

as large as possible, T ≈ p3/2 is not only coprime to ℓ but is also as smooth as possible and R

is the remaining cofactor that could include some rough factors. Decompose T = Dc T ′ where

Dc ≈
p

p and T ′ ≈ p. Let E0/Fp be a supersingular elliptic curve that has a known special
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extremal endomorphism ring End(E) ∼= O0. The term special extremal was introduced by the

authors of the original KLPT algorithm [KLPT14] and refers to the fact that within the quaternion

algebra, Q[i, j], for which End(E0) lies in, this endomorphism ring has a suborder that admits

an orthogonal decomposition of the form R+ jR where R ⊆ Q[i] is a quadratic order. Finally,

let N ≈ p1/4 be a random prime number that is inert in R.

The key generation algorithm consists of computing a random isogeny of degree N . As we

have seen already, computing this isogeny directly from Vélu is not feasible but since E0 is special

extremal then we can use the constructive Deuring correspondence to compute the isogeny. Call

this isogeny τ : E0 → EA where E0 is the codomain supersingular curve. Then the public key

and private key pair is (pk, sk) = (EA,τ).

Now we look at the identification protocol itself. We recall that this first consists of an

interaction between a prover and a verifier which has three stages: a commitment, followed by

a challenge and finished off with a response.

Commitment: The prover generates a random isogeny ψ : E0 → E1 of degree T ′ again using

the constructive Deuring correspondence. The prover keeps the description of

ψ secret and sends the curve E1 to the verifier.

Challenge: The verifier receives the committing supersingular curve E1 and computes a cyc-

lic isogenyϕ : E1→ E2 of degree Dc . The verifier sends the complete description

of ϕ to the prover.

Response: The prover receives the isogeny ϕ and from the isogeny composition ϕ ◦ψ◦ τ̂ :

EA→ E2 computes a new isogeny σ : EA→ E2 using the KLPT algorithm whose

degree is some large power of the small prime ℓ such that ϕ̂ ◦σ is cyclic. This

power will be larger than the accessible ℓ f so rather giving the verifier the entire

description of σ, it returns a chain of ℓ f -isogenies whose composition is σ.

The verification of this interaction consists of checking that the resulting isogenyσ is actually

an isogeny from EA to E2 and that the composition ϕ̂ ◦ σ is cyclic. If it is then it accepts and

otherwise it rejects.

As already mentioned previously, one can turn this into a signature scheme by applying the

Fiat Shamir transform to the above identification protocol.

Modified KLPT algorithm. We note that the KLPT algorithm from [KLPT14] is slightly dif-

ferent than the adopted KLPT algorithm used here. In the process of obtaining the isogeny σ,

the original algorithm ends up revealing some path from EA to E0 and thus would reveal the

secret isogeny τ. Hence, they use a modified and generalised version of the algorithm that uses

Eichler orders in order to compute a secure isogeny σ. The details of this is beyond the scope

of this text and we refer to [DFKL+20, Section 5] for more details on this.

Recent parameter setup. As part of more recent developments related to this generalised

KLPT algorithm, it is possible to reduce the size of the smooth integer T from p3/2 to p5/4+ε.

This is work due to De Feo, Leroux, Longa and Wesolowski [DFLLW23]. The necessity ε here

refers to the fact that, if this cofactor is too close to p5/4, then the underlying heuristics within
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the generalised KLPT algorithm might fail and one cannot guarantee a successful signature

in SQISign [DFLLW23, Section 3.2]. Thus, in practice we need ε to be not too small (e.g.,

0.02 < ε < 0.1). Again we refer the reader to [DFLLW23] for the specific details of this but

note that one can obtain faster signatures with this approach especially when one incorporates

recent fast algorithms for arithmetic over large prime fields [Lon22].

Using higher-dimensional isogenies. More recently, a new signature scheme has been pro-

posed which is based on the SQISign framework and exploits the attacks on SIDH that use

higher-dimensional isogenies as a tool to verify the signature [DLRW23]. This scheme is re-

ferred to as SQISignHD. In particular, they propose to use isogenies in dimension 4 and 8 as

part of the verification procedure in SQISignHD. Additionally, they are able to exploit SIDH-

style primes as part of their parameter setup and the signature algorithm consists of perform 2

and 3-isogenies. This is an improvement to the original SQISign design and suggests the sign-

ing can be made a lot faster. Having said this, there is no implementation of this scheme and

it remains unclear whether the higher-dimensional isogenies required for verification can be

implemented efficiently enough to consider SQISignHD for practical applications.

IV.6.2 Security Analysis

Fundamental to the security of SQISign is the endomorphism ring problem. If one can efficiently

compute the endomorphism ring of a supersingular elliptic curve, then with the knowledge of

End(EA) and End(E2) one compute the isogeny σ. Thus could one can easily forge a signature if

the endomorphism ring problem is no longer intractable. Moreover, all isogenies in the protocol

can be efficiently computed given the knowledge of their endomorphism rings.

More concretely, with respect to the identification protocol, the soundness security can be

reduced to the one endomorphism problem. If the one endomorphism problem is hard then

the identification protocol satisfies the special soundness property. The zero-knowledge prop-

erty is technical and requires a new ad hoc assumption. Essentially, the assumption says that

no polynomial-time adversary should be able to distinguish an isogeny σ resulting from the

generalised KLPT algorithm from a random isogeny of the same degree, with non-negligible

probablity. We refer to [DFKL+20,DFLLW23] for the precise details of the assumption and some

brief justifications as to why it is at least conjectured to be as hard as other isogeny problems

such as the endomorphism ring problem.
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Chapter V

Commitment Schemes from Supersingular

Isogeny Graphs

In this chapter, we present work that was published in a special issue of the Journal of mathem-

atical cryptography [Ste21].

V.1 Introduction

Commitment schemes [Blu83] have played a central role in the age of modern public-key cryp-

tography. It allows a party to securely commit to particular value in such a way that other

parties can be assured that it hasn’t been tampered with. They have many useful applications:

in secure electronic voting [CFSY96,DEG17], signature schemes [Lam79] and zero knowledge

proofs [Dam98], to name a few.

One of the most important commitment schemes is one due to the Pedersen [Ped92] based

on the hardness of the discrete logarithm problem in a finite cyclic group. As such, it is vulner-

able to Shor’s algorithm which renders it insecure if a sufficiently large quantum computer is

available. Therefore, one might hope to design a commitment scheme which is secure against

quantum adversaries. There has been some work on constructing lattice-based commitment

schemes [XXW13,BDL+18]. They use well known lattice based assumptions such as Ring-LWE,

Module-LWE and Module-SIS as a basis for their security. There has also been some work on

constructing code-based commitment schemes [NTWZ19] and multivariate-based commitment

schemes [PBB13].
At the time of writing, as far as we are aware, there are no published commitment schemes

based on isogeny assumptions. Just as SIDH is an analogue of traditional Diffie-Hellman, one

would hope that an analogue of Pedersen commitments exists in the isogeny setting. It is there-

fore surprising that this is not currently the case. Galbraith has declared this to be a “huge open

problem" in isogeny-based cryptography [Gal20].

Contributions. In this chapter we present the first provably secure commitment schemes

based on supersingular elliptic curve isogeny graphs. Underlying our protocols is the well-

known idea of using a hash function to obtain a secure commitment scheme. In particular, we
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Exphiding
C ,A (λ)

1 : pp← KeyGen()

2 : (m0, m1)←A (pp)
3 : b←$ {0, 1}

4 : r ←$ {0,1}λ

5 : c← Commit(pp, mb, r)

6 : b′←A (c)

7 : return b
?
= b′

Expbinding
C ,A (λ)

1 : pp← KeyGen()

2 : (m, m′, r, r ′, c)←A (pp)
3 : return m ̸= m′

4 : ∧Open(pp, m, r, c)
?
=Open(pp, m′, r ′, c)

Figure 8: Hiding and binding experiments (resp.) for a commitment scheme.

use the CGL hash function described in Section IV.3 as a fundamental building block for our

commitment scheme. The protocol requires a hard supersingular curve in order to make the

construction secure. Hence a trusted setup as described in Section IV.2.2 is needed.

Traditionally, proving the security of the resulting commitment scheme is done with the help

of the random oracle to show that it is information-theoretically hiding. However, in this work

we obtain such a scheme without using the random oracle model: instead we use mathematical

properties of isogenies and their associated isogeny graphs to obtain a commitment scheme

which is both information-theoretically hiding and computationally binding.

Outline. In Section V.2 we begin with the necessary preliminaries needed for this work. This

includes background on supersingular elliptic curve isogenies and we review the techniques used

for computing such isogenies. We also give a formal definition of a commitment scheme and

introduce the necessary security models. In Section V.3 we introduce the mixing constant for any

regular graph and analyse its properties. In Sections V.4 and V.5 we present our commitment

schemes based on supersingular isogeny graphs and use the result from Section V.3 to prove

their security. In Section V.6 we estimate the performance of our commitment schemes, both

from a perspective of efficiency and size of the commitment values. We also attempt to compare

our schemes to that of a lattice counterpart. Finally, in Section V.7 we summarise the presented

work and suggest avenues for future work.

V.2 Background on Commitment Schemes

Formally speaking, a commitment scheme consists of three algorithms: KeyGen(), Commit()
and Open() - each of which has an implicit input 1λ where λ is a security parameter. KeyGen()
is a PPT algorithm that outputs the necessary public parameters needed for the protocol as

well as the definition of the message space. Commit() is a PPT algorithm that, given the public

parameters, a message m in the message space and a random r ∈ {0,1}λ, outputs a value c which

serves as the commitment to m and r. Open() is a deterministic polynomial-time algorithm that

given the public parameters, the message m, the random r and the value c outputs a boolean

value b ∈ {0,1} according to whether or not c is a valid commitment to m and r.

Cryptographic applications of commitment schemes require the following two properties,

known as hiding and binding. Informally, the hiding property ensures that the outputted com-

mitment does not reveal anything about the message, while the binding property ensures that it



V.3. WALKING ON REGULAR GRAPHS 47

should be hard to replicate the same commitment using a different message. We formally define

these properties with aid of the games described in Figure 8. The hiding game is modelled like

an indistinguishability game where the adversary is given the commitment of one of two mes-

sages and he is tasked to determine which message was used to derive the commitment. The

binding game asks the adversary to find two distinct messages from your message space that

gives the same commitment. Throughout these upcoming definitions, let C be a commitment

scheme with a security parameter λ andA be an adversary.

Definition V.1. The hiding advantage for the adversary A , denoted Advhiding
C ,A (λ), is defined to be

2 |Pr[A wins the hiding game]− 1/2|. More specifically, we have

Advhiding
C ,A (λ) = 2

�

�

�

�

Pr
�

Exphiding
C ,A (λ) = 1
�

−
1
2

�

�

�

�

,

where Exphiding
C ,A (λ) is the hiding experiment as defined in Figure 8. We say that C is information-

theoretically (resp. computationally) hiding if for all adversaries (resp. PPT adversaries)A there is

a negligible function, negl, such that the advantage of winning the hiding game is bounded above by

negl(λ). Furthermore we sayC has perfect hiding if the hiding advantage is zero for any adversary.

Lemma V.2. Given a commitment scheme C and an adversaryA , we have

Advhiding
C ,A (λ) =

�

�

�

�

Pr
�

Exphiding,b=1
C ,A (λ) = 1

�

− Pr
�

Exphiding,b=0
C ,A (λ) = 1

�

�

�

�

�

.

Definition V.3. The binding advantage for the adversary A , denoted Advbinding
C ,A (λ), is defined to

be Pr[A wins the binding game]. More specifically, we have

Advbinding
C ,A (λ) = Pr
�

Expbinding
C ,A (λ) = 1
�

,

where Expbinding
C ,A (λ) is the binding experiment as defined in Figure 8. We say thatC is information-

theoretically (resp. computationally) binding if for all adversaries (resp. PPT adversaries)A there

is a negligible function, negl, such that the advantage of winning the binding game is bounded

above by negl(λ). Furthermore we say C has perfect binding if the binding advantage is zero for

any adversary.

V.3 Walking on Regular Graphs

Let G be a graph with vertex set V (G) and let (vk)k≥0 denote a random walk in G. For a positive

integer d (which throughout this work will always be at least 3), we say G is d-regular if for

each vertex v ∈ V (G) the number of edges incident to the vertex4 v is d. We say the random

walk (vk) is non-backtracking if it does not traverse on the same edge twice in a row, i.e., for

each k ≥ 1 the edges [vk−1, vk] and [vk, vk+1] are different.

The adjacency matrix of the d-regular graph G, A, is the matrix whose (i, j)-th entry is

the number of (directed) edges at the vertex i going to the vertex j. Note that the powers of

this matrix describes the number of paths (that may include backtracking paths) between two

4If the graph G is directed then we specify that the number of outgoing edges from v is d.
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vertices of a given length. The transition matrix of G, P, is the matrix whose (i, j)-th entry is

A(i, j)/d. Finally, a stationary distribution on V (G), π, is a probability distribution on the set

of vertices of G such that π = πP or equivalently π(y) =
∑

x∈V (G)π(x)P(x , y). In effect, this

distribution remains unchanged as you transition through the graph. If G is strongly connected,

this stationary distribution is unique [LP17, Corollary 1.17].

Given a random walk (vk) in G, we define the worst-case total-variation distance to station-

arity at time t to be

d(t) :=
1
2

max
v∈V (G)

(

∑

x∈V (G)

�

�

�

�

Prv(vt = x)−π(x)
�

�

�

�

)

where Prv denotes the probability given v0 = v and π is the stationary distribution on G. We

define tMIX(ε), the total-variation mixing time of (vk) for 0< ε < 1, as

tMIX(ε) :=min{t : d(t)< ε}.

Theorem V.4 (Rapid Mixing of Non-Backtracking Walks). Let G be a random d-regular graph

with N vertices and d ≥ 3. Let (vk) be a non-backtracking random walk in G. Then for any fixed

ε > 0, the worst case total-variation mixing time with high probability satisfies

tMIX(1− ε)≥ ⌈logd−1(dN)⌉ − ⌈logd−1(1/ε)⌉,

tMIX(ε)≤ ⌈logd−1(dN)⌉+ 3⌈logd−1(1/ε)⌉+ 4.

Proof. See [LS10, Theorem 2].

In other words, for a sufficiently small ε, this theorem says that the output of a non-backtracking

random walk of length O(logd−1(dN)) on a random regular graph is indistinguishable from

choosing a random vertex in the graph. It turns out that, compared to simple random walks that

allow backtracking, the mixing time of non-backtracking walks is d
d−2 times smaller [LS10, The-

orem 1].

In previous work including [JMV09], powers of the adjacency matrix, Ak, are used to get

some mixing results on certain d-regular graph known as expander graphs. We are interested

in the study of non-backtracking paths and for that we consider the following matrices: A1 = A,

A2 = A2−dI and Ar+1 = A1Ar−(d−1)Ar−1 for r ≥ 2. Then Ar is the matrix whose (i, j)-th entry

is equal the number of non-backtracking walks from i to j of length r [Mur03, Section 6].

Lemma V.5. Let G be a connected d-regular graph with d ≥ 3. Then there exists some positive

integer k0 such that for all k ≥ k0, Ak has entries which are all non-zero.

Proof. For any vertex i, the number of length r non-backtracking walks starting at i is precisely

d(d − 1)r−1 and so we have
#V (G)
∑

k=1

Ar(i, k) = d(d − 1)r−1.

Since d ≥ 3, as r → ∞ this sum tends to ∞ and hence there is some vertex j0 such that

Ar(i, j0) → ∞. For any vertex j, fix two paths (of length m0, m1) between j0 → j (which

can be done since the graph is connected). We ensure that the first step in these paths are
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different. Consider all paths i → j0 → j whereby we first go to j0 and then traverse to j

using one of our fixed paths making sure we avoid any backtracking. Then we have Ar(i, j0) ≤
Ar+m0

(i, j) + Ar+m1
(i, j) and therefore Ar(i, j)→∞.

Hence for each i, j there is some k(i, j) such that for all k ≥ k(i, j), we have Ak(i, j) is

strictly positive. Setting k0 to be the maximum of k(i, j) over all pairs of vertices (i, j) gives the

result.

Definition V.6. We define kG to be the minimal k0 such that Lemma V.5 holds and call kG the

mixing constant for the graph G.

The minimality of kG means that there exists i0, j0 such that AkG−1(i0, j0) = 0, and for all i, j

and k ≥ kG , Ak(i, j) ̸= 0. Rephrasing this in the context of non-backtracking walks we obtain

the following.

Corollary V.7. For a connected d-regular graph G (with d ≥ 3) let kG be the corresponding mixing

constant. Then for all k ≥ kG and every pair of vertices (i, j), there exists a non-backtracking path

between i and j of length k.

We now provide a lower bound on the mixing constant kG . The following is a generalisation

of the calculation done in [ACNL+19, Section 6]. There are at most d(d−1)k−1 possible outputs

to a non-backtracking walk of length k. For some large enough k this number of walks exceeds

the number of vertices in G: d(d − 1)k−1 ≥ N . Rearranging this gives us a lower bound for the

mixing constant:

Lemma V.8. The mixing constant kG of a connected d-regular graph is bounded below by

kG ≥ logd−1(N)− logd−1(d) + 1.

Theorem V.4 hints at an upper bound for kG . Namely for a suitably small ε > 0 we expect

that kG ≤ tMIX(ε). In particular, if ε is negligibly small then the mixing constant may be at most

tMIX(ε). For instance ε= 1/dN , then by Theorem V.4 we get that tMIX(1/dN)≤ 4⌈logd−1(dN)⌉+
4. To summarise we make the following conjecture.

Conjecture V.9. The mixing constant kG of a connected d-regular graph G has the following upper

bound:

kG ≤ 4⌈logd−1(dN)⌉+ 4.

This upper bound can be thought of as a worst case bound among all regular graphs. Some

regular graphs have faster mixing rates, such as expander graphs or Ramanujan graphs, so

one would hope expect that the mixing constant would be smaller. Later we conjecture better

upper bounds for this mixing constant in the context of supersingular isogeny graphs as well as

providing some experimental data to support the conjecture.

V.4 A Commitment Scheme from Isogeny Assumptions

The idea of using Ramanujan graphs, that have optimal mixing properties [Alo86], in crypto-

graphy was first proposed by [CLG09]. More precisely they proposed to construct hash functions



50 V. COMMITMENT SCHEMES FROM SUPERSINGULAR ISOGENY GRAPHS

by going on random walks on certain Ramanujan graphs where path-finding is hard. This in-

cludes supersingular isogeny graphs which were proved by Pizer [Piz90] to be Ramanujan.

In this section we use supersingular elliptic curve isogeny graphs to construct a commitment

scheme and use the graph theoretic results from Section V.3 to prove its security. The idea behind

our commitment scheme is, given a message m and a random r that someone wants to commit

to, compute the isogeny-based hash of m concatenated by r. The output of this concatenation

will be used as the commitment of the message m. Initially we present it in the supersingular

2-isogeny setting graph and later generalise it to the supersingular ℓ-isogeny with ℓ an odd

prime.

V.4.1 Our Protocol

Let λ be a security parameter. The key generation of the commitment scheme is as follows.

Choose a prime number p of 2λ bits and a positive integer k to be chosen later. This choice of

p will ensure that our protocol will attain λ bits of classical security and λ/2 bits of quantum

security against the Delfs-Galbraith and Biassse, Jao and Sankar (resp.) algorithms as men-

tioned in Section IV.2.1. In addition, with aid of a trusted setup, choose a hard supersingular

curve E/Fp2 . Recall from Section IV.2.2 that this means that no one should know nor be able

to compute its endomorphism ring End(E). In addition, choose two random edges incident to

j(E) in the supersingular 2-isogeny graph.

To commit to a message m ∈ {0,1}k first compute the curve Em := Φ2(E, m) (making sure

the first step in the graph is one of the two edges chosen above). Then choose uniformly at

random a binary string r ∈R {0, 1}k and compute the curve E′ := Φ2(Em, r). When you go from

Em to E′, make sure to avoid any backtracking in the isogeny graph. Then return c := j(E′) as

the commitment of the message m.

Given the message m, the random r and the commitment c, to open the commitment first

compute the curve Φ2(Φ2(E, m), r). Then return the boolean value c == j(Φ2(Φ2(E, m), r)).

Remark V.10. The necessity of the endomorphism ring of E remaining unknown is due to an attack

by [EHL+18]. They are able to break the second preimage resistance of the isogeny hash function

when the endomorphism ring of E is known. This will be important in the context of binding of our

protocol.

V.4.2 Hiding

The graph theoretic results presented in Section V.3 along with the following well known result

on random walks on isogeny graphs will be used here to show that the commitment scheme

presented in the previous subsection is information-theoretically hiding.

Theorem V.11. Given a prime number p, let j0 be a supersingular j-invariant in characteristic p,

Np be the number of supersingular j-invariants in characteristic p and n =
∏

i ℓ
ei
i be an integer

where ℓi are small primes. Let ĵ be the j-invariant reached by a random walk of degree n starting

at j0. Then for every j-invariant j̃ we have
�

�

�

�

Pr
�

ĵ = j̃
�

−
1
Np

�

�

�

�

≤
∏

i

�

2
p

ℓi

ℓi + 1

�ei

.
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Proof. See [GPS17, Theorem 1].

Theorem V.12. Let k2,p be the mixing constant for the supersingular 2-isogeny graph in charac-

teristic p. Then for any k ≥ k2,p, the commitment scheme described in Section V.4.1 is information-

theoretically hiding.

Proof. Fix two message strings m0, m1, a randomly chosen bit b ∈R {0,1} and a resulting com-

mitment E′ = Φ(Emb
, r). The goal for an adversary is to determine which message was used to

get the commitment. Since the supersingular 2-isogeny graph is 3-regular, k2,p is well-defined.

For any k ≥ k2,p, by Corollary V.7, there is guaranteed to be a path of length k from Em0
to E′

and Em1
to E′. Set α := 3

2
p

2
> 1. Using Theorem V.11 we have

Pr
�

c = E′ | message is m0

�

− Pr
�

c = E′ | message is m1

�

≤ 2α−k.

Similarly this difference is bounded below by −2α−k. Therefore the advantage of winning

the hiding game is at most 2α−k ≤ 2α−k2,p ≤ 2α−2λ+log2(36) (last inequality is a consequence of

Lemma V.8 and Np ≥ p/12− 1), which proves the theorem.

By the conjectural upper bound on the mixing constant, Conjecture V.9, we can choose k =
4⌈log2(p)⌉−4. With this choice of k we achieve information-theoretic hiding for our commitment

scheme. As mentioned earlier, it could be possible to improve on this choice of k when specific

graphs are used. Since supersingular isogeny graphs are Ramanujan graphs, one hopes that

the mixing constant for these graphs is smaller. In particular we conjecture the following upper

bound which we believe to be sharp for supersingular 2-isogeny graphs.

Conjecture V.13. With k2,p be as defined previously, we have the following upper bound

k2,p ≤ log2(p) + log2(log2(p)) +O(1).

In particular the constant in the big-Oh notation is at most 1.

Experimental results on this conjecture show that for every prime p ≤ 65600 and some

primes between 123000 ≤ p ≤ 131100 and 234000 ≤ p ≤ 218, the associated mixing constant

for the supersingular 2-isogeny graph is no more than log2(p)+log2(log2(p))+
3
10 . These mixing

constants were calculated by first computing the adjacency matrix, A, for the graph and sequen-

tially computing Ak, as defined in Section V.3, until you find a value k̂ such that the each entry

of Ak̂ is non-zero. We verify that k2,p = k̂ by computing Ak̂+1, Ak̂+2, · · · , Ak̂+i for some small i and

see if the entries in these matrices are non-zero. Since the entries of these matrices grow as we

increase k, then as long as these matrices have non-zero entries, we can conclude that k2,p = k̂.

Figure 9 tabulates the mixing constant in the supersingular 2-isogeny graph in characteristic p

for all p ≤ 65600. These experiments were conducted in Magma on a machine configured with

two Xeon E5-2667v3 3.20 GHz, 378GB of RAM. The computation used 32 parallel threads and

took one whole day to run in its entirety.

If this conjecture is true then we can choose k = ⌈log2(p) + log2(log2(p)) + 1⌉ and it would

significantly speed up the performance of the protocol.
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Figure 9: Mixing constant k2,p in prime characteristic p for all p ≤ 65600. The lower bound curve
is log2(x) and the upper bound curve is log2(x) + log2(log2(x)).

V.4.3 Binding

Recall the “one supersingular endomorphism problem" as defined in Problem 4. In that problem

one is tasked to compute a non-trivial and cyclic endomorphism of a supersingular curve. In

its full generality, the degree of this endomorphism which is tasked to compute is in general

smooth. We will prove that the binding of our protocol is secure under the hardness of this

problem when specifically tasked to find an endomorphism whose degree is some power of 2.

Theorem V.14. The commitment scheme as described in Section V.4.1 is computationally binding

under the “one supersingular endomorphism problem" on the curve E – finding an endomorphism

whose degree is a power of ℓ= 2.

Proof. Suppose that A is a PPT adversary which successfully solves the binding game for this

commitment scheme. We shall construct an PPT adversary A ′ using A as a black box that

solves the Supersingular Smooth Endomorphism Problem on the curve E.

Upon receiving the curve E, A ′ queries A and successfully outputs m, m′, r, r ′ such that

m ̸= m′ and E′ = Φ2(Em, r) = Φ2(Em′ , r ′). Let φm : E → Em, φm′ : E → Em′ , φr : Em → E′,

φr ′ : Em′ → E′ be the associated isogenies each of which has degree 2k.

Then the composition of φm ◦φr ◦ φ̂r ′ ◦ φ̂m′ is an endomorphism of E whose degree is the

prime power 24k. First we need to verify that this composition is non-trivial. Suppose for a

contradiction that φm ◦φr ◦ φ̂r ′ ◦ φ̂m′ = [22k]. Since the compositions φm ◦φr and φm′ ◦φr ′ are

isogenies from E to E′ of same degree, then φ̂r ′ ◦ φ̂m′ is the dual of φm ◦φr . Since φm′ ◦φr ′

∧

=
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φ̂r ′ ◦ φ̂m′ , we get φm ◦ φr = φm′ ◦ φr ′ . As a result m = m′ and r = r ′ – which gives the

contradiction.

By removing any potential backtracking to the composition φm ◦φr ◦ φ̂r ′ ◦ φ̂m′ that might

occur as we approach E′, we get a cyclic endomorphism ψ. The adversary A ′ outputs this

endomorphisms and solves the Supersingular Smooth Endomorphism Problem on E in PPT.

Therefore the advantage of winning the binding game is at most the advantage of solving the

above problem.

V.4.4 Generalisation

In this section we generalise the above idea and construct a commitment scheme which works

in the supersingular ℓ-isogeny graph for a small odd prime ℓ. Once again, key generation of the

protocol is the same as described in Section V.4.1.

To commit to a message m ∈ {0, 1, · · · ,ℓ − 1}k first compute the curve Em := Φℓ(E, m).
Then choose uniformly at random a binary string r ∈R {0,1, · · · ,ℓ−1}k and compute the curve

E′ := Φℓ(Em, r). Once again, when you go from Em to E′, making sure to avoid any backtracking

in the isogeny graph. Then return c := j(E′) as the commitment of the message m.

Given the message m and the random r, to open the commitment scheme first compute the

curve Φℓ(Φℓ(E, m), r). Then return the boolean value c == j(Φℓ(Φℓ(E, m), r)).

Much like in the setting of the 2-isogeny graph, we have the following theorems proving the

security of this commitment scheme.

Theorem V.15. Let kℓ,p be the mixing constant for the supersingular ℓ-isogeny graph in character-

istic p. Then for any k ≥ kℓ,p, the commitment scheme described above is information-theoretically

hiding.

Proof. The proof is analogous to the proof of Theorem V.12.

Much like in Section V.4.2, choosing k = 4⌈logℓ(p)⌉+8 would be sufficient to get information-

theoretic hiding.

Theorem V.16. The above commitment scheme is computationally binding under the “one super-

singular endomorphism problem" on the curve E – finding an endomorphism whose degree is a

power of the odd prime ℓ.

Proof. The proof is analogous to the proof of Theorem V.14.

Along with this we make the following conjecture on a sharp upper bound of the mixing

constant in these graphs.

Conjecture V.17. With kℓ,p as above, we have

kℓ,p ≤ logℓ(p) + logℓ(logℓ(p)) +O(1).

In particular the constant in the big-Oh notation is at most 1.
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V.5 Commitments from Kernel Subgroups

In this section we describe a variant of the protocol from the previous section which uses the

SIDH framework. Instead of using SIDH friendly primes we use primes of the form 2n f − 1

and achieve the same security requirements that were achieved in the previous section. One

advantage of doing this is to exploit SIDH strategies [DFJP14, Section 4.2.2] to speed up isogeny

computations. (Similar ideas in the context of the hash function construction can be found

here [DPB17]). It is worth mentioning that while we base this on the SIDH framework, there

are no torsion point images that are revealed so there is no impact on its security from the genus

two setting

Let p = 2n f − 1 be a prime with 2λ bits and f is a small integer. In the same manner

as described in the previous section, choose a supersingular elliptic curve E/Fp2 whose endo-

morphism ring is unknown but this time we make sure that #E(Fp2) = (2n f )2. This is done

intentionally so that the 2n-torsion subgroup of E entirely consists of points whose coordinates

are in Fp2 . Let P0, P1 ∈ E[2n] be points on E that form a basis for this 2n-torsion subgroup of E.

Much like in the Section V.4, we will go on walks in the supersingular 2-isogeny graph but

instead of choosing at each step which edge to traverse, we compute the kernel subgroup and

corresponding the isogeny whose kernel is this subgroup. However the longest isogeny that can

be computed as a sequence of 2-isogenies using this approach has degree 2n. So in order to

attain the same security as a obtained in Section V.4.2, namely computing an isogeny of degree

2k with k = 4⌈log2(p)⌉ ≈ 4n, we must do this isogeny computation 4 times each for the message

used and the randomly generated element.

Recall that given m0 ∈ Z/2nZ the subgroup of E[2n] defined by 〈P+m0Q〉 induces an isogeny

φm0
: E→ Em0

whose kernel is this subgroup. If we wish to extend this walk by going on another

walk of degree 2n, then we must find points P ′,Q′ on Em0
that form a basis for the respective

2n-torsion subgroup. Also we need a procedure of computing these points in a deterministic

manner. Ensuring that if replicated by another party we get the same points. We already know

that φm0
(Q) has order 2n, so set Q′ := φm0

(Q).

To deterministically compute a point P ′ we use techniques from [CJL+17]. We briefly sum-

marise this method. Use the Elligator 2 method for deterministically computing points R in

E(Fp2) [BHKL13], then check that R ∈ E \ [2]E, where [2]E is the set of all 2-divisible points on

E. If so then the point f R is a point of order 2n. A check has to be made to see if this point is

independent from Q′. If not then it cannot be used as a second basis element and we repeat the

whole process until you compute a point P ′ which can be used as the second basis element. For

more details on this see [CJL+17, Section 3.2].

Remark V.18. The choice of Q′ = φm0
(Q) was done purposefully. It ensures that the isogeny

induced by a kernel of the form 〈P ′ + m1Q′〉 will not result in backtracking through part of the

first isogeny. This is because the kernel of the dual isogeny, ker(Ôφm0
), is generated by the point

Q′ [NR19, Proposition 3].

V.5.1 Protocol Description and Security

The key generation is as described above.
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To commit to a message m ∈ Z/24nZ do as follows. Compute m0 := m mod 2n, m1 := (m−
m0)/2n mod 2n, m2 := (m−m12n−m0)/22n mod 2n and m3 := (m−m222n−m12n−m0)/23n

mod 2n. Notice that m0, m1, m2, m3 ∈ Z/2nZ. Compute the subgroup M0 := 〈P + m0Q〉 and

hence the corresponding isogeny φm0
: E → Em0

whose kernel is M0. Compute the point Q′ :=
φm0
(Q) and a point P ′ as described above. Now compute the subgroup M1 := 〈P ′ +m1Q′〉 and

hence the corresponding isogenyφm0
: Em0

→ Em1
whose kernel is M1. Again compute the points

P ′′,Q′′. Repeat this for the integers m2, m3 to get isogenies φmi
: Emi−1

→ Emi
whose kernel is

Mi (i = 2, 3). Henceforth the curve Em := Em3
and the composition φm = φm3

◦φm2
◦φm1

◦φm0

is the curve and isogeny obtained from the message m.

As remarked above, the choice of basis points for the 2n-torsion subgroup is done so that we

don’t get any backtracking in the isogeny graph.

From here choose a random r ∈ Z/24nZ and repeat the same procedure as done above.

Once again you make sure that there is no backtracking through φm by making sure that you

have an appropiate basis for the 2n-torsion subgroup. The result is an isogeny φr : Em → E′.

Then return the curve c := j(E′) as the commitment of the message m.

Much like in Section V.4, given the message and the random m, r ∈ Z/24nZ (resp.), to open

the commitment you recompute the curve E′ and return the boolean value c == j(E′). The

deterministic nature of computing the new basis for the next 2n-torsion subgroup means that,

as long as the message m and the random r are as intended, then anyone can open the message

and be assured that this is the correct message used.

Theorem V.19. The commitment scheme described above is information theoretically hiding and

computationally binding under the Supersingular Smooth Endomorphism Problem on the curve E

for the prime ℓ= 2.

Proof. Application of Theorem V.12 & Theorem V.14.

Remark V.20. The idea of composing rational isogenies in a manner described above has recently

been exploited in a new construction of an oblivious PRF [Bas23]. We note that the term irrational

isogeny is used for the composition of rational isogenies, denoting the fact that the composed isogeny

has a kernel that is no longer rational.

V.6 Comparison

In this section we estimate the performance of these schemes, only in the setting when ℓ = 2,

and attempt to compare them to other post-quantum commitment schemes.

In the work by [DPB17], they attempted to compare the performance of the CGL hash func-

tion with a hash function that is analogous to the idea presented in Section V.5. If a prime of

the form p = 2n f − 1 is used and k is the length of the walk you want to compute, they estim-

ated the complexity of the CGL hash function as kn(5.7n + 110)m and the complexity of the

SIDH variant as kn(13.5 log(n) + 42.4)m, where m is the cost of performing a field multiplica-

tion. These performance timings translate to our commitment scheme constructions by choosing

k = 4⌈log2(p)⌉ − 4 with one exception. In the SIDH variant of our commitment scheme a little

more work is needed then that presented above since we need to generate the basis elements

for the new torsion subgroup. This requires computing one isogeny image as well as the cost of
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doing the Elligator 2 method to determine the second basis element. Since this is done at most

3 times, it doesn’t add much to the complexity mentioned above. Approximately it adds O(nm)
to the overall complexity which is primarily dominated by the isogeny image computations.

Therefore, the performance ratio of the scheme described in Section V.4 versus that of this

Section V.5 is approximately (5.7n+ 110)/(13.5 log(n) + 46.4+O(1/k)). This implies an expo-

nential speed up in the performance of the commitment scheme presented in this Section V.5

versus that described in Section V.4 (especially when the prime p is of cryptographic size).

As mentioned earlier, if the validity of Conjecture V.13 holds then the performance of these

procotols will significantly speed up by up to a factor of 4.

Lets now look at the size of the commitment values in our schemes. In both variants, these

values just consist of one j-invariant of a supersingular elliptic curve which is an element in

Fp2 . Equivalently, given a 2-dimensional representation of Fp2 = Fp[i], we can express this j-

invariant as two Fp elements. Hence, given a prime p of 2λ bits with λ a security parameter,

the size of the commitment value is approximately 4λ bits or λ/2 bytes. It is worth mentioning

that the size of the commitment value does not depend on the size of k. This point is consistent

with most isogeny schemes, including the CGL hash function.

One can compare these commitment scheme to that of other post-quantum alternative. One

clear advantage this has over other alternatives is that the size of the committed values. To

target 128 bits of security, the size of the committed value in our scheme is approximately 64 B.

In comparison to that of lattice based commitment schemes taken from [BDL+18, Table 2], to

achieve the same level of security, the committed values is approximately 9 kB. This is much

larger than that of our isogeny commitment schemes. There are a few notable drawbacks when

comparing our schemes to its alternatives. First one is the performance of our schemes. Even

faster variant described in Section V.5 is not as fast as its lattice counterpart. This point is

again consistent with most isogeny schemes. Second drawback is that it is not a homomorphic

commitment scheme. Having a homomorphic commitment scheme is desirable to have since

there are some strong applications that rely on the homomorphic property such as electronic

voting.

V.7 Conclusion

In this work we presented two commitment schemes based on isogeny assumptions. This is

the first provably secure commitment scheme in the isogeny literature. The scheme follows the

approach of [CLG09] whereby we go on walks in supersingular isogeny graphs. We proved that

this commitment scheme is secure attaining information-theoretic hiding and computational

binding. We obtained information-theoretic hiding based on the existence of a mixing constant,

kG , implying that any two vertices in the graph can be connected by a non-backtracking path

of fixed length k for any k ≥ kG . We conjectured an upper bound on this constant for both the

generic setting and the specific setting of supersingular isogeny graphs. We obtained compu-

tationally binding by reducing a binding instance to a well known isogeny problem which is

believed to be hard even for quantum adversaries.

We also presented a variant of this commitment scheme which is constructed through a ker-

nel subgroup to compute the isogenies instead of going through step by step and choosing which
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edge to continue. Its security follows directly from the security of the previous scheme. The main

advantage that this variant has over the previous commitment scheme is that of efficiency.

There are a number of open problems that arise from this work.

• Proving the explicit upper bounds for the mixing constant in both the generic setting and

the special setting of the supersingular isogeny graphs.

• See how sharp we can makes these upper bounds and see if we can get close to the bound

presented in Conjecture V.13 and Conjecture V.17 in the specific setting of supersingular

isogeny graphs.

• Constructing a homomorphic commitment scheme based on isogeny assumptions. This

problem would be considered a major breakthrough in this area.





59

Chapter VI

Constructing Twin Smooth Integers with

Applications to SQISign

In this chapter, we present an extension of the work that was done in collaboration with Giacomo

Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen, Michael Meyer and

Michael Naehrig [BSC+22] which has been accepted to Asiacrypt23. In particular, the sections

that feature new and original work which is not presented in the corresponding article will be

presented in Sections VI.6 and VI.7.

VI.1 Introduction

In recent years the tantalising problem of finding two large twin smooth integers has emerged

in the context of instantiating efficient isogeny-based public key cryptosystems. Recall that this

means we want to find consecutive integers, (r, r + 1), that are both smooth. As mentioned

already in Chapter IV, this problem was initially motivated by key-exchange protocol B-SIDH

(before the wave of polynomial time attacks surfaced) but has seen other more recent applica-

tions including the isogeny-based signature scheme is SQISign [DFKL+20]; it boasts the smal-

lest public keys and signatures of all post-quantum signature schemes (by far!), at the price

of a signing algorithm that is orders of magnitude slower than its post-quantum counterparts.

Finding secure parameters for SQISign is related to the twin smooth problem mentioned above,

with a large contributing factor to the overall efficiency of the protocol being the smoothness

bound, B, of the rational torsion used in isogeny computations. This bound corresponds to the

degree of the largest prime-degree isogeny computed in the protocol, for which the VéluSqrt

algorithm mentioned in Chapter IV is the fastest algorithm for computing such isogenies. Part

of the reason for SQISign’s performance drawback is that the problem of finding parameters

with small B is difficult: the fastest implementation to date targets security comparable to NIST

Level I [The16, Section 4.A] and has B = 3923 [DFLLW23]. Additionally, methods for find-

ing efficient SQISign parameters have to date not been able to obtain suitable primes reaching

NIST Level III and V security. In view of NIST’s recent call for additional general purpose post-

quantum signature schemes that are not based on structured lattices [The22], it is important
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to find methods of generating efficient isogeny-based signature parameters beyond those that

have been proposed thus far at NIST Level I.

To date there have been many methods proposed to find such twin smooth integers. Among

these known methods, they can be categorised into two groups: the first are constructive meth-

ods that seek to find all or almost all twin smooth integers for a given smoothness bound; and

the second are probabilistic methods that will only guarantee finding twin smooth integers with

some probability. An example of a probabilistic method is based on the extended Euclidean

(XGCD) algorithm over the integers (which will be detailed in Section VI.2). This algorithm has

been used to find SQISign parameters including the current state-of-the-art NIST Level I prime

mentioned above.

The CHM algorithm. In this work we introduce new ways of finding twin smooth instances

based on the Conrey-Holmstrom-McLaughlin (CHM) “Smooth neighbors” algorithm [CHM13].
This algorithm is a constructive algorithm which for a fixed smoothness bound B attempts to find

almost all B-smooth twins. The CHM algorithm starts with the set of integers S = {1,2, . . . , B−
1} representing the smooth twins (1,2), (2,3), . . . , (B − 1, B), and recursively grows this set by

constructing new twin smooth integers from unordered pairs in S × S until a full pass over all

such pairs finds no new twins, at which point the algorithm terminates. Although the CHM

algorithm is not guaranteed to find the set of all B-smooth twins, for moderate values of B it

converges with the set S containing almost all such twins. The crucial advantage is that, unlike

the algorithm of Lehmer [Leh64] that exhaustively solves 2π(B) Pell equations to guarantee the

full set of B-smooth twins, the CHM algorithm terminates much more rapidly. For example, in

2011 Luca and Najman [LN11] used Lehmer’s approach with B = 100 to compute the full set

of 13,374 twin smooths in 15 days (on a quad-core 2.66 GHz processor) by solving 2π(B) = 225

Pell equations, the solutions of which can have as many as 10106
decimal digits. The largest pair

of 100-smooth twins they found were the 58-bit integers

166055401586083680= 25 · 33 · 5 · 113 · 23 · 43 · 59 · 67 · 83 · 89, and

166055401586083681= 72 · 1710 · 412.

In 2012, Conrey, Holmstrom and McLaughlin ran their algorithm on a similar machine to find

13,333 (i.e. all but 41) of these twins in 20 minutes [CHM13]. Subsequently, they set B = 200

and found a list of 346,192 twin smooths in about 2 weeks, the largest of which were the 79-bit

integers

589864439608716991201560= 23 · 33 · 5 · 72 · 112 · 17 · 31 · 592 · 83 · 1392

· 173 · 181, and

589864439608716991201561= 132 · 1132 · 1272 · 1372 · 1512 · 1992.

Exhausting the full set of 200-smooth twins would have required solving 2π(200) = 246 Pell equa-

tions, which is pushing the limit of what is currently computationally feasible. The largest run of

Lehmer’s algorithm reported in the literature used B = 113 [Cos20, Section 5.3], which required

solving 230 Pell equations and a significant parallelised computation that ran over several weeks.
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The largest set of 113-smooth twins found during that computation were the 75-bit integers

19316158377073923834000= 24 · 36 · 53 · 7 · 232 · 29 · 47 · 59 · 61 · 73 · 97 · 103,

19316158377073923834001= 132 · 312 · 372 · 434 · 714.

Remark VI.1. The above examples illustrate some important phenomena that are worth pointing

out before we move forward. Observe that, in the first and third examples, the largest prime not

exceeding B is not found in the factors of the largest twins. The largest 89-smooth twins are the

same as the largest 97-smooth twins, and the largest 103-smooth twins are the same as the largest

113-smooth twins. In other words, increasing B to include more primes necessarily increases the

size of the set of B-smooth twins, but it does not mean we will find any new, larger twins. This

trend highlights part of the difficulty we face in trying to find optimally smooth parameters of

cryptographic size: increasing the smoothness bound B makes the size of the set of twins grow

rapidly, but the growth of the largest twins we find is typically painstakingly slow. The set of 100-

smooth twins has cardinality 13,374, with the largest pair being 58 bits; increasing B to 200 gives

a set of cardinality (at least) 345,192, but the largest pair has only grown to be 79 bits. In fact,

most of this jump in the bitlength of the largest twins occurs when increasing B = 97 (58 bits) to

include two more primes with B = 103 (76 bits). Including the 19 additional primes up to 199

only increases the bitlength of largest twins with B = 199 by 3 (79 bits), and this is indicative of

what we observe when B is increased even further.

Contributions. In this chapter we revisit this CHM algorithm in such a way so that we can run

it for much larger values of B in order to find larger sized twins. For example, the original CHM

paper reported that the full algorithm with B = 200 terminated in approximately 2 weeks; our

implementation did the same computation in around 943 seconds on a laptop. Increasing the

smoothness bound to B = 547, our implementation converged with a set of 82,026,426 pairs of

B-smooth twins, the largest of which are the 122-bit pair (r, r + 1) with

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283

· 499 · 509, and

r + 1= 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

Although it remains infeasible to increase B to the point where the twins found through

CHM are large enough to be used out-of-the-box in isogeny-based schemes (i.e. close to 2256),

we are able to combine the larger twins found through CHM with techniques from the literature

in order to find much smoother sets of SQISign parameters. In this case we are aided by the

requirements for SQISign, which permit us to relax the size of the smooth factor that divides

p2 − 1. The current state-of-the-art instantiation [DFLLW23] uses primes p such that

ℓ f · T | (p2 − 1),

where ℓ is a small prime (typically ℓ= 2), where f is as large as possible, and where T ≈ p5/4 is

both coprime to ℓ and B-smooth. For example, the original SQISign implementation [DFKL+20]
used a 256-bit prime p such that

p2 − 1= 234 · T1879 · R,
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where T1879 is an odd 334-bit integer5 whose largest prime factor is B = 1879, and R is the

rough factor; a 144-bit integer containing no prime factors less than or equal to B. As another

example, De Feo, Leroux and Wesolowski [DFLLW23, Section 5] instead use a 254-bit prime p

with

p2 − 1= 266 · T3923 · R,

where T3923 is an odd 334-bit integer whose largest prime factor is B = 3923, and where all of

R’s prime factors again exceed B.

During the search mentioned above that found the record 547-smooth twins, over 82 million

other pairs of smaller sized twins were found. One such pair was the 63-bit twins (r−1, r) with

r = 8077251317941145600. Taking p = 2r4 − 1 gives a 253-bit prime p such that

p2 − 1= 249 · T479 · R,

where T479 is an odd 328-bit integer that is 479-smooth. This represents a significant improve-

ment in smoothness over the T values obtained in [DFKL+20] and [DFLLW23]. Although the

smoothness of T is not the only factor governing the efficiency of the scheme, our analysis in

Section VI.5.3 suggests that the parameters found in this chapter compare favourably with those

currently found in SQISign implementations.

Just as we transformed a pair of 63-bit twins into a 253-bit prime by taking p = 2r4 − 1,

we combine the use of twins found with CHM and primes of the form p = 2rn − 1 with n ≥ 3

to obtain several SQISign-friendly primes that target higher security levels. For example, with

some 64-bit twins (r, r + 1) found through CHM, we give a 382-bit prime p = 2r6 − 1 such that

p2 − 1 = 280 · T10243 · R, where T is an odd 495-bit integer that is 10243-smooth; this prime

would be suitable for SQISign signatures geared towards NIST Level III security. As another

example, with some 85-bit twins (r, r + 1), we give a 508-bit prime p = 2r6 − 1 such that

p2 − 1 = 286 · T150151 · R, where T is a 639-bit integer that is 150151-smooth; this prime would

be suitable for SQISign signatures targeting NIST Level V security.

Additionally, we detail a probabilistic method for generating these twin smooth integers that

has not been presented in the literature. Inspired by the method of the XGCD algorithm over

the integers mentioned earlier, this new method is based on this same algorithm but applied

to the polynomial ring with rational coefficients. We show that this method is a generalisation

of the known probabilistic methods that are based on polynomial evaluation and also highlight

specific instances where this method is better compared to the prior methods.

We put this back into context of finding SQISign friendly parameters. For a particular choice

of polynomials input to the XGCD algorithm, we can adopt a very similar strategy as we did

previously. Namely take a twin found with CHM and feed it into the resulting polynomial ob-

tained from the algorithm to hopefully give primes suitable for SQISign. The results from this

experimentation give a competitive alternative to the primes mentioned above.

Organisation. In Section VI.2 we review prior methods for generating large twin smooth in-

tegers. In Section VI.3 we recall the CHM algorithm and give a generalisation of it that may be

of independent interest. In Section VI.4 we detail our implementation of the CHM algorithm

5The initial SQISign requirements [DFKL+20] had T ≈ p3/2, but T1879 corresponds to the new requirements.
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and present a number of optimisations that allowed us to run it for much larger values of B. In

Section VI.5 we discuss the combination of CHM with primes of the form p = 2rn − 1 to give

estimates on the probabilities of finding SQISign parameters at various security levels. In Sec-

tion VI.5.3 we present our results, giving record-sized twin smooth instances as well as dozens

of SQISign-friendly primes that target NIST’s security levels I, III, and V. In Section VI.6 we de-

scribe this new method for finding twin smooth integers based on the XGCD algorithm over the

polynomial ring Q[x]. Finally in Section VI.7, we show how to combine the CHM with this new

method to obtain SQISign-friendly primes. We describe the theory behind it as well as present

the concrete primes that were found.

VI.2 Prior Methods of Searching for Large Twin Smooth Integers

We begin by reviewing prior methods of searching for twin smooth integers and follow the

descriptions of the three algorithms reviewed in [CMN21, Section 2], as well as including the

method introduced in [CMN21] itself.

Solving Pell equations. Fix B, let {2,3, . . . , q} be the set of primes up to B with cardinality

π(B), and consider the B-smooth twins (r, r+1). Let x = 2r+1, so that x−1 and x+1 are also

B-smooth, and let D be the squarefree part of their product (x −1)(x +1), i.e. x2−1= D y2 for

some y ∈ Z. It follows that D y2 is B-smooth, which means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. There are a total of 2π(B) possibilities for D. For each of

these squarefree integers, Størmer [Stø97] reverses the above argument and proposes to solve

the 2π(B) Pell equations

X 2 − DY 2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the complete and

finite set of B-smooth twins. Moreover, Lehmer [Leh64, Theorem 1] was able to quantify this

result and proved the following.

Theorem VI.2. Let B > 2, q be the largest prime that is at most B and r ∈ Z be a positive integer.

Then the pair of consecutive integers (r, r +1) are twin B-smooth integers if and only if there exists

a B-smooth integer y, a square-free B-smooth integer D and an integer 1≤ n≤max{3, (q+1)/2}
such that the pair (xn, yn) with xn = 2m+ 1 and yn = y is the nth solution to the Pell equation

X 2 − DY 2 = 1.

The largest pair of 2-smooth integers is (1,2), the largest pair of 3-smooth integers is (8,9),
and the largest pair of 5-smooth integers is (80, 81). Unfortunately, solving 2π(B) Pell equations

becomes infeasible before the size of the twins we find is large enough (i.e. exceeds 2200) for

our purposes. As we saw in Section VII.1, [Cos20] reports that with B = 113 the largest twins

(r, r + 1) found upon solving all 230 Pell equations have r = 19316158377073923834000 ≈
275. As a small remark, as part of recent work by Buzek et al. [BHL+22], they modified this

approach to finding twin smooth integers that lie in an interval instead of collating all twin

smooth integers.
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The extended Euclidean algorithm. The most naïve way of searching for twin smooth in-

tegers is to compute B-smooth numbers r until either r−1 or r+1 also turns out to be B-smooth.

A much better method [Cos20,DFKL+20] is to instead choose two coprime B-smooth numbers

α and β that are both of size roughly the square root of the target size of r and r +1. On input

of α and β , Euclid’s extended GCD algorithm outputs two integers (s, t) such that αs + β t = 1

with |s|< |β/2| and |t|< |α/2|. We can then take {m, m+1}= {|αs|, |β t|}, and the probability

of m and m + 1 being B-smooth is now the probability that s · t is B-smooth. The reason this

performs much better than the naïve method above is that s · t with s ≈ t is much more likely

to be B-smooth than a random integer of similar size.

Searching with r = xn − 1. A number of works [Cos20, DFKL+20, DFLLW23] have found

performant parameters by searching for twins of the form (r, r+1) = (xn−1, xn), for relatively

small n ∈ Z. For example, suppose we are searching for b-bit twins (r, r +1) and we take n= 4

so that r = (x2 + 1)(x − 1)(x + 1). Instead of searching for two b-bit numbers that are smooth,

we are now searching for three smooth (b/4)-bit numbers (i.e. x − 1, x , and x + 1) and one

smooth (b/2)-bit number, which increases the probability of success (see [CMN21]).

We give some notation to the result of summing these twins as it will be useful for later

sections and set pn(x) := 2xn − 1

Searching with PTE solutions. The approach taken in [CMN21] can be viewed as an exten-

sion of the method above, where the important difference is that for n> 2 the polynomial xn−1

does not split completely in Z[x], and the presence of higher degree terms (like the irreducible

quadratic x2 + 1 above) significantly hampers the probability that values of xn − 1 ∈ Z are

smooth. Instead, the algorithm in [CMN21] takes (r, r + 1) = ( f (x), g(x)), where f (x) and

g(x) are both of degree n and are comprised entirely of linear factors. This boosts the success

probability again, but one of the difficulties facing this method is that polynomials f (x) and

g(x) that differ by a constant and are completely split are difficult to construct for n≥ 4. Fortu-

nately, instances of these polynomials existed in the literature prior to [CMN21], since they can

be trivially constructed using solutions to the Prouhet-Tarry-Escott (PTE) problem. We briefly

give an overview of the problem along with the connection to the polynomials that are sought

after for constructing smooth twins.

Definition VI.3. The Prouhet-Tarry Escott (PTE) problem of size n and degree k asks to find solu-

tions {a1, · · · , an} and {b1, · · · , bn} with ai ̸= b j for all i, j and that satisfies the following:

n
∑

i=1

a j
i =

n
∑

i=1

b j
i , for j = 1, · · · , k.

When we have such a solution we call it a PTE solution of size n and degree k and sometimes

abbreviate it to [a1, · · · an] =k [b1, · · · , bn]. In the case when k = n− 1 then we call the solution

an ideal PTE solution.

The following proposition shows how this problem is related to the polynomials which is

desired [BLP03, Lemma 1].
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Proposition VI.4. Given the following distinct multisets of integers {a1, · · · , an} and {b1, · · · , bn},
we have [a1, · · · an] =k [b1, · · · , bn] if and only if

deg

�

n
∏

i=1

(x − ai)−
n
∏

i=1

(x − bi)

�

≤ n− (k+ 1).

In particular the solution is an ideal PTE solution if and only if the polynomials
∏n

i=1(x − ai) and
∏n

i=1(x − bi) differ by a constant.

VI.3 The CHM Algorithm

In this section, we recall the Conrey, Holmstrom, and McLaughlin (CHM) algorithm [CHM13], a

remarkably simple algorithm that generates twin smooth integers, i.e. smooth values of the poly-

nomial X (X + 1). We then present a generalisation of this algorithm, which generates smooth

values of any monic quadratic polynomial. The algorithm generalises the CHM algorithm, as

well as another algorithm in the literature by Conrey and Holmstrom [CH21], which generates

smooth values of the polynomoial X 2 + 1. In the end, we are primarily interested in the CHM

algorithm, but present the generalised algorithm here, as it may be of independent interest.

VI.3.1 Finding Smooth Twins with the CHM Algorithm

Conrey, Holmstrom, and McLaughlin [CHM13] present the following algorithm for producing

many B-smooth values of X (X + 1). It starts with the initial set

S(0) = {1,2, . . . , B − 1}

of all integers less than B, representing the B-smooth twins (1, 2), (2,3), . . . , (B−1, B). Next, it

iteratively passes through all pairs of distinct r, s ∈ S(0), r < s and computes

t
t ′
=

r
r + 1

·
s+ 1

s
,

writing t
t ′ in lowest terms. If t ′ = t + 1, then clearly t also represents a twin smooth pair. The

next set S(1) is formed as the union of S(0) and the set of all solutions t such that t ′ = t+1. Now

the algorithm iterates through all pairs of distinct r, s ∈ S(1) to form S(2) and so on. We call the

process of obtaining S(d) from S(d−1) the d-th CHM iteration. Once S(d) = S(d−1), the algorithm

terminates.

Example 1. We illustrate the algorithm for B = 5, i.e. with the goal to generate 5-smooth twin

integers. The starting set is

S(0) = {1,2, 3,4}.

Going through all pairs (r, s) ∈ S(0) with r < s, we see that the only ones that yield a new twin

smooth pair (t, t + 1) via Equation (VI.1) with t not already in S(0) are (2,3), (2,4) and (3,4),
namely,

2
2+ 1

·
3+ 1

3
=

8
9

,
2

2+ 1
·

4+ 1
4
=

5
6

, and
3

3+ 1
·

4+ 1
4
=

15
16

.
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Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2,3, 4,5, 8,15}.

The second and third CHM iterations give

S(2) = {1,2, 3,4, 5,8, 9,15, 24} and S(3) = {1, 2,3, 4,5, 8,9, 15,24, 80}.

The fourth iteration does not produce any new numbers, i.e. we have S(4) = S(3), the algorithm

terminates here and returns S(3). This is indeed the full set of twin 5-smooth integers as shown

in [Stø97], see also [Leh64, Table 1A].

Remark VI.5. The CHM check that determines whether a pair (r, s) yields an integer solution t to

the equation
t

t + 1
=

r
r + 1

·
s+ 1

s
(VI.1)

can be rephrased by solving this equation for t, which yields

t =
r(s+ 1)

s− r
. (VI.2)

This shows that in order for (r, s) to yield a new pair, s − r must divide r(s + 1) and in particular,

must be B-smooth as well.

VI.3.2 Generalising the CHM Algorithm

We now present a generalisation of the CHM algorithm, which finds smooth values of any monic

quadratic polynomial f (X ) = X 2 + aX + b ∈ Z[X ] ⊆Q[X ]. The algorithm works with elements

in the Q-algebra A=Q[X ]/〈 f (X )〉. Let X̄ denote the residue class of X in A. The generalisation

closely follows the idea of the CHM algorithm and is based on the observation that for any r ∈Q,

we have that

NA/Q(r − X̄ ) = f (r),

where NA/Q(α) denotes the algebraic norm of α ∈ A over Q. The algorithm now starts with an

initial set

S(0) = {r1 − X̄ , . . . , rd − X̄ },

where ri are smooth integer values of f (X ), which means that the element ri−X̄ has smooth non-

zero norm. Next, in the d-th iteration of the algorithm, given any two α,β ∈ S(d−1), compute

α · β−1 · NA/Q(β) = r − sX̄

for integers r, s (notice that β is invertible, since it has non-zero norm). Now, if s divides r, we

obtain an integer t = r
s . It follows that

f (t) = NA/Q

� r
s
− X̄
�

= NA/Q(r − sX̄ )s−2

= NA/Q(α · β−1 · NA/Q(β))s
−2

= NA/Q(α)NA/Q(β)s
−2.

Since both NA/Q(α) and NA/Q(β) are B-smooth and s is an integer, it follows that t is a B-smooth

value of f (X ). The set S(d) is then formed as the union of S(d−1) and the set of all such integral

solutions. Finally, we terminate when S(d) = S(d−1).
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VI.3.3 Equivalence with Previous Algorithms

We now show that the CHM algorithm, as well as another algorithm by Conrey and Holmstrom

[CH21], are special cases of the generalised algorithm, for the polynomials f (x) = X 2+ X , and

f (X ) = X 2 + 1 respectively.

Smooth values of X 2 + X . To see that the CHM algorithm (see Section VI.3.1) is indeed a

special case of the generalised algorithm above, we show how the generalised algorithm works

for f (X ) = X (X + 1) = X 2 + X . Consider the algebra A=Q[X ]/〈X 2 + X 〉. This embeds into the

matrix algebra M2×2(Q) via

ψ : r + sX̄ →

�

r 0

s r − s

�

.

Instead of working with elements in A, we will work with elements in ψ(A) ⊆ M2×2(Q) since

this simplifies the argument. In this case, for α ∈ A, we have

NA/Q(α) = det(ψ(α)).

The set corresponding to the initial set in the CHM algorithm is

S(0) = {
�

1 0
−1 2

�

,
�

2 0
−1 3

�

, . . . ,
�

B−1 0
−1 B

�

}.

All these elements clearly have B-smooth norm. The d-th CHM iteration proceeds as follows:

For all
�

r 0
−1 r+1

�

,
�

s 0
−1 s+1

�

in S(d−1), we try

�

r 0

−1 r + 1

��

s 0

−1 s+ 1

�−1

s(s+ 1) =

�

r 0

−1 r + 1

���

s+ 1 0

1 s

�

1
s(s+ 1)

�

s(s+ 1)

=

�

r(s+ 1) 0

−(s− r) (r + 1)s

�

.

Finally, we transform this matrix into the right form, i.e. into a matrix corresponding to an

element of the form τ = t − X̄ , which means that ψ(τ) has a −1 in the lower left corner. So,

we divide by s− r and end up with the matrix

�

r(s+1)
s−r 0

−1 (r+1)s
s−r

�

=

�

r(s+1)
s−r 0

−1 r(s+1)
s−r + 1

�

.

Now if r(s+1)
s−r is an integer, we add this matrix to the next set S(d+1).

As we have seen in Remark VI.5, this integer indeed corresponds to the solution (VI.2) of

Equation (VI.1) and therefore, the generalised algorithm in the case f (X ) = X 2+X is equivalent

to the original CHM algorithm.

Smooth values of X 2+1. Conrey and Holmstrom later presented a method to generate smooth

values of X 2+1 [CH21]. Similar to the CHM algorithm, it starts with an initial set S(0) of smooth

values of X 2 + 1. Again, for d > 0 and given r, s ∈ S(d−1), r < s, they compute

rs− 1
s+ r

.
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The next set S(d) is then again formed as the union of S(d−1) and the set of all such values that

are integers.

It is equally straightforward to verify that this algorithm is also a special case of the gener-

alised CHM algorithm described above in Section VI.3.2. We could again work with matrices in

M2×2(Q), but here, we are actually working in the number field K = Q[X ]/〈X 2 + 1〉, which is

isomorphic to Q(i), where i2 = −1. The product of the elements α= r− i and β = s− i is given

as

αβ = (r − i)(s− i) = (rs− 1)− (r + s)i.

Conrey and Holmstrom’s method then simply tries all such products αβ . However, a possibly

better choice could be to use

αβ−1NK/Q(β) = αβ̄ = (r − i)(s+ i) = (rs+ 1)− (s− r)i

as described in our generalisation. This is due to the fact that

rs+ 1
s− r

is more likely to be an integer, which means that we can expect the algorithm to converge faster.

Whichever option is chosen, one tries to divide by r + s resp. s − r, and if the result is

an element in Z[i], it is added to the next set S(d) of smooth values of X 2 + 1. Conrey and

Holmstrom’s method is therefore another special case of the generalised algorithm.

Remark VI.6. We note that neither the generalised CHM algorithm, nor any of the previous special

cases give any guarantees to what proportion of B-smooth values of f (X ) it finds. However, for the

previous special case algorithms, certain conjectural results have been stated, based on numerical

evidence, which suggests that the algorithm returns all but a small fraction of all smooth values of

the respective quadratic polynomials. We make no similar claims for the general case algorithm.

VI.4 Searching for Large Twin Smooth Instances: CHM in Practice

Ideally, the CHM algorithm could be run as described in [CHM13] with a large enough smooth-

ness bound B to find twin smooths of cryptographic sizes. However, experiments suggest that

this is not feasible in practice. We report on data obtained from an implementation of the pure

CHM algorithm in Section VI.4.1, present several optimisations in Section VI.4.2 and details on

our optimised implementation in Section VI.4.3.

VI.4.1 Running CHM in Practice

In order to collect data and assess the feasibility of finding large enough twin smooths, we

implemented a somewhat optimised version of the pure CHM algorithm. In particular, this

implementation is parallelised, and avoids multiple checks of the same pairs of twin smooths

(r, s). Furthermore, we iterate through smoothness bounds: We start with a small bound B1

and the initial set S(0)1 = {1, . . . , B1 − 1}, and use the CHM algorithm to iteratively compute

sets S(i)1 until we reach some d1 such that S(d1)
1 = S(d1−1)

1 . In the next iteration, we increase the

smoothness bound to B2 > B1 and define the initial set S(0)2 = S(d1)
1 ∪ {B1, . . . , B2 − 1}. Again
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we compute CHM iterations until we find d2 such that S(d2)
2 = S(d2−1)

2 , where we avoid checking

pairs (r, s) that have been processed in earlier iterations. Ideally, we could repeat this procedure

until we reach a smoothness bound Bi for which the CHM algorithm produces large enough

twin smooths for cryptographic purposes. However, our data suggests that this is infeasible in

practice due to both runtime and memory limitations.

In particular, we ran this approach up to the smoothness bound B = 547, and extrapolating

the results gives us rough estimations of the largest possible pair and number of twin smooths

per smoothness bound.

After the B = 547 iteration, the set of twin smooths contains 82,026,426 pairs, whose bi-

tlength distribution roughly resembles a normal distribution centered around bitlength 58. The

largest pair has a bitlength of 122 bits. An evaluation of the obtained set is shown in Figure 10.

Figure 10a shows the distribution of bitsizes in the full set, while Figure 10b shows that of the

subset of all 199-smooth twins obtained in this run. Figure 10c shows the bitsize of the largest

q-smooth twin pairs for each prime q between 3 and 547. And Figures 10d and 10e show the

number of q-smooth twins for each such q.

Using the data of these experiments, we can attempt to estimate at which smoothness bound

B this approach can be expected to reach twin smooths of cryptographic sizes, and how much

memory is required to run iterations to reach this B. The data visualised in Figure 10c indicates

that the bound necessary for the largest twin smooth pair obtained by running CHM with this

bound to reach a bitlength of 256 lies in the thousands, possibly larger than 5,000. Similarly,

the data displayed in Figures 10d and 10e shows how quickly the number of B-smooth twins

increases with B. Given that the effort for CHM iterations grows quadratically with the set size,

these estimates indicate that it is not feasible to reach cryptographically sized smooth twins with

the original CHM algorithm.

VI.4.2 Optimisations

One major issue with running the plain CHM algorithm for increasing smoothness bound is the

sheer size of data that needs to be dealt with. The sets S(di)
i grow very rapidly and the quadratic

complexity of checking all possible pairs (r, s) leads to a large runtime. The natural question that

arises is whether CHM can be restricted to checking only a certain subset of such pairs without

losing any or too many of the new smooth twins. Furthermore, if the purpose of running the

CHM algorithm is not to enumerate all twin smooth pairs for a given smoothness bound but

instead, to produce a certain number of pairs of a given size or to obtain some of the largest

pairs, it might even be permissible to omit a fraction of pairs.

To find a sensible way to restrict to a smaller set, we next discuss which pairs (r, s), r < s

result in a given twin smooth pair (t, t + 1) via

r
r + 1

·
s+ 1

s
=

t
t + 1

. (VI.3)

This is discussed in [CHM13, Section 3], but we elaborate on it in a slightly different way here.

Let t > 0, let u be any divisor of t and v any divisor of t + 1. Let h, x ∈ Z be given by t = uh

and t + 1 = vx (where u, v, h, x > 0). Therefore, v/u = h/x + 1/(ux). If u < v then h > x and

if u > v then h < x . We therefore fix u < v (otherwise switch the roles of u, v and h, x). Since
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(a) Distribution of bitsizes for the full set of 547-
twin smooth pairs.

(b) Distribution of bitsizes for the subset of 199-
twin smooth pairs.

(c) Bitsizes of the largest q-smooth twins for all primes q between 3 and 547.

(d) Number of q-smooth twins for all primes q between
3 and 233.

(e) Number of q-smooth twins for all primes q between
239 and 547.

Figure 10: Evaluation of the set of 547-smooth twins obtained by running the original CHM al-
gorithm with smoothness bound B = 547. The bitsize of a pair (r, r+1) is ⌊log r⌋+1. Data for the
number of q-smooth twins for all primes q up to 547 has been split into two histograms of different
scale.
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u< v, the pair

(r, s) = (t −
u
v
(t + 1),

v
u

t − (t + 1) =
v
u

r) (VI.4)

satisfies Equation (VI.3) and it follows that

r = u(h− x), r + 1= x(v − u), s = v(h− x), s+ 1= h(v − u). (VI.5)

Therefore, s/r = v/u and (s + 1)/(r + 1) = h/x , u < v, h > x and 0 < r < s. This also means

that s = r + (v − u)(h− x), t = r + ux and that gcd(r(s+ 1), s(r + 1)) = s− r = (v − u)(h− x)
(note that gcd(uh, vx) = gcd(t, t + 1) = 1).

Conversely, given (r, s) with r > 0 that satisfy Equation VI.3, define u = r/gcd(r, s) and

v = s/gcd(r, s), then s > r, u < v and u | t, v | (t + 1). Hence we have the correspondence

between the set of pairs (r, s) with r < s that yield a new twin pair (t, t +1) via Equation (VI.3)

and the set of pairs of divisors of t and t + 1 described in [CHM13, Section 3] as follows:

{(r, s) | r < s and r(s+ 1)(t + 1) = s(r + 1)t}

←→ {(u, v) | u< v and u | t, v | (t + 1)}. (VI.6)

However, this correspondence does not identify the pairs (r, s) corresponding to twin smooths,

i.e. given (u, v) there is no guarantee that any of r, r + 1, s, s + 1 are B-smooth. This is not

discussed in [CHM13, Section 3]. The next lemma fills this gap by stating an explicit condition

on the divisors u, v, h, x .

Lemma VI.7. Let t ∈ Z such that t(t + 1) is B-smooth. Let (u, v) be a pair of divisors such that

t = uh, t + 1= vx and let (r, s) be defined as in Equation (VI.4).

Then r(r + 1)s(s+ 1) is B-smooth if and only if (v − u)(h− x) = s− r is B-smooth.

Proof. As divisors of t and t + 1, u and v as well as h and x are all B-smooth. The statement

follows from the Equations (VI.5).

Using similar sized pairs. We next consider the following condition to restrict the visited

pairs (r, s) in CHM as a mechanism to reduce the set size and runtime. Let k > 1 be a constant

parameter. We then only check pairs (r, s) if they satisfy

0< r < s < kr. (VI.7)

Assume that (r, s) results in a pair (t, t + 1) through satisfying Equation (VI.3). As seen

above, s
r =

v
u for u | t, v | (t + 1), so we can use (u, v) to determine which values k are useful.

Since v
u < k, it follows s = v

u t − (t + 1) < (k− 1)t. If we are only interested in obtaining a new

t from a pair (r, s) such that s < t, we can take k ≤ 2, overall resulting in 1< k ≤ 2.

This k seems to be a good quantity to study as we can relate it to the factors of v−u. Indeed,

v − u= u( v
u − 1) = u( s

r − 1) and we have s < kr.

Definition VI.8. Let (r, r+1) and (s, s+1) be twin smooths with r < s and k ∈ R with 1< k ≤ 2.

We call the pair (r, s) k-balanced if r < s < k · r.
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We want to find a k such that a k-balanced pair (u, v) subject to the above conditions will

yield a balanced r, s such that r, r +1, s, s+1 are B-smooth, or equivalently that v−u and h− x

are.

Running the CHM algorithm only with 2-balanced pairs (r, s) then guarantees that any t pro-

duced by Equation VI.3 will be larger than the inputs r and s. Although we sacrifice completeness

of the set of twin B-smooths with this approach, we can significantly reduce the runtime.

We can even push this approach further. Recall that we require gcd(r(s+1), (r+1)s) = s− r

in order to generate a new pair of twin smooths (t, t + 1). By Lemma VI.7, this can only hold

if ∆ = s − r is B-smooth. Hence, only checking pairs (r, s) for which ∆ is likely to be smooth

increases the probability for a successful CHM step. Heuristically, the smaller ∆ is, the better

the chances for ∆ to be smooth. Furthermore, if ∆ contains small and only few prime factors,

the probability for the condition∆= gcd(r(s+1), (r+1)s) is relatively high. We can summarise

this in the following heuristic.

Heuristic VI.9. Let k1, k2 ∈ R with 1 < k1 < k2 ≤ 2, and (r1, s1) resp. (r2, s2) a k1- resp. k2-

balanced pair of twin smooths. Then the probability for (r1, s1) to generate new twin smooths via

the CHM equation is larger than that for (r2, s2).

In order to save additional runtime, we can thus pick k closer to 1, and only check the pairs

(r, s) that are most likely to generate new twin smooths. Therefore, we can still expect to find

a significant portion of all twin B-smooths for a given smoothness bound B. We expand on the

choice of k and different ways of implementing this approach in Section VI.4.3.

Thinning out between iterations. Another approach to reduce both runtime and memory

requirement is to thin out the set of twin smooths between iterations. In particular, once we

finished all CHM steps for a certain smoothness bound Bi , we can remove twins from the set

S(di)
i based on their likeliness to produce new twin smooths before moving to the next iteration

for Bi+1.

One possible condition for removing twins is to look at their smoothness bounds. Let (r, r+1)
be B1-smooth, (s, s + 1) be B2-smooth (but not B-smooth for any B < B2), and B1 ≪ B2. Since

(s, s+1) contains (multiple) prime factors larger than B1, they cannot be contained in (r, r+1),
which makes the requirement gcd(r(s+1), (r+1)s) = s−r heuristically less likely to be satisfied.

However, in practice it turns out that the differences between the smoothness bounds we are

concerned with are not large enough for this heuristic to become effective.

In our experiments, it turned out to be more successful to keep track of how many new twin

smooths each r produces. We can then fix some bound m, and discard twins that produced

less then m twins after a certain number of iterations. Our experiments suggest that using this

approach with carefully chosen parameters yields a noticeable speedup, but fails completely at

reducing the memory requirements, as we still need to keep track of the twins we already found.

Furthermore, in practice the approach of only using k-balanced twins turned out to be superior,

and hence we focus on this optimisation in the following.
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VI.4.3 Implementation

We implemented the CHM algorithm with several of the aforementioned optimisations in C++,

exploiting the fact that it parallelises perfectly. Note that some of our approaches require the

set of twin smooths to be sorted with respect to their size. Hence, an ordered data structure is

used for storing the twins set. We used the following techniques and optimisations.

CHM step. For each pair (r, s) considered by the implementation, we have to check if Equa-

tion (VI.3) holds. As mentioned in Section VI.4.2, this requires that gcd(r(s+1), (r+1)s) = s− r

is satisfied. However, we can completely avoid the gcd calculation by observing that we require

r · (s + 1) ≡ 0 mod (s − r). Only if this is the case we perform a division to compute t, which

represents the new pair of twin smooths (t, t + 1). Therefore, we only perform one modular

reduction per considered pair (r, s), followed by one division if the CHM step is successful. This

is significantly cheaper than a naïve implementation of Equation (VI.3) or a gcd computation.

Data structure. Initially the set of twins was organised in a standard C array, that each time

an iteration completed was reallocated to increase its size, and reordered.

To avoid the overall inefficiency of this method we moved to use the C++ standard library

std::set. This data structure is implemented with a Red Black tree, guarantees O(log N) insertion

and search, while keeping the elements always ordered.

We then moved to use B+Trees [Bin18], that have the same guarantees for insertion, search,

and ordering, but are more efficient in the memory usage. Because the elements of a B+Tree

are stored close to each other in memory it becomes much faster to iterate through the set, an

operation that is necessary for creating the pairs used in each computation.

Implemented optimisations. As discussed in Section VI.4.2, we focus on the case of k-balanced

pairs (r, s), which satisfy r < s < k·r. Compared to the full CHM algorithm, this leads to a smaller

set of twin smooths, but allows for much faster running times. We implemented the k-balanced

approach in various different flavours.

Global-k: In the simplest version - the global-k approach - we initially pick some k with

1 < k ≤ 2, and restrict the CHM algorithm to only check k-balanced pairs (r, s). The choice

of k is a subtle manner: Picking k too close to 1 may lead to too many missed twin smooths,

such that we cannot produce any meaningful results. On the other hand, picking k close to

2 may result in a relatively small speedup, which does not allow for running CHM for large

enough smoothness bounds B. Unfortunately, there seems to be no theoretical handle on the

optimal choice of k, which means that it has to be determined experimentally. We note that

when picking an aggressive bound factor k ≈ 1, small numbers r in the set of twins S may not

have any suitable s ∈ S they can be checked with. Thus, we pick a different bound, e.g. k = 2,

for numbers below a certain bound, e.g. for r ≤ 220.

Iterative-k: Instead of iterating through smoothness bounds Bi as described in Section VI.4.1

and using the global-k approach, we can switch the roles of B and k if we are interested in

running CHM for a fixed smoothness bound B. We define some initial value k0, a target value

kmax, and a step size kstep > 0. In the first iteration, we run CHM as in the global-k approach,

using k0. The next iteration then increases to k1 = k0 + kstep, and we add the condition to not
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check pairs (r, s) if they were already checked in previous iterations. We repeat this iteration

step several times until we reach kmax. Compared to the global-k approach, this allows us to

generate larger B-smooth twins faster, since we restrict to the pairs (r, s) first that are most likely

to generate new twins. However, the additional checks if previous pairs have been processed

in earlier iterations add a significant runtime overhead. Thus, this method is more suitable

for finding well-suited choices of k, while actual CHM searches benefit from switching to the

global-k approach.

Constant-range: In both the global-k and iterative-k approach, the checks if a pair

(r, s) is k-balanced, or has been processed in earlier iterations, consumes a significant part of

the overall runtime. Therefore, we can use constant ranges to completely avoid these checks.

Since we always keep the set of twins S sorted by size, the numbers s closest to r (with s > r) are

its neighbours in S. Thus, we can sacrifice the exactness of the k-balanced approaches above,

and instead fix a range R and for each r check (r, s) with the R successors s of r in S. As shown

below, this method significantly outperforms the global-k approach due to the elimination of

all checks for k-balance. This is true even when R is large enough to check more pairs than are

considered in the global-k approach for a given k.

Variable-range: Similar to the constant-range approach, we can adapt the range R de-

pending on the size of r. For instance, choosing r at the peak of the size distribution will lead

to many possible choices of s such that (r,s) are balanced. Hence, we can choose a larger range

R whenever more potential pairs exist, while decreasing R otherwise. In practice, the perform-

ance of this method ranks between global-k and constant-range by creating roughly the

same pairs that global-k creates without any of the overhead of the balance checks. If R is

chosen large enough such that the constant-range approach ends up generating more pairs

than global-k, then variable-range performs better. Realistically, the size of the range

R increases by (very) roughly 3% for each prime number smaller than the smoothness bound

B, and slows down the algorithm drastically at higher smoothness, similarly to the k-based

approaches.

Remark VI.10. Similar to the variable-range approach, we experimented with a variant of the

global-k approach, which adjusts k according to the size of r to find suitable s for the CHM step.

However, the constant-range and variable-range approaches turned out to be superior in

terms of performance, and therefore we discarded this variable-k variant.

Performance comparison. In order to compare the implications of the optimisations in prac-

tice, we ran different variants of the CHM implementation for the fixed smoothness bound

B = 300. All experiments ran on a machine configured with 4 x Xeon E7-4870v2 15C 2.3 GHz,

3072 GB of RAM. The total amount of parallel threads available was 120. As described above,

the global-k and constant-range approach significantly outperform their respective vari-

ants, hence we focus on different configurations of these two methods.

The results are summarised in Table 1. For both the global-k and the constant-range
approach we measured the results for conservative and more aggressive instantiations, where

smaller values of k and R are considered more aggressive. It is evident that already for the

conservative instantiations, we gain significant performance speedup, while still finding almost
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Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R= 10000 82s 57 2273197 93

constant-range R= 5000 35s 134 2247121 87
R= 1000 16s 294 2074530 75

Table 1: Performance results for different variants of our CHM implementation for smoothness
bound B = 300. Speedup factors refer to the full CHM variant.

the full set of twin smooths, and most of the 100 largest 300-smooth twins. For the more

aggressive instantiations, we miss more twins, yet still find a significant amount of large twins.

As discussed above, the constant-range approach outperforms the global-k approach

in terms of runtime, due to the elimination of all checks for k-balance of twins. Interestingly,

while very aggressive instantiations of constant-range miss more twin smooths, they find a

larger share of the largest 100 twins than their global-k counterpart. Therefore, we conclude

that for larger smoothness bounds B, for which we cannot hope to complete the full CHM al-

gorithm, constant-range is the most promising approach for obtaining larger twin smooths

within feasible runtimes.

Remark VI.11. While all optimisations lose a small proportion of the largest twin smooths, they

are not necessarily lost permanently. In practice, when iterating to larger smoothness bounds Bi ,

we often also find some B j-smooth twins for bounds B j < Bi . Thus, the size of the set of 300-smooth

twins usually increases in the optimised variants when moving to larger B.

Remark VI.12. In the following sections, we will require twin smooths of a certain (relatively

small) bitlength. This can easily be incorporated into all implemented variants by removing all

twins above this bound after each iteration. This means that we cut off the algorithm at this size,

and do not attempt to obtain larger twins, which significantly improves the runtime and memory

requirements.

VI.4.4 Record Twin Smooth Computations

We ran the optimised full CHM algorithm with B = 547 and found a total of 82,026,426 pairs

of B-smooth twins. Among these pairs, we found 2,649 additional 200-smooth twins that were

not found by the original authors of the algorithm [CHM13]. This showcases the validity of

Remark VI.6 that the algorithm does not guarantee us to find all B-smooth twins. Furthermore,

there is no guarantee that running CHM with B = 547 will produce all 200-smooth twins. As

mentioned in the introduction, the only way to see how far away we are from the exact number

of 200-smooth twins is to solve all 246 Pell equations.

For the application mentioned in the upcoming sections within this chapter, we only need

twins of a certain bitsize. Within this set of twins, 9,218,648 pairs (r, r + 1) fall in the range

260 < r < 264; 1,064,249 pairs fall in the range 281 < r < 285; 31,994 pairs fall in the range

292 < r < 296; and, only 1 pair falls in the range 2120 < r < 2128. This pair in the final interval
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is the largest pair found in this run, with r = 4012031241848866526424165796047749375,

and factorisations:

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283

· 499 · 509, and

r + 1= 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

As we will see later, the number of 64-bit and 85-bit twins we found in this run is enough

to find attractive parameters for SQISign. The 96-bit twins will give us parameters with the

required smoothness, however we do not have enough pairs to hope to find a prime p where

p2 − 1 is divisible by a large power of two.

As mentioned earlier, increasing the smoothness bound B and running the full CHM al-

gorithm cannot hope to terminate in some reasonable amount of time. However, using the

optimisations introduced in the VI.4.3, we can increase B and expect the algorithm to termin-

ate and hopefully find larger sized twins. So we ran the algorithm for B = 1300 using the

constant-range optimisation with a range R = 5000, in order to specifically target twins

(r, r+1)with r > 2115. In this run we found 1,091 such pairs - the largest of these pairs is the fol-

lowing 145-bit twin (r, r+1)with r = 36132012096025817587153962195378848686084640,

where

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251 · 283 · 307

· 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1= 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Among the 1,091 twins CHM found, 184 pairs fall in the range 2120 < r < 2128, which was

sufficient to find some SQISign-friendly parameters (though not at all NIST security levels).

In addition, we also ran CHM with B = 211 to obtain a large number of twin smooth integers

in the range 255 < r < 2100 (see Remark VI.12 in the setting where we want to find twins in such

an interval). This run was performed using the constant-range optimisation with a range

R = 2500, and produced 608,233,761 pairs of twins lying in this range. Compared with the

B = 547 run, the yield from this run gave ample twins with 292 < r < 296, which was sufficient

to find SQISign parameters with the desirable large power of two.

VI.5 Cryptographic Primes of the form p = 2rn − 1: Powerlift CHM twins

This section focuses on finding primes suitable for isogeny-based cryptographic applications.

As discussed in the previous sections, the pure CHM method does not allow for us to directly

compute twins of at least 256 bits as required for this aim. However, as mentioned in Chapter IV

through the description isogeny-based signature scheme SQISign, some cryptographic applica-

tions do not need twins (r, r + 1) that are fully smooth. As also mentioned in Chapter IV, the

current incarnation of SQISign requires a prime p that satisfies 2 f T | p2−1, where f is as large

as possible, and T ≈ p5/4+ε is smooth and odd [DFLLW23]. This flexibility allows us to move

away from solely using CHM and, instead, to use CHM results as inputs to known methods for
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n pn(x)2 − 1
2 4x2(x − 1)(x + 1)
3 4x3(x − 1)(x2 + x + 1)
4 4x4(x − 1)(x + 1)(x2 + 1)
5 4x5(x − 1)(x4 + x3 + x2 + x + 1)
6 4x6(x − 1)(x + 1)(x2 − x + 1)(x2 + x + 1)

Table 2: Factorisation of pn(x)2 − 1 for n= 2, 3,4, 5,6, where pn(x) = 2xn − 1

finding such primes. At a high level, we will find fully smooth twins of a smaller bit-size via CHM

and boost them up using the polynomials pn(x) = 2xn − 1 (for carefully chosen n). Hence, if

r, r + 1 are fully smooth integers and n is not too large, we can guarantee a large proportion

of pn(r)2 − 1 to be smooth. For the sake of notation, we will often denote the evaluation of

the polynomial pn(x) at some input r simply by p = pn(r) - emphasising that it is an integer.

As a quick note, towards the end of this chapter, we utilise this boosting idea in a very similar

manner but using other polynomials. As a result much of the theory that is described here can

be translated to the latter section.

General method. We begin with a more in-depth description of the approach to obtaining

cryptographic sized primes p, such that p2−1 has log T ′ bits of B-smoothness, where T ′ = 2 f T

and B is some fixed smoothness bound. We recall that for our SQISign application, we have

log p ∈ {256,384, 512} for NIST Level I, III and V (respectively), T ≈ p5/4 and f as large as

possible. In the current implementation of SQISign, f ≈ ⌊log
�

p1/4
�

⌋ (i.e., T ′ ≈ p3/2), and

therefore, we aim for this when finding primes.

For the polynomials pn(x), we have pn(x)2−1= 4xn(x−1) f (x) for some polynomial f (x),
as shown in Table 2. We observe that for n even, both x+1 and x−1 appear in the factorisation

of pn(x)2−1. In this case, for twin smooths (r, r ±1), evaluating pn(x) at r guarantees that we

have a smooth factor 4xn(x ± 1) in p2 − 1. For n odd, we will only have that x − 1 appears in

the factorisation, and therefore only consider twins (r, r − 1) to guarantee we have B-smooth

factor 4xn(x − 1).
The first step is to use our implementation of the CHM algorithm, described in Sections VI.3

and VI.4, to obtain B-smooth twins (r, r ± 1) of bitsize approximately (log p − 1)/n. We then

obtain primes of suitable sizes via computing p = pn(r) for all candidate r, as described above.

By construction, p2−1 has guaranteed n+1
n (log(p)−1)+2 bits of smoothness. We then require

that the remaining factors have at least

max

�

0,
3
2

log p−
�

n+ 1
n
(log p− 1) + 2
�

�

bits of B-smoothness. In Section VI.5.2, we will discuss the probability obtaining this smooth-

ness from the remaining factors.

VI.5.1 Choosing n

For small n, we require CHM to find twin smooths of large bit size. For certain bit sizes, running

full CHM may be computationally out of reach, and therefore we use a variant that may not
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find all twins. In this case, however, we have more guaranteed smoothness in p2−1 and so it is

more likely that the remaining factors will have the required smoothness. For large n, we can

obtain more twin smooths from CHM (in some cases, we can even exhaustively search for all

twin smooths), however we have less guaranteed smoothness in p2−1. Finding values of n that

balance these two factors will be the focus of this section.

n= 2. Let (r, r ± 1) be twin smooth integers and let p = 2r2 − 1. In this case, 2r2(r ± 1) | T ′,
meaning that log T ′ ≥ 3

2 log p, and we have all the required smoothness. Write T ′ = 2 f T =
2r2(r ±1) where T is odd. If f < ⌊log

�

p1/4
�

⌋, we have T > p5/4, and we do not have to rely on

a large power of 2 dividing r−1. Otherwise, we turn to Section VI.5.2 to estimate the probability

of r ∓ 1 having enough small factors to make up for this difference.

Suppose we target primes with λ bits of classical security, i.e., we need a prime of order p ≈
22λ. For n = 2, this corresponds to finding twin smooths of size ≈ 2λ−

1
2 , and so is only suitable

for finding NIST Level I parameters due to the limitations of the CHM method (see Section VI.4).

One could instead use other techniques for finding large enough twins for n = 2, such as the

PTE sieve [CMN21], at the cost of significantly larger smoothness bounds. Alternatively, we can

move to higher n, which comes at the cost of loosing guaranteed smoothness. Another challenge

here is that, given the relatively large size of the twins, it appears difficult to find enough twins

for obtaining primes with a large power of two.

n= 3. Let (r, r − 1) be twin smooth integers and let p = 2r3 − 1. Here, we can guarantee

that the smooth factor T ′ of p2 − 1 is at least of size ≈ p4/3. If f < ⌊log2

�

p1/12
�

⌋, we have

T > p5/4. Otherwise, we require that there are enough smooth factors in r2+ r+1 to reach this

requirement.

Here, for λ bits of classical security, we need to target twin smooth integers of size ≈ 2
2λ−1

3 .

In this case, the CHM method will (heuristically) allow us to reach both NIST Level I and III

parameters.

n= 4. Let (r, r ± 1) be twin smooth integers and p = 2r4 − 1. Here we can only guarantee a

factor of size ≈ p5/4 of p2 − 1 to be smooth. When accounting for the power of two, we must

hope for other smooth factors. As pn(x)−1 splits into (relatively) small degree factors, namely

pn(x)−1= 2(x−1)(x+1)(x2+1), the probability of having enough B-smooth factors is greater

(than if there was, for example, a cubic factor).

In contrast to the previous cases, this setting should be suitable for targeting all necessary

security parameters. However, for the NIST Level I setting, the work by De Feo, Leroux and

Wesolowski [DFLLW23][Section 5.2] showed that the best one could hope for here while max-

imising the power of two gives SQISign parameters with a smoothness bound of ≈ 1800. While

this is a better smoothness bound than the NIST Level I prime with the best performance for

SQISign, it does not perform as well in practice. Indeed, most of the odd primes less than 1800

that appear in p2−1 are relatively large, making isogeny computation relatively slow. In the best

performing prime, however, a large power of 3 divides p2 − 1, and most of its other odd prime

divisors are fairly small. We note that the authors of [DFLLW23] only searched for parameters
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that maximise the power of two, and hence there could be some scope to find parameters that

have slightly smaller powers of two.

Other n. For larger n, the amount of guaranteed smoothness decreases, and thus the prob-

ability that the remaining factors have the required smoothness is small. Indeed, we find

that only n = 6 has the correct balance of requiring small twin smooths while still having a

reasonable probability of success. This is primarily due to the factorisation of p6(x) − 1 =
2(x −1)(x +1)(x2− x +1)(x2+ x +1), having factors of degree at most 2, which improves the

probability that we have enough smooth factors. In contrast, n = 5 results in more guaranteed

smoothness than n = 6, but requires the quartic factor in p5(x) − 1 to provide the necessary

smoothness, which is relatively unlikely.

While one could use n= 6 to find NIST Level I parameters, this larger n shines in its ability

to give us both NIST Level III and V parameters.

VI.5.2 Probability of Sufficient Smoothness

In this section, we determine the probability of obtaining cryptographic primes with sufficient

smoothness using the methods outlined above.

First, we determine the probability of finding fully B-smooth twins (r, r±1) using the count-

ing function Ψ, defined in Section III.5.

To calculate the probability of p2−1 having log T ′-bits of B-smoothness, given that the factor

r(r ±1) | p2−1 is already fully smooth, we will use the counting function Θ studied by Banks–

Shparlinski and introduced in Section III.5. Indeed, as we only require around log T ′-bits of

smoothness from p2−1, it may only be partially smooth. As discussed in the section above, we

restrict to n= 2,3, 4,6.

Recall that pn(x)2 − 1 = 4xn(x − 1) f (x), where f (x) is given Table 2 for each 2 ≤ n ≤ 6.

Write f (x) = f1(x) · · · fk(x), where each fi is irreducible of degree di = deg( fi) and d = deg( f ).
To calculate the probabilities, we require that the probability of f (x) having at least log2 D-

bits of B-smoothness is the product of the probabilities of each of its factors fi having at least

log2 Di-bits of B-smoothness where log2 D =
∑k

i=1 log2 Di . We can view this as an extension

of [CMN21, Heuristic 1]. Note that the only constraint on how the smoothness is distributed

between the factors fi(x) is that the total bit size of B-smooth factors must equal log2 D. We

could, for example, sum over all the possible distributions of smoothness using the inclusion-

exclusion principle. However, in distributions where one of the factors has a very small amount

of smoothness, we fall out of the ranges allowed as input into Θ determined by Theorem III.8.

Therefore, for simplicity, we will assume that smoothness is distributed evenly between the

remaining factors (weighted by the degree), i.e., log2 Di = (di log2 D)/d. In reality, this only

gives us a lower bound for the probability, but this will suffice for our purposes. Obtaining a

more theoretical and accurate grasp on these probabilities is left as an avenue for future research.

In Table 3, we give an overview of the relevant probabilities for NIST Level I, III, and V

parameters, calculated as described above. We observe that as n gets larger, the probability

of finding B-smooth integers of the appropriate bitsize increases. In contrast, for bigger n we

are guaranteed less smoothness in p2 − 1. As a result, given B-smooth twins, the probability of

finding a SQISign prime p decreases as n increases. For each NIST level, we predict that the n
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n log2(r)
Probability of B-smooth

(r, r ± 1)

Probability of p2 − 1

log T ′-bits B-smooth given

(r, r ± 1) twin smooth

Extra Smoothness

Needed

NIST-I

B = 29

log p = 256

log T ′ = 384

2 ≈ 127.5 2−58.5 1 0

3 ≈ 85.0 2−32.1 2−12.1 42

4 ≈ 63.75 2−20.5 ≈ 2−22.4 63.25

6 ≈ 42.5 2−10.4 ≈ 2−32.2 84.5

NIST-III

B = 214

log p = 384

log T ′ = 576

2 ≈ 191.5 2−55.7 1 0

3 ≈ 127.67 2−30.5 2−11.7 63.33

4 ≈ 95.75 2−19.4 ≈ 2−15.7 95.25

6 ≈ 63.83 2−9.7 ≈ 2−19.2 127.17

NIST-V

B = 217

log p = 512

log T ′ = 768

2 ≈ 255.5 2−63.7 1 0

3 ≈ 170.33 2−35.2 2−13.5 84.67

4 ≈ 127.75 2−22.6 ≈ 2−18.2 127.25

6 ≈ 85.17 2−11.5 ≈ 2−22.5 169.83

Table 3: Assuming that (r, r ± 1) are twin smooth integers and p has log p bits, calculates the
probability of having a B-smooth divisor T ′ | p2 − 1 of size ≈ p3/2. More details in text.

that balance these two contrasting probabilities have a higher chance of finding a p satisfying

our requirements. As discussed in the next section, this trend is reflected in practice.

VI.5.3 Concrete Parameters for SQISign: Results and Comparisons

We now turn to giving a list of SQISign-friendly primes that target NIST Level I, III, and V. As

mentioned previously, this means that we need to find primes p with 2 f · T | p2 − 1. We need

the exponent f to be as large as possible and the cofactor T ≈ p5/4+ε to be B-smooth, aiming to

keep the ratio
p

B/ f as small as possible.

We find parameters for NIST Level I, III and V by searching for 256, 384 and 512-bit primes,

respectively. For those primes targeting the higher security levels, these are the first credible

SQISign-friendly primes. In what follows, we look at each security level and analyse the most

noteworthy primes found in our searches. When stating the factorisations of p ± 1 for the

mentioned primes, the factors in grey are the rough factors which are not needed for SQISign.

A full collection of our best SQISign-friendly primes that were found using the CHM machinery

is showcased in Table 4.

NIST-I parameters. We targeted 256-bit primes using n = 2, 3 and 4. Given that our CHM

runs produced a lot more twins of smaller bit-size compared to the 128-bit level, we expect to

find more primes using n= 3, 4, which was indeed the case. It is worth noting that some primes

found with n= 2 gave rise to p2−1 being divisible by a relatively large power of two. However,

in these cases, most of the primes dividing p2 − 1 are relatively large and would therefore give

rise to slower isogeny computations during the SQISign protocol [DFLLW23].

Through the experimentation with the 85-bit twins produced from CHM with B = 547,

we found the following 254-bit prime p = 2r3 − 1 with r = 20461449125500374748856320.

All the specific criteria that we need for a SQISign parameter set are met, while obtaining an

attractively small signing cost metric
p

B/ f . For this prime, we have
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p+ 1= 246 · 53 · 133 · 313 · 733 · 833 · 1033 · 1073 · 1373 · 2393 · 2713 · 5233, and

p− 1= 2 · 33 · 7 · 112 · 172 · 19 · 101 · 127 · 149 · 157 · 167 · 173 · 199 · 229 · 337

· 457 · 479 · 141067 · 3428098456843 · 4840475945318614791658621.

While the associated cofactor T here exceeds p5/4, it does not exceed it by much. As we

mentioned earlier, it might therefore be prone to signing failures and hence might not cur-

rently be suitable for SQISign. The next 255-bit prime of mention, p = 2r3 − 1 with r =
26606682403634464748953600, is very similar to the previous prime, however the cofactor T

exceeds p5/4 by a larger margin, so would be less prone to these failures. In this case we have

p+ 1= 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and

p− 1= 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311 · 397 · 547

· 1015234718965008560203 · 3143438922304814418457.

We additionally ran experiments with the 64-bit twins produced from CHM with B = 547

and found the following 253-bit prime p = 2r4 − 1 with r = 8077251317941145600. Among

all the primes that we found for NIST-I security, this appears to be the best. It has both a

larger power of two compared to the primes mentioned above found with n = 3 and a smaller

smoothness bound – thus making the signing cost metric attractively small. Additionally the

cofactor T is large enough to be practical for SQISign without any failures. We note once again

that this prime would have been out of scope for the authors of [DFLLW23] to find since they

constrained their search to only find primes for which the power of two is larger than the one

found here. We have

p+ 1= 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and

p− 1= 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313 · 347 · 397

· 467 · 479 · 991 · 1667 · 19813 · 211229 · 107155419089

· 295288804621

NIST-III parameters. We targeted 384-bit primes using n = 3,4 and 6. The challenge in all

three of these scenarios is finding enough twins whose product is divisible by a large power of

two. With the limited yield of 128-bit twins, finding such primes is not straightforward; the

example with n= 3 in Table 4 is the only such instance that we managed to find. The picture is

somewhat similar with the 96-bit twins: while we have more of them, the success probabilities

in Table 3 suggest that we need a lot more twins with a large power of two in order to produce

any SQISign-friendly instances. One exceptional prime that was found in this search was the

following 375-bit prime, p = 2r4 − 1 with r = 12326212283367463507272925184. Here we

have

p+ 1= 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914 · 13194, and

p− 1= 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283 · 353 · 419

· 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · 522673 · 3881351

· 4772069 · 13468517 · 689025829 · 30011417945673766253.
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Of the NIST Level III primes listed in Table 4, the prime that shows the most promise is the

382-bit prime p = 2r6 − 1 with r = 11896643388662145024. Not only is the power of two

particularly large but also the smoothness bound of the cofactor T is quite small, reflected in its

small signing cost metric (when compared to other p where p2−1 is divisible by a large power

of 2). We have the factorisations

p+ 1= 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and

p− 1= 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349 · 449

· 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119 · 10243 · 381343

· 19115518067 · 740881808972441233 · 83232143791482135163921.

NIST-V parameters. We targeted 512-bit primes using n = 4 and 6. Once again, combining

our CHM runs with n = 6 proved to be the best option for finding SQISign parameters at this

level. None of the twins found at the 128-bit level combined with n= 4 to produce any SQISign

friendly primes. From the set of 85-bit twins found in the B = 547 CHM run, the 510-bit prime

p = 2r6 − 1 with r = 31929740427944870006521856 is particularly attractive. The power of

two here is the largest found from this run. Here we have

p+ 1= 291 · 196 · 616 · 896 · 1016 · 1396 · 1796 · 2236 · 2396 · 2516 · 2816, and

p− 1= 2 · 32 · 5 · 7 · 13 · 23 · 29 · 31 · 41 · 53 · 109 · 149 · 157 · 181 · 269 · 317 · 331

· 463 · 557 · 727 · 10639 · 31123 · 78583 · 399739 · 545371 · 550657 · 4291141

· 32208313 · 47148917 · 69050951 · 39618707467 · 220678058317

· 107810984992771213 · 1779937809321608257.

The 85-bit twins found in the CHM run with B = 211 were used to try and find NIST-V

parameters. The largest power of two that was found in this run which is suitable for SQISign

was f = 109. The prime with smallest signing cost metric while having a relatively large power

of two is the following 508-bit prime, p = 2r6−1 where r = 26697973900446483680608256.

Here we have

p+ 1= 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and

p− 1= 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277 · 347 · 617

· 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139 · 143443 · 150151 · 3813769

· 358244059 · 992456937347 · 353240481781965369823897507

· 8601020069514574401371658891403021.

Comparison to prior work. The state-of-the-art implementation of SQISign uses a 254-bit

prime that was found using the extended Euclidean algorithm (XGCD) [Cos20, DFKL+20] (see

Section VI.2). With this method, it is possible to, for example, force p±1 and p∓1 to be divisible

by a large power of 2 and 3 (respectively). Indeed, with this approach, a smooth factor of size
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NIST security
level p ⌈log2(p)⌉ f B

p
B/ f logp(T )

p3923 [DFLLW23] 254 65 3923 0.96 1.32

n r

NIST-I

2
1211460311716772790566574529001291776
2091023014142971802357816084152713216

241
243

49
49

1091
887

0.67
0.61

1.28
1.28

3

3474272816789867297357824
10227318375788227199589376
21611736033260878876800000
20461449125500374748856320
26606682403634464748953600

246
251
254
254
255

43
31
31
46
40

547
383
421
523
547

0.54
0.63
0.66
0.50
0.58

1.29
1.31
1.28
1.26
1.28

4

1466873880764125184
8077251317941145600

12105439990105079808 [DFLLW23]
13470906659953016832 [DFLLW23]

243
253
255
256

49
49
61
61

701
479

1877
1487

0.54
0.45
0.71
0.63

1.28
1.30
1.31
1.30

NIST-III

3 1374002035005713149550405343373848576 362 37 1277 0.97 1.25

4

5139734876262390964070873088
12326212283367463507272925184
18080754980295452456023326720
27464400309146790228660255744

370
375
377
379

45
77
61
41

11789
55967
95569
13127

2.41
3.07
5.07
2.79

1.26
1.31
1.26
1.29

6
2628583629218279424
5417690118774595584

11896643388662145024

369
375
382

73
79
79

13219
58153
10243

1.58
3.05
1.28

1.27
1.27
1.30

12 5114946480 [DFDdSGF+21] 389 49 31327 3.61 1.30

NIST-V 6

9469787780580604464332800
12233468605740686007808000
26697973900446483680608256
31929740427944870006521856
41340248200900819056793600

499
502
508
510
512

109
73
85
91
67

703981
376963
150151
550657
224911

7.70
8.41
4.56
8.15
7.08

1.25
1.28
1.26
1.25
1.28

Table 4: A table of SQISign parameters p = pn(r) for twin-smooth integers (r, r ± 1) found using
CHM at each security level. The f is the power of two dividing (p2 − 1)/2 and B is the smoothness
bound of the odd cofactor T ≈ p5/4. It also includes existing primes in the literature including the
state-of-the-art.

≈pp comes for free in both p± 1. Concretely, the prime p used in [DFLLW23] has

p+ 1= 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521 · 3923 · 62731

· 96362257 · 3924006112952623, and

p− 1= 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599 · 607 · 619

· 743 · 827 · 941 · 2357 · 10069.

This prime features a larger power of two compared to the primes that are mentioned in Table 4

and target NIST-I security. On the other hand, the cofactor T has a larger smoothness bound, B =
3923, and a larger signing cost metric, at 0.96. Given that these two latter quantities are larger

than in the primes we give, one could be tempted to think that the signing algorithm would

perform better when instantiated with our primes. However, the implementation in [DFLLW23],
using the state-of-the-art prime above, benefits from the large power of three and the fact that

most of the smooth factors are relatively small. It is therefore unclear whether our NIST-I primes

would outperform the prime above. Evaluating this in detail would require an implementation

comparison, see Remark VI.22.

As mentioned earlier, our work showcases the first credible primes for SQISign at the NIST-

III and NIST-V security level. A beneficial feature about most of the primes found in Table 4 is

that the majority of the smooth factors are relatively small (e.g. B < 210). In comparison, we

expect the XGCD method to scale worse for larger security levels, i.e., requiring much larger
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smoothness bounds. This is similar to the analysis in [CMN21], which shows that while the

XGCD approach has reasonable smoothness probabilities for NIST-I parameters, other methods

become superior for larger sizes.

We note that there are other 384 and 512-bit primes in the literature for which p2 − 1 is

smooth [CMN21,DFDdSGF+21]. None of the primes from [CMN21] have a large enough power

of two for a suitable SQISign application. Some primes were found in the context of the isogeny-

based public-key encryption scheme Séta [DFDdSGF+21] that could be suitable for SQISign. As

part of their parameter setup, they required finding≈ 384-bit primes6. Of the 7 primes that they

found, the 389-bit prime, p = 2r12−1 with r = 5114946480 appears to be somewhat SQISign-

friendly to achieve NIST-III security (see Table 4). However, in addition to its worse signing

metric, representations of Fp-values require an additional register in this case compared to our

primes of bitlengths slightly below 384. Thus, we can expect implementations of Fp-arithmetic

to perform significantly worse for this prime.

Remark VI.13. The requirement we impose on p2 − 1 being divisible by 2 f · T is to ensure that

it fits within the current implementation of SQISign. At present, the SQISign implementation

has a fine-grained optimisation of their ideal to isogeny algorithm to the setting with ℓ = 2. In

general, one could instead allow p2 − 1 to be divisible by L · T, for a, smooth number L with

gcd(L, T ) = 1. This could open new avenues to find SQISign-friendly primes, but would require

a reconfiguration of the SQISign code. For example, using the prime p = p2(r) found with r =
2091023014142971802357816084152713216 from Table 4, we could use L = 249 ·34 ·5 | p2−1

and still have a large enough smooth factor T to exceed p5/4.

VI.6 Smooth Twins using the Extended Euclidean Algorithm over Polynomial

Rings

As mentioned at the beginning of this Chapter, these last two section represent new work that

is not presented in [BSC+22].

In Sections VI.2 and VI.3, we outlined other known methods for generating smooth twins.

Recall that these methods came in two flavours: the first are constructive methods and the

other are probabilistic methods. Among the probabilistic methods mentioned in SectionVI.2,

the algorithms can be further subdivided into two flavours. There are algorithms that work over

the integers including the extended Euclidean algorithm and the Chinese remainder theorem

and the other algorithms work over a polynomial ring including searching with r = xn − 1 and

searching with ideal PTE solutions. There is a natural way to combine these techniques together

using a generalisation of the extended Euclidean algorithm over the polynomial ring Q[x]. In

this section we describe this new method and showcase the potential benefits over the prior

probabilistic methods as well as demonstrate that there are certain input polynomials that can

be used to find twins but cannot be used for cryptographic purposes.

6That satisfy some mild conditions outside of just requiring p2 − 1 to be smooth
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VI.6.1 General Method

Choose two coprime polynomials, F, G ∈ Z[x], that split completely into linear factors and the

number of distinct roots of FG is small. These points are not strictly necessary but it would

help the smoothness probabilities if they were included. Let A be the set of all roots of FG. Use

the extended Euclidean (XGCD) algorithm over the polynomial ring with rational coefficients

(see [Sho09, Section 17.4] for a full description of the algorithm) to find the corresponding

polynomials S, T ∈ Q[x] such that FS + GT ≡ 1. Note here that these polynomials will, in

the majority of cases, not have integer coefficients. For now we start by assuming that these

have integer coefficients and later will discuss way to get around this when they have rational

coefficients. Much like in the setting of the integers, one can show that, if at least one of F, G

has degree strictly greater than 1, then deg(S) < deg(G) and deg(T ) < deg(F) [Sho09, The-

orem 17.4]. Then the polynomials f := F ·S and g := −G ·T have integer coefficients and differ

by 1. Without loss of generality, we can assume that the leading coefficient of these polynomials

is positive. Now we sieve through an interval of integers and identify the integers r such that

r − a is smooth for all a ∈ A. Then the pair ( f (r), g(r)) generate twin-smooth integers if and

only if S(r) and T (r) are smooth.

Now we deal with the general case with S, T have rational coefficients. To do this we adopt

a similar approach as done in the PTE work. Let v be the lowest common multiple of all the

denominators of the coefficients of S and T . Then the polynomials vS and vT have integer

coefficients and f := vFS and g := −vGT are polynomials that differ by v. Much like before

we sieve through an interval of integers and identify the integers r such that not only r − a is

smooth for all a ∈ A but also f (r) ≡ g(r) ≡ 0 mod v. When we are in this setting, then the

pair ( f (r)/v, g(r)/v) generate twin smooth integers if and only if vS(r) and vT (r) are either

smooth integers or the only rough factors that may exist only divide v. It is worth noting that

in the vast majority of examples that we are interested in v will either be small or be already

smooth.

It is worth noting that the resulting polynomials S, T from the extended Euclidean algorithm

are the unique polynomials that satisfy FS+GT ≡ 1 and deg(S)< deg(G) and deg(T )< deg(F).
Having said this there are other polynomials S′, T ′ of larger degrees deg(S′) ≥ deg(G) and

deg(T ′) ≥ deg(F) that also satisfy FS′ + GT ′ ≡ 1. One can describe the general solution of

this equation using the polynomials S and T : namely S′ = S + P · G and T ′ = T − P · F for

any polynomial P. We give a name for this procedure of using the general solution and call it

perturbing the solution S, T . One can replace S and T with these perturbed solutions S′ and

T ′ and attempt to find twin smooth integers. This will inevitable increase the degree of the

polynomials F · S′ and −G · T ′ and hence decrease the smoothness probability. This is also

apparent in the integer setting but the difference here is that we have flexibility on the smooth

input r that we choose. Having said this, for some choice of polynomials F, G, this perturbation

step is a necessity rather than an optional add-on. This will be illustrated later in Section VI.6.2.

Remark VI.14. There are two natural choices for how you choose the polynomials F and G that

feed as inputs to the algorithm. The first way is to simply choose random integers a that feed as

roots of F and G. The second approach is have a precomputed list of polynomials F and G and

choose one of them. This latter approach is similar to that adopted by the authors of the PTE article
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and can offer better smoothness probabilities as it shall be noted shortly. Additionally in the latter

approach, we can assume that F and G are chosen such that S and T have not rational roots but

can be factored into irreducible factors of degree at least 2.

Realising the generalisation. This naturally generalises the XGCD method over the integers

that was mentioned in Section V.2.1. Here we also show how to the polynomial methods for

generating twin-smooth integers mentioned in Section V.2.1 fall as a special case to the method

just presented.

For any integer n, let F(x) = xn and G(x) = x − 1. The result of the extended Euclidean

algorithm outputs the polynomials S(x) = 1 and T (x) = −xn−1−· · ·− x−1. Hence one obtains

f (x) = F(x)S(x) = xn and g(x) = −G(x)T (x) = xn − 1 which are the polynomials used

in [Cos20] to find such twins. Note that when n is even, we can still obtain these polynomials

when choosing F(x) = xn and G(x) = x2 − 1.

Suppose that A = {a1, · · · , an} and B = {b1, · · · , bn} is an ideal PTE solution and let C

be the constant difference between the two associated polynomials in accordance to Propos-

ition VI.4. Let A ′ = {ai j
} and B ′ = {bi j

} be subsets of A and B respectively such that

#A ′ +#B ′ > n. Let F(x) =
∏

a∈A ′(x − a) and G(x) =
∏

b∈B ′(x − b). Then the result of the

extended Euclidean algorithm will output the polynomials S(x) =
�∏

a∈A\A ′(x − a)
�

/C and

T (x) = −
�∏

b∈B\B ′(x − b)
�

/C . This is because the polynomials
∏n

i=1(x−ai) and
∏n

j=1(x−b j)
differ by C and the result of the extended Euclidean algorithm is unique when we want deg(S)<
deg(G) and deg(T )< deg(F). The requirement on #A ′+#B ′ > n is so that, without any per-

turbation, we do get the intended polynomials.

Smoothness probabilities. Recall Heuristic III.7 that says computing the smoothness prob-

ability of an evaluated polynomial depends on the irreducible factors of the polynomial. Thus

the probability of obtaining twin smooth integers from this method depends on the irreducible

factors of F, G, S and T . Given this, one might suggest that the smoothness probabilities would

be optimised when the degrees of each of the factors are all 1, in other words the setting when

we have an ideal PTE solution. This would certainly be the case when there are repeated factors

in either polynomials since there would be fewer smoothness checks to be done. However, such

solutions of this type only exist when the degree of the polynomial is n ∈ {2, 3,4, 6}. For other

degrees, only distinct linear factors are known in the literature. This suggests the following:

Instead of having all of the factors being linear, you replace some of the linear factors with

quadratic (or potentially higher degree) factors and counterbalance that by having more square

(or potentially larger power) factors. It is relatively straightforward search for such polynomials

using the extended Euclidean algorithm technique mentioned above. The idea consists of fixing

an integer bound κ > 0 and enumerate over all completely split and coprime polynomials F and

G such that each root in their product, i.e. the set A, is at most κ in absolute value. Computing

the polynomials S and T for each pair F and G, attempt to factor them and record it if the

smoothness probability is better or on par with that of a corresponding PTE solution. Note that

as we would like square (or larger power) factors in the resulting polynomials, the number of

distinct roots in A is smaller than the more general case – thus making the enumerated search

more effective. Through a small scale search using this technique (with a bound κ= 8 and F ,G
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containing at most square factors), one can find the following two polynomials that differ by a

constant and factors into linear factors up to one quadratic factor.

f (x) = x8 + 4x7 − 198x6 − 608x5 + 11953x4 + 24924x3 − 207756x2 − 220320x

= (x − 8)(x − 5)x(x + 1)(x + 6)(x + 9)(x2 + x − 102), and

g(x) = x8 + 4x7 − 198x6 − 608x5 + 11953x4 + 24924x3 − 207756x2 − 220320x + 1166400

= (x − 9)2(x − 3)2(x + 4)2(x + 10)2.

Calculating the smoothness probability using the Heuristic III.7 and comparing it to the corres-

ponding probability from an ideal PTE solution of size 8 that exist in the literature, one can see

that this smoothness probability from the presented polynomials is better. In addition, here are

similar polynomials but of degree 12:

f (x) = x12 − 9052x10 + 30727014x8 − 48031637476x6 + 33806587730449x4

− 8577014182099272x2 + 74489608030488336

= (x − 49)(x − 46)(x − 31)(x − 3)(x + 3)(x + 31)(x + 46)(x + 49)

(x2 − 31x − 1302)(x2 + 31x − 1302), and

g(x) = x12 − 9052x10 + 30727014x8 − 48031637476x6 + 33806587730449x4

− 8577014182099272x2 + 701251897192728336

= (x − 53)2(x − 39)2(x − 14)2(x + 14)2(x + 39)2(x + 53)2.

However, as also highlighted in the PTE paper [CMN21], we can loosen the criterion on

requiring each side of the twin to be fully smooth. As mentioned in Chapter IV, the cryptographic

applications that require this set up do not require everything to be smooth but at the very least

require some large enough smooth cofactor. This notably includes SQISign which has been a

focus of the chapter. While you would still need to deal with the probabilities that arise from

the higher degree polynomials, this could be counterbalanced by requiring a lot fewer linear

terms to be smooth which may be repeated. This is similar to the examples mentioned above

but one can find better polynomials that can give more overall smoothness from a small input.

This will be explored further in Section VI.7 where, with a particular choice of F and G, we use

this new technique to find SQISign friendly parameters.

VI.6.2 Choosing incorrect polynomials for cryptographic applications

We have to be careful in how we choose F, G if we wish to use apply these for cryptographic pur-

poses. Here we describe a certain class of polynomials for which, when you apply the extended

Euclidean algorithm and sum the corresponding twins, it will never be a prime.

Consider the polynomials F(x) = (x + 1)n and G(x) = xn for a strictly positive integer n.

This might look like an advantageous choice of polynomials for cryptographic purposes since we

could guarantee a lot of smoothness from a small amount of smooth input (namely just assuming

r and r + 1 are smooth). However, this choice of polynomial will unfortunately not lead to

any cryptographic applications. The reason is that the associated polynomial can be reduced

to smaller factors and hence the associated integer resulting from summing the twin-smooth
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integers, namely |(r + 1)nS(r) − rnT (r)|, will never be a prime. In particular, it will contain

2r +1 as a factor. This result is not only formalised but also generalised with aid of Proposition

VI.15 and applies to a broader range of polynomials. Having said this, perturbing the solutions

by some polynomial can give you irreducible polynomials. But this is at a cost of having a larger

(and most likely irreducible) factor which decreases the smoothness probabilities. This is the

case when the perturbation polynomial is P(x) = 1.

Proposition VI.15. For a strictly positive integer n and two polynomials F, G that differ by a

non-zero rational, let Sn and Tn be the outputted rational polynomials from applying the extended

euclidean algorithm to the polynomials F n and Gn. Note here that F n := F · F · · · F denotes the

product of F n times rather than composition. Then there is a constant Cn,F,G such that

F(x)Sn+1(x)− Sn(x) = Cn,F,GG(x)n(F(x) + G(x)), and

G(x)Tn+1(x)− Tn(x) = −Cn,F,G F(x)n(F(x) + G(x)).

Moreover, in the setting when F(x) = x+1 and G(x) = x, the polynomial Hn(x) := F n(x)Sn(x)−
Gn(x)Tn(x) will always have 2x + 1 as a factor.

Proof. Let m := F − G be the rational difference between these polynomials. Since Sn and Tn

are polynomials that resulted from applying the extended euclidean algorithm to F n and Gn we

have

F(x)nSn(x) + G(x)nTn(x) = 1, deg(Sn) = deg(Tn)< n. (*)

In order to prove the proposition, we need two key ingredients. These are formulated in the

following claims.

Claim 1. For every n, we have the following deg(Sn) = deg(Tn) = deg(g) · (n− 1).

Proof. Let’s start by applying the Euclidean algorithm step by step to F(x)n and G(x)n. Write

F(x)n = (G(x)+m)n = G(x)n+R1(x). It is straight forward to see that deg(r1) = deg(G)(n−1).
Now write G(x)n = Q2(x)R1(x) + R2(x) with deg(R2) < deg(R1). Again, it is straight forward

to see that deg(Q2) = deg(G) and deg(R2) = deg(G)(n− 2) since the xdeg(G)(n−2) coefficient of

Q2(x)R1(x) is non-zero. One can repeat this iteratively and deduce that deg(Qk) = deg(G) and

deg(Rk) = deg(G)(n− k) for all 2≤ k ≤ n.

Using these polynomials, we can apply the extended Euclidean algorithm to recover the

polynomials Sn and Tn. In fact, using Theorem 17.4(iv) from [Sho09], we obtain the desired

result.

Claim 2. For every n, we have the following closed forms for Sn and Tn:

Sn(x) = m−n
n−1
∑

k=0

�

n+ k− 1
k

�

(−G(x)/m)k, and

Tn(x) = (−m)−n
n−1
∑

k=0

�

n+ k− 1
k

�

(F(x)/m)k.

Proof. Let pn(x) = m−n
∑n−1

k=0

�n+k−1
k

�

(−G(x)/m)k. Since deg(Sn) = deg(pn) = deg(g)(n − 1)
then, by the uniqueness of Sn, Tn, it suffices to show that F(x)npn(x)− 1 is divisible by G(x)n.



VI.6. SMOOTH TWINS USING XGCD ALGORITHM OVER POLYNOMIAL RINGS 89

Firstly, write F(x) = m(G(x)/m+ 1). When multiplying F(x)n and pn(x), write the result

as a polynomial in G(x) - so we have F(x)npn(x) =
∑2n−1

k=0 akG(x)k. For k < n the coefficient ak

in this product is equal to

m−k
k
∑

i=0

�

n
i

��

n+ k− i − 1
k− i

�

(−1)k−i .

When k = 0 this is equal to 1. As a simple exercise in using the “Upper Negation" and Vander-

monde’s identities for binomial coefficients, when 0 < k < n this is equal to 0. This proves the

closed form of Sn and proving the closed form of Tn can be done with a similar strategy.

With the closed form for Sn obtained in Claim 2, it is an algebraic exercise to obtain the first

of these formulas. In the process one shows that Cn,F,G = m−2n−1(−1)n
�2n−1

n−1

�

. One could do the

same algebraic exercise for Tn but by considering the equation (∗) for n and n+ 1, we have

F(x)n (F(x)Sn+1(x)− Sn(x)) = G(x)n (Tn − G(x)Tn+1(x)) .

This shows that the second of these formulas can easily be found from the first.

Now suppose that F(x) = x + 1 and G(x) = x . Using the derived recursive formulas for

Sn, Tn and by induction, we have Sn(−1/2) = 2n−1 and Tn(−1/2) = −(−2)n−1. Plugging −1/2

into the defining formula for Hn gives the result.

Remark VI.16. The concluding statement in the proposition is not specific to F(x) = x + 1 and

G(x) = x and it applies more generally. In the general setting the factor that appears is the

polynomial F + G. As another remark, it is straight forward to adopt the arguments addressed

above to the setting when F is a linear transform of G (i.e. F(x) = aG(x) + b)

This factoring property that one might get from these polynomials appears to be a somewhat

global property. Let’s describe what we mean by this. For any two polynomials F, G, with the

only restriction on them this time is that gcd(F, G) = 1, let

H̃n(x) := F(x)n(Sn(x) + P(x)G(x)n)− G(x)n(Tn(x)− P(x)F(x)n)

= 2F(x)n(Sn(x) + P(x)G(x)n)− 1

= 2G(x)n(Tn(x)− P(x)F(x)n) + 1

where Sn, Tn are once again the result of applying the extended Euclidean algorithm to F n, Gn

and we perturb the solution by a polynomial P. Then it appears that either all of Hn are reducible

(with the possible exception of H̃1) or eventually all H̃n are irreducible. The above proposition

captures this in former setting and there are countless examples that captures the latter. For

instance, choosing F(x) = x3 + x2 + x + 2 and G(x) = x , then H̃1, H̃2, H̃4 are reducible and all

subsequence polynomials appear to be irreducible. We formalise this and state it in the following

conjecture.

Conjecture VI.17. Let F, G, P, Sn, Tn, H̃n be the polynomials as described above. Suppose there is

some k > 1 such that H̃k is irreducible and assume that this k is minimal. Then there is some N ≥ k

such that, for all n≥ N, H̃n is irreducible over the rationals.

We briefly note that there are other families of rational polynomial that are conjectured to

satisfy an irreducible property similar to that of these polynomials H̃n [FFK00].
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VI.6.3 New technique for finding ideal PTE solutions

Earlier we saw that the method of finding twin smooth integers using PTE solutions appears as

a special case of the idea using the extended Euclidean algorithm. If we reverse this thinking, it

would seem to suggest that we could use the extended Euclidean algorithm over the polynomial

ring to generate ideal PTE solutions.

The idea is the following: take two polynomials, F, G, that completely split over the integers

and apply the extended Euclidean algorithm to these polynomials to get the two new polynomi-

als S, T . If S ·T completely splits over the integers (up to a rational scaling factor) then with aid

of Proposition VI.4 one gets an ideal PTE solution of the form Roots(F ·S) =n−1 Roots(G ·T )with

n= deg(F ·S) = deg(G · T ). It may be the case that S · T completely splits over the rationals but

may not have integer roots. In this case one can simply apply a linear transformation to each

of the polynomials to turn it into one with integer roots (see [CMN21, Corollary 1]). While

there is an extensive collection of PTE solutions out there, this idea has been utilised to find

new solutions.

New parametrised ideal PTE solutions. Here we present a new parametrised family of size

4 ideal PTE solutions that feature one repetition in both sets of integers. Such PTE solutions

were considered to find smooth B-SIDH parameters before the polynomial time attacks on SIDH

surfaced (mentioned in Section IV.4.2). There one requires to find primes p such that there are

large smooth cofactors of p + 1 and p − 1 which are roughly the same size. The repetition in

both sides of these PTE solutions would have made our chances of finding such parameters more

profitable.

While there are complete parametric ideal solutions for a few sizes including 4, understand-

ing when we get solutions with repetition from these formulas is a little non-trivial. Moreover,

among the various database sources [Shu01, Cal13, Res21], there are no reported findings of

such ideal solutions. We will use the idea mentioned above as a tool to obtain this parametrisa-

tion. We firstly note down how this parametrisation looks like.

Proposition VI.18. Let α,β be rational parameters and

a = αβ(β + 1)(β2 − 2β + 3),

b = αβ(β + 1)(β2 + 1),

c = α(β2 + 1)(β2 + 2β − 1),

d = α(β + 1)(β − 1)3,

e = 4αβ

C = α4β3(β − 1)3(β + 1)3(β2 + 1)2.

Then we obtain an ideal PTE solution of size 4 of the following form: [0, a, a, c] =3 [b, b, d, e].
The quantity C is the constant difference between the corresponding polynomials in accordance to

Proposition VI.4.

For concreteness of an example, when choosing α = −16 and β = −1/2, one gets a = 17,

b = 5, c = 35, d = 27 and e = 32. One can easily show that, among all such PTE solutions
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for which a, b, c, d, e are all positive integers and all coprime, this is the smallest solution – as

emphasised by the solutions listed in Table 5.

Proof. We start out by applying the XGCD algorithm to the polynomials F(x) := x(x + a)2 and

G(x) := (x + b)2 where a, b are treated as distinct non-zero parameters. This results in the

polynomials S, T such that deg(S) = 1 and deg(T ) = 2 which are

S(x) =
−a+ 3b

b2(a− b)3
x +
−2a+ 4b
b(a− b)3

T (x) =
a− 3b

b2(a− b)3
x2 +

2a2 − 6ab+ 2b2

b2(a− b)3
x +

1
b2

.

Since the polynomial s is linear it only suffices to check when t factors. This happens only when

its discriminant is a square: disc(T ) = D2. If we let a = b(a − b)3D, b = 2a − 4b and c = 2b,

then this is equivalent to solving the equation

a2 + b2 = 2c2.

The following claim derives a parametrisation of this equation over any field k but, for our

specific purpose, we will restrict to k =Q.

Claim 3. Over a field k, the general solution to the equation a2+b2 = 2c2 can be parametrised by

two variables α,β ∈ k as a= α(β2 − 2β − 1), b= −α(β2 + 2β − 1) and c= α(β2 + 1).

Proof. The equation we intend to solve can be considered as an equation over the projective

space P2 = P2(k). This equation has a trivial solution in [1 : 1 : 1] ∈ P2. If [u : v : 1] ∈ P2 is a

solution that is different from [1 : 1 : 1], then the line that joins [u : v : 1] and [1 : 1 : 1] has a

slope β ∈ k. Conversely, given β ∈ k, there is a line that passes through the point [1 : 1 : 1] and

has slope β . More precisely, this line has a projective equation of the form

b= β(a− c) + c.

This line intersects intersects the conic at two points: the first point is [1 : 1 : 1] and the second

point is [u : v : 1] where

u=
β2 − 2β − 1
β2 + 1

, and

v =
−β2 − 2β + 1
β2 + 1

.

Equivalently, this point is [u : v : 1] = [β2−2β −1 : −β2−2β +1 : β2+1]. Thus we obtain the

parametrisation a= α(β2−2β −1), b= −α(β2+2β −1) and c= α(β2+1) for α,β ∈ k to the

equation a2 + b2 = 2c2.

We turn back to studying this equation over the rationals. For the purpose simplying the

expressions later on, we write the general solution to this equation as a = 2α(β2 − 2β − 1),
b= −2α(β2+2β−1) and c= 2α(β2+1)which can be done since α is simply an arbitrary scalar.

From this recovering what a, b are in this context is straightforward which are a = α(β2−2β+3)
and b = α(β2+1). These expressions for a, b are not quite what is stated in the proposition. The



92 VI. CONSTRUCTING TWIN SMOOTH INTEGERS WITH APPLICATIONS TO SQISIGN

a b c d e a b c d e
17 5 35 27 32 53618 16910 231845 74088 231173
86 26 221 125 216 54824 16184 115889 85169 108000

171 51 391 256 375 59157 19425 894475 79507 894432
243 75 775 343 768 64638 20370 275965 89373 275128
524 164 2009 729 2000 65043 21195 658615 87808 658503
594 174 1189 1000 1029 65583 19215 131455 109503 114688
605 185 1739 864 1715 67779 20859 208999 96000 206839
965 305 4331 1331 4320 67826 22286 1070741 91125 1070696

1463 455 5135 2048 5103 68255 20735 183599 98415 180224
1602 510 8245 2197 8232 70686 22386 328861 97336 328125
1790 530 3869 2744 3645 71631 21231 156031 109375 147456
2471 791 14351 3375 14336 73062 21450 148525 117912 133837
2628 780 5785 3993 5488 75060 22620 187369 109744 182505
2889 909 12019 4000 11979 76505 22685 167171 116640 158171
3608 1160 23345 4913 23328 77303 25415 1271855 103823 1271808
3735 1095 7519 6144 6655 80069 26129 864059 108000 863939
3962 1190 9605 5832 9317 85140 25980 239449 121945 235824
4455 1335 10591 6591 10240 86616 25416 175441 140625 157216
5027 1595 24215 6912 24167 87624 28824 1500049 117649 1500000
5049 1629 36019 6859 36000 90801 28101 299251 127776 296875
6620 1940 13289 10985 11664 91034 28934 453509 125000 452709
6830 2210 53261 9261 53240 91490 27230 205781 137781 196520
7398 2250 20125 10648 19773 93456 29616 439921 128625 438976
7749 2289 16459 12000 15379 97247 31775 1114175 131072 1114047
8021 2561 43931 10976 43875 98021 28721 196571 163296 171875
8987 2915 76055 12167 76032 98825 32525 1757651 132651 1757600

10269 3129 28459 14739 28000 102476 31076 271001 148176 265625
11556 3756 105481 15625 105456 104585 32045 307139 148955 303264
12015 3855 73759 16384 73695 105066 30966 219541 164616 203125
12386 3806 37541 17576 37125 110619 35139 544999 151959 544000
13076 3836 26441 21296 23625 110942 36530 2047085 148877 2047032
14472 4440 43105 20577 42592 114653 34265 266555 170723 256608
14573 4745 142715 19683 142688 114950 36650 610589 157464 609725
15930 4710 34069 24565 31944 116721 38181 1415011 157216 1414875
17153 5525 116675 23328 116603 124011 40851 2370871 166375 2370816
18074 5894 189029 24389 189000 126770 38990 388229 179685 384104
19214 5954 64349 27000 63869 127688 37400 255425 216513 219488
20195 5915 40391 34391 34560 135812 41420 379865 194672 373977
22095 7215 245791 29791 245760 138068 45500 2731625 185193 2731568
22473 6765 55555 32928 54043 138635 45395 1772999 186624 1772855
22572 6660 47545 35152 44217 139139 40859 283319 224000 255879
22715 6755 50759 34295 48384 140670 41490 295501 219501 274360
23579 7619 176039 32000 175959 141372 42420 339865 208537 329232
26010 8070 88501 36501 87880 142722 45630 805285 195112 804357
26672 8720 314465 35937 314432 144245 43265 345611 212960 334611
28170 8790 103429 39304 102885 150993 48165 810355 206763 809248
29358 8610 59245 48013 52728 151317 47265 563755 210912 560947
31160 9320 72929 46305 70304 153149 50489 3132059 205379 3132000
31437 10185 255595 42592 255507 162459 47619 326599 268279 288000
31841 10421 396611 42875 396576 163133 53465 2194955 219488 2194803
33561 10461 121411 46875 120736 169290 55830 3574981 226981 3574920
33885 9945 68731 54880 61731 171899 51779 427319 251559 416000
34047 10335 90895 49152 89167 174339 51579 374599 268119 352000
35684 10604 79289 54000 75449 174420 55740 974521 238521 973360
37638 12330 493885 50653 493848 174638 55970 1043165 238328 1042173
39542 12410 158045 54872 157437 175644 53844 518569 250000 512169
40871 13271 359471 55296 359375 179192 52520 360065 296352 317057
41445 12465 101659 60835 98784 180080 55760 597329 253265 592704
44099 14459 608039 59319 608000 186527 61535 4063295 250047 4063232
51260 16820 740921 68921 740880 189335 57095 475391 276480 463391
52025 16925 492179 70304 492075 189675 59475 747799 263424 744775
52415 15455 109871 81920 101871 189945 55965 396019 298144 365835
52767 16575 213775 73167 212992 190359 62439 2688079 256000 2687919
52988 15860 124745 78608 120393 193698 57630 434485 292008 414613

Table 5: A list consisting of all inequivalent and normalised sized 4 ideal PTE solutions of the form
[0, a, a, c] =3 [b, b, d, e] with 0< b < a < 200000 and d < e.
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reason is because to turn it into an ideal PTE solution we need the resulting polynomials, −(F ·
S)(x), (G · T )(x), to have integral coefficients and be monic in accordance to Proposition VI.4.

Currently the leading coefficient of these polynomials is (a−3b)/(b2(a−b)3) = β(β+1)/(α4(β−
1)3(β2 + 1)2). To do this we first apply the linear transformation x 7→ x/(β(β + 1)) and then

multiply these polynomials through by C = α4β3(β − 1)3(β + 1)3(β2 + 1)2. This makes these

polynomials have integral coefficients and be monic. After doing all the algebra, the expressions

for a, b, c, d, e materialise as stated in the proposition.

Remark VI.19. The strategy laid out in the proof of the Proposition can be generalised in order to

obtain a complete parametrisation of all ideal PTE solutions of size 4 not just those with this specific

shape.

Corollary VI.20. Suppose we have an ideal PTE solution of the form [0, a, a, c] =3 [b, b, d, e] with

a > b and a, b, c, d, e > 0. Then we have

3b < a < (2+
p

2)b.

Proof. By the parametrisation of such solutions given in Proposition VI.18, we have

a
b
=
β2 − 2β + 3
β2 + 1

,

for some β ∈ Q. As a rational function, the right hand expression attains a global maximum at

β = 1−
p

2. Thus, after evaluation, we get a/b < 2+
p

2 which proves the upper bound.

For the lower bound, suppose that b < a ≤ 3b. Once again, substitute the parametric

expressions for a and b. After solving the inequality, one deduces that α≥ 0 and either β < −1

or 0< β < 1.

Recall that d and e can be written in terms of this parametrisation as d = α(β + 1)(β − 1)3

and e = 4αβ . If β < −1 then, since α ≥ 0, we must have e = 4αβ < 0. Similarly, if 0 < β < 1

then d = α(β + 1)(β − 1)3 < 0. In either case, we get a contradiction to the positivity of d and

e and thus proves the intended lower bound.

As a consequence of the above proof, we must have α < 0 and −1 < β < 0. Hence we

can write β = −p0/q0 for some positive coprime integers p0, q0 with p0 < q0. Moreover, if the

PTE solution is normalised in the sense that not only does it satisfy the condition given in the

above Corollary but also a, b, c, d, e are integers such that gcd(a, b, c, d, e) = 1, then we must

have α= −q4
0. We note that this is a necessary condition to find such normalised solutions but is

not sufficient. Substituting these in, one gets an integral parametrisation of such PTE solutions

rather than a rational one.

Using this parameterisation with the help of the bounds given in Corollary VI.20, one can

find concrete PTE solutions of this type. Table 5 lists all possible solutions of this type such that

0< b < a < 200000.

VI.7 Combining XGCD over polynomial rings with CHM: Theory and Results

Much like what we did with the polynomials pn(x) = 2xn − 1 in Section Section VI.5, it is a

natural question to ask whether we could combine this new technique with the CHM machinery
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to obtain any meaningful SQISign parameters. Recall this means that you take a smooth twin

(r, r+1) and you lift if up through a polynomial in such a way that contains both r and r+1 as

factors. This lifting is done to a size suitable for cryptographic applications. The great advantage

of using the polynomials pn(x) is that the amount of guaranteed smoothness one can get from

a pair of twin smooth integers is quite high. We shall show that for a given degree, this is the

optimal amount of guaranteed smoothness one can get. Having said this there are some other

polynomials that can give this optimal amount of guaranteed smoothness from just a smooth

twin (r, r + 1).
Recall that pn(x) can be obtained from applying the XGCD to the polynomials xn and x −1.

The natural next choice is to try the polynomials7 x i and (x + 1) j for integers i, j ≥ 2. As men-

tioned earlier we constrain ourself to the setting with i ̸= j since he have SQISign applications

in mind.

Let Si, j , Ti, j be the polynomials one gets from applying the extended Euclidean algorithm to

the polynomials x i and (x +1) j . Through a similar method as deployed in the proof of Claim 2,

we have the following algebraic expressions for Si, j and Ti, j

Si, j(x) = (−1)i
j−1
∑

k=0

�

i + k− 1
k

�

(x + 1)k, and

Ti, j(x) =
i−1
∑

k=0

(−1)k
�

j + k− 1
k

�

x k.

These polynomials have integer coefficients, hence the polynomials x iSi, j(x), (x + 1) j Ti, j(x)
differ by one. We set pi, j(x) to be the resulting polynomial with a positive leading coefficient

from summing the corresponding twins. In other words, we have

pi, j(x) := (−1)i
�

x iSi, j(x)− (x + 1) j Ti, j(x)
�

= (−1)i
�

2x iSi, j(x)− 1
�

= (−1)i+1
�

2(x + 1) j Ti, j(x) + 1
�

.

We will use these polynomials to find primes to attempt to find SQISign friendly parameters

through a similar procedure as deployed for the polynomials pn. Namely, take a smooth twin

(r, r + 1) and compute the evaluation pi, j(r). If there is enough smoothness from the other

factors and it is prime then we get such a parameter. We remark that the amount of guaranteed

smoothness from a smooth twin is exactly the same as for the polynomials pn. Moreover, since

Si, j and Ti, j do not contain either 0 or −1 as rational roots, then by the uniqueness of the

polynomials Si, j and Ti, j this is the maximum possible amount of guaranteed smoothness from

a single twin. We summarise this result in the following lemma.

Lemma VI.21. Let i, j, n ∈ Z be integers and P ∈ Q[x] be a polynomial of degree n and set

Q := P(P + 1) ∈Q[x]. If x i(x + 1) j |Q(x) then i + j ≤ n+ 1.

We first note the special cases when i = 1 and j = 1 (respectively): p1,n(x) = pn(x + 1) and

pn,1(x) = 2xn + (−1)n+1. As alluded earlier, the latter only gives us pn(x) when n is even. For

7The polynomials x i and (x −1) j might seem like a more natural choice to generalise the discussion with pn. However
we note that it is actually the same as the choice we make up to applying a linear shift and swapping the exponents i
and j.
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i, j ≥ 2, these choice of polynomials seem to be give an interesting alternative to the polynomials

pn. Once again, we limit ourselves to small i, j for the same reason as why we kept n small in our

exploration with pn(x). Additionally, the polynomials Si, j , Ti, j appear to be irreducible for all

i, j ≥ 2. Therefore the smoothness probabilities would not be in our favour. In addition, since

the maximum exponent of i, j is smaller than its counterpart from pn(x), then we would require

the twin, (r, r+1), to have a much larger power of two for the necessary SQISign requirements.

This reduces the space search down quite a bit but doesn’t limit the possible scope for finding

SQISign parameters. We used our data from Section VI.4.4 and lifted them using new these

polynomials to see if the result could be suitable for SQISign. A collection of primes can be

found in Table 6. We note that the primes is very comparable to the corresponding primes,

p = pn(r), mentioned in Table 4 – not only with respect to the power of two but also the signing

cost metric.

VI.7.1 Results

We start by looking at the case when i = 3 and j = 1. Here we have p3,1(x) = 2x3 + 1. The

factorisation of p3,1(x) + 1 is (x + 1)(x2 − x + 1) which is very similar to the factorisation of

p3(x) − 1. This makes the probability of attaining the neccessary amount of smoothness for

SQISign given that r, r+1 are smooth the same as mentioned in Table 3. From the collection of

85-bit twins found with the CHM algorithm, we found the following 256-bit prime, p = 2r3+1

with r = 31316053921198399970611200. Here we have

p+ 1= 2 · 7 · 31 · 37 · 79 · 163 · 199 · 2332 · 271 · 313 · 3892 · 401 · 409 · 491

· 8258208689449582657 · 3221159033345167520733643

p− 1= 237 · 318 · 56 · 533 · 593 · 1493 · 1513 · 2113 · 2393 · 3173 · 3733

When combining the 128-bit twins found with the CHM with the polynomial p3,1(x), none of

them produce any primes suitable for SQISign friendly parameters for NIST Level III security.

Now we look at the cases with i = 2 and j = 3 (and vice-versa). Here we have

p2,3(x) = 2x2(3x2 + 8x + 6)− 1= 2(x + 1)3(3x − 1) + 1, and

p3,2(x) = 2(x + 1)2(3x2 − 2x + 1)− 1= 2x3(3x + 4) + 1.

This example is very comparable to the polynomial p4 – in both settings, outside of the x , x +1

factors that, we have a linear term and a quadratic term. So the probability that we have the

necessary amount of smoothness from these factors will be the same as in the setting of p4 (see

Table 3 for concrete numbers).

Using the 64-bit twins that were found using CHM and setting i = 3 and j = 2, we best

prime suitable for SQISign that was found is the following 253-bit prime, p = 2(r + 1)2(3r2 −
2r + 1)− 1= 2r3(3r + 4) + 1 with r = 5964933197580566528. Here we have

p+ 1= 2 · 35 · 19 · 312 · 372 · 67 · 832 · 892 · 1132 · 1574 · 1732 · 233 · 4872

· 641 · 70909698817 · 293238280483753907, and

p− 1= 248 · 113 · 292 · 473 · 533 · 79 · 1313 · 3313 · 3493 · 4393 · 691

· 25693 · 3792721.
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Using the 96-bit twins that were found using CHM and setting i = 2 and j = 3, we found the

following 373-bit prime, p = 2r2(3r2+8r+6)−1 with r = 6486038899815523483100643327.

Here we have

p+ 1= 2 · 37 · 710 · 196 · 672 · 131 · 2412 · 3132 · 3792 · 641 · 8832 · 11032

· 11172 · 2689 · 11177 · 1629009993156817

· 10232693625042911300232345793, and

p− 1= 266 · 5 · 133 · 173 · 233 · 413 · 593 · 613 · 836 · 127 · 389 · 4913 · 7873

· 983 · 15493 · 10085189 · 1986460467059.

In addition, when reverting to i = 3 and j = 2, we found the following 380-bit prime p =
2(r+1)2(3r2−2r+1)−1 with r = 24412952691406071260714369024. This has an attractively

small signing cost metric – the smallest among all of the all of our NIST-III primes while also

attaining a relatively large power of two. Here we have

p+ 1= 2 · 35 · 54 · 72 · 172 · 73 · 794 · 832 · 1792 · 2112 · 2392 · 3312 · 353 · 4312

· 563 · 10492 · 13032 · 1553 · 2593 · 12536326152153163

· 813748879822295495753590483, and

p− 1= 257 · 116 · 193 · 313 · 41 · 713 · 893 · 973 · 1013 · 1733 · 1913 · 4913

· 13013 · 1523 · 293222851537475032358083.

Now we look at the case when i, j ∈ {2,4} with i ̸= j. Here the degree of the polynomial

pi, j(x) is 5 and, outside of the x i and (x + 1) j factors that appear in pi, j(x) ± 1, we have a

linear and an irreducible cubic polynomial. So comparing it to the corresponding polynomial

p5(x) where outside of x5 and x − 1 we only have an irreducible quartic, these polynomials

offer a slightly better alternative to find SQISign parameters. While the amount guaranteed

smoothness is smaller compared to the smaller i and j, the decomposition of the other factors

made it possible to find some practical parameters. Using the 76-bit twins that were found using

CHM and setting i = 2 and j = 4, we found the following 379-bit prime, p = 2(r+1)4(4r−1)+1

with r = 39293998440443571732479. Here we have

p+ 1= 2 · 114 · 132 · 292 · 532 · 612 · 1272 · 2412 · 2772 · 2832 · 2932 · 3792

· 743 · 907 · 1289 · 26417 · 1356037 · 103868239 · 551183887

· 9479575745803 · 14370319539299762939, and

p− 1= 269 · 332 · 55 · 174 · 23 · 378 · 41 · 3494 · 409 · 6534 · 839 · 1367 · 17234

· 10343 · 6870751.

For larger i and j, not only does the amount of guaranteed smoothness decrease but we

are also hindered by the irreducibility of the polynomials Si, j and Ti, j . For instance using i = 4

and j = 3, one has to find smoothness from an irreducible quadratic and an irreducible cubic

factor. In comparison to p6, one has to look at a linear and two irreducible quadratic factors.

This makes the smoothness probability from this choice of i, j worse. The experimentation with

some of these larger i and j did not yield any practical SQISign parameters.
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NIST security
level (i, j) r ⌈log2(p)⌉ f B

p
B/ f logp(T )

NIST-I

(3, 1)

2701125310982146775580671
5402116365237601601945600
5506325314068899825157120

12002858250894124967337984
31316053921198399970611200

245
248
248
251
256

35
46
31
40
37

673
769
457
503
491

0.74
0.60
0.69
0.56
0.60

1.28
1.30
1.35
1.29
1.29

(2, 3)
1661084743710662655
5554268927024357375

245
252

42
42

907
547

0.72
0.56

1.28
1.26

(3, 2)
1254124477112410112
2066354955552768000
5964933197580566528

244
246
253

42
45
48

1103
941
691

0.79
0.68
0.55

1.32
1.25
1.29

NIST-III

(2, 3)
6486038899815523483100643327

15243470554423552878739455999
373
378

66
57

11177
85667

1.60
5.13

1.26
1.35

(3, 2)
17883472313040580309580840960
24412952691406071260714369024

378
380

51
57

36913
2593

3.77
0.89

1.30
1.27

(2, 4)

16445101733510926196735
29470128945436815032319
30747138602455038607359
39293998440443571732479

373
377
377
379

53
61
57
69

36061
36011
20441
26417

3.58
3.11
2.51
2.36

1.31
1.27
1.29
1.27

(4, 2)
6221427644839571619840

73986613900438892871680
365
383

69
61

24631
40387

2.27
3.29

1.27
1.29

Table 6: A table of SQISign parameters p = pi, j(r) with i, j ≥ 2 found using twin-smooth integers
(r, r + 1) at each security level. The other quantities are just as in Table 4.

We report no NIST-V primes using this method. The experimentation using i, j ∈ {2, 3}
requires 128-bit twins in order obtain such primes. As mentioned before, the small quantity of

such twins found from the CHM computation makes it probabilistically difficult to expect to find

any SQISign parameters. Additionally, the experimentation for larger i, j did not result in any

noteworthy primes that attained a large enough power of two while keeping the smoothness

bound particularly small.

Remark VI.22. We would ideally implement the primes from not only this section but also the

primes found in Section VI.5.3 using the SQISign code provided in [DFLLW23] to determine how

well these primes perform in practice. However, the current implementation is specifically tailored

towards the particular primes that are being used, and is limited to NIST-I parameter sizes. Includ-

ing our NIST-I primes from Table 4 results in failures during key generation, which seem to stem

from using parameters with different powers of two. Thus, implementing and benchmarking our

parameters would require a major rework of the provided code, which is out of the scope of this

work. Nevertheless, the primes from Table 4 provide various alternatives for NIST-I parameters, and

the first practical NIST-III and NIST-V parameters in the literature, which seems especially important

in the light of the upcoming NIST submission period for signature schemes.

Dropping the amount of guaranteed smoothness. The polynomials pi, j and their special

cases pn could guarantee a smooth factor p1+1/n where n is the degree of the polynomial. As

demonstrated through Lemma VI.21, this is the largest one could guarantee from a smooth twin.

So, for a fixed n, there are no other degree n polynomials that could guarantee either more or

equal amount of smoothness from a single smooth twin. If we chose polynomials whereby

the amount of guaranteed smoothness was smaller than this optimum, then our chances of

finding suitable parameters for SQISign would be significantly smaller. However, one could
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counterbalance this by having a large family of polynomials that could guarantee a large amount

of smoothness from a single twin. Subsequently, one could adopt some sieving techniques in

order essentially test all options in one go. This would require using a combination of the

following two sieving techniques. The first one is based on the sieve of Eratosthenes [CP01,

Chapter 3.2.6] that identifies the smooth integers of the form F(r) for a univariate polynomial

F and from an interval of integers r ∈ [a, b]. The second one is due to Bernstein [Ber04] that

identifies smooth integers from a list of numbers that has no prescribed structure. The idea is

to compute the product of primes up to B, call this product z, then compute

y = (z mod m)2
e

mod m

for each integer m in the list where e is the smallest positive integer such that 22e
≥ m and

finally compute gcd of y and m. This gcd computation gives the B-smooth part of the integer

m [Ber04, Theorem 2.2] and moreover it is equal to m itself then the integer is B-smooth. Both

techniques would be more than sufficient for the application to SQISign parameter searches of

this type. No experimentation has conducted with this approach and we only theorise this as a

possible avenue.

We go through this with a concrete example. Let a be a rational parameter and let F(x) =
x2(ax + a+1), G(x) = x +1. Applying the extended Euclidean algorithm to these polynomials

yields S(x) = 1 and T (x) = −ax2− x+1. It is worth noting that, through a simple discriminant

calculation, the polynomial T can be factored only when a is a product of consecutive integers.

In this setting the smoothness probabilities will be slightly better due to the ability to factor

T . Having said this it will be worthwhile to consider this for more values a other than this

exceptional circumstance. Since deg(F · S) = deg(G · T ) = 3, this would be comparable to

the polynomial p3(x). Suppose that (r, r + 1) are smooth twins. In comparison to p3, the

amount of guaranteed smoothness is reduced from around p4/3 to around p/a2. What we lose

in guaranteed smoothness we make up for a parameter a. This means that from this one twin

(r, r + 1), we can try a test the smoothness of a lot more.

For each CHM smooth twin (r, r + 1), let mr be the polynomial mr(x) = (x r + x + 1)(x r2 +
r − 1). Then one would use the mentioned sieving techniques to sieve through this polynomial

for integers inputs a ∈ [1, N] and a given threshold N . This will tell us which values mr(a) have

the necessary amount of smoothness for SQISign. Depending on the size of the threshold, the

added cost of doing this is no longer negligible in comparison to the Section VI.5 and would most

likely require the same amount or possibly more computation compared to the corresponding

CHM computation.

Remark VI.23. One could adopt this idea for a vast array of other settings other than just this

exceptional case as long as the amount of guaranteed smoothness is quite large (say approximately

p). If you adopted this for a family of polynomials of larger degree you would need to make sure

that the polynomials s and t has some nice factoring properties which would certainly increase the

smoothness probabilities. Depending on the polynomials in question, one would have to redo the

CHM computations utilising the generalised CHM algorithm to find smooth values of other quadratic

polynomials rather than just x(x + 1). The new PTE solutions mentioned in Section VI.6.3, could

be a good alternative to these polynomials.
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VI.8 Conclusion

In this chapter we have explored new techniques for finding twin-smooth integers. The first of

these methods is based on the CHM algorithm which is a constructive algorithm that conjec-

turally finds “almost all" twin smooth integers for a given smoothness bound B. In particular

we gave some optimisations to the algorithm in order to run the algorithm for larger values

of B than previously done. The second of these methods is based on the extended Euclidean

algorithm over the polynomial ring Q[x] and theoretically show when this method could be

more advantageous over prior methods. We leave the practicalities of this algorithm and seeing

whether one can find smoother cryptographic sized twins as future work.

Subsequently, we have put these techniques in the context of finding parameters to the

isogeny-based signature scheme SQISign. The idea used to find these parameters is to find

smaller twin-smooth integers and lift them up using either the polynomial pn(x) = 2xn − 1 or

the polynomials pi, j(x) obtained from some XGCD computation.

As a final remark from the perspective of cryptographic protocols, other than digital signa-

tures, there are no other known protocols based on the constructive Deuring correspondence.

There seems to be a number of advanced protocols for which a SQISign adaptation could prove

to be advantageous. Such a protocol (if possible) might require a setup that involves some twin

smooth integers. We leave this exploration as an avenue for future work.
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Chapter VII

Updatable Public-Key Encryption: Generic

Constructions and Instantiations from

Group Actions

In this chapter, we present work that was done in collaboration with Daniel Gardham [GS23].

VII.1 Introduction

Forward security prevents a compromised session from leaking information from previous ses-

sions. That is, it enables users to regularly update keys so that any corruption at period i cannot

help an adversary from breaking security for a time period j > i. In the public key setting, this

is a trivial property if we allow the receiver to initiate the update, however, forward security in-

stead allows a sender to initiate. This scenario is of particular interest to secure communication

protocols, such as Signal [Sys22] or OTR [BGB04], where the receiver may be off line whilst

receiving multiple messages from potentially multiple senders.

However, full forward secure PKE has been difficult to achieve with the best known con-

structions [JS18, PR18] making use of complex primitives such as Hierarchical Identity-based

Encryption [HL02]. Thus, a weaker notion was considered: Updatable Public Key Encryp-

tion. This UPKE was initially proposed in Jost et. al. [JMM19] and swiftly built upon in Al-

wen et. al. [ACDT20], and relaxes full forward security by not requiring the need for the chain

of public keys to be independently producible. Instead, a sender performing an update pub-

lishes the new public key on behalf of the receiver. Constructions for UPKE have been very

efficient, that is, order of magnitude faster than comparable FS-PKE, which makes UPKE desir-

able in mobile devices for secure messaging protocols. However, there are few constructions

of UPKE [JMM19, ACDT20, DKW21] all of which rely on specific hardness assumptions or un-

derlying encryption schemes, for example, [DKW21] give a construction based on the BHHO

cryptosystem. In particular, there is no generic approach for constructing this primitive despite

advantages these methods can afford. By using generic building blocks, the schemes become

completely independent from concrete assumptions, so that when a scheme is instantiated, one



102 VII. UPKE: GENERIC CONSTRUCTIONS AND INSTANTIATIONS FROM GROUP ACTIONS

can employ the most efficient building blocks that meet the security guarantees and efficiency

requirements defined by a particular deployment.

In addition, there is an ever growing need to build cryptographic primitives that are resistant

to quantum adversaries. A vast majority of currently deployed public-key protocols rely on

number-theoretic problems that will eventually be easy to solve when given a large enough

quantum computer. Lattices provide a UPKE construction that is thought to be quantum-secure

based on the Learning with Errors assumption [DKW21]. These constructions provide direct

instantiations that rely on careful selection of parameters.

Isogenies have also been used to construct UPKE [EJKM22]. The first constructions was

based on the SIDH framework but is now considered completely broken due to the recent at-

tacks on the SIDH protocol [CD23,MMP+23,Rob23]. Their second construction is based on the

isogeny-based group action which underpins the CSIDH protocol. The security of this scheme

still remains intact however, as it shall be noted in the related work section, it requires an ex-

pensive pre-computation which makes it infeasible to realise with practical parameters.

VII.1.1 Contribution

In this chapter we give two new isogeny-based constructions of UPKE’s based on a group action

used in CSIDH. In particular the second of these constructions does not require this expensive

pre-computation and hence makes it scalable. Moreover, these constructions are described using

the language of cryptographic group actions.

In order to achieve this we first give generic constructions for UPKE that satisfy indistin-

guishability under a plaintext attack with chosen randomness, or IND-CR-CPA. We use key-

private public-key encryption as a generic building block along with the ARKG protocol from Fry-

mann et. al. [FGK+20]. We stress that the generic nature of our constructions allows the building

blocks to be instantiated with any compatible KP-PKE and ARKG constructions. Secondly, we

show that KP-PKE itself can be constructed in a generic way, once again utilising the ARKG pro-

tocol. When combined with standard public key encryption, we are able to construct IND-IK-CCA

and IND-IK-CPA constructions for KP-PKE that are proven secure in the standard model. As a

corollary to our first two contributions, we can construct UPKE from any compatible ARKG and

PKE schemes using simplistic generic methods.

We then instantiate it with isogenies by giving two constructions for ARKG for both effect-

ive and restricted group actions. We show both meet all security properties of an ARKG scheme

based on Group Action Inverse Problem, and a new assumption we call Psuedorandom Function

Oracle Group Action Diffie Hellman (PRF-OGADH). This is based on an analogous assumption,

PRF-ODH, that was introduced to study the security of TLS1.3 [BFGJ17] and underpins the

original discrete-log based construction for ARKG. We believe this assumption may be of inde-

pendent interest, and we show how it relates to the GAIP problem.

Combining our results thus far, we provide a concrete constructions of a UPKE from both

effective and restricted effective group actions. Our construction based on restricted effective

group actions gives a stronger alternative when instantiated with isogenies in comparison to the

only known isogeny-based UPKE construction presented in [EJKM22].
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VII.1.2 Related Works

Forward Secure Encryption. For public key encryption, Cannetti [CHK04] proposed the first

scheme and remains state-of-the-art. The high-level idea is to define a key-pair (ski ,pki) for

epoch i, where updating either pk or sk to the next epoch can be independently incremented by

any, or possibly many, senders. Canetti also shows how to generically transform any Hierarchical

Identity-based Encryption scheme into a FS-PKE. Since this result, many FS-PKE constructions

have been constructed using this technique from a wide range of security assumptions such as

DDH/CDH or factoring, or even LPN [DG17b, DG17a, BLSV18]. However these generic tech-

niques have resulted in an efficiency gap between FS-PKE and standard PKE. Furthermore, all

constructions that use the HIBE transform seem to require use of the Random Oracle Model.

There are also lattice-based constructions for HIBE (e.g. [CHKP10]) which imply FS-PKE from

lattices, whose security relies on the popular LWE assumption. However, this scheme suffers

from inefficient GPV-style trapdoors [GPV08].

Updatable Public Key Encryption. As mentioned previously, UPKE is similar to FS-PKE but

with a mild relaxation of the security properties. It was first defined in concurrent works of

Alwen et. al. [ACDT20] and Jost et. al. [JMM19]. In these seminal works, Jost et. al. propose

an efficient secure-messaging protocol with almost-optimal security in the setting where an

adversary has access to intermediate values. They further consider randomness exposure, and

rely on circular-security in the random oracle model to prove their protocol secure with these

additional guarantees. Similarly, Alwen et. al. analyse the TreeKEM protocol [BBR18], which

is at the core of the Secure Group Messaging (SGM) protocol proposed by the MLS working

group [BRO+22]. This paper gives a thorough analysis of a protocol they term Continuous

Group Key Agreement, and show that TreeKEM falls short of required security. To overcome this,

they propose a simpler definition for UPKE than that of Jost et. al , but realise it with the same

construction based on the CDH assumption. This work also requires an assumption about the

order in which messages are delivered to all participants.

Recently, Dodis et. al. [DKW21] improved upon prior work by giving the first UPKE schemes

in the standard model. They further strengthen the security in a property they term Indis-

tinguishability against Chosen-Randomness Plaintext Attacks, or IND-CR-CPA. It requires that

exposure of any key secret key in epoch i does not compromise the messages encrypted under

prior public keys in epoch j (where j < i), provided at least one update happened for which the

adversary did not control the randomness used in the update. This is actually a stronger defin-

ition than originally proposed in Alwen et. al. [ACDT20] in which randomness is leaked to the

adversary, but not controlled. Dodis et. al. give constructions based on a pairing based construc-

tion that relies on the BDDH assumption as well as a lattice construction based on LWE. They

also consider and further strengthening of their security properties, that instead of allowing the

adversary to choose the randomness, it can provide maliciously generated updated public keys

and update tokens.

Finally we note that some works, for example [BLMR13,BDGJ20], called Updatable Encryp-

tion differ from UPKE since they have historically been based on symmetric encryption schemes.

While some public-key constructions exist of Updatable Encryption scheme, the main difference
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is that the key pairs are updated together whereas in UPKE’s the update of the public key and

the private key’s are done separately. This makes their use cases quite different. Hence, despite

the similar name, they do not bare relation to Updatable Public Key Encryption.

Key-Private Encryption. In this work, it will be necessary to consider key-private public key

encryption (KP-PKE). The defining property of KP-PKE ensures that an adversary is unable to

distinguish which of two potential public keys were used to encrypt a ciphertext. This would

be desired in situations where a receiver of a ciphertext wishes to remain anonymous on a

shared channel. Along with UPKE, these anonymity properties of PKE have gained increasing

importance in the anonymous communications space [BBDP01a].

Initially, it was shown that some well known encryption schemes such as ElGamal, Cramer-

Shoup and RSA-based schemes have been shown to be key-private [BBDP01a]. Later, Pater-

son and Srinivasan [PS09], give the previously only generic approach to construct key-private

PKE with IND-CCA security in a (multi-) trusted authority setting. Their techniques use the

CHK transform [CHK04] and enjoy proofs in the standard model. It has been used by Kohl-

weiss et. al. [KMO+], along with other standard PKE properties, to achieve confidential receiver-

anonymous channels that preserve both message confidentiality and receiver anonymity, leaking

only the length of the message and allowing the adversary only to delete, honestly deliver or

inject arbitrary messages to chosen recipients. Finally, we also note that similar notions have

been considered in identity-based encryption where key-privacy refers to the root authority.

That is, an adversary must distinguish ciphertexts produced using different master public-keys,

with control of the message and identity [PS08].

Cryptographic Group Actions. Over the last few years, the topic of cryptographic group ac-

tions has gained a lot of attraction. These group actions can be thought of as a generalisation

of the traditional group exponentiation that is found in a lot of modern protocols. As already

mentioned in Chapter IV the class group of an order in an imaginary quadratic field acts on the

set of rational supersingular elliptic curves by isogenies. This gives us the CSIDH key exchange

protocol and can be reformulated as a cryptographic group action. An updatable public key

encryption scheme was proposed by Eaton et. al. [EJKM22] using this specific group action.

However, it requires an expensive class group precomputation in order to run their protocol

which, as mentioned in Section IV.5.1, has only been done for certain parameters and does not

scale for the higher security levels. However, as part of recent work by De Feo et. al. [FFK+23],
were able to scale this by working with a quadratic order of a specific description which makes

computing the class group more efficient. Nonetheless, the cost of evaluating the group action

still has subexponential complexity and makes it rather impractical. In addition, due to recent

quantum security analysis of these group actions [Pei20, BS20], the parameters that were ini-

tially proposed fall short of their claimed security targets. This would therefore require the size

of the parameters to increase by quite a margin [CSCDJRH22]. This would make the precompu-

tation task completely infeasible. The CSIDH non-interactive key exchange protocol [CLM+18]
gets around this by having a specific parameter selection and uses a set of known ideal classes

that at the very least is conjectured to cover the class group but means that one cannot guarantee

absolute uniform sampling within the whole group.
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In 2020, the idea of cryptographic group actions was formalised by Alamati et al. [AD-

FMP20]. This formalisation captures not only the general setting of a cryptographic group

action (which they call effective group actions) but also captures the restricted case that encom-

passes the setup given in CSIDH (which they call restricted effective group actions). From this

formalisation they were able to construct dual-mode PKE and a Naor-Reingold style PRF (among

other things). This formalisation has been explored by others to build other protocols such as

password authenticated key exchange and key encapsulation mechanisms [AEK+22,DHK+23].
Recently, Leroux and Roméas [LR22] made some strides to construct an updatable encryption

scheme from group actions. As mentioned earlier, this scheme bares no relation to the updatable

public key encryption that will be the focus of this work.

VII.1.3 Organisation

In Section VII.2 we introduce the cryptographic tools and preliminaries. This includes a formal

description of cryptographic group actions and their underlying hardness assumptions as well

as the cryptographic building blocks that will be needed for our purposes. In Section VII.3 we

prove the generic construction of a UPKE scheme that uses the functionality of an ARKG scheme

as well as a KP-PKE scheme. In Section VII.4 we prove a generic construction of the KP-PKE

from an ARKG scheme as well as a PKE scheme. From this, one can conclude that the UPKE

construction can be obtained from an ARKG scheme and a PKE scheme. In Section VII.5, we use

the generic techniques to provide a concrete construction of the UPKE that uses the language of

cryptographic group actions. In the Appendices, we provide some extra reductions and security

proofs.

VII.2 Preliminaries

We begin by introducing the underlying mathematical concepts and cryptographic building

blocks.

VII.2.1 Cryptographic Group Actions

Given a group G and a set X , we recall that we say G acts on X by a map ⋆ : G × X → X if this

map satisfies the following two properties:

• If e is the identity element in G, then e ⋆ x = x for any x ∈ X ;

• g ⋆ (h ⋆ x) = (gh) ⋆ x for any g, h ∈ G and x ∈ X .

Whenever this is the case, we say the triple (G, X ,⋆) is a group action (often we abbreviate this

to just referring to ⋆ as group action). There is a notion of a cryptographic group action on

which the problem of recovering a group element g when presented with x and g ⋆ x is hard.

Stolbunov [RS06] called this problem the Group Action Inverse Problem (GAIP). In recent years,

more formal definitions of these cryptographic group actions have been presented that give a

rigorous reflection on what one requires for these group actions. This formalisation was done

by Alamati et.al. [ADFMP20] and we adopt their definition in this work.
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Definition VII.1 (Effective group actions (EGA)). We say a group action (G, X ,⋆) is effective if

the following properties are satisfied

1. The group G is finite and there are efficient (PPT) algorithms for:

• Membership testing: decide whether an element g belongs to the group G;

• Equality testing: decide whether two elements, g0, g1 ∈ G represent the same group

element in G;

• Sampling: from a distribution DG on G, sample elements from G;

• Operation: computing gh for any g, h ∈ G;

• Inversion: computing g−1 for any g ∈ G.

2. The set X is finite and there are efficient algorithms for:

• Membership testing: decide whether an element x belongs to the set X ;

• Unique representation: given an arbitrary set element x ∈ X , compute a string x̂ that

canonically represents x.

3. There is a distinguished element x0 ∈ X , called the “origin", such that its bit-string represent-

ation is known.

4. There is an efficient algorithm that given any g ∈ G and x ∈ X outputs g ⋆ x.

Next we introduce a slightly modified definition of restricted effective group actions. The slight

modification encompasses the fact that sampling elements from the underlying generating set

is close to uniform up to some negligible probability.

Definition VII.2 (Restricted effective group actions (REGA)). Let (G, X ,⋆) be a group action

and let g = (g1, · · · , gn) be a (not necessarily minimal) generating set for G. We say the action is

g-restricted effective if the following properties are satisfied

1. G is finite and n= poly(log(|G|).

2. The set X is finite and there are efficient algorithms for:

• Membership testing: decide whether an element x belongs to the set X ;

• Unique representation: given an arbitrary set element x ∈ X , compute a string x̂ that

canonically represents x.

3. There is a distinguished element x0 ∈ X , called the “origin", such that its bit-string represent-

ation is known.

4. There is an efficient algorithm that given any gi ∈ g in the generating set for G and x ∈ X

outputs gi ⋆ x and g−1
i ⋆ x.

Remark VII.3. As described in Section IV.5, the group action based on isogenies that is used in

CSIDH can be turned into a REGA.
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Remark VII.4. For a REGA, if the generators gi are uniformly random elements of G, then the

resulting distribution of elements of the form
∏

g ei
i is statistically close to uniform. In the setting

of CSIDH, this argument can only be made heuristically.

We abuse the naming conventions given to these types of group actions by calling these

cryptographic group actions whenever we are in at least one of either of these definitions. We

formalise the group action inverse problem (GAIP) which is a core and fundamental problem for

these cryptographic group actions that we want to be hard.

Definition VII.5 (Group Action Inverse Problem). Let (G, X ,⋆) be a cryptographic group action

with a distinguished element x ∈ X and let y := g ⋆ x for some g ∈ G. The “group action inverse

problem” (GAIP) asks to compute the element g given the set elements x , y.

In the formalisation of these group actions by Alamati et. al. [ADFMP20], they introduced

a security definition which they call weak-unpredicatable group action. The idea that captures

this definition is that any polynomial time adversary cannot compute g ⋆ x∗ for some challenge

x∗ ∈ X even if it is given polynomially many tuples of the form (x i , g ⋆ x i) with x i ̸= x∗.

However, in this work we adopt the definitions laid out by Abdalla et. al. [AEK+22]which are

a more traditional formulation of the security properties that are desired for these cryptographic

group actions. Moreover, these definitions are equivalent to the weak-unpredictable definition

mentioned above. We recall the main definitions that are needed for this work.

Definition VII.6 (Group action decisional Diffie Hellman Problem). Let (G, X ,⋆) be a cryp-

tographic group action (either effective or restricted) with a distinguished element x ∈ X and

g ⋆ x , h ⋆ x , y ∈ X be three set elements. The group action decision oracle GA−DDH takes as

input the three set elements and returns either 1 if y = (g · h) ⋆ x or 0 otherwise. Moreover we

define the GA−DDH advantage for an adversaryA to be

AdvGA−DDH
(G,X ,⋆),A (λ) := Pr

�

A (g ⋆ x , h ⋆ x , y) = b′ : b′ = GA−DDH(g ⋆ x , h ⋆ x , y)
�

.

Definition VII.7 (Group action strong computational Diffie Hellman Problem). Let (G, X ,⋆) be

a cryptographic group action (either effective or restricted) with a distinguished element x ∈ X and

g ⋆ x , h ⋆ x ∈ X be two set elements. The problem to compute the set element (g · h) ⋆ x given

only g ⋆ x and h ⋆ x as well as access to a decisional oracle. Moreover we define the GA− StCDH

advantage for an adversaryA to be

AdvGA−StCDH
(G,X ,⋆),A (λ) := Pr

�

A GA−DDH(g⋆x ,·,·)(g ⋆ x , h ⋆ x) = (g · h) ⋆ x
�

.

VII.2.2 Cryptographic Building Blocks

In this section we recall the definitions and security properties of standard cryptographic prim-

itives.

Asynchronous Remote Key Generation [FGK+20]. This building block enables for asyn-

chronous key generation. That is, the creation of a public key via the probabilistic algorithm

DerivePK can occur before that of the corresponding secret key, via the deterministic algorithm

DeriveSK. This will form the update procedure of our UPKE constructions. Initially, it was
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motivated as protocol for WebAuthn account recovery, although the critical property that the

public key generation can be separated from the secret key generation can be used in other

applications, as we do in this work. The high-level description of ARKG follows.

The Asynchronous Remote Key Generation scheme consists of the following five algorithms

ARKG := (Setup,KeyGen,DerivePK,DeriveSK,Check):

Setup(1λ) generates and outputs public parameters of the scheme for the security parameter

λ ∈ N.

KeyGen(pp), on input pp, computes and returns a private-public key pair (sk,pk).

DerivePK(pp,pk,aux) probabilistically returns a new public key pk′ together with the link cred

between pk and pk′, for the inputs pp, pk and auxiliary data aux. In this work, we do not

make use of aux and therefore do not include it in algorithm calls.

DeriveSK(pp, sk,cred) is a deterministic algorithm that computes and outputs either the new

private key sk′, corresponding to the public key pk′ using cred, or ⊥ on error. Together,

(sk′,pk′) have a distribution we call D.

Check(pp, sk′,pk′), on input (sk′,pk′), returns 1 if (sk′,pk′) forms a valid private-public key

pair, where sk′ is the corresponding private key to pk′, else 0.

Correctness. An ARKG scheme is correct if, for every λ ∈ N, pp← Setup(λ), the probability

Pr
�

Check(pp, sk′,pk′) = 1
�

= 1 given

(sk,pk)← KeyGen(pp);

(pk′,cred)←DerivePK(pp,pk, ·);

sk′←DeriveSK(pp, sk,cred).

We recall the security properties for ARKG. The first, PK Unlinkability, is an anonymity prop-

erty that ensures derived keys cannot be linked to the long term key, whereas key-forgery is

prevented by SK security. The latter comes in 4 variations depending on the power afforded to

the adversary. In this work we implicitly make use of the weakest definition, Honest Strong SK

security (HSKS). We further introduce a new property for ARKG that requires existence of an

algorithm that can simulate derivation but for a preselected ‘derived’ public key.

SK-security. The private-key security property ensures that for an initial public key pk, an

adversary A cannot derive a valid key pair (sk⋆,pk⋆) along with corresponding cred⋆. We

consider the range of variants of private-key security defined in Fryman et al., modelled using

the experiment Expks
ARKG,A (λ) in fig. 12 with ks ∈ {mwKS,hwKS,msKS,hsKS}. Adversary A

is always given access to Opk′ and must find a (sk⋆,pk⋆,cred⋆) triple for a provided pk.

The malicious (m) and honest (h) variants result from the omission or presence of the PKList

check on line 8, respectively, which ensures that the triple is for an honestly-generated pk (mod-

elled using Opk′) if present. The weak (w) and strong (s) variants depend on whether A has

access to the private key derivation oracle Osk′ . IfA has access to Osk′ , trivially querying it with

cred⋆ is prevented through the SKList check on line 7.
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Expks
ARKG,A (λ)

1 : pp← Setup(λ)

2 : (sk,pk)← KeyGen(pp)

3 : (sk⋆,pk⋆,cred⋆)←A Opk′ ,Osk′ t(pp,pk)

4 : sk′←DeriveSK(pp, sk,cred⋆)

5 : return Check(sk⋆,pk⋆)=? 1

6 : ∧Check(sk′,pk⋆)=? 1

7 : ∧ cred⋆ ̸∈ SKList
8 : ∧ (pk⋆,cred⋆) ∈ PKList

Opk′(aux)

1 : pk′,cred←DerivePK(pp,pk,aux)

2 : PKList← PKList∪ {(pk′,cred)}
3 : return pk′,cred

Osk′(cred)

1 : if {(·,cred)} /∈ PKList then

2 : return ⊥
3 : sk′←DeriveSK(pp, sk,cred)

4 : SKList← SKList∪ {(sk′,cred)}
5 : return sk′

Figure 11: Key secrecy experiment and oracle description for ARKG. The dotted boxes describe the
four variants of the ks ∈ {mwKS,hwKS,msKS,hsKS} experiment. Presence of the dashed boxes
gives the strong variants msKS and hsKS, the presence of the dotted box gives the honest variants
hwKS and hsKS, and the omission of all boxes gives mwKS.

Definition VII.8 (SK-security). An ARKG scheme provides private-key security for the different

variants, ks ∈ {mwKS,hwKS,msKS,hsKS}, if the following advantage is negligible in λ:

Advks
ARKG,A (λ) := Pr

�

Expks
ARKG,A (λ) = 1
�

PK-unlinkability. This property ensures that derived key pairs cannot be distinguished from

a sample of a distribution D and also prevents an adversary from linking a derived public key to

a long-term public key. The unlinkability between public keys pk and derived public keys pk′ is

defined using ExpPKUARKG,A (λ). The game generates a key pair (sk0,pk0) and flips a bit b. Then,

A is given access to oracle O b
pk′

, public parameters pp, and pk0. When the oracle is called, it

returns a derived key pair (sk′,pk′), which is derived from pk0 if b = 0, otherwise, for b = 1,

it samples and returns key pair (sk′,pk′) according to a distribution D. It is able to corrupt any

derived key, for which corresponding sk′ is output. The adversaryA wins the game if it is able

to determine whether O b
pk′

is instantiated with b = 0 or b = 1.

Definition VII.9 (PK-unlinkability). An ARKG scheme provides PK-unlinkability if the following

advantage is negligible in λ:

AdvPKUARKG,A :=

�

�

�

�

Pr
�

ExpPKUARKG,A (λ) = 1
�

−
1
2

�

�

�

�

Simulatable Key Derivation. We introduce a new security property that allows a party falsify

a derivation by a priori selecting the derived public key, and computing the delegator’s key

and randomness needed to derive it. We say that an ARKG scheme has Simulatable Public

Key Derivation if there exists an algorithm T-Derive (pk′) takes input a “derived” 8 public key

pk′ and outputs pk and r such that pk′ ← DerivePK(pk; r). The semi-colon notation means

8We call this a derived public key since it plays the role of pk′ in ARKG, however we stress this can be any adversarially
chosen public key.
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ExpPKUARKG,A (λ)

1 : pp← Setup(1λ)

2 : (sk0,pk0)← KeyGen(pp)

3 : b←$ {0,1}

4 : b′←A O b
pk′ (pp,pk0)

5 : return b=? b′

O b
pk′
(sk0,pk0)

1 : (sk′1,pk′1)← $D
2 : pk′0,cred←DerivePK(pp,pkb,aux)

3 : sk′0←DeriveSK(pp, skb,cred)

4 : return (sk′b,pk′b)

Figure 12: PK Unlinkability experiment and oracle description for ARKG.

we have fixed the randomness for this algorithm with the value r. Note that we only require

T-Derive to output one instance of the pair (pk, r), i.e. it can only be called on pk′ once. This

property is inherent in the construction of Frymann et al. [FGK+20], in the Random Oracle

Model. The motivation behind this property is to facilitate the security proofs of the generic

UPKE construction.

Key-Private Public-Key Encryption. This is defined as public key encryption, but with the

additional property, key-privacy. Intuitively, this prevents an adversary from linking a ciphertext

to the public-key it was encrypted with. The formal definition is given in Definition VII.10. We

note that many popular encryption schemes such as Elgamal and Cramer-Shoup naturally satisfy

this property without modification [BBDP01a].

We capture the key privacy property in the indistinguishability of keys experiments formally

defined in Figure 13, and modelled from Paterson et al. [PS09]. Intuitively, the experiment

requires a two stage adversaryA = (A1,A2) to identify which of two public key and message

pairs created a ciphertext. The adversary submits challenge messages m0 and m1 that will be

encrypted to form the challenge ciphertext under pk0 and pk1 respectively. In the IND-CCA

version of the experiment, it also has access to a decryption oracle that will decrypt ciphertexts

using secret key according to the adversary’s input b∗. Note that this oracle will abort if the

decryption fails (such as if the secret key selected does not match the ciphertext). It wins if it

can correctly guess which of the pairs (pk0,m0) or (pk1,m1) was used to create the challenge

ciphertext.

Definition VII.10. A KP-PKE scheme said to be atk ∈ {IND-IK-CPA, IND-IK-CCA} secure if the

following advantage is negligible in the security parameter λ.

AdvatkA ,KP-PKE(λ) :=
�

�

�Pr
�

Expatk−1
A ,KP-PKE(λ) = 1

�

− Pr
�

Expatk−0
A ,KP-PKE(λ) = 1

�

�

�

�

Updatable Public-Key Encryption. We use the strong definition for UPKE from [DKW21]. It

consists of five algorithms, that separate out the update procedures from the encryption and

decryption algorithms. As for any public-key cryptographic protocol that is somehow time de-

pendent, we keep track of this with epochs. For UPKE, the epoch is advanced when a new an

updated public key is computed. The algorithms are as follows.

KeyGen (1λ) On input of a security parameter returns an initial key-pair (sk0,pk0).
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IND-IK-CPA− b

1 : (sk0,pk0)← KeyGen(1λ)

2 : (sk1,pk1)← KeyGen(1λ)

3 : (m0,m1, st)←A1(pk0,pk1)

4 : c∗← Encrypt(pkb,mb)

5 : b′←A2(c
∗, st)

6 : return b
?
= b′

IND-IK-CCA− b

1 : (sk0,pk0)← KeyGen(1λ)

2 : (sk1,pk1)← KeyGen(1λ)

3 : (m0,m1, st)←A Odec
1 (pk0,pk1)

4 : c∗← Encrypt(pkb,mb)

5 : b′←A2(c
∗, st)

6 : return b
?
= b′

Odec(b∗,c)

1 : m←Decrypt(skb∗ ,c)

2 : return m

Figure 13: Security experiments and respective oracles for Key Privacy.

UpdatePK (pki) Takes as input a public key pki and outputs an updated public key pki+1 and

update ciphertext upi+1.

UpdateSK (ski ,upi+1) Takes as input a secret key ski and update ciphertext upi+1 and returns

updated secret key ski+1.

Encrypt (pki ,m) computes a ciphertext c from the input message m and public key pki .

Decrypt (ski ,c) From input of a ciphertext c and secret key ski , returns message m.

Correctness. Let (pki ,up)← UpdatePK(pk), (ski)← UpdateSK(sk,up), then a UPKE scheme

is correct if, for any message m, the following holds:

Pr
�

Decrypt(ski ,Encrypt(pki ,m)) =m
�

= 1.

Security. We consider a strong definition of security for UPKE based on IND-CPA for PKE. It is

introduced by Dodis et al. [DKW21] and is called Indistinguishability against chosen plaintext

attacks with chosen randomness, or IND-CR-CPA. Intuitively, it follows the standard definition

of IND-CPA but the adversary can control the randomness used to update keys. It has access

to an oracle Oupd that computes derived public keys with randomness r submitted by the ad-

versary. This oracle progresses the epoch each time it is queried by incrementing i, initially set

to 0. When the challenge messages are selected, the experiment flips a bit and encrypts the

corresponding message. This ciphertext is passed to the adversary as the challenge ciphertext.

Then, the experiment updates the challenge keys once more with randomness not selected by

the adversary. It is then given the derived public key, corresponding secret key and update

token, and must guess the value of the bit b. A UPKE scheme is IND-CR-CPA secure if the ad-

versary has negligible advantage in winning this experiment. We present the formal definitions

in Definition VII.11.

Definition VII.11. A UPKE scheme said to be IND-CR-CPA secure if the following advantage is

negligible in the security parameter λ.
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IND-CR-CPA− b

1 : (sk0,pk0)← KeyGen(1λ)

2 : (m(0),m(1), st)←A Oupd(pk0)

3 : c∗← Encrypt(pki ,m
(b))

4 : st←A Oupd(c∗, st)

5 : (up∗,pk∗)← UpdatePK(pki)

6 : sk∗← UpdateSK(ski ,up
∗)

7 : b′←A (pk∗, sk∗,up∗, st)

8 : return b
?
= b′

Oupd(r)

1 : Retrieve {ski ,pki} from KL

2 : (pki+1,upi+1)← UpdatePK(pki+1; r)

3 : ski+1← UpdateSK(ski+1,upi+1)

4 : KL← KL∪ {ski+1,pki+1,upi+1}
5 : i = i + 1

6 : return pki

Figure 14: Security experiments and respective oracles for UPKE.

AdvatkA ,UPKE(λ) :=
�

�

�Pr
�

ExpIND-CR-CPA−1
A ,UPKE (λ) = 1

�

− Pr
�

ExpIND-CR-CPA−0
A ,UPKE (λ) = 1

�

�

�

�

Pseudorandom Function (PRF) [GGM86]. A pseudorandom function PRF(k, m) is a family

of deterministic functions indexed by a key k and message m and produces an output indis-

tinguishable from a uniformly-sampled output for PPT adversaries. The adversary has access

to oracle OPRF(·) which cannot be queried with m and returns either PRF(k, ·) or f (·), with f

being a truly random function.

Key Derivation Function (KDF) [Kra10]. A key derivation function KDF(k, l) takes a key k

and label l and returns a new key k′. We say it is secure if the advantage AdvKDF
A (λ) is negligible

in λ for a PPT adversaryA to distinguish derived keys from uniformly-sampled elements in the

output domain. We denote KDF1(k) = KDF(k, l1) and KDF2(k) = KDF(k, l2), where l1, l2 are

implicit fixed labels. In particular, we often drop the labels from the input.

Message Authentication Code (MAC) [BCK96]. A message authentication code MAC =
(KeyGen,Tag,Verify) consists of three algorithms. KeyGen(1λ) outputs secret key mk ←$

{0,1}λ for a given security parameter λ. Tag(mk, m) outputs tag µ for input key mk and mes-

sage m, and Verify(mk, m,µ) outputs 1 if µ is valid for m under mk, otherwise 0. The correctness

property is satisfied if ∀(mk, m), Verify(mk, m,Tag(mk, m)) = 1. We say that MAC is unforge-

able if the advantage AdvMAC
A (λ) is negligible in λ for a PPT adversaryA to find, without mk, a

valid tag µ⋆ for a new message m⋆. A is given access to oracle OTag(·), which on input message

m ̸= m⋆ returns the result of Tag(mk, m).

VII.3 Generic Construction for Updatable Public Key Encryption

We now present our generic construction for UPKE. We use an asynchronous remote key gener-

ation scheme alongside a key-private public key encryption scheme to create a UPKE. ARKG is

used to enable the key update feature of our UPKE. On the other hand, we require key-private

PKE to facilitate the security proofs. We note that there needs to be some compatibility between
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ARKG and KP-PKE that are used in order to make the UPKE construction. This is because out-

puts of the ARKG primitive are used as keys in the KP-PKE primitive. Hence one cannot use

any construction of an ARKG or KP-PKE (which may rely on vastly different assumptions) to-

gether to give a UPKE. However, for the purpose of this exposition, we assume that there is this

compatibility and proceed with a high-level description of our protocol. The full algorithms are

given in Figure 15.

Setup (1λ) Setup takes as input a security parameter and executes the setup algorithms for both

underlying building blocks ARKG and KP-PKE. It outputs the result in public parameters

pp.

KeyGen (pp) The key generation algorithm for UPKE takes as input pp and runsARKG.KeyGen.

It outputs the initial keys for the scheme as (sk0,pk0).

UpdatePK (pp,pki) This algorithm takes as input a public key pki for epoch i and pp. It runs

ARKG.DerivePK, which outputs the new public key pki+1 for epoch i + 1 as well as the

update token upi+1 := credi+1.

UpdateSK (pp, ski ,upi+1) To generate a matching secret for pki+1, this algorithm takes input

the secret key ski and the update token upi+1. It calls ARKG.DeriveSK to compute ski+1

based on the update information.

Encrypt (pp,pki ,m) For any time period, the encryption algorithm takes as input a public key

pki for the epoch i and a message m. It uses the KP-PKE algorithm Encrypt on both of

these inputs to compute the ciphertext c.

Decrypt (pp, ski ,c) For any candidate ciphertext c from epoch i, Decrypt takes as input the

secret ski and uses KP-PKE.Decrypt to recover the message m. It returns ⊥ if decryption

fails.

Setup(1λ)

1 : pp0← ARKG.Setup(λ)

2 : pp1← KP-PKE.Setup(λ)

3 : return pp := (pp0,pp1)

Encrypt(pp,pki ,m)

1 : c← KP-PKE.Encrypt(pki ,m)

2 : return c

Decrypt(pp, ski ,c)

1 : m← KP-PKE.Decrypt(ski ,c)

2 : return m

KeyGen(pp)

1 : (sk0,pk0)← ARKG.KeyGen(pp)

2 : return (sk0,pk0)

UpdatePK(pp,pki)

1 : pki+1,credi+1← ARKG.DerivePK(pp,pki)

2 : return pki+1,credi+1

UpdateSK(pp, ski ,credi+1)

1 : ski+1← ARKG.DeriveSK(pp, ski ,credi+1)

2 : return ski+1

Figure 15: Generic construction for Updatable Public-Key Encryption.

Correctness. We note that our construction is correct if the underlying building blocks are

correct.
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Security Analysis. We now state and prove the main security theorem for UPKE. In the follow-

ing theorem, it would seem to natural to consider the composability theorem of ARKG, stated

in Frymann et al. [FGK+20], to argue security of our protocol. Intuitively, it says that ARKG

can be composed with any compatible public key protocol without loss of secrity (assuming PK-

unlinkability). However, we stress that this result reduces security of a composed scheme (e.g.

ARKG + PKE ) to that of PKE—whereas our proof is for UPKE and thus has different security

properties. Hence, a new proof is required.

Theorem VII.12. The UPKE construction given in Figure 15 is IND-CR-CPA secure if ARKG is

PK-unlinkable and has Simulatable Key Derivation, and KP-PKE is IND-IK-CPA secure.

Proof. Define Game0 to be the IND-CR-CPA experiment as defined in Figure 14. Then, define

Game1 as Game0 with the exception that lines 5 and 6 of the experiment are replaced with

(sk∗,pk∗)← PKE.KeyGen(pp). The PK-unlinkability property ofARKG ensures that this change

is undetectable by an adversary. Furthermore, the update token and key pair provided to the

adversary in line 7 is independent of the challenge bit b. Thus, we have:

|Pr[Game1 = 1]− Pr[Game0 = 1]|⩽ AdvPKUB1,ARKG(1
λ).

Define Game2 as Game1 with the following change, on line 3, it generates a fresh key pk∗

and computes the challenge ciphertext as “c∗ ← Encrypt(pk∗,m∗)”. If A can distinguish this

change, then we can construct an adversary B2 against IND-IK-CCA of KP-PKE. Intuitively,

B2 invokes its experiments to receive its two challenge public keys pk(0) and pk(1), without

loss of generality, it guesses for which time interval A will stop, say at epoch i, and set pki :=
pk(0). We bound the maximum number of update queries to be i. It then computes pk j for

j ∈ [1, i] as (pk j−1,cred j−1, r j−1) = T-Derive(pk j) (which exists due to the assumption ARKG

has simulatable key derivation). It stores these in a list KL by setting sk j−1 = ⊥ and up j−1 =
(cred j , r j−1). When called, the update oracle Oupd instead returns these values upon query.

It waits for A to select two messages m(0) and m(1), and forwards them to its own game.

It receives back a challenge ciphertext c∗ that it forwards to A . It computes the updated keys

according to the description of the game, passes these toA and waits for a response. We observe

that if b = 0 then the game coincides with Game0, otherwiseA is playing against Game1, thus

if A can distinguish the games, then B2 can win its IND-IK-CCA game. After some time A
outputs a guess at bit b, which B forwards as a guess to its own game. Since the simulation

does not fail unlessB embedded the challenge keys in the wrong epoch, thenB wins whenever

A wins. Thus, the advantage of the distinguisher is bound by the advantage B2 has against

IND-IK-CCA.

|Pr[Game2 = 1]− Pr[Game1 = 1]|⩽
1
qo
AdvIND-IK-CCA

B2,KP-PKE (1
λ)

The experiment is now independent of the challenge bit, and therefore from the sequence of

games Game0 to Game2, we conclude the advantage of A against IND-CCA of UPKE is neg-

ligble.

AdvIND-CCA
A ,UPKE (1

λ)⩽
1
i
AdvIND-IK-CCA

B2,KP-PKE (1
λ) +AdvPKUB1,ARKG(1

λ).
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Setup(λ)

1 : pp0← ARKG.Setup(λ)

2 : pp1← PKE.Setup(λ)

3 : return pp := (pp0,pp1)

Encrypt(pp,pk,m)

1 : pk′, cred← ARKG.DerivePK(pp,pk)

2 : c← PKE.Encrypt(pk,m)

3 : return C= (c,cred)

KeyGen(pp)

1 : (sk,pk)← ARKG.KeyGen(1λ)

2 : return (sk,pk)

Decrypt(pp, sk,C)

1 : Parse C as (c,cred)

2 : sk′← ARKG.DeriveSK(pp, sk,cred)

3 : m← PKE.Decrypt(sk′,c)

4 : return m

Figure 16: Generic construction for Key-Private Public-Key Encryption.

VII.4 Generic Construction for Key-Private Public Key Encryption

In this section we give a generic construction for a key-private public key encryption scheme.

Whilst it may be the case that some popular encryption schemes are already key-private, such as

ElGamal and Cramer-Shoup encryption [BBDP01a], we show that with no additional assump-

tions from what we have already assumed to construct UPKE, we can convert any PKE scheme

into one that is key-private. Our only two building blocks are ARKG and standard PKE.

At a high-level, we use ARKG to derive ephemeral encryption keys which cannot be linked

to the long-term key due to the PK-unlinkability property this building block provides. We then

reduce ciphertext indistinguishability of KP-PKE to the same property of of the underlying PKE.

We stress here that ARKG plays a different role—previously we required its asynchronous nature

to compute key updates, whereas here we will use its PK unlinkability property to ensure key

privacy of PKE. Much like for the generic construction of UPKE’s, we assume that there is a

compatibility between ARKG and PKE. We give intuitive description for our scheme and present

the formal definition in Figure 16.

Setup (1λ) Setup takes as input a security parameter and executes the setup algorithms for both

underlying building blocks ARKG and KP-PKE. It outputs the result in public parameters

pp.

KeyGen (pp) The key generation algorithm for UPKE takes as input pp and runsARKG.KeyGen.

It outputs the a key-pair as (sk,pk).

Encrypt (pp,pk,m) The encryption algorithm takes as input a public key pk a message. First,

it derives an ephemeral encryption key as pk′. It uses the this key for the PKE encryption

algorithm to compute the ciphertext c. Note it does not output the derived key pk′ since

this is computable with knowledge of sk.

Decrypt (pp, sk,c) On input of a ciphertext c, Decrypt derives the correct ephemeral secret key

sk′ from ARKG.DeriveSK. It then uses this key in the algorithm PKE.Decrypt to recover

the message m.

Correctness. Correctness of this construction once again follows from the correctness of ARKG

and PKE.
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Security Analysis. We now state the security theorem for KP-PKE. We prove two statements

that capture chosen plaintext attacks and chosen ciphertext attacks. Our protocol meets the

stronger IND-IK-CCA definition if and only if PKE is IND-CCA. Finally we note that both

results are in the standard model.

Theorem VII.13. The construction given in Figure 16 is:

a) IND-IK-CCA secure if ARKG is PK-unlinkable and PKE is IND-CCA.

b) IND-IK-CPA secure if ARKG is PK-unlinkable and PKE is IND-CPA.

Proof. a) Let Game0 be defined as the IND-IK-CCA experiment in Figure 13. For Game1, we

change line 4 of the experiment to be “pk∗← KeyGen, c∗← Encrypt(pk∗,m). That is, we swap

the challenge key out for a freshly sampled public key. We argue that the adversary cannot

distinguish between these games without breaking the PK-unlinkability property of ARKG. To see

this, letB1 be the adversary against ARKG. It constructs the experiment againstA as described

in Game0, except that it replaces pk(b) with its challenge key provided by the PK-unlinkability

experiment. We have the game coincides with Game0 if b = 0 in the PK-unlinkability game,

otherwise it coincides with the same game but for when b = 1. Thus, ifA is able to distinguish

Game0 and Game1 thenB1 can win the PK-unlinkability experiment.

|Pr[Game0 = 1]− Pr[Game1 = 1]|⩽ AdvPKUB1,ARKG(1
λ)

Now that the challenge ciphertext does not depend on the key, only the message, we argue that

an adversary that is able to win Game1 can be used to win an IND-CCA experiment against

PKE. To see this, define an IND-CCA adversaryB2 against PKE. It sets up the game according

to Game1 except for computation of the challenge ciphertext on line 4. Instead, it sets pk∗ to be

the challenge key from the IND-CCA game, and forwards any queries to Odec to the decryption

oracle provided by the IND-CCA game. It obtains the decrypted message m which it can pass

toA .

Then A outputs two messages m0,m1 which B2 forwards to the IND-CCA challenger. It

then sets c∗ to be the corresponding challenge ciphertext output from the same experiment.

Then, A submits its guess at the challenge bit b, which B2 forwards as its response to the

IND-CCA game. It wins if and only ifA wins its IND-IK-CCA experiment.

|Pr[Game1 = 1]|⩽ AdvIND-CCA
B2,PKE (1

λ)

Thus, from the sequence of games, we conclude the advantage is bound by an adversary against

the PK-unlinkability property of ARKG and IND-CCA property of PKE.

AdvIND-IK-CCA
A ,KP-PKE (1

λ)⩽ AdvPKUB1,ARKG(1
λ) +AdvIND-CCA

B2,PKE (1
λ)

b) For brevity we do not recall the full proof but note that it follows the same approach as a)

but A does not have access to the IND-IK-CCA decryption oracle. This means the does not

need the decryption oracle from its IND-CCA experiment either, and thus IND-CPA security for

PKE is sufficient.

By combing our results from Sections VII.3 and VII.4, we obtain the following corollary.
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Corollary VII.14. ARKG that has PK-unlinkability and Simulatable Key Derivation, and PKE with

IND-CPA security implies IND-CR-CPA-secure UPKE.

VII.5 Instantiation with Cryptographic Group Actions

We show how to construct an ARKG scheme from cryptographic group actions as formally

defined in §VII.2.1. We show how to do this both in the setting where the group action is

effective and restricted effective. The underlying idea is inspired by the original scheme based

on discrete logarithms proposed by Frymann et.al. [FGK+20], however we are required to cir-

cumvent a multiplicative issue that arises in the setting of group actions. Intuitively, we solve

this by replacing this multiplication operation by composition.

VII.5.1 PRF-OGADH Assumption

The PRF-ODH assumption was introduced to analyse the security of TLS 1.3 [BFGJ17], but since

has found application in many other protocols including the original ARKG scheme [FGK+20].
We introduce and formalise a new assumption in the context of cryptographic group actions

which we call the “PRF oracle-group-action-Diffie-Hellman" (PRF-OGADH) assumption. Our

definition closely follows that of the original PRF-ODH assumption but moved to the group

action setting.

Definition VII.15 (PRF-OGADH assumption). Let (G, X ,⋆) be a cryptographic group action9. Let

f : X ×{0, 1}∗→ {0, 1}λ be a pseudorandom function that takes as input an element x ∈ X (often

referred to as the key) and a label κ ∈ {0,1}∗ and outputs the evaluation τ = f (x ,κ). We define

a generic security notion lrPRF−OGADH which is parameterised by l, r ∈ {n, s,m} indicating how

often the adversary is allowed to query a certain “left" or “right" oracle. These oracles are called

OGADHg and OGADHh respectively, indexed by group elements g, h ∈ G, and are defined as follows:

• OGADHg(l, B): If l= n (s and m respectively) then no (a single and arbitrarily many respect-

ively) query(ies) can be made to this oracle. On a query of the form (y,κ) if either y ̸∈ X or

(y,κ) = B then return ⊥. Otherwise, it computes τ := f (g ⋆ y,κ) and returns τ.

• OGADHh(r, B): If r = n (s and m respectively) then no (a single and arbitrarily many re-

spectively) query(ies) can be made to this oracle. On a query of the form (y ′,κ) if either

y ′ ̸∈ X or (y ′,κ) = B then return ⊥. Otherwise, it computes τ := f (h⋆ y ′,κ) and returns τ.

Consider the following security game PRF-OGADH between a challenger and a PPT adversaryA :

1. The challenger samples a group element g ∈ G, computes the action y := g ⋆ x0 and sends

x0, y to the adversaryA ;

2. If l=m,A can issue arbitrary many queries to the oracle OGADHg(l, null);

3. The adversary issues a challenge query κ∗ ∈ {0,1}∗ and sends to the challenger. On receipt,

the challenger samples uniformly at random a group element h ∈ G and a bit b ∈ {0, 1}.

9Referring to whether you are in the restricted setting or not.
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It then computes τ0 = f (h ⋆ y,κ∗) and samples τ1 ∈ {0,1}λ uniformly at random. The

challenge sends (h ⋆ x0,τb) to the adversaryA ;

4. The adversary may issue queries to the oracles OGADHg(l, (h ⋆ x0,κ∗)) and OGADHh(r, (g ⋆
x0,κ∗));

5. At some point the adversary stops and outputs a guess bit b′ ∈ {0, 1}.

We say the adversary wins the lrPRF−OGADH game if b′ = b and define the advantage function

Advlrprf−ogadh
PRF,A (λ) := |2 · Pr

�

b′ = b
�

− 1|

Moreover, we say the cryptographic group action (G, X ,⋆) achieves lrPRF−OGADH security if for

any adversaryA the advantage defined above is negligible in the security parameter.

Among the various settings defined in Definition VII.15, for the purposes of our upcoming

constructions, we will need the nnPRF−OGADH and snPRF−OGADH assumptions. Under-

standing how these assumptions relate to other well studied assumptions is important in ac-

cessing the hardness of the assumption. We show that the nnPRF−OGADH assumption is hard

if both the group action decisional Diffie Hellman assumption as well as the security of the PRF

is hard. In addition we show that the mnPRF−OGADH is as hard as the group action strong

computational Diffie Hellman assumption in the random oracle. Recall from §VII.2.1 that this

asks us to compute (g · h) ⋆ x given the triple (x , g ⋆ x , h ⋆ x) and access to a decisional Diffie

Hellman oracle. It therefore follows trivially that the snPRF−OGADH is hard given the hard-

ness of StGADH in the ROM. The reductions closely follow the methodology used by Brendel

et al. [BFGJ17] in their corresponding reductions. Moreover, they give a much larger range of

reductions which we leave as future work.

We start by discussing the nnPRF−OGADH security.

Proposition VII.16. Let (G, X ,⋆) be a cryptographic group action (either effective or restricted).

If a function f : X × {0, 1}∗ → {0,1}λ is a secure PRF and the GA−DDH assumption holds for

the group action (G, X ,⋆), then f is also nnPRF−OGADH-secure. More precisely, for any probab-

ilistic polynomial time adversary A against the nnPRF−OGADH security, there are probabilistic

polynomial time algorithmsB1 andB2 such that

AdvnnPRF−OGADH
f ,A (λ)≤ 2 ·AdvGA−DDH

(G,X ,⋆),B1
(λ) + 2 ·AdvPRF

f ,B2
(λ).

Proof. The proof strategy adopted here uses a game-hopping technique.

Let Game1 be the original nnPRF−OGADH game but we replace the key (g · h) ⋆ x used to

compute the challenge value y0 by an independent random set element ĥ ⋆ x . We claim that

an adversary A against the nnPRF−OGADH security cannot distinguish between the original

nnPRF−OGADH game and Game1 efficiently with non-negligible advantage, since otherwise

there exists an efficient adversaryB1 that can solve the GA−DDH with non-negligible probab-

ility. So assume that A can distinguish the two games. Then B1 is constructed as follows: it

receives its challenge, say (x , g ⋆ x , h⋆ x , y ′), and to decide whether y ′ = (g ·h)⋆ x ,B1 runsA
as a subroutine on input (x , g ⋆ x). Then B1 answers A ’s challenge query κ∗ with (h ⋆ x , yb)
where y0 = f (y ′,κ∗) and y1 is sampled at random from {0, 1}λ and b is a random bit chosen



VII.5. INSTANTIATION WITH CRYPTOGRAPHIC GROUP ACTIONS 119

by B1. Eventually A outputs a bit b′, and B returns 0 if and only if b = b′. Hence if A can

efficiently distinguish these games then B1 can also efficiently solve its GA−DDH challenge.

Moreover the nnPRF−OGADH advantage can be bounded10 as follows:

AdvnnPRF−OGADH
f ,A (λ)≤ AdvGame1

f ,A (λ) + 2 ·AdvGA−DDH
(G,X ,⋆),B1

(λ).

Now let Game2 be the previous game, but this time we replace the challenge value y0 itself by

a uniform random value in {0,1}λ. We show that if there exists an efficient adversary A that

can distinguish Game2 from Game1, then there exists an efficient algorithmB2 that can break

the PRF security of f . To initiate the environment for A , B2 chooses some arbitrary element

g ⋆ x and forwards it toA . At some pointA asks the challenge query κ∗, whichB2 relays to its

own challenger, receiving the PRF-challenge yb̂. ThenB2 forwards yb̂ along with an arbitrarily

chosen set element h⋆ x toA . Eventually,A stops and outputs a bit b′. AlgorithmB2 outputs

the same bit b′. Hence ifA can efficiently distinguish these games thenB2 can also efficiently

distinguish between the PRF values. Moreover the Game1 advantage can be bounded as follows:

AdvGame1
f ,A (λ)≤ AdvGame2

f ,A (λ) + 2 ·AdvPRF
f ,B2
(λ).

Since y0 and y1 are now drawn independently and at random from {0, 1}λ, we have AdvGame2
f ,A (λ) =

0, which proves the result.

For the next property we require the GA− StCDH assumption which is defined in Section VII.2.1.

Proposition VII.17. Let (G, X ,⋆) be a cryptographic group action (either effective or resticted).

Working in the random oracle model, if the StGADH assumption holds for the group action then

we have mnPRF−OGADH-security for a random oracle f : X × {0,1}∗→ {0,1}λ. More precisely,

for any probabilistic polynomial time adversaryA against the mnPRF−OGADH security, there is

a probabilistic polynomial time algorithmB such that

AdvmnPRF−OGADH
f ,A (λ)≤ AdvGA−StCDH

(G,X ,⋆),B (λ).

Proof Sketch. First of all, B obtains the set elements x , g ⋆ x , h ⋆ x as given in the StGADH ex-

periement. Recall that the goal of the algorithm B is to compute the element (g · h) ⋆ x given

access to some decisional Diffie Hellman oracle. To initiate the mnPRF−ODH game environ-

ment, the adversary B sends x , g ⋆ x to A as input. A now has access to the random oracle,

f , and the OGADHg oracle. In other words,A may send queries of the form (y,κ) . To provide

an appropriate simulation it must be ensured that, if A first queries some (y,κ) to OGADHg

and then (g ⋆ y,κ) to the random oracle, the answer of the random oracle is consistent with

the simulation of OGADHg , and vice versa. This can be achieved ifB can program the random

oracle and has access to a decisional Diffie Hellman oracle GA−DDH(g ⋆ x , ·, ·).

Simulation of f . The answers of the random oracle f need to be consistent, i.e., if a query

is asked repeatedly, f returns the same answer. This can be ensured by standard bookkeeping

techniques. If a previously unseen query (y,κ) is received, B must consider the case that A

10the factor 2 in the GA−DDH advantage accounts for moving from a random choice of either givingB1 the set element
(g · h) ⋆ x or a random set element y ′.
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has already queried (g ⋆ y,κ) to OGADHg . Thus, when receiving a call (y,κ) to f ,B queries its

GA−DDH oracle with (g⋆ x , y, ŷ) as input for any set element ŷ ∈ X that has been queried with

κ to OGADHg . If the GA−DDH oracle returns 1 on any such input thenB answers consistently

with the corresponding answer from earlier and otherwiseB assigns a fresh value y0 to ( ŷ ,κ)
and returns y0 toA .

Simulation of OGADHg . Analogously to the simulation of the random oracle,B checks each

newly received request byA against all previous query-response pairs of OGADHg and answers

consistently in case of repetition. If a previously unseen query (y,κ) is received by OGADHg ,B
must further check whether the related value (g ⋆ y,κ) has been queried to the random oracle

before. Similar to the reverse case,B uses its GA−DDH oracle on (y, ŷ) on all previous random

oracle queries ( ŷ ,κ) to detect this. If GA−DDH(g ⋆ x , y, ŷ) = 1 for some K , the simulation of

OGADHg answers with the respective output of the random oracle. Otherwise, a response y1 is

drawn uniformly at random from {0,1}λ and returned toA .

Completion of the reduction. At some point,A issues a challenge query κ∗ to its challenger.

B answers this query with h ⋆ x and some value y1, drawn at random from {0,1}λ. Adversary

A can now query OGADHg and the random oracle f further, with the limitation that it may not

query the pair (h⋆x ,κ∗) to OGADHg . These queries are simulated as before. EventuallyA stops

and outputs a guess bit b′. Then B queries GA−DDH(g ⋆ x , h ⋆ x , ŷ) for all queries ( ŷ ,κ∗) of

A to the random oracle. If GA−DDH(g ⋆ x , h ⋆ x , ŷ) = 1 for some ( ŷ ,κ∗) thenB outputs ŷ in

the StGADH experiement. Therefore, if the adversaryA wins the mnPRF−OGADH game with

non-neglibile probability, then B also outputs the correct value (g · h) ⋆ x with non-negligible

probability. B is efficient, sinceA is efficient and asks at most polynomially many (with respect

to the security parameter) queries to each oracle.

Remark VII.18. With minor changes to the details of this reduction, it is straight forward to show

that in the random oracle model one gets nmPRF−OGADH-security if the StGADH assumption

holds.

VII.5.2 An ARKG Construction from Effective Group Actions

We first focus on the construction of ARKG from effective cryptographic group actions. That

is, group actions where there is an efficient algorithm for computing the output of the group

action, g ⋆ x , for any g ∈ G and x ∈ X .

Our core idea is to append another group element h ∈ G onto the long term public key g ⋆ x .

This gives a new derived public key as h ⋆ (g ⋆ x). By the defining property of a group action,

its corresponding derived secret key would be the group element hg. We formally detail the

algorithms for this construction are specified in Figure 17.

Note that we include the use of a MAC, as in the original discrete-log scheme. This was to

facilitate identification of corresponding credentials cred. We have included it in our algorithms

for completeness, but note that it is not required in our use for updatable public key encryption.
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Setup(1λ)

return pp := ((G, X ,⋆, x0 ∈ X ),

MAC,KDF1,KDF2)

KeyGen(pp)

1 : g ←$ G

2 : y ← g ⋆ x0

3 : return (sk,pk) := (g, y)

Check(pp, sk′pk′)

Parse sk′ = g,pk′ = y

return y ≡ g ⋆ x0

DerivePK(pp,pk= y)

1 : (g ′, y ′)← KeyGen(pp)

2 : z← g ′ ⋆ y

3 : Kmac ← KDF1(z)

4 : Kcred ← KDF2(z)

5 : µ←MAC(Kmac; y ′)

6 : h← Encode(Kcred) ∈ G

7 : return (pk′ := h ⋆ y), y ′,µ

DeriveSK(pp, sk= g, y ′,µ⋆))

1 : z← g ⋆ y ′

2 : Kmac ← KDF1(z)

3 : Kcred ← KDF2(z)

4 : if µ⋆ ≡MAC(Kmac; y ′) then

5 : h← Encode(Kcred) ∈ G

6 : return sk′ := gh

7 : else return ⊥

Figure 17: ARKG construction from an effective group action with an abelian group
G. Encode(·) is a deterministic function or algorithm which encodes the input as an
element in G.

Correctness. Note that the correctness of the scheme is guaranteed since G is abelian: for any

g, g ′ ∈ G and any x ∈ X we have g ⋆ (g ′ ⋆ x) = g ′ ⋆ (g ⋆ x).

Security Analysis. We show that the described construction satisfies the unlinkability prop-

erty by reducing it down to the PRF-OGADH assumption that was introduced in §VII.5.1. For

completeness, we also show that the secrecy property by reducing it down to the traditional

GAIP assumption defined in §VII.2.1

Theorem VII.19 (PK-unlinkability). For an effective group action (G, X ,⋆), if the nnPRF−OGADH

and GAIP assumptions hold on the group action, then the ARKG scheme described in Figure 17 sat-

isfies the PK-unlinkability property.

Proof. G0 is defined exactly by ExpPKUARKG,A (λ). Thus

Pr
�

G b
0 = 1
�

= Pr
�

ExpPKUA (λ) = 1
�

We immediately begin by combining, when the challenge bit b is set to 0, the secret key

derivation performed by the DeriveSK algorithm with DerivePK performed by the oracle. This

is a semantic change and hence there is no loss of advantage to the adversary as the outputs of

the oracle are indistinguishable. We now define a series of hybrid gamesHi such thatH0 := G0

andHi asHi−1 but with the exception that, in the ith oracle call to O b
pk′

, computation of pk′ is

replaced with ‘ ĝ ←$ G, pk′ ← h ⋆ ( ĝ ⋆ x0)’. Note that ĝh is now returned as sk′. The adversary

is unable to distinguish between Hi and Hi−1 as the random sample of h in Hi−1 ensures the

distribution of (sk′i ,pk
′
i) is uniformly random in both games, giving

|Pr[Hk = 1]|= |Pr[Hk−1 = 1]|

Next, we continue by defining another series of hybrid games H̃ j where H̃0 := G1. Game

H̃ j is defined to be game H̃ j−1, with the exception that the execution of DerivePK in the jth
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oracle call is altered when the challenge bit is set to 0. We replace ‘µ ← MAC(mk j , (E,aux))’
with ‘µ←MAC(mk′j , (E,aux))’, where mk′j is a uniformly sampled MAC key independent from

mk j . The adversary is able to distinguish between the games H̃ j and H̃ j−1 if it is able to forge

the MAC key mk j , where mk j is the MAC key from H̃ j . We show that the adversary’s ability to

do this is bounded by the nnPRF-OGADH property of KDF2.

The adversary B , against the nnPRF-OGADH game, plays the role of challenger in H̃ j for

A . It invokes its own game, receiving (G, X ,⋆, x0 ∈ X ), y ← g ⋆ x0 for a uniformly random

g ∈ G, and the nnPRF-OGADH challenge ( ỹ ← g ′ ⋆ x0,τ⋆), and sets the challenge label κ as

the label for KDF2. It wins its own game if it can decide whether b = 0 or b = 1. B invokes

H̃ j and sets pk0 ← y, sk0 ← ⊥. It answers the jth oracle query to O b
pk′

honestly except it sets

pk1 = ỹ , sk1 = ⊥, and mk j ← τb, j , which is the output of KDF2 in game H̃ j . It then waits for

A to output a bit b. It forwards b as the answer to its own nnPRF-OGADH game and wins with

probability equal to that ofA distinguishing H̃ j from H̃ j−1. Thus, we have

�

�Pr
�

H̃ j = 1
�

− Pr
�

H̃ j−1 = 1
��

�⩽ AdvnnPRF−OGADH
KDFi

2,B (λ)

We define G b
2 := H̃qo

, where qo is the number of queries made to the O b
pk′

oracle. Next, we

define a third series of hybrid games Ĥk where Ĥ0 := G b
2 . Game Ĥk is defined to be game Ĥk−1,

with the exception that the execution of DerivePK in the kth oracle call is altered. We replace

‘h← Encode(KDF1(g ′ ⋆ y))’ with ‘h←$ G’. The advantage of the adversary distinguishing Ĥk

from Ĥk−1 is also bound by the nnPRF-OGADH in an argument almost identical to that of H̃ j

and Ĥ j−1. It is omitted here for brevity. Thus we have

�

�Pr
�

Ĥk = 1
�

− Pr
�

Ĥk−1 = 1
��

�⩽ AdvnnPRF−OGADH
KDFi

1,B (λ)

We define G b
3 := Ĥqo

and analyse the advantage ofA in distinguishing between b = 0 and

b = 1. Since the game is independent of b, and the distributions of (sk′,pk′) are identical, it

follows that
�

�Pr
�

G b
3 = 1
��

�=
1
2

Thus the advantage ofA is bounded by

AdvPKUARKG,A (λ)⩽ qo ·
�

AdvnnPRF−OGADH
KDF1,B (λ) +AdvnnPRF−OGADH

KDF2,B (λ)
�

By assumption that KDF1 and KDF2 are nnPRF-OGADH secure, the advantage of their ad-

versaries is negligible and hence the advantage of the adversary against PK-unlinkability is also

negligible.

Theorem VII.20 (SK-secrecy). Let (G, X ,⋆) be an effective group action.

1. If the snPRF−OGADH assumptions hold on the group action then the ARKG construction is

msKS and mwKS-secure.

2. If the and GAIP assumption hold on the group action then the ARKG construction is hsKS

and hwKS-secure.
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Proof of Theorem 4.1. G0 is defined exactly by the experiment ExpmsKS
ARKG,A (λ). Thus

Pr[G0 = 1] = Pr
�

ExpmsKS
ARKG,A (λ) = 1
�

Define G1 as G0 with the exception that we replace the computation of ‘pk′ = h ⋆ y ’ in

DerivePK with ‘ ĝ ←$ G, pk′ ← h ⋆ ĝ ’ during the oracle call Opk′ . The adversary B keeps an

internal list List that contains elements of the form (y ′, g ′, ĝ). IfA queries Osk′ with cred ∋ y ′

such that y ′ ∈ List then it replaces of DeriveSK run by Osk′ with ‘return sk′ = g ĝ ’ where ĝ is

obtained from the matching y ′ entry in List. This ensures that sk′ output from the oracle still

passes Check when called on a corresponding public key obtained from Opk′ . As both sk′ and h

are uniformly sampled from the same space, the two games are indistinguishable. Hence

Pr[G1 = 1] = Pr[G0 = 1]

We then construct an adversary B for the snPRF-OGADH game from an adversary that is

able to win at G1. That is, break msKS security of ARKG.

The adversaryB gets the challenge τ⋆ from its snPRF-OGADH game. It sets up the game as

described except it sets sk←⊥, pk← y , and the label of KDF1 to be the challenge label κ from

its own game. It challenges A to create a forgery on y and is able to answer oracle queries

honestly. Then, A outputs the tuple (sk⋆,pk⋆,cred⋆), from which B can create a successful

answer to the snPRF-OGADH challenge (x0, y, y ′,τ⋆). It extracts y ′ from cred⋆ and uses the

single OGADH oracle query in the snPRF-OGADH game to get τ⋆← KDF1(g ′ ⋆ y). B can then

compute the secret key as g = sk · h−1. With knowledge of g it is trivial for B to compute

τ = KDF1(g ⋆ y ′) and make the comparison τ=? τ⋆. If they are equal, then b = 0, otherwise

b = 1. The event that A queries the snPRF-OGADH challenge y ′ (which would cause the

experiment to abort) happens with probability qo/p where p is the size of G and qo is the

number of oracle queries made byA . This probability is negligible as p is large.

Thus, the advantage ofA in ExpmsKS
ARKG,A (λ) is bound by an adversaryB against the snPRF-

OGADH assumption, giving

AdvmsKS
ARKG,A (λ)⩽

p− qo

p
·Advsnprf − ogadhG,B (λ)

If the snPRF-OGADH assumption is hard in (G, X ) then is msKS secure.

Proof of Theorem 4.2. G0 is defined exactly by the experiment ExphsKSARKG,A (λ). Thus

Pr[G0 = 1] = Pr
�

ExphsKSARKG,A (λ) = 1
�

Define G1 as G0 with the exception that we replace the computation of ‘pk′ = h⋆ y ’ in DerivePK

with ‘ ĝ ←$ G, pk′ ← ĝ ⋆ y ’ during the oracle call Opk′ . The adversary B keeps an internal list

List that contains elements of the form (y ′, g ′, ĝ). If A queries Osk′ with cred ∋ y ′ such that

y ′ ∈ List then it replaces of DeriveSK run by Osk′ with ‘return sk′ = g ĝ ’ where ĝ is obtained

from the matching y ′ entry in List. This ensures that sk′ output from the oracle still passes

Check when called on a corresponding public key obtained from Opk′ . As both sk′ and h are

uniformly sampled from the same space, the two games are indistinguishable. Hence

Pr[G1 = 1] = Pr[G0 = 1]
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We then construct an adversaryB for the GAIP game from an adversary that is able to win

at G1, that is, break hsKS security of ARKG. The adversary B sets up the game as described

in G1, except that on line 2 it replaces ‘(sk,pk)← KeyGen’ with ‘pk← y, sk← ⊥’, where y is

B ’s challenge from the GAIP game. The challenger B chooses one query to the oracle where

it guessesA will use the derived pk′ as part of its forgery. For this query, it can answer oracles

calls to Opk′ using the GAIP challenge y , and cannot answer Osk′ queries. In the event this oracle

is queried, the experiment aborts. For all other queries, B can answer oracle queries made by

A asB generates the ephemeral key pair (g ′, y ′) and can extract the value ĝ from List.

Then,B waits forA to output a successful forgery sk′ with credential cred⋆. Using y ′ from

cred⋆,B is able to locate y ′ in List and find the corresponding g ′. This allowsB to recompute

ck from KDF1(g ′ ⋆ y) and compute an s such that s ⋆ xo = y as s = sk′ · h−1. B is guaranteed

that y ′ ∈ List as a successful forgery in the hsKS game requires (pk⋆,cred⋆) ∈ PKList which

can only happen ifB generated y ′ during an oracle call fromA . However, the simulation fails

ifA queries Osk′ on pk′ that embeds the GAIP challenge, which happens with probability 1/qo.

Thus, the advantage ofA in ExphsKS,A (λ) is bound by an adversaryB against the Group Action

Inverse Problem assumption, giving

AdvhwKSARKG,A (λ)⩽
1
qo
AdvgaipG,B (λ)

By assumption, the GAIP problem is hard and thus is hsKS secure.

Simulatable Key Derivation. Much like the construction of Frymann et al. [FGK+20], we

inherently get the simulatable public key derivation property since the underlying group action

is free and transitive. This ensures that for every element y ∈ X , there is a unique group element

g ∈ G such that y = g ⋆ x . Therefore by applying the action of a random inverse element, ĝ−1

to a derived public key, the result obtained forms a valid public key.

VII.5.3 An ARKG Construction from Restricted Effective Group Actions

Now we look at the setting when we have a restricted effective group action. Namely, there is a

(not necessarily minimal) generating set S := {gi}ni=1 for the group G and an efficient algorithm

for computing the output of the group action on gi and its inverse, gi ⋆ x and g−1
i ⋆ x , for any

gi in S and x ∈ X . Recall that any element of G can be represented as a finite sequence in

{g1, · · · , gn, g−1
1 , · · · , g−1

n }
∗, or equivalently, g ∈ G can be represented as g =

∏

gai
i for ai ∈ Z.

The challenge is that we can not apply the group action to the element g itself. Instead,

we recursively apply the group element gi (or g−1
i ) a total of |ai | times, which will result in the

computation of g ⋆ x . This also means that secret key space in key generation algorithm versus

secret key space in the DeriveSK algorithm will be different. The algorithms for this construction

are specified in Figure 18. In the description of these algorithms, we use the notation Ck =
{−k, · · · , k} to represent the integers whose absolute value are at most k. In addition, we abuse

the notation a few times in how we do the action computations. The key generation algorithm

lays out this recursive description in how these group action computations are actually done.

In other places we write it as just one group action computation when we actually mean this

recursive description.
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Setup(1λ)

return pp := ((G = 〈g1, · · · , gn〉,
X ,⋆, x0),k= 〈k1, · · · , kn〉 ∈ Zn

>0

MAC,KDF1,KDF2)

KeyGen(pp)

1 : y ← x0

2 : for i ∈ {1, · · · , n}
3 : ai ←$ Cki

4 : y ← gai
i ⋆ y

5 : a← {a1, · · · , an}
6 : return (sk,pk) := (a, y)

Check(pp, sk′,pk′)

Parse sk′ = a,pk′ = y

return y ≡
�
∏

i∈{1,··· ,n}
gai

i

�

⋆ x0

DerivePK(pp,pk= y)

1 : (a′, y ′)← KeyGen(pp)

2 : g ′←
∏

i∈{1,··· ,n}
g

a′i
i

3 : z← g ′ ⋆ y

4 : Kmac ← KDF1(z)

5 : Kcred ← KDF2(z)

6 : µ←MAC(Kmac; y ′)

7 : b← Encode(Kcred) ∈ Ck1
× · · · × Ckn

8 : h←
∏

i∈{1,··· ,n}
g bi

i

9 : return (pk′ := h ⋆ y), y ′,µ

DeriveSK(pp, sk= a, y ′,µ⋆))

1 : g ←
∏

i∈{1,··· ,n}
gai

i

2 : z← g ⋆ y ′

3 : Kmac ← KDF1(z)

4 : Kcred ← KDF2(z)

5 : if µ⋆ ≡MAC(Kmac; y ′) then

6 : b← Encode(Kcred) ∈ Ck1
× · · · × Ckn

7 : return sk′ := a+ b= {ai + bi}
8 : else return ⊥

Figure 18: ARKG construction from a restricted effective group action with an abelian
group G. Encode(·) is a deterministic function or algorithm which encodes the input
as an element in Ck1

× · · · × Ckn
.

Security Analysis. We now present the security theorems and proofs for our ARKG construc-

tion from restricted group actions.

Theorem VII.21 (PK-unlinkability). Let (G, X ,⋆) be a restricted effective group action. If the

nnPRF−OGADH and GAIP assumptions hold on the group action, then the ARKG scheme described

in Figure 17 satisfies the PK-unlinkability property.

Proof. G0 is defined exactly by ExpPKUARKG,A (λ). Thus

Pr
�

G b
0 = 1
�

= Pr
�

ExpPKUA (λ) = 1
�

We immediately begin by combining, when the challenge bit b is set to 0, the secret key

derivation performed by the DeriveSK algorithm with DerivePK performed by the oracle. This

is a semantic change and hence there is no loss of advantage to the adversary as the outputs of

the oracle are indistinguishable. We now define a series of hybrid gamesHi such thatH0 := G0

and Hi as Hi−1 but with the exception that, in the ith oracle call to O b
pk′

, computation of pk′

is replaced with ‘â←$ Ck1
× ...× Ckn

, ĝ ←
∏n

i=1 gai
i ,pk′ ← h ⋆ ( ĝ ⋆ x0)’. Note that â+ b is now

returned as sk′. The adversary is unable to distinguish betweenHi andHi−1 as the distribution

of h in Hi−1 is negligibly close to uniform, by definition of a restricted effective group action.

Thus, the distribution of (sk′i ,pk
′
i) is also uniformly random in both games, giving

|Pr[Hk = 1]|= |Pr[Hk−1 = 1]|
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Next, we continue by defining another series of hybrid games H̃ j where H̃0 := G1. Game

H̃ j is defined to be game H̃ j−1, with the exception that the execution of DerivePK in the jth

oracle call is altered when the challenge bit is set to 0. We replace ‘µ ← MAC(mk j , (E,aux))’
with ‘µ←MAC(mk′j , (E,aux))’, where mk′j is a uniformly sampled MAC key independent from

mk j . The adversary is able to distinguish between the games H̃ j and H̃ j−1 if it is able to forge

the MAC key mk j , where mk j is the MAC key from H̃ j . We show that the adversary’s ability to

do this is bounded by the nnPRF-OGADH property of KDF2.

The adversaryB , against the nnPRF-OGADH game, plays the role of challenger in H̃ j forA .

It invokes its own game, receiving (G, X ,⋆, x0), y ← g⋆x0, where g is computed as g ←
∏n

i=1 g ri
i

for ri ← $Cki
. The nnPRF-OGADH challenge is ( ỹ ← g ′ ⋆ x0,τ⋆), and sets the challenge label κ

as the label for KDF2. It wins its own game if it can decide whether b = 0 or b = 1. B invokes

H̃ j and sets pk0 ← y, sk0 ← ⊥. It answers the jth oracle query to O b
pk′

honestly except it sets

pk1 = y ′, sk1 = ⊥, and mk j ← τb, j , which is the output of KDF2 in game H̃ j . It then waits for

A to output a bit b. It forwards b as the answer to its own nnPRF-OGADH game and wins with

probability equal to that ofA distinguishing H̃ j from H̃ j−1. Thus, we have

�

�Pr
�

H̃ j = 1
�

− Pr
�

H̃ j−1 = 1
��

�⩽ AdvnnPRF−OGADH
KDFi

2,B (λ)

We define G b
2 := H̃qo

, where qo is the number of queries made to the O b
pk′

oracle. Next, we

define a third series of hybrid games Ĥk where Ĥ0 := G b
2 . Game Ĥk is defined to be game

Ĥk−1, with the exception that the execution of DerivePK in the kth oracle call is altered. We

replace ‘h ← Encode(KDF1(g ′ ⋆ y))’ with ‘h =
∏n

i=1 g
r ′i
i for r ′i ← $Cki

’. The advantage of the

adversary distinguishing Ĥk from Ĥk−1 is also bound by the nnPRF-OGADH in an argument

almost identical to that of H̃ j and Ĥ j−1. It is omitted here for brevity. Thus we have

�

�Pr
�

Ĥk = 1
�

− Pr
�

Ĥk−1 = 1
��

�⩽ AdvnnPRF−OGADH
KDFi

1,B (λ)

We define G b
3 := Ĥqo

and analyse the advantage ofA in distinguishing between b = 0 and

b = 1. Since the game is independent of b, and the distributions of (sk′,pk′) are identical, it

follows that
�

�Pr
�

G b
3 = 1
��

�=
1
2

Thus the advantage ofA is bounded by

AdvPKUARKG,A (λ)⩽ qo ·
�

AdvnnPRF−OGADH
KDF1,B (λ) +AdvnnPRF−OGADH

KDF2,B (λ)
�

By assumption that KDF1 and KDF2 are nnPRF-OGADH secure, the advantage of their ad-

versaries is negligible and hence the advantage of the adversary against PK-unlinkability is also

negligible.

Theorem VII.22 (SK-secrecy). Let (G, X ,⋆) be a restricted effective group action.

1. If the snPRF−OGADH assumptions hold on the group action then the ARKG construction is

msKS and mwKS-secure.

2. If the GAIP assumption hold on the group action then the ARKG construction is hsKS and

hwKS-secure.
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Proof. G0 is defined exactly by the experiment ExpmsKS
ARKG,A (λ). Thus

Pr[G0 = 1] = Pr
�

ExpmsKS
ARKG,A (λ) = 1
�

Define G1 as G0 with the exception that the computation of pk′ is replaced with ‘â←$ Ck1
×

... × Ckn
, ĝ ←
∏n

i=1 gai
i ,pk′ ← h ⋆ ( ĝ ⋆ x0)’. The adversary B keeps an internal list List that

contains elements of the form (y ′, g ′, ĝ). If A queries Osk′ with cred ∋ y such that y ∈ List

then it replaces sk′ of DeriveSK run by Osk′ with ‘return sk′ = g ĝ ’ where ĝ is obtained from

the matching y ′ entry in List. This ensures that sk′ output from the oracle still passes Check

when called on a corresponding public key obtained from Opk′ . As both sk′ and h are uniformly

sampled from the same space, the two games are indistinguishable. Hence

Pr[G1 = 1] = Pr[G0 = 1]

We then construct an adversary B for the snPRF-OGADH game from an adversary that is

able to win at G1. That is, break msKS security of ARKG.

The adversaryB gets the challenge y from its snPRF-OGADH game. It sets up the game as

described except it sets sk←⊥, pk← y , and the label of KDF1 to be the challenge label x from

its own game. It challenges A to create a forgery on y and is able to answer oracle queries

honestly. Then, A outputs the tuple (sk⋆,pk⋆,cred⋆), from which B can create a successful

answer to the snPRF-OGADH challenge (x0, y, ŷ ,τ⋆). It extracts y ′ from cred⋆ and uses the

single OGADH oracle query in the snPRF-OGADH game to get τ ← KDF1(g ′ ⋆ y ′). B can

then compute the secret key as s = sk′ − h. With knowledge of s it is trivial for B to compute

τ⋆ = KDF1(g ⋆ y ′) and make the comparison τ=? τ⋆. If they are equal, then b = 0, otherwise

b = 1. The event thatA queries y ′ = ŷ (which would cause the experiment to abort) happens

with probability qo/p where p is the size of G and qo is the number of oracle queries made by

A . This probability is negligible as p is large.

Thus, the advantage ofA in ExpmsKS
ARKG,A (λ) is bound by an adversaryB against the snPRF-

OGADH assumption, giving

AdvmsKS
ARKG,A (λ)⩽

p− qo

p
·Advsnprf − ogadhG,B (λ)

If the snPRF-ODH assumption is hard in G then is msKS secure.

Proof of Theorem 6.2. G0 is defined exactly by the experiment ExphsKSARKG,A (λ). Thus

Pr[G0 = 1] = Pr
�

ExphsKSARKG,A (λ) = 1
�

Define G1 as G0 with the exception that the computation of pk′ is replaced with ‘â←$ Ck1
×

... × Ckn
, ĝ ←
∏n

i=1 gai
i ,pk′ ← h ⋆ ( ĝ ⋆ x0)’. The adversary B keeps an internal list List that

contains elements of the form (y ′, g ′, ĝ). IfA queries Osk′ with cred ∋ y such that y ∈ List then

it replaces sk′ DeriveSK run by Osk′ with ‘return sk′ = g ĝ ’ where ĝ is obtained from the matching

y ′ entry in List. This ensures that sk′ output from the oracle still passes Check when called on

a corresponding public key obtained from Opk′ . As both sk′ and h are uniformly sampled from

the same space, the two games are indistinguishable. Hence

Pr[G1 = 1] = Pr[G0 = 1]
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We then construct an adversaryB for the GAIP game from an adversary that is able to win

at G1, that is, break hsKS security of ARKG. The adversary B sets up the game as described

in G1, except that on line 2 it replaces ‘(sk,pk)← KeyGen’ with ‘pk← y, sk← ⊥’, where y is

B ’s challenge from the GAIP game. The challenger B chooses one query to the oracle where

it guessesA will use the derived pk′ as part of its forgery. For this query, it can answer oracles

calls to Opk′ using the GAIP challenge y , and cannot answer Osk′ queries. In the event this oracle

is queried, the experiment aborts. For all other queries, B can answer oracle queries made by

A asB generates the ephemeral key pair (g ′, y ′) and can extract the value r from List.

Then,B waits forA to output a successful forgery sk′ with credential cred⋆. Using y ′ from

cred⋆,B is able to locate y ′ in List and find the corresponding g ′. This allowsB to recompute ck

from KDF1(g ′ ⋆ y) and compute an s such that
∏n

i=1 gsi
i ⋆ xo = y as s= sk′−h. B is guaranteed

that y ′ ∈ List as a successful forgery in the hsKS game requires (pk⋆,cred⋆) ∈ PKList which

can only happen ifB generated y ′ during an oracle call fromA . However, the simulation fails

ifA queries Osk′ on pk′ that embeds the GAIP challenge, which happens with probability 1/qo.

Thus, the advantage of A in ExphsKS,A (λ) is bound by an adversary B against the (restricted)

Group Action Inverse Problem assumption, giving

AdvhwKSARKG,A (λ)⩽
1
qo
AdvgaipG,B (λ)

By assumption, the GAIP problem is hard in (G, X ) and thus is hsKS secure.

Simulatable Key Derivation. We also achieve this simulable public key derivation property

much like in our construction in Figure 17. The only different to note is that we are not given

a explicit description of the group G rather than just a generating set. Since this generating set

would naturally generate the group, then for any element y ∈ X then there is a representation

of a group element g ∈ G as a sequence of operations
∏

g ei
i such that y = g ⋆ x .

VII.5.4 Public Key Encryption from Group Actions

We adopt the public-key encryption schemes seen in their isogeny analogues and rephrase it in

the context of cryptographic group actions. The algorithms for the scheme is given in Figure 19.

In the description of these algorithms, the functionH : X → {0,1}λ represents a hash function

on the set X . By rephrasing the security proofs given by Stolbunov [Sto09] in the context

of cryptographic group actions, then one can show that for either an effective or a restricted

group action the described PKE is IND-CPA-secure assuming the GA−DDH-assumption. In

the algorithm specifications below we implicitly describe the setup algorithm that outputs a

description of a set X , group G and hash functionH .

Depending on the type of cryptographic group action that is available, the ARKG schemes

mentioned in §VII.5.2 and §VII.5.3 can be combined with the aforementioned PKE to obtain the

key-private security property using the generic methods from Section VII.4. In particular, we

obtain an IND-IK-CPA-secure key-private public key encryption scheme.
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KeyGen(pp)

1 : g ←$ G

2 : y ← g ⋆ x0

3 : sk := g

4 : pk := y

5 : return (sk,pk)

Encrypt(pp,pk= y,m)

1 : h←$ G

2 : y ′← h ⋆ x0

3 : z← h ⋆ y

4 : c←m⊕H (z)
5 : c := (y ′, c)

6 : return c

Decrypt(pp, sk= g,c= (y ′, c))

1 : z← g ⋆ y ′

2 : m← c ⊕H (z)
3 : return m

Figure 19: Algorithms for the public key encryption scheme from cryptographic group actions based
on [Sto09].

Corollary VII.23. Using the generic methods from Section VII.3, combining the restricted effective

group action construction for PKE in Figure 19 with our ARKG construction in Figure 18 yields a

UPKE that is IND-CR-CPA secure based on restricted effective group actions.

Remark VII.24. We note that our construction does not need any rejection sampling as seen in

other CSIDH based constructions such as the signature scheme SeaSign [DFG19b]. This is because

at no point are the secret vectors made publicly available which is the source of the leakage in the

context of SeaSign. Additionally, the secret keys grows in size as they get updated. Hence, both

encryption and decryption at each epoch becomes more expensive.

VII.5.5 Restricting to the CSIDH group action

As mentioned in §VII.2.1 we have a group action from isogenies. As along as you have a com-

plete description of the underlying class group then one can apply this to the ARKG construction

of §VII.5.2 and obtain a UPKE. This construction is very similar to the one that was outlined

in [EJKM22] since one needs to know the underlying class group structure in order to success-

fully execute the protocol. This class group computation requires an algorithm that has classical

subexponential complexity. While we could treat this as precomputation as done for the CSIDH-

512 parameter [BKV19], this would require a lot more computing resources that to do this for

the higher CSIDH parameters. In addition, the recent quantum security analysis of these iso-

geny based group action protocols has come into question and it looks like the parameters would

need to be scaled. In recent work [CSCDJRH22] parameters were suggested that better reflect

this analysis. The size of these parameters make it classically infeasible to do these class group

computations.

On the other hand as alluded earlier, the action used in the CSIDH key exchange protocol

gives a restricted effective group action. Hence, one can apply the ARKG construction of §VII.5.3

to obtain a UPKE. This has a notable advantage of not requiring us to compute the whole class

group and means that we can scale the parameters in line with the mentioned quantum analyses.

Thus making it more practical than the other constructions. To achieve this, we rely on the

heuristic that the ideal classes used in CSIDH actually cover the class group. No generic proof

of this fact is known but the original proposal for CSIDH gave evidence to suggest it could be true

[CLM+18]. At least experimentally, this is known for the CSIDH-512 through the expensive class

group computations [BKV19]. However, as mentioned in Remark VII.24, the keys grow in size at

each iteration thus making encryption and decryption algorithms more expensive. This would
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be an issue in CSIDH since this algorithm are already not particularly efficient and applying these

algorithms to a key that is quite large size would make it a lot slower. With realistic parameters

in mind, only a few hundred key updates could be made before the encryption algorithms to

become too slow for practical use.

The inclusion of the hash function in the generic construction of the KP-PKE is sufficient

to show IND-CPA security for an arbitrary cryptographic group action but is not necessary

in the context of the specific action used in CSIDH. We can replace the public-key encryption

scheme described in §VII.5.4 with either public-key encryption scheme SiGamal [MOT20] or

SimS [FP21b]. In these schemes, the use of a hash function is replaced with torsion point images.

The inclusion of torsion point images in isogeny-based cryptosystems such as SIDH [DFJP14]
have recently been detrimental to their security [CD23, MMP+23, Rob23]. In particular, these

attacks require the knowledge of torsion point images on a basis of the torsion subgroup as well

as its degree. These two requirements seem to be necessary in order to run the attack and is

exactly what we have in SIDH. However in SiGamal/SimS, we are only given one torsion point

image rather than on a full basis. Also, the degree of the isogeny used in CSIDH/SiGamal/SimS

is not publicly revealed unlike its SIDH counterpart. This makes running the attack rather

difficult especially with the scaled parameters. As a light remark, the later of these points is

similar to the countermeasure to the attacks on SIDH [FMP23] mentioned in Chapter IV.

In addition, the parameters proposed in SiGamal need to be scaled in line with the quantum

security analyses mentioned previously. We leave this as a future research direction.

VII.6 Conclusion and Future Work

In this work we revisit updatable public key encryption from the perspective of cryptographic

group actions. We identified in the literature that updatable public key encryption had only

been explored from effective group actions through the isogeny specific construction by Eaton

et al. [EJKM22]. We propose constructions from both effective and also restricted effective

group actions. This significantly improves that of prior construction and means that it can be

scaled to necessary parameters for security.

To achieve this, we first developed a generic technique for building UPKE from other cryp-

tographic primitives. In particular, we show that if an ARKG scheme that is PK-unlinkable and

KP-PKE is IND-IK-CPA secure, then we can construct a UPKE that is IND-CR-CPA secure.

Additionally we provide a generic technique for building KP-PKE. In particular, we show that

if an ARKG scheme that is PK-unlinkable and PKE is IND-CPA (IND-CCA) secure, then we can

construct a KP-PKE that is IND-IK-CPA (IND-IK-CCA) secure. Thus achieving a UPKE from

an ARKG and a PKE. Putting it into context of cryptographic group actions, we construct an

ARKG scheme from both effective and restricted effective group actions. We prove its security

using a new well motivated assumption called the PRF-OGADH assumption. This assumption is

motivated from analogous definitions in the discrete logarithm setting and relate its hardness

to other established assumptions within the realm of cryptographic group actions. We also use

a generic PKE construction for cryptographic group actions which when combined with our

ARKG scheme gives us a UPKE.



VII.6. CONCLUSION AND FUTURE WORK 131

VII.6.1 Future Work

We identify a few research questions that we believe to be of interest.

• Our UPKE construction only achieves IND-CR-CPA security and did not explore the op-

tion of obtaining IND-CR-CCA security which would add an extra level of security to our

constructions. We leave this as future work.

• We believe that the introduction of the assumption could have wider reaching applications

outside the remit of our purposes. In addition, we only provide a small sample of security

reductions of the various definitions of PRF-OGADH security. The details of the other

reductions is left as future work

• In the construction of the KP-PKE from group actions mentioned in Section VII.5.4, the

extra functionality that we impose on the PKE through an extra iteration of the ARKG

scheme is sufficient to obtain the key-private security but we note that it might not be

necessary. Classical discrete logarithm based PKEs such as ElGamal automatically have

this key-private property [BBDP01b]. Given their similarity, we believe that the group

action based PKE also has the key-private property without the need to use ARKG again.

This would be improve the efficiency of the protocol. We leave the details of this as future

work.

• Some of the proofs given here rely on the random oracle model. Hence if we wish to treat

this as a post-quantum scheme then one would require proofs that utilise the quantum

random oracle model. We leave this as a open problem to figure out these details.
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Chapter VIII

Conclusion

In this final chapter, we recall the main contributions of this thesis as well as discuss some open

problems and research that could prove useful in the context of isogeny-based cryptography.

Commitment scheme construction. The first contribution of the thesis came in Chapter V

and consists of a provably secure commitment scheme based on supersingular isogeny graphs.

This is the first such commitment scheme to be presented in the isogeny literature. The idea

is inspired by the approach taken in the construction of the CGL hash function [CLG09]. In

particular, to commit to a message string m one goes on a walk in some supersingular ℓ-isogeny

graph. The paths direction within the graph is dictated by the message itself. After proceeding

with this walk, one goes on a further walk whose path is dictated by a random string r. The

culmination of this walk is a supersingular elliptic curve which serves as the commitment of

the message m. When opening the commitment one simply the strings m, r and check that the

committed curve is the same as that from what one would get by going on the walk with this

m, r as described above.

At first glance, this idea looks very similar to a generic construction of a commitment scheme

from a cryptographic hash function [Sma15, Chapter 20.2]. However, the generic construction

requires the random oracle model in order to prove its security. In this construction we are

able to prove its security in the standard model and show that our construction is information-

theoretically hiding and computationally binding assuming the hardness of the one endomorph-

ism problem. An essential component in proving the hiding security of our commitment scheme

was the idea of the mixing constant. The definition of the mixing constant, in the context of the

supersingular ℓ-isogeny graph, is the smallest integer m such that any two supersingular elliptic

curves are connected in the supersingular ℓ-isogeny graph by a non-backtracking path of length

m. There are numerous graph theoretic results of this type but one does not restrict themselves

to solely non-backtracking paths so prior results could not be applied in this context. Through

some experimental results, we conjecture a concrete upper bound for this mixing constant for

any supersingular ℓ-isogeny graph (see Conjecture V.13 and V.17). We were not able to prove

this conjecture within the time of completing this thesis, so one interesting open problem would

be to try and see if this conjecture could be proven.

Another interesting open problem that is certainly worth exploring is the problem of con-
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structing a homomorphic commitment scheme. The potential of such a homomorphic con-

struction could be extremely interesting for more advanced applications that use commitment

schemes as a building block.

Finding twin-smooth integers. The second contribution of the thesis came in Chapter VI

in which the problem of finding twin-smooth integers is explored. This has recently been an

interesting problem to explore within the of parameter setup of certain isogeny cryptosystems,

such as B-SIDH and SQISign. In particular, we explore the CHM algorithm to find almost all

B-smooth twins for some smoothness bound B. This constructive algorithm consists of starting

with an initial set of B-smooth twins, namely {1, · · · , B − 1}, and continually include new B-

smooth twins to this set until the algorithm terminates (which it must do since the number of

B-smooth twins is finite). In particular, one computes the expression (r(s + 1))/((r + 1)s) for

r and s in the set and r < s and if it can be reduced down to t/(t + 1) whereby t is not in

the test, then we include t in this set. The original authors of the CHM algorithm [CHM13]
ran this algorithm with a smoothness bound of B = 200. Their run of the algorithm took two

weeks of computation before it terminated. Our contribution to this is introducing a bunch of

optimisations in order to run this algorithm much faster. In particular, our run with B = 200

terminated in only 15 minutes. Subsequently, we ran the full algorithm for B = 547 which took

between 1 and 2 days to run – the largest twin it found was 122 bits.

Despite these improvements, the CHM algorithm could not be utilised to find cryptographic

sized twins suitable for applications to isogeny-based cryptography. The necessary smoothness

bound B needed to run the algorithm and such twin large twins is not feasible to do using the

current computing resources. Having said this, we utilised the smaller twins that were found

with our runs and evaluated them on the polynomials pn(x) and pi, j(x) in order to find suitable

parameters for SQISign. In particular, we present the first practical parameters that achieve

more than 128-bits of classical security.

Additionally, we present a new probabilistic method for finding twin smooth integers. The

idea utilises the extended Euclidean algorithm over polynomial rings in a similar way as done in

the corresponding method that works over the integers. Moreover, this new method generalises

the known methods that are based on polynomial evaluation, namely r = xn − 1 and the PTE

solutions. We give some evidence to suggest that there are some choice of polynomials that

could be utilised to best smoother twins than that achieved by using the PTE solutions. We

leave the problem of practically find cryptographic instances with this method as future work.

There are a few other open problems that are of interest to explore. The main one being to

answer the question of why the CHM algorithm finds almost all twins for a given smoothness

bound. Currently, there is no real justification for this other than experimental results of the

algorithm and comparing it to a Pell equation computation when it can be done.

Updatable public-key encryption construction. The third and final contribution of this thesis

came in Chapter VII whereby we construct a UPKE scheme using cryptographic group actions.

The basis for the construction uses a generic a new cryptographic primitive called ARKG [FGK+20].
The idea behind ARKG is to be able to derive a new public-key pair from an existing public-key

pair is a way so that the two key pairs are unlinkable and the derivation of the public-key and
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the private-key can be done asynchronously. While this was initially motivated as a protocol for

use in the WebAuthn account recovery process, as a cryptographic primitive it has wider applic-

ations. In particular, we present a generic construction of an UPKE that uses an ARKG scheme in

combination with a key-private public-key encryption scheme. Furthermore, we instantiate our

scheme with cryptographic group actions by providing a construction of an ARKG scheme from

these group actions. The framework for this construction is inspired with discrete logarithm

construction given in the seminal work [FGK+20].
While there are other UPKE schemes based on cryptographic group action in the literature

[EJKM22], we are the first one that are able to construct such UPKE’s from restricted effective

group actions. In particular, our scheme can be instantiated using the setup given in CSIDH

whereby an expensive precomputation of the class group is not needed. This means that our

scheme scales much better than the previous approach as we increase the security parameter.

Having said this, with each epoch in our UPKE, we increase the size of the private key. Hence

this makes encryption and decryption more expensive as the epoch increases. As a result, it

is expected that it would only be able to handle around 100 iterations before grinding to a

halt. This means that it will most likely not be used in a practical setting and just be there for

theoretical interest.

There are a number of open problems that arise from this work as mentioned in Section VII.6.1.

An additional open problem is whether ARKG can be used as a tool to construct other crypto-

graphic primitives other than UPKE.

Future of isogeny-based cryptography. Despite the setback that was caused by the recent

attacks on SIDH, isogeny-based cryptography has a bright future with CSIDH and SQISign mak-

ing the main headlines for the future years. The fundamental problem of computing an iso-

geny between supersingular elliptic curves is believed to be hard. In comparison to other post-

quantum approaches, isogeny-based cryptosystems offer small keys and short signatures at a

cost of a slower performance. For certain applications this is something that could be beneficial.

One application that would be useful to explore is in the setting of Trusted Platform Modules

(TPM) where having small key sizes appears to be more beneficial. To truly realise this, work

on group signatures would need to be further developed to yield a particular strong application

but SQISign as a signature scheme on its own would be quite interesting when incoporated into

a TPM. Many other applications can be thought about and identifying these will be an import-

ant future problem for the development of isogeny-based cryptography. Other open problems

include: improving the efficiency of existing cryptosystems, designing more protocols to serve

isogeny friendly applications and also conduct security analysis and cryptanalysis of existing

cryptosystems to assess their confidence.
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