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Abstract: Suppose that Q is a positive defined # x n matrix, and Q[x] = xTQux with x € Z". The Epstein
zeta-function {(s; Q), s = o + it, is defined, for o > 7, by the series {(s; Q) = Lyezm {03 (Q[x]) ™, and
it has a meromorphic continuation to the whole complex plane. Let n > 4 be even, while ¢(t) is an
increasing differentiable function with a continuous monotonic bounded derivative ¢’ (t) such that
p(2t) (¢’ (i.‘))71 < t, and the sequence {a@(k)} is uniformly distributed modulo 1. In the paper, it is
obtained that %#{N <k<2N:{(c+igp(k);Q) € A}, A€ B(C), foro > ”T_l, converges weakly to
an explicitly given probability measure on (C, B(C)) as N — oo.

Keywords: Epstein zeta-function; limit theorem; weak convergence; Haar measure

MSC: 11M41

1. Introduction

Denote by s = ¢ + it a complex variable, by Q a positive defined quadratic n x n,
n € N, matrix, and put Qx| = xTQx forx € Z". In[1], Epstein introduced the zeta-function

(Qlx]),

o>

i(Q= )

n
e {0} 2

Moreover, he obtained the functional equation
T(s){(s; Q) = \/deths_%F(g - s)é(% —s; Q‘l), seC,

where I'(s) is the Euler gamma-function, which meromorphically continued the function
{(s; Q) to the whole complex plane with the unique simple pole at the point s = %, finding

that .
Res,—y¢(5:Q) = # (I(5) VdetQ) .

The above equation recalls the functional equation for the Riemann zeta-function

=1
discovered by Riemann in [2] and having the form

n_%l"<%)§(s) = 7t1251“<1gs>§(1 —5).
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The aim of Epstein was a zeta-function as general as possible having the functional equation
of the Riemann type. Later, it turned out that the function {(s; Q) is an interesting ana-
lytic object having practical applications, for example, in chemistry [3] and mathematical
physics [4,5].

The value distribution of the function {(s; Q), as other zeta-functions, is complicated;
it is difficult to say something on its concrete values. Therefore, for characterization of
the behavior of {(s; Q), the Bohr idea realized in [6,7] can be applied. This idea is very
simple: given some set, consider how often the values of {(s; Q) belong to that set. Such a
procedure leads to probabilistic limit theorems on weakly convergent probability measures.
The first theorems of such a type for the function {(s; Q) were obtained in [8,9]. Throughout
the paper, we suppose that Q[x] € Z for all x € Z" \ {0}. In this case, the function {(s; Q),
for o > 7, has the representation [10]

0(s;Q) = (s, Eq) + C(s; Fo),

where [(s; Eg) and (s; Fp) are the zeta-functions of a certain Eisenstein series and of a
modular form of weight 4, respectively. Moreover, we require that n > 4 and n = 2N.
Then, it is known by [11,12] that, for o > "771,

S E n & fo(m)
_kgg s L(s, xe) ( §+1,¢1)+m; o @)
where (m) (m)
= Xk(m v fi(m
L(s, xx) = LT and L(s,¢;) = mgl e

are Dirichlet L-functions with characters xj and ;, respectively, ay; are certain complex
numbers, and the series

i fo(m)

m=1 me

is absolutely convergent for o > -1
For the definition of the limit measure in limit theorems, one topological group is
used. Denote by B(X) the Borel o-field of a topological space X, by IP the set of all prime
numbers, and define
Q=TT

peP

where 7, = {s € C: |s| = 1} for all p € P. Then, Q) with the product topology is a compact
topological Abelian group. This gives the probability space (Q), B(Q2), my), where my is
the probability Haar measure on (), B(Q2)). Denote by w(p) the pth component of an
element w € ), p € P, and extend the function w(p) to the set N by the equality

I W'(p), meN.
pllm

p""“(m

Now, on the probability space (Q, B(Q), mp), for o > "1, define the complex-valued
random element

{(s,w; Q)

@
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where

L(Srwr?(j) =

For A € B(C), define
1
Pryo(A) = fmeas{t €1[0,T]:Z(c+it;Q) € A}.

Then, in [8], it was proved that for fixed ¢ > 5= L the measure Pr .0 converges weakly to
the measure

Pro(4) Emp{w € O: {(0,w;Q) € A}

as T — oo. In [9], the discrete version of the latter result was given, i.e., that

1

PN,O’,]’I;Q(A) N + 1

—#{0< k< N:((c+ikh;Q) € A},
for every h > 0, also converges weakly to the measure Py,g as N — co. Here, #A denotes
the cardinality of the set A. In [13], the weak convergence of the measure

Proo(A) = %meas{t € [T,2T] : {(c +ig(t);Q) € A}, A€ B(C),

with a certain differentiable function ¢(t) was considered.

The aim of this paper is to extend a theorem of [9] by using a more general discrete set
than an arithmetic progression {mh}. For this, we introduce the following class U(Ty) of
functions. We say that ¢ € U(T)) if:

1° ¢(t) is a real valued positive increasing to +oco on [T, o] function, where Tj is a
fixed sufficient large number;

2° ¢(t) has a continuous monotonic bounded derivative ¢’ (t) satisfying the estimate

1
- > .
p(2t) 0 <t t=Ty

3° a sequence {a¢(k) : k > No}, Ng = [To] + 1, with every real a # 0 is uniformly
distributed modulo 1.

We recall that a sequence {ay : k > ko} C Ris uniformly distributed modulo 1 if, for
every interval [a,b) C [0,1),

;}l—r&n—kwrl E lop ({ah) =b—a,

where {a;} denotes the fractional part of a;, and If, ) is the indicator function of [a, b).
Moreover, a <¢ b, b > 0 means that there exists a constant ¢ = ¢(¢) > 0 such that [a| < cb.
It is known [14] (Example 2.7) that the sequence {av'klogk}, a € R\ {0}, k > 2, is
uniformly distributed modulo 1. Thus, the function ¢(t) = v/tlogt lies in the class U(Tp).
Denote by {t;} the sequence of the Gram numbers; for a definition, see [15-17]. Then,
¢(T) = tr also is an element of the class U(Ty).
For A € B(C), define

1

NV Sk<aN: (o +ip(k);Q) € A}

P N,o;Q (A)
The main result of the paper is the following theorem.

Theorem 1. Suppose that o > "L is fixed, and ¢ € U(Ty). Then, Py .q converges weakly to
the measure Py, as N — co.
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We notice that the linear set {kh : k € Ny = NU {0} } is not uniformly distributed
modulo 1. Therefore, Theorem 1 is different from the main theorem of [9]. Moreover, the
requirement 3° of the class U(Tp) plays a crucial role for the identification of the limit
measure in Theorem 1. More precisely, this requirement ensures that the limit measure in
Lemma 2 coincides with the Haar measure mg on (Q), 5(Q))). Furthermore, the latter fact
is used in other limit relations.

The discrete generalized shifts were used in universality theorems for zeta- and L-
functions. For example, in a series of works, the sequence {y; : k € N} of imaginary parts
of nontrivial zeros of the Riemann zeta-function in generalized shifts was used; see [18,19]
and references therein. For the proof of universality, a limit theorem with generalized shifts
{(s + ikyy; a) for periodic zeta-functions in the space of analytic functions was obtained
in [18]. For its proof, a conjecture that, for ¢ > 0, the estimate

Y, Y 1<TlogT, T— oo,
ST n<T

[re—ml<ogT

is valid, was applied. This estimate is closely connected to the well-known Montgomery
pair correlation conjecture for the sequence {7y }. This example shows that the use of
generalized shifts {(s + i) also stimulates investigations of the very important sequence
{7}. On the other hand, universality theorems for zeta-functions are not effective in
the sense that concrete shifts approximating a given analytic function are not known.
Therefore, using generalized shifts extends a possibility for the detection of approximating
shifts. In particular, this is important for universality theorems in short intervals, see, for
example, [20]. We observe that the sequence {¢(k)} in shifts { (o + ig(k); Q) does not have
any relation to {7;}. The definition of the class U(T)) is based on the differentiability
notion, while {7} is a discrete complicatedly distributed sequence. Theorem 1, as the
results of [8,9,13], is theoretical: it describes not only the value distribution of (s;Q) on
the complex plane but also extends the space of applications of probabilistic methods. It is
difficult to say something on its practical applications; however, since theorems of such
a kind give the frequency of values of {(s; Q), the theorem at least potentially, may find
some place, say, in crystallography [3]. We may expect more applications from universality
theorems for {(s; Q), which are based on limit theorems in the space of analytic functions.
These theorems will form a new chapter of the theory of the function {(s; Q), and this, this
is our most immediate task.

Note that discrete value-distribution results of zeta and L-functions are complicated
but more important than continuous because they contain more individual information.
Historically, first of all, discrete results are connected to zero-distribution, mean values
of various arithmetical functions and their limit theorems, moments and various limit
characterizations, see [21-23]. For example, Selberg considered moments and related limit
theorems of probabilistic type of objects involving Gram numbers and their modifica-
tions [16,24,25]. Voronin began [26] to study discrete shifts {(o + ihk), % <oc<1l,keN;
for two classes of numbers h > 0, Reich [27] proposed discrete universality theorems on the
approximation of analytic functions by shifts (s + ikh). Significant progress was made by
Bagchi [28]: he proved probabilistic limit theorems for {(s), Hurwitz zeta-functions, Dirich-
let L-functions and other Dirichlet series in the space of analytic functions and applied them
for proving the universality. Since that moment,discrete probabilistic limit theorems have
been widely cultivated. For example, Ka¢inskaité obtained [29] discrete limit theorems
for the Matsumoto zeta-functions, Atstopiené presented [30] modified discrete univer-
sality theorems for {(s) and Hurwitz zeta-functions, Ignataviciaté studied [31] discrete
value-distribution of Lerch zeta-functions, and the second author proved [32] discrete limit
theorems for general Dirichlet series. In all the above works, discrete linear shifts were
used. More information can be found in the survey papers [33,34], see also [35].

To prove Theorem 1, first, we will prove a discrete limit lemma on the torus ); then,
we will consider the weak convergence of a measure defined by a certain function involving
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absolutely convergent Dirichlet series. Using some estimates between {(s; Q) and the above
function, we will deduce Theorem 1.

2. The Case of Q)
For A € B(Q), define

Ryp(A) = ﬁ#{N <k<2N: (p*f‘PU‘) pe ]P’) € A}.

This section is devoted to the weak convergence of Ry, as N — oo.
For convenience, we recall the Weyl criterion on a uniformly distribution modulo 1;
see, for example, [14].

Lemma 1. A sequence {xy : k € N} C R is a uniformly distributed modulo 1 if and only if, for
everym € 7\ {0},

lim = Z emexk —
n—oo 1

Lemma 2. Suppose that ¢ € U(Tp). Then, Ry, converges weakly to the Haar measure mp as
N — oo,

Proof. We have to prove that the Fourier transform gN,(P(k), k= (kp€Z, pcP),of RN,p
converges weakly to the Fourier transform of the measure mpy as N — co. The transform

8N,¢(k) is given by
gN,o(k /H @ (p)dRy,p,
Q pelP

wulrr

where “” means that only a finite number of integers k, are distinct from zero. Therefore,
by the definition of Ry,

gNpk) = N1 Z [T ptro®

k=N pelP
1 2N { Z/
= o7 L ey —ie(k) ) kp logp}' 3)
N+1 k=N peP

Let 0 denotes a collection consisting of zeros. Obviously,

gNp(0) =1. (4)

Now, suppose that k # 0. Since the logarithms of prime numbers are linearly independent
over the field of rational numbers Q, we have

a Y k,logp # 0.

peP

Therefore, in view of 3° of the class U(Tj), the sequence

{iq)(k) k> No}

27T

is uniformly distributed modulo 1. Hence, Lemma 1 implies

Jim ): exp{—inp(K)} =
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This, (3) and (4) show that

._..._..
SN
[ 1=
Sl
o e

1
L
tim a0 = { g
and the lemma is proved. O

3. Case of Absolute Convergence

In this section, we will obtain a limit lemma for a function connected to {(s; Q), how-
ever, with representation of type (2) involving only absolutely convergent Dirichlet series.

Define ]
opm(m) = exp{—(]l\n/l) }, m,M €N,

with a fixed 6 > 0. Since vy;(m) exponentially decreases with respect to m, the series
2 x(m)op(m
Lu(s,x) =Y x(m)om(m)

for every Dirichlet character is absolutely convergent in the half-plane o > ¢y with arbitrary
finite op. Let

From the above remarks, we have the absolute convergence for o > == L of the series for
Cm(s; Q). Moreover, for w € (), let

L .
Cmls w;Q) = ZZSZS (5,0, 7))L (5 - g+1,w,¢l)+2JM,

S
j=1i=1/ m=1 m

where

o=+ 1) - 5 Hetolente)

Then, clearly, the series for (s, w; Q), as that for {p(s; Q), is also absolutely convergent
for o > "Tfl
For A € B(C), define

1 .
PN,M,U,(p;Q(A> N+ 1#{N k<2N:Cm(c+ip(k);Q) € A}.

To prove the weak convergence for Py u,¢,¢;0, We use the function upq0(w) : Q — C
defined by

UM,o;Q (w) = gM(U/ w; Q)
Let the probability measure Vj .0 on (C, B(C)) be given by

_ -1
VM0 = MHU N 4,00

where
mHu]T/I%U;Q(A) = mH(uMl’g';QA)I A€ B((C)

We observe that the measure V) . is defined correctly because, in view of absolute convergence
of the series for {1 (s, w; Q), the function u s ., is continuous, hence, (B(Q2), B(C))-measurable.



Mathematics 2023, 11, 799

7 of 13

Lemma 3. Suppose that o > "L is fixed and ¢ € U(Ty). Then, Py pm,q converges weakly to
the measure Vg ;.0 as N — co.

Proof. By the definition of u1.0,

e (P00 s p € P) = Cu(o +igk); Q).
Therefore, the definitions of the measures Py u1,¢,¢;0 and Ry, show that, for A € B(C),

1 » ~
Py Mo gio(A) = m#{N <k<2N: (p i) . IP) c uMlmQA}.

Hence, PN M,o,9;0 = R N,fP”X/Il,a;Q' Since the function 1.0 is continuous, using a preserva-
tion of weak convergence under continuous mappings, see, for example, Theorem 5.1 of [36],
and Lemma 2, we obtain that Py p,¢,¢,0 converges weakly to my u;dl 70 S N —oco. O

4. Some Discrete Estimates

It is well known that mean square estimates play an important role for proofs of limit
theorems for zeta-functions. In our case, we need estimates for

2N
Y 1g(o +igp(k) +i1);Q)?, TER. ®)
k=N

We do not have a direct proof for an estimate of the latter square; therefore, we will derive
it from that of a similar continuous mean square

2T
/IC(U+ ip(t) +it); Q)|*dt
T

using the following lemma.
Lemma4. Let T, To > 6 > 0,7 C [To+6/2,To + T — /2] be a finite nonempty set, and

Ns(x)= ) 1
teT
|t—x| <o

Suppose that a complex-valued function S(t) is continuous on [Ty, Top + T| and has a continuous
derivative in the interior of that interval. Then

. To+T To+T To+T 1/2
LN @ISOP <y [ Is@Pa+ | [ IstPa+ [ 1s0Pa
TeT TO TO TO

Lemma 4 is called the Gallagher lemma; its proof can be found in [37] (Lemma 1.4).

In virtue of Lemma 4, for estimation of the discrete mean square (6), we need the
estimates for continuous mean squares of the function {(s; Q) and its derivative.

We observe that the class U(T)) is a subclass of the class W(Ty) introduced in [13].
Let L(s, x) be an arbitrary Dirichlet L-function. Then, the Lemma 1 of [13] gives the
following estimate.
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Lemma 5. Suppose that ¢ € U(Ty), o > % is fixed and T € R. Then

2T

/|L(U+ ip(t) +it, x)Pdt <y T(1+ |T)).
T

Lemma 6. Suppose that ¢ € U(Ty), o > % is fixed, and T € R. Then

2N
\L(c +ig(k) +iT, X)|* <o N(14]|7]).
k=N

Proof. Let 7y be a circle with center ¢ lying in the half-plane {s € C: 0 > %} Then, by the
Cauchy integral formula,

L'(0 +ig(t) +iT, x) = %/ L(Z+;f(_t)z; X g,

Hence,

(o +ip(t) + it ) < |

dz . .
‘_ ilz / IL(z + ig(t) + it, x) |2 |dz|.
Y Y

s

Therefore, in view of Lemma 5,

2T 2T

/ L (0 +ip(t) + it )Pt <orpr / \dz| / L(Rez +ig(t) + it + ilmz, x) |?|dz]|
7 y T
<Loxgny TA+]T]). (6)

Now, we are ready to apply Lemma 4. Wetaked =1, Ty =N—-1,T=N+2,7 = {N,N+
1,...,2N} and S(t) = L(0 +i¢(t) + iT, x) in Lemma 4. Clearly, we have N;(x) = 1. Thus,
Lemmas 4 and 5, together with (6) imply

2N+1

2N
Y L(o+ig(k) +it,x)[? < / IL(c + ig(t) + iT, x)[2 dt
k=N N-1

2N+1 2N+1 3
+ ( [ e tipw +inPar [ <<o’<t>>2|L'<a+i<p<t>+z'r,x>|2dt)
N-1 N-1

<oxpy N1+ |T]).

O

Lemma 6 allows estimating the distance in the mean between {(s; Q) and {u(s; Q).

Lemma 7. Suppose that ¢ € U(Ty), o > % is fixed, and T € R. Then

1 2N . .
Jim_Tim sup - k:ZN 1C(c +ip(k); Q) — {m(c +ig(k); Q)| = 0.

—® Nooo

Proof. First, we will deal with Dirichlet L-functions, and will prove that, for arbitrary
Dirichlet character x,

2N

Y |L(o+ig(k), x) — Lm(o +ig(k), x)| = 0. @)
k=N

Iim L
dim limsup =
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For this, we will use the integral representation

01+ico
1
Lu(s2) = 5 [ Lis+z0lu(z)dz, (®)
9171‘00
where .z .
Iu(z) = él"(g)M ) )

01 > % and 6 comes from the definition of v (), see, for example, [9] and the classical estimate
I'(0+it) < exp{—c|t|} withc >0 (10)

which is uniform in every interval o7 < 0 < 0, 07 < 0. The representation (8) shows that
for 6, > 0,

Lm(o +ig(k), x) — L(o +ig(k), x)

792%»1’00
< [ ool + 20 @I + Rl + (k)
—bp—ico
. : Im(—02 +iT .
< [ Ito-+ i)~ + im0 M2 dr s Ruo-+ip)), D
where
0 if x is a non-principal character mod g,
Ry(o+ip(k)) = Wﬂ(l — %) otherwise.

Suppose that ¢ > 0is such that o > 1 +eand 6, = ¢ — 1 — £. Then, (10) leads to

1 2N
NTI, Z IL(o +ig(k), x) = Lum(e +ig(k), )]

1 € ZM(—U'—F%‘F%—FZT)
< / (++iq)(k)+if,x)‘ drt

N+1 22 —o+3+5+it

T Z|RMU+1<p( )| %1+ 2. (12)
N+1
By Lemma 5,

1
1 2N /1 e , 1 W1 oe . 2\’
mkg\] L<§+§+lq)(k)+lT,X>' < <N+1kNL<2+2+l(P(k)+zr,X> >

g (1F]T))2. (13)
Moreover, (9) and (10) give the estimate
ZM(—a+ I+% +ir)
—c+1+E+iT

<g MTUt2E exp{—g|r|} <o M2 exp{fg\ﬂ}.

This and (13) show that

[e0]

£ Cc €
I <oxpo ME [ (L)) exp{ =5t} dr <0 M5, (14)

—00
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Similarly as above, the definition of Rys(c + i¢(k)) and (10) give

Ru (o +ig(k)) <o M exp{ Gk } <o M2~ exp{ 5 o(k) .

Thus,
i-e 2N

B el o) <ot xp{ S}

This together with (14) and (12) proves Equality (7).
By the representation (1), we have

AL

2N
N (s +ig(k); Q) — Tm(o +ig(k); Q)|
k N
L 1 2N ajl ‘
:];1; N+1 kz ]"+i<ﬂ<k>zv+i¢(k>L(‘7+l"’(k)’?‘1)

X ’L(G’—g+1+lq)k,l[}1> —LM((T—g—i-l—l—iq)k,l/Jl)‘
ﬁiJZN ZIL(U—§+1+z¢k,¢z) —Lu (o= 5 +1+ige )|

Therefore, this and (7) prove the lemma. O

5. Proof of Theorem 1
We will use for random elements the convergence in distribution (£>). Recall that
Xn ]’HLOO> X if the distribution of X;, converges weakly to that of X as n — co. In addition,

if X, %) X and X has the distribution P, then we write X, % P. The latter notation
n—oo n—oo
comes from [6].

Proof of Theorem 1. Let the random variable 6 be defined on the probability space with
a measure P, and have the distribution

1
P{6n =k} = No1 k=N,N+1,...,2N.

For o > 1, define the complex-valued random elements

Xnm = Xnm(o;Q) = Cm(o +ip(On); Q),
XN = XN(0;Q) = (0 +ip(On); Q),
and denote by Y1 = Yy(0; Q) the complex-valued random element having the distribution

VM,o;0, where Vi 4.0 is from Lemma 3. The measure V) .0 is independent of the function
¢(t). Therefore, it is known, see Formula (9) of [9], that

D
Yy — P,o. 15
MM—>oo 7;Q ( )

By Lemma 3, we have

Xnm —2— Y. (16)
N—o0
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Moreover, a simple application of Lemma 7 gives, for every e > 0,

lim limsup P{|XNx — Xnm| > €}
M= N 00

2N

- 1 . .

The latter equality together with relations (15) and (16) shows that the random elements
Y1, Xn,m and Xy satisfy the hypotheses of Theorem 4.2 of [36]. Thus, we obtain that

D
XNy —— P,.0,
N N—oco 7Q

and this is equivalent to the assertion of Theorem 1. [J

6. Concluding Remarks

In the paper, we obtain a probabilistic characterization for the behavior of the Epstein
zeta-function {(s; Q), s = ¢ + it, which is defined by the series

(sQ = Y 'y, U>g,
x€Z"\{0}

where Q is a positive defined quadratic n x n matrix and has analytic continuation to the
whole complex plane except for a simple pole at the point s = 7.

More precisely, we prove a discrete probabilistic limit theorem of the Bohr-Jessen type
in the sense of weak convergent probability measures on the complex plane for the {(s; Q)
by using generalized shifts {(s + i@(k); Q), i.e., that

1
NN <k<2N:({(s+ip(k)Q) € A}, A€ B(O),
converges weakly to the explicitly given probability measure as N — co. The function
¢(t), t = Ty > 0, is positive monotonically increasing to +co, and having a continuous
monotonic bounded derivative ¢ (t) satisfying

1
2)—— < t, t=To.
p(2t) 0
Moreover, we require that the sequence {ag(k) : k > Ty} would be distributed uniformly
modulo 1 for every a € R\ {0}. Note that the condition ¢'(t) < C, t > Tj implies

p(t)g'(t) <t, t=T,,

and is needed for estimation of the second discrete moment

2N

Y |Z(e+ip(k) +it;Q)*, teER. (17)
k=N

The used method is based on the Gallagher lemma (Lemma 4) connecting continuous and
discrete mean squares of same differentiable functions. It is an interesting problem to obtain
an estimate for Quantity (17) without using the Gallagher lemma.
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