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Introduction.
The subject of these lectures is a covariant string field theory (SFT).

One of the main motivations to construct covariant SFT – an off-shell for-
mulation of a string theory [1] – is the desire to study non-perturbative phe-
nomena in string theories [2, 3]. Recent studies of unstable D-branes and
tachyons have led to the realization that string field theory really accom-
modates significant non-perturbative information ([4]-[8] and refs therein).

SFT is a traditional subject at this school. In the previous set of lec-
tures [9, 10] an introduction to SFT as well as SFT description of unstable
D-branes and vacuum string field theory (VSFT) were presented. In the
next series rolling tachyon and D-brane decay [11] are considered. Cosmo-
logical applications of D-brane dynamics via rolling tachyons description
are presented in [12] and in a lecture by one of the present authors [13].

The subject that was never discussed here before concerns loop ampli-
tudes in SFT. Loop amplitudes were studied within the old light-cone SFT
[2] and in this formalism the finiteness of superstring diagrams was proved.
The finiteness of superstring theories in covariant approaches still remains
an open problem and deserves further attention.

In these three lectures we describe specific points that are important
to study loop diagrams in the covariant super SFT formalizm. To make
these lecture notes self-contained in the first lecture we describe the main
building blocks of SFT (for more details see [9, 10]). We will try to present
these building blocks in a more transparent way and make presentation
related with the diagram technique of the usual quantum field theory [17].

We consider the simplest one-loop diagram, the so-called tadpole dia-
gram, in the cubic SSFT [14, 15, 16]. For the bosonic case this diagram
was studied in [18]. There are specific features in the superstring case due
to a presence of inevitable picture-changing operators in the cubic SSFT.
At formal level (without regularization) one can prove that the tadpole
diagram in the cubic SSFT is BRST-exact. However, to deal with picture-
changing operators we have to introduce a regularization. An investigation
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of this problem requires a careful study of overlap properties of vertices.
Overlap conditions are defining relations to find vertices [19]. There are
so-called field and mode overlap conditions. Traditionally there is no dif-
ference between the mode overlap and the field overlap and in fact this
difference appears only for vertices with insertions. The simplest way to
see the difference is to deal with the identity vertex. This point apart from
the fact that it is important for loop calculations is an a good point to show
main technical features and properties of SFT. We consider this subject in
the second lecture.

The simplest way to study overlap conditions gives the CFT language
in SFT and it is discussed in the third lecture.

1. Lecture1

1.1. String Fields
In quantum filed theory each elementary particle corresponds to a local
field and vice versa [17]. As there is an infinite number of elementary
modes (particles) in strings [2, 3] it is natural to associate with a string
an infinite tower of usual fields. It turns out that all the fields appear as
different coefficients in expansion of a string field Ψ = Ψ[X(σ), c(σ), b(σ)]
on specific basic functionals. An origin of the form of these basic functionals
comes from vertex operators in the first quantized approach to strings. It
is convenient to describe these basic functionals in the Fock representation
and the expansion in the Fock representation is

|Ψ〉 =
∫
d26k

[
φ(k) |+; k〉 +Aμ(k) αμ

−1|+; k〉 + · · ·
]
, (1)

here and below αμ
−n, c−l, b−k are Fourier modes of a string Xμ(σ) and

it’s ghosts c(σ), b(σ) (here we mean the open bosonic string in the critical
dimension D=26, μ = 0, ..., 25) and |+; k〉 is defined below, see (6). Ghost
and antighost fields c(σ) and b(σ) appear when the bosonic open string
action

− 1
4πα′

∫
d2σ

√
−γγab∂aX

μ∂bXμ, (2)

is quantized in conformal gauge γab ∼ δab, a, b = 0, 1 using the BRST
approach [2, 3]. The gauge-fixed action is

− 1
4πα′

∫
d2σ∂aX

μ∂aXμ +
i

π

∫
d2σ

(
b++∂−c+ + b−−∂+c

−) . (3)

∂± = 1
2(∂τ ± ∂σ), σ0 = σ, σ1 = τ . The matter fields Xμ can be expanded

in modes as

Xμ(σ, τ) = xμ + 2pμτ + i
√

2α′
∑
n�=0

1
n
αμ

n cos(nσ)e−inτ , (4)
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and the canonical commutation relations are [xμ, pν ] = iημν , [αμ
m, αν

n] =
mημνδm+n,0 . Usually αμ

n’s with negative values of n are considered as cre-
ation operators, (αμ

n)† = αμ
−n and αμ

n|k〉matter = 0, n ≥ 1, and ”k” in the
ket means that the state |k〉 is a momentum eigenstate pμ|k〉 = kμ|k〉.

The ghost and antighost fields are decomposed into modes as

c±(σ, τ) =
∞∑

n=−∞
cne

−in(τ±σ), b±±(σ, τ) =
∞∑

n=−∞
bne

−in(τ±σ) . (5)

Thereafter we will drop the indexes ± for c(σ, τ) and b(σ, τ). The ghost and
antighost modes satisfy the anticommutation relations {cn, bm} = δn+m,0,
{cn, cm} = {bn, bm} = 0. Ghost part, |+〉, of the physical vacuum is defined
as bn|+〉 = 0, n ≥ 1, cn|+〉 = 0, n ≥ 0 , and the physical vacuum is

|+, k〉 = |k〉matter ⊗ |+〉. (6)

The ghost part of the SL(2,R) invariant vacuum is defined as bn|0〉 =
0, n ≥ −1, cn|0〉 = 0, n ≥ 2, and |0; k〉 = |k〉matter ⊗ |0〉. The
zero-momentum state |0; 0〉 is the SL(2,R) invariant vacuum; we will often
write it simply as |0〉. This vacuum is defined to have ghost number 0, and
it is normalized by 〈0; k|c−1c0c1|0; k′〉 = (2π)26δ(k − k′).

1.2. Bosonic String Field Action
There is a question how to write an action for the whole infinite system of
local fields or for a string functional, to reproduce standard local actions
for all local fields. In the light-cone gauge this problem has been solved in
the so-called light-cone string field theory [1].

A covariant open bosonic string field theory action was proposed by
Witten [1]

S =
1
2

∫
Ψ � QΨ +

g

3

∫
Ψ �Ψ �Ψ, (7)

here g is the string coupling constant and Ψ is a string field [2]. Here it is
assumed that string field Ψ is an element of a string field algebra A. This
algebra is equipped with noncommutative star product � : A⊗A → A,
and BRST operator Q : A → A,

The algebra A is a Z-graded algebra under multiplication and the degree
G of Q is equal to one. String fields are integrated using

∫
: A → C . This

integral
∫

Ψ vanishes unless the GΨ = 3. Thus, the action (7) is only
non-vanishing for a string field Ψ of a definite degree 1. Note, that in our
conventions G(|0〉) = 0.

The elements Q, �,
∫

that define the string field theory are assumed to
satisfy the set of axioms (see [1, 9, 19] for details). When the axioms are
satisfied, the action (7) is invariant under the gauge transformations

δΨ = QΛ + Ψ � Λ − Λ �Ψ , (8)

for any gauge parameter Λ ∈ A with degree 0.
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For Witten’s cubic open string field theory, the BRST operator Q in
(7) is the usual open string BRST operator QB, and the degree associated
with a Fock space state is the ghost number of that state.

The star product � is defined by gluing the right half of one string to
the left half of the other one using a delta function interaction [1]. The
star product is factorized into separate matter and ghost parts. It is given
by a formal path integral with δ-function. The integral over a string field
also is factorized into matter and ghost parts. In each sector it corresponds
to gluing of the left and right halves of the string together with a delta
function interaction [1, 19]. The expressions with δ-functions are rather
formal. One can give to these expressions precise meaning in Fock space
description. Let H be the Fock space of vectors (1). In the Fock space
language, the integral of a string field as well as the integral of the star
product of two or three fields is described in terms of one-, two- and three-
string vertices 〈V1|, 〈V2| and 〈V3|. 〈V1| is an elements of the dual Fock space
(H∗). 〈V2| and 〈V3| are two-fold and three-fold product of the dual Fock
spaces (H∗)2 and (H∗)3, 〈Vi| ∈ (H∗)i i = 1, 2, 3. They are defined so that∫

Ψ → 〈V1|Ψ〉 ≡ 〈I|Ψ〉,∫
Ψ1 �Ψ2 → 〈V2| (|Ψ1〉 ⊗ |Ψ2〉) ≡ 〈V2|Ψ1,Ψ2〉, (9)∫
Ψ1 �Ψ2 �Ψ3 → 〈V3| (|Ψ1〉 ⊗ |Ψ2〉 ⊗ |Ψ3〉) ≡ 〈V3|Ψ1,Ψ2,Ψ3〉.

Explicit forms for the two- and three-string vertices were found in [19]-[23]
and are presented in many lecture notes, and in particular in [9]. In terms
of these vertices, the SFT action (7) becomes

S =
1
2
〈V2|Ψ, QΨ〉 +

g

3
〈V3|Ψ,Ψ,Ψ〉 . (10)

This action is often written using the dual 〈Ψ| of the string field |Ψ〉 1,
〈Ψ| = 〈V2|Ψ〉, as

S =
1
2
〈Ψ|QΨ〉 +

g

3
〈Ψ|Ψ �Ψ〉 . (11)

1.3. Vertices and their properties
A vertex 〈VN |, N = 1, 2, 3 is a solution of overlap conditions

〈VN |[X(i)(σ) −X(i−1)(π − σ)] = 0,

〈VN |[c(i)(σ) + c(i−1)(π − σ)] = 0, 〈VN |[b(i)(σ) − b(i−1)(π − σ)] = 0,

1In the CFT language the BPZ dual 〈Ψ| is defined by the conformal map z → −1/z;
[24]
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where i = 1, ..., N means the number of the strings and X(σ) = X(σ, 0),
c(σ) = c(σ, 0), b(σ) = b(σ, 0) and X(σ, τ), c(σ, τ) and b(σ, τ) are given by
(4) and (5) respectively. According to [19]-[23] 〈V2| has a form

〈V2| =
∫
d26p (〈−; p| ⊗ 〈−;−p|) (c(1)

0 + c
(2)
0 )

× exp

(
−

∞∑
n=1

(−1)n[
1
n
α(1)

n α(2)
n + c(1)

n b(2)
n + c(2)

n b(1)
n ]

)
,

where 〈−;−p| ≡ 〈0|c−1 ⊗ matter〈−p|. This expression for the two-string
vertex can also be derived directly from the conformal field theory approach
computing the two-point function of an arbitrary pair of states on the disk
[24].

Similar to the two-string vertex the three-string vertex has a form [19]-
[23]

〈V3| =
3∏

i=1

(∫
d26p(i)〈−; p(i)|

)
δ(p(1) + p(2) + p(3))c(1)

0 c
(2)
0 c

(3)
0

× exp

⎛
⎝−1

2

3∑
r,s=1

[α(r)
m

V rs
mn√
nm

α(s)
n + 2α(r)

m

V rs
m0√
m
p(s) + p(r)V rs

00 p
(s)
n + c(r)m Xrs

mnb
(s)
n ]

⎞
⎠.

To provide the axioms which have to be obeyed by
∫
, � and BRST -charge

Q one has to assume the BRST-invariance of vertices 〈VN |
∑N

i=1Q
(i) = 0.

1.4. NSR Fermions String Fields
The action for the matter part of the open superstring in the conformal
gauge has the form [2, 3]

S = − 1
2πα ′

∫
d2σ

[
1
2
∂aX

μ∂aXμ − i

2
Ψ̄μγa∂aΨμ

]
. (12)

Here Ψ is a Majorana spinor and Ψ̄ = ΨTγ0. We introduce the explicit rep-

resentation of Euclidean Dirac γ-matrices: γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −i
i 0

)
.

The spinor Ψμ(σ, τ) has two components Ψμ(σ, τ) =
(
ψμ
−(σ, τ)

ψμ
+(σ, τ)

)
. Perform-

ing matrix multiplications in (12) we get the following action for fermions

− 1
2πα ′

∫
d2σ[ψ−∂+ψ− + ψ+∂−ψ+]. (13)

Since Ψμ(σ, τ) is a spinor, we can impose the following boundary conditions
(the first one can always be reached by redefinition of the fields), ψμ

+(π, τ) =
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ψμ
−(π, τ), ψμ

+(0, τ) = ±ψμ
−(0, τ). The ”+” sector is called the Ramond

(R) sector, and the ”−” sector is called the Neveu-Schwartz (NS) sector.
Therefore, the solution to the equations of motion (merging ψ− and ψ+) is
of the form

ψμ
±(σ, τ) =

1√
2

∑
n∈Z+r

ψμ
ne

−in(σ±τ), (14)

where r = 0 for R-sector, and r = 1/2 for NS-sector.
Following the ordinary quantization procedure we get the following com-

mutation relations {ψμ
m, ψν

n} = ημνδm+n,0. To get the gauge-fixed action one
adds to (12) the superghost action

S =
1
2π

∫
d2σ

(
β+∂−γ+ + β−∂+γ

−) , (15)

where β and γ denote conjugated fields of dimension 3/2 and −1/2 respec-
tively; they are Bose fields. These fields have the following mode expansions

γ±(σ) =
∑

n

γne
±inσ, β±(σ) =

∑
n

βne
±inσ. (16)

The superghosts satisfy the commutation relations [γm, βn] = δm+n,0. In
the NS sector we have βn, n ∈ Z+ 1

2 , γn, n ∈ Z+ 1
2 and in the R sector we

have βn, n ∈ Z, γn, n ∈ Z A general (ghost number q) state |q〉 is defined
to obey [26, 27]

βn|q〉 = 0, n > −q + 3/2, γn|q〉 = 0, n ≥ q − 1/2.

Where q ∈ Z for the NS sector and q ∈ 1
2 + Z for the R sector.

1.5. NSR Fermions String Field Action
The cubic action for NSR superstring field theory is [14]-[16]:

S =
∫
Y−2Ψ�QNSΨ+

2
3

∫
Y−2Ψ�Ψ�Ψ+

∫
Y−1Φ�QRΦ+2

∫
Y−1Φ�Ψ�Φ.

(17)
Here QNS and QR are the BRST charges in NS and R sectors,

∫
and � are

Witten’s string integral and star product. Y−2, Y−1 are picture-changing
operators. States in the extended Fock space H are created by the modes
of the matter fields Xμ and ψμ, conformal ghosts b, c and superghosts β, γ:

NS: Ψ =
∑

m,j,i∈N+ 1
2

Ai...(x)β−i...γ−j ...b−k...c−l...α
μ
−n...ψ

ν
−m|0〉, (18)

R: Φ =
∑

m,j,i∈N

ΨA
i...(x)β−i...γ−j ...b−k...c−l...α

μ
−n...ψ

ν
−m|0〉−1/2. (19)



Three Lectures on (Super)String Field Theories 211

The characteristic feature of the action (17) is the choice of the 0 picture
for the string field Ψ. The vacuum |0〉−1/2 in the R sector is defined as
|0〉−1/2 = e−φ(0)/2|0〉, where |0〉 stands for the SL(2,R)-invariant vacuum.
In the description of the open NSR superstring the string field Ψ belongs
to the GSO+ sector.

1.6. Feynman Diagrams in SFT

1.6.1. Siegel Gauge
The gauge invariance (8) of SFT action (7) requires a gauge fixing proce-
dure. The Siegel gauge is

b0Ψ = 0. (20)
The advantage of this gauge is a link to the first quantized string due to
the form of the propagator in this gauge (see below (23)).

We outline here the gauge-fixing for the free part of the action (7) (the
nonlinear case is much more involved and can be found in the literature
[25]). In this case the free action is simply invariant under δΨ = QΛ, GΛ =
0. The Faddeev-Popov determinant det(b0Q) calculated from (20) creates
the ghost Ψ0 and antighost string fields. The b0 factor can be absorbed into
the definition of the antighost field Ψ2 resulting in the constraint δ(b0Ψ2)
and the ghost action ∫

Ψ2 � QΨ0. (21)

This action is obviously again gauge-invariant under δΨ0 = QΛ. The Siegel
gauge-fixing of this invariance creates one more term of the form (21) with
one more ghost-antighost pair Ψ1, Ψ3. This infinite procedure can be
packed into a compact form if one introduces the string field containing
all ghost numbers with the action∫

Ψ � QΨ (22)

and the Siegel gauge condition (20). In this gauge:∫
Ψ � QΨ =

∫
Ψ � c0L0Ψ

and the propagator is obtained to be

Δ =
b0
L0
. (23)

1.6.2. Elements of Diagram Technique
As in quantum field theory [17] different processes describing string inter-
actions correspond to diagrams in SFT.

Below we present the table in which a correspondence between analyt-
ical expressions of the theory elements and their graphical presentation is
established.
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No Analytical Graphical Conformal
expression presentation presentation

1 1
L0

=
∫∞
0 e−L0TdT �

T
eT

2
Folded strip
〈V1| ≡ 〈I|

0

�

�
2

3
Two string
interaction

〈V2|
0

� 0

�

�
2

4
Three string
interaction

〈V3| �
2

0�
0

� 0

�

5
Integral operator
ξ = 1

2π

∫ π
0 ζ(σ)dσ

�

0

�

�

6
External state |Ψ〉

in the infinite
past τ = −∞

�

�

Note that using the relation 〈I|V3〉 = |V2〉 we may rewrite a diagram
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with the vertex |V2〉 as a diagram with the vertices |I〉 and |V3〉.

�
2

0�
0

� 0

� �
2

0�
0

� 0

�

1
1 3

2 0

� 0

�
�
22 3

1 3

2

All the above rules formally work both for the bosonic and the fermionic
strings. The difference in the fermionic string is in the a form of propagator
and a presence of additional insertions in the point.

No Analytical Graphical Conformal
expression presentation presentation

1
Bosonic string

propagator
ΔB = b0

L0

�

T

b
b

eT

2
Fermionic string

propagator
ΔF = b0

L0
WQ b0

L0

T1 T2

�W b

b j

eT1

b

W
j b

eT2

3
Local operator

W (σ, τ)
W( )��� W(z)

1.6.3. Feynman diagrams

Using the rules above one can write a matrix element of any diagram.
In particular an N-point tree diagram for superstring can be schemati-

cally presented in the form [16]

〈V3|Y (1)
−2 ...〈V3|Y (N−2)

−2 Δ(1′)|V2〉...Δ(N−3′)|V2〉|Ψ1〉...|ΨN 〉. (24)
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An N-point one-loop diagram is a connected part of

〈V3|Y (1)
−2 ...〈V3|Y (N)

−2 Δ(1)|V2〉...Δ(N)|V2〉|Ψ1〉. (25)

The simplest tree diagram has the form

12i〈V3|34j〈V3|Y i
−2Y

j
−2Δ

i|V2〉ij |Ψ1〉1|Ψ2〉2|Ψ3〉3|Ψ4〉4 ⇐⇒

Here and above Ψ1, Ψ2, ..., ΨN are external states. This diagram was
calculated in [14].

The simplest one-loop diagram is the tadpole diagram (for the bosonic
string this diagram was considered in [18])

3〈Ψ|12〈V2|ΔY−2|V3〉123. (26)

The tadpole diagram is topologically equivalent to the diagram which de-
scribes the open-closed transition:

To calculate this diagram we simplify it using algebraic properties of ver-
tices and picture-changing operators. The NS propagator can be repre-
sented in the form [16]

Δ = A+Q
b0
L
A
b0
L
Q−Q

b0
L
A−A

b0
L
Q. (27)

Here A ≡ ξ(i)Qξ(−i) = ξQξ∗ (ξ(z) appears after bosonization of β − γ
system), and we drop the index of operator L0. Inserting this propagator
into (26) we obtain a representation for the tadpole as a sum of 4 terms

12〈V2|ΔY−2|V3〉123 = T , T =
4∑

i=1

Ti, (28)

T1 = 12〈V2|AY−2|V3〉123, T2 = 12〈V2|Q
b0
L
A
b0
L
QY−2|V3〉123,

T3 = −12〈V2|Q
b0
L
AY−2|V3〉123, T4 = −12〈V2|A

b0
L
QY−2|V3〉123,

here we put the propagator on the line number one and omit label of line
where it does not lead to misunderstanding.
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Let us transform T3 to the form of T4. To this purpose we use the explicit
form for A, T3 = 12〈V2|Q b0

L ξQξ
∗Y−2|V3〉123, and carry it to the left. Chang-

ing the line (Fock space) index for ξ∗ using overlap (i.e. ξ(1)|V3〉 = ξ(2)|V3〉),
then moving ξ(2) to the left as the second line operators (anti)commut with
first line operators:

12〈V2|Q
b0
L
ξQξ(2)∗Y−2|V3〉123 = 12〈V2|ξ(2)∗Q

b0
L
ξQY−2|V3〉123

and using the overlap for 〈V2| we get

T3 = 12〈V2|ξ(1)∗Q
b0
L
ξQY−2|V3〉123.

BRST invariance of |V2〉 gives

T3 = −12〈V2|ξ(1)∗Q
b0
L
ξY−2(Q(2) +Q(3))|V3〉123

and moving Q(2) and Q(3) to the left we get T3 = T3,1 + T3,2, where

T3,1 = −Q(3)
12〈V2|ξ(1)∗Q

b0
L
ξY−2|V3〉123 ,

T3,2 = −12〈V2|Q(2)ξ(1)∗Q
b0
L
ξY−2|V3〉123.

By the same trick we present T3,2 as

T3,2 = 12〈V2|Q(1)ξ(1)∗Q
b0
L
ξ(2)Y−2|V3〉123

move ξ(2) to the left, and change (2) → (1):

T3,2 = 12〈V2|ξ(1)Q(1)ξ(1)∗Q
b0
L
Y−2|V3〉123.

Here we also used BRST invariance of Y−2, [Q,Y−2] = 0 and [ξ, Y−2] = 0.
Combining T4 and T3,2 we obtain

T4 + T3,2 = −12〈V2|AY−2|V3〉123

that cancels T1 in the T (see (28)).
The second term in (28) can be modified by the same trick as above to

give

T2 = −12〈V2|Q
b0
L
A
b0
L

(Q(2) +Q(3))Y−2|V3〉123

= −12〈V2|Q(2)Q
b0
L
A
b0
L
Y−2|V3〉123 −Q(3)

12〈V2|Q
b0
L
A
b0
L
Y−2|V3〉123

= −Q(3)
12〈V2|Q

b0
L
A
b0
L
Y−2|V3〉123 .
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So by using formal algebraic manipulations based of the properties of the
vertices we prove the tadpole graph to be BRST exact

T = −Q(3)
12〈V2|ξ(1)∗Q

b0
L
ξY−2|V3〉123 −Q(3)

12〈V2|Q
b0
L
A
b0
L
Y−2|V3〉123.

2. Lecture 2

2.1. Identity over a physical vacuum
Identity over a physical vacuum is built in [19] and is given by

|Ibc〉 = b(
π

2
)b(−π

2
)|Ighost〉 = b(

π

2
)b(−π

2
)eU |+〉, (29)

where U =
∑∞

n=1(−)nc−nb−n.
By definition |Ighost〉 solves the mode overlap2 [19]

[cn + (−)nc−n]|Ighost〉 = 0, [bn − (−)nb−n]|Ighost〉 = 0. (30)

In particular, from (30) it follows that b(±π
2 )|Ighost〉 �= 0.

The field overlap conditions on |Ighost〉 is

[c(σ) + c(π − σ)]|Ighost〉 =
∞∑

n=−∞
[einσcn + (−)ne−inσcn]|Ighost〉 =

=
∞∑

n=−∞
einσ[cn + (−)nc−n]|Ighost〉 = ( due to (30)) = 0. (31)

Hence, |Ighost〉 solves the mode and the field overlap conditions.

2.2. Overlap verification for |Ibc〉
To verify the overlap conditions on |Ibc〉 we calculate the commutator of
the insertion b+b− ≡ b(π

2 )b(−π
2 ) with the overlap condition.

[c(σ) + c(π − σ), b+b−] = (32)

=
∞∑

k=−∞
(i−keikσ + ike−ikσ)b− −

∞∑
k=−∞

(ikeikσ + i−ke−ikσ)b+.

From (32) we may try to get the mode overlap condition multiplying both
parts by eikσ and integrating by σ. We get:

[cn + (−)nc−n]b+b−|Ighost〉 = 2in [(−)nb− − b+] |Ighost〉. (33)
2A tradition makes no difference between the ”mode overlap” and the ”field overlap”.

In this text it will become clear that these are two different conditions.
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Vanishing of this expression is equal to the conditions:

b+|Ighost〉 = 0, b−|Ighost〉 = 0

which are not satisfied as remarked above. We conclude the mode overlap
condition is not true for |I〉.

We continue the examination of (32) It is clear that the RHS of (32)
requires a regularization. We use a small parameter ε to make a shift
λ ≡ i−1eiσ → −ieiσ−ε ≡ λε. So we get:

ξ ≡
∞∑

k=−∞
i−keikσ → ξε =

( ∞∑
k=0

(λk
ε + λ̄k

ε) − 1

)
=

1 − λελ̄ε

1 − λε − λ̄ε + λελ̄ε
.

We take the limit limε→0 ξ
(ε) and using limε→0 λελ̄ε = 1 and σ �= π

2 ,
3π
2 we

get that ξ is equal to zero.
Performing the second summation by the same trick it can be shown

that it also vanishes. So

[c(σ) + c(π − σ), b+b−] = 0, (34)

and we conclude that the field overlap commutes with the insertion. There-
fore |Ibc〉 solves the field overlap.

Verification of overlaps for the antighost field b

[bn − (−)nb−n]|Ibc〉 = 0, [b(σ) − b(π − σ)]|Ibc〉 = 0. (35)

can be easily made because {bn − (−)nb−n, b+b−} = 0 and {b(σ) − b(π −
σ), b+b−} = 0 and the overlaps commute with the insertion.

2.3. Identity over conformal vacuum
In this subsection we establish the equivalence of the vertex built over the
physical vacuum and the vertex built in [19, 20] over the conformal vacuum.

2.3.1. Operator derivation of expression without insertion
Our goal is to move the insertion b+b− through the exponential (29) and
pass to the conformal vacuum.

We begin with computation of the commutator (see (29)):

[b(σ), U ] = [
∞∑

n=−∞
einσbn,

∞∑
k=1

(−)kc−kb−k] =
∞∑

k=1

(∓i)kb−k,

and

b±eU = eU

(
b± +

∞∑
k=1

(∓i)kb−k

)
,
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Moving the insertion through the exponent we get

b+b−eU = eU (b+ +
∞∑

n=1

(−i)nb−n)(b− +
∞∑

k=1

ikb−k).

Over |+〉 we may drop bk with k > 0 and we have

b+b−eU |+〉 = eU (2
∞∑

n=1

(−i)nb−n + b0)(2
∞∑

k=1

ikb−k + b0)|+〉 =

= 2eU (2
∞∑

n=1

∞∑
k=1

(−i)nikb−nb−k +
∞∑

k=1

((−i)k − ik)b−kb0))|+〉.

The structure (−i)k − ik is not zero only for odd k (k = 2m + 1) and we
rewrite the answer as:

−4ieU (i
∞∑

k=1

∞∑
m=1

ik−mb−mb−k +
∞∑

k=1

∞∑
m=0

(−)mδk,2m+1b−kb0)|+〉.

Now this expression may be rewritten with the conformal vacuum. We
extract b−1 modes out of the sums:

−4ieU (i
∞∑

k=2

∞∑
m=2

ik−mb−mb−k + i
∞∑

k=2

ik−1b−1b−k + i
∞∑

m=2

i1−mb−mb−1+

+
∞∑

k=3

∞∑
m=1

(−)mδk,2m+1b−kb0 + b−1b0)|+〉.

Introducing the notations:

B0 ≡
∞∑

k=3

∞∑
m=1

(−)mδk,2m+1b−k, B1 ≡ −2
∞∑

k=2

∞∑
m=1

(−)mδk,2mb−k,

B2 ≡
∞∑

k=2

∞∑
m=2

ik−m+1b−mb−k,

we have b+b−eU |+〉 = −4ieU (B2 +B1b−1 +B0b0 + b−1b0)|+〉. Taking into
account that the conformal vacuum |0〉 is related to |+〉 as |+〉 = c0c1|0〉,
and separating the term 1 − c−1b−1 from eU we get

b+b−eU |+〉 = −4i exp

{ ∞∑
n=2

(−)nc−nb−n

}
·

·(1 − c−1b−1)(B2 +B1b−1 +B0b0 + b−1b0)c0c1|0〉.



Three Lectures on (Super)String Field Theories 219

Moving the braces (1−c−1b−1) to the conformal vacuum and using b−1|0〉 =
0 we get

(1 − c−1b−1)(B2 +B1b−1 +B0b0 + b−1b0)c0c1|0〉 =
= (1 −B1c0 +B0(c1 − c−1) −B2(c1 − c−1)c0)|0〉.

Finally:

b+b− expU |+〉 = −4i exp

{ ∞∑
n=2

(−)nc−nb−n

}
×

×
(
1 −B1c0 +B0(c1 − c−1) +B2(c1 − c−1)c0

)
|0〉.

Now it is needed to prove that the quadratic in c term is the product of
the two linear ones, i.e. we have to prove that B2 = B0B1. To this aim
the form of the quadratic term can be modified.

B2 =
∞∑

m,k=2

ik−m−1b−kb−m = (due to {b−k, b−n} = 0) =

=
1
2i

∞∑
m,k=2

ik−m(1 − (−)k−m)b−kb−m =
∞∑

l=−∞

∞∑
m,k=2

(−)lδk−m,2l+1b−kb−m.

For B0B1 we have

B0B1 = 2
∑
p≥1,
n≥1

∑
k≥2,
m≥2

(−)n−pδk,2nδm,2p+1b−kb−m

Then we make the following replacement:

l = n− p = from δ -s = (k −m+ 1)/2 ⇒ k −m = 2l − 1,

here l is arbitrary. Therefore,

B0B1 = 2
∑

l

∑
k≥2(even),
m≥2(odd)

(−)lδk−m,2l−1b−kb−m = (due to {b−k, b−n} = 0) =

=
∑

l

∑
k≥2,
m≥2

(−)lδk−m,2l−1b−kb−m = B2.

So, the preexponential factor may be written as:

(1 −B1c0 +B0(c1 − c−1)−B2(c1 − c−1)c0) = exp(−B1c0 +B0(c1 − c−1)).
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After gathering the pieces together the full identity becomes:

|Ibc〉 = b(
π

2
)b(−π

2
) exp

{ ∞∑
n=1

(−)nc−nb−n

}
|+〉 ≡ −4i expW |0〉, (36)

W =
∑

n≥2,
m≥−1

b−nCnmc−m|0〉.
This equality shows that the identity over the physical vacuum can be

rewritten as the identity over the conformal vacuum.
Changing the indexes: m → k, k → n in the formulae for B0, B1 we

get [20]

Cnm = −(−1)nδn,m + C̃nm; (37)

C̃nm =
∑

k

(−1)k[δn,2k+1(δm,−1 − δm,1) + 2δn,2kδm,0].

2.3.2. Overlap verification
Let us show once more that |Ibc〉 does not solve the mode overlap. It is
easy to prove that if only creation operators stand in the mode overlap
then overlap is not satisfied. The overlap operator moves freely and gives
nonzero acting on the vacuum, because there are only creation operators
in the exponent . It takes place in our case:

[cn0 + (−)n0cn0 ] expW |0〉 �= 0, n0 = ±1, 0, (38)

because cn0 |0〉 �= 0 for n0 = ±1, 0.
To check the field overlap we start with a calculation of c(σ)|Ibc〉. Di-

viding c(σ) the creation and the annihilation parts with respect to the
conformal vacuum we get using eq. (36):

c(σ)|Ibc〉 =
∞∑

n=−∞
einσcn|Ibc〉 = (

∑
n≤1

+
∑
n≥2

)einσcne
W |0〉 =

= (eW
∑
n≤1

einσcn|0〉 +
∑
n≥2

einσeW (cn +
∑

m≥−1

Cnmc−m))|0〉;

and because the first term in the brackets is the annihilation operator acting
on vacuum:

c(σ)|Ibc〉 = eW (
∑
n≤1

einσcn +
∑
n≥2

einσ
∑

m≥−1

Cnmc−m)|0〉. (39)

It is convenient to separate out the diagonal part of Cnm = −(−)nδnm +
C̃nm. Than

c(σ)|Ibc〉 = eW (
∑
n≤1

einσcn −
∑

n≤−2

e−inσ(−)ncn +
∑
n≥2

einσ
∑

m≥−1

C̃nmc−m)|0〉.
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Analogously for c(π − σ):

c(π − σ)|Ibc〉 = eW (
∑
n≤1

e−inσ(−)ncn −
∑

n≤−2

einσcn +

+
∑
n≥2

e−inσ(−)n
∑

m≥−1

C̃nmc−m)|0〉,

and as the next result we obtain:

(c(σ) + c(π − σ))|Ibc〉 = (40)

= eW (
∑
n≤1

einσcn −
∑

n≤−2

einσcn −
∑

n≤−2

e−inσ(−)ncn +

+
∑
n≤1

e−inσ(−)ncn +
∑
n≥2

∑
m≥−1

(einσC̃nmc−m + e−inσ(−)nC̃nmc−m))|0〉.

From the former four sums only 6 terms remain due to the difference of
summation limits (omitting eW ):

eiσc1 + c0 + e−iσc−1 − e−iσc1 + c0 − eiσc−1 = 2c0 + 2i sinσ(c1 − c−1).

Using (37) the last two terms in (40) can be presented as

(c1 − c−1)
∑
n≥2

(einσ + (−)ne−inσ)
∑

k

(−)kδn,2k+1 + (41)

+2c0
∑
n≥2

(einσ + (−)ne−inσ)
∑

k

(−)kδn,2k = (c1 − c−1)ζ + 2c0η,

where

ζ =
∑
k=1

(−)k[ei(2k+1)σ − e−i(2k+1)σ], (42)

η =
∑
k=1

(−)k[e2ikσ + e−2ikσ]. (43)

Let us consider the first sum in the RHS of (42). As before we see that
the sum looks like the geometric series but here |ei(2k+1)σ| = 1 (it must be
smaller then one for converging series). Therefore we introduce the small
parameter ε and deal with a regularized sum:

ζε ≡
∑
k=1

(−)k[ei(2k+1)σ−kε − e−i(2k+1)σ−kε].

Introducing the notation λε = e−2iσ−ε we have

ζε =
eiσ − e−iσ + λεe

iσ − λ̄εe
−iσ

1 + λε + λ̄ε + λελ̄ε
− eiσ + e−iσ.
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Removing the regularization we obtain ζ = limε→0 ζ
ε = −2i sinσ. Using

the same procedure as above we have

ηε ≡
∑
k=1

(−)k[λ̄k
ε + λk

ε ] = − 2λελ̄ε

1 + λε + λ̄ε + λελ̄ε
,

ε→ 0 limit gives

η = lim
ε→0

ηε = lim
ε→0

2 + e−2iσ−ε + e2iσ−ε

1 + e−2iσ−ε + e2iσ−ε + e−2ε
− 2 = −1. (44)

Combining the pieces together we get for (41)

2c0 + 2i sinσ(c1 − c−1) − (c1 − c−1)2i sinσ − 2c0 = 0. (45)

This equation implies that the field overlap condition takes place. Keeping
ε – regularization one writes the field overlap condition as

[c(σ + i
ε

2
) + c(π − σ + i

ε

2
)]|Ibc〉 = 0. (46)

2.4. BRST invariance of identity
The string action (7) proposed by Witten [1] has the symmetry under
the gauge transformation (8). Besides this symmetry it is invariant under
transformation δΨ = AΨ, where A is any differentiation of algebra, i.e.

A(Ψ1 �Ψ2) = AΨ1 �Ψ2 + (−)gradingΨ1 � AΨ2,

∫
AΨ = 0. (47)

Moreover it must obey [A,Q] = 0. An appropriate operator is Kn ≡ Ln −
(−)nL−n where Ln is Virassoro operator. According to [19, 22] Kn has the
above-listed properties. From the second property

∫
KnΨ = 〈I|Kn|Ψ〉 = 0

it follows that 〈I|Kn = 0. Note that the given expression is obeyed only
on the full vertex, i.e. the vertex containing the matter and ghost parts of
bosonic string.

2.4.1. Kn anomaly
We consider some properties of operator Kn. The Kn algebra [19]

[Kn,Km] = (n−m)Kn+m − (−)m(n+m)Kn−m

is the consequence of Virassoro algebra. If we introduce f , the eigenvector
for Kn for each n, such that Knf = knf , then kn (which is a C-number)
must satisfy

0 = (n−m)kn+m − (−)m(n+m)kn−m.

The unique solution is k2N = k(−)NN, k2N+1 = 0 N=1,2,...; k is a number
is just the anomaly.
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2.4.2. Matter
The identity for the matter sector reads [19, 22]

|Ix〉 = exp

{
−1

2

∞∑
n=1

(−)n

n
α−nα−n

}
|0〉 (48)

We get the anomaly acting on it by Kx
2N [19]:

Kx
2N |Ix〉 = −D

2
N(−)n|Ix〉. (49)

2.4.3. Ghosts
Here we will use the first representation of the identity for the ghosts i.e.
we’ll write the insertions.

|Ibc〉 = b+b− exp

{ ∞∑
n=1

(−)nc−nb−n

}
|+〉 = b+b−eU |+〉. (50)

The operator Kn has the form Kbc
2N = Lbc

2N − Lbc
−2N and therefore

Kbc
2N =

∑
m

(2N +m)b2N−mcm −
∑
m

(−2N +m)b−2N−mcm =

=
∑
m

(2N +m)b2N−mcm +
∑
m

(2N −m)b−2N−mcm. (51)

Acting by this operator on the identity we calculate the following commu-
tator

[Kbc
2N , b±] = 8N(−)Nb± − (−)n

∑
m

(±i)mmbm + (−)n
∑

l

(±i)llbl,

i.e [Kbc
2N , b±] = 8N(−)Nb±. Next we act on the exponential by Kn

Kbc
2Ne

U |+〉 = −3N(−)NeU |+〉.

Gathering the pieces we get the anomaly [19]

Kbc
2N |Ibc〉 = [2 · 8N(−)N − 3N(−)N ]|Ibc〉 = 13N(−)N |Ibc〉. (52)

Recall that, the same anomaly for D=26 but with the opposite sign presents
in the matter identity (49). So by taking into account the matter and the
ghosts we get the total cancellation of anomalies,

K2N |I〉 = (−13N(−)N + 13N(−)N )|I〉 = 0,
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K2N = Kx
2N + Kbc

2N , |I〉 = |Ix〉 ⊗ |Ibc〉. One can write Q as (we drop the
terms which contain c0 because they annihilate the physical vacuum |+〉)

Q =
∞∑

n=1

[c−n(Ln − (−)nL−n) + L−n(cn + (−)nc−n) − 3n(−)nc−2n] =

=
∑
n=1

[
1
2
c−nK

x
n +

1
2
c−nKn + L−n(cn + (−)nc−n) − 3n(−)nc−2n],(53)

where Ln ≡ Lx
n + 1

2L
(bc)
n , and Kx, ghost

n = Lx, ghost
n − (−)nLx, ghost

−n , Kn =
Kx

n +Kghost
n . Hence, the verification of BRST invariance is reduced to the

verification of Kn invariance.
Now we can examine BRST invariance of the identity. We start with Q

acting it on the insertion b+b−. Taking into account {Q, bn} = Lx
n +L(bc)

n ≡
Ln, we get

[Q, b+b−] = {Q, b+}b− − b+{Q, b−} =
∑

k

ik{Q, bk}b− (54)

−
∑

k

(i)kb+{Q, bk} =
∑

k

ikLkb− −
∑

k

(i)kb+Lk = L+b− − b+L−,

where L± =
∑

k(±i)kLk. Using

∑
k

ikkbk|Ighost〉 = eU (−
∞∑

k=0

i−kkb−k +
∞∑

k=1

i−kkb−k)|+〉 = 0

we get

[Q, b+b−]eU |+〉 = −8b+b−
∞∑

k=1

(−)kkc2ke
U |+〉. (55)

Gathering together matter and ghosts we obtain

Qb+b−eU |+〉|Ix〉 = (b+b−
∑
n=1

[
1
2
c−nK

x
n +

1
2
c−nKn + L−n(cn + (−)nc−n) −

− 3
2
n(−)nc−2n] − 8b+b−

∞∑
k=1

(−)kkc2k)eU |+〉|Ix〉.

The overlap conditions (30) for the terms with L−n and (61) gives that the
RHS of the above formula is equal to

b+b−(
∑
n=1

[−c−2n
13
2
n(−)n − 3

2
n(−)nc−2n] − 8

∞∑
k=1

(−)kkc2k)eU |+〉|Ix〉
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Therefore,

Qb+b−eU |+〉|Ix〉 = −8b+b−
∑
n=1

n(−)n(c−2n + c2n)eU |+〉|Ix〉 = 0.

In the last equation we used the overlap condition. Q.E.D.

3. Lecture 3

3.1. Basic conformal maps
In SFT there is an alternative calculation method based on the conformal
field theory (CFT). The idea is to present any given matrix element of SFT
calculated according to the diagram technique presented in the table as a
correlation functions on a Riemann surfaces. An information about the
diagram is encoded in the geometry of the corresponding Riemann surface.
To calculate a given matrix element one conformal by maps a corresponding
nontrivial surface where correlation functions are unknown to a simple one
say, on upper half plane (UHP), or a disk, where correlation functions are
known.

To view the string world-sheet as a Riemann surface let us assemble the
string coordinate τ and σ into a complex coordinate ρ

ρ = τ + iσ.

The world-sheet of a freely propagating open string is a strip. The string at
a given time is a vertical segment of constant τ . Let us map this strip to the
UHP using the exponential function (see Fig. 1). Note that the full string

�

0

�
z

z=e
�

Figure 1: The map the strip into the UHP.

in the infinite past is mapped to the point z = 0. The two boundaries of
the strip are mapped to the real line, i.e. the boundary σ = 0 is mapped to
the positive half of the real axis and σ = π is mapped to the negative part
of the real axis. At fixed original time τ the string appears to be semicircle.

One can map the UHP into the unit disk in the w plane via the confor-
mal transformation (see Fig. 2)

w =
1 + iz

1 − iz
.

This transformation maps the real line into the unit circle. The two bound-
aries are the left and right semicircles. In terms of the initial time τ fixed
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time positions of the string are now the arcs centered at w = 1 (τ < 0)
and at w = −1 (τ > 0), τ = 0 corresponds to a vertical line Re w = 0, the
infinite past is at w = 1 and the infinite future is at w = −1. To describe

w=
1+iz
1-iz

z=i
1-w

1+w

z w

= i-z
i+z

Figure 2: The map w(z) of the UHP into the disk.

the Witten’s �-multiplying and string
∫

-integral we need to explore more
out of the map w(z). In particular, we need to know images of the interior
of the unit half-disk and its exterior. Separately these maps look like pre-
sented on Fig.3. Combining the map from Fig.1 with the map 1 on Fig.3

1)

2)

3)

4)

w

w

z

z

z w

z w

Figure 3: The separate pieces of the map w = 1+iz
1−iz .

we get the map of the half-strip τ ≤ 0 to the right half-disk.
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�

0

� z w

Figure 4: The map the strip into the right half-disk.

We meet the first nontrivial map (see Fig.5) when discuss the Rie-
mann surface of string integral. It maps a half-strip with identified seg-
ments [0, iπ/2], [iπ/2, iπ] into the unit disk and is obtained from w(z(ρ))
by adding one arrow w → w2 ≡ u (see Fig.4). For interacting strings more

�

0

� z w u

Figure 5: The map of the string integral Riemann surface.

complicated maps are of actual interest. Let us remaind that there are two
different pictures for string interaction. The old light-cone picture deals
with end gluing picture and in this picture there are two possible interac-
tions of open strings: an open string can split into two open strings and
two open string can join to form a single open string.

To map string with cuts into UHP one uses the Schwarz-Christoffel map
that transform UHP into polygons [2].

3.2. SFT action in CFT language

To use the conformal field theory we turn to complex variables z = eτ+iσ,
z̄ = eτ−iσ, z is a coordinate on the upper-half complex plane. In these
variables the equation of motion for fields Xμ(z, z̄) is

∂z∂z̄X
μ(z, z̄) = 0. (56)

And the solution to this equation is Xμ(z, z̄) = Xμ
L(z) +Xμ

R(z̄) where

Xμ
L(z) =

1
2
xμ − i

2
α ′pμ log z2 + i

[
α ′

2

]1/2 ∑
m�=0

αμ
m

mzm
and Xμ

R(z̄) = Xμ
L(z̄).
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The holomorphic part of the correlation function for X’s on the UHP is of
the form

〈Xμ
L(z)Xν

L(w)〉 = −α
′

2
ημν log(z − w).

Whereas for the full string one has

〈Xμ(z, z̄)Xν(w, w̄)〉 = −α
′

2
ημν(log |z − w|2 + log |z̄ − w|2). (58)

Another representation of the relation (58) is the OPE

Xμ(z)Xν(w) ∼ −α
′

2
ημν log(z − w). (59)

Here we dropped the indexes ”L”. The symbol ”∼” means that l.h.s. and
r.h.s. are equal up to regular in z − w terms. For ghosts we have the
following OPE

c(z)b(z) ∼ 1
z − w

. (60)

Remind that only operators which cancel the background ghost charge −3
survive in the brackets 〈c(z1)c(z2)c(z3)〉 = (z1 − z2)(z1 − z3)(z2 − z3). In
order to represent n-string interactions via correlation functions on special
Riemann surfaces Rn (the so-called string configuration) we put [24]∫

Φ1 � · · · � Φn = 〈Vn|Φ1〉1 ⊗ · · · ⊗ |Φn〉n = 〈Φ1, . . . ,Φn〉Rn

Efficiency of this method is a possibility to reduce calculations of correlation
functions on n-string configuration to calculations of correlation functions
on the upper half-disk, or the upper half-plane using the equality

〈Φ1, . . . ,Φn〉Rn = 〈F (n)
1 ◦ Φ1 . . . F

(n)
n ◦ Φn〉, (61)

where Fn
k (w) = (Pn ◦ f (n)

k )(w), explicit formulae for Pn and f
(n)
n can be

founding [9].
(f ◦ Φ) in (61) means the conformal transform of Φ by f . In more

details, if Φ is a primary field of conformal weight h, then f ◦Φ(z) is given
by

(f ◦ Φ)(w) = (f ′(w))hΦ(f(w)). (62)

For a derivative of a primary field of conformal weight h one has

(f ◦ ∂Φ)(w) = ∂w(f ◦ Φ)(w). (63)
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3.3. Neumann function method to solve overlap conditions
In addition to direct operator calculations in [19] another method is used
based on fundamental properties of Neumann function is used.

Quadratic form W which stands in the exponent in |Ibc〉 can be rewrit-
ten as

W =
∫ π

−π

dσ

2π

∫ π

−π

dσ′

2π
b(σ)Ĉ(σ, σ′)c(σ′), (64)

where
Ĉ(σ, σ′) =

∑
n≥2,

m≥−1

einσeimσ′
Cnm. (65)

We hold Cnm as unknown and weil find them in Neumann function lan-
guage.

The overlap condition can be rewritten as conditions on Neumann func-
tions. In our notations formula (39) can be rewritten as:

c(σ)|Ibc〉 = eW
(∫ π

−π

dσ′

2π
C(σ, σ′)c(σ′)

)
|0〉

and

c(π − σ)|Ibc〉 = eW
(∫ π

−π

dσ′

2π
C(π − σ, σ′)c(σ′)

)
|0〉,

where

C(σ, σ′) ≡
∞∑

n=−1

e−in(σ−σ′) + Ĉ(σ, σ′).

Hence the overlap condition for the field c(σ) takes the form∫ π

−π

dσ′

2π
(C(σ, σ′) + C(π − σ, σ′))c(σ′)|0〉 = 0

and respectively for b(σ)∫ π

−π

dσ

2π
(C(σ, σ′) − C(σ, π − σ′))b(σ)|0〉 = 0.

The coefficients Cnm will be found provided the function C(σ, σ′) built with
the properties:

C(σ, σ′) = −C(π − σ, σ′), C(σ, σ′) = C(σ, π − σ′). (66)

Notice that the conditions on C(σ, σ′) reproduce the b, c overlap conditions
with right conformal weights of fields.
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As it has been shown in [19] the solution for (66) is given by the b, c
Neumann function on the half-strip with identified halves at τ = 0 (see Fig.
5).

To find it we use the map ρ(u) = log
√

u−i√
u+i

+ 1
2 iπ which maps the disk

in to the half strip (see Fig. 1 and 2):

C(ρ, ρ′) =
(
∂u

∂ρ

)2 1
u− u′

(
u′

u

) 3
2
(
∂u′

∂ρ′

)−1

, (67)

where C(u, u′) = 1
u−u′

(
u′
u

) 3
2 is the Neumann function on unit disk over

conformal vacuum. Using u = w2 we get the Neumann function of strip at
τ = 0 as:

C(w(σ), w′(σ′)) =
(
w(w2 + 1)

i

)2 1
w2 − w′2

(
w′(w′2 + 1)

i

)−1(
w′

w

)3

, (68)

where (see Fig. 4) w = (i − eiσ)/(i + eiσ). For σ → π − σ the function
w = w(σ) is transformed as

w(π − σ) =
i− eiπ−iσ

i+ eiπ−iσ
=
i+ e−iσ

i− e−iσ
=
eiσi+ 1
eiσi− 1

= − i− eiσ

i+ eiσ
= −w(σ).

Let us insert the function w(π − σ) = −w(σ) into C(w,w′). We get

C(π − σ, σ′) = i
(w(w2 + 1))2

w′(w′2 + 1)
1

w2 − w′2

(
w′

w

)3

= −C(σ, σ′),

and we see that C(π − σ, σ′) = −C(σ, σ′), similar to the second equation
of (66).

Quadratic form (64) can be rewritten through the full Neumann func-
tion C(σ, σ′) and if fields c and b are replaced by creations, ccr and bcr, part
with respect to the conformal vacuum

W =
∫ π

−π

dσ

2π

∫ π

−π

dσ′

2π
ccr(σ)C(σ, σ′)bcr(σ′). (69)

The diagonal part of function C does not make an contribute to W .
Now we verify directly that the Neumann function (68) has expansion

(66) (τ = 0) with the coefficients (37)

Cnm = −(−1)nδn,m +
∑

k

(−1)k[δn,2k+1(δm,−1 − δm,1) + 2δn,2kδm,0]. (70)

In terms of x related with σ as x = ieiσ and, therefore, with w as
w = (1 + x)/(1 − x) we have

C(x, x′) =
x2

x′
1

x− x′
− 1

1 − xx′
+ 1 +

x3/x′ + 2x2 + xx′

1 − x2
. (71)
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On the other hand let us write the series expansion of this function is:

C(x, x′) =
∑

n≥−1

(
x′

x

)n

+
∑
n≥2,

m≥−1

(−i)n+mxnx′mCnm. (72)

For the first term in the RHS of (72) we have:

∑
n≥−1

(
x′

x

)n

=
x

x′
∑
n≥0

(
x′

x

)n

=
x

x′
1

1 − x′/x
=

x2

x′(x− x′)
, (73)

(in this calculation a regularization is assumed; this regularization is re-
moved in the last step ). This is exactly the first term in (71). Inserting
(70) in (81) we get

∑
n≥2,

m≥−1

(−i)n+mxnx′mCnm = − 1
1 − xx′

+ 1 +
x3/x′ + 2x2 + xx′

1 − x2
. (74)

That is the remaining part of the expression (71).
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