Anisotropic flows in reggeon theory
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Abstract

We analyze azimuthal anisotropy in heavy ion collisions related to the reaction plane in
terms of standard reggeon approach and find that it is nonzero even when the final state
interaction is switched off. This effect can be interpreted in terms of partonic structure of
colliding nuclei. We use Feynman diagrams analysis to describe details of this mechanism.
Main qualitative features of the appropriate azimuthal correlations are discussed.

Investigations of azimuthal anisotropy of secondary particle distributions in heavy ions col-
lisions is used as an effective tool for analysis of dynamical mechanisms of these processes.
Anisotropic flows and, in particular, elliptic flow vy = (cos 2¢) are considered usually as an
important source of information about properties of a dense state of hadronic matter formed in
the anisotropic overlap region of colliding nuclei ( see e.g. [2] - [9]).

Crucial point is the relation of the anisotropy to the reaction plane orientation (azimuthal
correlations not related to this orientation are called non-flow correlations). The dependencies
of flow coefficients on c.o.m. energy, centrality, rapidity range and transverse momentum of
secondaries are ascribed usually to anisotropic properties of strongly interacting matter at early
times after collision. It is assumed that anisotropic flows are due to final state interactions and
in hydrodynamic models originate from pressure gradients connected to original asymmetry in
the configuration space for noncentral collisions. Practically all existing models for anisotropic
flows use classical description of processes.

We use quantum relativistic approach, based on analysis of Feynman diagrams and reggeon
theory for a study of anisotropic flows in collisions of hadrons and nuclei at high energies. We
will show that a part of azimuthal anisotropy can be related to properties of initial state of a
fast nucleus. Namely, we analyze azimuthal correlations present in partonic configurations of
fast colliding nuclei. Thus a part of the observed azimuthal asymmetry of final particles can
come from parton correlations in initial state. We shall demonstrate how anisotropic flows in
this case are related to the anisotropy of the overlap region.

The simplest way to study such phenomena theoretically is to use the reggeon diagrams
for inclusive cross sections, where all details of parton interactions are encoded in vertices and
Regge trajectories.

A simplest way to produce secondary particles at high energy is given by multiperipheral
diagram of Fig.la. Inclusive cross section is described by the reggeon diagram of Fig.1b which
corresponds to squared multiparticle amplitude with fixed momentum p of a single detected
particle.

Single particle inclusive cross section is related to the amplitude G(q, p) of the diagram of
Fig.1b at zero transfer momentum q = 0:

Fina(pr;y) = x G(q=0;ps, ) , (1)
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Figure 1: Reggeon diagram for one-particle inclusive production

where p; and y are transverse momentum and rapidity of the registered particle. We, however,
need to calculate a contribution of this diagram at various values of q in order to find a cor-
relation between transverse momentum p; and impact parameter value for colliding nuclei, b.
This relation is given by Fourier transform of G(q; py, y)

Fine(Pt, y; b) ~ G(b; pt,y) =/ (;ZT(;Q e G(a;pr,y) - (2)
Here
G(a;pt,y) = Falg)D(q;y)v(q, pe) D(a; Y — y) Fi(q) , (3)

where Fy g are 2-dimensional form factors of colliding nuclei which are Fourier transforms of
their 2-dimensional profiles, T4 g(b),

Fap(q) = / d*b e PT, (b) FA(0)=A, Fg(0)=B, (4)

and functions D(q;y), D(q; Y —y) are connected to s-channel discontinuities of reggeon ampli-
tudes (“cut reggeons”).

We use an exponential parameterization of reggeon vertex gy exp(—R3q?) and linear Regge
trajectory a(q?) = a(0) — o’ ¢

D(q;y) =2Imf(q;y) = gNe—(Rg+a’y)q2€[a(0)—1}y ‘ (5)

An inclusive vertex of the reggeon diagram ~(q, p;) depends on 2-dimensional momenta p; and
q. For estimates we will use the phenomenological parametrization

v(a,pt) = Yo exp{—r2a® — r2p; — erg(pra)’} . (6)

Here dimensional coefficients ry, ), are expected to be of typical hadronic sizes about 79 = 1 fm,
and e of order of 1.

The dependence on variable (p.q) is crucial for appearance of azimuthal correlations typical
for elliptic flow. Note that the terms proportional to the odd powers of p;q should be absent if
both reggeons have positive C-parity (like pomerons) because the vertex should be even under
the change p; — —p;. More detailed analysis of structure and value of the vertex v(q, p;) will
be performed below.

The elliptic flow v9 is defined as a second Fourier coefficient in an azimuthal dependence of
inclusive spectrum

do

dp2do x 1+ Z%n (b; pt, y) cos(ng) , (7)



where ¢ is an azimuthal angle between impact parameter b which determines the reaction plane
and transverse momentum p;. Thus,

Cy [ d¢ cos(2¢) G(b;pt,y) .

b; ==
va(b; pr, y) Cy [d¢ G(b;py,y)

For the vertex function parameterized by eq.(6) one gets

Cn(b;pr,y) = /qqun(bq)FA(QQ)FB(QQ)D(Q; y)D(q,Y —y)en(q;0,p0) , n=0,2, (9)
with
Cola; b, pe) = Io(eripia?/2) e~ roria/? (10)
Oa(q;b,pr) = I1(ergpiq?/2) e=roria’/2

where Iy, I1 are the standard Bessel functions.
To estimate an order of the effect let us first make the calculation with the approximate
Gaussian parameterization of nuclear form factors Fa g(¢?):

Fa(¢*) = exp(—R% pa*/4) . (11)
Then
11 (a/2)
b; 12
( y Pt ) T (Oé/2) ( )
with
ergp?b?
= R’>=R%Y+R%2+R . 13
« RQ(R2+46T0]D%) ) A+ g + regge( ) ( )
For a <« 1 we have :
2
~ 2 2 (T0)* (b
wxG=ctn? (3) (55) - (14)

Thus, v is proportional to the “ellipticity” e of the inclusive vertex . The sign of vs is the
same as the one of € which can be both positive and negative depending on dynamical structure
of the inclusive vertex (see discussion below). The formula (14) reveals an increase of the vy
with transverse momentum p; and impact parameter b.

Presentation of formulas in terms of impact parameters allows us to give more instructive
interpretation of the results. Egs.(2),(3) in these variables have the form:

G(b:pu.y / 8, / @b, / @b, / B Ta(By) ti(b1 — B1iy)
x I'(by — b1, pt) t2(By —b2; Y —y) Te(b — B,) . (15)

Here 8, and b — 3, are the positions of participant nucleons of the nuclei A and B with nuclear
profiles T4 and T, t(3;y) is a Fourier transform of reggeon propagator D(q;y) and I'(b; p;) is
a Fourier transform of the inclusive vertex y(q, pt):

2
I'(b;py) = /(gﬂ‘; e'®y(q, py) - (16)



For the exponential model approximation (6), one has

2,2

me TpPt b2 b2

L(b;pt) = exp| -5 — 5 | » (17)
FET R G T

where b, is a component of b along p; and b, in the transverse direction.
In order to reveal a structure of Eq.(15) it can be written symbolically as a number of
convolutions with symbolic notation f ® g for convolution of functions f and g:

Fina(Pt,y;b) ~Ta @ t(y) ©T @ 4(Y —y) @ Tp . (18)
Convolutions in eq.(15) can be done in arbitrary order, so it is equivalent to
Finct(Pt; y; b) ~ Tiy @ T = /anTmt(b —a)l'(a;pr) - (19)

Here the function Tj,; which characterize a region of interaction of nuclei in b space is a
convolution of the nuclear overlap Tap = T4 ® Tp and combined reggeon amplitude t,¢gge:

T%nt =TaB ® tregge )

where
93 b?
bregge(0:Y) = () @ (Y — ) = —IN o (—7> ,
R?"egge(y) = QRg + 'y )

describes the regge-interaction amplitude of nucleons from colliding nuclei.

For Gaussian parameterization of nuclear profiles T4, T'g all convolutions have the Gaussian
form again, resulting in the same final answer (12).

In the impact parameter representation it is easy to see an origin of the correlation between
directions of b and transverse momentum p;. Registration of the inclusive particle is realized by
nonlocal probe which structure is determined by inclusive vertex I'(b;p;). This vertex has an
elliptic anisotropy in b-plane along the direction of p; . Due to this anisotropy the convolution
of the overlap function Tj,; and I is sensitive to gradients of nuclear densities.

The size of the probe range is small in comparison to nuclear size Ry ~ Rp ~ AY3r,
so it is possible to calculate the integral (19) expanding the smooth distribution Tj,:(b — a)
over small corrections a,/Ra,a,/Ra. After integration over ay, a, we get explicitly anisotropic
expression for the inclusive cross section (recall that the axis x is chosen along the momentum
pt). Omitting higher order terms in a;/R4 we have in approximation (6),(17)

AT (b2 ATy (b2
t( )+4 +(b%)

Finet ~ T (b7) + 2(2rg + €rop?) d(v?) d(v?)?

[(rg +e€ Tgp?)bi + rqbz] ) (20)

where derivatives are taken over the variable b?. Thus, for the elliptic flow coefficient we have

~ TéTigt(bQ) 21.2
UQ_EWptb . (21)
The second derivative of Tj,;(b?) contains a small parameter of order of (ro/R4)* which appears
explicitly in Eq.(14).

Let us stress that reggeon diagrams allow partonic interpretation which depends on chosen
Lorentz frame. Reggeon exchanges are highly non-local in space-time due to their complicated
multiparticle internal structure. From this viewpoint the fast hadron or nucleus is essentially



multiparton state of multiperipheral configuration (fig.1a represents the simplest example). The
particles of such configuration are ordered in their rapidities and only most slow particles interact
with a target. This means that in the lab frame related to the nucleus B the nucleus A is a
multiparton state containing the detected particle with rapidity y and transverse momentum py
among others. This state has already an anisotropy in partonic distributions due to correlation
between parton transverse momentum p; and its position b; in impact parameter plane. If
nuclear collision is central then the overlap region is isotropic and after integration over by
anisotropy disappears. At non-central collision, however, the overlap region has anisotropic
almond shape and integration over this region keeps anisotropic distribution in p;.

The azimuthal partonic anisotropy can’t be revealed with local probe which feels only par-
tonic density. An information about density gradients and its higher derivatives can be obtained
by means of nonlocal probes with typically hadronic range. Being restricted only with lower
multipoles a structure of the probe can be written as

T(a;p) ~ (14 0pid; + (88 + &pip;)i0; + ... ) 6P (a) (22)

where 9; = 9/0a; and § = 613, € = erg are dimensional coefficients of typical hadronic range.
The first term measures parton density as well as the isotropic one with d;;, the second term
feels gradients, and the e-term gives an information about ellipticity of partonic distribution
at the point of production of registered particle. So the distribution over transverse momenta
turns out to be correlated with impact parameter b:

Funa(pib) ~ Toa T = [ alie(b — )l (i)
~ Tint (%) + 6p1i0iTint (0°) + & 1ip 1 0:05 Tins (0°)
~ Tinu(6°) + 26(p )T (0°) + 46(pyb)* T (5°) (23)
e(ptb)*T; .(b%) (cf. with (21)). The d-term corresponds to the first flow coefficient v; =
§(ptb) T;,,, (V%) (directed flow).
~v(q, p¢). If multiperipheral ladder of Fig.1 consists of scalar particles with triple coupling then
a structure of inclusive vertex is determined in lowest order by Fig.2 where momentum py is

where 7" denotes the derivative over 2. This reproduces the elliptic flow coefficient vy =
Let us estimate in simple models an anisotropy of inclusive p; probe related to the vertex
fixed. Then the vertex can be written as 2-dimensional integral,

Y p) = & / Pk G(K)G(k — p)Glq — K)G(q — k + py), (24)

where particle propagators G depend on 2-dimensional momenta only.

q b,
k q-k
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Figure 2: Simplest inclusive reggeon vertex



To estimate an anisotropy effect let us consider the vertex v at small ¢ ~ p; < p (here
Ty lis a typical mass parameter):
2,2

¢*p
Y(pr,q,2) = () (1 — € #j 240, (25)

where z = cos ¢ is a cosine of the angle between p; and q. The coefficient which determines
a degree of ellipticity is denoted as € as we did before. For standard perturbative behavior
of propagators: G(k) = (k? + ?)~! numerical estimate gives a value € ~ —0.2 for scalar
couplings ¢ in the diagram 2. Note that such a sign corresponds to negative vy (in contrast to
experimental observation).

The value and the sign of the effect depend on dynamical structure of the inclusive vertex
v(a,ps) — on form of propagators ! and, more important, on structure of vertex of particle
emission. Vertex properties are very sensitive to particle spin because it gives an extra azimuthal
dependence. Calculations show that if inclusive particle has spin 1 , then the sign of € is different
(in accordance with data) and its value increases. Note that such situation is not far from reality
because p-mesons give a considerable part of multiperipheral particles and pions due to their
decays have mainly close transverse momenta. Numerical estimate gives € ~ 0.5.

Properties of the inclusive vertex v(q, p;) can be studied experimentally in NN collisions,
for instance by analysis of azimuthal two-particle correlations for hadrons in different windows
of rapidity values.

Let us discuss behaviour of the inclusive vertex y(q,p;) at large p;. In region p? > u? it
should decrease according to perturbation theory in power-like way, ~ (1/p;)"™, where a degree
m depends on dynamics. In simple scalar theory (24) v(q,p¢) ~ (u/p¢)*, and z-depending
coefficients decrease even faster, leading to a small ellipticity:

2 .2 2 .2
v p;,z2=1) —v(q¢”pi, 2 =0
( t ) ( t ) N(/J/pt)2

at p2 > u2.
(g% p}, 2 =1) !

le(pe)| =

L and its form becomes more

It means that a size of the p;-probe becomes much smaller than g~
isotropic.

The situation is different if the vertex includes particles with spin because in this case z-
dependence of spin terms give an additional z dependence. As an example, in case of inclusive
production of vector particles explicit calculation gives non-vanishing vertex ellipticity, e(p;) —
const when p? > 2.

We discussed hitherto correlations of transverse momentum of the detected particle with
respect to the reaction plane. The reaction plane orientation is difficult to reconstruct from
experimental data, and often another method for studying anisotropic flow is used. It is re-
lated with analysis of two-particle azimuthal distributions, which contain an information on
anisotropic flow. As it is seen from analysis of experimental data the main part of these correla-
tions is related to the p; — b correlations for each particle. However, there are possible sources
of two-particle correlations unrelated to the reaction plane, so called ‘non-flow’ correlations.

Corresponding two-particle inclusive reggeon diagrams are shown in Fig.3. To calculate
anisotropic flows these diagrams should be estimated not at zero momentum transfer q = 0 as
for standard bi-inclusive cross section but at fixed value of impact parameter b.

The contribution of the diagram 3a is factorized in the impact parameter representation
and contains factors corresponding to one-particle production of Fig.1b (see (23)).

1 1

El0 P b) o | Tina(6?) + 4e(pr - BT, (67)] | Tint (62) + el - B)T1,(6)] . (26)

1

! Note that in case of Gaussian form of propagators, G(k) = exp(—k?/u?), the product of propagators in
coordinate space does not depend on the angle resulting in zero anisotropy, € = 0.
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Figure 3: Reggeon diagrams for two particle inclusive production. (a) - particles p and k are
emitted from different regions in transverse plane; (b) - p and k are emitted from a single
reggeon chain; (c¢) - p and k are emitted from two reggeon chains attached to a single nucleon
pair in colliding nuclei.

This results in factorized formula:

<62i<¢>pf¢>kt)> _ [ Poudky O Fy(pr, ke b)
[ d?ped®ks Fiper(pt, ke; b)

The contribution of diagram 3b is given by a convolution of T;,; with two probes:

= va(pe)va(kt) - (27)

F® (b, ke b) = / a1 d®as Tons(b — a1 — a9)(ar; pr)T(ag; ky) - (28)

This distribution (in the dipole approximation (22) with o = 0) will contain higher derivatives
of Ty over b?:

Fi(ﬁil(pt, ki;b) ~ Ting + 82 (ky - Pe) Ty + 326% (kt - pe) (P - b) (ke - b)ﬂgis) (29)
+ 862 (pe - b)2(ky - b)PTLL)

All €2-terms are at b ~ R of the same order of value, O(1), and are small compared to the main
term in Eq.(26), which is of order O(R?) ~ A%3. So extra unfactorized correction to Eq.(27)
due to diagram 3b is inessential.

The situation is different for diagram 3c. Its isotropic part has a smallness of order A=%/3 in
comparison with isotropic part of FZ(SC)Z The anisotropic part contains a ‘non-flow’ term (p;-k;)?
which contains the overlap function T4 5 (not its derivatives). As a result its contribution to (27)
is of the same order as due to factorized structure (p;b)?(k;b)? from Eq.(26). This contribution
violates factorization in Eq.(27) for two-particle correlation. Note that the ‘flow’ and ‘non-flow’
structures have different dependence on impact parameter.

Now we will try to estimate contributions to azimuthal asymmetry coming from multi-
pomeron interactions. The simplest reggeon diagram of Fig.lb gives main contribution to
inclusive cross section. Contributions of multipomeron diagrams of Glauber type cancel each
other because of the AGK rules [10].

In reggeon theory with ap(0) > 1 the number of pomeron exchanges increases with energy,
so a role of inter-pomeron interactions grows. Detailed analysis of multipomeron effects will
be published in other publication, and here we will discuss briefly physical reasons for possible
increase of azimuthal anisotropy.



When energy increases a longitudinal length of the nucleon tube with fixed transverse po-
sition is contracted and multiperipheral fluctuations connected to each of fast nucleons overlap
each other in longitudinal size. Therefore a probability for particles (partons) of different chains
(related to different nucleons) to interact increases. Two chains can either fuse to a single chain
(triple pomeron interaction) or rescatter without changing a whole chain number (2-2 or, more
generally, n-n pomeron vertices). Effects of fusion become noticeable already at RHIC energies,

(a) (b)

Figure 4: Multipomeron diagrams for inclusive production: (a) - diagrams with fusion and
splitting of parton chains; (b) - diagrams with rescattering of n parton chains.

resulting in reduction of secondary density about two times as compared with the eikonal ap-
proximation [11]. This effect is mainly due to diagrams with three-pomeron interaction (Fig. 4a).
But due to their sign-alternating character a profile of the amplitude becomes more smooth and
the azimuthal asymmetry becomes even smaller because of smaller gradients of parton density.

Different situation is realized for diagrams with chain rescattering (Fig. 4b) which give
positive contributions to inclusive cross section. Even if the total inclusive cross section changes
slightly due to such rescatterings, its anisotropic part may be strongly increased. Indeed,
the expression (18) for inclusive cross section will contain in case of n interacting chains a
convolution T} ® T5 instead of Ty ® Tg. Azimuthal asymmetry is determined by density
derivatives (see (21)), therefore an extra factor (n(b))? will appear in expression for vo. The
number of interacting pomerons at RHIC energies is not large ({(n(b)) ~ 2 for central collision),
but increase of vo can be considerable because the effect is quadratic in n. Note that (n(b))
increases with atomic number A and changes the A dependence for vy also. The same mechanism
may give an increase of (p?).

Let us present examples of numerical estimates of elliptic flow for the exponential parametriza-
tion (6) of the inclusive vertex. They are illustrative only. We intentionally do not fit experi-
mental data because, first, little quantitative information on the inclusive vertex ~ exists and,
second, it is necessary to have more reliable model for nuclear multipomeron effects. We aim to
demonstrate that qualitative features of elliptic and directed flows peculiar to the mechanism
under discussion are in agreement with experimental observations. In particular, as it is seen
from Eq. (21) the value of vy(p¢, b) grows with increase of both transverse momentum p; and
impact parameter b.

Fig.5 presents the b-dependence of elliptic flow. According to Eq. (21) vy grows as b? (thick
solid line, e = 0.4) in contradiction with the experimental behavior at very large b when nuclei
only touch each other. Let us note here that in the case of very large impact parameter values
where nuclear densities are quite small an accuracy of the model is low. This is why calculation
results for b > 8 fm are shown with dotted curves. The dashed curve corresponds to the simplest
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Figure 5: Elliptic flow vy as a function of impact parameter b at p; = 0.5 GeV/c. Calculations
for b > 8 fm are shown with dotted curve. Thick solid line corresponds to calculations at
€ = 0.4. Thin solid line corresponds to calculations at ¢ = 0.1, and dotted line — at ¢ = 0.1
multiplied to the mean rescattering number squared n(bers) = n(0.65b). The dashdotted line
at this picture gives n(bess) as a function of b (the right scale).

account of nuclear effects due to inter-pomeron interactions — calculations at smaller parameter
value € = 0.1 (thin solid line) are multiplied to the factor n(bess)?. The function n(bess) gives
an effective number of interacting pomeron fluctuations 2. It is also presented at the figure
(dash-dotted line) and one can see that the maximal number of pomeron interaction is about 2
for central collisions. Experimental data are from [12].

Our main aim is to draw attention to the mechanism of appearance of azimuthal correlations
between produced particles related to specific parton correlations in initial states of colliding
nuclei, and which is not caused by particle interactions in the final state.

The mechanism under discussion is connected with correlation between partons transverse
momenta and the gradients of density of surrounding (parent) partons. This can lead to cor-
relation between parton transverse momentum and its transverse position inside nucleus. As
a result transverse momenta of partons in incoming nuclei (before collision) are already par-
tially aligned along transverse nuclear radiuses. The non-central collision of nuclei selects the
asymmetric overlapping part of the fast nucleus resulting in p; — b correlations for produced
particles.

We discussed this phenomena using the simplest reggeon diagram in order to emphasize the
fact of its existence. For quantitative description of asymmetries it is necessary to account for a
more complicated mechanism related to interactions between different chains. We emphasized
that this mechanism can substantially increase elliptic flow and modify its atomic number
dependence. Role of multipomeron interactions describing these effects increases with energy
and is important at RHIC energies. This mechanism influences dependence of asymmetries on
centrality, transverse momenta and rapidity.

Evidently the final state interaction can also contribute to azimuthal asymmetry of produced
particles. In order to obtain an information on properties of hadronic matter at high temper-

2 The function n(b) was estimated in the eikonal approximation with effective parton-nucleon cross section
value o ~ 10 mb. The mean position of interacting nucleon in a nucleus was taken as b.yy = 0.65b.



atures and densities it is crucial to separate effects due to initial and final state interactions.
In particular it is important to carry out a detailed investigation of azimuthal correlations of
particles produced in nucleon-nucleon and nucleon-nucleus interactions. Such studies will be
possible in high-multiplicity events at LHC.
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