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Abstract

After the discovery of a ∼ 125 GeV Higgs boson at the Large Hadron Collider (LHC),

now the Standard Model (SM) of particle physics is complete although there are still

some doubts over the fact that this can be a beyond the Standard Model (BSM) Higgs

boson. More updated data on Higgs boson coupling measurements will reveal its true

identity. Meanwhile, we need to go beyond the SM to address some vital experimental

findings. One of them is the neutrino oscillation data that indicates at least two

neutrinos have tiny but non-zero masses. The other one is the existence of Dark

Matter (DM) revealed from cosmological data. Weak scale supersymmetry (SUSY)

is the most popular choice for explaining these new physics phenomena beyond the

SM. However, even Minimal Supersymmetric Standard Model (MSSM) itself is not

sufficient to explain the neutrino oscillation data under R-parity conserving scenario.

In this thesis, we, therefore, attempt to explore a SUSY model with added singlets

that can account for small neutrino masses by means of inverse seesaw mechanism. As

a consequence, we can have a mixed sneutrino lightest SUSY particle (LSP) that may

be as light as ∼ 50 GeV. Within R-parity conserving scenario, this LSP can serve as

a very good DM candidate satisfying all existing constraints arising from collider, DM

and low energy experiments. This model can have enhanced same-sign dilepton final

states with large missing energy coming from gluino and squark pair as well as squark-

gluino associated productions and their cascade decays through charginos. The two

body decays of the lighter chargino into a charged lepton and a singlet sneutrino has

a characteristic decay pattern which is correlated with the observed large atmospheric

neutrino mixing angle. This feature can be probed at the LHC through trilepton

channel. Moreover, the ∼ 125 GeV Higgs boson now have a new decay channel into

a pair of LSP sneutrinos that is completely invisible. Most recent data published by

ATLAS and CMS collaborations at the LHC in different Higgs boson decay channels

constrain this sort of non-standard decays. We perform a two parameter global analysis

of the available experimental data to date to determine the optimal invisible Higgs

boson branching fraction in this scenario. This new decay provides us a new missing

energy channel that can be probed at the LHC. We present detailed cut-based analyses

for these different proposed signals at the LHC to test the viability of such a scenario.
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Chapter 1

Introduction

1.1 The Standard Model

All the matter forms in our Universe can be traced back to a few fundamental building

blocks of nature interacting by four fundamental forces: strong, weak, electromag-

netic and gravitational. The Standard Model (SM) of fundamental interactions is a

mathematical framework that explains strong, weak and electromagnetic interactions

of elementary particles [1, 2]. It is based on gauge principle, which states that all the

forces of nature are mediated by exchange of the gauge fields of the corresponding gauge

group. The symmetry group of the SM is SU(3)C ×SU(2)L×U(1)Y . SU(3)C governs

the strong interaction [3, 4] while SU(2)L × U(1)Y describes the unified description of

electroweak forces [5,6]. The interactions are associated with gauge fields with coupling

coefficients gs , g and g
′ corresponding to SU(3)C , SU(2)L and U(1)Y gauge subgroups

respectively. The SM contains elementary particles which are the basic ingredients of

all the matter surrounding us.

1.1.1 Particle Content

The elementary building blocks of matter are spin-half particles (fermions), called

quarks and leptons. These fermions come in three generations with identical quan-

tum numbers and different masses. The heavier fermions are unstable and decay into

lighter particles belonging to other generations. These light fermions make up most

of the ordinary matter. The four fermions in each family are distinguished by their

charges under strong and electromagnetic interactions. Two of them are quarks, which

are charged under the strong interactions, and two are leptons, which are not. The

two quarks have electromagnetic charges 2/3 (up quarks) and −1/3 (down quarks)

respectively, and the two leptons have charges -1 (charged leptons) and 0 (neutrinos),
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in units in which the electron charge is -1. Each fermion is associated with two chiral-

ities. Chirality is conserved for massless fermions, in which case the chirality coincides

with the helicity. The two possible chiralities are called left-handed (denoted by “L”)

and right-handed (denoted by “R”). Massive charged fermions are described by two

components of different chiralities combined into a Dirac spinor. For the neutrinos, on

the other hand, only the left-handed chirality has been observed so far.

The SM interactions are associated with the exchange of four vector bosons (spin

= 1). The photon mediates electromagnetic interactions, the gluon mediates strong in-

teractions, the Z and W mediate weak interactions. Among these the photons and the

gluons are massless, while the Z and the W are massive. Putting all these together, the

assignments into doublets and into singlets with the corresponding gauge transforma-

tion properties are given in the Table 1.1. Above the electroweak scale (≈ 174 GeV),

Particles SU(3)c SU(2)L U(1)Y

LiL =

(
νℓi
ℓi

)
1 2 -1

ℓiR 1 1 -2

QiL =

(
ui

di

)
3 2 1/3

uiR 3 1 4/3

diR 3 1 -2/3

W a
µ 1 3 0

Bµ 1 1 0

GA 8 1 0

Table 1.1: Gauge quantum numbers of the SM fermions and gauge bosons. Here

ℓi = e, µ, τ , ui = u, c, t and di = d, s, b. The singlet representation is given by 1. “µ”

is the Lorentz index that runs from 1 to 4. “A” appears for the non-Abelian gauge

group SU(3)C and can take values 1,....,8, whereas, “a” appears for SU(2)L and can

take values 1,..,3.

the electromagnetic and weak interactions become indistinguishable and are unified

under the “electroweak” interaction. The left chiral components of up and down type

fermions are unified in electroweak doublets. The electroweak scale is where such an

“electroweak” symmetry breaks. It is one of the fundamental scales of the nature

known at present. The mechanism through which the electroweak symmetry breaks

is called spontaneous symmetry breaking. It is through such a mechanism that the

fermions and the massive gauge bosons acquire a mass proportional to the electroweak
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scale. There have been doubts over the years about the mechanism triggering this

spontaneous breaking. Within the framework of the SM this mechanism is known as

the Higgs mechanism. This mechanism postulated the existence of a spin “zero” field,

known as the Higgs field. The SM massive particles acquire their masses through their

interactions with the Higgs field and the masses are proportional to their couplings to

the Higgs field. In the next subsection we discuss the mass generation mechanism in

SM in brief.

1.1.2 Spontaneous Symmetry Breaking and Mass Generation

Fermions and gauge bosons in the SM are forced to be massless in the presence of an

exact SU(2)L ×U(1)Y symmetry. This gauge symmetry, therefore, must be broken, in

order to assign masses to both the gauge bosons and the fermions. This can be done

through the mechanism of spontaneous symmetry breaking (SSB).

To understand the concept of SSB, let us consider a real scalar field φ(x) and a

potential,

V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (1.1)

Here we assume a discrete symmetry φ↔ −φ that prevents terms with odd powers of φ

in the potential. The minimum of the potential occurs at φ = 0. Since V ′(φ)|φ=0 = 0,

it implies that φ = 0 is an extremum. However, if µ2 < 0, V ′′(φ)|φ=0 = µ2 means

that φ = 0 is a maximum rather than a minimum. The stable minima in that case

occur at the points, φ = ±v, where, v = ±
√
−µ2/λ. v ≡ 〈0|φ|0〉 is called the vacuum

expectation value (VEV). The parameters µ and λ determine the vacuum structure.

The condition, λ > 0 has to be obeyed so that the potential is bounded from below. In

fig. 1.1 we show the structures of the potential for different signs of µ2 and a positive

λ. Now if we expand around the classical minimum φ = v,

φ(x) = v + η(x), (1.2)

where η(x) represents the quantum fluctuations about the minimum, substituting

Eq. 1.2 in Eq. 1.1, we obtain,

V ′(η) = λv2η2 + λvη3 +
1

4
λη4 + const. (1.3)

Since V ′(η) consists of terms with odd powers of η, it is no more symmetric under the

reflection symmetry and the symmetry is said to be broken spontaneously.
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Φ

VHΦL

Φ

VHΦL

Figure 1.1: The figure on the left panel shows the structure of the potential with

µ2 > 0, λ > 0, whereas the right panel shows the same with µ2 < 0, λ > 0.

In SM, the scalar field appears in a doublet structure and the vacuum expectation

value of the neutral component acquires a non-zero vacuum expectation value,

〈Φ〉 = 1√
2

(
0

v

)
(1.4)

that breaks the gauge symmetry,

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)em.

In the process three of the four degrees of freedom of the doublet scalar field are

absorbed by three linear combination of the electroweak gauge fields to form their

longitudinal polarization and acquire masses, whereas the fourth linear combination,

corresponding to the unbroken U(1) symmetry still remains massless. This massless

mode is the photon (A) which is the mediator of the long-range electro-magnetic inter-

action and the three massive modes are the W± and Z vector bosons which mediate

the short-range weak interaction. In terms of the original fields W a
µ , Bµ:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), Zµ = W 3

µcosθW −BµsinθW , Aµ = W 3
µsinθW +BµcosθW

(1.5)

and the corresponding masses are

mW =
1

2
vg, mZ =

1

2
v
√
g2 + g′2, mA = 0. (1.6)

The fermion masses can also be generated with the same scalar field Φ and its conjugate,

Φ̃ = −iτ2Φ∗ by introducing the following Yukawa terms in the Lagrangian:

−LY ukawa = yeij L̄iΦeRj
+ ydijQ̄iΦdRj

+ yuij
Q̄iΦ̃uRj

+ h.c. (1.7)
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After Φ obtains a vev, corresponding fermion masses are given by

Me =
vye√
2
, Md =

vyd√
2
, Mu =

vyu√
2
. (1.8)

Note that, since there are no right-handed components of neutrinos in SM, they remain

massless.

After three of the four degrees of freedom of the scalar field Φ are absorbed by the

gauge fields, the remaining one is called the Higgs boson (h). In the unitary gauge the

neutral component of Φ is given by

Φ(x) =
1√
2

(
0

v + h(x)

)
. (1.9)

Replacing Φ in Eq. 1.1 one can obtain the Higgs boson mass (mh) from the expansion

as in Eq. 1.3

mh =
√
2λv2 =

√
−2µ2. (1.10)

The SM has been extremely successful in explaining the particle masses and interactions

known to us so far. All the parameters of the SM have been determined experimentally

to an extremely high degree of accuracy over the past three decades or so, in the

precision measurements at the Large Electron-Positron (LEP) collider, the proton-

anti proton collider (Tevatron) and most recently at the proton-proton Large Hadron

Collider(LHC). Until the last couple of years, the only missing block in the puzzle was

the elusive Higgs boson.

With the recent discovery of the Higgs boson at the LHC [7, 8], now the SM is

complete. However, there still exist some doubts over the fact that this may also be a

new scalar coming from the existence of some new physics. More precise measurement

of the couplings of the discovered scalar will tell us in future if it is indeed the coveted

SM Higgs boson. Despite of its stupendous success, the SM still has some shortcomings

that forces us to look beyond.

• The SM Higgs boson mass has been found to be mh ≈ 125 GeV [9,10]. However,

m2
h receives large quantum corrections in the theory coming from all the particles

which couples directly or indirectly with the Higgs boson. For example, say we

have a correction to m2
h coming from a loop containing a Dirac fermion, f with

mass mf as shown in Fig. 1.2. If the coupling is given by the parameter λf , then

the correction factor is given by

∆m2
h =

|λf |2
16π2

[
−2Λ2

UV + 6m2
f ln(ΛUV /mf ) + ......

]
. (1.11)

5



h h

f

f̄

λf λf

Figure 1.2: Higgs boson mass correction coming from fermions at 1-loop level.

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral.

Now if ΛUV is of Planck mass (MP ) order, then this quantum correction is 30

orders larger than the desired value. Then the tree level mass parameter has

to be highly fine-tuned in order to cancel the radiative correction to yield a

physical Higgs boson mass at the weak scale. This scenario is not theoretically

impossible but it is technically unnatural. Hence this is known as the “naturalness

problem” [11,12] in the SM. One can solve this problem by taking a much smaller

cut-off scale.

• Data obtained from neutrino oscillation experiments confirm neutrino flavor os-

cillation [13,14]. The existing data allows us to determine two mass square differ-

ences, the solar and atmospheric neutrino mixing angles (θ12 and θ23 respectively)

and the reactor neutrino mixing angle (θ13). This set of data indicates at least

two neutrinos have non-zero masses and there exists significant mixing among

the neutrino states. An explanation of this phenomena requires the existence of

physics beyond the SM.

• Astrophysical experiments over the years have confirmed the existence of a new

kind of matter, that does not absorb, reflect or emit light, making it extremely

hard to detect. Unlike normal matter it does not take part in electromagnetic

interaction. This matter is known as the Dark Matter (DM). The DM make up

about 26% of all the matter in the universe and the researchers are able to infer

its existence only from the gravitational effect it has on the visible matter. The

most recent measurement from PLANCK satellite data provides the best fit value

of DM relic density [15]:

ΩDMh
2 = 0.1199± 0.0027, (1.12)

where h is the Hubble constant in units of 100 km.s−1.Mpc−1. A DM candidate

must be stable over the cosmological time scale ( >∼ 1018 sec.). It must be electri-

6



cally neutral and interact weakly with the ordinary matter particles. Moreover,

analyses of structure formation in the universe indicate that most of the DM

should be non-relativistic. All these arguments rule out the only viable DM can-

didate in the SM, i.e, neutrinos. Hence we must look beyond the SM to find a

suitable DM candidate.

The discovery of accelerated expansion of the universe [16] suggest that the bulk

(70%) of the energy density of the universe is in the form of dark energy. It is

distributed evenly throughout the universe. Its exotic physical properties cannot

be accounted for in the SM. The latest PLANCK data gives an estimate of the

dark energy of the universe [17]

ΩΛ = 0.693± 0.019. (1.13)

A theoretical explanation for the dark energy should come from some beyond the

SM physics involving gravity [19].

• Our universe appears to be consisting of only matter and no anti-matter. The

asymmetry between matter and anti-matter can be characterized in terms of the

ratio ηB = nB−nB̄

nγ
, where nB, nB̄ and nγ denote number density of baryons, anti-

baryons and photons respectively in the universe. WMAP has provided the most

accurate measurement of ηB so far [18]:

ηB = (6.19± 0.15)× 10−10 (68% C.L. value). (1.14)

The mechanism that can produce this non-zero baryon asymmetry dynamically

starting from a baryon-symmetric universe is known as “baryogenesis” [20]. It

is possible within the framework of SM to produce baryogenesis. However, de-

tail analysis reveal that it is not possible to produce the desired value of ηB

because CP violation in CKM matrix is too small (∼ 10−20) and the elec-

troweak phase transition is not sufficiently strong unless the SM higgs boson

mass, mh < 80 GeV, which is already excluded. Hence one must have additional

sources of CP violation to explain this asymmetry [20].

• There are some experimental anomalies that do not agree with the SM predic-

tions. The measured value of muon anomalous magnetic moment shows a 3.4σ

excess [21] over the SM predicted value. The top quark forward-backward asym-

metry also shows a 3σ deviation from the SM expected value in the large tt̄

invariant mass region [22].
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• The SM cannot account for the most familiar force in our everyday lives, i.e,

gravitational force. However, this force becomes dominating only at the Planck

scale. Hence the SM cannot be a valid theory for all the energy scales.

All these problems suggest that we need to look beyond the SM (BSM) scenario.

Different BSM scenario looks into these problems in different ways. In this thesis,

however, we only concentrate on one of these various scenarios, namely, Supersymmetry

(SUSY). In the next section, we give a brief introduction to the minimal version of

SUSY.

1.2 Supersymmetry

Supersymmetry is a general term for a symmetry that relates bosons and fermions.

Over the years, SUSY has remained the most popular candidate for BSM physics. It

has a very natural way of solving the hierarchy problem. If SUSY were exact, radiative

corrections to the scalar mass squared appearing in the SM theory would be absent

because the contribution of fermion loops exactly cancels against the boson loops. The

additional loops arising in a SUSY theory against the usual fermionic loop are shown

in Fig. 1.3. This has been one of the main reasons behind all the phenomenological

h h

f̃

h h

f̃

Figure 1.3: Higgs boson mass correction coming from scalar counterparts of fermions

at 1-loop level.

interests in SUSY. Its minimal version also leads to a number of new phenomena which

are being probed at the LHC and will be probed at any future collider experiments.

We briefly introduce SUSY algebra and its general framework before discussing the

minimal supersymmetric standard model.
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1.2.1 Supersymmetric Transformation and Superfields

A symmetry transformation turning a bosonic state into a fermionic state and vice

versa is known as supersymmetry [23–36]. The SUSY generator (Q) satisfies:

Q|boson〉 = |fermion〉, Q|fermion〉 = |boson〉 (1.15)

Every SM particles are accompanied by its supersymmetric partners, called superpart-

ners. In a SUSY theory every SM fermion has a bosonic superpartner and every boson

has a fermionic superpartner.

For SUSY, generators required are the Poincaré generators P µ and Mµν and the

spinor generators QA
α , Q̄

A
α̇ , where A = 1, ....., N . Here we discuss only about the simple

N = 1 SUSY scenario.

Poincaré symmetry:

The Poincaré group corresponds to the basic symmetries of special relativity. It acts

on the space time coordinates xµ as

xµ → x′µ = Λµ
νx

ν + aµ, (1.16)

where Λµ
ν represents Lorentz transformation that leaves the metric tensor

ηµν = diag(1,−1,−1,−1) invariant

ΛTηΛ = η (1.17)

and aµ represents translation. Generators of the Poincaré group follow the following

algebra:

[P µ, P ν ] = 0 (1.18)

[Mµν , P σ] = i (P µηνσ − P νηµσ) (1.19)

[Mµν ,Mρσ] = i (Mµσηνρ +M νρηµσ −Mµρηνσ −M νσηµρ) . (1.20)

Mµν has a matrix representation

(Mρσ)µν = i (ηµνδρν − ηρµδσν ) . (1.21)

Supersymmetric algebra:

The anti-commutation relations obeyed by the SUSY generators are the following

{Qα, Qβ} = 0 (1.22)
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{Q̄α̇, Q̄β̇} = 0 (1.23)

{Qα, Q̄β̇} = 2(σµ

αβ̇
)Pµ (1.24)

where,

σµ ≡ (1, σi); σ̄µ ≡ (1,−σi) (1.25)

and α, β, α̇, β̇ = 1, 2, 1̇, 2̇ (Weyl 2-component spinor notation). Here σi are the usual

2 × 2 Pauli matrices. The commutation relations with the generators of the Poincaré

group are:

[P µ, Qα] = 0 (1.26)

[P µ, P ν ] = 0 (1.27)

[Mµν , Qα] = −i (σµν)βαQβ (1.28)
[
Mµν , Q̄α̇

]
= −i (σ̄µν)α̇β̇ Q̄

β̇. (1.29)

From these relations one can derive the two invariants of the Poincaré group:

P 2 = PαP
α, W 2 = WµW

µ (1.30)

where,

Wµ = − i

2
ǫµνρσM

νρP σ. (1.31)

Now one can verify that

[Qα, P
2] = 0, [Qα,W

2] 6= 0, (1.32)

which implies that the irreducible multiplets will have particles with same mass but

different spin.

Grassmann variables:

SUSY transformations and invariants can be formulated in an efficient way in the

framework of superspace [37]. The superspace differs from the usual Minkowsky space-

time by the addition of two new coordinates, θα and θ̄α̇, which are called Grassmann

variables.

{θα}α=1,2 and {θ̄α̇}α̇=1̇,2̇. (1.33)

These are discretely varying variables and they anticommute with each other:

{θα, θβ} = {θα, θ̄β̇} = {θ̄α̇, θ̄β̇} = 0. (1.34)

Thus we go from space to superspace
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Space⇒ Superspace

(xµ) (xµ, θα, θ̄α̇)

Superfield and SUSY transformation:

A finite SUSY transformation can be written as exp
[
i(θQ+ Q̄θ̄ − xµP

µ)
]
. The objects

on which the SUSY transformation acts must also be functions of θ, θ̄, which requires

the introduction of the superfields. Using the properties of the Grassmann variables,

a general superfield can be written as

Φ(x, θ, θ̄) = f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + (θθ)m(x) + (θ̄θ̄)n(x) +

(θσµθ̄)Vµ(x) + (θθ)θ̄Ȧλ̄
Ȧ(x) + (θ̄θ̄)θAψA(x) + (θθ)(θ̄θ̄)d(x), (1.35)

where, f(x), φ(x), χ̄(x), m(x), n(x), Vµ(x), λ̄(x), ψ(x) and d(x) are called component

fields.

An infinitesimal SUSY transformation on a superfield can be written as

δS(α, ᾱ)Φ(x, θ, θ̄) =

[
α
∂

∂θ
+ ᾱ

∂

∂θ̄
− i(ασµθ̄ − θσµᾱ)

∂

∂xµ

]
Φ(x, θ, θ̄), (1.36)

where, α, ᾱ are the Grassmann variables and Φ is a superfield. The SUSY generators

look like

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄θ̇∂µ; Q̄α̇ = − ∂

∂θ̄α̇
+ iθβσµ

βα̇∂µ. (1.37)

The SUSY-covariant derivatives anti-commute with the SUSY transformations:

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄θ̇∂µ; D̄α̇ = − ∂

∂θ̄α̇
− iθβσµ

βα̇∂µ. (1.38)

Note that, α and θ have a mass dimension −1/2 while Q and D have mass dimension

+1/2. In SUSY it is often more convenient to work in chiral representation. In this rep-

resentation, θ and θ̄ are treated in slightly different ways. The SUSY transformations

and the covariant derivatives for left chiral fields (ΦL) are given by:

δSΦL =

(
α
∂

∂θ
+ ᾱ

∂

∂θ̄
+ 2iθσµᾱ∂µ

)
ΦL;

DL =
∂

∂θ
+ 2iσµθ̄∂µ & D̄L = − ∂

∂θ̄
(1.39)

and those for the right chiral fields (ΦR) are:

δSΦR =

(
α
∂

∂θ
+ ᾱ

∂

∂θ̄
− 2iασµθ̄∂µ

)
ΦR;

D̄R = − ∂

∂θ̄
− 2iθσµ∂µ & DR =

∂

∂θ
. (1.40)
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As evident from Eq. 1.39 and 1.40, D̄(D) has particularly simple form in the L(R)

representation. To switch between these two representations, one can use the identity:

Φ(x, θ, θ̄) = ΦL(xµ + iθσµθ̄, θ, θ̄) = ΦR(xµ − iθσµθ̄, θ, θ̄). (1.41)

To describe the SUSY formalism, we need two kinds of superfields, which are irre-

ducible representations of SUSY algebra. The are called chiral and vector superfields.

Chiral superfields:

The name “chiral superfield” is derived from the fact that the SM fermions are chiral.

The left-handed (LH) and right-handed (RH) components transform differently under

SU(2)L×U(1)Y . Hence the superfield should have only two physical fermionic degrees

of freedom. Apart from that the superfields also contain their bosonic superpartners,

called sfermions.

To construct the superfield we demand in chiral representation,

D̄ΦL = 0, (1.42)

i.e, ΦL is independent of θ̄, or

DΦR = 0, (1.43)

i.e, ΦR is independent of θ. For example, let us consider the LH-superfield expansion:

ΦL(x, θ) = φ(x) +
√
2θαψα(x) + θαθβǫαβF (x), (1.44)

where, ǫαβ is the anti-symmetric tensor in two dimensions. The properties of Grass-

mann variables do not allow any terms with three or more factors of θ. The fields

φ and F are complex scalars whereas ψ is a Weyl spinor. The ΦR can be expanded

similarly with θ replaced by θ̄.

Rewriting the SUSY transformation in Eq. 1.39 with ΦL given in Eq. 1.44,

δSΦL =
√
2ααψα + 2ααθβǫαβF + 2iθασµ

αβ̇
ᾱβ̇∂µφ+ 2

√
2iθασµ

αβ̇
ᾱβ̇θβ∂µψβ

≡ δSφ+
√
2θδSψ + θθδSF. (1.45)

Hence after the transformation is applied on the left-chiral superfield, we get back

the same superfield. This implies that the SUSY algebra is close. Explicitly, the

transformations of the different fields are given by

δSφ =
√
2αψ (1.46)

δSψ =
√
2αF + i

√
2σµᾱ∂µφ (1.47)

δSF = −i
√
2∂µψσ

µᾱ. (1.48)
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Note that the component field F, which is the (θθ)-component of the left-handed chiral

superfield, transforms as a space-time total derivative. Hence any action written using

this component will be invariant under SUSY transformations. The dimension of the

superfield is the same as that of its scalar component and ψ has a dimension as any

other standard fermions.

[Φ] = [φ] = 1, [ψ] = 3
2
.

From Eq. 1.44, it follows

[θ] = −1
2
, [F ] = 2,

i.e, the field F (x) has a dimension of (mass)2 unlike an ordinary scalar field and is called

an auxiliary field as it can be eliminated using the equations of motion of the fields

obtained through the Lagrangian. The scalar field φ(x) is called the supersymmetric

partner of ψ(x).

The chiral superfields can describe fermions and Higgs boson of the SM along

with their superpartners. However, to describe gauge bosons and their superpartners,

gauginos, we need to consider vector superfields.

Vector superfields:

The vector superfields (V) are considered to be self-conjugate:

V (x, θ, θ̄) ≡ V †(x, θ, θ̄). (1.49)

In component form:

V (x, θ, θ̄) =

(
1 +

1

4
θθθ̄θ̄∂µ∂

µ

)
C(x) +

(
iθ +

1

2
θθσµθ̄∂µ

)
χ(x) +

i

2
θθ [M(x) + iN(x)]

+

(
−iθ̄ + 1

2
θ̄θ̄σµθ∂µ

)
χ̄(x)− i

2
θ̄θ̄ [M(x)− iN(x)]

−θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x), (1.50)

where, C, M and N are real scalar fields, χ and λ are Weyl spinors and Aµ is a vector

field. V is called a vector superfield because of the presence of this vector field. D is

an auxiliary field.

A general non-abelian SUSY gauge transformation acting on V is described as

egV → e−igΛ†

egV eigΛ, (1.51)
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where Λ(x, θ, θ̄) represents a chiral superfield and g is the gauge coupling. For an

abelian gauge symmetry this transformation can be simplified as

V → V + i(Λ− Λ†). (1.52)

One can choose the “Wess-Zumino” gauge

χ(x) = C(x) =M(x) = N(x) ≡ 0, (1.53)

to remove some unphysical degrees of freedom. In this gauge,

V = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (1.54)

One can define a field strength tensor(Wα) and its conjugate (W̄α̇) as

Wα = −1

4
D̄2eVDαe

−V ,

W̄α̇ = −1

4
D2eV D̄α̇e

−V . (1.55)

This field strength tensor is a chiral superfield:

D̄β̇Wα = 0, DβW̄α̇ = 0, (1.56)

which in Wess-Zumino gauge, is written as a polynomial over the component fields:

Wα = T a

(
−iλaα + θαD

a − i

2
(σµσ̄νθ)αF

a
µν + θ2σµDµλ̄

a

)
, (1.57)

where,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , Dµλ̄

a = ∂λ̄a + fabcAb
µλ̄

c. (1.58)

However, in Abelian gauge, this field strength tensor can be simplified as

Wα = −1

4
D̄2DαV, W̄α̇ =

1

4
D2D̄α̇V. (1.59)

1.2.2 Supersymmetric Lagrangian

Supersymmetric Lagrangian is constructed using superfield method. Let us first start

with the Lagrangian which has no local gauge invariance. In the superfield notation,

the SUSY invariant Lagrangian is a polynomial of superfields. The most general SUSY

invariant Lagrangian for a chiral superfield (Φ) has the form

L = Φ†
iΦi

∣∣∣∣θθθ̄θ̄ +
[(
λiΦi +

1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)∣∣∣∣
θθ

+ h.c.

]
. (1.60)
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The first term in Eq. 1.60 represents a kinetic term. It consists of both the chiral

and anti-chiral superfields and is a function of the Grassmanian parameters θ and θ̄.

Expanding this term in θ and θ̄ produces the usual kinetic terms for the corresponding

component fields. The subsequent terms together form what is called the superpoten-

tial. It is composed of the chiral superfields and the hermitian conjugated counterpart

consisting of the anti-chiral superfields.

Eq. 1.60 can be written more efficiently in superspace. The action in that case is

an integral over the superspace. The space-time Lagrangian density is [27, 37]

L =

∫
d2θd2θ̄Φ†

iΦi +

∫
d2θ

[(
λiΦi +

1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)
+ h.c.

]
(1.61)

Using the rules of Grassmanian integration [38]

∫
dθα = 0,

∫
θαdθβ = δαβ, (1.62)

one performs the integration and obtain from Eq. 1.61,

L = ∂µφ∗
i ∂µφi + iψ̄iσ̄

µ∂µψi + F ∗
i Fi +[

λiFi +mij

(
φiFj −

1

2
ψiψj

)
+ yijk (φiφjFk − ψiψjφk) + h.c

]
. (1.63)

Now let us consider the gauge invariant SUSY Lagrangian. It contains gauge in-

variant interaction terms for the matter and the gauge fields and kinetic terms and self

interaction terms of the gauge fields. In the Wess-Zumino gauge the gauge field kinetic

terms look like

W αWα|θθ = −2iλσµDµλ̄− 1

2
FµνF

µν +
1

2
D2 + i

1

4
ǫµνρσFµνF

ρσ. (1.64)

The gauge invariant Lagrangian now looks like

L =
1

4

∫
d2θW αWα +

1

4

∫
d2θ̄W̄α̇W̄

α̇

=
1

2
D2 − 1

4
FµνF

µν − iλσµDµλ̄. (1.65)

In order to obtain gauge invariant interaction terms with matter chiral superfields, one

has to consider their gauge transformations:

Φ → e−igΛΦ, Φ† → Φ†eigΛ
†

, V → V + i
(
Λ− Λ†) . (1.66)

The gauge invariant kinetic term is modified

Φ†
iΦi

∣∣∣θθθ̄θ̄ → Φ†
ie

gVΦi

∣∣∣
θθθ̄θ̄

. (1.67)
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Then the complete SUSY as well as gauge invariant Lagrangian is as follows

Linv =
1

4

∫
d2θW αWα +

1

4

∫
d2θ̄W̄α̇W̄

α̇ +

∫
d2θd2θ̄Φ†

ie
gVΦi +

∫
d2θ

(
1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk

)
+ h.c. (1.68)

Expanding Eq. 1.68 in terms of the component fields and integrating out the auxiliary

fields Da and Fi, one gets the usual Lagrangian.

1.2.3 The Scalar Potential

In SUSY theories the scalar potential consists of two kinds of terms, namely, D-terms

and F-terms. The kinetic energy term of the gauge fields give rise to a D-term: 1
2
DaDa,

where the index a denotes corresponding the gauge groups index. Another D-term

is yielded by the matter-gauge interaction term, gDaφ∗
iT

a
ijφj, where T a

ij denote the

generators of the corresponding gauge group. Hence

LD =
1

2
DaDa + gDaφ∗

iT
a
ijφj. (1.69)

The Euler-Lagrange equation gives:

Da = −gφ∗
iT

a
ijφj. (1.70)

Substituting Eq. 1.70 into Eq. 1.69, the Lagrangian looks like

LD = −1

2
DaDa

Here a can run from 1,..,3 for SU(2)L. There is an additional contribution to LD

coming from U(1)Y D-term as well. This contribution can be written as −1
2
D′2, where,

D′ = −g′yQφ∗φ, yQ being the corresponding hypercharge. Hence

VD =
1

2

(∑
DaDa +D′2

)
. (1.71)

The F-term can be obtained from matter field self-interaction Eq. 1.63. For a

general superpotential (W), one can write

LF = F ∗
i Fi +

(
∂W

∂φi

Fi + h.c.

)
. (1.72)

The Euler-Lagrange equation gives:

F ∗
i = −∂W

∂φi

. (1.73)
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Substituting Eq. 1.73 into Eq. 1.72,

LF = −F ∗
i Fi

Hence,

VF = F ∗
i Fi. (1.74)

The full potential is given by

V = VD + VF . (1.75)

1.2.4 Supersymmetry Breaking

If SUSY was an exact symmetry, the superparticles would have the same mass as their

SM counterparts. But no superpartners of the SM particles have yet been found so far

which means they are heavier. Hence SUSY must be a broken symmetry. There are

two ways to break the symmetry: spontaneous breaking and explicit breaking.

Breaking SUSY spontaneously means that the vacuum state (|0〉) is not invariant
under the SUSY transformation, i.e, Qα|0〉 6= 0 and Q†

α̇|0〉 6= 0. Hence,

〈0|Q†
α̇Qα|0〉 6= 0 (1.76)

⇒ 〈0|H|0〉 6= 0

As a consequence, the vacuum must have a positive energy. On the other hand, for

the vacuum state,

〈0|H|0〉 = 〈0|V |0〉, (1.77)

which means 〈0|V |0〉 6= 0, where V is the scalar potential given by Eq. 1.75. Different

SUSY and gauge symmetry breaking scenarios are shown in Fig. 1.4 and Fig. 1.5.

SUSY is broken whenever the minimum of the potential (V (φmin)) is nonzero and the

gauge symmetry is broken when the minimum of the potential is attained at a nonzero

gauge field configuration, i.e, φmin 6= 0.
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Φ

VHΦL

Φ

VHΦL

Figure 1.4: The figure on the left panel represents the scenario where both SUSY

and gauge symmetry are preserved and the right panel represents gauge symmetry

breaking.

Φ

VHΦL

Φ

VHΦL

Figure 1.5: The figure on the left panel represents SUSY breaking keeping gauge

symmetry preserved while the one on the right panel represents the scenario where

both SUSY and the gauge symmetry are broken.

Hence if SUSY is spontaneously broken, it means that F i and/or Da cannot vanish

in the ground state. Therefore, to achieve spontaneous SUSY breaking, one has to

ensure that the equations F i = 0 and Da = 0 are not satisfied simultaneously in the

theory for any values of the fields. In a similar way as the electroweak symmetry

breaking, a field needs to be introduced which breaks the symmetry by introducing a

non-zero vacuum expectation value. Due to the structure of SUSY, this field should

be a superfield whose auxiliary F and D terms acquire nonzero vevs. Breaking of

the theory through F -term is known as O’Raifeartaigh mechanism [39] and the same
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through D-term is known as Fayet-Iliopoulos mechanism [40,41].

O’Raifeartaigh mechanism:

In this case, one needs several chiral superfields and the superpotential should be

chosen in a way that trivial zero vevs for the auxiliary F-fields are absent. Let the

superpotential be

W = λΦ3 +mΦ1Φ2 + gΦ3Φ
2
1. (1.78)

Then the equations of motion for the auxiliary fields are:

F ∗
1 = mφ2 + 2gφ1φ3,

F ∗
2 = mφ1,

F ∗
3 = λ+ gφ2

1. (1.79)

The above equations have no solutions with 〈Fi〉 = 0 and SUSY is broken sponta-

neously. The drawback of this mechanism is a lot of arbitrariness in the choice of the

superpotential.

Fayet-Iliopoulos mechanism:

It is also possible to generate an expectation value for a D-term. We have, from the

definition of V,

µ2

∫
d4θV = µ2D. (1.80)

This is known as “Fayet-Iliopoulos D term”. This is a gauge and SUSY invariant

term by itself, but can lead to spontaneous SUSY breaking. The simplemost model

exhibiting this mechanism is a SUSY U(1) gauge theory with a single chiral superfield

of charge q in which the auxiliary component D(x) of the vector superfield V develops

a non-zero vev, i.e, 〈D(x)〉 6= 0. The drawback of this mechanism is the necessity of

U(1) gauge invariance.

For both these breaking mechanisms described above, the SUSY particle spectrum

follows certain sum rules, known as the supertrace sum rules which states that the

supertrace of the tree-level squared-mass eigenvalues, defined with a weighted sum

over all particles with spin j, STr(m2) ≡ ∑
(−1)j(2j + 1)Tr(m2

j) = 0 [42]. This

theorem is valid only for sets of states with same quantum numbers. A vanishing

supertrace, however, needs some of the SUSY particles to be lighter compared to their

SM counterpart, which has not been observed so far experimentally. However, this

relation only holds true at the tree level and for renormalizable theories.
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A way out to this problem is to break SUSY spontaneously in a sector which only

couples to the SM sector via loops or via non-renormalizable operators. The SUSY-

breaking sector is referred to as “hidden” sector [43] and the SM sector as the “visible”

sector. Although we do not know the exact mechanism for SUSY breaking, this scenario

by far remains the most popular one. These two sectors interact with each other by the

exchange of some “messenger” fields. These fields mediate the information of SUSY

breaking from the hidden sector to the visible sector. In the visible sector, the explicit

SUSY breaking terms are known as soft SUSY breaking terms. These terms consist of

mass terms for scalars and gauginos and trilinear scalar couplings. We discuss more

about this later. As a consequence of SUSY being broken in the “hidden” sector, the

form of the soft SUSY-breaking terms do not depend on the mechanism of spontaneous

SUSY-breaking itself, but rather on the mechanism for mediating the SUSY-breaking

information to the “visible” sector. Depending upon the various messenger fields, there

exist different scenarios:

• Gravity mediation: In this framework [44], gravitational interactions play the

role of messenger sector. Supersymmetry is broken spontaneously in the hidden

sector. This information is then communicated to the MSSM sector through

gravitational sector leading to the soft terms. Since gravitational interactions

play an important role only at very high energies, MP lanck ∼ 1019 GeV, the

breaking information is passed on to the visible sector only at those scales. A

particular class of supergravity mediated supersymmetry breaking models are

those which go under the name of “minimal” supergravity (mSUGRA). One

further considers a grand unified theory (GUT) group G to break into the SM

gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y at the gauge coupling unification scale

MG ∼ 1016 GeV. The soft terms are assigned with unified values at MG:

– a universal gaugino mass parameter, m1/2,

– a universal scalar mass parameter, m0,

– a universal trilinear coupling parameter, A0.

Apart from these, there are two more independent parameters in mSUGRA sce-

nario, tanβ and sign(µ) (these parameters will be introduced later). One of

the special features of this model is that with only these five parameters, it can

determine the entire soft spectrum.

• Gauge mediation: The key idea behind this mechanism [45] is to use gauge

interactions instead of gravity to mediate the supersymmetry breaking from the
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hidden to the visible MSSM sector. In this case supersymmetry breaking can be

communicated at much lower energies ∼ 100 TeV.

Apart from these two there also exist other messenger field scenarios, namely, anomaly

mediation [46], gaugino mediation [47] and several others [48] which we shall not discuss

here.

Now that we are familiar with the general framework of SUSY, in the next section

we discuss about the simplest supersymmetric model, obtained by minimal extension

of the SM, known as the minimal supersymmetric SM (MSSM).

1.2.5 Minimal Supersymmetric Standard Model: Particle con-

tent

The MSSM is based on the same gauge group as SM:

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (1.81)

The MSSM contains minimum number of new particles and new interactions required

to construct a consistent SUSY theory. Below we discuss the particle content of the

model in brief.

The SM fermions are associated with complex scalar bosons (sfermions) with the

same quantum numbers and they both belong to a chiral superfield. The gauge bosons

appear with the corresponding spin 1/2 fermions known as gauginos to form a vector

supermultiplet. Unlike the Standard Model, in MSSM one requires to have two Higgs

doublets with opposite hypercharges to cancel the triangle anomalies [49] and also to

give masses to the isospin +1/2 and -1/2 fermions in a SUSY invariant [50,51] way. As

a result of introducing two Higgs doublet in the model, now there are five Higgs bosons

in total: two CP-even, one CP-odd and two charged [52]. The Higgs doublets have their

corresponding fermionic superpartners, known as the Higgsinos. The higgsinos will mix

with the gauginos to produce two charginos and four neutralinos in the physical basis.

The field content of the MSSM is summerised in Table 1.2.

1.2.6 The superpotential and SUSY breaking Lagrangian

The superpotential must be gauge invariant and renormalizable. The most general

MSSM superpotential consists of the following terms:

WMSSM = ǫab

[
µĤa

uĤ
b
d − yuij

Q̂a
i Ĥ

b
uÛ

c
j + ydijQ̂

a
i Ĥ

b
dD̂

c
j + yeij L̂

a
i Ĥ

b
dÊ

c
j

]
, (1.82)
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Superfields Boson fields Fermion fields SU(3)c SU(2)L U(1)Y

ĜA Gµ
A G̃A 8 1 0

Ŵa W µ
a W̃a 1 3 0

B̂ Bµ B̃ 1 1 0

L̂i =

(
ν̂L

ê−L

)

i

(
ν̃L, ẽ

−
L

)
i

(
νL, e

−
L

)
i

1 2 -1

Êc
i ẽ−Ri

e−Ri
1 1 -2

Q̂i =

(
ûL

d̂L

)

i

(
ũL, d̃L

)
i

(
uL, dL

)
i

3 2 1
3

Û c
i ũRi

uRi
3 1 4

3

D̂c
i ũRi

dRi
3 1 -2

3

Ĥd =

(
ĥ0d
ĥ−d

)

i

(
h0d, h

−
d

)
i

(
h̃0d, h̃

−
d

)
i

1 2 -1

Ĥu =

(
ĥ+u
ĥ0u

)

i

(
h+u , h

0
u

)
i

(
h̃+u , h̃

0
u

)
i

1 2 1

Table 1.2: MSSM particle content with the corresponding gauge quantum numbers.

Here i(=1,2,3) indicates the three generations of SM fermions, a(=1,2,3) indicates the

three W-bosons and A(=1,2,3,...,8) indicates the eight gluons. There exists one anti-

particle multiplet for each supermultiplet corresponding to the charge-conjugated SM

particles and their superpartners.

where a,b(=1,2) are the SU(2)L indices, yu,d,e are the 3× 3 Yukawa coupling matrices

and

ǫab =

(
0 1

−1 0

)
.

The lepton and quark masses are generated after electroweak symmetry breaking

by the vevs of the neutral Higgs components.

〈Hu〉 =
1√
2

(
0

vu

)
, 〈Hd〉 =

1√
2

(
vd

0

)
, (1.83)

where vu
vd

≡ tanβ. As discussed earlier, the effect of spontaneous SUSY breaking in

the hidden sector is reflected by addition of the soft terms to the SUSY Lagrangian in
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visible sector. The most general soft SUSY breaking [53–57] Lagrangian is given by

−Lsoft breaking = m2
Qij
Q̃†

iQ̃j +m2
Uij
ũ†Ri

ũRj
+m2

Dij
d̃†Ri

d̃Rj
+m2

Lij
L̃†
i L̃j +m2

Eij
ẽ†Ri

ẽRj

+ǫab
(
Auij

yuij
Q̃iaHub

ũ†Rj
+ AdijydijQ̃iaHdb d̃

†
Rj

+ Aeijyeij L̃iaHdb ẽ
†
Rj

+ h.c
)

+m2
Hu
H†

uHu +m2
Hd
H†

dHd + Bµ

(
ǫabHua

Hdb + h.c
)

+
1

2
[M1

¯̃
B
¯̃
B +M2

¯̃
W

a ¯̃
W a +M3

¯̃
G

A ¯̃
GA + h.c] (1.84)

where i,j(=1,2,3) are the generation indices, and a(=1,2,3), A(=1,2,....,8) are the

SU(2)L and SU(3)C indices respectively. M1, M2 and M3 are the respective gaug-

ino masses associated with U(1)Y , SU(2)L and SU(3)C gauge groups. m2
Q, m

2
U , m

2
D,

m2
L, m

2
E are the 3× 3 complex hermitian matrices in family space. m2

Hu
and m2

Hd
are

squared mass parameters and Bµ is the bilinear Higgs mixing coefficient. Au, Ad and

Ae are the trilinear couplings and appear as 3× 3 complex matrices.

1.2.7 Particle masses in MSSM

• Slepton mass matrix:

The relevant Lagrangian contains off-diagonal mass terms for the sleptons in the

basis (ℓ̃L,ℓ̃R) ,where ℓ stands for e, µ, or τ . Hence one has to diagonalize the mass

matrix to obtain physical mass eigenstates. The mass squared matrices look like

M2
ℓ̃
=

(
m2

L +m2
ℓ −M2

Z(
1
2
− sin2θW )cos2β mℓ(Aℓ − µtanβ)

mℓ(Aℓ − µtanβ) m2
E +m2

ℓ −M2
Zsin

2θW cos2β

)
.(1.85)

Since the off-diagonal term in the above mass matrix is proportional to the cor-

responding lepton mass, for the first two generations, mixing between the left

and right-handed(L-R) states is negligible. Hence the physical mass eigenstates

are essentially the same as the corresponding diagonal entries. However, for the

third generation, the mixing can be quite significant.

Sneutrinos, on the other hand, have no right-handed states. The mass squared

term is given by

M2
ν̃ = m2

L +
1

2
M2

Zcos2β. (1.86)

• Squark mass matrix:

The up-type and down type mass squared matrices in the basis (q̃L,q̃R), where q

stands for either up-type (u,c,t) or down-type (d,s,b) quarks, look like:

M2
ũ =

(
m2

Q +m2
u −M2

Z(
1
2
− 2

3
sin2

W )cos2β mu(Au − µcotβ)

mu(Au − µcotβ) m2
U +m2

u +
2
3
M2

Zsin
2
W cos2β

)
,(1.87)
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M2
d̃
=

(
m2

Q +m2
d −M2

Z(
1
2
− 1

3
sin2

W )cos2β md(Ad − µtanβ)

md(Ad − µtanβ) m2
D +m2

d − 1
3
M2

Zsin
2
W cos2β

)
.(1.88)

The L-R mixing of the third generation is significant due to large top mass. Mix-

ing in the bottom sector is large for a large value of tanβ. As in the sleptonic case,

due to very small quark masses the L-R mixing for first and second generation

of squarks are negligible.

• Chargino mass matrix:

Charginos (χ̃±
1,2) arise due to mixing between Winos (W̃±) and charged Higgsinos

(H±). They are four component Dirac spinors. Since there are two independent

mixings between (W̃−, H̃−) and (W̃+, H̃+) states, we need two unitary matrices

in order to diagonalize the mass matrix. By introducing the notation,

ψ− =

(
W̃−

H̃−

)
, ψ+ =

(
W̃+

H̃+

)

and

Ψ± =

(
ψ+

ψ−

)

The relevant part of the Lagrangian in the above mentioned basis is of the form

Lmass
χ̃± =

1

2
(Ψ±)TY ±Ψ± + h.c. (1.89)

Here

Y ± =

(
0 XT

X 0

)
, (1.90)

and

X =

(
M2 −

√
2mW sinβ

−
√
2mW cosβ µ

)
(1.91)

Now, two-component mass eigenstates can be written as

χ+
i = Vijψ

+
j , (1.92)

χ−
i = Uijψ

−
j , (1.93)

where i, j =1,2 and U and V are unitary matrices, constructed in such a way

that

U∗XV † =M±
D . (1.94)
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The chargino masses appear as the diagonal entries of M±
D . The two-component

spinors χ±
i can be arranged in a four-component Dirac-spinor as

χ̃i =

(
χ+
i

χ̄−
i

)
, i = 1, 2. (1.95)

Thus the two chargino mass eigenvalues are

M2
χ̃+
1,2

= 1
2
{M2

2 + µ2 + 2m2
W ∓ [(M2

2 − µ2)2 + 4m4
W cos22β (1.96)

+4m2
W (M2

2 + µ2 + 2M2µsin2β)]
1/2}.

• Neutralino mass matrix:

The neutral gauginos (B̃, W̃ 3) and neutral higgsinos (H̃0
u, H̃

0
d) mix among them-

selves to produce neutralino (χ̃0) mass eigenstates. The relevant Lagrangian looks

like

Lmass
χ̃0 =

1

2
(ψ0)TY 0ψ0 + h.c, (1.97)

where in the basis ψ0 ≡ (B̃, W̃ 3, H̃0
d , H̃

0
u) the matrix Y 0 is of the form

Y 0 =




M1 0 −MZcosβsinθW MZsinβsinθW

0 M2 MZcosβcosθW −MZsinβcosθW

−MZcosβsinθW MZcosβcosθW 0 −µ
MZsinβsinθW −MZsinβcosθW −µ 0


 .(1.98)

Note that Y 0 is symmetric and can be diagonalized by a unitary matrix, N to

obtain the neutralino mass eigenvalues:

N∗Y 0N † =M0
D. (1.99)

M0
D is the diagonal neutralino mass matrix.

• Higgs boson masses:

The Higgs scalar fields in the MSSM consist of two complex SU(2)L doublets i.e,

eight real, scalar degrees of freedom. After the electroweak symmetry breaking,

three of these degrees of freedom become the longitudinal modes of the massive

vector bosons, Z0 and W±. The remaining five are the Higgs boson mass eigen-

states consisting of one CP-odd neutral scalar (A0), a positively charged scalar

(H+) and its conjugate, a negatively charged scalar (H−) along with two CP-even
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neutral scalars (h0 and H0). The tree level masses of these particles are given by

m2
A0

= m2
1 +m2

2, (1.100)

m2
H± = m2

A0
+m2

W , (1.101)

m2
h0,H0

=
1

2

(
m2

A0
+m2

Z ∓
√
(m2

A0
+m2

Z)
2 − 4m2

Zm
2
A0
cos22β

)
,(1.102)

where m2
1 = m2

Hd
+ µ2 and m2

2 = m2
Hu

+ µ2. Whereas the masses of A0, H0 and

H± can be arbitrarily large, the mass of h0 is bounded from above [58,59]. From

the above relations it can be derived that at tree level [60, 61],

mh0 < |cos2β|MZ . (1.103)

It suggests that the lightest Higgs boson mass can even be lighter than the Z-

boson mass. However, this scenario is already ruled out from LEP searches

[62, 63]. The large radiative corrections coming mainly from top quark and top

squark loops contribute largely to enhance the Higgs boson mass. In the limit

where the top squark masses (mt̃1
, mt̃2

) are larger than the top quark mass (mt),

the one loop radiative correction contribution [64–67] is given by

∆(m2
h0
) =

3

4π2
v2y4t sin

4βln

(
mt̃1

mt̃2

m2
t

)
. (1.104)

This correction added with the other relevant correction terms provides a limit

on the lightest Higgs boson mass,

mh0
<∼ 130 GeV. (1.105)

There exist quite a few detailed analyses on the MSSM Higgs boson and their

phenomenological implications in the literature [68].

1.2.8 R-parity in Supersymmetry

In addition to the terms in the superpotential of the MSSM there may be other gauge

invariant and renormalizable terms which can also be included:

W✚RP
= ǫab

[
µiL̂

a
i Ĥ

b
2 + λijkL̂

a
i L̂

b
jÊ

c
k + λ′ijkL̂

a
i Q̂

b
jD̂

c
k

]
+ λ′′ijkÛ

c
i D̂

c
jD̂

c
k (1.106)

The first three terms violate lepton number (L) and the fourth term violates baryon

number (B) both by one unit. Although no baryon or lepton number violating processes

have ever been found, these conservations are accidental in SM. This is a consequence of

the fact that it is not possible to write any renormalizable term within the framework
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d̄

ū
λ′′ λ′

˜̄s or ˜̄b
e+

ū

ū ū

Figure 1.6: A sample diagram showing a typical proton decay (p → e+π0) via squark

exchange in R-parity violating SUSY scenario.

of the SM that violates B or L. However, if both B and L violating couplings were

present simultaneously in the superpotential, the proton would no longer be stable and

would decay, for example, via a squark exchange as shown in Fig. 1.6. Experimental

evidence tells us that the proton lifetime is very large ≥ 1033 years [69]. Thus products

of these couplings (e.g, λ′′ and λ′) which can lead to proton decay have to be extremely

small, typically ∼ 10−20 [70].

A more natural way to deal with this problem is to add a new discrete symmetry

to ensure that there are no B or L violating terms in the renormalizable MSSM super-

potential. This new symmetry is called R-parity [71–73] and for a particle it is defined

as

RP = (−1)3(B−L)+2s, (1.107)

where, “s” is the spin of the corresponding particle. One could, in principle, just impose

B and L conservations and thus discard all the terms in Eq. 1.106, but both these

conservation laws are known to be violated by non-perturbative electroweak effects.

Neither B or L can therefore be regarded as a fundamental symmetry. Instead, imposing

R-parity conservation forbids terms like the ones in Eq. 1.106 while allowing all the

interactions of the MSSM.

All the sleptons, squarks, gauginos and higgsinos carry RP = −1 whereas all the

SM particles and gauge bosons have RP = +1. In R-parity conserving theory, there

can be no mixing between RP = −1 and RP = +1 terms. Also, every interaction vertex

in the theory must contain an even number of RP = −1 particles. These properties

have some very interesting phenomenological consequences:

• The SUSY partners can only be pair produced from the SM particles.
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• All other superparticles eventually decay into a final state with the lightest super-

symmetric particle (LSP) and the decay products must contain an odd number

of LSP’s.

• The LSP cannot further decay into any SM particles, making it absolutely stable.

Additionally, if this LSP is electrically neutral and interacts weakly with ordinary

matter, it can be a very good candidate for non-baryonic DM.

Since the LSP’s are stable and can escape detection at the colliders, they give rise to

missing energy signals for R-parity conserving SUSY scenarios. The missing energy is

particularly high in R-parity conserving SUSY scenarios as the sparticles are always

pair produced and their decay products consists of at least one LSP. This novel missing

energy signature is being extensively searched for at the LHC as a probe for R-parity

conserving SUSY models.

1.3 Neutrino Physics

If neutrinos are massive, their flavor changes while they propagate. As a consequence,

a neutrino which is originally produced as electron neutrino can be detected as muon or

tau neutrino. This oscillating effect explains the deficits found in solar and atmospheric

neutrino experiments. Neutrinos are produced by charged current weak interactions as

flavor eigenstates, να ≡ (νe, νµ, ντ ). The mass eigenbasis, νi ≡ (ν1, ν2, ν3) is related to

the flavor eigenbasis by a unitary matrix:

|να〉 = U∗
αi|νi〉, (1.108)

where U is known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and is given

by:

UPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 . (1.109)

Here sij = sinθij, cij = cosθij and δ is the Dirac CP-violating phase. In case of

Majorana neutrinos, two additional phases appear in the mixing matrix. Although

the production mechanism of the neutrino is flavor diagonal, the quantum mechanical

evolution is mass diagonal. One can compute the final state |νi(t)〉 at time t starting

from the initial state |νi(t0)〉 at time t0,

|νi(t)〉 = eiEi(t−t0)|νi(t0)〉, (1.110)
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where E2
i = p2+m2

i . The probability of flavor eigenstate να oscillating into νβ is given

by,

P (να → νβ) =
6∑

j,k=1

U∗
αkUβkUαjU

∗
βjexp

(
−i

∆m2
kjL

2E

)
, (1.111)

where L is the oscillation length and ∆m2
kj ≡ m2

k − m2
j . Eq. 1.111 indicates that

neutrino oscillation is not sensitive to the absolute masses of the neutrinos, but the

mass square differences. Neutrino oscillation experiments over the years have found

two mass square differences, ∆m2
21, responsible for solar neutrino oscillations, and

|∆m2
31|, responsible for atmospheric neutrino oscillations, the solar and atmospheric

mixing angles θ12 and θ23 and the reactor angle θ13. There is an ambiguity over the

sign of ∆m2
31. Hence two types of neutrino mass spectrum are possible, namely normal

hierarchy (m1 < m2 < m3, ∆m2
31 > 0) and inverted hierarchy (m3 < m1 < m2,

∆m2
31 < 0). For normal hierarchy, the best fit values along with their 3σ ranges [74]

are provided in Table 1.3. Since the neutrino oscillation data are not sensitive to the

Parameter Best Fit (±1σ) 3σ Range

∆m2
21[10

−5 eV2] 7.58+0.22
−0.26 6.99 - 8.18

|∆m2
31|[10−3 eV2] 2.35+0.12

−0.09 2.06 - 2.67

sin2θ12 0.312+0.018
−0.015 0.265 - 0.364

sin2θ23 0.42+0.08
−0.03 0.34 - 0.64

sin2θ13 0.025+0.007
−0.008 0.005 - 0.050

Table 1.3: The best-fit values and 3σ allowed ranges of the 3-neutrino oscillation

parameters, derived from a global fit of the current neutrino oscillation data including

T2K [75] and MINOS [76].

absolute value of the neutrino masses, we cannot measure mν from these oscillation

experiments. There are three main experimental sources to obtain information on the

absolute scale of neutrino mass.

• Tritium beta decay experiments:

As pointed out by Fermi theory, the shape of electron spectrum near the endpoint

is highly sensitive to the scale of neutrino masses. Experimental setups at Mainz

[77] and Troitsk [78] have applied this idea to study neutrino mass using tritium

(3H) as the decaying nucleus and hence source of the electron and a massive

neutrino (mi):

3H →3 He+ e− + ν̄. (1.112)
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These experiments measure an effective neutrino mass mβ =
√∑3

i=1 |Uei|2m2
i ,

where U is the PMNS matrix. The existing bound obtained from these experi-

ments so far is:

mβ < 2.2 eV (95% c.l). (1.113)

• Neutrinoless double beta decay experiments:

Another way to determine the absolute scale of neutrino masses and the Majorana

nature of the neutrinos is the search for neutrinoless double beta decay (0νββ).

These are lepton number violating processes, like

N(A,Z) → N(A,Z + 2) + e± + e∓. (1.114)

These type of processes are possible only for Majorana nature of the neutrinos.

The decay rate is proportional to m2
ν and is suppressed by several orders of mag-

nitude from the 2νββ decay mode. These two decay modes can be differentiated

from the energy spectrum of the electrons. In 0νββ mode, the electrons are ex-

pected to be more energetic as there are no energy loss due to the final state

neutrinos. These experiments can measure

mββ =
3∑

i=1

U2
eimi. (1.115)

Heidelberg-Moscow experiment [79] provided the most stringent bound on the

half-life of 76Ge so far:

T 0ν
1/2(

76Ge) > 1.9× 1025y (90% c.l). (1.116)

IGEX experiment [80] on the other hand obtained a similar lower bound:

T 0ν
1/2(

76Ge) > 1.57× 1025y (90% c.l). (1.117)

The future experiments GERDA [81], CUORE [82] and EXO [83] with increased

sensitivities are expected to probe further. The bound on mββ does have large

error due to the uncertainties involved in calculating the nuclear matrix elements

[85]. However, the detection of 0νββ will confirm the existence of a new type

of particle, a Majorana particle even if the effective neutrino mass cannot be

measured with high accuracy.

Applying Heidelberg-Moscow collaboration results and taking into account the

uncertainties, one obtains

mββ
<∼ 0.2− 0.6 eV. (1.118)
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• Cosmological observations:

The most stringent constraint on the neutrino masses come from cosmological

observations. If the neutrinos are really massive and the masses are of eV order,

they would constitute a hot DM component. This type of DM reduces structure

formation at small scales (∼ 1 - 10 Mpc). Hence by studying density fluctu-

ations in the CMB and the large scale structure distributions of galaxies, the

experimentalists put a strong bound [84] on the sum of neutrino masses

3∑

i=1

mi
<∼ 0.3− 1.0 eV. (1.119)

1.3.1 Neutrino mass

As already discussed, the neutrinos in the SM remain massless due to the absence of

right-handed neutrinos. The neutrino masses can be either Dirac or Majorana type.

• Dirac mass:

One can just add right-handed neutrinos, singlet under SM gauge groups, to write

the corresponding Yukawa term YνHLνR leading to a neutrino mass,mD = Yν〈H〉
after EWSB as in the cases of other SM fermions. Then it is evident that, for a

174 GeV Higgs vev, to achieve a sub-eV neutrino mass, Yν must be of the order of

10−11. Since the right-handed neutrinos are gauge singlets, they do not have any

gauge interactions and couple to the rest of the particles through the Yukawa

coupling. Hence their interactions are highly suppressed making this scenario

phenomenologically uninteresting.

• Majorana mass:

Charge conjugation of a field is defined as

Ĉ : ψ → ψc = Cψ̄T (1.120)

where Ĉ is the charge-conjugation operator. The particles for whom ψ = ψc

are known as the Majorana particles. Then the corresponding mass term can be

written as:

−Lm =
1

2

[
ψT
LCMψL + h.c

]
. (1.121)

Here ψ = (ψ1, ...., ψn)
T is a vector in flavor space and M is a n × n matrix. A

Majorana mass term breaks not only the family lepton number but the total

lepton number as well. Note that, due to the anti-commutation properties of the

fermionic fields, the matrix M is symmetric.
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Kinematically, the Dirac and Majorana mass terms are indistinguishable. However, a

Majorana mass term is the reason 0νββ has a non-vanishing amplitude, but the source

of this mass term also remains to be explained. An important difference between the

Dirac and Majorana neutrino mass terms is that the Dirac mass terms remain invariant

under U(1) transformations, but the Majorana mass terms do not. It breaks all the

charges that the field (ψ) has by two units. Thus if electric charge is exactly conserved,

there cannot be any charged particles with Majorana mass. Therefore, among all the

fermions only neutrinos can be Majorana particles.

Higher dimensional operators:

One can incorporate a relevant mass term by adding a dimension five operator, known

as the Weinberg operator [86] to the Lagrangian

W =
1

Λ
LiLjHH, (1.122)

where Li,j are the SM doublets and H is the standard Higgs doublet. Λ is a mass scale

where the operator is generated. This term breaks the lepton number by two units just

as in the case of a Majorana mass term. After EWSB, the Higgs fields gets vev and W

reduces to a Majorana mass term. A pictorial representation of generation of this mass

term is shown in Fig. 1.7 The Weinberg operator points to the fact that lepton number

Li

Lj

H

H

Figure 1.7: Weinberg dimension five operator responsible for generating neutrino

masses.

conservation is rather accidental since non-renormalizable operators like this violate it.

Different realizations of this dimension five operator are possible as we discuss below.

Seesaw mechanism:

The most popular way of realization of this effective theory is the seesaw mechanism.

In the simplemost seesaw theory one additional SM fermionic singlet (NR) is added
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to the SM particle content for each generation. Then the two terms relevant to the

neutrino masses that are added to the Lagrangian looks like

Lν =
1

2

3∑

i=1

MNi
N̄ c

Ri
NRi

+
3∑

i,j=1

YνijHL̄iNRj
+ h.c. (1.123)

HereMN is the Majorana mass term of the right-handed heavy neutrino field and Yν is

the Yukawa parameter that controls the left-right mixing between the neutrino states.

After EWSB, the Higgs field acquires a vev(v) and subsequently the Yukawa term gives

rise to a Dirac mass term (mD ≡ Yν × v) for the neutrinos. In the basis (νL, N
c
R) the

neutrino mass matrix looks like

mν =

(
0 mD

mT
D MN

)
. (1.124)

Using

Tr(mν) =MN and |Det(mν)| = mT
DmD, (1.125)

and under the approximation, MN >> mD, we get the eigenvalues of mν :

mν1 ≃
mT

DmD

MN

, mν2 ≃MN . (1.126)

Now, as a result of its mixing with the heavy singlet state, the massless neutrino has a

non-zero mass. Smallness of this mass depends either on the smallness of the Yukawa

parameter or the largeness of the seesaw scale, MN . which is equivalent to Λ appearing

in Eq. 1.122. This mechanism is known as type I seesaw mechanism [87–91]. There

are other types of seesaw mechanisms as well.

Another way to write the Weinberg operator (Eq. 1.122) is

1

M
(LT~τL)(HT~τH), (1.127)

where τ i’s are the usual Pauli matrices. This can be incorporated in the theory by

adding an SU(2)L bosonic triplet ~∆ ≡ (∆++,∆+,∆0) which couple to SM leptons.

This is known as type II seesaw mechanism [92–95]. In this case the scale (Λ) appearing

in Weinberg operator is

1

Λ
=

fµ

M2
, (1.128)

where, the LL∆ and HH∆ couplings are denoted by f and µ respectively and M is

the mass of the triplet, ∆. Similar to the previous case, when the Higgs field gets vev,

neutrinos get masses

mν =
fµv2

M2
. (1.129)
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Type III seesaw mechanism [96] introduces a fermionic SU(2)L triplet Σ with hy-

percharge, Y = 0. If three families of Σ is added to the SM particle content, the

additional terms in the Lagrangian reads:

−LΣ = YΣHLΣ +
1

2
ΣMΣΣ + h.c. (1.130)

Here YΣ and MΣ are 3× 3 matrices. The neutrino mass now reads

mν =
Y 2
Σv

2

2Mσ

. (1.131)

The neutrino mass expression is similar to the one obtained for type I seesaw case.

R-parity violating SUSY scenario:

Just like the SM, R-parity conserving SUSY, on its own is not sufficient to provide

non-zero masses to neutrinos. R-parity violating SUSY models are, however, capable

of explaining neutrino oscillation data. If R-parity is violated, there is no conserved

quantum number that can distinguish between a down-type Higgs doublet and a lepton

doublet. These fields in general mix to generate neutrino mass terms. One neutrino

obtains its mass at tree level depending upon the mixing between the Higgs and the

sneutrinos [97–108]. The other two neutrinos become massive at one loop level and

those masses are smaller compared to the tree level neutrino mass due to a suppression

by the loop factor.

Bilinear R-parity violation is the minimal extension of the MSSM that incorporates

lepton number violation. It is represented by the term µiLiH2 in Eq. 1.106. As a

result, we get a 7 × 7 neutralino-neutrino mass matrix, which after diagonalization

gives mass to one of the massless neutrinos. This tree level contribution generates the

atmospheric neutrino mass scale, whereas, in order to generate the solar neutrino mass

scale one needs to consider the additional corrections coming from bottom-sbottom,

tau-stau and neutralino-sneutrino one loop contributions [97–111].

Apart from the bilinear term, a general RPV superpotential also consists of lepton

number violating λ and λ′ terms. These terms give rise to nonzero neutrino masses at

one loop level via lepton-slepton or quark-squark loops [107]. These contributions are

suppressed by square of the λ and λ′ couplings and square of charged lepton or down

type quark masses apart from the loop suppression factor. Thus these contributions

are usually very small.

One very important feature of R-parity violating neutrino mass models is their

accessibility at the present colliders. The phenomenological aspects of this neutrino

mass generation mechanism have been studied extensively in the literature [112–119].
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1.4 Dark Matter

Fritz Zwicky postulated the existence of a non-luminous matter from his observation

that the velocities of galaxies in the Coma cluster far exceeded the velocities expected

based on the gravitational potential of only the luminous matter [120]. Over the years

several other studies have pointed towards the existence of the Dark Matter (DM), e.g,

rotation curves of galaxies [121], gravitational lensing [122] and temperature fluctua-

tions of the cosmic microwave background (CMB) [18]. The current relic abundance of

the DM is measured as the ratio of its density and the critical matter density required

for the closure of the universe

ΩDM =
ρDM

ρc
. (1.132)

ρc can be written in terms of Hubble expansion rate (H) and Newton’s gravitational

constant (GN)

ρc =
3H2

8πGN

. (1.133)

A scaling parameter h is used to write: H = 100h km/s/Mpc, where 1 pc=3.2615 light

year= 3.0856× 1018 cm and accordingly, h takes the value 0.705± 0.013. The DM can

be “hot”, “warm” or “cold”. Hot dark matter is composed of particles that have zero

or very small non-zero mass (e.g, neutrinos). The Special Theory of Relativity requires

that nearly massless particles move at nearly the speed of light. Such high velocities of

“hot” dark matter cause it to wipe out structure on small scales and thus this particular

kind of DM is disfavored from the structure formation arguments. “Cold” dark matter

(CDM) particles on the other hand, are massive and move slowly compared to the speed

of light and interact very weakly with the visible matter. “Warm” DM has properties

intermediate between that of “hot” and “cold” DM candidates and its mass can be

of the keV range. Cold DM can provide the most dominant contribution to the DM

relic density and is composed of non-baryonic and non relativistic particle. Ordinary

baryonic matter density is smaller than ΩCDM by one order of magnitude. For this

thesis, we shall only concentrate on the cold DM. The most recent measurement of the

cold DM relic abundance (ΩCDM) is provided by PLANCK experiment [15]:

ΩCDMh
2 = 0.1199± 0.0027. (1.134)

Among several candidates for a cold DM, the most popular are the axions [123] and

weakly interacting massive particles (WIMPs). The properties of a WIMP can be

probed through its scattering against different target nuclei [124] as well as through its
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annihilation into different possible final states [125]. In the subsequent subsections we

shall discuss about the WIMP relic density calculation , different detection techniques

opted by the DM detection experiments and how their results affect the choice of DM

candidates in SUSY theories.

1.4.1 Relic Density

A weakly interacting stable particle provides the correct order of magnitude of the relic

density if we assume the universe to be in thermal equilibrium at the time the DM

decouples from the thermal bath. This is called the “WIMP miracle”. The evolution

of WIMP (χ) number density (nχ) in the thermal bath of the early universe obeys the

Boltzman equation:

dnχ

dt
+ 3Hnχ = − < σA|v| > (n2

χ − n2
eq), (1.135)

where the factor < σA|v| > is called the thermal averaged annihilation cross-section of

the DM and neq is the equilibrium number density. v is the relative velocity between

the annihilating DM particles measured in center of mass frame. In case of an exact

thermal equilibrium, the forward and backward processes of WIMP annihilation and

creation are same, but as the universe cools down with the decrease of temperature,

the annihilation rate surpasses creation rate. Now if the thermal equilibrium was to

be maintained, nχ would fall exponentially. However, the WMAP and subsequent

measurement of relic density predicts a much larger value. These results can only be

explained if the equilibrium is broken at some point of time during the evolution. The

annihilation rate (Γann) is given by

Γann =< σA|v| > nχ. (1.136)

The deviation from equilibrium occurs when Γann(Tf ) ≈ H(Tf ). This scenario is known

as the “freeze-out”. Using this freeze-out condition one can solve for the freeze-out

temperature (Tf ). For weak scale inputs,

Tf ≈ mχ/20. (1.137)

Using Tf one can also find the comoving number density at freeze-out. The Hubble

constant can be written as

H = 1.66g1/2∗ T 2/mP lanck, (1.138)

where T denotes temperature and g∗ counts the number of relativistic degrees of free-

dom. The ratio of the comoving number density to entropy can be assumed to be
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constant as the universe cools. Then using entropy as a function of temperature,

s ≈ 0.4g∗T
3, we can write

(nχ

s

)
present

=
(nχ

s

)
freeze−out

≈ 102

mχmP lanckg
1/2
∗ < σAv >

. (1.139)

The present DM number density can be converted to units of the critical density,

ρc = 10−5h2 GeVcm−3 using the entropy at present, s ≈ 4000 cm−3

ΩDMh
2 =

mχnχ

ρc
≈ 0.1

(
3× 10−26 cm3/s

< σA|vf | >

)
, (1.140)

where, vf = 1/
√
20. Hence the WIMP relic density is independent of its mass and is

inversely proportional to its annihilation cross-section. Thus requiring a relic density

also constrains the value of its annihilation cross-section.

1.4.2 Detection of the DM

The DM detection techniques can be broadly divided into two categories, namely, direct

and indirect detection.

Direct Detection:

The idea behind direct detection technique is a very simple one. If the galaxy has

certain abundance of WIMPs, they must be passing through the Earth. Hence studying

the interaction of such particles with matter, e.g, studying the recoil energy of the

target nuclei, can reveal a lot about the WIMP properties [126]. The detectors are

buried deep underground to eliminate backgrounds coming from cosmic rays. The

most important factors for the calculation of the signal in direct detection experiments

are the density and the velocity distribution of WIMPs in the solar neighborhood and

the WIMP-nucleon scattering cross-section. Using these information one can calculate

the rate of WIMP-nucleon scattering events expected in an experiment per unit time,

per unit detector material mass.

The scattering rate is approximately given by [127]

R ≈
∑

i

Ninχ < σiχ >, (1.141)

where i runs over the nuclei species present in the detector and Ni is the number of

target nuclei in the detector, nχ is the local WIMP density and < σiχ > is the WIMP

nuclei scattering cross-section averaged over the relative WIMP velocity with respect

to the detector. Scintillators like NaI, semi-conductors like Ge and noble liquids like

Xe are typically used as detector materials.
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The scattering processes can be divided into two classes; elastic and inelastic scat-

tering. The elastic scattering involves the interaction of the WIMP with a target nuclei

as a whole making the nucleus to recoil. This recoil energy is then measured to obtain

an energy spectrum that reveals various WIMP properties. Current experiments can

detect recoils of considerable lower energy, as low as 1-10 keV. Inelastic scattering on

the other hand involves WIMP interaction with the orbital electrons in the target.

As a result, the electrons are either excited or target is ionized. Also the WIMP can

interact with the nuclei putting it in an excited state. This process involves both recoil

of the nuclei and emission of a photon immediately afterwards [128]. However, such

signatures have large background coming from natural radioactivity.

The elastic scattering can be divided into two categories, namely spin-dependent

and spin-independent scattering depending on their classes of couplings. The spin-

dependent axial-vector interactions result in a scattering cross-section proportional to

J(J + 1), where J is the total angular momentum of the particle, rather than the

number of nucleons. For spin independent scalar scattering, the cross-section increases

with the square of the nuclear atomic number. Hence heavier target nuclei are favored

while searching for spin-independent scattering. For sufficiently heavy target nuclei,

this cross-section dominates over the spin-dependent one. As a result, bounds on DM

obtained coming from spin-independent scattering are more severe than that coming

from spin-dependent scattering.

LUX [129] experiment provides the strongest bound so far from direct detection

searches. Other direct detection experiments include CDMS [130], XENON [131,132],

ZEPLIN [133], EDELWEISS [134], CRESST [135], CoGeNT [136], DAMA [137], etc.

Future run of LUX [138] and XENON1T [139] are expected to improve the results by

several orders of magnitude in the next few years.

Indirect Detection:

Indirect search of DM involves study of the final state particles produced in DM an-

nihilations. Since the annihilation rate of WIMP is proportional to the square of the

DM density, the searches are carried out close to the places that are expected to have

large WIMP density, e.g, sun, earth and the galactic center. The annihilation products

searched for include gamma-rays, neutrinos and anti-matter.

The most likely source of gamma-rays coming from WIMP annihilation is the galac-

tic center. The WIMP pair annihilation can produce charged fermions in the final state

which then can radiate gamma-rays. Also the quarks in the final state go through

hadronization and in the process neutral pions are created. These pions can then de-

cay into pairs of gamma-rays. A large number of photons with varying energies are
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created in this process giving rise to a continuous spectrum. Alternatively, a pair of

WIMPs can directly produce a pair of photons via some loop induced processes and

thus producing a monochromatic photon energy spectrum. This production rate is

usually small because of loop suppression, but since the energy of these photons de-

pend on the WIMP mass, for its large value the generated photons will be highly

energetic. If detected, these photons can provide an obvious proof for the existence of

DM. The continuum γ-ray flux is typically 2-3 orders of magnitude higher than that of

monochromatic γ-rays. Recently, an excess in photon energy spectrum was observed

at low energy close to the galactic center [140] by the Fermi Large Area Telescope

(Fermi-LAT). Photons originated from DM annihilation can explain the situation per-

fectly well [141]. With improved sensitivity in the ongoing experiments, a discovery

may just be around the corner.

Neutrinos can also be an important probe for the WIMPs. The WIMPs slowly

gather at the centers of large gravitating bodies until the capture rate and the annihi-

lation rate come into an equilibrium. Sun is a close enough object where these rates are

at equilibrium which produces a steady flow of neutrinos generated from the WIMP

annihilation. Neutrinos being very weakly interacting, escape the sun unlike most of

the other particles. Neutrino telescopes focus on this neutrino flux coming out of the

sun. Depending upon the WIMP mass and its composition it decays into different final

states involving charged fermions and gauge bosons which then decay into neutrinos

among other products. The differential neutrino flux from WIMP annihilation is given

by

dNν

dEν

=
ΓA

4πD2

∑

f

Bf
X

dN f
ν

dEν

, (1.142)

where, ΓA is the annihilation rate of WIMP, D is the distance of the detector from

the source, f is the WIMP pair annihilation final states and Bf
X are the branching

ratios of the final state. dN f
ν /dEν are the energy distributions of neutrinos generated

by the final state, f . This detection, then heavily depends on the WIMP mass, the

annihilation rate and WIMP density within the sun. Among several DM experiments

AMANDA [142], Super-Kamiokande [143] and IceCube [144] are looking for this sort

of DM signal.

Pair annihilation of DM is expected to produce equal number of particles and anti-

particles. The products of these DM annihilations in the galaxies would therefore

give rise to an anti-particle signal in cosmic rays which is relatively rare, making it

an excellent signal for DM detection. The quarks produced through WIMP annihi-

lation undergo harmonizations to produce anti-protons. Positrons can be created as

secondary products coming from final state gauge bosons. Unlike γ-rays and neutri-
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nos, these particles are charged and therefore are affected by electromagnetic fields

and lose energy due to radiation. Experimentalists therefore study the flux of anti-

particles from the galactic halo as a whole. An excess in positron flux was first ob-

served by the HEAT [145] and AMS [146] experiments and was confirmed afterwards

by PAMELA [147, 148]. The Fermi-LAT also observed excess in cosmic ray electron

and positron flux over the expected background. If interpreted as a DM signal, this ob-

servation puts severe constraints on annihilation channels. A sharp rise in the positron

fraction indicates a hard lepton spectrum [149,150], while the lack of anti-proton excess

strongly constrains hadronic annihilation modes of the DM [151]. However, one requires

further data to determine the fact that these kind of excesses are really originated from

DM annihilation or they are coming from some astrophysical sources unknown to us

so far.

1.4.3 DM candidates

Many extensions of the SM indeed require the introduction of new particles, some

of which could be DM candidates. Perhaps the most popular candidate for particle

DM is the lightest supersymmetric particle (LSP) in R-parity conserving supersym-

metric (SUSY) models [127, 152]. In the Minimal Supersymmetric extension of the

SM (MSSM), the lightest neutralino is the usual DM candidate, as the other viable

candidate, namely the scalar superpartner of the left-handed (LH) neutrino, is strongly

disfavored by a combination of relic density, direct detection and invisible decay width

of the SM Z-boson constraints [153]. More specifically, the unsuppressed coupling of

the LH sneutrino to the SM Z-boson leads to a large cross-section for elastic scattering

with the target nuclei in direct detection devices [154]; such cross-sections are already

ruled out experimentally over almost the entire viable mass range [132]. By the same

argument, their large Z-coupling leads to far too rapid annihilation for the LH sneu-

trinos and too small a relic density compared to the WMAP-measured value [18]. One

could make them very light (of order GeV) [155] in order to suppress the annihilation

rate as well as to evade the direct detection bounds due to the limited sensitivity of

the experiments at low masses. However, a very light sneutrino is excluded by the

measurement of the Z invisible decay width at LEP [156].

Recent data from three DM direct detection experiments, namely DAMA [137],

CoGeNT [136] and CRESST [135] have suggested the hints of a light DM with mass

in the 10-100 GeV range and cross section in the range 10−3 − 10−6 pb for elastic

scattering off nucleons. Though there is no unanimity among these results and several

other experiments [130,132–134,157,158] do not see any such positive hints of a DM, it

has certainly generated considerable curiosity in a light DM scenario which can explain
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some/all of these hints of positive detection while being consistent with the null results

from other direct detection experiments [159]. Therefore, it may not be premature to

examine some beyond SM scenarios accommodating a light DM candidate in case any

of these positive hints are confirmed in near future. However, neither of the most recent

searches by XENON [131] and LUX [138] direct detection experiments has found any

evidence of a light DM and as a result, put stringent constraint on the direct detection

cross-section.

If we assume gaugino mass unification in pure MSSM, the LEP searches on SUSY

put a lower bound on the lightest neutralino mass around 50 GeV [63], and the recent

LHC data push this bound to more than about 200 GeV [160]. Even if we do not

assume gaugino mass unification, one could derive a lower limit on the neutralino LSP

mass of ∼ 20 GeV [161] just requiring the observed DM relic density, together with the

LEP constraints on chargino and slepton masses. Therefore, if the DM indeed turns

out to be very light as suggested by some of the recent experiments [135–137], we need

to go beyond the universal MSSM scenario. Since MSSM anyway cannot be a complete

theory and needs to be extended to accommodate the observed small neutrino masses,

it would be interesting to see if these extensions can also provide a viable light DM

candidate while satisfying both collider and relic density constraints as well as other

low-energy constraints in the leptonic sector.

In the next chapter, we discuss one such extension of the MSSM to accommodate

neutrino oscillation data. We consider a special kind of seesaw scenario in the MSSM

framework and call it supersymmetric inverse seesaw model. We take into account

both the minimal and general extension of MSSM to accommodate inverse seesaw.

Our aim is to see if we can find a light DM candidate in this R-parity conserving

model consistent with all the DM and collider experimental bounds. In the subsequent

chapters we explore the feasibility of collider search of this model in different lepton

and/or jet associated missing energy channels.
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Chapter 2

Supersymmetric Inverse Seesaw

Seesaw has so far been the simplemost mechanism for neutrino mass generation. As

mentioned earlier, it introduces three SU(2)L × U(1)Y singlet right handed neutrinos

with Majorana masses, MNi
, in the theory. To maintain smallness of the neutrino

masses, these Majorana mass terms need to be much larger than the weak scale while

keeping a sizable left-right mixing yukawa coupling. The Yukawa coupling needs to be

kept large (∼ 0.1) in order to make the model “visible” at the collider. However, in

order to keep the Yukawa coupling large and simultaneously fit the neutrino oscillation

data, one has to push the scale of the model far above the present collider limit. An

order of magnitude estimation from Eq. 1.126 for the lightest mass eigenvalue reveals

that for a neutrino mass to be ∼ 0.01 eV and Yukawa coupling ∼ 0.1, the seesaw scale

must be∼ 1013 GeV. Here we shall be considering a scenario that is phenomenologically

more interesting, namely, inverse seesaw mechanism.

Inverse seesaw model extends the particle content of the SM by the addition of

a pair of singlet leptons, N c
i and Si, per generation, with i denoting the generation

index running over 1,2,3. Within this scenario, the smallness of the neutrino mass is

taken care of by a small lepton number violating parameter, µS. Hence one can keep

an O(0.1) Dirac neutrino Yukawa coupling and still the lepton number conserving

mass scale of singlet neutrinos can be brought down below TeV order satisfying all

the existing neutrino oscillation data. This makes the model testable at the present

collider experiments like the LHC.

In the supersymmetric version of the inverse seesaw mechanism [1, 2], all the light

neutrino masses can be generated at tree-level by adding three pairs of SM singlet

superfields: N̂ c
i and Ŝi (with i = 1, 2, 3) having lepton number −1 and +1 respectively.

Several embeddings of this set up have been discussed in the literature within the MSSM

gauge group [3] as well as with extended gauge symmetries such as SU(2)L×SU(2)R×
U(1)B−L [4–6], SU(2)L × U(1)Y × U(1)B−L [7, 8] and SU(2)L × U(1)Y × U(1)R [9]. In
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this thesis, we choose to work within the MSSM gauge group. The superpotential for

the Supersymmetric Inverse seesaw Model (SISM) is given by

WSISM = WMSSM + ǫaby
ij
ν L̂

a
i Ĥ

b
uN̂

c
j +MRij

N̂ c
i Ŝj + µSij

ŜiŜj , (2.1)

µS being the only (tiny) source of lepton number violation in the superpotential. The

soft SUSY-breaking Lagrangian is given by

Lsoft
SISM = Lsoft

MSSM −
[
m2

NÑ
c†Ñ c +m2

SS̃
†S̃
]

−
[
ǫabA

ij
ν L̃

a
i Ñ

c
jH

b
u + Bij

MR
Ñ c

i S̃j + Bij
µS
S̃iS̃j + h.c.

]
. (2.2)

Light neutrino mass

As a result of the LH neutrinos mixing with the singlet ones, the tree level neutrino

mass matrix is 9× 9 in the basis {νL, N c, S}:

Mν =




0 MD 0

MT
D 0 MR

0 MT
R µS


 , (2.3)

where,

MD = vuyν (2.4)

is the Dirac neutrino mass matrix, vu = v sin β being the vev of the Ĥu superfield in

MSSM, with v ≃ 174 GeV. Eq. 2.3 can be simply written as in a type-1 seesaw case:

Mν =

(
0 M ′

D

M ′
D
T X

)
, (2.5)

where,

M ′
D = (MD 0) and X =

(
0 MR

MT
R µS

)
. (2.6)

In the limit ‖µS‖ ≪ ‖MD‖ ≪ ‖MR‖ (where ‖M‖ ≡
√

Tr(M †M)), the lighter mass

eigenvalue of the matrix defined in Eq. 2.5 comes out to be

Mν =M ′
D
T
X−1M ′

D. (2.7)

Substituting X−1 and M ′
D in Eq. 2.7, we can rewrite this eigenvalue in terms of MD,

MR and µS. This eigenvalue is the effective 3× 3 light neutrino mass matrix:

Mν =
[
MDM

T−1

R

]
µS

[
(M−1

R )MT
D

]
+O(µ2

S) ≡ FµSF
T +O(µ2

S) , (2.8)
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where, F = MDM
T−1

R . As can be seen from Eq. (2.8), the smallness of neutrino mass

now additionally depends on the small lepton-number violating parameter µS instead

of just the smallness of the Dirac mass MD and/or heaviness of MR as in the canonical

type-I seesaw case. For µS ∼ O(keV), we can easily bring down MR to O(TeV) range

even with comparatively large Dirac Yukawa couplings of O(0.1), thus leading to a

rich collider phenomenology [10–15] as well as observable lepton flavor violation (LFV)

effects [4, 16–26].

In the limit µS → 0, the lepton number remains conserved in the theory and the

three light neutrinos remain massless as in the SM. Hence the smallness of µS is tech-

nically natural in the ’t Hooft sense [27], since µS → 0 restores a larger symmetry.

The smallness of µS can be explained by some other mechanisms, e.g, radiative correc-

tions [28] or extra dimensions [29].

Note that, the gauge symmetry SU(2)L×U(1)Y allows for additional entries in the

singlet sector, i.e, non-zero νLS and N cN terms in the superpotential. The presence of

only the N cN term does not spoil anything in the light neutrino sector as this term does

not appear in the light effective 3× 3 neutrino mass matrix given in Eq. 2.8. However,

it can affect the heavy neutrino and sneutrino masses in the model, as the coefficient of

this term may not be as small as the µS term which has to be O(keV ) to accommodate

neutrino oscillation data. We do not consider this scenario for the present purpose.

On the other hand, the νLS term will in general affect the light neutrino study by

appearing in Eq. 2.8 but the lepton number violating coupling ys in ysL̂ĤuŜ term in

the corresponding superpotential can be made very small (sub eV order) to denounce

its effect. There are models where ys serves as the parameter responsible for small

neutrino masses instead of µS, known as the linear seesaw mechanism [9]. For the

present purpose we ignore both these terms. These terms can be naturally eliminated

by extending the SM gauge group so that these additional terms in the superpotential

are forbidden by some symmetry (see, for instance, refs. [4, 5]).

Fitting Neutrino Oscillation data

The effective light neutrino mass matrix is usually diagonalized by the unitary PMNS

matrix. However, due to its mixing with heavy neutrinos in the matrix structure of

Mν in Eq. 2.3, the light neutrino mixing matrix will receive additional non-unitary

contributions. Thus, the full (non-unitary) light neutrino mixing matrix U diagonaliz-

ing the light neutrino mass matrix in Eq. 2.8 has to be derived from the 9× 9 unitary

matrix V diagonalizing the full mass matrix given in Eq. 2.3, i.e,

VMνVT = diag(mi,mRj
), (i = 1, 2, 3; j = 1, 2, ..., 6), (2.9)
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and by decomposing it into the blocks

V9×9 =

(
U3×3 K3×6

K′
6×3 N6×6

)
. (2.10)

For ‖MD‖ ≪ ‖MR‖, it is sufficient to expand U up to leading order in F =MDM
T−1

R :

U ≃
(
1− 1

2
FF †

)
U ≡ (1− η)U (2.11)

where U denotes the unitary PMNS matrix that diagonalizes the light neutrino mass

matrix and η = 1
2
FF † is a measure of the non-unitarity. We choose to work with diag-

onal MR and MD, and accordingly fit µS to be consistent with the neutrino oscillation

data. We use the global fit values for the oscillation parameters as given in Table 1.3.

Sneutrino mass matrix

In the scalar sector, the relevant terms for sneutrino mass matrix can be obtained

following the prescription in Section 1.2.3. Apart from the D-term and F-term con-

tributions, there are additional terms arising from the soft terms in Eq. 2.2. Due to

mixing between doublet and singlet sneutrinos we have a 9 × 9 complex (or 18 × 18

real) sneutrino mass squared matrix. Assuming CP conservation in the soft SUSY-

breaking Lagrangian in Eq. 2.2, we can decompose this mass matrix into two 9×9 real

block-diagonal matrices corresponding to CP -even and CP -odd sneutrino states. The

corresponding mass term in the Lagrangian looks like

Lν̃ =
1

2
(φR, φI)

(
M2

+ 0

0 M2
−

)(
φR

φI

)
, (2.12)

where φR,I = (ν̃R,I
Li
, Ñ cR,I

j , S̃R,I
k ) (i, j, k = 1, 2, 3) and

M2
± =




m2
L̃
+MDM

T
D + 1

2
m2

Z cos 2β ±(vuAν − µMD cot β) MDMR

±(vuAν − µMD cot β)T m2
N +MRM

T
R +MT

DMD BMR
±MRµS

MT
RM

T
D BT

MR
± µSM

T
R m2

S + µ2
S +MT

RMR ±BµS


 ,

where m2
L̃
denote the soft SUSY-breaking mass squared term for SU(2)L-doublet slep-

tons. The real symmetric CP -even and CP -odd mass squared matrices M2
± can be

diagonalized by 9× 9 orthogonal matrices G± as follows:

G±M2
±GT

± = diag
(
m2

ν̃R,I
i

)
(i = 1, 2, · · · , 9). (2.13)

The corresponding eigenvalues of M2
± are almost degenerate in nature, with the degen-

eracy between ν̃Ri and ν̃Ii lifted only due to the small lepton number breaking parameter

µS and BµS
. In the subsequent chapters, ν̃R1 is referred to as ν̃1 and ν̃

I
1 as ν̃2. Similarly,

ν̃R2 is referred to as ν̃3 and ν̃
I
2 as ν̃4, etc. Here we consider a scenario where the lightest

sneutrino mass eigenstate is the LSP, and as a result, also serve as a DM candidate.
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2.1 Minimal Supersymmetric Inverse Seesaw Model

In the Minimal Supersymmetric Inverse Seesaw Model (MSISM) the particle content

of the MSSM is extended by only one pair of SM singlet fields N̂ c and Ŝ having lepton

number −1 and +1 respectively instead of three. The tree level neutrino mass matrix

now is a 5 × 5 matrix in the basis (νL, N
c, S), where, L = e, µ, τ . The mass matrix

looks similar to the one in Eq. 2.3:

Mν =




0 0 0 MD1 0

0 0 0 MD2 0

0 0 0 MD3 0

MD1 MD2 MD3 0 MR

0 0 0 MR µS



, (2.14)

where, MDi
is defined as before and the effective 3×3 light neutrino mass matrix looks

similar to Eq. 2.8. After diagonalization, this effective mass matrix gives rise to just

one non-zero neutrino mass. In order to satisfy neutrino oscillation data one requires

a second non-zero neutrino mass eigenvalue which is originated from the sneutrino-

antisneutrino loop [30, 31] as shown in Fig 2.1. The correction term is proportional

to the mass splitting of sneutrino states. This feature is analogous to the R-parity

ν ν

ν̃1,2

χ̃0
i

Figure 2.1: One-loop contribution to the neutrino mass due to sneutrino mass splitting.

violating [32] models of light neutrino mass generation with bilinear terms [33–43].

Issues of neutrino mass generation in MSISM have been addressed in ref. [9, 18]. A

model of neutrino mass generation where the origin of neutrino mass is radiative and

suppressed by inverse seesaw scale has been advocated in [44].

The sneutrino mass squared matrix is now a 10 × 10 matrix. Assuming CP-

conservation, this matrix can be decomposed into two 5×5 block matrices in the basis

(ν̃RLi
, Ñ cR , S̃R) and (ν̃LLi

, Ñ cI , S̃I) corresponding to CP-even and CP-odd sneutrino fields

respectively as in Eq. 2.12.
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2.1.1 Phenomenological aspects

In SUSY inverse seesaw, in addition to assigning neutrino mass, the singlet scalars,

having mixed with the doublet sneutrinos, can be good thermal cold dark matter

candidate. Apart from the neutrino masses and mixing, the SUSY inverse seesaw

model has also been analysed earlier in various context:

• LFV Signatures: The non-negligible mixing between the light and heavy neutri-

nos leads to enhanced rate of the LFV processes like ℓ−α → ℓ−β, µ → eee, etc,

which have been studied in this context [4, 16–18, 45]. Note that the LFV decay

rates are usually suppressed by the light neutrino masses in canonical type-I see-

saw [46], but in inverse seesaw model these processes can occur irrespective of

the lightness of these masses [47].

• Dark Matter: As discussed in the Section 1.4, cMSSM is in tension with a light

neutralino or sneutrino LSP. Supersymmetric inverse seesaw model, on the other

hand, provides us with a very natural DM candidate in R-parity conserving

scenario in the form of a singlet sneutrino. Being mostly a singlet, this DM is

not very strictly restricted from the direct detection cross-section limit. This DM

scenario has been studied in some detail in refs. [3, 9, 10, 15, 48].

• Collider signatures: Having a large neutrino Yukawa coupling and the seesaw

scale at sub-TeV range simultaneously makes the inverse seesaw mechanism very

interesting regarding collider search at the LHC. The SUSY version of the model

has been explored in various lepton and jet associated final states at different

center of mass energies at the LHC [10,12,15].

• Non-unitarity effects: This scenario can also be tested from the observation of any

kind of non-unitarity in the PMNS matrix that can be searched in the neutrino

oscillation experiments [49, 50]. As described earlier in this chapter, the non-

unitarity parameters can be large depending on how much mixing is allowed

between the light and heavy neutrino states.

Inverse seesaw model have also been studied in detail in the context of leptogenesis

[51–53] which dynamically generate the matter-antimatter asymmetry of our universe

via the out-of-equilibrium decays of heavy right-handed neutrinos. For the present

thesis, we mainly concentrate on the DM and collider aspects of this model. We study

various signals in order to probe the model at the LHC. We also study the minimal

version of the model from the aspect of a novel correlation between a collider and a

neutrino physics observable that is a unique feature of this kind of models.
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Chapter 3

Exploring novel correlations in

trilepton channels in MSISM

In this chapter, we discuss the signatures of the minimal supersymmetric version of the

inverse seesaw model (MSISM) with just one generation of singlet pairs at the LHC. In

the case when one of the singlet sneutrinos is the LSP, the phenomenology at the LHC

can be very interesting. This is because in this model the neutrino Yukawa coupling

can be large and can lead to lepton flavor violating (LFV) coupling of the sneutrinos

with a charged lepton and the chargino. These couplings are related to the observed

neutrino mixing angles and hence by studying the collider signatures of this model it

is possible to study the relation between neutrino physics and the physics at the high

energy colliders.

Supersymmetric particle searches from 19 fb−1 data, collected by ATLAS and CMS

for pp collision at center-of-mass energy,
√
s = 7 and 8 TeV, has found no excess over

the expected SM background. In the context of the constrained minimal supersymmet-

ric standard model (CMSSM), searches by ATLAS exclude squarks and gluinos with

masses below 950 GeV [1] at 95% C.L. for some particular choice of other parame-

ters. The results from CMS extend the mass limit to 1.2 TeV [2]. However, the third

generation squarks can still be somewhat lighter, particularly in the context of a more

general MSSM scenario. This is the reason, in this work, we choose to work with a

spectrum where the squarks of the first two generations and the gluinos are very heavy

(∼ 1 TeV) and the electroweak sector is relatively light so that the lighter chargino and

neutralinos can be produced at the LHC. If in the production or in the decay chain

the lighter chargino (χ̃±
1 ) appears then it can have a decay into a charged lepton (ℓ)

via χ̃±
1 → ℓ±+ ν̃, where ν̃ represents the singlet sneutrino LSP. The ratios of the decay

branching ratios into different charged lepton flavors can be shown to correlate with

the neutrino mixing angles [3]. Our aim in this chapter is to look at these correlations
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by studying the trilepton +��ET signature from the associated production of the lighter

chargino (χ̃±
1 ) and the second lightest neutralino (χ̃0

2) at the LHC [4].

Similar correlations also appear in the decay of the LSP in the model of bilinear

R-parity violation [5–12], spontaneous R-parity violation [13] and in µνSSM [14–16].

In these models correlations with neutrino mixing angles have been studied in var-

ious context in the case of a neutralino LSP decays as well as for other LSPs in-

cluding the chargino [11]. The final states discussed in these cases generally include

multi − leptons + jets + ��ET along with the presence of displaced vertices origi-

nating from the long-lived LSP. Here we have studied this correlation in the decay of

the chargino in minimal supersymmetric inverse seesaw model (MSISM) through the

cleaner trilepton + ��ET final state in the absence of any displaced vertex [4].

In MSISM, the atmospheric neutrino mixing angle (θ23) correlates not only with the

ratio of the branching ratios of the lighter chargino (χ̃±
1 ) decay modes but also with ratio

of the branching ratios of lepton flavor violating decays, τ/µ→ ℓ+γ, where ℓ = e, µ [3].

On the other hand, trilepton signals (3l, with or without tau lepton(s)) have been

extensively studied for a long time as an important probe for supersymmetric models

[17–28] (see also references [3,4,6,7] of ref. [19]). Besides, a hadronically quiet event

like this always has the favor of reducible backgrounds. Moreover, multi-lepton signals

have already been considered as an important probe for seesaw models [29, 30]. Being

motivated by these features together with the novel correlations mentioned earlier, we

aim to perform a detailed analysis of trilepton (3ℓ, 2ℓ + 1τ) + ��ET signals for the

MSISM taking into account possible SM backgrounds.

As mentioned earlier, we search for the trilepton signatures, arising from the decay

of χ̃0
2χ̃

±
1 pair. In our chosen parameter points the associated production of the light-

est chargino with the next-to-lightest neutralino, pp → χ̃0
2χ̃

±
1 + X can occur with a

detectable rate at the LHC. In addition, the lighter chargino and the second lightest

neutralino decays via two body leptonic modes with large branching ratios. The final

state signal will produce three charged lepton and missing energy signature (3ℓ+��ET

or 2ℓ + 1τ +��ET ), because of the presence of the stable singlet sneutrino LSP. It is

interesting to note that in our analysis the lightest neutralino χ̃0
1 decays into a singlet

scalar LSP and a light neutrino. Both of these decay products escape detection and

thus χ̃0
1 can be thought of as a virtual LSP, which also yields the missing energy sig-

nature at an accelerator experiment similar to that by an LSP. We investigate three

body final states like 3ℓ (ℓ = e, µ) and also 2ℓ + τ -jet. Final states with more than

one tau lepton have been dropped for small τ detection efficiency [31]. In the course

of present analysis we choose to work with non-universal gaugino masses but maintain

M2 > M1, where M1(M2) are the soft masses for U(1)(SU(2)) gaugino(s). It has also
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been assumed that µ > M2, where µ is the coefficient of the only bilinear term in the

superpotential of the minimal supersymmetric standard model (MSSM). With such

a choice, χ̃0
2, χ̃

±
1 are essentially gaugino like. Moreover, since the first two generation

squark masses are heavy, the process pp → χ̃0
2χ̃

±
1 receives prime contributions from

W±-boson mediated processes. Three of our benchmark points (BP1, BP3 and BP4

as defined later) are chosen with this criteria. We have, however, also considered the

situation when M2 > µ for another benchmark point (BP2). However, in a situation

like this, χ̃0
2, χ̃

±
1 are higgsino like and consequently yield a smaller cross section for the

process pp → χ̃0
2χ̃

±
1 . We show later that in a scenario like this the trileptonic final

state possesses lower significance compared to the µ > M2 scenario. We will discuss

this issue in more detail later in section 3.3. Having heavy squarks is also useful for

suppressing flavor violating processes in the quark sector.

The ratio of the branching ratios for χ̃±
1 decaying into µ and τ channel in MSISM

shows sharp correlation with tan2 θ23 [3]. It is clear that one of the three charged

leptons appearing either in 3ℓ +��ET or 2ℓ + τ +��ET final states must have its origin

in χ̃±
1 decay. Using this idea we find that the ratio σ(µ±+

∑
ℓℓ)

σ(τ±+
∑

ℓℓ)
, with ℓ = e, µ shows

nice correlation with tan2θ23 even after the application of different kinematical cuts to

reduce SM backgrounds [4]. Definitely, that µ and τ are coming from lightest chargino

decay. Existence of this final state correlation with neutrino mixing angle along with

a large amount of ��ET provides a distinct signature for the MSISM [4].

3.1 Decays of chargino and neutralino

In this section we discuss the decays of the lighter chargino to charged leptons and

singlet sneutrinos as well as the decays of the lighter neutralinos. We shall also show

how these decays can lead to the final states, that we have proposed to study in this

paper. Our choices of the four benchmark points for a detailed collider study will also

be presented here.

3.1.1 Chargino decay

For the discussion of chargino decays we shall concentrate on a part of the parameter

space where one of the singlet scalars of MSISM is the LSP. Hence this scalar singlet

will appear at the end of the supersymmetric cascade decay chains. For the present

discussion let us assume that the dominant decay mode of the lighter chargino is in

the two body mode

χ̃±
1 → ν̃a + l±i , a = 1, 2, li = e, µ, τ, (3.1)
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where ν̃1 and ν̃2 correspond to the lightest CP-even and CP-odd sneutrino mass eigen-

states (see Chapter 2) respectively. The relevant piece of the Lagrangian for the cal-

culation of this decay width is

Lℓχ̃−ν̃ = χ̃+
j (C

L
ijaPL + CR

ijaPR)liν̃a + h.c. , (3.2)

where

CL
ija = − 1√

2
[gV∗

j1(Gai − iGa,i+5)− yiνV
∗
j2(Ga4 − iGa9)],

CR
ija =

1√
2
YℓiUj2(Gai − iGa,i+5). (3.3)

The Yℓis are the charged lepton Yukawa couplings and U, V are two unitary 2 × 2

chargino mixing matrices such that U∗m2×2V
−1 = diag(mχ̃±

1
,mχ̃±

2
), where mχ̃±

1
,mχ̃±

2

are the two physical chargino masses. The 2 × 2 mass matrix m2×2 in the charged

gaugino-higgsino basis ψ+T

= (−iλ̃+2 H̃+
u ), ψ

−T

= (−iλ̃−2 H̃−
d ) is given by

m2×2 =




M2 gvu

gvd µ


 . (3.4)

Here g is the SU(2)L gauge coupling. vu and vd are the up and down type Higgs VEVs

respectively.

The corresponding decay widths are given as

Γ(χ̃±
1 → ν̃a + l±i ) =

(m2
χ±
1

−m2
ν̃a)

2

32πm3
χ±
1

(| CL
i1a |

2
+ | CR

i1a |
2
). (3.5)

The members of CP conjugated pair of sneutrinos being nearly mass degenerate (mν̃1 ≈
mν̃2) they are unlikely to be distinguished experimentally. Hence we sum over the CP-

even and CP-odd sneutrino states of the CP conjugated pair. Thus

Γ(χ̃±
1 → ν̃1+2 + l±i ) ≡

2∑

α=1

Γ(χ̃±
1 → ν̃α + l±i ). (3.6)

One can adjust the parameters µS and BµS
, defined as in Eq. 2.1 and 2.2, in such a way

that the tree-level neutrino mass matrix contribution determines the atmospheric mass

scale, while the one-loop corrections control the solar mass scale [3]. In such a situation

it can be shown that in order to have small reactor neutrino mixing angle and maximal

atmospheric neutrino mixing angle, the parameter MD1 has to be considerably smaller

than other two Dirac masses and simultaneously, MD2 ∼ MD3 . The solar neutrino
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mixing angle can be kept large by keeping the parameters δi ≡ Ai
νvu − µMDi

cot β to

be of the same order for all the three flavors, i = e, µ, τ . Here Aν andMD are same as

defined in Eq. 2.2 and 2.4, apart from the fact that in this case, they are not matrices

but just numbers. In this case, one can show that the decay width of the lighter

chargino, Γ(χ̃±
1 → ν̃1+2 + l±i ) correlates with the corresponding parameter M2

Di
. The

atmospheric neutrino mixing angle at the same time also behaves as tan2 θ23 ∼ M2
D2

M2
D3

.

Hence, one would expect that the ratio of the branching ratios
Br(χ̃±

1 →ν̃1+2+µ±)

Br(χ̃±
1 →ν̃1+2+τ±)

must

correlate with the ratio
M2

D2

M2
D3

. This has been shown in Fig. 3.1.

B
r
(χ̃

± 1
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1
+

2
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±
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Figure 3.1: Correlation plot for the ratio of the branching ratios
Br(χ̃±

1 →ν̃1+2+µ±)

Br(χ̃±
1 →ν̃1+2+τ±)

with

M2
D2

M2
D3

.

3.1.2 Neutralino decay

In our chosen benchmark points (defined later in this section) the lightest neutralino is

the next-to-lightest supersymmetric particle (NLSP) and, decays dominantly through

the two body decay channels χ̃0
1 → νli + ν̃1,2, li = e, µ, τ . The relevant interaction term

of the Lagrangian is:

Lνχ̃0ν̃ = ¯̃χ0
j(A

L
mjbPL + AR

mjbPR)νmν̃b + h.c., (3.7)

where

AL
mjb =

g

2
(N∗

j2 − tan θWN∗
j1)(Gbi − iGb(i+5))U

tr
im,

AR
mjb = − 1√

2
yiνU

tr
imNj4(Gb4 − iGb9). (3.8)
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Here g is the SU(2)L gauge coupling, θW is the weak mixing angle, and N is the

unitary 4x4 neutralino mixing matrix. Although the second lightest neutralino (χ̃0
2)

decays mostly through the standard MSSM two-body charged lepton-slepton channel

(χ̃0
2 → l̃±i + l∓i ), some of its branching fraction goes into the decay channels arising

from the coupling given in eq. (3.7). Here, we have neglected the charged lepton flavor

violating decay of χ̃0
2. The decay width of a neutralino (χ̃0

j) decaying into neutrino-

sneutrino two-body mode is given as

Γ(χ̃0
j → ν̃b + νm) =

(m2
χ0
j
−m2

ν̃b
)2

32πm3
χ0
j

(| AL
mjb |

2
+ | AR

mjb |
2
). (3.9)

3.1.3 Trilepton signal and the benchmark points

In order to illustrate the trilepton signal we simulate χ̃0
2χ̃

±
1 production followed by their

two-body decays to produce 3ℓ+ ��ET or 2ℓ+ τ − jet+��ET final states, where ℓ = e, µ.

p

p W±

χ̃±
1

χ̃0
2

µ±/τ±

ν̃1,2

ℓ±

ℓ̃∓

ℓ∓

χ̃0
1

νℓ

ν̃1,2

Figure 3.2: Feynman diagram for the process pp→ 3ℓ+��ET or 2ℓ+ τ − jet +��ET .

As discussed above the production process and the decay cascades leading to these

final states are as follows

pp→ χ̃0
2 + χ̃±

1 ,

χ̃±
1 → ν̃1,2 + µ±/τ±,

χ̃0
2 → ℓ̃± + ℓ∓,

ℓ̃± → ℓ± + χ̃0
1,

χ̃0
1 → νl + ν̃1,2. (3.10)
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The Feynman diagram for the above mentioned final states is shown in Fig. 3.2. In the

presence of heavy squarks (∼ 1 TeV ), this is the leading process for the chosen signal.

Because of the presence of the massive singlet sneutrino LSPs, ν̃1,2, (quasi-degenerate

in masses), we have, for this model, a large amount of missing energy in the final states.

In order to have an appreciable signal rate one must have significant production cross

section of χ̃0
2 − χ̃±

1 pair and large branching ratios for the above-mentioned decays.

To achieve these we have chosen four benchmark points (BPs) in the parameter space

where the detailed collider simulation has been performed. We scanned the whole pa-

rameter space to check for charged lepton flavor violating (LFV) decay widths and we

found points both above and below the experimental limits in different region of the

parameter space. In all of the benchmark points, constraints from LFV decays [32]

are satisfied as well as the atmospheric neutrino mixing is near maximal. The input

parameters for different benchmark points are given in table 3.1. The choices of the

parameters M2
Di

will be shown later. The mass splittings between the second lightest

BP1 BP2 BP3 BP4

tanβ 5 10 20 10

µ (GeV) 330 240 280 350

M1 (GeV) 170 195 160 240

M2 (GeV) 220 340 240 290

M3 (GeV) 1100 1100 1100 1100

MR (GeV) 145 160 140 150

µs × 109 (GeV) 7.80 7.81 7.75 7.76

m2
νc (GeV2) 2500 3025 2500 3025

m2
S × 10−4 (GeV2) 4.0 4.0 4.0 4.8

BMR
(GeV2) 2500 2500 3500 2500

BµS
(GeV2) 10 10 10 10

M2
L̃i

× 10−5 (GeV2) 5.63 5.63 5.63 5.63

M2
ẽc11

× 10−4 (GeV2) 2.99 3.69 2.59 5.86

M2
ẽc22

× 10−4 (GeV2) 2.99 3.69 2.59 5.86

M2
ẽc33

× 10−4 (GeV2) 3.53 7.08 7.90 8.18

Table 3.1: Values of the relevant input parameters for different benchmark points. The

quantities M2
ẽcii

represent soft squared masses for the right-handed charged sleptons.

The choice of M2
Di

parameters are shown in Table 3.3.

neutralino, the charged sleptons and the lightest neutralino are maintained in a way,

69



that the second lightest neutralino decays only through charged lepton-slepton two

body modes and the charged sleptons further decay into the lightest neutralino and

charged lepton states. With these considerations we generated the sparticle spectrum

using SuSpect (version 2.41) [33]. Masses of the neutrino and sneutrino states are

computed using a self developed code in FORTRAN. Relevant mass spectra for these

benchmark points are shown in table 3.2.

The choice of model parameters for different benchmark points are chosen to yield

statistically significant final states. As an illustrative example, production cross sec-

tions for the χ̃0
2χ̃

±
1 pair with 7 TeV center of mass energy at LHC are in the range of

200− 300 fb for the first and third benchmark points. For the fourth benchmark point

with relatively heavy χ̃0
2χ̃

±
1 pair (see table 3.2) the production cross section is reduced

by a factor of 4(3) compared to the first(third) benchmark point. On the contrary,

a higgsino like χ̃0
2χ̃

±
1 pair (BP2) yield a similar production cross-section like BP4, in

spite of having a lighter χ̃0
2χ̃

±
1 pair. Thus, the region of parameter space with higgsino

like χ̃0
2χ̃

±
1 pair is disfavored for this analysis.

BP1 BP2 BP3 BP4

ν̃1 153.27 169.18 147.96 159.76

ν̃2 153.27 169.18 147.96 159.76

ν̃3 247.38 256.45 244.81 266.53

ν̃4 247.34 256.42 244.76 266.50

n4 145.46 160.52 140.42 150.45

n5 145.46 160.52 140.42 150.45

ẽL, µ̃L 751.28 751.37 751.39 751.37

ẽR, µ̃R 178.00 196.97 166.83 245.98

τ̃1 193.11 269.48 284.12 289.17

τ̃2 751.30 751.40 751.53 751.43

χ̃0
1 159.51 172.90 151.80 226.36

χ̃0
2 198.11 234.59 207.67 264.16

χ̃±
1 192.79 215.47 203.72 255.99

χ̃±
2 363.91 372.89 326.77 391.60

Table 3.2: Relevant mass spectra obtained for four benchmark points with

ni, i = 1, 2, .., 5 indicating neutrino masses. In the table we show only the heavy

neutrino (n4 and n5) masses.

Note that hadronically quiet trilepton signal (3ℓ +��ET ) will get very little contri-
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bution from squark-squark, squark-gluino and gluino-gluino pair production. On the

other hand, when we have 2ℓ + τ -jet + ��ET signal, then one should consider all other

sources of dilepton + 1-jet + ��ET events where one jet can be faked as a τ -jet. For

example, one can have a jet out of a squark decay (q̃ → q′ + χ̃±
1 ) from one side of the

cascade. However, since in this model the squarks are much heavier (∼ 1 TeV) and

after incorporating the probability of any jet faking as a τ -jet, the event rate comes

out to be negligibly small compared to the one generated from chargino-neutralino

production. Hence the main contribution to 2ℓ+ τ -jet + ��ET signal comes from χ̃0
2χ̃

±
1

production only.

3.2 Event generation and background analysis

On the basis of the discussion presented in the previous section, let us now provide

a detailed description of event generation and subsequently, the background analysis.

The decay widths corresponding to the two-body modes shown in eq. (3.10) have

been used to modify the branching fractions of the charginos and neutralinos obtained

from SuSpect. These input files are then fed to PYTHIA (version 6.409) [34] for event

generation and showering. Initial and final state radiation, decay, hadronization, frag-

mentation and jet formation are implemented following the standard procedures in

PYTHIA. Factorization and renormalization scales are set at
√
ŝ (i.e µR = µF =

√
ŝ ),

where
√
ŝ is the parton level centre of mass energy. We have used the leading order

CTEQ5L parton distribution functions [35, 36] for the colliding protons. Some of the

background events are generated using ALPGEN (version 2.14) [37] with default factor-

ization and renormalization scales. The jets are constructed using cone algorithm in

PYCELL. Only those jets are constructed which have pT > 20 GeV and | η |< 2.5.

To simulate detector effects we have taken into account smearing of jet energies by a

Gaussian probability density function of width [38] σ(E)/Ej = (0.6/
√
Ej[GeV ])+0.03

where Ej is the unsmeared jet energy.

In order to find three isolated leptons in the final states we impose following cuts

and isolation criteria:

I. Leptonic events are selected only if pℓT > 8 GeV and | ηℓ |< 2.4.

II. Lepton-lepton separation ∆R(ℓ, ℓ) set to be> 0.2, where ∆R =
√

(∆η)2 + (∆φ)2.

III. Lepton-jet separation ∆R(ℓ, j) chosen to be > 0.5.

IV. The sum of ET deposits of the hadrons which fall within a cone of ∆R ≤ 0.2

around a lepton, must be less than 10 GeV.

A pT cut of 10 GeV and 17 GeV [31] is applied on final state muons and electrons
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respectively, for the analysis at 7 TeV and 14 TeV center of mass energies at the

LHC. The τ -jets are counted with pT ≥ 20 GeV and | ητ |< 2.4. The τ ’s are then

counted according to the visible energy bins. A τ -jet is treated as tagged or untagged

according to the efficiency (ǫτ ) of the most efficient algorithm given in [39]. In ref. [39],

τ identification efficiency obtained from actual collision data at 7 TeV center of mass

energy has also been quoted. The efficiencies obtained from Monte-Carlo simulation

and from the data agrees very well. However, for higher luminosity with 14 TeV center

of mass energy, a lot of underlying events are expected to be there, which can perhaps

bring down the detection efficiency. In this case also we have used the same efficiency

as in 7 TeV case hoping the experimentalists can maintain the efficiency as we have

now. Unlike τ , detection efficiencies of e and µ are assumed to be 100%.

We have analysed the SM backgrounds in some detail. The dominant background

events arise from tt̄ and WZ production at the LHC. Apart from these, contributions

from ZZ,WW , Zbb̄,Wbb̄, Z+jets,Wt, tb,WWW ,Wtt̄ events have also been studied

at the leading order. We also studied QCD di-jet events. But after putting the cuts to

reduce backgrounds as mentioned below we found no trilepton events for 1 fb−1 inte-

grated luminosity from these particular QCD events. We use ALPGEN for an estimation

of Zbb̄, Wbb̄, Wt, tb, Z + jets, WWW , Wtt̄ backgrounds. We generate these events

at the parton level using ALPGEN and fed those partonic events to PYTHIA for show-

ering, hadronization, fragmentation, decay, etc. The other events are generated and

analysed using PYTHIA. It should be mentioned that the importance of these processes

have already been emphasized in the literature [25, 40].

The trilepton signal in our model arising out of chargino-neutralino production is

accompanied by large missing transverse energy (��ET ), because of a pair of singlet

sneutrino LSPs and a neutrino. As an example, the ��ET spectrum of background

events as well as the signal events (3µ+��ET ) for the first benchmark point (BP1) are

shown in fig. 3.3.
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Figure 3.3: ��ET plot for signal events 3µ +��ET and summed up contribution coming

from the WW,ZZ,Zbb̄, Z + 1 jet, Z + 2 jets background for LHC at 14 TeV center of

mass energy with 1 fb−1 of integrated luminosity. The ��ET bin size is chosen to be 10

GeV.

These distributions are obtained without applying any cuts to reduce background

events. It is evident from the plot in Fig. 3.3 that a strong��ET cut will affect the signal

cross-section very mildly, but it reduces significantly background events coming from

some processes. Therefore, a cut ��ET > 25 GeV is applied for background rejection.

For some other channels; tt̄,WZ,Wtt̄,WWW the��ET distributions do not peak before

25 GeV as shown in Fig. 3.4.
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Figure 3.4: ��ET plot for 3µ+��ET events obtained from tt̄,WZ,Wtt̄,WWW backgrounds

for LHC at 14 TeV center of mass energy with 1 fb−1 of integrated luminosity. The

��ET bin size is chosen to be 10 GeV.

73



Hence, the above mentioned ��ET cut does not seriously affect these background

events. To reduce these events we have further applied two more cuts. An invariant

mass cut on the opposite sign dilepton pair, 80 GeV > M ℓℓ
inv > 100 GeV removes

backgrounds coming from Z-bosons. To manifest this idea we show invariant mass

distribution in Fig. 3.5 constructed from opposite sign muon pairs for signal events

and WZ background events.
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Figure 3.5: Mµµ plot for signal events and WZ background for LHC at 14 TeV center

of mass energy. The Mµµ bin size is chosen to be 5 GeV.

On the other hand, rejection of tagged b-jet events significantly reduces backgrounds

coming from tt̄ events. A jet (with | η |< 2.5) is reconstructed as a b-jet if the ∆R

separation between the jet and the b-quark (with pT > 5 GeV) is less than 0.2. The

b-jet identification efficiency is taken to be 50%.

In order to perform the collider analysis we have randomly generated m2
Di

and δ2i
within certain range: (

∑
iM

2
Di
)1/2 ∈ 10[−4,2.6] and (

∑
i δ

2
i )

1/4 ∈ 10[−4,3] [3]. Moreover,

we also consider (
∑
M2

Di
)1/2 > (

∑
i δ

2
i )

1/4, such that Dirac neutrino masses give the

dominant contribution to the chargino decay [3]. Around each of the four benchmark

points we select a set of six to seven points of these randomly generated parameters.

These points will be useful for the correlation study discussed later in section 3.3.

Remember that these parameters control the neutrino masses and the mixing angles

and our choices of benchmark points are such that the atmospheric neutrino mass scale

is determined by the tree level neutrino mass matrix contribution. Before showering

in PYTHIA, as mentioned earlier, the ratio
Br(χ̃±

1 →ν̃1+2+µ±)

Br(χ̃±
1 →ν̃1+2+τ±)

shows a very nice sharp

correlation when plotted against
M2

D2

M2
D3

which is a measure of tan2 θ23. We have done the

showering for four benchmark points introduced in table 3.1 and table 3.2 to look for the
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ratio σ(pp→µ
∑

ℓℓ+✚ET )
σ(pp→τ

∑
ℓℓ+✚ET )

with ℓ = e, µ. Since one µ and one τ in these final states always

come from the decay of χ̃±
1 , we would expect that this ratio will also go as ∼ tan2 θ23.

Hence, by measuring this ratio from the trilepton signals one can obtain information

about the atmospheric neutrino mixing angle at the LHC. On the other hand, a precise

measurement of the atmospheric neutrino mixing angle at the oscillation experiments

can be used to predict the allowed range of the above ratio at the LHC. In the following

section we give a quantitative estimate of this ratio for our choices of benchmark points

(along with randomly selected values of M2
Di
) and show that for each of these points

the various signal events included in the calculation of this ratio can be statistically

significant.

3.3 Results

In order to study the correlation between the atmospheric neutrino mixing angle (θ23)

and the final states with trilepton + ��ET at the LHC, we look at the ratio of cross

sections σ(pp→µ
∑

ℓℓ+✚ET )
σ(pp→τ

∑
ℓℓ+✚ET )

, ℓ = e, µ. As mentioned in the introduction, in the denomi-

nator the τ must always come from the decay of χ̃±
1 because we are considering final

states with only one τ -jet and neglecting lepton flavor violating decays of χ̃0
2 and ℓ̃±.

For the same reason, in the numerator one µ must always also come from the decay

of χ̃±
1 . Hence, naively we would expect that this ratio of cross sections will also show

nice correlation with the atmospheric neutrino mixing angle θ23.

After applying different cuts to reduce backgrounds and taking into account the

τ -tagging efficiency, we find that the ratio of trilepton signal cross section again shows

a nice correlation with the atmospheric neutrino mixing angle tan2 θ23. However, in

this case the numbers change from the ratio of branching ratios, discussed earlier and

the straight lines obtained are steeper than the one shown in Fig. 3.1. This happens

because in our simulation we take the detection efficiency of µ to be 100% as opposed

to the τ detection efficiency, which is smaller [31]. Since the branching fractions of τ

events are in the denominator of the ratio, the numbers naturally go up.

The cross-sections and the corresponding statistical significance ( Sx√
Bx+Sx

with x =

e, µ, τ) obtained from our simulation for LHC are shown in this section. Here Sx

is defined as the number of x
∑
ℓℓ signal events and Bx is defined as the number of

corresponding background events. In more simple form significance for the µ
∑
ℓℓ+��ET

channel is defined as Sµee+Sµµµ√
Sµee+Sµµµ+Bµee+Bµµµ

. In a similar fashion significance for the

τ
∑
ℓℓ+��ET channel can be obtained.

We quote the results below for an integrated luminosity of 25 fb−1 for the LHC

with 7 TeV and 14 TeV center-of-mass energies. The results are obtained with the
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cuts mentioned in section 3.2. Throughout this analysis we have used leading order

cross sections for the signals as well as all the backgrounds at the LHC. However, if

next-to-leading order (NLO) corrections are included the statistical significance will not

change much. For example, if NLO corrections are included the signal cross section at

14 TeV LHC is expected to increase by 1.25 to 1.35 [41]. As discussed above, a large

contribution to the background comes from the tt̄ events. The NLO cross section for tt̄

production at 14 TeV LHC is about 800 pb [42,43] which is about a factor of two larger

than the leading order cross section that we have used in our analysis. Thus taking

into account the NLO contribution of all the major background events along with the

signal event, the significance Sx/
√
Bx + Sx estimated for our signal, will not change

much and remains conservative in comparison to the uncertainties in the production

cross sections.

Values of the randomly generated parameters M2
Di
, for four chosen benchmark

points are presented in table 3.3. For the numerical analysis we choose to vary M2
D1

in the range of 10−4 − 10−2 GeV2, whereas M2
D2,3

are varied within 10−2 to 102 GeV2.

The δ2i are also varied accordingly, but keeping the constraints (
∑
M2

Di
)1/2 > (

∑
δ2i )

1/4.

The scale of M2
Di

has a strong influence on the decay processes χ̃±
1 → ν̃1+2 + µ±/τ±

and χ̃0
j → ν̃b + νm. In order to achieve a statistically significant trilepton final state

originating from χ̃0
2χ̃

±
1 pair, we would like to have Br(χ̃±

1 → ν̃1+2 +µ±/τ±) to be large

and Br(χ̃0
2 → ν̃b+νm) to be small, simultaneously. However, in the limitMDi

∼MR ∼
O (102 GeV), the neutrino Yukawa couplings yiν are ∼ O (1). Then as can be seen

from eqs. (3.5) and (3.9) both of these decay widths are large and consequently, yields

a smaller branching ratio for χ̃0
2 → ℓ̃± + ℓ∓. We observe that in this case it is rather

difficult to achieve a statistically significant final state particularly for the τ
∑
ℓℓ+��ET

mode.

M2
Di

(GeV2) BP1 BP2 BP3 BP4

M2
D1

× 104 2.12 3.30 1.58 4.24

M2
D2

71.80 62.96 68.50 80.33

M2
D3

62.45 54.87 66.63 86.00

Table 3.3: Randomly generated values of M2
Di

corresponding to the four benchmark

points as indicated in section 3.1.

In the trilepton signals studied in this work, one lepton comes from the lighter

chargino (χ̃±
1 ) decay and the other two same flavor opposite sign leptons come from

the second lightest neutralino (χ̃0
2) decay. Since the probability of getting electrons from

the chargino decay is suppressed compared to muons or taus, events with odd number

76



of electrons (eee and eµµ) should have smaller cross-sections compared to others, which

is clearly reflected in the signal cross-sections. This feature is intrinsically related with

the small but non-zero reactor neutrino angle [44], which will be discussed again later.

In table 3.4 and 3.6 chosen trilepton +��ET cross sections are shown along with the

total standard model background cross section for the LHC at center-of-mass energy,√
s = 7 and 14 TeV, respectively. The corresponding statistical significance of the

signals are shown respectively in table 3.5 and table 3.7.

Tri-lepton signal Background

events σ (fb) σ (fb)

BP1 BP2 BP3 BP4

eee 0.37 0.31 0.50 0.23 8.73

eeµ 9.47 5.37 8.30 3.12 18.91

eµµ 1.08 0.49 1.26 0.66 21.15

µµµ 24.13 8.21 18.85 8.51 23.84

eeτ 2.93 2.14 2.86 1.40 4.60

µµτ 7.17 3.39 6.99 4.04 13.18

Table 3.4: Cross-section for different trilepton channels are shown here for four different

benchmark points along with their total SM background contribution for LHC with√
s = 7 TeV. Corresponding input parameters and mass spectrum are given in table

3.1, table 3.3 and table 3.2, respectively.

Tri-lepton Significance

events
Sx

∑
ℓℓ√

Bx
∑

ℓℓ+Sx
∑

ℓℓ

BP1 BP2 BP3 BP4

µee+ µµµ 19.23 9.05 16.24 7.89

τee+ τµµ 9.57 5.72 9.37 5.65

Table 3.5: Statistical significance of the studied trilepton signals with integrated lumi-

nosity 25 fb−1 at the LHC for
√
s = 7 TeV for different benchmark points.

77



Tri-lepton signal Background

events σ (fb) σ (fb)

BP1 BP2 BP3 BP4

eee 1.29 0.91 1.56 0.75 24.92

eeµ 27.63 15.65 23.50 10.48 91.64

eµµ 3.00 1.66 3.59 2.14 117.97

µµµ 65.42 24.32 53.10 26.47 85.94

eeτ 8.82 6.48 9.11 4.76 29.16

µµτ 20.11 9.80 18.46 12.48 56.29

Table 3.6: Cross-section for different trilepton channels are shown here for four different

benchmark points along with their total SM background contribution for LHC with√
s = 14 TeV. Corresponding input parameters and mass spectrum are given in table

3.1, table 3.3 and table 3.2, respectively.

Tri-lepton Significance

events
Sx

∑
ℓℓ√

Bx
∑

ℓℓ+Sx
∑

ℓℓ

BP1 BP2 BP3 BP4

µee+ µµµ 28.28 13.55 24.02 12.61

τee+ τµµ 13.53 8.07 12.97 8.50

Table 3.7: Statistical significance of the studied trilepton signals with integrated lumi-

nosity 25 fb−1 at the LHC for
√
s = 14 TeV for different benchmark points.

We can see from table 3.5 that, at the LHC even with
√
s = 7 TeV, the lowest

signal significance for τ
∑
ℓℓ +��ET final state, that we have obtained, is greater than

3σ for an integrated luminosity of 25 fb−1. Hence, the trilepton +��ET data for 25

fb−1 integrated luminosity at 7 TeV LHC should be able to constrain the theoretical

parameter space of this model. These numbers (significance) are much higher for LHC

with
√
s = 14 TeV and are shown in table 3.7. It is once again evident from these

tables that a higgsino like χ̃0
2χ̃

±
1 pair (BP2) yields statistically less significant specific

trilepton final state. In other words for such benchmark points, the significance of the

final state trilepton signal is less promising. This situation is comparable to a heavy

gaugino like χ̃0
2χ̃

±
1 pair as represented by BP4.

We present the correlation plots, obtained with different randomly generated values

of M2
Di

and δ2i around each of the four benchmark points. These are shown in Fig. 3.6
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and Fig. 3.7 for the LHC with
√
s = 7 TeV and 14 TeV, respectively. We present these

correlations with best fit lines.
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Figure 3.6: Correlation plot (σ(pp→µ±
∑

ℓℓ+✚ET )
σ(pp→τ±
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ℓℓ+✚ET )

vs tan2θ23, with ℓ = e, µ) obtained for

LHC at
√
s = 7 TeV. Three differently colored vertical strips correspond to 1σ, 2σ and

3σ allowed region for tan2θ23, respectively. The benchmark points as given in table

3.1, table 3.2 and table 3.3 are represented by colored �. Other points, represented by

colored •, are obtained with randomly generated m2
Di

and δ2i values.
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Figure 3.7: Correlation plot (σ(pp→µ±
∑

ℓℓ+✚ET )
σ(pp→τ±

∑
ℓℓ+✚ET )

vs tan2θ23, with ℓ = e, µ) obtained for

LHC at
√
s = 14 TeV. Other specifications are the same as in Fig. 3.6.

It can be seen from these figures that the 3σ allowed value of tan2 θ23 [45] from at-
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mospheric neutrino oscillation experiments predict a value of the ratio of cross sections
σ(pp→µ

∑
ℓℓ+✚ET )

σ(pp→τ
∑

ℓℓ+✚ET )
, (ℓ = e, µ) to be approximately in the range 1.0− 6. These predictions

can be verified at the LHC or the measured value of this ratio can give an alternative

estimate of tan2 θ23. On the other hand, if this ratio comes out to be very much dif-

ferent from the ones predicted here then one can perhaps conclude that MSISM is not

the correct model for explaining neutrino masses and mixing.

Nevertheless, as we can see, from the correlation plots, that there is a different linear

relationship for each different kind of benchmark points. In general then, from neutrino

oscillation data we cannot give a unique prediction for the ratio of the cross-sections

that can be verified at the LHC and help us in constraining the model parameters. In

other words, measuring the cross section ratio at the LHC would not allow a predic-

tion of θ23 that could be tested against oscillation results. This means that we need

other measurements at the LHC to allow such predictions. As an example, to distin-

guish among the four benchmark points we plot the ratio, mχ̃±
1
/mν̃1,2 with the ratio of

cross-sections of µ and τ channels which gives four separate parallel lines for the four

benchmark points (Fig. 3.8). One can see from Fig. 3.8 that the ratio (mχ̃±
1
/mν̃1,2)

m
χ̃
± 1

/
m

ν̃
1
/
2

σ(pp→µ±
∑

ℓℓ + 6ET )
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Figure 3.8: mχ̃±
1
/mν̃1,2 plotted against σ(pp→µ±

∑
ℓℓ+✚ET )

σ(pp→τ±
∑

ℓℓ+✚ET )
for

√
s = 7 TeV. The mass

ratios increase as the slopes of the straight lines in Fig. 3.6 corresponding to the four

benchmark points decrease.

increases as the slope of the straight lines in the correlation plot (Fig. 3.6) correspond-

ing to different benchmark points decreases. This pattern can easily be understood.

Increase in the mass ratio indicates greater splitting between the chargino and sneu-

trino masses. As the splitting increases, the leptons coming from this chargino decay

become more energetic (Eq. 3.10). This affects the τ count in the final state more than
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the µ count as the detection efficiency for the taus increases with the increase of visible

energy of τ decay products [39]. Hence more τ events are expected in the final state for

those benchmark points which has greater lighter chargino - LSP mass ratio for a given

set ofMDi
’s. With the increase of τ events the ratio of the cross-sections plotted in the

correlation plots decreases and as a consequence gives smaller slope compared to the

previous benchmark point. Now it is clearly understood that if we can determine the

lighter chargino-LSP mass ratio, we can distinguish among the four benchmark points.

Mass determination techniques in the context of LHC have been studied extensively.

Transverse mass variable (mT2) [46, 47] is very useful for this purpose. mT2 has also

been generalized for the cases where the parent and daughter particles in the two decay

chains are not identical [48, 49]. Moreover, final state with more than two invisible

particles has also been addressed in ref. [50]. In our case, we observe the following:

• The lightest neutralino χ̃0
1 is also invisible, as mentioned earlier in the text.

• One lepton is produced from one side of the cascade and remaining two leptons

from the other side of the cascade (Fig. 3.2).

• χ̃±
1 and χ̃0

2 are not mass degenerate but the difference is quite small in the context

of mass measurement.

So, we see that daughters of different masses are produced here from nearly identical

parents. A mass determination technique similar to refs. [48–50] can be applied here

too to determine the masses of the lighter chargino and the sneutrino LSP. However, a

detailed analysis in this direction is beyond the scope of the present thesis. Thus we see

that measuring the mass ratio (mχ̃±
1
/mν̃1,2), along with the ratio of the trilepton cross-

section, can help us pick the correct benchmark point and hence predict the correct

value of θ23 that could be tested against the oscillation results. On the other hand, a

precise determination of tan2 θ23 from oscillation experiments as well as a measurement

of the cross section ratio at the LHC can give a unique prediction of the mass spectrum

of the model, that can be verified by mass measurements at the LHC.

In support of our explanation for obtaining different slopes, we present the following

analysis. Since this difference among the four benchmark points appears because of

taking different τ identification efficiencies for different energy range and for taking

separate pT cuts for µ’s and τ ’s, we can remove this by the following strategy:

• A pT cut of 20 GeV taken for both µ and τ .

• A uniform τ identification efficiency of 50% applied over the whole energy range.
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We have presented the result in Fig. 3.9. This shows the correlation plot for 7 TeV

center of mass energy under the above mentioned conditions.
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Figure 3.9: Correlation plot (σ(pp→µ±
∑

ℓℓ+✚ET )
σ(pp→τ±

∑
ℓℓ+✚ET )

vs tan2θ23) obtained for 7 TeV center of

mass energy under the assumption of uniform τ identification efficiency (ǫτ ∼ 0.5) and

same pT cut for both µ and τ .

All the benchmark points now lie almost on one straight line. A few points still

looks a little bit scattered because of the different isolation criteria used for µ and τ .

Finally, in Table 3.8 we show the ratios σ(pp→eµµ+✚ET )
σ(pp→3ℓ+✚ET )

and σ(pp→eee+✚ET )
σ(pp→3ℓ+✚ET )

for the four

benchmark points. Here σ(pp → 3ℓ +��ET ) indicates the total trilepton cross-section

including all possible combinations of e and µ in the final state.

σ(pp→eµµ+✚ET )
σ(pp→3ℓ+✚ET )

× 102 σ(pp→eee+✚ET )
σ(pp→3ℓ+✚ET )

× 102
√
s = 7 TeV 3.09 1.06

BP1
√
s = 14 TeV 3.08 1.33√
s = 7 TeV 3.39 2.13

BP2
√
s = 14 TeV 3.90 2.14√
s = 7 TeV 4.35 1.71

BP3
√
s = 14 TeV 4.39 1.90√
s = 7 TeV 5.24 1.86

BP4
√
s = 14 TeV 5.38 1.89

Table 3.8: The ratios σ(pp→eµµ+✚ET )
σ(pp→3ℓ+✚ET )

and σ(pp→eee+✚ET )
σ(pp→3ℓ+✚ET )

for the four benchmark points.
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The smallness of these ratios is also a distinct feature of this model and arises due to

the smallness of the neutrino reactor angle imposed by neutrino data [44]. In the usual

MSSM scenario these ratios are expected to be much higher as there is no suppression

of charginos decaying into electrons as we have in this model.

A discussion of these specific trilepton signals remains incomplete without a note on

the Tevatron analysis of the considered model. For the four chosen benchmark points

we observed no points with significance ≥ 3σ for the τ
∑
ℓℓ +��ET final state and

simultaneously consistent with the atmospheric neutrino mixing at the 3σ limit. This

is a well expected result considering that the Tevatron center-of-mass energy is 1.96

TeV with 12 fb−1 of integrated luminosity [51]. For example, the statistical significance

for τ
∑
ℓℓ mode for BP1 with M2

Di
s given in table 3.3 is computed to be 1.64.

3.4 Summary

We consider the minimal supersymmetric inverse seesaw model and study its charac-

teristic signatures at the LHC. This model, with only one pair of singlet superfields

explains existing neutrino oscillation data. The model is rich from phenomenological

point of view and can lead to potentially testable signatures at the hadron colliders. In

this R-parity conserving model, one of the singlet sneutrino (with a small admixture

of the doublet sneutrino) is the lightest supersymmetric particle (LSP) and as a result

shows up in the collider as missing energy. Charginos can decay to charged leptons

plus singlet sneutrino LSP. The decay patterns of the chargino are controlled by the

same parameters which generate the neutrino mixing angles.

In order to study this correlation of the chargino decays and the neutrino mixing

angles, we look at specific trilepton + ��ET signatures at the LHC. We show that the

ratios of cross sections of this studied trilepton + ��ET final states in certain flavor

specific channels (µee +��ET , µµµ +��ET , τee +��ET , τµµ +��ET ) nicely correlate with

the atmospheric neutrino mixing angle. We explore different points in the parameter

space to study this correlation. A measurement of these cross sections thus provide an

interesting test of the minimal supersymmetric inverse seesaw model. The hard missing

ET spectrum makes this trilepton final state statistically significant by reducing certain

standard model background events considerably. We adhere to different cuts to reduce

the backgrounds coming from some other channels. Motivated by the recent results

from the ATLAS and the CMS experiments, we work in a scenario with heavy squarks

and gluinos and a relatively light electroweak sector.

The results of our analysis suggest that the theoretical parameter space of this

model should already be constrained after the 7 and 8 TeV run of the LHC since there
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has been no evidence of any SUSY particles. The cross-section of the trilepton final

state that we have considered here is proportional to the fourth power of the relevant

Dirac neutrino Yukawa coupling (yν). Non observation of any such signal, therefore,

may be due to the fact that yν values are smaller than what we consider here or

the gauginos are simply heavier. However, a 14 TeV run will probe further into the

parameter space and unless the gauginos are too heavy or the yν parameters are too

small, there is a possibility to observe these trilepton signatures in such scenarios. On

the other hand, a measured value of the ratio of the trilepton cross-sections in µ and

τ channels at the LHC can give us an alternative estimate of tan2θ23 and confirm (or

rule out) this minimal supersymmetric inverse seesaw model as a possible explanation

of neutrino masses and mixing. We also show, as a distinct feature of this model, the

cross sections of pp → eµµ +��ET and pp → eee +��ET are suppressed compared to the

total chosen trilepton + ��ET cross section because of the restrictions on the neutrino

reactor angle imposed by neutrino data.
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Chapter 4

Light sneutrino Dark Matter in SISM

In this chapter we discuss the prospect of a light sneutrino DM in the context of SISM.

For this purpose, we take a hybrid approach similar to that in Ref. [1], i.e. a low-energy

input for the SU(2)L-singlet neutrino sector and for the lepton-number violating soft

SUSY-breaking sector while a top-down approach for the MSSM particle spectrum,

without necessarily imposing any features of a specific Grand Unified Theory (GUT)-

based model. Our goal is to examine if such a minimal Supergravity (mSUGRA)

scenario with inverse seesaw can give a light DM candidate satisfying all the existing

cosmological, collider as well as low-energy constraints; if so, what are the collider sig-

nals for such a scenario and how to distinguish it from a typical cMSSM scenario for

similar squark-gluino spectrum at the LHC. In particular, since the sneutrino mass is

not directly related to the gaugino masses, and there are additional unknown param-

eters in the sneutrino mass matrix, we expect the lightest sneutrino to be allowed to

have masses in the few GeV range without being in conflict with the collider bounds

on gluino and chargino masses.

In fact, we find that in contrast with the pure cMSSM scenario [2], we can have

the sneutrino LSP mass in the few GeV range while being consistent with the SUSY

search limits; however, the relic density constraint, among others, requires the lightest

sneutrino mass to be more than ∼ 50 GeV [3]. Though this is not consistent with the

CoGeNT-preferred range of ∼ 10 GeV [4] for the DM mass, it is within the 2σ-preferred

range of CRESST-II [5] and also close to one of the DAMA/LIBRA-preferred mass

range [6]. Moreover, the benchmark points we find around 50 GeV DM mass are all

consistent with the recent hints of the lightest Higgs boson mass around 125 GeV [7,8],

which is difficult to accommodate for a light neutralino DM in pure cMSSM [2,9]). This

sneutrino LSP can be searched for at the LHC through a same-sign dilepton+jets+large

��ET signal arising from cascade decays of squarks and gluinos [3].
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4.1 Searching for a light DM

In this section we search the parameter space of SISM in order to examine if such

a scenario can give a light DM candidate. Then it remains to be checked whether

this lightest sneutrino eigenstate has the right admixture of left- and singlet-sneutrino

flavors to reproduce the observed relic density while satisfying the constraints from

direct and indirect detection experiments as well as from other low-energy sectors.

We observe that the DM relic density for light sneutrino LSPs in the SISM is ob-

tained by resonant enhancement of the annihilation cross section in the Higgs-mediated

s-channel process:

ν̃LSPν̃LSP → ff̄ , (4.1)

where f denotes the SM fermions, here mainly b and τ . This is illustrated in Fig. 4.1

which was obtained by choosing the input parameters in a sample range

m0 ∈ [0.1, 2.5] TeV, m1/2 ∈ [0.65, 2.5] TeV, A0 ∈ [−3, 3] TeV,

diag(yν) ∈ [0.01, 0.2], (MR)11 ∈ [100, 800] GeV, (4.2)

and for a fixed tan β = 10, sign(µ) = +1, (MR)22,33 = 1 TeV, BµS
= 10−4 GeV2,

and BMR
= 106 GeV2. We have chosen the mSUGRA parameter ranges shown here

keeping in mind the LHC exclusion limits on the cMSSM parameter space [10,11]. We

have fixed the sign of the MSSM µ-parameter to be +1 throughout our analysis since

µ < 0 is strongly disfavored by the muon anomalous magnetic moment as well as by

the B → Xsγ branching ratio. The parameter scan was performed using SSP [12],

with the SISM implemented in SARAH [13], and the sparticle spectrum was generated

using SPheno [14], while DM relic density was calculated using micrOMEGAs [15].

10-2
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Ωh
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Figure 4.1: Sneutrino relic density as a function of the sneutrino LSP mass for our

SISM input parameter scan. The horizontal shaded band shows the Planck 3σ preferred

range.
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All the points shown in Fig. 4.1 are required to have the lightest CP -even Higgs

boson mass in the range 125 ± 2 GeV to be consistent with the latest LHC Higgs

data [16, 17]. The horizontal blue band indicates the 3σ preferred range from Planck

data: Ωh2 = 0.1199±0.0081 [18]. It is clear that for the sneutrino LSP mass below W -

boson mass, the observed DM relic density is obtained only near the Higgs-resonance

region, thus requiring the sneutrino DM mass in the SISM to be around mh/2. The

other possible resonance around mZ/2 is suppressed in this case due to small mixing

between the SU(2)L-doublet and singlet neutrinos, as required to satisfy the Z-invisible

decay width constraint from LEP [19]. Note that in Fig. 4.1, the observed relic density

can also be satisfied for sneutrino LSP in the 80 - 200 GeV mass range due to its large

annihilation rate into WW,ZZ and hh final states.

The same interaction that leads to the Higgs-mediated s-channel annihilation of

the sneutrino DM in our model also leads to a direct detection signal via t-channel

Higgs boson exchange. In Fig. 4.2 we have plotted the spin-independent DM-nucleon

scattering cross section predictions as a function of the sneutrino LSP mass for the

corresponding points in Fig. 4.1. We also show the subset of points satisfying the relic

density constraints.
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Figure 4.2: Spin-independent direct detection cross section as a function of the sneu-

trino LSP mass for our SISM parameter scan. The red (+) points satisfy relic density
<∼ 0.13. The current experimental limit from XENON100, LUX and the projected

limits from LUX and XENON1T are also shown.

The solid line indicates the current limit from XENON100 [20] and LUX data [21].

We also show the projected limits from XENON1T [22] and LUX [23] experiments.

As evident from the plot, a few of the allowed points are already ruled out by the

XENON100 data, while all of the low-mass points satisfying the relic density constraints

can be ruled out by LUX and XENON1T projected limits in case of a null result.

From Fig. 4.1 and 4.2 we infer that it is indeed possible to have the lightest Higgs
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boson decaying into two sneutrino LSPs, while satisfying the DM relic density and

direct detection constraints. We have also checked that all the points shown in Fig. 4.1

and 4.2 are well below the current indirect detection cross section limits from Fermi-

LAT [24,25].

4.2 Some Benchmark Points

Our goal in this section is to find a sparticle spectrum with light sneutrino LSP in

the cMSSM scenario with 5 parameters (m0,m1/2, tan β,A0, sgn µ) and the additional

inverse seesaw parameters µS,MR,MD, BµS
and BMR

. Once we find a light sneutrino

LSP, we require it to satisfy the relic density and direct detection constraints in order

be the DM candidate. We also require all the benchmark points to satisfy various

collider and low-energy constraints, summarized in Table 4.1. A few comments:

• For the lightest Higgs mass, we use the CMS suggested value of 125.3±0.4(stat)±
0.5(syst) [26]. The ATLAS suggested central value is around 126.5 GeV [27] with

presumably similar experimental uncertainties; for concreteness, we just choose

to work with the CMS value which has the errors explicitly stated 1.

• For the spin-independent WIMP-nucleon scattering cross-section, we use the 2σ

upper limit of the latest XENON100 results [20]2.

• There also exist some constraints on light sneutrino DM from indirect detection

searches, e.g. the searches for high-energy neutrinos from the Sun produced by

annihilation of these sneutrinos [37]. However, for small admixtures of the left

sneutrino component (allowed by Z-invisible decay width) in a mostly dominant

singlet sneutrino LSP eigenstate, these constraints are easily satisfied, and hence,

we do not discuss them further.

• The lepton anomalous magnetic moments as shown in Table 4.1 are defined as

∆aℓ = aSMℓ − aexptℓ where aℓ = (g − 2)ℓ/2. The most important one is the muon

anomalous magnetic moment which persistently shows a 3σ discrepancy [32] over

the SM prediction and has to be taken into account in any complete beyond

SM scenario. For the electron (g − 2), the discrepancy is quite small and is a

1The most recently updated Higgs boson mass quoted by CMS is 124.7±0.34 GeV [7]. The updated

value provided by ATLAS for the same is 125.4±0.4 GeV [8]. However, these changes in Higgs Boson

mass data do not affect our analysis or overall conclusion.
2More recent LUX results [21] constrains the scattering cross-section value further. However, our

benchmark points are still consistent within their 2σ error bar.
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Quantity Value Source

GF 1.1663787(6)× 10−5 GeV−2 [28]

αs(mZ) 0.1184± 0.0007 [29]

mZ 91.1876(21) GeV [28]

mτ 1.77682(16) GeV [28]

mb 4.19± 0.12 GeV [28]

mt 173.2± 0.9 GeV [30]

mh 125.3± 0.7 GeV [7]

Γinvisible
Z < 3.0 MeV [19]

ΩCDMh
2 0.112± 0.006 [31]

σSI < 5× 10−9 pb [20]

∆aµ (26.1± 8.0)× 10−10 [32]

∆ae (109± 83)× 10−14 [33]

BR(B → Xsγ) (3.21± 0.33)× 10−4 [34]

BR(B0
s → µ+µ−) < 4.5× 10−9 [35]

BR(µ→ eγ) < 2.4× 10−12

BR(τ → eγ) < 3.3× 10−8

BR(τ → µγ) < 4.4× 10−8

BR(µ→ 3e) < 1.0× 10−12 [28]

BR(τ → 3e) < 2.7× 10−8

BR(τ → 3µ) < 2.1× 10−8

BR(τ → eµµ) < 1.7× 10−8

BR(τ → eeµ) < 1.5× 10−8

|η|ee 0.002± 0.005

|η|µµ 0.003± 0.005

|η|ττ 0.003± 0.005

|η|eµ < 7.2× 10−5 [36]

|η|eτ < 1.6× 10−2

|η|µτ < 1.3× 10−2

Table 4.1: Various experimental constraints used in our analysis to find the benchmark

points.

rather loose constraint on the new physics parameter space. We do not consider

the tau anomalous magnetic moments here, because its value is not known so

precisely [28].
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• The non-unitarity of the light neutrino mixing matrix is defined in Eq. (2.11) and

the constraints on its elements shown in Table 4.1 are derived from a combination

of neutrino oscillation data, precision data from weak gauge boson decays and

the LFV decays [36].

There are also strong constraints on the cMSSM parameter space from direct SUSY

searches at the LHC [10, 11]. Therefore, we must choose the input points in the

(m0,m1/2)-plane not already excluded by the LHC SUSY searches which for certain

cases extends to m1/2
<∼ 600 GeV and m0

<∼ 1 TeV3 (e.g. in the jets+missing transverse

energy search channel [38]). On the other hand, very large values of m0 and m1/2

(larger than a few TeV) are not desirable from phenomenological perspective as they

drive most of the sparticle masses beyond the kinematic reach of the LHC. Therefore,

we choose our m0 value close to 1 TeV and the m1/2 value close to 600 GeV. We also

choose to work with µ > 0 case, since µ < 0 is strongly disfavored by the muon anoma-

lous magnetic moment as well as by the B → Xsγ branching ratio [39]. Similarly, large

tan β values >∼ 50 are disfavored by the recent LHCb results on Bs → µ+µ− [35], and

hence, we choose some intermediate values between 25 and 35 for the benchmark points

discussed below. For the trilinear term A0, the recent LHC discovery of a SM Higgs-

like particle at 125 GeV [7, 8] implies that we must have a large negative A-term (for

µ > 0) in order to have the radiative corrections account for the required enhancement

of the lightest Higgs boson mass from its tree level value close to mZ [40].

In the neutrino sector, for simplicity, we assume the inverse seesaw parameter ma-

trices MD,MR as well as the B-terms, BµS
, BMR

, to be diagonal. Hence we can easily

satisfy the LFV constraints for our benchmark points. Allowing non-zero off-diagonal

entries in the Dirac Yukawa will induce large LFV effects, and we find that for the

benchmark points discussed in the following section, we must have the off-diagonal

entries less than ∼ O(0.01) in order to satisfy all the LFV decay modes listed in Ta-

ble 4.1. Moreover, we assume no CP -violation in the neutrino sector, and choose all

the mass matrices to be real4. Fixing both MD and MR also fixes the lepton-number

breaking Majorana mass matrix µS by fitting to the neutrino mass and mixing pa-

rameters (assuming a normal or inverted hierarchy for the neutrino masses). Also

note that since we are assuming a complete unification of the scalar sector, we choose

m2
L = m2

N = m2
S = m2

0 at the high scale and similarly for the A-terms.

The input parameters are chosen in such a way that all the experimental constraints

listed in Table 4.1 are satisfied for all the benchmark points. Table 4.2 lists all the input

3Consequences of the updated cMSSM search results are discussed in the end.
4Introducing one or more CP -phases in the neutrino sector will not change the sparticle spectrum

and hence our results in the subsequent sections.
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parameters for three benchmark points we have chosen to work with.

Input parameter BP1 BP2 BP3

m0 (GeV) 993.28 996.45 815.48

m1/2 (GeV) 600 650 600

A0 (GeV) −2712.11 −2858.42 −2442.11

tan β 35 25 30

yν (0.161,0.160,0.180) (0.100,0.100,0.080) (0.103,0.100,0.100)

MR (GeV) (300,1000,1000) (200,1000,1000) (610,1000,1000)

BµS
(GeV2) 10 10 10

BMR
(GeV2) 106 106 106

Table 4.2: The input parameters for three chosen BPs. The mSUGRA parameters are

defined at the high scale whereas the singlet neutrino parameters are at the low scale.

We assume µ > 0 throughout and the neutrino sector parameters shown here have

been chosen to be diagonal.

For the low-energy values of yν and MR given in Table 4.2, the observed neutrino

mass and mixing parameters can be fit using appropriate values for the mass matrix

µS in Eq. (2.8). For example, for a normal hierarchy of neutrino masses, using the

latest global fit values provided in Table 1.3, we obtain the following values for µS for

the three BPs shown above:

µS =








0.54 3.01 0.99

3.01 34.89 24.94

0.99 24.94 29.64


 eV (BP1)




0.62 5.18 2.39

5.18 89.42 89.91

2.39 89.91 150.29


 eV (BP2)




5.48 15.38 5.67

15.38 89.38 71.89

5.67 71.89 96.13


 eV (BP3)

(4.3)

The low-energy mass spectrum for the superpartners corresponding to the BPs are

tabulated in Table 4.3.
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Sparticle Notation BP1 BP2 BP3

(ν̃R1 , ν̃
I
1) (53.2155,53.3030) (53.4623,53.5529) (62.6587,62.7365)

(ν̃R2 , ν̃
I
2) (834.7887,834.7890) (953.3586,953.3598) (743.3109,743.3119)

(ν̃R3 , ν̃
I
3) (930.6762,930.6810) (965.9735,965.9784) (785.4476,785.4536)

(ν̃R4 , ν̃
I
4) (951.2057,951.2105) (987.8791,987.8829) (798.8994,798.9046)

Sneutrino (ν̃R5 , ν̃
I
5) (1033.8279,1033.8280) (1065.9683,1065.9683) (890.1739,890.1739)

(ν̃R6 , ν̃
I
6) (1042.0259,1042.0261) (1068.5116,1068.5118) (893.2873,893.2875)

(ν̃R7 , ν̃
I
7) (1419.8892,1419.8929) (1415.7879,1415.7916) (1420.8748,1420.8784)

(ν̃R8 , ν̃
I
8) (1715.9050,1715.9081) (1723.9674,1723.9704) (1627.6817,1627.6848)

(ν̃R9 , ν̃
I
9) (1717.9193,1717.9224) (1726.3187,1726.3217) (1627.9388,1627.9419)

ẽ1 1018.4017 1025.3009 846.0540

ẽ2 1039.4223 1068.9554 893.5697

Slepton µ̃1 1016.6171 1024.4000 844.8843

µ̃2 1036.3724 1068.5514 893.2266

τ̃1 513.3771 769.2830 493.4275

τ̃2 855.9634 973.0149 768.0038

ũ1 1535.0033 1607.4852 1433.9501

ũ2 1569.3038 1645.7291 1471.1607

c̃1 1534.9761 1607.4576 1433.9246

c̃2 1569.1360 1645.6110 1471.0347

t̃1 634.1909 625.0202 613.7963

Squark t̃2 1151.5795 1247.0666 1125.2610

d̃1 1531.6198 1603.3921 1430.2297

d̃2 1571.0874 1647.4075 1473.0788

s̃1 1531.5088 1603.3235 1430.1499

s̃2 1570.9203 1647.2877 1472.9519

b̃1 1087.7751 1194.3270 1061.8161

b̃2 1304.0222 1459.9815 1265.4400

Gluino g̃ 1401.3910 1505.3351 1392.6117

χ̃0
1 264.3308 286.2447 261.8328

Neutralino χ̃0
2 499.2369 539.7525 495.2370

χ̃0
3 −1376.4775 −1464.4092 −1295.2559

χ̃0
4 1379.5117 1467.4517 1298.6826

Chargino χ̃±
1 499.4382 539.9501 495.4381

χ̃±
2 1380.0818 1467.8795 1299.2079

Table 4.3: The sparticle masses (in GeV) for the chosen benchmark points. The values

are shown up to four decimal places to illustrate the lifting of degeneracy between the

sneutrino mass eigenstate pairs due to the small lepton number breaking.
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Note that the sneutrino real scalar fields (ν̃Ii , ν̃
R
i ) are split in their masses with

the mass splitting in the range of keV-MeV within each pair which is a characteristic

feature of the SUSY inverse seesaw mechanism [41]. In later sections, we denote the

lightest mass eigenstate pair (ν̃I1 , ν̃
R
1 ) simply by ν̃1.

It is clear from Table 4.3 that all the BPs satisfy the direct search limits on the

SUSY particle masses in cMSSM. They also satisfy the other low-energy experimental

constraints in Table 4.1, as shown in Table 4.4. These constraints, e.g, LFV decay

branching ratios, lepton anomalous magnetic moments and the B-Physics constraints

were evaluated using SPheno.

Parameter BP1 BP2 BP3

mh 123.2 123.4 123.2

ΩDMh
2 0.118 0.108 0.112

σSI (pb) 3.6× 10−9 5.1× 10−10 1.4× 10−9

< σAv > (cm3s−1) 1.72× 10−27 3.33× 10−28 3.49× 10−25

δaµ 5.2× 10−10 3.4× 10−10 5.5× 10−10

δae 1.2× 10−14 7.8× 10−15 1.3× 10−14

BR(B → Xsγ) 2.7× 10−4 2.8× 10−4 2.7× 10−4

BR(Bs → µ+µ−) 4.3× 10−9 3.7× 10−9 4.1× 10−9

BR(µ→ eγ) 5.6× 10−21 6.6× 10−22 3.3× 10−21

BR(τ → eγ) 1.1× 10−19 1.2× 10−20 6.2× 10−20

BR(τ → µγ) 1.7× 10−15 2.1× 10−16 1.0× 10−15

BR(µ→ 3e) 4.6× 10−22 1.1× 10−22 2.6× 10−23

BR(τ → 3e) 3.4× 10−21 7.4× 10−22 7.3× 10−22

BR(τ → 3µ) 1.1× 10−15 2.9× 10−16 7.4× 10−18

|ηee| 4.3× 10−3 3.8× 10−3 4.3× 10−4

|ηµµ| 3.9× 10−4 1.5× 10−4 1.5× 10−4

|ηττ | 4.9× 10−4 9.7× 10−5 1.5× 10−4

Table 4.4: The low-energy observables for the three chosen BPs. These values are to

be compared with the experimental values in Table 4.1.

Here we want to make some comments on these observables:

• It is well known that a 125 GeV mass for the lightest neutral Higgs boson in a

cMSSM scenario is not very natural [42]. It becomes even more difficult if one

has to satisfy the other low-energy constraints and requires the neutralino LSP

to have the observed relic density [9]. The situation is very similar in our case;
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however, our chosen benchmark points have the lightest Higgs boson mass close

to the recently suggested LHC value around 125 GeV. Since fixing the exact

mass of the suspected scalar resonance at the LHC will require more data, we

are content with values within 2 GeV of the average of the CMS and ATLAS

central values [7, 8]. We believe that any tweaking of parameters to confirm the

exact Higgs boson mass, when it is known with greater precision, will not affect

the general conclusions of this work.

• The correct relic density is obtained near the resonant enhancement region of the

annihilation cross-section in the Higgs-mediated s-channel process: ν̃1ν̃1 → ff̄

where f denotes the SM fermion (mostly b and τ final states). Therefore, all

our benchmark points have the LSP mass close to mh/2. This is illustrated in

Fig. 4.1. We also find that the sneutrino DM spin-independent elastic5 cross

section with nucleons is within the upper bound of the latest XENON100 and

LUX result except for BP1 which is slightly above their 2σ limit.

• The SUSY contributions to ∆aµ have been calculated to the two-loop order [43]

and it has been shown that for a range of parameter space, it is possible to

accommodate the discrepancy. As can be seen from Tables 4.1 and 4.4, we are

able to explain the discrepancy within 3σ for all our benchmark points. Also

for the electron anomalous magnetic moment, we are consistent with the smaller

discrepancy to within 1σ.

• The SM prediction for the branching ratio of the weak radiative B-meson decay

is (3.15 ± 0.23) × 10−4 [44], and comparing with the most recent experimental

value from BABAR as given in Table 4.1, we see that there is very little room

left for the SUSY contribution in this case [45]. However, for the choice of our

mSUGRA parameters, we find the values predicted for all our BPs to be within

2σ of the experimental value. Similarly, for the branching ratio of the FCNC

process B0
s → µ+µ−, the SM prediction is (3.2± 0.2)× 10−9 [46]; so comparable

SUSY contributions [47] are still allowed by the current experimental limits from

LHCb. We estimated that the BRs for our BPs are within this allowed range.

• For the rare lepton flavor violating (LFV) decays, since we are working within an

mSUGRA scenario, the SUSY contributions are quite small [48]. However, the

contributions from the leptonic sector could be large in seesaw models with large

5Note here that the splitting between the lightest sneutrino mass eigenstates for our benchmark

points is of order of a few MeVs which is too large for inelastic DM-nucleon scattering to occur. Hence

we only consider the elastic scattering.
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Yukawas [49], as in our case. However, due to our choice of the diagonal textures

for the Dirac Yukawas, the leptonic contributions also vanish altogether. Hence,

we have very small LFV BRs for all the BPs.

• The non-unitarity effects could, in principle, be large in low-scale inverse seesaw

models with large Dirac Yukawas [50–52]. In our case, again due to the diagonal

textures chosen for both MD and MR, the non-unitarity parameter defined by

Eq. (2.11) is also a diagonal matrix. Hence we only show the values for the

diagonal entries in Table 4.4, and it is clear that all our values satisfy the current

experimental bounds.

We also note that in our scenario, since the sneutrino LSP is sufficiently light, the

lightest neutral Higgs boson can in principle decay into a pair of LSP’s thus giving rise

to an invisible decay width of the Higgs boson. The LHC signatures of these decays are

relatively clean, and very large branching ratios to invisible decay channel are disfavored

by the current LHC searches [53]. The branching ratio depends, among other things,

on the neutrino Yukawa coupling yν . Recent global analyses [54]6 have reported that

the present LHC Higgs data can indeed accommodate an invisible branching ratio for

the Higgs boson, although the best fit values they obtain for the allowed branching

ratio vary a little bit. If such a possibility is more precisely fixed by future data, it

may lead to an estimate of the bounds on the neutrino Yukawa couplings in the inverse

seesaw models which could be compared with those obtained from direct Higgs search

results [56]. This possibility will be explored in the next chapter in some detail.

We have thus demonstrated convincingly that (a) a hybrid scenario for the origin

of soft SUSY-breaking masses can be used consistently with the inverse seesaw mech-

anism, (b) one can have a sneutrino LSP which is light and still consistent with all

the existing experimental constraints, and (c) the rest of the SUSY spectrum is phe-

nomenologically viable. The next question to ask is: Is there any distinctive signature

of this scenario which can be seen at the LHC? We address this question in the next

section.

4.3 Collider Signatures

The most copious collider signals of any SUSY scenario will come from the production

of colored superpartners, namely squarks and gluinos, which will have cascade decays

through charginos and neutralinos, eventually ending up in the stable LSP in R-parity

6For a similar analysis with the earlier LEP/Tevatron/XENON/WMAP data and a 50-60 GeV

scalar DM scenario as in our case, see Ref. [55].
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conserving SUSY models [57]. Unless the squarks and gluinos are too heavy to be kine-

matically accessible, they will have substantial production cross sections at a hadron

collider due to strong interaction. The production channels are gluino pair production,

squark-gluino associated production and squark-squark pair production (see Fig. 4.3).

As the direct decay of the squarks and gluinos to the color- and electrically-neutral LSP

are either forbidden or occur with only a tiny branching fraction, the dominant decay

modes for the gluino always involve quarks (and hence multiple jets in the final states).

Gluino can have either the two-body decay via g̃ → qq̃ if kinematically allowed, or the

three-body decay modes g̃ → qq̄′χ̃±
i , qq̄χ̃

0
j with virtual squarks. Similarly, squarks

decay to two-body modes q̃ → qg̃ if kinematically allowed, or q̃L → q′χ̃±
i , qχ̃

0
j , while

q̃R → qχ̃0
j only, since right-handed squarks do not couple to charginos in MSSM. If

squarks are degenerate, and Yukawa coupling effects negligible, the three-body decays

to the wino-like chargino and neutralino usually have larger branching fractions due to

their larger gauge couplings. If |µ| < M2, gluinos and squarks may thus decay most of

the time to the heavier charginos and neutralinos, resulting in lengthier cascade decay

chains than those shown in Fig. 4.3.
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Figure 4.3: The Feynman diagrams for the gluino pair-production and its cascade

decays to give the same-sign dilepton+jets+��ET signal at the LHC. Similar diagrams

exist for squark-gluino and squark-squark production and decay which we have not

shown here.

The LHC signals of our scenario can differ considerably from those of the pure

cMSSM situation. To understand this, let us look at the branching ratios of the two-

body decays of the lighter chargino (χ̃+
1 ) which are listed in Table 4.5 for all of our
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benchmark points.

Chargino (χ̃+
1 ) decay BP1 BP2 BP3

W+χ̃0
1 0.23 0.45 0.31

ℓ+ν̃1 0.77 0.55 0.69

Table 4.5: The lighter chargino decay branching ratios for our benchmark points in

SISM. On the other hand, in the cMSSM case with neutralino LSP, the branching ratio

is close to 100% for the decay W+χ̃0
1.

While the conventionally expected decay χ̃+
1 → W+χ̃0

1 is there, it is dependent on

the W̃ 0
3 components of χ̃0

1 as well as the Higgsino components of both χ̃+
1 and χ̃0

1. On

the other hand, here we have another often dominant channel, namely χ̃+
1 → ℓ+ν̃1

(where ν̃1 is the sneutrino LSP and ℓ = e, µ) triggered by the large mixing in the

sneutrino sector7. Consequently, the leptonic branching ratio of the χ̃+
1 is remarkably

enhanced8. Thus the SUSY cascades lead to a highly boosted rate of dileptons, of which

the same-sign dileptons (SSD) are more spectacular being relatively background-free.

The scenario outlined by us will therefore exhibit a rise in the SSD rate with respect to

that of purely (jets+��ET ) events, as compared to a pure cMSSM spectrum of comparable

heaviness. We also expect the��ET distribution to be different for a sneutrino LSP case

than in case of neutralino LSP, as noted earlier in Ref. [58]. In particular, in our SISM

scenario, the ��ET distribution is expected to be much harder compared to the cMSSM

scenario.

To illustrate this SSD-enhancement effect in our case compared to the pure cMSSM

scenario, we construct a ratio as follows:

r =
σ(ℓ±ℓ±+ ≥ 2j +��ET )

σ(0ℓ+ ≥ 3j +��ET )
(4.4)

which is expected to be more in our case. As shown in the next section, this variable

could be used to distinguish our scenario with sneutrino LSP from a pure cMSSM

scenario with neutralino LSP.

Here we want to emphasize that the SSD signal in inverse seesaw is purely super-

symmetric in nature. In other words, if one leaves aside the SUSY processes, the SSD

7ℓ is mostly electron for our choice of benchmark points, though cases with muons do not make any

difference in our analysis. We discuss more about this at the end of this chapter. Since the tau-lepton

detection efficiency is not as good as electron and muons, we will not analyze the tau-lepton final

states.
8Note that all charged sleptons are heavier than the lighter chargino in our case.
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signal is suppressed due to the small lepton number violation and pseudo-Dirac nature

of the singlet neutrinos. In that case, however, one can look for tri-lepton signals with

��ET for its LHC discovery potential [59].

4.4 Event Generation, Background Simulation and Re-

sults

In this section, we give a detailed description of the SSD+jets+��ET signal in our

SISM case with light sneutrino LSP and a comparison of the signal strength with a

canonical MSSM scenario with neutralino LSP having similar squark-gluino spectrum

for a possible distinction of the two cases at the
√
s = 14 TeV LHC. The SUSY

spectrum and the various decay branching fractions were calculated using SPheno [14].

The input files are then fed to PYTHIA (version 6.409) for event generation. Initial

and final state quark and gluon radiation, multiple interaction, decay, hadronization,

fragmentation and jet formation are implemented following the standard procedures

in PYTHIA. Factorization and renormalization scales are set at
√
ŝ (i.e µR = µF =√

ŝ ), where
√
ŝ is the parton level center of mass energy. We have used the leading

order CTEQ5L parton distribution functions for the colliding protons. The jets are

constructed using cone algorithm in PYCELL. Only those jets are constructed which

have pT > 20 GeV and |η| < 2.5. To simulate detector effects we have taken into

account the smearing of jet energies by a Gaussian probability density function [61].

In order to find same-sign di-leptons+n jets+��ET (with n ≥ 2) in the final states,

we impose the following selection criteria:

• pℓT > 10 GeV and |ηℓ| < 2.4 for both leptons. For same-flavor dilepton final

states, we raise it to pℓT > 15 GeV.

• Lepton-lepton separation ∆Rℓℓ > 0.2, where ∆R =
√
(∆η)2 + (∆φ)2.

• Lepton-jet separation ∆Rℓj > 0.4.

• The sum of ET deposits of the hadrons which fall within a cone of ∆R ≤ 0.2

around a lepton, must be less than 0.2pℓT .

• Jet-jet separation ∆Rjj > 0.4.

Since our goal is to distinguish the SUSY inverse seesaw scenario from the conventional

cMSSM case, we need to consider similar squark-gluino spectrum for both the cases.

In order to do so, we generated similar benchmark points for the cMSSM case using
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the same mSUGRA input parameters given in Table 4.2 and also checked that the

effective mass distributions, defined as the scalar sums of the lepton, jet and missing

transverse energy:

Meff =
∑

|pℓT |+
∑

|pjT |+��ET , (4.5)

are similar for both the scenarios, as shown in Fig. 4.4 for all the benchmark points.
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Figure 4.4: The effective mass distribution of the final states as defined in Eq. (5.1)

for the SISM and pure cMSSM scenarios to illustrate that the squark-gluino spectrum

considered in both cases are similar.

Now in order to distinguish the two scenarios, we compute the ratio r defined in

Eq. (4.4) for both SISM and cMSSM cases which are tabulated in Table 4.6.

r BP1 BP2 BP3

SISM 0.19 0.15 0.11

cMSSM 0.04 0.03 0.03

Table 4.6: The r values for all the benchmark points in both SISM and cMSSM cases.

We find that the value of r in the SISM case is roughly 4-5 times than in case of

cMSSM for all the benchmark points. Apart from this clear distinction, we also expect

more ��ET in the chargino decay in case of SISM, as mentioned earlier. In order to
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illustrate this, we need to analyze the ��ET distribution for the SSD+≥ 2j +��ET signal

for both SISM and cMSSM cases. We also need to analyze the SM backgrounds in

detail.

The dominant SM background for SSD events come from tt̄, Wtt̄, WWW , WWnj,

WZnj, ZZ, Wbb̄, Zbb̄ final states at the LHC [60]. All SM backgrounds except the tt̄

were generated at the parton level using ALPGEN (version 2.14) with default factoriza-

tion and renormalization scales, and then fed to PYTHIA for showering, hadronization,

fragmentation, decay, etc. The tt̄ background was directly generated and analyzed in

PYTHIA.

The ��ET distributions for both SISM and cMSSM cases are shown in Fig. 4.5 for

all the benchmark points. It is clear that the SISM case has a much harder ��ET tail

compared to the cMSSM case, which can be used as a distinguishing feature. The

combined SM background is also shown which falls rapidly for ��ET > 300 GeV.
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Figure 4.5: The��ET distribution for the SISM case with sneutrino LSP and pure cMSSM

case with neutralino LSP with a similar squark-gluino spectrum. The SM background

is also shown.

The number of events obtained after the selection criteria for
√
s = 14 TeV LHC

and normalized to 30 fb−1 luminosity are shown in Table 4.7. Note that at this stage,

some of the SM backgrounds are much larger than the SSD signal, and we need to

devise further cuts to reduce the background without affecting the signal much. As

shown in Table 4.7, we found two relevant cuts, namely (a) pjT > 50 GeV for all jets and
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pjT > 100 GeV for the leading jet, and (b)��ET > 300 GeV which reduce the background

significantly.

Channel After basic selection criteria After jet pT cut After ��ET cut

µµ eµ ee µµ eµ ee µµ eµ ee

BP1 33.24 125.18 144.01 30.73 112.66 127.45 24.30 90.13 114.69

BP2 39.95 32.44 97.26 34.38 26.86 84.34 28.54 23.35 64.87

BP3 35.94 88.94 102.84 34.15 80.05 91.49 32.44 78.48 86.76

WWW 16.86 12.36 29.64 3.18 2.49 6.00 0.39 0.24 0.24

WWjj 140.01 75.39 193.86 75.39 43.08 96.93 0.00 0.00 0.00

WZ 84.60 16.92 186.06 33.84 0.00 51.00 0.00 0.00 0.00

ZZ 0.33 0.33 0.66 0.000 0.000 0.03 0.00 0.00 0.00

Wbb̄ 29.25 5.85 29.25 0.00 0.00 0.00 0.00 0.00 0.00

Wtt̄ 81.33 66.84 147.54 38.70 31.89 69.75 1.83 1.59 3.18

tt̄ 2109.00 754.80 2331.00 710.4 222.00 466.2 0.00 0.00 0.00

Zbb̄ 0.00 6.99 19.38 0.00 0.00 1.62 0.000 0.000 0.000

Table 4.7: Number of events for 30 fb−1 luminosity at
√
s = 14 TeV LHC for the

SSD+nj+��ET signal (with n ≥ 2) and the dominant SM backgrounds. We have shown

the numbers after the basic selection criteria (but before applying any additional cuts)

as well as after applying the following additional cuts: (i) pall jets
T > 50 GeV with

pleading jet
T > 100 GeV, and (ii) ��ET > 300 GeV.

Note the boosted rate in SSD+n-jets+��ET signal particularly with electrons in the

final state. Since we consider all SUSY process, the electron and muon abundance

should have been similar in the signal. However, the boost in the electron associ-

ated final states is a result of the SISM scenario. The same sign leptons are always

generated from the lighter chargino for the gluino pair production channel which has

the most dominant contribution to the final state we consider. This coupling of the

lighter chargino to the singlet sneutrino and a charged lepton is induced by the term

ǫaby
ij
ν L̂

a
i Ĥ

b
uN̂

c
j in the superpotential in Eq. 2.1. Now if yijν is chosen to be diagonal,

that means only the same generation scalar and fermionic states from L̂ and N̂ c cou-

ple among themselves. We have chosen our parameters in such a way that the lightest

sneutrino eigenstate is essentially singlet-like with a small admixture of the left-handed

component. Note that the MR11 element from the mixing term MRij
N̂ c

i Ŝj, which gov-

erns the mixing between the fields of N̂ c
1 and Ŝ1 is smaller compared toMR22 andMR33 .

Besides, we have pushed the left sneutrino soft masses (mL̃) and the soft masses of the

singlet states (m2
N and m2

S) above TeV range. Consequently, the LSP sneutrino state
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is mainly composed of Ñ c
1 and S̃1. Now since Ñ c

1 always couples to the first generation

scalar and fermionic states in L̂1, the chargino couples to the LSP mostly alongwith

an electron.

4.5 Summary

We have studied SISM in the context of a light scalar DM. We show that this model

can not only account for neutrino masses and mixing, but it also leads to an LSP

dominated by right chiral sneutrino states. For phenomenologically consistent input

parameters, taken as a hybrid of the top-down and bottom-up choices, the sneutrino

LSP can act as a DM candidate of mass around 50 GeV while satisfying all the existing

collider, cosmological as well as low-energy constraints. We also suggest that such a

scenario can be distinguished from one based on pure top-down mSUGRA scenario

with a neutralino LSP, through a study of the same-sign dilepton signals at the LHC,

and also from the ��ET spectra in the two cases.

Since the publication of this paper, lack of evidence of any SUSY particles at the

LHC has resulted in a more stringent constraint on the cMSSM parameter space [62].

The high scale inputs m0 and m1/2 taken in this work to construct the benchmark

points are ruled out in the light of these results. However, that does not change our

analysis or the conclusion of this work, since we can always find a suitable parameter

space for this study with increased sparticle masses and higher luminosity. Since there

are still no bounds on the singlet-like sneutrino mass within the cMSSM framework,

our DM mass range remains unchanged.

We might also be able to put useful bounds on the Dirac Yukawa coupling in such

scenarios from the invisible decay width of the lightest neutral Higgs boson if this gets

confirmed with more data at the LHC in near future. This issue will be discussed in

more detail in the next chapter.
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Chapter 5

Invisible Higgs Decay in SISM

After the recent discovery [1, 2] of a Higgs boson with mass (mh) around 125 GeV,

a major goal is to establish whether it is “the” Standard Model (SM) Higgs boson

or a first glimpse of some Beyond Standard Model (BSM) physics at the LHC. A

precise determination of the discovered Higgs boson characteristics will be crucial in

resolving some of the outstanding issues of the SM, and in particular, understanding

the mechanism of electroweak symmetry breaking and its relationship to the BSM. The

experimental results so far [3–6] show no significant deviation from the SM Higgs sector

expectations, and already put severe constraints on various new physics models (see, for

instance, [7–14]). However, they still do not exclude the possibility of a non-standard

Higgs boson.

A precise measurement of the total decay width (Γh) of the Higgs boson (h) through

its line shape is very difficult at the LHC due to its tiny value: for the SM withmh = 125

GeV, Γh = 4.07 MeV [15]. Hence, a better way to identify a non-standard Higgs

boson is by studying its non-standard decay modes (for a review, see e.g., [16]). This

is also crucial in case of a statistically significant discrepancy between the measured

and SM expected Higgs signal strengths which could be due to either suppression or

enhancement of the Higgs production cross section as well as its partial decay widths.

A particularly interesting non-standard Higgs decay which is very sensitive to large

BSM contributions is its invisible decay mode [17], since the SM invisible Higgs branch-

ing ratio (BR) is very small: BR(h → ZZ∗ → 4ν) ≃ 0.001 [18]. Dedicated searches

for the Higgs decay into invisible final states were performed at the LEP [19], and no

signal was found for Higgs mass up to 114.4 GeV. The LHC prospects of determining

the invisible Higgs BR have been analyzed in Refs. [20–29]. ATLAS and CMS have

been separately searching for non-standard decay modes of the Higgs boson in different

production channels. The combined CMS limit on the invisible Higgs BR derived from

vector boson fusion (VBF) and associated Zh production modes is 58% [30], while
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the same limit derived from associated Zh production mode by ATLAS is 75% [31].

ATLAS puts a more stringent limit of 68% on the Higgs invisible BR from coupling

measurements of the Higgs boson [32]. Global fits to the existing LHC data provide

a stronger constraint on BRinv < 0.28 at 95% CL [12] (for other recent global fits,

see [33, 34]).

As was discussed in the previous chapter, in contrast with the pure cMSSM scenario,

SISM allows a light DM in the form of a mixed sneutrino with mass around mh/2 and

that it requires to have a large annihilation rate via s-channel Higgs resonance to

produce correct relic abundance. Due to the large Yukawa couplings allowed in the

model, which are responsible for an efficient annihilation of the sneutrino DM, the

lightest CP -even Higgs boson can have a large invisible branching ratio to sneutrino

final states. This in turn leads to novel missing energy signatures at the LHC. In this

chapter, we analyze this possibility in detail by performing a two-parameter global fit

with the latest LHC Higgs data to determine the optimal invisible Higgs branching ratio

allowed in this model, and find a 2σ (1σ) upper limit of 0.25 (0.15) [35]. This in turn

puts an upper limit of O(0.1) on the Dirac Yukawa coupling in the model. We further

show that the model parameter space allowed by the invisible Higgs decay constraints

can be completely ruled out in case of null results at the next generation DM direct

detection experiments such as LUX and XENON1T. We also select a few benchmark

points satisfying all the experimental constraints, and carry out a detailed cut-based

analysis, demonstrating the viability of our proposed signal in two Higgs production

channels, namely, vector boson fusion (VBF) and associated production with Z, vis-a-

vis SM backgrounds at
√
s=14 TeV LHC. We find that a signal significance of 3σ can

be achieved in the VBF channel with a relatively smaller integrated luminosity than

in the Zh channel for our chosen benchmark points [35].

5.1 Invisible Higgs Decay Width and Current Data

Our goal in this section is to find the prospects of the lightest CP -even Higgs boson

decaying into two light DM particles in the form of sneutrino LSP, thereby leading

to a missing energy signal at the LHC. In the SISM being discussed here, we have 5

cMSSM parameters m0,m1/2, tan β,A0, sign(µ) at high scale and the additional inverse

seesaw parametersMD,MR, µS, BµS
and BMR

whose input values are chosen at the low

scale. For simplicity, we have assumed these low-energy neutrino sector parameters to

be diagonal (apart from µs whose structure is fixed by neutrino oscillation data) so

that we can easily satisfy the LFV constraints. Also, the trilinear Aν term in the

soft SUSY-breaking Lagrangian, which controls the Higgs BR to sneutrinos is taken
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to be (Aν)ij = A0(yν)ij. Note that we require a large A0 in order to have a large

radiative correction to the lightest CP -even Higgs boson mass as required by the LHC

observation, whereas the Dirac Yukawa coupling yν is also required to be large in order

to provide an efficient annihilation channel for the sneutrino LSP. These two seemingly

uncorrelated effects inevitably lead to a large invisible BR for the Higgs in the SISM.

In order to ascertain how much invisible BR of the Higgs boson is allowed in our

model, we perform a two parameter global analysis with all the LHC Higgs data avail-

able so far as listed in Table 5.1 Here we list the latest Higgs data sets available from

the combined
√
s = 7 and 8 TeV LHC run in five visible Higgs decay channels: γγ,

ZZ∗ → 4ℓ, WW ∗ → 2ℓ2ν, bb̄ and τ τ̄ . For each channel, we show the experimental

values of the signal strengths µ̂i together with its 1σ uncertainty, as reported by the

ATLAS and CMS collaborations [36–43]1.

Channel µ̂ Experiment

h→ γγ 1.55+0.33
−0.28 ATLAS [36]

0.78+0.28
−0.26 CMS [37]

h→ ZZ∗ → 4l 1.43+0.40
−0.35 ATLAS [36]

0.9+0.30
−0.20 CMS [38]

h→ WW ∗ → 2l2ν 0.99+0.31
−0.28 ATLAS [36]

0.80+0.20
−0.20 CMS [39]

h→ bb̄ 0.20+0.70
−0.60 ATLAS (VH) [40]

1.00+0.50
−0.50 CMS (VH) [41]

h→ τ τ̄ 0.7+0.7
−0.6 ATLAS [42]

1.10+0.4
−0.4 CMS [43]

Table 5.1: Data set used in our analysis, with the values of µ̂i in various channels and

their 1σ uncertainties as reported by the ATLAS and CMS collaborations.

Since the neutrino sector parameters of the SISM do not affect the Higgs production

or decay rates into the SM final states, and only affect its invisible decay into sneutrino

final states, we can parametrize their effect in terms of a single free parameter, namely,

the invisible BR, ε which relates the visible and invisible partial widths of the Higgs

boson as

Γinv =
ε

1− ε

∑
Γvis . (5.1)

For the MSSM sector of the SISM, we choose a few benchmark points (BPs) by fixing

m0,m1/2 and A0 as shown in Table 5.2, and vary the remaining parameter, namely,

1The signal strength values in different Higgs boson channels were updated recently. We discuss

about the implications at the end of this chapter.
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tan β. The benchmark points2 given in Table 5.2 were selected from the sample scan

ranged over the values given in Eq. 4.2 by requiring them to satisfy the constraints

coming from Higgs boson and squark-gluino mass bounds. Note that all the benchmark

Input parameter BP1 BP2 BP3

m0 (GeV) 996.45 745.48 614.00

m1/2 (GeV) 750.00 1014.17 1083.00

A0 (GeV) −2858.00 −2775.09 −2600.00

Table 5.2: The cMSSM input parameters for three chosen benchmark points.

points shown in Table 5.2 require an electroweak fine-tuning at the percent level, which

is mandatory given the current LHC data (see e.g., [45]). For the trilinear term A0, a

large negative value is required to obtain the correct Higgs mass (mh = 125± 2 GeV)

for our choices of m0 and m1/2 (which are consistent with the general results from other

cMSSM parameter scans, e.g. [45]). We have checked that all our benchmark points

lead to a stable electroweak vacuum and do not lead to charge- and/or color-breaking

minima. For each combination of the high-scale parameters given in Table 5.2, we

perform a global analysis in the ε-tan β plane using 10 data points in various Higgs

decay channels from the published results of CMS and ATLAS, as listed in Table 5.1.

For each of the variables, with the other one marginalized, we compute the χ2

function, defined as

χ2 =
∑

i

(µi − µ̂i)
2

(δµ̂i)2
, (5.2)

where µi’s are the Higgs signal strengths calculated from the model and are functions

of the model parameters:

µi = Rprod
i × Rdecay

i

Rwidth
. (5.3)

Here Ri’s are the ratios of the model predictions for the Higgs production cross sections

and partial decay rates for various channels, and similarly R is the ratio of the total

width, with the corresponding SM expectations:

Rprod
i =

(
σprod
i

)
SISM(

σprod
i

)
SM

, Rdecay
i =

(
Γdecay
i

)
SISM(

Γdecay
i

)
SM

, Rwidth =

(
Γwidth

)
SISM

(Γwidth)SM
, (5.4)

2Note that the high scale inputs for these three BPs are different from the ones considered in the

previous chapter. This is because of the fact that while working on this project the cMSSM search

results were updated and the high scale input parameters of the benchmark points presented in the

previous chapter were already ruled out [44].
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and µ̂i’s are the experimental best fit values of the signal strengths as listed in Ta-

ble 5.1, δµ̂i’s being their reported 1σ uncertainty. When the reported uncertainties are

asymmetric in nature, we consider the positive uncertainty for (µi − µ̂i) > 0 and the

negative one for (µi − µ̂i) < 0.

We have varied tan β between 2 and 50, and ε between 0 and 0.7. Note that large

tan β >∼ 50 is disfavored by the recent LHCb results on Bs → µ+µ−, and very low

tan β <∼ 2 are usually not considered due to radiative electroweak symmetry breaking

arguments. The 1σ and 2σ contours for tan β and ε for various “snapshot” values of

the high-scale parameters are presented in Fig. 5.1, 5.2 and 5.3. We have chosen the

benchmark points for signal prediction, ensuring that we stay within 2σ for both of

the fitted parameters (ε and tan β).
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Figure 5.1: 1σ and 2σ contours for ε and tan β from χ2 minimization obtained for BP1.

The green line indicates 1σ reach and the red line indicates 2σ reach of the parameters.
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Figure 5.2: 1σ and 2σ contours for ε and tan β from χ2 minimization obtained for BP2.

The green line indicates 1σ reach and the red line indicates 2σ reach of the parameters.

As manifested in these contour plots, the minimum χ2-value is obtained for ε =

0, 0.037 and 0.04 for BP1, BP2 and BP3 respectively and intermediate values of tan β
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Figure 5.3: 1σ and 2σ contours for ε and tan β from χ2 minimization obtained for BP3.

The green line indicates 1σ reach and the red line indicates 2σ reach of the parameters.

around 30-40 for all the benchmark points. Also, there exists an upper limit on ε to be

consistent with the LHC Higgs data. The 68.27% (∆χ2 = 1) and 95.45% (∆χ2 = 4) CL

limits derived from Fig. 5.1-5.3 are summarized in Table 5.3, and also shown in Fig. 5.4.

These limits are comparable to those obtained in a recent model-independent global

fit [12], and much stronger than the direct search limits from associated production of

Higgs with Z [30, 31] as well as those derived from monojet searches [28].

Parameter BP1 BP2 BP3

1σ 2σ 1σ 2σ 1σ 2σ

ε < 0.07 < 0.16 < 0.15 < 0.24 < 0.15 < 0.25

tan β 12.0-38.8 6.9-38.8 14.5-31.6 5.7-31.6 12.3-29.1 5.6-29.2

Table 5.3: The 1σ and 2σ limits on the invisible Higgs BR and the MSSM tan β

parameter obtained from the marginalized plots (Fig. 5.1-5.3) for the chosen benchmark

points in SISM.
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Figure 5.4: 1σ and 2σ allowed contours in the ε - tan β plane from global analysis of

the Higgs data for the three benchmark points in our model. The black dots indicate

the best fit values of tan β and ε obtained from our analysis.

5.1.1 Constraining model parameters

An upper limit on the invisible Higgs branching ratio, as derived in Table 5.3 from

a global analysis of the LHC Higgs data, can put an upper limit on the magnitude

of the Dirac Yukawa coupling in the model. To illustrate this, we show in Fig. 5.5

the variation of the invisible Higgs branching fraction as a function of the Yukawa

parameter, (yν)11. This plot is obtained for a fixed A0(∼ −2.8 TeV) and fixed BMR

and BµS
as given below Eq. 4.2. However, other parameters are varied in the ranges

mentioned in Eq. 4.2. Note that, the invisible Higgs BR is insensitive to other entries

of yν . We obtain a spread of the points as during the scan the Higgs mass fluctuates a

little bit around its central value. Also the MR parameters vary which means that the

LSP mass is not fixed at a particular value. It roughly varies between 20 - 62 GeV,

and for most of the points, lie in the 30 - 62 GeV range. As can be seen from the plot,

the invisible Higgs branching fraction roughly grows with the Yukawa coupling in the

kinematically allowed region. Thus an upper limit on the Dirac Yukawa coupling in
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Figure 5.5: The invisible Higgs branching fraction as a function of the Dirac Yukawa

coupling. The 1σ and 2σ upper limits on the invisible branching fraction derived earlier

are also shown.

the model follows from the upper limit on ε, as can be read off from the 1σ and 2σ lines

in Fig. 5.5. Note that the upper limit of order of 0.10 on yν derived from this analysis

is stronger than those derived from the Higgs visible decay [46] for a heavy neutrino

mass larger than the Higgs mass. Comparable limits on yν in similar TeV scale seesaw

models are obtained from charged-lepton flavor violating decays for the range of heavy

neutrino masses we have considered here [47, 48].

The bound on ε also constrains the allowed parameter space for the DM-nucleon

elastic scattering cross section in this model. This is shown in Fig. 5.6 which is basically

a zoomed-in version of Fig. 4.2 focusing on the light DM region and with only those

points obeying the 2σ(< 25%) limit on ε.
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Figure 5.6: Spin-independent cross section as a function of the sneutrino LSP mass for

the points satisfying the 2σ upper limit on the invisible Higgs BR. The circled points

also satisfy the relic density constraint.

As can be seen from the plot, all these points are just below the current sensitivity
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of XENON100 experiment, but can be completely probed by the future experiments

such as LUX and XENON1T.

5.1.2 Some benchmark points

Input parameter BP1 BP2 BP3

tan β 25 20 25

yν (0.095,0.090,0.090) (0.074,0.064,0.064) (0.0701,0.010,0.010)

MR (GeV) (192.7,1000,1000) (679.16,1000,1000) (798,1000,1000)

BµS
(GeV2) 10−4 10−4 10−4

BMR
(GeV2) 106 106 106

µS (eV)




0.55 6.06 1.92

6.06 107.86 87.97

1.92 87.97 116.73







11.25 38.73 12.29

38.73 213.51 174.15

12.29 174.15 231.08







17.30 307.19 97.46

307.19 8738.55 7127.59

97.46 7127.59 9457.73




Table 5.4: Benchmark values of tan β and the low scale neutrino sector parameters for

the chosen benchmark points in Table 5.2.

In Table 5.4 we present some benchmark values of the remaining model parameters

not shown in Table 5.2 as allowed by the invisible Higgs decay constraints. We have

chosen the neutrino sector parameters to be diagonal, except for µS which was fixed

by fitting the central global fit values of the neutrino oscillation parameters given in

Table 1.3. For illustration, we have assumed a normal hierarchy of neutrino masses

withm1 = 10−5 eV and the Dirac CP phase δ = 0 in the PMNS matrix. It is clear from

the choice of mSUGRA parameters in Table 5.2 that our low-energy MSSM particle

spectrum is consistent with the current limits from direct SUSY searches [49, 50]. We

also calculate the other low-energy observables in the flavor sector using SPheno and

in the DM sector using micrOMEGAs for the particle spectrum generated from SPheno

using the input values shown in Tables 5.2 and 5.4. These results, summarized in

Table 5.5, ensure that the chosen benchmark points are consistent with all the existing

collider, cosmological and low energy constraints listed in Table 4.1 (within their 3σ

allowed range, where applicable):
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Parameter BP1 BP2 BP3

mh (GeV) 124.69 125.79 125.78

ΩDMh
2 0.114 0.122 0.112

σSI (pb) 3.38× 10−10 5.26× 10−10 5.56× 10−10

δaµ 3.1× 10−10 2.5× 10−10 3.4× 10−10

δae 7.0× 10−15 5.7× 10−15 7.8× 10−15

BR(B → Xsγ) 2.9× 10−4 3.1× 10−4 3.1× 10−4

BR(Bs → µ+µ−) 3.7× 10−9 3.5× 10−9 3.6× 10−9

BR(µ→ eγ) 5.2× 10−22 1.1× 10−22 3.5× 10−22

BR(τ → eγ) 9.8× 10−21 2.1× 10−21 6.6× 10−21

BR(τ → µγ) 1.6× 10−16 3.5× 10−17 1.1× 10−16

BR(µ→ 3e) 1.1× 10−22 8.9× 10−25 2.7× 10−24

BR(τ → 3e) 6.8× 10−22 2.5× 10−23 7.7× 10−23

BR(τ → 3µ) 2.8× 10−16 3.0× 10−19 7.9× 10−19

|ηee| 3.67× 10−3 1.79× 10−4 1.16× 10−4

|ηµµ| 1.22× 10−4 6.18× 10−5 1.51× 10−6

|ηττ | 1.22× 10−4 6.18× 10−5 1.51× 10−6

Table 5.5: The Higgs boson mass, relic density, spin-independent cross section, anoma-

lous magnetic moments and the relevant low-energy flavor sector observables in the

SISM for the three chosen BPs.

5.2 Collider Analysis

The possibility of an invisible Higgs signature at the LHC has been explored both

theoretically [21–29] and experimentally [30,31,51]. These studies show that the most

promising Higgs production channel for detecting an invisibly decaying Higgs is the

vector boson fusion (VBF), and the next promising channel is its associated production

with Z. In the VBF channel, Higgs is produced from vector bosons originated by

radiation off two initial state quarks along with two jets, and subsequently decays into

invisible final states: pp → qqh → qq +��ET . Thus the final state consists of two jets

widely separated in rapidity together with large missing transverse energy. In the Zh

associated production channel, the Z decays into two oppositely charged leptons and

the Higgs decays invisibly: qq̄ → Z + h → ℓ+ℓ− +��ET . Note that the leptonic decay

channel of Z is known to be cleaner than its hadronic counterpart with b-jets. One can

also look for an associated Wh production where W decays leptonically to give rise to
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a ℓ+��ET final state. However, the signal acceptance efficiency in this channel is found

to be very small, and hence, the corresponding exclusion limit is much worse than that

from the Zh channel [52].

In addition to these channels, the dominant Higgs production channel at the LHC,

namely, gluon-gluon fusion (ggF), can give rise to a monojet+large ��ET signal with

the jet coming from initial state radiation and Higgs decaying invisibly. But the QCD

background for this process is too large, and moreover, it is hard to isolate the new

physics effects only for the Higgs invisible decay since these effects could also show up

in loops to modify the ggF production cross section. The
√
s = 7 TeV search results in

this channel [53,54] were translated to a weak upper limit on ε < 0.4 - 0.6 [28] depending

on the jet pT threshold selection. Finally, the other relevant Higgs production channel,

namely in association with top pairs, has a much smaller cross section [15], and involves

complex final states which require a very sophisticated analysis. Therefore, we will

focus on the VBF channel with 2 jets+��ET final states and the Zh channel with ℓ+ℓ−+

��ET final states for the collider analysis of invisible Higgs signature in our model. We

show our analysis results for
√
s = 14 TeV LHC.

5.2.1 Event generation

The SUSY particle spectrum is generated using SPheno. The SLHA files are then fed

to PYTHIA (version 6.409) for event generation. The initial and final state radiation of

quarks and gluons, multiple interactions, decay, hadronization, fragmentation and jet

formation are implemented following the standard procedures in PYTHIA. The factoriza-

tion and renormalization scales µR and µF respectively are both set at the parton-level

center of mass energy
√
ŝ. We have used the CTEQ6L parton distribution functions in

our analysis. The jets with pT > 20 GeV and |η| < 4.5 have been constructed using

the cone algorithm via PYCELL. To simulate detector effects, we take into account the

smearing of jet energies by a Gaussian probability density function [55].

Following are the selection cuts that we have used to find the final state leptons

and jets:

• For final state electrons and muons we use pT > 15 GeV and pT > 10 GeV

respectively. For both, we take |η| < 2.4.

• Lepton-lepton separation ∆Rℓℓ > 0.2, where ∆R =
√
(∆η)2 + (∆φ)2.

• Lepton-jet separation ∆Rℓj > 0.4.

• Scalar sum of ET deposits by hadrons within a cone of ∆R ≤ 0.2 around a lepton

must be less than 0.2pℓT to ensure lepton isolation.
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• Jet-jet separation ∆Rjj > 0.4.

Depending on the hadronic or leptonic signal final states for different Higgs boson

production channels, we use specialized selection criteria, as discussed below.

5.2.2 The VBF channel

In this case, the two leading high pT jets in the final state are produced in forward and

backward directions with rapidities opposite in sign and widely separated. Also due to

the invisible decay of the Higgs, one expects a large amount of missing energy. These

features largely help to reduce the SM background. The dominant SM background for

this signal can come from:

(i) W+ jets, where W decays leptonically and the lepton escapes detection.

(ii) Z + jets, where Z decays into two neutrinos.

(iii) mismeasured QCD events giving fake missing energy.

The contributions from non-VBF processes, for instance, from hard QCD production

of a single Higgs or a Higgs with associated quarks and gluons, must also be taken

into account for the signal. Despite its poor efficiency to pass the background reducing

cuts, due to its large production cross section the ggF channel can contribute 4-5% of

the VBF signal [56, 57]. The following cuts have been used to reduce the background:

• Absolute rapidity difference between the two leading jets, |ηj1 − ηj2| > 4.0. To

ensure that the two jets are produced in forward and backward directions, we

require ηj1 · ηj2 < 0.

• A jet veto with pT > 40 GeV in the central region since we do not expect any

jets in the rapidity gap of the two jets for a pure VBF process. We discard jets

with |η| < 2.5

• Invariant mass of the two leading jets, Mjj > 1.8 TeV .

• A ��ET cut of 100 GeV.

The ��ET and Mjj cuts reduce the background efficiently, and also reduce the QCD

contributions significantly. We note here that two additional cuts have been occasion-

ally used in the literature for isolating events with invisible final states. These are

∆φ(j,��ET ) and ∆φ(j1, j2). We have checked that these cuts reduce the signal cross

section too much in our case. Therefore, we have dropped them and used the optimal

set of event selection criteria mentioned above.

The cross sections for the signal corresponding to the benchmark points chosen

earlier as well as dominant backgrounds coming from W + n-jets and Z + n-jets
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(n = 0, 1, 2, 3) are shown in Table 5.6. The background events were generated us-

ing Alpgen at the partonic level and then passed to PYTHIA for showering. While

interfacing, we have incorporated the MLM [58] prescription to match between the hard

jets generated by Alpgen and the soft radiation jets generated by PYTHIA in order to

avoid double counting. Since the background channels have huge inclusive cross sec-

tions, we generated at least ∼ 107 unweighted events for all the channels in Alpgen

in order to get proper convergence. For the signal cross section, we show the values

obtained for VBF as well as for other hard processes gg → h, qq̄ → gh, qg → qh and

gg → gh. It is clear that, despite the large production cross section, contributions to

Channel Production cross section (pb) Cross section after cuts (fb)

BP1 (VBF) 3.76 0.99

BP1 (others) 125.9 0.16

BP2 (VBF) 3.72 1.55

BP2 (others) 125.4 0.25

BP3 (VBF) 3.73 1.72

BP3 (others) 125.7 0.25

W + n-jets 56848.54 46.57

Z + n-jet 10198.72 24.90

Table 5.6: Final cross sections obtained for all the signal and SM background channels

for a 14 TeV LHC run. For the background channels, the cross sections in the 2nd

column are those of the final states, i.e, W and Z decays into lepton-neutrino and

two neutrino channels respectively. The cross sections in the 3rd column are the ones

obtained after all the selection and background reduction cuts. n-jets corresponds to

0, 1, 2, 3 jets combined result.

the signal coming from channels other than VBF channel are very small after apply-

ing all the cuts. Also the SM backgrounds are hugely suppressed after all the cuts,

optimized for a good signal significance, S√
S+B

, where S and B stand for the signal

and background strengths respectively. From Table 5.6, we find that for BP1 with the

maximum (2σ allowed) invisible branching ratio εmax = 0.16 for the Higgs, we obtain

a 3σ signal significance at 500 fb−1 whereas for BP2 and BP3 with εmax = 0.24 and

0.25 respectively, we can obtain a 3σ significance at 200 fb−1.
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5.2.3 The Zh channel

In this channel, we are interested in the leptonic decay of Z leading to a same-flavor,

opposite-sign dilepton plus large missing energy from the invisible decay of the Higgs

boson. The dominant SM background in this case comes from:

(i) WW production, where both the W ’s decay leptonically.

(ii)WZ production, where Z decays into two charged leptons and W into a charged

lepton and neutrino, and one charged lepton misses detection.

(iii)ZZ, where one Z decays into two charged leptons and the other into two neutrinos.

(iv)tt̄ production followed by t→ Wb, where both the W ’s decay leptonically and the

b-jets escape detection.

We use the following cuts to reduce the SM background:

• A jet veto with pT > 20 GeV and |η| < 4.5 since the signal consists of no jets.

• Dilepton invariant mass |MZ −Mℓℓ̄| < 10 GeV since the two charged leptons in

the final state come from Z-boson decay.

• Di-lepton transverse massM ℓℓ
T ≥ 150 GeV, whereM ℓℓ

T =
√
pℓℓT��ET [1− cosφ(pℓℓT ,��ET )].

This is because the Z-boson and the Higgs are more likely produced back-to-back

for the signal, thus leading to a harder transverse mass distribution for the di-

lepton system, as can be seen from Fig. 5.7.
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Figure 5.7: Normalized transverse mass distribution for the di-lepton system in the Zh

signal and combined SM background events at 14 TeV LHC.

• ��ET > 100 GeV since the signal is expected to have a harder ��ET distribution, as

verified by Fig. 5.8.

Table 5.7 shows the production cross sections and final cross sections after all the

cuts for the signal corresponding to the chosen benchmark point as well as for the SM
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Figure 5.8: Missing transverse momentum distribution of the Zh signal and combined

SM background events at 14 TeV LHC.

Channel Production cross section (pb) Cross section after cuts (fb)

BP1 0.53 0.35

BP2 0.51 0.51

BP3 0.51 0.52

WW 76.51 0.38

ZZ 10.58 7.77

WZ 28.95 8.83

tt̄ 370.20 0.92

Table 5.7: Cross sections obtained for all the signal and SM background channels for

14 TeV LHC. The 2nd column shows the production cross sections for various channels

and the 3rd column after all the selection and background reduction cuts.

background. As can be seen from Table 5.7, this channel has a huge SM background

which can easily dominate over the signal events. The signal significance factor is quite

low in this case for all the benchmark points. For BP2 and BP3 with a maximum

invisible BR of Higgs ε ∼ 0.25, the signal can achieve a significance of 3σ only at

600 fb−1 luminosity, whereas for BP1, to get such significance, we need to go beyond

1300 fb−1 at 14 TeV center of mass energy.

The reason for better LHC detection prospects for BP2 and BP3 compared to BP1

can be understood by comparing their corresponding particle spectra. The invisible

Higgs branching ratio ε depends on the masses of the Higgs, LSP sneutrino and the

Higgs-sneutrino-sneutrino coupling. Since the masses of the parent and daughter par-

ticles are almost identical for all the three cases, what makes the difference in the

invisible decay width is the coupling which depends on the amount of mixing of the
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singlet sneutrinos with the left-handed ones. The singlet components dominate the

lightest sneutrino mass eigenstates for all the three benchmarks because of the large

BMR
term in the off-diagonal of the sneutrino mass matrix given by Eq. 2.13. This

parameter does not change for the three benchmark points and as a result, the right-

handed components are not expected to vary much from BP1 to BP3. However, these

components also depend on the matrices m2
N , m

2
S and MR. Here m

2
N and m2

S scale as

m2
0. Now from BP1 to BP3, m0 keeps decreasing and MR keeps increasing. Hence the

diagonal terms in Eq. 2.13, although comparable, keep increasing slightly. This brings

down the right-handed contribution in the lightest state by a very small amount from

BP1 to BP3 (to be precise, the component comes down from 0.716 to 0.710). On the

other hand, as the absolute value of the trilinear term Aν in Eq. 2.13 decreases from

BP1 to BP3, it brings down the left-component and increases the right-handed compo-

nent. As a result of these competing effects, the left-component of the sneutrino LSP,

and hence, the Higgs invisible decay width increases from BP1 to BP3, thus enhancing

the LHC detection prospects.

Let us emphasize on an important distinction of our scenario from similar signals

in the MSSM with a neutralino LSP which could otherwise obliterate the distinct

collider signals of our model. As already pointed out in the previous chapter, the

pure cMSSM case can be distinguished from the SISM case by studying the same-sign

dilepton+jets+��ET signal which is enhanced in the SISM case. Also the SISM case

has a much harder��ET tail compared to the cMSSM case which can be used as another

distinguishing feature of our model. Finally, the “residual MSSM backgrounds” can

be reduced/removed by studying the effective mass distribution of the events, defined

as the scalar sum of the lepton and jet transverse momenta and missing transverse

energy:

Meff =
∑

|pℓT |+
∑

|pjT |+��ET . (5.5)

Taking into account the current limits on the sparticle masses, the Meff distribution of

events arising from sparticle production will be considerably harder in the pure MSSM

case than in our case. Note that the cascade decays involving chargions can also be

used to measure the mass of the sneutrino LSP at the LHC applying the mT2 endpoint

technique [59].

5.3 Results in the light of updated LHC data

The signal strength(µ̂) values used in this analysis in different Higgs boson decay

channels have been updated both by ATLAS [60,61] and CMS [62–65] collaborations.
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The µ̂ values have changed particularly for γγ and τ τ̄ final states. The numbers are

closer to 1 which is their SM value and the error bars on them have also reduced.

This new data set indicates increase in the branching fractions of the SM decay modes

and decrease in any non-standard decay BR of the Higgs boson. Naturally, a χ2

analysis with this new data set may put more stringent limit on ǫ which would rule

out our benchmark points. However, even with a smaller ǫ our analysis is still valid.

The coupling of the sneutrino DM with the Higgs boson should be reduced to lower

the invisible decay BR. As a result, we need to get closer to the s-channel resonance

to produce correct relic density. With a smaller ǫ, the limit on (Yν)11 will be more

stringent. Therefore, the cross-sections of both the final states originating from VBF

and Zh production channels are expected to be reduced. Consequently, we require

increased luminosity at the LHC to probe the scenario. Rest of our conclusions remain

unchanged.

5.4 Summary

A light scalar DM in SISM leads to the possibility of the lightest CP even Higgs

boson in the MSSM decaying invisibly into two such DM particles induced by a soft

trilinear coupling. We have explored this possibility in details by performing a global

χ2-analysis of all the available LHC Higgs data so far, and derive 2σ (1σ) upper limits of

0.25 (0.15) on the invisible Higgs decay branching ratio in this scenario. These in turn

put upper limits of order 0.1 on the Dirac Yukawa coupling in this model. We further

show that the model parameter space allowed by the invisible Higgs decay branching

ratio limits is fully accessible in the near future DM direct detection experiments such

as LUX and XENON1T, and can be ruled out completely in case of a null result from

these experiments. Finally, we have explored the prospects of the invisible Higgs decay

signature at the
√
s = 14 TeV LHC for a chosen set of benchmark points. We find

that a signal significance of 3σ can be achieved in the VBF channel with an integrated

luminosity as low as 200 fb−1, whereas in the Zh channel, it requires a luminosity of

at least 600 fb−1 for our chosen benchmark points.
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Chapter 6

Conclusion

In Chapter 1, we discussed in brief about the foundations of the Standard model of

particle physics and its immense success rate in describing the particle phenomena

experimentally observed so far. Recent discovery of its last missing piece, the Higgs

boson, makes it a complete theory. However, there still remain some very serious issues

which need the introduction of some beyond the SM physics. We have considered

Supersymmetry as the best possible new physics model because over the years, among

all the BSM candidates, SUSY has remained phenomenologically the most interesting

one. In Section 1.2, we give a brief introduction to supersymmetry and discuss briefly

about the minimal supersymmetric extension of the SM, known as the MSSM which

answers some major issues unanswered in SM. Among all the unresolved issues in the

SM, in this thesis we mainly concentrate on the neutrino mass and mixing phenomena

and the existence of DM. However, even the MSSM in itself is not the complete theory

as under R-parity conserving scenario, the neutrinos still remain massless. Therefore,

such a scenario requires further inclusion of neutrino mass generation mechanisms to

account for neutrino oscillation data. In Section 1.3, we discuss about the neutrino

oscillation data and various neutrino mass generation mechanisms. We also give a

brief introduction to the DM, its experimental detection techniques and the present

search status in Chapter 1.4. R-parity conservation is preferred from the DM point of

view as this symmetry prevents the LSP to decay further making this a natural choice

DM candidate. However, present experimental bounds suggest that within the cMSSM

scenario neither a neutralino nor a left sneutrino are good light DM candidates. Hence

we consider a singlet sneutrino as the DM candidate in the supersymmetric inverse

seesaw mechanism in order to address both the neutrino oscillation and DM issues.

This seesaw mechanism introduces at least one pair of singlet superfields in the model

with opposite sign lepton numbers assigned to them. The minimal version of the model,

referred to as MSISM in this text, contains just one pair of such singlet superfields which
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can induce a tiny non-zero mass to one of the active neutrinos by means of a small

(∼ keV) lepton number violating parameter, µs. Another neutrino gains a non-zero

mass at one loop level to take into account the neutrino oscillation data acquired so far.

We have also considered a not so minimal account of the model, referred to as SISM,

where one adds three pairs of singlet superfields, one for each generation, instead of

just one. The advantage of this scenario is that the neutrino oscillation data can be

explained at the tree level itself as one can now accommodate two non-zero neutrino

masses in the model without going to the one loop level. Of course, the neutrino

masses will receive finite correction terms from the loop contributions. However, these

contributions can be rendered negligible by keeping relevant neutrino sector parameters

(Bii
µS
) small, which do not affect the DM or collider aspects of the model.

Since the small µs parameter is responsible for the smallness of the neutrino masses

in both the scenarios, one can have a ∼ 0.1 Yukawa coupling and also keep the seesaw

scale at TeV range. These features of the model make it phenomenologically rich. It

can provide enhancement over the MSSM case in certain signals being studied presently

at the LHC. The lightest sneutrino state which is mostly singlet with a small admixture

of the doublet components, can be made the lightest supersymmetric particle (LSP)

that contributes to the missing energy in a collider search. We have studied different

possible signatures of the model that can be seen at the LHC. Also as a consequence of

considering R-parity conserving scenario, the sneutrino LSP state can serve as a good

DM candidate. A mixed sneutrino state which is dominantly singlet proves to be a

very good light scalar DM.

In Chapter 3, we consider the MSISM scenario and explore the feasibility of search-

ing such a model at the LHC in the trilepton channel associated with missing energy.

Charginos, in addition to their MSSM decay modes, can also decay into a charged

lepton and a dominantly singlet sneutrino. We have let the lighter chargino state to

decay into a charged lepton and the sneutrino LSP. The decay patterns of the chargino

into this mode are controlled by the parameters which also generate the neutrino mix-

ing angles. As a result, the ratio of these new decay branching fractions into different

charged lepton flavors correlate with the neutrino mixing angles. We have considered

the ratio of the branching ratios of χ̃±
1 decaying into µ and τ channels and observe

that this ratio shows a sharp correlation with tan2θ23, θ23 being the atmospheric neu-

trino mixing angle. A correlation like this can connect neutrino oscillation data to the

collider search for the correct neutrino mass generation model. We have explored this

situation in the context of LHC in gaugino pair production channel. We have consid-

ered pair production of χ̃0
2 and χ̃

±
1 and subsequent generation of a trilepton signal from

their cascade decays at the LHC. The SUSY mass spectrum was generated accordingly
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to suit our purpose. We have made χ̃0
2 decay into a charged lepton-slepton pair, the

slepton further decaying into a charged lepton and the lightest neutralino which then

decays into a neutrino and the LSP sneutrino. The χ̃±
1 on the other hand decays into a

charged lepton and sneutrino LSP. Hence an opposite sign same flavor charged lepton

pair is always originated from the χ̃0
2 decay whereas the other charged lepton comes

from the χ̃±
1 decay. Since we have considered χ̃±

1 decaying into µ and τ channels, the

cascade decays always yield a 3ℓ+��ET or a 2ℓ+ τ−jet +��ET final state, where ℓ = e, µ.

We have carried out detailed collider analyses of the above mentioned signals at

the LHC for both 7 TeV and 14 TeV center of mass energies in specific benchmark

scenarios. The signal and background event cross-sections obtained after applying suit-

able cuts indicate that the parameter space of the model will be severely constrained

if such a trilepton signal is not found at the LHC. We also observe that the correlation
σ(pp→µ

∑
ℓℓ+✚ET )

σ(pp→τ
∑

ℓℓ+✚ET )
vs. tan2θ23 persists even after all the selection and background reduc-

tion cuts are applied. We obtain different slopes of the correlation plots corresponding

to the different benchmark points as a result of choosing a non-uniform τ detection

efficiency which varies with transverse momentum, pT of the τ−jet. Different slopes for

different benchmark points reduce the predictability of the model. However, once we

take an uniform τ detection efficiency, the correlation plot appears to provide a unique

slope and thus making this a general feature of the model. Value of the slope might

change if one takes a different set of cuts but non-observation of any such correlations

at the LHC can rule out such scenarios.

As discussed in section 1.4, a left-handed sneutrino in MSSM is not a good light

DM candidate. Hence we look out for a mixed sneutrino state which is dominantly

singlet with a small admixture of the left-handed component as a DM candidate. In

Chapter 4, we consider SISM within the cMSSM framework to explore this possibility.

We observe that, the LSP sneutrino in the model can be as light as ∼ 50 GeV serving

as a perfect DM candidate. The state is mostly singlet as a significant contribution

coming from the left-handed component can enhance the direct detection cross-section

alarmingly. We have carried out a detailed scan in the cMSSM as well as the neutrino

sector parameter space to examine the general feature of the DM observables in this

scenario. The DM pair annihilates mostly into a fermion pair mediated by the Higgs

bosons. Our choice of the parameter space pushes all the Higgs boson masses close

to the TeV range apart from the CP-even state at 125 GeV. Hence the Higgs boson

mediated s-channel process is the all important annihilation channel for the DM pair

in this scenario. We observe that it is not possible to achieve enough annihilation to

produce right relic density in this model in the mass region below 50 GeV. The DM

with mass lying close to the value mh/2 produces enough pair annihilation through
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s-channel resonance process to yield correct relic density. On the other hand, there is

also another DM mass zone, around 100-150 GeV, where the relic density constraint

is satisfied due to new annihilation channels with WW , ZZ or hh final states opening

up. Whereas the direct detection cross-section in the 100-150 GeV mass region is a

bit too large and is partially ruled out by the latest LUX result, there is still a sizable

parameter space left in the 50-60 GeV mass region that will be probed by the future

run of the LUX and XENON1T experiments.

We choose some suitable benchmark points from our scan satisfying various collider

and low energy experimental constraints and perform a detailed collider analysis in the

same-sign dilepton + n-jets +��ET channel, where n≥ 2. The dominating contribution

to this signal comes from gluino pair production channel, where the gluinos decay into

a quark-squark pair, the squarks subsequently decaying into a quark and the lighter

chargino. As a consequence of having a gluino pair, it is possible to produce same-sign

charginos on both the branches. The charginos then decay into a charged lepton and the

LSP sneutrino to boost the same-sign dilepton signal rate associated with large missing

energy and a number of jets. A similar signal can arise within the MSSM scenario with

the usual neutralino LSP. The charginos in that case decay dominantly into a charged

lepton and a left-handed sneutrino. Hence it is necessary to differentiate between the

two scenarios. We, therefore, generated similar cMSSM spectrum with the same high

scale inputs as our benchmark points and looked for the same signal. We observe

that the SISM case has a much harder ��ET spectrum compared to the cMSSM case.

This feature helps to differentiate between the two scenarios and also to reduce the SM

background largely. To manifest our result we have constructed a variable ’r’ which is a

ratio between the cross sections σ(ℓ±ℓ±+ ≥ 2j+��ET ) and σ(0ℓ+ ≥ 3j+��ET ). This ratio

is enhanced in the SISM case as due to the presence a large Dirac neutrino Yukawa

coupling, the chargino dominantly decays into a charged lepton and a LSP sneutrino,

which is bound to produce two leptons in the final state, whereas in cMSSM, there are

other dominant decay modes as well for the chargino that may not produce same-sign

dilepton in the final state. We observe that the ratio is indeed 4-5 times larger than

the same obtained in cMSSM case.

In Chapter 5, we probe the 50-60 GeV DM mass region of SISM further in invisible

Higgs decay channel. Since the discovery of the 125 GeV scalar at the LHC, different

measurements of its couplings and decay modes have been going on to confirm if this

indeed is the SM Higgs boson. Although the recent results are pointing towards a SM

Higgs boson, there still remain some discrepancy in the measurement of its couplings,

making room for non-standard Higgs boson decay modes like an invisible one. The

direct search limits on the invisible Higgs decay branching ratio obtained by both
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ATLAS and CMS collaborations are much relaxed. On the other hand, a global χ2

minimization with the Higgs boson signal strength measurements in different decay

modes produces far more stringent constraint on the branching ratio of the invisible

decay mode. Hence we performed a 2-parameter global χ2 minimization to ascertain

how much invisible Higgs decay width is allowed after taking into account all the

signal strength values provided by ATLAS and CMS collaborations. We observe that

although the best-fit value of the invisible BR lies very close to zero, allowing a 2σ

range puts an upper limit of 25% on this non-standard decay mode. The 2σ bound on

the invisible BR is taken more seriously than the best-fit value obtained from the χ2

analysis because there are uncertainties involved in calculating the Higgs production

cross-section and its various decay widths. We take this bound as another constraint

to study the SISM parameter space. We notice that the parameter space is further

reduced by a significant amount by this constraint. Nevertheless, one can still have a

sneutrino DM candidate with a mass just belowmh/2 satisfying all the DM and collider

constraints simultaneously giving rise to a new invisible decay mode for the SM-like

higgs boson with a non-negligible BR. We find a few benchmark points to explore the

scenario at the LHC.

The Direct search for invisible Higgs boson decay have been carried out mainly in

two Higgs boson production channels: VBF and Z-boson associated production chan-

nels. Another associated production channel Wh has irreducible SM background. In

VBF Higgs boson production channel, the final state consists of two jets associated

with missing energy. For the Zh production channel, we only study the leptonic chan-

nel where the Z-boson decays into opposite sign dilepton pair and the Higgs boson

decays invisibly. In VBF channel, the two jets are produced in forward and backward

directions with a large rapidity gap. Also the invariant mass of the two jets is large.

These factors help to reduce the SM background more efficiently than in the Zh pro-

duction channel. We observe that in VBF production channel, the scenario can be

probed at the LHC with 14 TeV center of mass energy at 200 fb−1 luminosity whereas

for the Zh production channel one needs a luminosity of 600 fb−1.

In a nutshell, inverse seesaw, like other seesaw mechanisms, is a very efficient way

to generate tiny non-zero masses for the neutrinos as well as producing appropriate

mixing between the neutrino states to account for neutrino oscillation data. Inverse

seesaw model is also phenomenologically very rich mainly because in this scenario, one

can have a large (∼ 0.1) Dirac neutrino Yukawa coupling and a sub-TeV seesaw scale

simultaneously. The SUSY implementation of inverse seesaw, called MSISM/SISM not

only takes into account the neutrino oscillation data, but also has a DM candidate

which is light (50 GeV) and satisfies all the DM, collider and low energy experimental
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constraints existing so far. The model can have some unique signatures at the LHC

that we have explored. We have also proposed ways to differentiate this scenario from

similar signatures that can be obtained in cMSSM/mSUGRA scenario without inverse

seesaw. Although some of the benchmark points we present in this thesis have been

ruled out due to non observation of SUSY at the collider to date, but the search

strategies for SUSY scenarios with heavier sparticles remain unchanged. In addition,

there are also some predictions based on the model for a 14 TeV LHC run, which are

to be probed in the coming years.
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