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We study the critical dynamics of the second-order chiral phase transition in massless two-flavor
QCD under an external magnetic field. We show that inclusion of the chiral magnetic wave in the
low-energy modes, which is dictated by the chiral magnetic effect, modifies its dynamic universality
class to model A from model E.
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1. Introduction

One of the big aims of the Beam Energy Scan program at Relativistic Heavy Ion Collider (RHIC)
is the search for the QCD critical point; see Ref. [1] for a review. One most important property at-
tached to the QCD critical point is the dynamic universality class and the dynamic critical exponents.
It has been previously found that the dynamic universality class of the QCD critical point at high
temperature T at finite baryon chemical potential µB with finite quark mass mq is the same as that of
model H [2–5] within the conventional classification by Hohenberg and Halperin [7]. On the other
hand, the second-order chiral phase transition in massless two-flavor QCD at finite T and µB = 0
is the same as that of O(4) antiferromagnet [8]. This difference originates from the presence of the
massless pions and the absence of the mixing between the chiral condensate and the baryon number
density in the latter [4].

Meanwhile, it is expected that a gigantic magnetic field is produced in noncentral heavy-ion colli-
sions, which may potentially affect the QCD critical dynamics as well. Of particular relevance among
others is the anomaly-induced transport phenomena in the magnetic field, called the chiral magnetic
effect (CME) [9–11] and the chiral separation effect (CSE) [12, 13], and the resulting propagation
wave of the vector and axial charges, called the chiral magnetic wave (CMW) [14, 15].

In this proceedings, we report on our recent study of the dynamic universality class of the second-
order chiral phase transition in massless two-flavor QCD in the magnetic field [16]. We demonstrate
that the presence of the magnetic field with or without the CME modifies the dynamic universality
class as shown in Table I. (Here C is the transport coefficient of the CME defined in Eq. (5).)

Table I. Summary of dynamic universality classes (massless two-flavor QCD).

B = 0, C = 0 [8] B , 0, C = 0 B , 0, C , 0
O(4) antiferromagnet model E model A
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2. Formulation

We consider massless two-flavor QCD in the presence of the magnetic field B. In this case,
chiral symmetry is explicitly broken down to G ≡ U(1)3

V × U(1)3
A, and the action is invariant under

q → q′ = eiαVτ
3
eiαAτ

3γ5
q. Due to this explicit chiral symmetry breaking, charged pions become

massive, and the order parameter of the chiral phase transition is given by the two-component field
composed of the chiral condensate and neutral pion, {ϕα} = {q̄q, q̄iγ5τ3q} (α = 1, 2). To describe
the low-energy dynamics near the second-order chiral phase transition, we also take into account the
conserved charge densities associated withG, i.e., the isospin density n = q̄γ0τ3q and the axial isospin
density n5 = q̄γ0γ5τ3q as low-energy degrees of freedom. Then, the generalized Lagevin equations
for ϕα, n, and n5 with macroscopic dissipation are given by [16]

∂ϕα(r, t)
∂t

= −Γ δF
δϕα(r, t)

− g
∫

dr′
[
ϕα(r, t), n5(r′, t)

] δF
δn5(r′, t)

+ ξα(r, t), (1)

∂n(r, t)
∂t

= λ∇2 δF
δn(r, t)

−
∫

dr′
[
n(r, t), n5(r′, t)

] δF
δn5(r′, t)

+ ζ(r, t), (2)

∂n5(r, t)
∂t

= λ5∇2 δF
δn5(r, t)

− g
∫

dr′
[
n5(r, t), ϕα(r′, t)

] δF
δϕα(r′, t)

−
∫

dr′
[
n5(r, t), n(r′, t)

] δF
δn(r′, t)

+ ζ5(r, t), (3)

where F = F[ϕα, n, n5] denotes the Ginzburg-Landau-Wilson functional obtained by the systematic
expansions with respect to ϕα, n and n5 and their derivatives; ξα, ζ, and ζ5 denote the noise terms that
are assumed to satisfy fluctuation-dissipation relations (FDR). We here omit the explicit forms of F
and the FDR, since they are not important in the following arguments (see Ref. [16] for the details).

The essential ingredient in our analysis is the following Poisson brackets (PBs) resulting from
the classical limit of the corresponding quantum commutators:[

n5(r, t), ϕα(r′, t)
]
= εαβϕβδ(r − r′), (4)[

n(r, t), n5(r′, t)
]
= CB · ∇δ(r − r′). (5)

Here εαβ denotes the antisymmetric tensor, and C denotes the coefficient of the CME, which is related
to the anomaly coefficient away from the second-order chiral phase transition, C = 1/(2π2). Note
that Eq. (4) represents the symmetry at the classical level while Eq. (5) is postulated based on the
anomalous commutation relation concerning the triangle anomalies in quantum field theories [17,18]
and the CME [19], so that the CME is introduced into the Langevin theory.

3. Renormalization group analysis

In order to apply the renormalization group (RG) analysis to the classical stochastic dynamics
considered in the previous section, we convert the generalized Langevin equations into the path-
integral formalism originally developed by Martin-Siggia-Rose, Janssen, and de Dominicis (MSRJD)
[20–22]. Then, we can employ the usual techniques in field theory, such as the perturbation theory
(with respect to the small anomalous dimension ϵ = 4−d), Feynman rules, and the RG equations. We
however note that one of the differences from the usual relativistic field theories is that the character-
istic frequency is also rescaled as ω → ω′ = bzω under RG. Here, b is the scale factor, and z is the
dynamic critical exponent. We derive the RG equations for the following dimensionless parameters:

f ≡ g2Λ−ϵ

8π2λ5Γ
, w ≡ Γχ

λ
, w5 ≡

Γχ5

λ5
, h ≡ C|B|

√
λλ5Λ

, (6)
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and look into fixed-point solutions. Here, χ and χ5 are the isospin and axial isospin susceptibilities
defined by χ ≡ ∂n/∂µ and χ5 ≡ ∂n5/∂µ5, respectively, and Λ is the momentum cutoff. In Fig.1, we
show certain sections of the RG flow diagrams in which two of the parameters, (w, h2) or ( f ,w5), are
fixed.
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Fig. 1. Flow diagrams at ϵ = 1. They are obtained by plotting the beta functions (βx(x, y), βy(x, y)) as vector
fields on the (x, y) = ( f ,w5), (w, h) plane with fixing other parameters on the top.

When the CME is absent (C = 0 with fixed B), the stable and unstable fixed points (i) and (ii) are
obtained as shown in Fig. 1(a). Since (w, h2) = (0, 0) in this case, the critical dynamics is determined
by the two-component order parameter field ϕα and the conserved density n5 in the presence of the
PB (4). These hydrodynamic variables can be mapped into those of the system described by model E,
which is the same universality class as that for the magnetization (mx,my) on the easy xy-plane and
the conserved magnetization along the z direction, mz with finite PB among them [7].

When the CME is taken into account (C , 0 with fixed B), the fixed point (i) becomes unstable
as shown in Fig. 1(b). Eventually, RG flows approach the fixed point (iii) or (iv), as one can find in
Figs. 1(c) and (d). The former and latter fixed points correspond to the cases w ≫ h2 and w ≪ h2,
respectively. Using the expression h2/w ∝ C2/λ5, the transition between these two cases is dictated
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by the competition between the diffusion of n5 (ω ∝ −ik2) and the propagation of the CMW (ω ∝ |k|),
with k being the characteristic momentum. Because higher derivative terms are irrelevant in the usual
RG sense, the fixed point (iv) is more relevant than the fixed point (iii). Furthermore, one finds that
the self-energy of the order parameter field ϕα, induced by the internal propagation (loop) of the
conserved densities n and n5, vanishes at the fixed point (iv) while it is some nonzero constant at the
fixed point (iii); see Eq. (4.36) of Ref. [16]. Recalling that the CMW is the propagating wave of n
and n5, this vanishing self-energy means that not only n but also n5 is decoupled from the critical
dynamics. Therefore, the dynamic universality class in this case is model A [16] which is dictated by
the dynamics of the order parameter alone [7].

4. Conclusion

We demonstrated that the presence of the CMW modifies the dynamic universality class of the
second-order chiral phase transition in a magnetic field into that of model A. As the magnetic field
in heavy ion collisions is expected to decay rapidly, it would be interesting to study the crossover
between the two regimes B = 0 (O(4) antiferromagnet) and B , 0 with the CME (model A).
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