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Introduction 

There exist several views of the concept of reducibility and of decomposability in algebra. 
Reducibility of matrix groups and of groups of linear operators is now about a century old 
and forms a background for reducibility theory of representations which found its appli- 
cations in determination of selection rules and classification of spectra. The reducibility 
in physics is usually the reducibility of linear spaces under the action of some symmetry 
groups and over the field R of real numbers; the so-called physically irreducible repre- 
sentations are exactly representations irreducible over R. The results of more general 
reducibility theory which includes reducibility of Z-modules are exposed in the book of 
Curtis and tteiner [1]; let us only remind that reducibility over fields is equivalent to 
decomposability which is not true over the rings. The translation subgroups of space 
groups are exactly ZG-modules and arithmetic classes (G, T) may be either reducible or 
irreducible; a reducible class may still be either indecomposable at all or its reducibility 
and decomposability patterns may not coincide. Reducibility of arithmetic classes implies 
a certain reducibility of space groups. Though reducibility patterns over various fields are 
given already in the book on four-dimensional space groups [2], this implication has been 
considered much later [3,4,5,6]. We want to show now that the concept of reducibility 
and the results of its theory for space groups, especially the factorization and intersection 
theorem can be applied as well to more general cases of Euclidean and even affine groups. 

Extension of  the concept of  the reducibility of  space groups 

We denote by E(rt) an Euclidean space and by V(n) its difference space, the orthogonal 
vector space,, where 7t is the dimension. Then every Euclidean motion can be expressed 
by Seitz symbol {glt}p with respect to a certain origin P and every Euclidean motion 
group Q by a symbol {G,T,P, uG(g)}, where G is a subgroup of the orthogonal group 
O(n) acting on V(n), T is a G-invariant translation subgroup of V(n) and uo(g) the 
system of nonprimitivc translations. By the latter we mean a function ua : G --~ V(n) 
which satisfies Frobenius congruences: 

wG(g, h) = uG(g) + gum(h) - u~(gh) = 0 rood T. 

We can extend the concept of arithmetic class (G, T) to any kind of Euclidean groups and 
it is also suitable to use the word space group for any group, the translation subgroup T 
of which spans the whole V(~) over R, while other groups are called subperiodic. 

It is easy to realize that the same scheme is valid also on the level of affine groups, 
where g in the Seitz symbol is from the general linear group ~L(n) acting on the linear 
space L(Tt) which turns into orthogonal space V(~t) with introduction of an orthogonal 
scalar product. Every aifine group 9, the point group G of which is orthogonalizable by a 
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suitable choice of scalar product is affincly equivalent to some Euclidean group and hence 
all further considerations apply to it as well. 

We have defined reducibility of space groups [3,4,5] as a consequence of Q-reducibility 
of the action of G on T. It would be more appropriate to distinguish this reducibility in 
a wider context as a crystallographic (or arithmetic) reducibility. To extend the concept 
of reducibility to arbitrary Euclidean groups, we have to realize, that the translation 
subgroup T itself as well as its reducibility under the action of G may have various 
features. In particular, T may bca direct sum of G-invariant modules or even spaces, 
each of which spans V(n). Figuratively expressed, the algebraic structure of T does not 
reject  the geometric meaning of T as a subset of V(n). We should therefore distinguish 
between algebraic reducibility which is simply the reducibility of T as ZG-module and 
geometric reducibility, which is a consequence of the reducibility of the action of G on the 
space V(n). 

The geometric reducibility implies at least partially the algebraic one and both re- 
ducibilities imply a certain reducibility of Euclidean groups of the class (G, T). We shall 
say that the Euclidean group G is geometrically reducible, if the action of its point group 
G on V(n) is reducible. Subperiodic groups with nontrivial T are naturally always re- 
ducible. The reducibility of crystallographic space groups is defined as a consequence 
of geometric reducibility with an additional requirement of arithmetic reducibility. The 
latter is automatically fullfilled for orthogonal reductions, while inclined ones may create 
some problems, which have been considered in more detail in the study of reducible space 
groups in arbitrary dimensions [5]. To avoid complications, we assume further that  we 
are dealing with orthogonal reducibility. 

Consequences of geometric reducibility 

Geometric reducibility of Euclidean groups is a reducibility of the action of a group on 
a point space and the main construction connected with it is the subdirect product or 
subdirect sum. This construction is of frequent use but it occurs rarely in textbooks. We 
can trace it to Goursat [7] and recognize it in many recent constructions. In the book by 
Huppert [8] it appears under the name das direkte Produkt yon Gruppen mit vereinigter 
Faktorgruppe. The subdirect product is also used in consideration of transitivity [9], which 
is a kind of reducibility of the group action on sets. The importance of this construction 
is realized by Opechowski [10] who uses it throughout his book. We gave an overview 
of its use and an analysis for cases of more then two components, when we prefer the 
term multiple subdirect product (sum) [11]. The work with subdirect products is based 
on a theorem which says that  a subgroup of a direct product of groups Oi is either a 
direct or subdirect product of subgroups G~ of groups Oi. These groups are obtained 
by homomorphisms ai which map G onto its components in Oi and the greatest direct 
product of subgroups of O~ contained in G is the product of intersections Gi = G R Oi. 

T h e  m a i n  t h e o r e m  on r educ ib le  E u c l i d e a n  g roups .  The geometric reducibility of 
(G, T) and hence of all Euclidean groups ~ of this class means that V(n) splits into a direct 
sum of G-invariant subspaces V~(k¢) of which T is a subgroup. Further, G is a subgroup of 
a direct product of orthogonal groups Ok which act on spaces V~(k~) and G is a subgroup of 
a direct product of corresponding Euclidean groups Ei acting on Euclidean spaces E(/¢i). 
It  follows immediately, that  T is a subdirect sum of certain groups T~ C_ V~(/¢~) , G is a 
subdirect product of groups G~ C_ 0¢ and g is a subdirect product of groups ~ '  _C E¢. 
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Compare this result with the splitting of reducible representations into a d i rec t  sum 
of irreducible components and let us observe that to express it in terms of operator or 
matrix groups we have to use again the subdirect products [11]. 

Factor iza t ion  t h e o r e m  and p ro jec t ion  homomorph i sms .  If (G,T) is geomet- 
rically reducible, then there appear neccessarily G-invariant subgroups T~ = T N V~(k~). 
Each such subgroup is normal in every group g of the class (G, T). The factorization 
theorem a~serts that the factor group G/T~ is isomorphic to a certain subperiodic group. 
The group G is mapped onto so-called contracted subperiodic groups by projection homo- 
morphisms which are unique for orthogonal reductions. These projections, described in 
detail in [5] can be applied to any geometrically reducible Euclidean group. 

In te rsec t ion  theorem.  This theorem is valid in each case when T splits into a 
direct sum of G-invariant subgroups 2~ = T N V~(k~) and its meaning is very transparent. 
The system of nonprimitive translations u ~  can be uniquely expressed as a sum of its 
components ua~ in individual subspaces V~(k~). Since these subspaces are G-invariant, 
each of the components uai satisfies l~obenius congruences 

h) = u a i ( g )  + g u a , ( h )  - u  (gh) = 0 rood 

We can introduce now either subperiodic groups L~ = {G, T~, P, ugh} or, since con- 
gruences rood T~ imply the same congruences rood T, we can as well introduce groups 
~ = {G, T, P, ua~} and classify groups of arithmetic class (G, T) into subperiodic classes 
£i of which the groups ~ are the symmorphic representatives [4,5]. The essence of the 
intersection theorem lies in the statement that each space group of the class (G, T) lies 
on the intersection of subperiodic classes £i. 

An example .  The following table shows how intersection and factorization theorem 
work together in practice. The upper row of this table lists rod groups, the first column 

4romp [ p4mm p42cm p4cc p42mc 
p4mm I P4mm P42cm P4cc P42mc 
p4bm I P4bm P42nm P4nc P42bc 

lists the layer groups and on intersections of rows and columns stand the eight space 
groups of the arithmetic class 4mmP. In these symbols P denotes the translation subgroup 
r ( a ,  b, e), p stands for T(a, b) and p for T(¢). Each layer group of the first column is a 
common factor group by T(c) for all the space groups of the row and each rod group of 
the first row is a common factor group by T(a, b) for all space groups of the column. 

V i e w s  f o r  t h e  f u t u r e  d e v e l o p m e n t  

We can see already now a few of valuable ramifications and consequences of reducibility 
theory of Euclidean groups. Its first natural use concerns the crystallography in spaces 
of arbitrary dimensions. It is easy to see that irreducible space groups and the laws of 
their composition into reducible ones are of primary interest. We believe, however, that 
algebraic reducibility is more adequate from the viepoint of applications to incommen- 
surate structures and/or quasicrystals while geometric reducibility is of rather academic 
interest. The mentioned structures are after all structures of three-dimensional space. 
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Factorization and intersection theorems are very valuable in three-dimensional crys- 
tallography. Both two types of subperiodic groups in three dimensions, the layer and the 
rod groups clearly appear as subgroups of space groups. Now we know that they appear 
also as factor groups of reducible space groups. In this role it is suitable to consider them 
as contracted layer groups acting on E(a, b) x V(c), and contracted rod groups acting on 
V(a, b) x E(c). The relationship between these contracted subperiodic groups and subpe- 
riodie groups acting on the ordinary Euclidean space E(a, b, c) is in all respects analogous 
to the rdationship between point groups G acting on V(n) and site-point groups acting 
o n  

Factorization theorem enables us to classify space groups into layer and rod classes [6] 
and introduce their standards not in an ad hoc manner but in correlation with standards 
of space groups. This is a first step in a solution of an important problem of bicrystallog- 
r aphy  - scanning of layer and rod groups through the space for defined space symmetries 
and plane or line directions, definition and classification of  Wyckoff types of orbits for 
planes and lines in a crystal. Such problems can be easily solved for significant direc- 
tions of reduciMe space groups and, as we have shown [12], this solution can be extended 
to arbitrary groups and directions with use of so-called scanning theorem and scannin# 
#roup. 

LAST BUT NOT LEAST. Since layer and rod groups appear as factor groups of space 
groups, their representations are connected with certain representations of space groups 
via the well known process of engender-in#. Every expert in representation theory will 
probably realize at once the importance of this fact for systemization of our knowledge of 
representations of space and subperiodic groups. But this is quite a new story. 
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