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Introduction

There exist several views of the concept of reducibility and of decomposability in algebra.
Reducibility of matrix groups and of groups of linear operators is now about a century old
and forms a background for reducibility theory of representations which found its appli-
cations in determination of selection rules and classification of spectra. The reducibility
in physics is usually the reducibility of linear spaces under the action of some symmetry
groups and over the field R of real numbers; the so-called physically irreducible repre-
sentations are exactly representations irreducible over R. The results of more general
reducibility theory which includes reducibility of Z-modules are exposed in the book of
Curtis and Reiner [1]; let us only remind that reducibility over fields is equivalent to
decomposability which is not true over the rings. The translation subgroups of space
groups are exactly ZG-modules and arithmetic classes (G, T') may be either reducible or
irreducible; a reducible class may still be either indecomposable at all or its reducibility
and decomposability patterns may not coincide. Reducibility of arithmetic classes implies
a certain reducibility of space groups. Though reducibility patterns over various fields are
given already in the book on four-dimensional space groups [2], this implication has been
considered much later [3,4,5,6]. We want to show now that the concept of reducibility
and the results of its theory for space groups, especially the factorization and intersection
theorem can be applied as well to more general cases of Euclidean and even affine groups.

Extension of the concept of the reducibility of space groups

We denote by E(n) an Euclidean space and by V(n) its difference space, the orthogonal
vector space, where n is the dimension. Then every Euclidean motion can be expressed
by Seitz symbol {g|t}r with respect to a certain origin P and every Euclidean motion
group G by a symbol {G, T, P,uc(g)}, where G is a subgroup of the orthogonal group
O(n) acting on V(n), T is a G-invariant translation subgroup of V(n) and ug(g) the
system of nonprimitive translations. By the latter we mean a function ug : G — V(n)
which satisfies Frobenius congruences:

we(g, h) = ue(g) + gue(h) — ug(gh) = 0 mod T.

We can extend the concept of arithmetic class (G, T) to any kind of Euclidean groups and
it is also suitable to use the word space group for any group, the translation subgroup T
of which spans the whole V(n) over R, while other groups are called subperiodic.

It is easy to realize that the same scheme is valid also on the level of affine groups,
where g in the Seitz symbol is from the general linear group GL(n) acting on the linear
space L(n) which turns into orthogonal space V(n) with introduction of an orthogonal
scalar product. Every affine group G, the point group G of which is orthogonalizable by a
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suitable choice of scalar product is affinely equivalent to some Euclidean group and hence
all further considerations apply to it as well.

We have defined reducibility of space groups [3,4,5] as a consequence of @-reducibility
of the action of G on T'. It would be more appropriate to distinguish this reducibility in
a wider context as a crystallographic (or arithmetic) reducibility. To extend the concept
of reducibility to arbitrary Euclidean groups, we have to realize, that the translation
subgroup T itself as well as its reducibility under the action of @ may have various
features. In particular, T' may be a direct sum of G-invariant modules or even spaces,
each of which spans V(n). Figuratively expressed, the algebraic structure of T does not
reflect the geometric meaning of T' as a subset of V(n). We should therefore distinguish
between algebraic reducibility which is simply the reducibility of 7' as ZG-module and
geomelric reducibility, which is a consequence of the reducibility of the action of G on the
space V(n).

The geometric reducibility implies at least partially the algebraic one and both re-
ducibilities imply a certain reducibility of Euclidean groups of the class (G,T). We shall
say that the Euclidean group G is geometrically reducible, if the action of its point group
G on V(n) is reducible. Subperiodic groups with nontrivial T are naturally always re-
ducible. The reducibility of crystallographic space groups is defined as a consequence
of geometric reducibility with an additional requirement of arithmetic reducibility. The
latter is automatically fullfilled for orthogonal reductions, while inclined ones may create
some problems, which have been considered in more detail in the study of reducible space
groups in arbitrary dimensions [5]. To avoid complications, we assume further that we
are dealing with orthogonal reducibility.

Consequences of geometric reducibility

Geometric reducibility of Euclidean groups is a reducibility of the action of a group on
a point space and the main construction connected with it is the subdirect product or
subdirect sum. This construction is of frequent use but it occurs rarely in textbooks. We
can trace it to Goursat (7] and recognize it in many recent constructions. In the book by
Huppert [8] it appears under the name das direkte Produkt von Gruppen mit vereinigter
Faktorgruppe. The subdirect product is also used in consideration of transitivity [9], which
is a kind of reducibility of the group action on sets. The importance of this construction
is realized by Opechowski [10] who uses it throughout his book. We gave an overview
of its use and an analysis for cases of more then two components, when we prefer the
term multiple subdirect product (sum) [11). The work with subdirect products is based
on a theorem which says that a subgroup of a direct product of groups O; is either a
direct or subdirect product of subgroups G? of groups O;. These groups are obtained
by homomorphisms ¢; which map G onto its components in O; and the greatest direct
product of subgroups of O; contained in G is the product of intersections G; = G N O;.

The main theorem on reducible Euclidean groups. The geometric reducibility of
(G,T) and hence of all Euclidean groups G of this class means that V(n) splits into a direct
sum of G-invariant subspaces V;(k;) of which T is a subgroup. Further, G is a subgroup of
a direct product of orthogonal groups O; which act on spaces V;(k;) and G is a subgroup of
a direct product of corresponding Euclidean groups £; acting on Euclidean spaces E(k;).
It follows immediately, that T is a subdirect sum of certain groups T? C Vi(k;) , G is a
subdirect product of groups G¢ C O; and G is a subdirect product of groups Gf C &;.
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Compare this result with the splitting of reducible representations into a direct sum
of irreducible components and let us observe that to express it in terms of operator or
matrix groups we have to use again the subdirect products [11].

Factorization theorem and projection homomorphisms. If (G,T) is geomet-
rically reducible, then there appear neccessarily G-invariant subgroups T; = T' N Vi(k;).
Each such subgroup is normal in every group G of the class (G,T). The factorization
theorem asserts that the factor group G/T; is isomorphic to a certain subperiodic group.
The group G is mapped onto so-called contracted subperiodic groups by projection homo-
morphisms which are unique for orthogonal reductions. These projections, described in
detail in [5] can be applied to any geometrically reducible Euclidean group.

Intersection theorem. This theorem is valid in each case when T splits into a
direct sum of G-invariant subgroups T; = T' N V;(k;) and its meaning is very transparent.
The system of nonprimitive translations ug can be uniquely expressed as a sum of its
components Ug; in individual subspaces V;(k;). Since these subspaces are G-invariant,
each of the components ug; satisfies Frobenius congruences

wgi(9,h) = uai(g) + gugi(h) — ugi(gh) = 0 mod T;.

We can introduce now either subperiodic groups £; = {G,T;, P,ug;} or, since con-
gruences mod T; imply the same congruences mod T', we can as well introduce groups
G: = {G,T, P,ug} and classify groups of arithmetic class (G, T) into subperiodic classes
L; of which the groups G; are the symmorphic representatives [4,5]. The essence of the
intersection theorem lies in the statement that each space group of the class (@, T) lies
on the intersection of subperiodic classes £;.

An example. The following table shows how intersection and factorization theorem
work together in practice. The upper row of this table lists rod groups, the first column

4mmP | pdmm pdrem  pdcc  pdamc
p4mm | Pdmm P4;cm Pdcc Pépme
pébm | P4bm Pdonm Pdnc P4pbe

lists the layer groups and on intersections of rows and columns stand the eight space
groups of the arithmetic class 4mmP. In these symbols P denotes the translation subgroup
T(a,b,c), p stands for T'(a, b) and p for T(c). Each layer group of the first column is a
common factor group by T'(c) for all the space groups of the row and each rod group of
the first row is a common factor group by T'(a, b) for all space groups of the column.

Views for the future development

We can see already now a few of valuable ramifications and consequences of reducibility
theory of Euclidean groups. Its first natural use concerns the crystallography in spaces
of arbitrary dimensions. It is easy to see that irreducible space groups and the laws of
their composition into reducible ones are of primary interest. We believe, however, that
algebraic reducibility is more adequate from the viepoint of applications to incommen-
surate structures and/or quasicrystals while geometric reducibility is of rather academic
interest. The mentioned structures are after all structures of three-dimensional space.

533



Factorization and intersection theorems are very valuable in three-dimensional crys-
tallography. Both two types of subperiodic groups in three dimensions, the layer and the
rod groups clearly appear as subgroups of space groups. Now we know that they appear
also as factor groups of reducible space groups. In this role it is suitable to consider them
as contracted layer groups acting on E(a,b) x V(c), and contracted rod groups acting on
V(a,b) x E(c). The relationship between these contracted subperiodic groups and subpe-
riodic groups acting on the ordinary Euclidean space E(a, b, ¢) is in all respects analogous
to the relationship between point groups G acting on V(n) and site-point groups acting
on E(n).

Factorization theorem enables us to classify space groups into layer and rod classes [6)
and introduce their standards not in an ad hoc manner but in correlation with standards
of space groups. This is a first step in a solution of an important problem of bicrystallog-
raphy - scanning of layer and rod groups through the space for defined space symmetries
and plane or line directions, definition and classification of Wyckoff types of orbits for
planes and lines in a crystal. Such problems can be easily solved for significant direc-
tions of reducible space groups and, as we have shown [12], this solution can be extended
to arbitrary groups and directions with use of so-called scanning theorem and scanning
group.

LAST BUT NOT LEAST. Since layer and rod groups appear as factor groups of space
groups, their representations are connected with certain representations of space groups
via the well known process of engendering. Every expert in representation theory will
probably realize at once the importance of this fact for systemization of our knowledge of
representations of space and subperiodic groups. But this is quite a new story.
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