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Abstract

We propose a Lattice QCD mixed-action approach in with sea quarks regularize
using Ny = 2 + 1 non-perturbatively O(a)-improved Wilson fermions with open
boundary conditions in the time direction, while a Wilson twisted mass action at
maximal twist is used for valence quarks. In this setup, fermionic observables are
free from O(a) lattice artifacts proportional to the valence quark masses.

Two alternative procedures for the matching of sea and valence quark masses
are discussed. We perform a universality check by comparing continuum limit
extrapolations of the quark masses and of the pseudoscalar meson decay constants
obtained with two setups: the mixed action and the standard approach where
Wilson fermions are used in sea and valence sectors.

We use the gradient flow scale ¢, and physical input from the pion and kaon
decay constants to carry out a scale setting procedure. This is applied to the
determination of the light and strange quark masses. A particular attention is
given to the statistical analysis of the lattice data and to the assessment of the
systematic uncertainties.



Abstract

Presentamos una acciéon mixta para QCD en el reticulo donde los fermiones del
sector del mar son discretizados mediante una accion Ny = 24-1 no perturbativa sin
efectos de discretizacién O(a). Asimismo, los fermiones de valencia son rotados
quiralmente a un punto donde la masa de quark tiene tinicamente componente
quiral y la masa estandar se anula.

Se discuten dos alternativas para hacer la correspondencia entre las masas de
los quarks del sector del mar y de valencia. Llevamos a cabo un control de la validez
de la acciéon mixta mediante una comparacion de la extrapolacién al continuo de
las masas de quarks y de los factores de decaimiento mesonicos de dicha accion
con la accién unitaria Wilson.

Se implementa un método para fijar la escala reticular y determinar las masas
de quarks del sector ligero y extrafio. Se presta particular atencién al analisis
estadistico de los resultados y a la estimacion del error sistematico.
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Chapter 1

Introduction

In our current understanding of Nature, there are four fundamental forces corre-
sponding to the gravitational, electromagnetic, weak and strong interactions. The
Standard Model (SM) is built on a combination of relativistic Quantum Field The-
ories (QFT), the electro-weak theory, which unifies the electromagnetic and weak
forces, and Quantum Chromodynamics (QCD), describing the strong interactions.
Although it cannot fully explain many features observed in Nature, such as grav-
ity, the SM has successfully predicted a vast number of experimental results over
the years. It is, therefore, widely accepted to behave as an effective theory able to
describe the laws of physics up to an energy scale above which a more fundamental
theory is required.

QFT is the mathematical framework that combines the laws of Quantum Me-
chanics with the relativistic classical field theory. Matter particles are defined as
excited states of their underlying dynamical fermionic fields. In this framework,
interactions arise naturally from gauge symmetries, i.e., local transformations that
leave the Lagrangian invariant. In most gauge theories the set of possible trans-
formations is a finite-dimensional Lie Group, with bosonic force carriers belonging
to the adjoint representation.

QCD is a gauge theory whose charge, called color, is carried by elementary
particles, the quarks and the gluons. The properties of these particles can be
described by representations of the Lie algebra. The non-abelian SU(3) Lie Group
is the one associated to QCD. In this theory, each quark flavour belongs to the
fundamental representation (3) of the Lie Algebra su(3), while gluons pertain to
the adjoint representation (8) [1-5]. Such gluon fields are represented by the field
A, (z), and can be decomposed in terms of the Gell-Mann matrices A. acting in
color space

Auw) = S NAuelr),  To= (1.1)



where T, are the generators of the su(3) algebra. The dynamics of QCD can be
derived from its Lagrangian, which is defined as follows

Ny
L= [ (Do~ mag) 0] + {FuwFo (1.2
f=1
up to gauge-fixing terms. The fermion field corresponding to the flavor f is denoted
by ¢/ (x), Ny is the number of fermion flavors and F),, is the gluonic field strength
tensor. !
The invariance of the Lagrangian under local SU(3) transformations, leads to
the appearance of an interaction term in the Dirac operator 2

Do =7 (0 +iA,(2)) = Z Vu Vi (1.3)

pn=0

where V, is the gauge covariant derivative.

The SM is a renormalized gauge theory defined by the local SU(3) x SU(2) x
U(1) gauge symmetry. With respect to the electro-weak theory, SU(2) x U(1),
QCD shows specific features that require different techniques in order to compute
physical observables. In particular, QCD is a non-abelian theory that contains
gluonic fields that do not commute, leading to the following expression for the
gluonic field strength tensor

Fu(w) = 0,4, (x) — 0,Au(2) +i[A,(x), A, (x)). (1.4)

This induces non-trivial self-interations between gluons. This feature gives rise
to non-perturbative (NP) effects, which are a major difference with respect to
Quantum Electrodynamics (QED).

Furthermore, QCD is an asymptotically free theory [6,7] for the Ny = 6 number
of flavors observed in Nature. This means that quarks and gluons interact very
weakly at high energies, i.e., short distances. This property is proved through the
high-energy behavior of the beta function

dg(n)
Bl9) = 57—+ (1.5)
d (logp)
that measures the variation of the strong coupling constant g with respect to the
energy scale u. A perturbative expression of the beta function reads

3

o) =~ (1= 557 ) + 0(6"). (16)

!Dirac or spin indices are represented by the first Greek alphabet letters while Latin letters
refer to color indices. These indices may be suppressed as appropriate. Lorentz indices will be
represented by u and v.

2The 0 subindex in the Dirac operator will refer to the massless Dirac operator.



Since ((g) is shown to be negative for the SU(3) group with Ny = 6, quarks tend
to behave asymptotically as free particles as the energy increases. In this regime,
an expansion in the coupling constant can be performed and the convergence
properties of perturbation theory (PT) improve as the energy scale increases.

On the other hand, one observes that the coupling constant grows logarithmi-
cally as the energy scale decreases. In this regime another important feature of
QCD, known as confinement, appears. Quarks or any combination of them, that
carry a colored charge, are not observed in Nature, only color singlet states appear
as physical observables. Mesons and baryons are the most common QCD bound
states, formed by a quark and an anti-quark and by three different quark fields, re-
spectively, but any other color singlet state may exist. Recent experimental results
have also provided evidence of the existence of tetraquarks [8] and pentaquarks [9].

At the QCD scale, others non-perturbative phenomena appear, as the spon-
taneous breaking of chiral symmetry. In this regime where the coupling constant
is not small enough to apply perturbation theory, non-perturbative methods are
required. The only method derived from first principles to explore this regime is
Lattice QCD (LQCD). Efective Field Theories (EFTs) are also a useful tool to ex-
plore a particular range of energies. In the context of EFTs, QCD can be matched
to another field theory that respects the symmetries of QCD while containing only
a subset of its degrees of freedom. However, effective theories rely on a number of
couplings depending on the energy scale, which must be estimated either exper-
imentally or through LQCD computations. Chiral Perturbation Theory (ChPT)
and Heavy Quark Effective Theory (HQET) are examples of effective field theories
describing the massless and the heavy quark limit, respectively.

LQCD is based on a discretization of Euclidean space-time into a hypercubic
grid whose distance between sites is given by the lattice spacing, a. Subsequently,
a discretized version of the QCD action in terms of gluonic and fermionic fields
can be constructed. LQCD computations require neither model assumptions nor
additional physical parameters than those of the continuum theory.

The lattice regularization was originally introduced by Wilson [5] in the sev-
enties. In recent years, we have witnessed a number of developments due to the
increase of computing resources and the improvement of the algorithms. Simulat-
ing quark masses in the sea requires the inversion of the Dirac operator, which is
a demanding task specially for the lightest quark masses. Despite the progress in
this field, dynamical simulations at physical quark masses are still very demand-
ing and additional information from an extrapolation employing heavier masses is
often used.

In Chapter 2, we review some concepts of LQCD, emphasizing in the develop-
ment of a discretized version of the QCD action and its renormalization properties.
In Chapter 3, we develop a setup, based in a mixed action, with the aim of re-



moving some of the leading discretization effects in the computation of physical
observables. The algorithms involved in the dynamical simulation of the gauge con-
figurations, as well as the strategy followed for the statistical analysis, are detailed
in Chapter 4. Finally in Chapter 5, we present the results for the scale setting and
the physical quark masses, in both Wilson and the mixed action regularizations.



Chapter 2
Lattice QCD

In this Chapter, we review some of the main theoretical elements of LQCD, from
the discretization of the fields and action to the implementation of the renormaliza-
tion factors in a discretized space-time. We also describe the basic steps required
to perform a LQCD computation.

Observables on the lattice are computed through the path integral formalism,
as shown in Section 2.2. In this formulation, the functionals that represent the
fields are weighted by a Boltzmann factor depending on the action. To avoid an
imaginary argument in the exponential that would lead to large fluctuations of
the integrand, the Minkowski space-time metric is transformed into a Kuclidean
space by applying a Wick rotation, where the time coordinate becomes imaginary
xo = iT. Consequently, the volume element becomes !

d*z™) = drdz,dredr; —  d*2P) = idrodridrydrs. (2.1)

The discretization of space-time by the lattice spacing a in a finite volume
involves a redefinition of the coordinates in terms of a label n € A

A= {no,nl,ng,ng | Nog = 0, ...,Nt - ]_, n; = O, ...,NS —1 Vi= 1,273}, (22)

where the spatial lattice size is given by L = aN, and the Euclidean time range
from 0 to 7" = aN;. In these terms, the position coordinates are discretized as
follows

x = (xo, T1, 2, x3) = a(ng, Ny, N2, n3). (2.3)

The theory is built in a way that the broken symmetries are recovered when a
vanishes and the lattice volumen, V', goes to infinity. Gauge symmetry is specif-
ically preserved, but other symmetries, such as the translational invariance and

I'The upper index M and E in brackets denotes Minkowski and Euclidean space-time, respec-
tively.



continuous rotations, are broken and recovered only once the extrapolation to the
continuum limit is carried out.

This regularization has the advantage that the inverse of the lattice spacing
acts as a maximum energy, suppressing the ultra-violet divergences that appears in
loop integrals, while the finite volume gets rid of the infrared divergences. On the
other hand, LQCD computations receive finite volume and discretization effects
that need to be addressed.

In Section 2.1, we explain how to formulate gluonic and fermionic fields on the
lattice. In Sections 2.4 and 2.5, we describe how to construct a discretized version
of the QCD action. In Section 2.2, the path integral is then introduced as the
standard lattice approach to estimate expectation values of physical observables,
and will be related to the Euclidean correlators in Section 2.3. In Section 2.6,
we describe the techniques used to reduce the discretization effects. Sections 2.7
and 2.8 address the discretized version of the Ward-Takahashi identities and the
renormalization of quark bilinears, respectively.

2.1 Fields on the lattice

On the lattice, gluon fields are elements of the Lie Group SU(3) unlike the vector
potential A,(z), which belongs to the Lie Algebra su(3) in the continuum theory.
In contrast to the Lie Algebra, elements of the Lie group are allowed to carry
out non-infinitesimal transformations between neighboring positions of the lattice.
Such a construction allows to preserve gauge symmetry.

Gluon fields, as SU(3) elements, must leave the action invariant under local
rotations in color space. These rotations are performed by the matrices, Q;(x) €
SU(3), of the defining representation corresponding to a set of 3 x 3 complex
matrices that are unitary ? and whose determinant is 1.

By construction, quarks are constrained to occupy the sites of the lattice grid,
while gluons, connect neighboring sites. The quarks fields are described on the
lattice by Dirac 4-spinors whose Dirac, color and flavor indices are represented by
a=1,2,34,c=1,2,3 and f =u,d,s,... respectively

W (@)a, of (@) (24)

The spinor v denotes the antiparticle of 1) and x is the position in the space-time
lattice. Notice that unlike what happens in the Minkowski metric, where v and 1
are related by g, in the Euclidean space-time they must be treated as independent
variables.

2A matrix  is unitary iff QQF = 1.



The quark spinors transform as follows

()0 = Q) ()ay
G (2)a = P ()0 (), (2.5)

under a color transformation. Since quarks are half-integer spin particles, they
behave according to the Fermi-Dirac statistics, meaning that two quarks are not
allowed to occupy the same energy state. This results in anti-commuting fields,
that can be interpreted as Grassmann variables.

As a discrete version of the gluon fields A, a set of fields U, .,c,(z) defined as
links, are proposed for every connection between sites of the lattice. The position of
a site on the lattice is denoted by x, whereas u = 0, 1, 2, 3 points out the orientation
in the Euclidean space. Color indices are ¢; and ¢y, which are frequently not
explicitly displayed. These fields, belonging to the fundamental representation of
SU(3), connect the sites z and =+ fi, where [i is the unitary vector pointing in the
i direction. By contrast, the adjoint operator, Ul(x), links the site x to the site
x — fi, such that U_,(z) = U,(xz — f)!. A random set of link variables placed over
complete lattice volume is commonly denominated as the gauge configuration.

The gauge transformations act on the gluon fields as follows

U (2) = Q2)Ua(2)z + )",
Ull(z) = Qz + U, (2)Q(z)". (2.6)

Strictly speaking, link variables are the lattice counterparts of the continuum gauge
transporters of the gluon fields A,. Gauge transporters, G(a,b), are defined as the
path-ordered exponential of a given field, A, along a curve C between the points a
and b

G(a,b) = Pexp (z/CA : ds) . (2.7)
The link U,(z) acts as a discrete gauge transporter between the sites  and x + fi
U,(z) = exp (iaA,(x)), (2.8)
= exp (m 28: )\CAW(x)> : (2.9)
=1

where the path is approximated by its length a.

Neither the links nor the quark lattice fields are gauge invariant by themselves,
but the action and lattice operators can be constructed by gauge invariant com-
binations of them. The fermionic spinor field contains 24 degrees of freedom,
coming from the product of the possible choices of the color, spin and electromag-
netic charge ®. The gluon field contains 32 degrees of freedom as a combination of

3Note, however, that electromagnetic effects will be neglected in this work.

10



8 different possible colors and 4 components of the Lorentz indices. The number of

degrees of freedom of such fields, together with the number of space-time points of

the lattice, require specific algorithms optimized to perform numerical simulations.
In the next section, we introduce the path integral formalism.

2.2 Path integral

The expectation value of a physical observable can be computed through a lattice
formulation of the path integral that allows to calculate time-ordered products of
fields, known as correlators [10]

<T (01(2?1)0(2?2)0]\](1']\[)» = ;/D[w,w, U]Ol(.731)0(5132)...0]\[(5131\7)6_3, (210)
7= /D[w,ﬂ, Ule=S. (2.11)

The integration measure D[i, 1), U] is the product of integration measures of all
link and quark fields, defined in Section 2.1, over all their internal components
and lattice positions. The partition function Z is also defined as a path integral
ensuring the proper normalization. It can be identified as the vacuum to vacuum
amplitude of the Euclidean space-time. The time-ordering operation T orders the
operators according to descending time. The Wick rotation performed on the
lattice in eq. (2.1) allows the action, defined as the integral over the Lagrangian
density

S =S¢+ Sp= / d*zle + / d'zLr, (2.12)

to act as a Boltzmann weight factor. The gluonic and fermionic part of the action
are Sg[U] and Sg[, 9, U], respectively, and will be introduced in Sections 2.4
and 2.5.

The path integral is evaluated over all field configurations and space-time posi-
tions in order to consider the quantum fluctuations around the classical trajectory.
Each integral is performed over a compact domain and, considering that the num-
ber of integrals is finite, the entire path integral becomes a high dimensional inte-
gral. As the lattice spacing becomes smaller the computation cost of the integral
grows and demands the application of specific techniques as the ones described in
Section 4.1.

As stated in Section 2.1, the anti-commuting nature of the fermion fields implies
that they must be treated as Grassmann variables during the integration. The path

11



integral can be split into a fermion integral nested within a pure gauge integral

(0) = o [ DIy, &, V)06 Sel-5rleb0) (2.13)

1
Zp|U]

1 . _

(O))y = o [ DIW)eSe zZ, (U] [ [Pl goes B 2

To integrate out the fermionic part, let us employ a generalization of the

Matthews-Salam formula [11,12] in the presence of two external anti-commuting
sources 7] and 7

27,1 = / Db, PleFAVHTT) — qop(A)e(TAM), (2.15)

The equation above is known as the generating functional for fermion fields, and has
several applications. For instance, the fermionic partition function, Zg, becomes
a product of the Dirac operator determinants of the various quark flavors * when
the sources are imposed to be zero

Ze = [ Dl Tlexp (Z wafwf) ~ [[aet(n). (2.16)
/=1 f

Besides, operating with Grassmann variables implies to deal with non-positive
definite matrices, leading to poor importance sampling and large variance in the
observables. As detailed in Section 4.1, the fermions are integrated out and rein-
troduced in terms of bosonic pseudofermion fields by rewriting the resulting deter-
minant through an analogous generating functional for bosonic fields. The formula
shown in eq. (2.15), together with the properties of Grassmann variables, allows to
derive the expression for any correlator. In particular, for the two-point function
of fermion fields we find

—f1 5 1 1
(B @ @er ) = 16707 (@ plesen, (2.17)

c1C2

corresponding to the propagator of a quark flavor f.

2.3 Euclidean correlator

The path integral formalism allows to relate the Euclidean correlator — initially
defined in the QFT formalism and expressed in terms of the Hilbert operators O;
— to the integral of functionals O;, which relies on the statistical field theory and
can be numerically estimated.

4The discrete version of the Dirac operator will be defined in Section 2.5.

12



2.3.1 Euclidean correlator: Quantum Field Theory

The Euclidean correlator is defined in QFT as the expectation value of a product
of normal ordered operators evaluated at different positions. These objects are
expressed in terms of the Hilbert-space operators Oi, and of the Hamiltonian H )
which measures the energy of the system and is responsible for the time evolution.
A suitable choice of the operators allows to determine the energy spectrum and
the matrix elements of the physical states with definite quantum numbers.

In particular, a correlator of two Hilbert space operators at different Euclidean
times o, and x, is written as °

1

(Os(20,) 01 (w0,)) 7 = 5t [em(Tm0) 1 (w0220 () e=o0n ] (2.18)

where the time dependent operators are rewritten as O(t) = ¢ Qe conform-
ing to the Heisenberg picture, as long as the Hamiltonian does not vary with time.
Z is called normalization factor and has a similar role to the partition function in
statistical mechanics: A

Z=tr|e ] (2.19)

In the QFT formalism, the operator Op annihilates a state with the quantum
numbers of the particle p. On the other hand, the adjoint ¢ operator Oj, creates
a state with the quantum numbers of p. In this regard, the two-point correlator
defined in eq. (2. 18) can be understood as a function that creates or annihilates a
particle defined by O, at a given time z, and does the equivalent at xy, with O,.
In particular, the two-point function allows to extract masses and matrix elements
from meson states on the lattice.

Hadronic matrix elements emerge by inserting the unit operator 1 = Y, |n) (n|
between the time-ordered operators, in any orthonormal basis |n) of the Hamilto-
nian

S (m|e 200, ) (nf e~ (w010, ') ('] e )

OQ €, 01 Loy ))r = ! —
< ( ) ( )> % (m’| e~ TH \m’)
(2.20)

The energy spectrum of the system is extracted by evaluating the Hamiltonian
over the dual eigenvector basis. The vacuum energy can be removed from the
exponentials so the energies are redefined in terms of their relative values. Applying

>The trace of a Hilbert operator is defined as tr [OA} = (n| O |n), where |n) is an orthonormal

n

basis of the Hilbert space.
6The adjoint operator O] is defined such that (n| O, [n') = (n/| O} |n)".

13



then the inner product of the orthonormal basis, the two-point correlator simplifies
as follows,

5 e~ (T=820)8Bm =808 (1] O, ) (n] Oy [m)

<02($02>01(ZE01)>T =22 ZG_TAET" ) (221)

m

becoming exclusively dependent of the time separation between the operators,
AZ‘O = Toy, — L0y -

The above expression can be used to isolate the ground state mass from the
large Euclidean time separations Axy where excited state contaminations are ex-
ponentially suppressed.

This procedure can be similarly applied to n-point correlation functions in
order to study more complex processes. For instance, processes that involve an
initial and a final hadron together with the insertion of an electromagnetic or a
weak current.

2.3.2 Euclidean correlator: Path integral

The path integral formalism, introduced in Section 2.2, provides a well defined
numerical method to estimate expectation values on the lattice. We define the
hadron interpolators, O [w,@, U}, as the functionals of gluon and quark fields
which play a similar role to the creator and annihilation Hilbert operators.

In general, the interpolators create a wave function whose quantum numbers
overlap with the ground state, but also with a complete set of excited states
or multi-particle states that share those quantum numbers. The choice of the
interpolator is not unique, and various alternatives may give rise to the same set
of particles. Looking for different choices for the interpolators may be useful to
isolate the ground state. As stated in Chapter 1, only color singlet states can
be observed in Nature. In particular, we will be interested in mesonic states,
constructed by interpolators made up of a quark and an antiquark.

The fermion fields used to define a given interpolating operator can be placed
in the same site of the lattice, a situation known as local interpolator, or they can
be located at separated spatial positions connected by gauge link variables. The
latter is known as a non-local or extended interpolator.

Discrete symmetries can be incorporated in the definition of the interpolating
field in such a way that it reproduces the quantum numbers of the target hadron.
Transformations under parity and charge conjugation for gauge fields, as well as
for quark and anti-quark fields, are described in Appendix C.

In a generic expression for a mesonic interpolation field

OM(:E07 iU) = Z @fl (:BOa y)‘é‘llF(w7 Yy, Z)‘gg;wfz (an z)%;z) (222)

y?z

14



a distribution function F' characterizes the spatial distribution of the operator.
The local meson interpolator is obtained by a particular choice of F
F(:l:, Y, z)a1a2 = 6(13 - y)(S(:l: - z)50102ra1a27 (2'23)
c1co

that reduces eq. (2.22) to a single spatial point. Such a choice leads to the expres-
sion for the local interpolators:

OM,L(x(b :B) = @(x()v w)%llTFCVlOle(‘TO? ll:)%f, (224)

where T is a matrix in flavor space. The equation above allows to construct the
complete set of mesonic states. First of all, the flavor valence content is carried by
the fermionic spinor v, which is now a vector in flavor space. The flavor matrix T’
controls the flavor structure, as defined in Appendix B. The matrix I' is a product
of gamma matrices chosen so that the interpolator acquires the proper spin and
parity of the target state. A set of common values of I' is given in Table A.1.

An approach that allows to enhance the overlap to the desired state considers a
spatially extended interpolator at a fixed time slice. For this purpose, the function
F' is factorized in terms of the smearing function S,

F(x,y, z)ao: = Z Ssm (2 y)aoall“aoa Sem (T, 2)afay- (2.25)

ci1C2
coc
ao,af 0¢2

o

Considering an extended operator allows to incorporate the spatial distribution of
the desired hadronic state over distances of the order of the inverse of its mass.
Spinors are commonly redefined in order to absorb the non-local character of F',

—f1 —f
Vim (Zo, iﬂ)fgg = Z Sem(, y)océggllw (2o, y)gll, (2.26)

?ﬂg (an Zssm x Z)aoa2¢ ($0, )az, (2.27)

coc2

leading to an expression of the extended meson interpolator equivalent to eq. (2.24),
in terms of the smeared fermionic fields

Omp(zo, @) = ) w (wo, aoFaOa wsm(xo,w)co (2.28)

ao,ao

co
Smearing of the interpolating fields is particularly relevant for heavy-light mesons,
since the time interval where the ground state shows a clear signal becomes shorter.
The smearing function S employed in the heavy sector will be introduced in Sec-
tion 4.3.

15



We express a meson correlator in terms of the quark propagators D~!, defined
in eq. (2.17). The generic notation for the fermions fields in egs. (2.26) and (2.27)
ensures that the following derivation holds for local and non-local interpolators

(0a(w2)01 (@) = (7 (2)oy P Ty (220" 1) Ty, Tt (1))
= Ty TiTosoal 5, (07 @) (w2)e ><wfl<x1>62¢f @)

Cc2

— (W) @)y ) (7 (@08 (@2)ay))
= Tr [T] Tx [T') Tr [ D™} (wa, 2)T| T [D Yy, xl)r’}
= Tr [TT') Tr [D™ (@, 20)T" D~ (1, 22)T |, (2.29)

where the trace is performed over the spinor and color indices and the summation
over all indices involved is implicit. The negative sign on the second step arises from
the anti-commuting nature of the fermion fields while in the third step the flavor
indices are contracted by the Dirac delta-function appearing in the propagator
definition.

The first term in eq. (2.29) implies the propagation of a quark from a space-
time site back to the same point, which leads to the so-called quark-disconnected
diagrams. This piece vanishes for the flavor non-singlet states, whether they are
charged (off-diagonal) or neutral (diagonal), since their flavor matrices are trace-
less. Those that transport a quark from a single point to another and then prop-
agate back in the opposite direction are known as quark-connected diagrams. The
computational cost required to compute disconnected diagrams often largely ex-
ceeds the one needed for the connected diagrams. For instance, a quark-connected
two-point correlation function with definite spatial momentum can be computed
from a single inversion for every spin and color component of a local source. On
the other hand, the quark-disconnected diagram would require an inversion for ev-
ery spatial position of the operator at the sink. If the sum over the spatial points
is approximated by stochastic noise sources at fixed Euclidean time, the study of
disconnected diagrams would still need one inversion per Euclidean time. More-
over, quark-disconnected diagrams tend to have large variance contributions to the
noise, which require specific methods to achieve a proper error reduction [13].

We review in the next sections the discretized actions that will be used in our
setup.
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2.4 Gauge action

The gauge part of the action, in eq. (2.30), governs the gluon dynamics, including
their self-interactions

Se = / d'zLe = i / d*zF,, (z)F* (z). (2.30)

The most simple formulation of the discrete gauge action is made of products
of four link variables — known as plaquettes — that close the shortest possible path
in a lattice around a lattice site x

U () = Uy (2)U,(z + U, (x + D)0, ()1, (2.31)

whose trace form a gauge invariant object. The so-called Wilson gauge action or
plaquette action, sums all the different plaquettes of a lattice

SolU = 5 ST (1~ Vo) (2.32)

By Taylor expanding in the lattice spacing a and using equation (2.8), the lattice

action converges towards the QCD gauge action in the limit a — 0. The parameter

g = g% is related to the inverse of the bare coupling go. The difference with respect
0

to the continuum action is proportional to O(a?).

Other discrete gauge actions differing, for instance, by the size of the expected
lattice artifacts, can be considered as long as they converge to the QCD gauge
action in the continuum limit. In Subsection 3.1.1, the definition of the gauge
action used in our numerical studies will be presented

2.5 Fermionic actions

In this section, various discretizations of the fermionic action are reviewed. The
fermionic action in the continuum is defined through the QCD Lagrangian, intro-
duced in eq. (1.2)

Ny 3
Sp= [dioLr= a2y ¥ [w’”u)ag > (Wasas Vael@) +mo ) v ()7
f=rana2 u=0

(2.33)
As we will see, the most straightforward discretization, described in Subsection 2.5.1,
leads to the appearance of lattice artifacts that need to be removed by adding extra
terms to the action. These terms cannot change the physics and must vanish in the
continuum limit. As in the case of the gauge action, a discretized fermionic lattice
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action is required to be invariant under gauge transformations and to coincide with
eq. (2.33) in the continuum limit.

Chiral symmetry and spontaneous symmetry breaking play a crucial role in
QCD. Chiral symmetry is a global symmetry of the group U(Ny) x U(Ny)g that
allows to rotate the fermion fields so that the free propagator remains invariant.
Under a proper election of the basis, left-handed and right-handed fermions decou-
ple in the chiral limit, 7.e., the limit of vanishing quark masses. The spontaneous
symmetry breaking of chiral symmetry in QCD is responsible for various phe-
nomena such as the absence of parity doublings in the hadronic spectrum or the
appearance of nearly massless modes. It is crucial that any lattice discretization
properly reproduces these properties. A more detailed description of the global
symmetries, including chiral symmetry, is presented in Appendix B.

Two different fermionic discretizations are introduced in this section, Wilson
fermions and Wilson twisted mass fermions.

2.5.1 Naive fermions

Let us consider the non-interacting case where fermions propagate freely, i.e., the
specific case of vanishing gluon fields A, (x) in the Dirac operator in eq. (1.3). The
partial derivative of the Dirac operator can be discretized by a Taylor expansion
in the lattice size a. We defined the forward and backward lattice derivatives in
the direction [i

00(0) = - W+ )~ 0@, ) = - ) — e - ), (230

which both hold up to O(a) effects. We generally use the symmetric derivative
evaluated at the adjacent sites, 0, = % (8“ + (9;), to reduce the cut-off effects

to O(a?). Making use of the previous discretization for the derivative and the
fermionic field, the naive free fermion action yields

3

Se0, 7] =a' 3 Y 3 @ar |3 (haresdt (@as + mo g (2)as | . (235

@ f=1on,02 =0 ¢

Let us now see how to impose gauge invariance of the fermionic action. Since
fermion fields transform as in eq. (2.5), any SU(3) local transformation would
break gauge invariance in the partial derivative term appearing in eq. (2.35). The
partial derivative can be upgraded to a covariant derivative made up by SU(3)
invariant combinations of fermionic and link fields. Considering that links trans-
form as eq. (2.6), non-local combinations of fields such as ¢(z)U,(z)(z + i) and

18



(x)U_,(z)1(x — i) provide suitable definitions for forward and backward covari-
ant derivatives, leading to the following symmetric covariant derivative:

_ 1 . .

Vet (@08 = 5 Unerea @0/ (@ + i) = Umppesea @)/ @ = p)a] . (236)

Consequently, the naive fermionic action needs to be generalized in the presence
of a gluonic field U,

W @Z) U = a4z Z Z ¢ lZ(Vﬂ)alazfvvu,mcz + mO,f(Sxyécwz(soch] @ij(y)a?a
"

c2
Ty f Q1,2
€1,C2

(2.37)
I INUC: Jor DY (2, y)asoa ! (y)e (2.38)

T i
In eq. (2.38), the fermionic action is rewritten in terms of the Dirac operator,
taking advantage of the bilinearity in the fermionic fields.

The action derived above leads, however, to the doubling problem. This means
that the massless lattice quark propagator D~! contains additional unphysical
singularities beyond the one expected in the continuum limit. Computing the
Fourier transform of the Dirac operator in the non-interacting theory, U, = 1,
for the specific case where m = 0, the expression obtained in the 4-momentum
representation is proportional to sin(ap,)

Do(p, )|y, —1,m=0 = ( > " Apsin( apﬂ)>, (2.39)

where the coordinates of the 4-momentum are restricted to live in the first Brillouin
zone, — % < p, < 2.

Taking advantage of the fact that D(p,q) is diagonal in momentum space,
the inverse can be easily derived leading to 16 poles in the domain of p. This
is in contradiction with the single pole structure of its continuum counterpart,
—i}%. According to dispersion relations, singularities in the propagator are related
to stable single particles. Therefore, these 15 unphysical states or doublers that
appear on the lattice need to be eliminated. According to the No-Go Theorem [14,
15], doublers can only be removed by giving up one of the following properties of

QCD: locality, hermiticity or chiral symmetry.

2.5.2 Wilson fermions

To circumvent the doubling problem mentioned in Subsection 2.5.1, Wilson pro-
posed [5] an alternative definition of the action which gives up chiral symmetry
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on the lattice. Wilson fermions rely on adding a new term to the Dirac operator
in eq. (2.38), in order to give an extra mass to the doublers that allows them to
decouple in the continuum limit. Being proportional to the lattice spacing, the
Wilson term is constructed to vanish in the continuum limit.

In particular, adding a Laplacian operator to the continuum Dirac operator,
proportionally to a, fulfills the previous requirements: ”

" a ol 4 > cic 590 7 —p,c1c (51,_A
—0(0) (5720 ) ) —2 (o) (%— 5> Dneres (e tny ¥ Uopores(0)0 iy
a u=0 2a
(2.40)
pr. 4 1&
—— —— > cos(ap). (2.41)
pn=0

On the first step, the discretization of the second derivative is performed in an
analogous way to the partial derivative in eq. (2.34). Then, the discrete Fourier
transform is again applied leading to a cosine that provides an extra mass contri-
bution to the doublers. As the lattice spacing decreases the mass of the doublers
increase to a point that they effectively decouple from the theory.

Wilson fermions are defined by the sum of the naive Dirac operator, defined in
Subsection 2.5.1, and the Wilson term in eq. (2.40),

—~ a
D(x, y)a1a2 = Z(Vﬂ)alazvu,cwz + <5xy5C1CQm0,f - 2V31CQ> Oaras- (2'42)
n

c1C2

In particular, the Wilson term is not invariant under the axial transformation,
defined in eq. (B.4). In the absence of the Wilson term, the fact that the chiral
symmetry is satisfied in the chiral limit implies that the quark masses can be
multiplicatively renormalized (see Section 2.8 for more details). However, on the
lattice, the Wilson term shifts the massless quark limit by an additive term given by
the critical mass, m¢.. The subtracted bare quark mass is defined by the difference
between the bare quark mass mg ¢ and the critical mass ®

Mg, f = Mo f — Mey. (2.43)

The renormalized quark mass can then, in principle, be achieved by multiplica-
tively renormalizing the subtracted quark mass.

Some considerations are remarkable for the implementation of the Wilson ac-
tion. The Wilson regularization, as any non-improved action, receives O(a) dis-
cretization errors. In Section 2.6, we discuss the techniques employed to eliminate

"F.T. refers to the Fourier transform.
8index f denotes quark flavor.
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these effects. Furthermore, the fact that the Wilson term breaks chiral symmetry
explicitly induces unphysical mixing between operators with wrong chirality. Con-
versely to the Wilson twisted mass action presented in the next Subsection 2.5.3,
the distribution of the low-lying eigenvalues is not protected by an infrared regu-
lator and unphysically small eigenvalues can appear. Note that in the quenched
approximation these eigenvalues lead to instabilities, because they are not properly
compensated by the fermionic determinant.

A different approach that evades the No-Go theorem was proposed in [16],
which implements a discrete version of chiral symmetry while also eliminating the
doublers. The anti-commutation relation is replaced on the lattice by

{D, 5} =0 —=% {D, 75} = aDy;D, (2.44)

where the latter relation is known as the Ginsparg-Wilson (GW) equation. GW
fermions fulfill an exact chiral symmetry that differs at O(a) from the chiral sym-
metry defined in the continuum. Overlap [17] or Domain wall [18] fermions are
examples of successful lattice implementations satisfying the GW relation. These
lattice formulations are however significantly more computationally demanding
than those based on the Wilson formalism.

2.5.3 Wilson twisted mass fermions

In this section, some general aspects of the Wilson twisted mass [19-24] (Wtm)
regularization are reviewed, since it will be a fundamental part of our mixed action.
We refer to [25] for a more complete discussion.

The twisted mass term was initially defined for two degenerate light quark
flavors, Ny = 2, where it takes the form

¥ (iﬂe,07573) Y. (2.45)

The element 72 is the third Pauli matrix acting in the flavor space ?, and will be
henceforth combined with p ¢ by defining the twisted mass p, = diag (1e0, —fieo)
through a diagonal matrix in flavor space. The new mass term acts as an in-
frared cut-off in the spectrum of the Dirac operator that helps to stabilize the
computation of the quark propagators.

In the formal continuum limit, the equivalence between twisted mass QCD
and QCD can be established since the fermionic actions can be related by a global
chiral rotation of the fields. We define the physical basis {w,ﬂ} to be the one
in which the action takes the usual form of the QCD action shown in eq. (2.33),
and the twisted basis {x,x} as the one in which the action exhibits the additional

9 The Pauli matrices are proportional to the generators of the group SU(2) by T* = 7/2.
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twisted mass presented in eq. (2.45). The equivalence becomes more explicit by
expressing the sum of the bare and the twisted mass in polar coordinates

Mo + ifleoYsT = Mo, (2.46)

where the M is referred to as the polar mass and « to as the polar angle. This
redefinition leads to the following expression of the action in the twisted basis

S [X?Xv - (I4Z Z XO<1 {DO x y)alf"? + Meza’ym’ 5xy501025a1o¢2 XO‘Q (y)

r 01,02
C1,C2

(2.47)
Considering that the massless Dirac operator is invariant under a chiral rotation,
the twisted mass can be reabsorbed in the physical basis by an axial rotation

P =Ty, (2.48)
) =xerE,

when the twisted angle is matched to the polar angle w = «. This rotation leaves
the integration measure of the path integral invariant, meaning that the change of
variables is non-anomalous.

The main motivation to use Wtm fermions is the property of automatic O(a)
improvement of physical observables at maximal twist [22]. Maximal twist is
defined as a particular case of Wtm fermions where the quark mass in the complex
plane becomes purely imaginary, i.e., the twist angle is 7. In the context of the
mixed action, in the valence sector, the subtracted quark mass has to be set to
zero while the twisted mass requires a matching procedure to the sea quark mass
to recover the unitarity of the theory in the continuum. The matching procedure
will be explained in Section 3.6.

When using Wtm fermions in the sea and valence sectors, automatic O(a)
improvement can be proved by performing a Symanzik expansion (see Section 2.6)
on the fully twisted fermionic action [26]. In doing so, one can identify the relevant
O(a) counterterms of the action which happen to cancel in this setup by imposing
the vector symmetry of QCD in the physical basis. In particular, the counterterms
cancel out by the subgroup defined by the second generator of SUy (2), which will
be denoted as [SUy(2)],. See Appendix B for an introduction to the continuum
global symmetries.

The Wtm formalism can be extended to a non-degenerate flavor structure in
the valence sector [24,27] while also preserving the property of automatic O(a)-
improvement.

The symmetries in the twisted basis, called twisted symmetries hereafter, are
a composition operation of the standard symmetries by an axial rotation over a
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polar angle. Starting from the vector and axial rotations, described in Appendix B
for the physical basis, the analogous transformations for a Wtm Lagrangian at a
generic angle w can be derived through the eq. (2.48)

I —iwfmé ia%% iw'y5§ — P iw'y5§ —ia%,§ —iw'yg,é
X —» X =¢ € € X5 X —> X =Xe € €

/ —iw'y5£ ioa“’y5ﬂ iwwg,ﬁ = — = iu)'y5£ ioa“'y5ﬂ —iwys 5
X-—-}x:e 2 A 2 e 2X7 X———)sze 2 A 2 e 2’

(2.50)

which will be referred as SUy (2),, and SU4(2),, for a generic twisted angle. Like-
wise for Wilson fermions, the twisted vector symmetry SUy (2),, holds for degen-
erate quark masses while the SU4(2), symmetry is only satisfied in the chiral
limit.

The Wtm action also requires for the Wilson term of eq. (2.40) to eliminate the
doublers. The Wilson term is not invariant under neither twisted axial rotations
nor twisted vector rotations, thus breaking chiral symmetry. Breaking axial sym-
metry implies that the Wilson and the Wtm theory are not equivalent anymore
on the lattice by the transformation in eq. (2.48).

The vector twisted rotation, conversely to the standard vector rotation, is
proportional to 5. The opposite happens to the axial twisted transformation,
which does not depend on the fifth gamma matrix. The quark bilinears in the
twisted basis are defined in an analogous way to those in the physical basis, shown
in egs. (B.11) to (B.15). ' At w = %, the twisted mass and the Wilson term are
totally misaligned in terms of the generators 1 and 2 of SU(2). The Wilson term
breaks the symmetry [UV(1)§L2 while it preserves [U A(l)%]m' The opposite
happens for the twisted mass at maximal twist. This implies iﬁdirectly that the
charged vector current in the twisted basis is already renormalized since the axial
transformation [Ua(1)z]12 behaves as in the continuum, i.e., it is only broken in
the massive case. As a consequence, the pseudoscalar decay constant in the Wtm
regularization can be reexpressed by using the vector Ward-Takahashi identity
(See Section 2.7), so that it is protected from renormalization.

The discrete twisted symmetries can be derived in a similar way to the global
symmetries starting from the physical basis, as defined in Appendix C. Although
the transformation under twisted charge conjugation is conserved in the Wtm
regularization, parity and time-reversal are not. Both parity and time-reversal
require an extra change of sign of the twisted mass to keep the action invariant,
which implies that CP7T symmetry is conserved.

An advantage of the Wtm regularization is the relatively cheap cost of the
simulations with respect to e.g. Ginsparg-Wilson fermions. Wtm fermions also re-

10We will use a calligraphic symbol to denote the quark bilinears in the physical basis.
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duce the mixing with wrong chirality operators in the renormalization process [24].
Therefore, at maximal twist, many quantities of interest profit from a simpler
renormalization pattern, thus reducing the systematic errors associated with them.
Nonetheless, additional lattice artifacts associated to the breaking of flavor sym-
metry and of parity can appear. For instance, a specific O(a?) discretization effect
appears in the mass splitting between the charged and neutral pions.

2.6 O(a)-improvement

In LQCD, a physical observable is commonly obtained by an extrapolation to the
physical point and to the continuum limit of simulation points from different values
of the quark masses and of the lattice spacings. Lattice data is affected by lattice
artifacts. While this can in principle be addressed by reducing the value of the
lattice spacing, the cost of generating gauge configurations increases significantly
as the lattice spacing decreases. The improvement program consists on removing
the lattice artifacts at leading order on the lattice spacing in order to reduce
deviations from the continuum results, specially from the coarser lattice spacings.
This is commonly required for un-improved actions, such as Wilson fermions.

Symanzik’s improvement program [28] provides a systematic methodology to
describe cut-off effects. It allows to reduce those effects by either tuning countert-
erms to diminish their contributions or by combining observables in a way that
the common cut-off effects cancel. Such counterterms can be computed by either
perturbative or non-perturbative methods. The bottom line is to describe the lat-
tice action as a local effective field theory in terms of the continuum Lagrangian
and local operators of dimensions k + 4

Set = So+ > _ a"Sy, = /d4x£QCD(1‘) +> d" / d*xLy(z), (2.51)
k=1 k=1

which are gauge invariant and respect the symmetries of the lattice theory. We
refer to the continuum action with a 0 index. Cut-off effects of O(aL®)) can be
mitigated by adding to the theory the irrelevant operators composing £*) with the
appropriate coefficients. The procedure can be done order by order in a, however,
the number of operators grows very quickly with k. In practice, after classifying
all possible k& 4+ 4 valid operators, a subset of them are found not be indepen-
dent once the equations of motion are applied. In this way, one can distinguish
mass-dependent lattice artifacts from those that are present in the chiral limit.
The corresponding coefficients of the mass-independent and mass-dependent O(a)
lattice artifacts of a generic operator O will be labelled by ¢y and bp, respectively.

Improving the action allows to improve the hadronic spectrum, but it is not a
sufficient condition to remove O(a) effects from other fermionic observables. The
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improvement program has to be carried out in both the lattice action and the
observables. Analogously to the action, a lattice observable can be expanded in a
power series of the lattice spacing where the leading term is the continuum value
and the successive terms depend on higher-dimensional operators !

Oet(z) = Og(z) + a0y (x) + a*Oy(z) + ..., (2.52)

where the fields O;(x) must respect the symmetries of the lattice regularization. As
an illustration, we indicate the generic expression for the O(a)-improved 2-point
function

25 (O(22)0(x1)) = (O(22)O(x1))g — a/d4x51(x) (O(22)O(21)),

+a) (O(x2)01(z;)O(x1)), + O(a®), (2.53)

i=1

where the interpolators are placed at different lattice sites xy # x».

2.7 Ward identities

Ward-Takahashi identities (WTI) are the quantized version of the Noether’s the-
orem that relates the invariance of expectation values under the transformation of
the fermionic fields. The lattice version of the WTI contains higher dimensional
operators as a consequence of the breaking of chiral symmetry on the lattice (see
Section 2.5 for more details) by the Wilson term. The WTT can provide a way to
relate the renormalization factors of operators, as shown in Section 2.8.

WTT are derived by applying a local infinitesimal change of variables to the
field functionals in the path integral shown in eq. (2.13)

Y(r) — Y (2) = Y(x) + ox(z), Y(x) — @/(x) = (z) + ox(x), (2.54)
= (1 + %) ¥(a), Bla) (1+a5h?),
(2.55)

where the transformations in the case of axial and vector WTI, are obtained by
assuming locality in the egs. (B.9) and (B.10), i.e.,

ay — ak(z). (2.56)

The coefficients are required to be smooth functions within a bounded region D,
outside of which they vanish. The choice of the matrices A* and A* will lead to
the different WTTs.

1 GSubindex 0 refers to the value of the observable in the continuum.
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For non-anomalous transformations dx (z) where the integration measures re-
mains invariant, the integral

/ DIy, ¥, U)sx (0e) =0, (2.57)

cancels for any functional O. This implies, by applying the chain rule, that the
following relation

0 = (5x0) — (06xS), (2.58)

is fulfilled for a generic observable O. The variation of the action according to
eq. (2.55) only acts on the fermionic fields leaving the purely gluonic terms invari-
ant. After neglecting O(a%) and considering mild assumptions '?, the variation of
the action can be written as

558 =i /D d'x ax(e) (=0, (67, T0) + 0 (TM + MT) v, (2.59)

where M is the mass matrix. For convenience, we consider the observable O as a
product of two operators, one that has only support inside the region D, O;, and
another that has support outside D, denoted as O,

((0x01) Oc) = (0i0:0x S) - (2.60)

Note that dxO, vanishes since, by construction, ax(z) cancels outside D .
Starting from the vector transformation in eq. (B.9), the WTI in the contin-
uum can be easily derived by setting the parameter A%, in eqs. (2.54) and (2.55),

~

according to the generators of SU(Ny), A* = —\* =T*
S = —i /D d'x ay(x) (9,V2+ B [T° M]¥). (2.61)

The operator O can be restricted to region external to D, which implies that
O; is set to 1 and O = O,. Such an assumption can be carried out without
loss of generality since the region D can be chosen arbitrarily. Thus, the lhs of
eq. (2.60) vanishes while the observable O, can be introduced within the inte-
gral of eq. (2.61). For instance, considering the SU(2) flavor group, with a mass
matrix M = diag(m,, mg), the vector WTI or PCVC relation links the partial
derivative of the vector current in eq. (B.11) with the scalar density in eq. (B.13),
proportionally to the mass difference dm, between the up and down quarks

Mo x2

(0,Vi(x) 0) = (VM T O)  —2— iesadmy (S*(x) O),  (2.62)

where ¢, is the Levi-Civita symbol and T corresponds to 7*/2. The conservation
of the vector current occurs as long as the light quark masses are degenerate.

12Ta'7p + ’YuTa =0.
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The axial WTT or PCAC relation in the light sector can be derived in a similar
way by means of the axial transformation in eq. (B.10). Setting A* = \* = 75§
and assuming the same reasoning for O as before, the PCAC relation reads

(8,42 () O>:<¢75{M,T;}¢O> mEmasme 9 (PA(2) O). (2.63)

Thus, axial current is said to be partially conserved since the rhs of eq. (2.63)
vanishes solely in the chiral limit (see Appendix B for more details). In a more
general case where the light quark masses are non-zero but degenerate, the partial
derivative of the axial current is related to the pseudoscalar density times the
quark mass. The mass appearing in the rhs of the relation (2.63) is referred as
the PCAC quark mass. On the lattice, dimension 5 operators associated to O(a)
lattice artifacts can appear in both vector and axial WTI, '* shown in egs. (2.62)
and (2.63), respectively. These discretization effects have direct implications over
the renormalization factor of such currents, as detailed in Section 2.8.

Ward identities in the Wtm formalism are derived in a similar way considering
that the vector and axial transformations in the physical basis are equivalent to
each other in the twisted basis. The action variation introduced in eq. (2.59)
presents a new term coming from the twisted mass term in the Lagrangian of
eq. (2.45) which leads to additional terms in the WTI. In the case of degenerate
quark light masses, the WTI in the Wtm basis is simplified as follows

(0,Vi(z) O) = =241 €30 ( P(x) O) + O(a), (2.64)
(0,A5(x) O) = 2my (P*(x) O) + sy 034 (S°(x) O) + Oa). (2.65)

2.8 Renormalization

In perturbation theory, loop corrections lead to the existence of poles in momen-
tum space, which give rise to ultraviolet divergences. Renormalization arises as a
method to obtain finite quantities in the continuum limit, 7.e. once the UV cut-off
is removed, by relating the bare parameters — the coupling constant, the fields and
the quark masses — to physical variables. Although discretizing the space-time
acts as a cut-off that removes these divergences, the connection between a bare
lattice observable and its continuum physical counterpart may involve operators
that receive finite, logarithmic and power divergent corrections in the lattice spac-
ing. In the process of renormalization, the operators may inherit a dependence of
the renormalization scheme and scale.

13The partial derivative of the vector and axial WTI on the lattice becomes a backward deriva-
tive.
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For instance, an operator O renormalizes multiplicatively through a renormal-
ization factor Z3

Ofs(a) = Z5(a, )0, (2.66)

that depends on the lattice spacing a, the renormalization scale p and the renor-
malization scheme S. The lattice computation of the renormalization factors can
be hindered by a mixing due to the breaking of continuum symmetries. Discrete
symmetries can however be used to simplify the mixing pattern.

Renormalization factors can be computed by perturbative or non-perturbative
approaches. For instance, the Schrédinger functional (SF) [29,30] scheme pro-
vides a non-perturbative method to estimate renormalization constants and the
renormalization group running of the coupling, quark masses and operators. The
Schrodinger functional on the lattice is given by the functional integral

Z(C,C") = / e=SUD (U], (2.67)

where the fields are confined to a cylindric volume system with periodic boundary
condition in the spatial directions and Dirichlet boundaries in time. The behavior
at the boundaries is given by the continuous functions C' and C’. While Dirich-
let boundary conditions break translation invariance in the time direction they
also provide a mechanism to directly simulate massless fermions on the lattice as
required for a mass-independent renormalization scheme.

In this setup, recursive techniques applied to a finite volume lead to a con-
nection between the low-energy scale of QCD with the high-energy regime where
PT can be safely applied. In this way, the running of fundamental parameters,
such as the strong coupling and the quark masses, can be determined in a non-
perturbative fashion. Furhtermore, the conversion to other schemes, such as MS
can be performed at high-energies where high-order corrections in perturbation
theory are under control. In this work, results from the SF will be used from
the renormalization and running of the quark mass and for the determination of
O(a)-improvement coefficients [31,32].

As discussed in Section 2.7, Ward identities provide constrains on the renormal-
ization factors of quark bilinears. In the continuum, WTT proves that vector and
axial currents are partially conserved, see egs. (2.62) and (2.63), meaning that the
currents are strictly conserved in the chiral limit. Chiral symmetry guarantees the
applicability of the non-renormalization theorem [33] for the partially conserved
axial and vector currents, leading to Zy, = Z4 = 1 in the continuum limit.

In general, on the lattice, the WTT of the currents are modified with respect to
their continuum form. The mixing of the additional terms with lower dimensional
operators needs to be analyzed in order to guarantee the recovery of the QCD
WTT in the continuum limit. When considering Wilson fermions, for the case
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of the vector current a point-split conserved current lA/ﬁ exists while for the local
counterpart a Zy # 1 renormalization factor is required

[0(2) (= 1) Up@) T (x + ) + § ( + af) (3, + 1) U} (2) T ()] .

(2.68)
In the case of the axial current both local and the point-split currents require
renormalization factors Z,4 # 1. WTT also relate the renormalization factors of the
vector and axial currents with the scalar and pseudoscalar currents, respectively.

N —

Vi(x) =
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Chapter 3

Mixed-action setup

We consider a mixed action approach by combining Wilson fermions in the sea
sector with Wtm fermions in the valence sector. We design a setup aiming to take
advantage from some of the features of the Wtm regularization. Finally we will
compare the continuum results of the mixed action to those of the Wilson unitary
action. The difference between the physical results for both actions will be used
to estimate the systematic uncertainty.

In the sea sector, we consider the gauge configurations on ensembles generated
by the CLS initiative [34], listed in Table 3.1. The sea action is built out of a tree-
level Liischer-Weisz gauge action along with an Ny = 2 + 1 non-perturbatively
improved Wilson fermionic action. In Section 3.1, we provide further information
about the sea action in order to complement the description of the gauge and
fermionic action previously introduced in Sections 2.4 and 2.5, respectively.

The ensembles have periodic boundary conditions on the spatial directions,
while open boundary condition in time are employed to avoid the freezing of the
topological charge at the smallest values of the lattice spacing. The lattice spacing
of the ensembles considered ranges from 0.087 to 0.050 fm. In order to guaran-
tee a good control of the autocorrelations, the length of the CLS simulations in
Monte Carlo time is targeted to be significantly larger than slowest mode of the
algorithm, given by exponential autocorrelation time. To get rid of unphysical
low-lying eigenvalues of the Wilson-Dirac operator, and thus to stabilize the simu-
lations, a small twisted mass is added to the fermionic determinant, as detailed in
Subsection 4.1.1. This approximation can the be removed through a reweighting
procedure [35].

In Section 3.3, we will discuss some general principles behind the use of a mixed
action, while the used matching procedures will be presented in Section 3.6.

The use of valence Wtm fermions at full-twist, described in Subsection 2.5.3,
implies the absence of O(a) lattice artifacts proportional to the valence quark
masses. In Section 3.2, we review the implementation of the Wtm fermions in
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B alfm] label N, N Ky K M, [MeV] Mg [MeV] M, L
3.40 0.086 HI101 32 96 0.13675962 0.1367596200 420 420 5.8
H102 32 96 0.13686500 0.1365493390 350 440 4.9
H105 32 96 0.13697000 0.1363407900 280 460 3.9
3.46 0.076 H400 32 96 0.13688848 0.1368884800 420 420 5.2
H401 32 96 0.13672500 0.1367250000 550 550 7.3
H402 32 96 0.13685500 0.1368550000 450 450 5.7
3.55 0.064 N202 48 128 0.13700000 0.1370000000 420 420 6.5
N203 48 128 0.13708000 0.1368402840 340 440 5.4
N200 48 128 0.13714000 0.1367208600 280 460 4.4
D200 64 128 0.13720000 0.1366017480 200 480 4.2
3.70 0.060 N300 48 128 0.13700000 0.1370000000 420 420 5.1
J303 64 192 0.13712300 0.1367546608 260 470 4.1

Table 3.1: List of CLS ensembles. The first two columns denote the g value and
the lattice spacing a in fermi for every set of ensembles. The labels identify every
ensemble by its geometry, coupling and quark mass combination, respectively. The
parameters N, and N; refer to the spatial and the time lattice size, introduced in
eq. (2.2). In the next columns, it is shown the hopping parameters of the light and
the strange quark masses followed by the approximate values for the pion and the
kaon masses, expressed in MeV. The product of the lattice size L times the pion
mass, shown in the last column, should be large enough to not altering the physics
due to volume effects.

the valence sector. In this setup, we expect to profit from good scaling properties
without the need to tune operator-dependent improvement coefficients.

3.1 Sea sector

3.1.1 Lattice action

The gauge action described in Section 2.4 does not introduce O(a) cut-off effects.
This means that there are no dimension 5 gauge invariant operators that could
be added to the Lagrangian without breaking its symmetries. This can be easily
inferred since any gluonic observable must be formed by an even number of mul-
tiplicative links in order to respect gauge invariance. By following this, there can
only be three independent dimension 6 operators since there are three different
unique ways of closing six link variables in a rectangular lattice: planar rectangles,
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twisted and L-shaped. The most general gluonic action containing plaquettes and
the operators above reads

SG[UH]zgc[)ZTr]l— Uy (p +ZCZZT1"[]1— )” (3.1)

where U@ (r) indicates the three different dimension 6 operators and the coef-
ficients ¢; can be computed in perturbation theory or by renormalization group
methods. A proper selection of such coefficient can lead to O(a?) improvement
in the gauge action. The gluonic action employed for generating the gauge con-
figurations along this work is known as the three-level improved Liischer-Weisz
action [36,37], where the values for ¢; are given by

5 1
“T3 9Ty
Therefore, the only remaining contributions come from the regular plaquette term
and the sum over all planar rectangles.

The Wilson fermionic action described in Subsection 2.5.2 is employed in the
dynamical simulations that produce the gauge field configurations, defining the
fermionic content in the sea sector. This fermionic action contains O(a) errors
that can be removed according to the Symanzik expansion in eq. (2.51). The O(a)
discretization effects originate from the terms containing operators of dimension
5. Once the equations of motion are used, there is a unique dimension 5 operator
that preserves the symmetries of the Lagrangian and is linearly independent from
the other dimension 5 operators and from the terms that appear already in the
action [38]

Cy = 0, C3 = 0. (32)

100 Fut), (3.3)

where F w denotes the discretized version of the continuum field strength tensor.
A common choice, although not unique, reads

B (@) = = 5 (Qu(@) = Quu(%)) (3-4)
Qu () = Uy (2) + Up(2) + Uy () + Uoiu(), (3:5)

where the object ()., () is defined as the sum of the four closest plaquettes, defined
in eq. (2.31). The fermionic Wilson O(a)-improved action is composed by the
standard Wilson terms in eq. (2.42) plus the piece defined above in eq. (3.3),
usually denominated as the clover term !

S|, = Sel, +ir cswzzzb )0 b (€0 (), (36)

T p<v

!The notation |, and |, denote sea and valence sector, respectively.
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where ¢y is the Sheikholeslami—Wohlert improvement coefficient [39]. The fact
that there is a large number of dimension 6 operators implies that the expansion
of the Symanzik program to O(a?) is in practice not carried out in present day
lattice calculations.

3.1.2 Open boundary conditions

The main reason to opt for open boundary conditions (OBC) instead of periodic
conditions in the time direction is related with the existence of different topological
sectors on the lattice. Different topological sectors represent a separate set of ele-
ments of the configuration space such that the configurations belonging to a sector
cannot be continuously transformed into the configurations pertaining to another
sector. The topological sectors can be characterized by the so-called topological
charge (), defined in Appendix E. The topological charge is a quantity related to
the axial anomaly, which vanishes in the classical theory where the symmetry is
satisfied. The Index theorem states that () is an integer number given by the dif-
ference between the zero modes of the Dirac operator with positive and negative
chiralities.

The HMC algorithm (see Subsection 4.1.4) with periodic boundary conditions
(PBC) in time may struggle to sample the various topological sectors. As the
lattice spacing decreases, the Monte Carlo time required to explore the whole
configuration space grows. In this case, the probability to freeze the fluctuations
of the topological charge are significantly increased. In other words, the ergodicity
property of the algorithm can be compromised. This effect not only delay the
thermalization process but also leads to an increase of the autocorrelation times of
observables measured on the produced configurations [40-44]. This issue becomes
specially severe as the lattice spacing drops below 0.05 fm.

Close to the continuum limit where the gauge fields are sufficiently smooth,
the space of lattice gauge fields can be proved to be decomposed into topological
charge sectors [45,46]. At small values of the lattice spacing, when simulating QCD
with the HMC algorithm and PBC in time, the regions of field space separating
these topological sectors are heavily suppressed. The simulation is then expected
to remain frozen on a given topological sector. The use of OBC in time dissolves
the topological sectors and smoothly connects the space of gauge fields [47].

OBC allows to connect the entire field space by allowing the topological charge
to move through the boundaries of the lattice, facilitating the variations of ob-
servables related to the topology [48,49]. The scaling of the autocorrelation time
as a function of the lattice spacing follows a 1/a* law which is significantly better
than the one observed when using PBC. Setting OBC in the time direction leads
to the breaking of the time translation symmetry and induces boundary effects.
For this reason, observables are measured far from the boundaries and ratios of
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correlation functions with common source position are considered to remove the
boundary effects on the low-lying states.

In practice, OBC in time are imposed by setting the elements of the field
strength tensor involving the time component to be zero at the boundaries,

F(),, (IO = 0, a:) = FOV (ZL’() =T — a, 12) = 0. (37)

3.2 Valence sector

Wilson twisted mass fermions are implemented in the valence sector by the action
shown in eq. (2.47). The Wtm action will include the Sheikholeslami—Wohlert term
since this does not compromise the symmetry arguments behind the absence of
O(a) effects coming from the valence sector. In this way, in the massless limit, the
same fermionic action is used in the sea and valence and, therefore, the renormal-
ization factors are identical for the sea and valence regularizations. Furthermore,
the presence of the clover term has been observed to reduce O(a?) lattices artifacts
related to Wtm flavor symmetry breaking effects. The Wilson term expressed in
eq. (2.40) is added to remove the doublers from the theory, leading to the following
valence action:

a
—C,

A SW Z O-MVFlAV + my + W5H X({E), (38)

n<v

— a )
Skl, = a*x(z) Z%Vu — §V2 +1
w

where the flavor content is expressed matricially in the mass parameters and color
and Dirac indices are omitted.

The fermion fields x are not restricted to be in a flavor doublet anymore. They
are regularized as Osterwalder-Seiler (OS) fermions [50] in order to incorporate
the contributions from the strange and charm quarks

p = diag (pe, —fie, T s, Fhe) - (3.9)

Maximal twist is obtained when the bare standard quark mass is tuned to the
critical mass my = mq14. In this case, the twisted mass matrix p carries the
information about the desired quark masses. For the light and strange quark this
is achieved through the matching procedures described in Section 3.6. As described
in Subsection 2.5.3, when using the Wilson twisted mass regularization in the sea
and valence sectors, the automatic O(a) improvement for physical observables
can be achieved. In the case of our mixed action, an analysis of the Symanzik
expansion [51] reveals that residual O(a) effects coming from the sea quark masses
will remain even after the tuning to maximal twist. For instance, the Symanzik
expansion of the renormalized twisted mass is given by:

g = 235, o) (14 abyTx (Mg, )) g + O(e?), (3.10)
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where go is the modified coupling in eq. (3.14), p is the renormalization scale
and Z, is the renormalization constant of the twisted mass. A difference in the
Symanzik expansion of the twisted mass f,, with respect to both the subtracted
and the PCAC quark mass of the unitary Wilson setup, is the absence of cut-off
effects proportional to the valence quark masses. This property is expected to be
particularly relevant in the heavy quark sector.

The twisted mass renormalization factor is related to that of the pseudoscalar
density by the vector WTT in the twisted basis defined in eq. (2.64)

1

7213@3’ ) (3.11)

Zﬂ(§§7 a,u) -

3.3 Mixed action

On the lattice, fermion fields from the sea and valence sectors can be easily sepa-
rated since they appear at two distinct stages of a computation. The sea quarks
are introduced through the fermionic action, commonly integrated out in terms of
a matrix determinant, as shown in eq. (4.2). The valence quarks can for instance
appear, through Wick contractions, as quark propagators in fermionic observables
based on n-point correlation functions. Any difference between the sea and valence
masses of a given quark flavor must be proportional to the lattice spacing, so that
it vanishes in the continuum limit.

On the lattice, one is allowed to take different masses or even different dis-
cretizations of the sea and valence Dirac operators. A mixed action is named
partially quenched when the quark masses are distinct while the massless Dirac
operator is the same for both the fermionic determinant and the valence quark
propagators. The mixed action defined in the previous section is an example of a
partially quenched mixed action.

A mixed action allows to simulate fermionic observables for a wide range of
masses by varying exclusively the valence quark propagators, which often require
less computational resources compared to the cost involved in the generation of
the gauge configurations for different sea quark masses. Furthermore, a generic
mixed action can allow to combine the advantages of considering a computationally
cheap regularization in the sea sector with a more expensive valence discretization
with additional properties relevant for the determination of some physical observ-
ables. On the other hand, even after the matching procedure of the quark masses,
the use of different actions in sea and valence sectors breaks unitarity at finite
lattice spacings. An analysis using chiral effective theories shows that the break-
ing of unitarity induces unphysical double pole structures in the flavor diagonal
pseudoscalar two-point correlation function [52]. This can induce subtle lattice
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artifacts in quantities such as the isospin zero two pion energy or the non-singlet
scalar meson two-point correlation function.

3.4 Renormalized chiral trajectory

Various ensembles at different quark masses need to be generated in order to be
able to carry out the extrapolation to the physical point. In the Ny = 241 theory
it is desirable to approach the physical point along a fixed chiral trajectory in the
(mge, mgs) plane. Among the existing CLS ensembles [34], we are interested on
those that follow a line of constant trace of the quark mass matrix M, to approach
the physical point

TrM, = 2mg e + my s = const, (3.12)
where the m, ¢ is the subtracted quark mass defined in eq. (2.43). In practice
the critical mass is not known a priori, so the ensembles are generated following a
constant value of the trace of the unsubtracted bare quark masses. This is possible
since the critical mass remains constant at a given value of gy. The renormalized
coupling gr is defined as follows

9 = 37, (35, an) (3.13)

where the Symanzik expansion of the improved coupling g, is

P =g l1 + bg(go)aTqu] . (3.14)
Ny
The leading cut-oft effects are thus proportional to TrM,. Therefore, the main
reason to generate the ensembles along the line defined in eq. (3.12) is to keep the
renormalized coupling gr constant when the sea quark masses are varied at fixed
value of the bare coupling go.

In practice, it is more advantageous to deal with a chiral trajectory in terms of
the pion and kaon masses, that are renormalized quantities without O(a) effects.

Pseudoscalar meson masses are related to the quark masses at lowest order in
ChPT

m2 o< 2my, (3.15)

m3e o< my + m. (3.16)

The dimensionless observables ¢4 and ¢4 are useful for fixing the chiral trajectory
and the extrapolation to the physical point, respectively

1
b4 = 8l (zmi + mz;{) : (3.17)
¢2 = Stomi, (318)
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where t; is the gradient flow scale, that will be introduced in Subsection 3.5.1.

Notice that, at each value of the lattice spacing, there exist CLS ensembles at
the symmetric point, mg, = mg s, with a pion mass M, = 420 MeV. Furthermore,
at a single value of the lattice spacing, a = 0.077 fm, additional ensembles along
the symmetric line mg, = mg s were generated. Among the ensembles considered
in Table 3.1, the heavier ensembles are placed in the intersection between the chiral
trajectory and the line of symmetric point ensembles.

The achieved value for ¢, may be slightly shifted from the preliminary chiral
trajectory when the ensembles are generated. Also, the value chosen for ¢§h re-
lies on the physical value of ty which cannot be extracted from experiments and
therefore requires a previous lattice computation. Although an initial value of
tP" can be taken from an independent lattice determination [53], the scale setting
procedure will result in an independent determination of qzﬁh.

To adjust the trajectory after the generation of the ensembles, we carry out
a small correction on the bare quark masses with respect to their initial values
considered for the dynamical simulations [54]. Such a small correction is carried
out in the observable of interest through a low-order Taylor expansion in the
quark masses. For the sake of generalization, let us consider a derived observable
f determined through a set of primary variables {pa}gil. We consider as primary
observable the quantities derived directly from the Monte Carlo samples

P = ") = 77 20" (3.19)

Cc=1

where the index ¢ indicates the Monte Carlo (MC) time of every gauge configu-
ration. Considering a derived observable as any function depending on primary
observables f (pl, P2, ... pNﬂ), we perform a Taylor expansion up to first order in

terms of the light and strange mass 2

df (mq,e, mq.s)
() = (g )42 (= my) SO )
a,

(3.20)
where primed masses refer to the target masses lying over the desired chiral trajec-
tory, while unprimed masses indicate the simulated masses. There is some freedom
in the way to reach the chiral trajectory when shifting the quark masses in the

plane (mj ,,my ;). We prefer to approach the desired trajectory through the line

/

(miﬂ N mM) - (mq,s - mq,8> ’ (3.21)

so that the coefficients of the Taylor expansion remain as smaller as possible.

2The dependence on the primary observable will be omitted for simplicity.
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The derivatives over the quark masses are determined by applying the chain
rule,

dmy, N Z dp®dmyg s | Z(my s

a=1

Na
Ay L o], e

After some algebra, one can easily derive a suitable expression in terms of quantities
that can be measured on the lattice

d:zi,f - a%:l p) Z)J;C K aani,cf>c ' <(pac ~ <a§”i(;;) : <aai£qU’f) >> >(3L3)

The derivative of the action with respect to the quark mass is responsible for
the sea quark mass shifting and can be derived through the eq. (4.3), where the
effective fermionic action is related to the trace of the inverse of the Dirac operator

= —Tr |[Do + mq )~ (U9)]. (3.24)

The quantity above is observable independent, meaning that it only needs to be
evaluated once per ensemble. On the other hand, the first term appearing in
the rhs of eq. (3.24) is responsible for the shifting of the valence quark masses.
When p® is a two-point mesonic correlation function, the derivative stems from
equation (2.29). Considering m,; and m, as the masses of two distinct valence
quark flavors of a generic meson, the derivative reads

Ope _ _
P = (—1)(1+6f’1+6f’2) Tr [[D() -+ mq71] (1+07.1) (1'2, [El)FT [DO + mq72] (1+05.2) (ZL’l, J]Q)FT,] .

8mq7 f N
(3.25)

In the Wilson formalism, applying the contribution to the valence quark masses
is required to hold up the unitarity of the setup. However, in the mixed action
setup one can do a direct computation with the desired shifted mass without
relying on a Taylor expansion in the valence quark masses.

In the following section, we discuss about the computational strategies used
to estimate the gradient flow scale ¢ty and different fermionic observables on the
lattice.

3.5 Lattice observables

In this section, we review the definitions and the procedures applied in the calcula-
tion of the lattice observables used in this work. Numerical results for these observ-
ables are presented in Chapter 5. The observables considered in this study include

38



the purely gluonic quantity ty, employed to set the scale, as well as fermionic
observables like the pseudoscalar meson mass and decay constant or the PCAC
mass.

3.5.1 Gradient flow scale t,

The observable ty is a purely gluonic quantity derived from the Wilson flow or
gradient flow [55]. The flow time, t,, > 0, is an artificial 5th dimension added to
the gauge fields in a way that starting by their original values at t,, = 0, the fields
evolves with t,, according to the flow equation (3.26).

The gradient flow provides a method to perform a continuous transformation
allowing to smooth the gauge fields [56]. The gradient flow profits from various
properties that render flowed observables particularly useful for scale setting, the
study of topology or determining the strong coupling constant.

The Wilson flow is determined by the flow equation in term of the Wilson
action S

@203,V (231) =~ {00,V (w:8,))) Vi (312 (3.26)

where the initial condition is given by the original gauge configurations
Vi(zit, =0)=U, (x). (3.27)

Notice that the flow time has the dimension of a length squared.

The action density F (xg;t,) is a gauge invariant and flow time dependent
observable which does not require renormalization. On the lattice, E (xq;t,) is
defined in terms of V), plaquettes

E (z9;ty,) =2 Z Tr[1 — Vi (z;tw)], (3.28)
x
where the plaquette sum is carried out solely in the spatial coordinates, leaving

the Euclidean time dependence.
The scale parameter t is then defined by the dimensionless operator

<t12uE (5503 tw)>

=03, (3.29)

Zo,¢ tw=to

obtained after averaging over MC time and Euclidean time consecutively. The
specific criteria chosen in eq. (3.29) is due to the good properties observed in
terms of statistical precision, lattice artifacts, finite size effects and quark mass
dependence observed around this specific point.

In contrast with other scale setting parameters, ¢ty cannot be estimated by
experiments, although it is well-defined observable in the continuum limit that
can be accurately determined on the lattice.
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3.5.2 Pseudoscalar meson mass

The pseudoscalar meson masses, computed in the unitary Wilson setup, will play
an important role in the matching of the sea and valence quark masses needed in
our mixed action approach. Ground state meson masses can be extracted from
the two-point correlator function defined in eq. (2.21). Considering a sufficiently
large value of the lattice time extent, 7", the equation (2.18) simplifies to

Jim (Os(w0,)01(20,))7 = 3 (0] Oz [n) {n] Oy [0) e~ 5025, (3.30)

n

Since we will employ pion and kaon masses in the mixed action matching and
to define the renormalized chiral trajectory, the meson 2-point functions need to be
specified for these pseudoscalar states. For simplicity, the fermionic observables
will be described in the flavor basis. In this way, the bilinear flavor content is
explicitly expressed in terms of the indices r and s instead of the flavor matrix 7.
For instance, the pseudoscalar density defined in eq. (B.14) becomes

P (z) = ¢ (x)15¢° (), (3.31)

in the flavor basis.

The pseudoscalar correlator is defined as the sum of all pseudoscalar two-point
functions over the spatial lattice at a given temporal source zy, and sink =z,
positions

b
Cip(@0y, 20,) = 3 2 (P (@2) P (1)) . (3.32)
2,T1

The correlator is projected to zero-momentum so that the pseudoscalar masses can
be extracted from the energies in eq. (3.30). At zero-momentum, the signal to noise
ratio of the mass-degenerate pseudoscalar meson correlator remains constant when
varying the source-sink separation. In this case, the pseudoscalar meson mass can
be isolated from an effective mass analysis with a plateau that extends over large
time separations.

The expectation values are computed through the contractions of the quark

propagators as derived from eq. (2.29), according to their quantum numbers shown
in Table A.1

(Op(2)Op(1)) = = Tr [D ™ (wa, 21)735 D~ (w1, 22)75) (3.33)

The source and sink positions of the correlation function can be placed close
to the boundaries, i.e. zo, = 0, (7 — 2a). In this way, the ground state can be
extracted with a cleaner signal, since the sink position can be placed sufficiently
far away from the boundaries in order to reduce boundary effects and excited state
contaminations. To increase the statistics, we average over equivalent correlators
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whose sources are placed at the symmetric time point with respect to the middle
of the lattice. In case of the pseudoscalar correlators, we average

0 (20) = ; (€78 (03, 30,) + CL3((T — a = ) — 30y, (T — a— 0,))],  (334)
where we denote xy = zp, — zp,. The sign between both terms in eq. (3.34)
depends on the considered Dirac structure and it may change when other two-
point functions are averaged.

The effective mass, defined in terms of the Euclidean distance, is meant to
extract the ground state energy in the limit where the Euclidean time is large
enough to safely neglect excited state contaminations *

aMf(20) = log (%) : (3.35)

The ratio provides the advantage to cancel out the matrix elements asymptotically.

Although a rough estimation of the pseudoscalar mass is obtained for any Eu-
clidean time z far from the boundaries, averaging over the region where M ()
reaches plateau increases the statistics

weig

My = (MH(xo)) (3.36)

zo

The superscript above indicates that the average is weighted by its errors.

3.5.3 PCAC quark mass

The definition of the PCAC quark mass was introduced along with the Ward
Identities, in Section 2.7. Considering that the light quark masses are degenerate
in eq. (2.63), the PCAC mass in the Wilson formalism reads as

o (0,47 (x2) O(1))
T 2(Pre(a2) O(a)) |

(3.37)

The operator O(z), whose election leads to values of the PCAC quark mass differ-
ing only by lattice artifacts, is taken to be the pseudoscalar density P(z1) because
it enhances the signal of the quark mass. By construction, the subtracted quark
mass, defined in eq. (2.43), must agree with the PCAC mass after renormalization
up to cut-off effects. The PCAC quark mass will thus play an important role in
the matching procedure in Section 3.6, because contrary to the bare quark mass,

3The quark flavor indices r and s will be omitted for the pseudoscalar masses. Instead we
will refer the meson by its symbol on the subscript.
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its use avoids the need to know a priori the additive mass renormalization. It is
therefore a suitable choice for the tuning to maximal twist defined as the vanishing
point of the valence PCAC quark mass.

In the notation of the PCAC quark masses m,., the indices r, s = 1, 2, 3, label
combinations of up, down and strange quarks, respectively. Since we consider the
up and down quark masses to be degenerate, the PCAC quark masses where r # s
are obtained from non-singlet two-point functions where disconnected diagrams
are absent

my, =mi. (3.38)
The strange quark mass is then determined by the combination
ml, = 2mi§ — mis. (3.39)

As mentioned in Section 2.6, improving the lattice action does not imply an
automatic O(a)-improvement for the observables. As for the action, in order to
improve the quark bilinears, we have to consider all the possible higher dimension
operators with the same quantum numbers and symmetry properties as the desired
operator. In particular for the axial current, defined in eq. (B.12), there are three
dimension-5 operators which contribute to O(a) discretization effects. We will
refer as improved bilinears to the operators which are free from mass-independent
O(a) lattice artifacts. In other words, based on this denomination, labeled by the
superscript "(1)", improved bilinears will be O(a)-improved in the chiral limit, but
not necessarily in the massive case. The improved axial current is thus defined by
adding a single counterterm c4 proportional to the derivative of the pseudoscalar
density

A = AT 1 aca(gl) 9,P. (3.40)
The improvement coefficient ¢4 has been determined in a non-perturbative fash-
ion for our lattice action [57] and its dependence on the bare coupling can be
parametrized as follows,

13.9847
ca (gg) = —0.0060337 [1 + exp (9.2056 - <2>>] : (3.41)
90

in terms of the bare coupling. Among the conserved bilinears, detailed in egs. (B.11)

to (B.15), the only one which does not receive O(a) lattice artifacts in the chi-

ral limit is the pseudoscalar density. The other operators get contributions from
dimension five operators.

Using the improved axial current, the effective PCAC mass reads *

off (D) 506;5;1) € 50625513(950) + aca(g5)9005Chs (o)

, 3.42
20;;(:1:0) 20;;;(%) ( )

4The discrete second derivative is given by Agf(zo) = 0005 f (o) =
5 (f(zo +a) + f(zo — a) — 2f(x0)) + O(a?).
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where the axial-pseudoscalar correlator C}° (zo) is computed on the lattice in a
similar way to the pseudoscalar correlator in eq. (3.32)

Coplruno) = &5 3 (A5 (@) (2). (3.43

T2,T1

Notice that the spatial dependency is lost after the summation over x5 and ;. As
in eq. (3.34), it can be symmetrized according to the time-reversal transformation,
derived in egs. (C.10) and (C.11)

aop aop aop

Crs (20) = ; (Crz (@0, 0) = CL (T = 1) = o, (T = 1))] (3.44)

thereby increasing the statistics. The improved PCAC mass is computed through

weighted averaged over xz values in the plateau region of the effective mass mﬁfm (x0).
The renormalization of the PCAC mass involves the scale dependent renormal-

ization constant Zp and also the scale independent one, Z,4, due to the breaking

of chiral symmetry by the lattice regularization, as pointed out in Section 2.8.

Considering the O(a) counterterms proportional to the quark masses mentioned

above, a generic renormalized quark bilinear made of distinct flavors r and s reads
bilinear J. /f % in the flavor basis reads

Ty = 253 ap) (1+ by () aTe(M,|,) + by(g)am,.) Ti*", (3.45)

where concrete examples of J;° will be the axial current A7° and the pseudoscalar

density P"*. The quantity Z; denotes the renormalization constant while b, and b,
refers to the counterterms controlling mass-dependent O(a) effects. In particular,
the axial renormalization factor Z, does not depend on the renormalization scheme
and is computed in the mass-independent renormalization scheme [58]. We can
employ the bare quark mass matrix in eq. (3.45) since the difference between
considering the bare or the renormalized trace quark mass matrix only leads to
O(a?) discrepancies.

Focusing on the PCAC quark masses with r # s, we can derive its renormalized
expression from egs. (3.37) and (3.45)

Za(32) (1+ abaTr(M,|,) + abam(D)

m) = = — mq(é) +0(d?), (3.46)
Zp(g8, ap) (1 + abpTr(M,],) + abpm/)
Z4(93) - o
= 7@ ap) Lo \ba = bp) Tr(M, by —bp) mD] mD 4+ O(a?
Zp(J5, ap) |10 (Ba = bp) Te(My],) +a (ba = bp) m| m{D + O(a®),

(3.47)
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where (5,4 —Bp) = O(gg) and the coeflicients (lN)A — l~)p> were computed non-
perturbatively in [31]. The renormalization factors Z4/Zp defined in a the mass-
independent scheme have been determined on the chirally rotated Schrodinger
functional in [32,59].

3.5.4 Pseudoscalar meson decay constant

The decay constant is an hadronic form factor that can be related to the leptonic
decay amplitude of a meson through the weak interactions. Focusing on charged
pseudoscalar mesons P, the axial current can mediate the coupling of the meson
to the vacuum, in order to satisfy the parity symmetry in the process. The matrix
element that characterizes the process of an incoming pseudoscalar meson at rest,
p = 0, decaying weakly at position z, is given by:

N

(0] A5 () [P"(p = 0)) = f1 Mps (2MuL*) 7 | (3.48)

where the decay constant f7 is the factor containing the non-perturbative infor-

mation in the only parametrization of the matrix element allowed by the Lorentz

D=

invariance and flavor constraints. The factor (2M,sL*)" 2 is included to enforce
the conventional normalization of the decay constant.

Matrix elements can be computed on the lattice through a combination of
correlation functions defined in eq. (3.30). In particular, the matrix element
shown in eq. (3.48) can for instance be extracted from the pseudoscalar and axial-

pseudoscalar correlators,

C?‘s(I) (xo)crsu) ((T _ 1) . IO)‘ 2 ;
R;z (.T ) = aop app _ O| Ars( ) |Prs>

. (3.49)

in the limit of large Euclidean times, where the low-lying exponential factors cancel.
The pseudoscalar meson decay constant f,s renormalizes as the axial current in
Subsection 3.5.3, leading to the following expression

2= 20 ) (1 )i (R )™ @o0)
ps

neglecting O(a?) terms. The term m,., refers the PCAC mass whose quark flavors,
r and s, compose the valence quarks of the meson P. The improvement coeffi-
cient b, employed was estimated at one-loop in perturbation theory for our gauge
action [60].

The decay constant can also be determined from the pseudoscalar correlator
only, by substituting the axial-pseudoscalar correlator according to the PCAC
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relation. Although this alternative holds for the Wilson action, it was shown to
suffer from larger boundary effects on the lightest ensembles [61]. This implies that
the previous definition of the ratio ;S leads to larger plateaus, reducing thus the
systematic uncertainty introduced by the average over the Euclidean time.

As mentioned in Subsection 2.5.3, the axial current in the physical basis trans-
forms into the vector current in the twisted basis at maximal twist. This implies
that the pseudoscalar decay constant in the twisted basis is proportional to the
vector matrix element in a similar way to eq. (3.48) in the physical basis. Setting
the generic operator O to the identity in the Wtm PCVC relation. (2.64), the vec-
tor matrix element can be related to the pseudoscalar matrix element by taking
the time derivative °

2y
M,

pPs

(0 V5= (x) [P™(p = 0)) O/ P=(z) [P"*(p=0)), r#s (351

We define the quantity R} as an analogous ratio to the one defined in eq. (3.52)
formed by a product of pseudoscalar correlators instead

rs(D) rs(D) 3
Cpp (370>Cpp (T-1) - xO)‘) . (3.52)

onr0) = ( Coy(T—1)

The renormalized pseudoscalar decay constant for the Wtm regularization is ob-
tained from the following equation

8 .
R __ wel.
ps — IU’qu Migs <Rpp(l’0)>x0 g’ (353)

avoiding, in this case, the need of a renormalization factor.

3.6 Matching procedure

The subtracted quark mass of the valence sector must be tuned to zero in order to
reach maximal twist. Considering that both the subtracted and the PCAC mass
renormalize multiplicatively, the previous condition can be satisfied by tuning the
bare PCAC mass to the vanishing point. This process is strongly simplified due
to the fact that it only has to be carried out in the valence sector. In practice,
the tuning is performed by simulating different values of the hop{ping parameter
amqy|, = 1/(2 ke,) around the vanishing point, in a way that mé)‘ = 0 can be
reached by a simple interpolation. °

5The flavor notation for m,., holds analogously for the twisted mass 1, = % (i + ps)-
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The actions implemented for the sea and the valence sector only differ by the
mass term, leading to a partially quenched mixed action. As stated in Section 3.3,

unitarity can be recovered by matching the renormalized sea quark masses to the

twisted masses 9,

R

R| _ R
e )U: My

= msy

. T i ‘v . (3.54)
Enforcing both conditions ensemble by ensemble is sufficient to recover unitarity
in the continuum limit.

The matching conditions can be imposed by taking two different approaches.
The first method imposes directly the equality of the renormalized quark masses [62]

which reads

1 A ~ ~
1) Zﬂé(s) = i [1 +a (bA - bP) mg?(gz;)} m%)(szx)- (3.55)
The appearance of Zp in both side of the relation avoid to include its error con-
tribution in the matching process. The matching above does not include on both
sides of the equation the O(a) improvement terms related to the trace of the sea
quark mass matrix, since the improvement coefficients are of O(agg) and are there-
fore expected to induce a small correction. This condition provides a way to match
both regularizations through a limited number of simulations around the vanishing
PCAC mass.
The alternative approach relies in the relation between the squared pseu-
doscalar masses and the quark valence masses, so that matching mfr( Kj L= mi( K) L [63]

implies the matching condition in eq. (3.54). In the light sector, this method re-
quires to perform simulations on a set of points in the plane (k| , ), referred as
a grid henceforth. The target values for which the matching and the maximal twist
conditions are both guaranteed, is obtained through interpolations among the var-
ious data points of the grid. To carry out the interpolations, the valence PCAC
mass and the pseudoscalar squared mass, or ¢o equivalently, are parametrized
linearly in terms of the twisted mass, and quadratically on the light hopping pa-
rameter

P
2)  mazl, (kel,, o) = ﬁ + Prapte + P13 = 0, (3.56)
P21 P22 .
2|, (Kel,, , pe) = 7 + + paspie + P = P2l (3.57)
(2 5l,)” 2Rl

which hold accurately in the neighborhood of the target values.
To match the strange sector as well, we need to consider an hyperplane (x|, , ftr, fts)
and add the equivalent constraint over the kaon mass or ¢4. As in the light sector,

5The connected strange quark mass is referred as msy.
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Figure 3.1: Illustration of the data used in the tuning procedure to maximal twist.
Data points refer to the different simulations employed in the matching of the
valence and sea quark masses and in the tuning to maximal twist for the ensemble
N203 when using pseudoscalar meson masses in the matching procedure.

¢4 behaves linearly in terms of the twisted quark masses around the matching
point

P31 D32
_|_
(2 K'@‘u)Q 2 /w’v

+ pastie + Daafts + D35 = Pul, -
(3.58)

2) ¢4’U('L€Z’v7u£7us> =

Notice that the validity of the parametrizations above relies on the range consid-
ered to explore the parameters ry|,, p¢ and ;. To ensure a range close enough
to the target values, and therefore to reduce the systematic uncertainties in the
matching, an initial matching was performed, ensemble by ensemble, according to
the first approach in eq. (3.55).

The large amount of simulations needed with respect to the first matching to
explore the space of parameters (ry|, , i, ft5) is justified by taking into account
that the meson masses are already O(a)-improved. Furthermore, the availability
of a grid of points allows to incorporate a refined analysis of the mass-shifts towards
a renormalised chiral trajectory (Section 3.4).
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Chapter 4

Numerical methods

In this chapter, we will briefly review some of the algorithms involved in the
dynamical simulations of QCD on the lattice, pointing out the specific features used
in the generation of CLS. Sections 4.2 and 4.3 describes the techniques employed
to improve the extraction of the ground state of fermionic observables which are
particularly relevant in the heavy quark sector. In the last Section 4.4, we also
present the error analysis strategy followed along this work. We will describe an
error propagation method constructed to estimate the MC autocorrelation times
directly from the derived observables, which allows to simplify the error analysis
compared to more standard techniques.

4.1 Algorithms for dynamical simulations

A large fraction of the computational resources devoted to a lattice QCD com-
putation goes into the generation of gauge field configurations through dynamical
simulations. However, for some type of observables or when targeting very high
precision, the cost of the measurements can become similar or even larger than
the one of the generation of the configurations. Measurements which involve the
computation of a large number of diagrams or that receive contributions from
disconected diagrams are examples of computationally intensive observables.

Algorithmic developments play a decisive role in the advance of lattice QCD
simulations. In this section we review some of the basic methodology used in these
simulations.

4.1.1 Monte Carlo integration of the path integral

Lattice QCD computations are based on the calculation of expectation values
through the path integral formalism, as detailed in Section 2.2. In general, such
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functional integrals are not prone for an analytical treatment and they are there-
fore evaluated numerically through sampling techniques such as the Monte Carlo
integration. The MC integration is a stochastic approach which employs random
chosen samples to approximate an integral. This procedure tends to outperform
the deterministic methods as the dimension of the integral grows.

As described in Appendix D, an integral can be estimated by evaluating f(x)
in a set of points drawn from a random probability density dP(x) = w(x)

@) = =3 fx)+0 (-2 ). (A1)
D N3 VN

where D is the integration domain and dP(X) . Instead of estimating the integral
of f(z) with a uniform random sampling, i.e. w(z) = 1, the function f(x) can be
redefined by reabsorbing any factor on the probability density function w(z).

As stated in Section 2.2, the path integral shown in eq. (2.14) can be written
in terms of an integral over the gauge fields by applying the Matthews-Salam
eq. (2.16) to the fermionic determinant

(0) = ;/D [U] eS¢Vl l;lDet (pf)o. (4.2)

This integral can be approximated by a sampling according to the exponential
of the action, since once it is normalized it can be interpreted as a probability
density function. In practice, the exponential acts as a weight factor, suppressing
the regions where the contribution of the action is highly suppressed.

A direct computation of the determinant of a Dirac operator turns out to
be prohibitively expensive for large lattices, since the dimension of the fermionic
matrix is 12 x T x L3. Therefore, evaluating the fermionic determinant as a part
of the integrand is not feasible for realistic lattice simulations.

An alternative approach is to consider the product of the determinants as
part of the weight function w(x), which implies that the determinant of the Dirac
operator is required to be real and positive. In this approach, the determinant is
reexpressed in the following way

Det (D) = ™0nP) = =5 (4.3)

where the effective action S receives non local contributions. While for most
lattice regularizations the determinant of the Dirac operator is real, positivity is
not in general guaranteed and requires further constraints. Considering a pair of
degenerate quark masses allows to rewrite the fermionic determinant in terms of
a single positive-definite Hermitian operator

Det (D*)" = Det (D*) Det (75D"5) = Det (D'D'), (4.4)
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where ~v5-hermiticity was used.

The approach followed for the light quark masses in eq. (4.4) does not apply
to the strange quark, for which the sign of the determinant is not, in general,
protected. This issue can be circumvented by estimating the determinant of the
positive square root of R~ = D*TD* through a rational approximation. In this
way, the determinant of the strange quark Dirac operator can be written as follows

Det (D*") = W,Det (R™), (4.5)

where the reweighting factor Wy = Det (D*R) is included to eliminate residual
effects due to the use of a rational approximation. Subsequently, once positivity
is satisfied, the determinant can be computed by applying an analogous relation
to eq. (2.15) for commuting fields in such a way that the original Grassmann
integration turns into a standard Gaussian integral in terms of bosonic fields.

The dynamical simulations used to generated the CLS ensembles introduce a
factorization of the light quark fermionic determinant in order to reduce insta-
bilities. A twisted mass parameter p is added to the fermionic determinant in
order to protect the spectrum from the presence of unphysical states that would
otherwise introduce numerical instabilities

0\ 2 Q* + 113 A2 2
Det (Q") :DaQme<Q2+mﬁ>Dm(Q«+mﬂ, (4.6)

where Q and (),, are elements of the even-odd precondition decomposition of
@ = 5D [64]. In order to eliminate the effect of the twisted mass jig, a reweighting
procedure is applied. The reweighting factor W [35] has to be averaged together
with primary observables as follows

(") = <. (4.7)

In addition, the Wilson Dirac determinant is factorized according to the Hasen-
busch’s factorization [65] involving a chain of twisted mass operators in order to
improve the efficiency of the dynamical simulations. An analogous procedure is
also applied in the computation of the strange quark fermionic determinant [34].

After fermionic integration, the MC approach can be applied to estimate the
path integral over the link variables

(0) = ; [Pwies o, (4.8)
1 X e 5"
:N;O[Ui], dP(U) :W, (4.9)

according to probability density function dP(U) given by the effective action.
Notice that dP(U) is normalized in the equation above.
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4.1.2 Markov Chain

Estimating random field configurations U; through the probability distribution
function defined in eq. (4.9) would require to compute several high dimensional
integrations, which is impractical for realistic lattice data. Instead, the gauge con-
figurations U; are generated through a stochastic process following an equilibrium
distribution. The {Ui}i]io sequence is initiated by a random configuration Uj. In
this context, 7 is understood as labeling the MC time. The price to pay for gen-
erating the configurations efficiently is that they are not completely independent
among each other, leading to correlations between subsequent configurations. A
correct treatment of correlated data will be discussed in Section (4.4).

The Markov chain is described by a transition probability between two suc-
cessive configuration states U; and U, ;, that is independent of the initial time ¢
and of the rest of the elements of the chain, meaning that the Markov process is
a one—time—step procedure

PUH—hUi =P (U’H—I — Uz) . (410)

The transition matrix P is a square matrix that controls the probability of all
possible transitions in configuration space.

The successive application of the transition probability matrix generates a
Markov chain if it fulfills three conditions: ergodicity, normalization and station-
arity. Ergodicity is represented by a matrix whose elements are greater than zero,
which ensures that all transitions are plausible. In fact, to guarantee conver-
gence !, a slightly stronger condition is required by imposing that for every gauge
field there exists an open space V, such that Py, , y, > || for all the fields inside
the configuration space. A large enough value of € may simplify the communication
between topological sectors on the lattice. Besides, the sum of all the elements of a
row/column must be normalized >, Py, 1, = 1. Stationarity imposes the absence
of sinks and sources in the state space, meaning that the probability of the system
to be in the configuration U;, after N steps, is equivalent to the probability of
hopping out from U; after the same number of steps

ZPUi,UnP(N) (Up) = ZPUn,UiP(N) U;) , (4.11)

where PXY)(U,,) denotes the probability to end up in the configuration U, after N
steps.

After the thermalization period 2, a state of equilibrium is achieved asymp-
totically. At this stage, importance sampling helps to sample more frequently the

'In the context of a Markov chain, convergence implies that the chain tends to a unique
stationary distribution regardless of the initial state.
2All configurations generated in the thermalization period must be discarded.
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most relevant region in the state space given by the weight factor e=5". The range
of MC steps after which the distribution can be safely considered in equilibrium
depends on how every observable couples to the slowest modes of the transition
matrix. The natural MC time scale that characterizes the slowest modes of the
transition matrix is the exponential auto-correlation time, 7.,. The parameter
Texp 15 Uniquely defined for a given Markov chain and it is this thus observable
independent.

In order to secure that the equilibrium distribution has been reached, it is
possible to generate various Markov chains differing only by the choice of the ini-
tial configuration and monitor the stability of the fluctuations among statistically
compatible mean values.

4.1.3 Metropolis algorithm

The implementation of the transition probability matrix PP is not unique but most
common algorithms stick to a particular solution of the equilibrium equation (see
eq. (4.11)), which considers its equality for every term of the sum

IEDUz' UiP(N) (Ul> = ]P)Ui,UiHP(N) (UiJrl) : (4'12)

+1,

The Metropolis algorithm is the most common implementation of a Markov chains.
It considers the solution proposed in eq. (4.12) and provides a way to generate a
new configuration U;; according to a probability density function, used in eq. (4.9)

_ qeff
eS

O e

D[U]. (4.13)
Starting from an arbitrary configuration Uy, ® the following procedure is per-
formed iteratively to generate U, q:

1. Define a set of small random perturbations of any given configuration £*U;,
under the condition that £ is a random element of SU(3) close to 1.

2. Propose an a priori transition matrix Pgojw from the initial configuration
and select the following configuration according to it. Any transformation £
and its inverse must be equally probable leading to a symmetric transition
matrix P©).

3. Ui = E'U; is accepted as a new element according to

. P (Ui1)
]P)(UI?J)A,U,; = 1min <17 _P(Uj,;;) y (414)

3 After reaching equilibrium, the chain becomes independent of the initial choice.
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or it is rejected and therefore U; 1 = U;. The probability shown in eq. (4.14)
allows to accept a configuration whose value for the action increases. In this
way, the algorithm can explore quantum fluctuations that are forbidden in
the classical theory.

4. The transition matrix is constructed according to the above steps

A 0 0 A
PUi+17Ui = Pl(‘]'j—lvUiIP)gji)ﬁ-lvUi + 5Ui+l7Ui Zpé}z,UZ (1 - P%]n),UZ) ? (4]‘5)

where it is straightforward to check that the equilibrium condition above (4.12) is
satisfied. As pointed out in Subsection 4.1.2, the partition function does not need
to be explicitly computed since it cancels in the computation of P(4).

Notice that the above procedure can be performed link by link according to
following equation

PUi-‘rhUi = ZIP)Ui+17UnIP>Un7Ui’ (416)

allowing the generation of fields by elementary transitions. This algorithm, in
its naive formulation, provides implementation for pure gauge theories where the
gauge action involves link variables that connect only the neighboring points. In
this case one can benefit from the element-wise updating character of the Metropo-
lis algorithm. Methods as heat bath [66] or overrelaxzation [67,68] improve signif-
icantly the performance. In order to include dynamical fermions, different tech-
niques were proposed to improve the algorithm.

4.1.4 Hybrid Monte Carlo

Dealing with dynamical fermions on the lattice implies a high level of non-locality,
as mentioned in Subsection 4.1.1 The Hybrid Monte Carlo (HMC) method [69,70],
which takes over some of the features of the Metropolis algorithm 4.1.3, allows to
update the gauge configuration globally, while keeping the acceptance rate to an
acceptable level.

Unlike the Metropolis algorithm, the proposal for the subsequent gauge con-
figuration is not a product of random variations but an update according to the
classical equations of motion (EOM). It is based on molecular dynamics (MD)
evolution, where the action becomes an effective potential and the links act as
generalized position coordinates. In analogy to the classical theory, the field space
is completed by defining the conjugate momenta to the link variables in eq. (2.8)

I,(z) =a Zl ATy c(2), (4.17)
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where . are the Gell-Mann matrices and 7, .(z) are the conjugate momentum
of U, .(x). The Hamiltonian governing the MD evolution can thus be written as
follows,

HILU) =3 Tr ()] + Sa (U] + i U], (4.18)

where, as previously discussed, the fermionic determinant has been expressed in
terms of an effective action.

The evolution of the classical system can be computed in terms of a MC time
through the equations for II(II, U) and U(IT, U) [71]. * Those equations, if exactly
solved, would guarantee that the Hamiltonian would be exactly conserved over
time. This implies that they would provide, in a deterministic way, a sequence
of gauge configurations generated flawlessly according to the generalization of the
probability distribution function in eq. (4.13)

G_H

PLU) = fD[H,U]e*HD[H’U]’ (4.19)

in terms of the Hamiltonian. The numerical integration of the EOM introduces a
systematic error that requires an acceptance/rejection step analogous to eq. (4.14)
in order to discard large fluctuations in the Hamiltonian along the MD trajectory.

To sum up, the HMC algorithm provides consecutive gauge configurations U,
following a set of iterative steps:

1. Taking advantage of the fact that the joint probability distribution function
in eq. (4.19) factorizes, the momenta II,;; value can be sampled randomly
according to the Gaussian distribution

P(II) = eXp(—;HQ). (4.20)

2. The MD evolution provides the EOM required to produce a new configura-
tion Ui+1.

3. U1 is accepted according to

(A) exp (—H [Il;4q, Ui—i—l])) (4.21)

P = min | 1
Uit1,Ui mm( " exp (—H [IL;, Uy])

The procedure aims to generate new gauge configurations that can change
significantly in configuration space while keeping the Hamiltonian invariant. In
practice, reversibility is imposed by eq. (4.12) and redoing the above steps with

4The dot notation is employed to refer to the time derivative of an operator.
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—1II;41, i.e. with the final momentum in the opposite direction, allows to monitor
the smallness of the size of the reversibility violations along a given trajectory.
To improve the computational efficiency, the action of the CLS ensembles was
integrated in different hierarchical stages, splitting the gauge action from the com-
putation of the light and strange determinants [49].
In the next sections, two different techniques aimed to improve the control in
the process of isolating the ground state from fermionic correlation functions will

be described.

4.2 Distance Preconditioning

The Dirac operator is a high dimensional matrix which is inverted through iterative
numerical procedures minimizing progressively the residue

5 (D (01,22) €7 (a) = n(an)
5 €0)(a2)

< (4.22)

until it reaches the stopping criterion . The norm in eq. (4.22) is the sum of
contributions from all distances on the lattice. The quantity n(x;) refers to a
source placed in a particular position z;. € (zy) denotes the solution at a given
iteration n, i.e. an approximation of the quark propagator, while the residue
measures the relative numerical accuracy achieved in its computation.

According to eq. (3.30), the two-point correlation function signal decays asymp-
totically as e™2%0™# where m, denotes the ground state hadron. The fact that
the propagator rapidly decreases at large separations between the source and sink
positions may imply negligible contributions to the norms in eq. (4.22). The solver
is therefore not sensitive to these long distance effects, leading to an inaccurate cal-
culation of the solution when the stopping criterion is not sufficiently small. This
issue is easily evidenced for heavy hadrons, and although it can be solved naively by
increasing the precision of the calculation, arbitrary precision algorithms become
quickly extremely costly.

Distance Preconditioning [72,73] is an alternative method aimed to avoid the
appearance of noise originated by this issue without reducing the stopping criteria
r or working with arbitrary precision. It is based on multiplying the Dirac operator
by a diagonal matrix in Euclidean time

QNtXNt = dlag (qla qz, .-, th) ) a4 = eaowégiz()l‘v (423)
in order to compensate the decrease of the quark propagator in the time direction
by the effect of an exponential enhancement depending on a parameter ag. In
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order the keep eq. (4.22) unchanged, the various terms are transformed as follows

D—QDQ™",  &— QE, n — Qn, (4.24)

requiring thus to unfold the transformation over the propagator &.

For every correlator and lattice size, there is a large enough value of o for
which the accuracy of the various contributions to the norm is not compromised.
Larger values of ag can lead to reliable computations but they tend to increase
the computational cost. In practice, the parameter is tuned according to a few
simulations carried out with low statistics at different values of ay. The minimum
value that does not introduce numerical inaccuracies at large distances will be
considered for the simulations.

4.3 Smearing

The signal of lattice quantities is subject to an exponential degradation in terms
of the Euclidean time that is evaluated by the signal-to-noise ratio. The effect is
not perceptible for the pion meson, but it arises for heavier masses. The signal-
to-noise ratio Rgy is defined as the quotient between the expectation value of a
correlator, whose leading term is given by the ground state mass (see eq. (3.30)),
and its variance. Considering that the interpolators Oy (z2)Oy(z1) generate from
the vacuum a meson with mass M, the variance reads

7= 3 [{(Out2)0u(e1))") = (Ou(w2)Outan))’] (4.25)

T2,T1

which receives contributions from four-point correlation functions.
In the limit of large separations Az, ° the signal-to-noise ratio decreases ex-
ponentially fast when the desired ground state mass is heavier than the pion mass,

Ren = €n o e~ (Mu—Mr) Ao, (4.26)

Oy

A way to mitigate the problem is to use smeared interpolating operators as
previously mentioned in Subsection 2.3.2. Fermion smearing consists in employing
non-local interpolating fields, whose overlap with the ground state is enhanced
with respect to the local fields. Although the smeared fermions do not improve the
signal-to-noise ratio, the exponentials of the higher energy states can be suppressed
at short distances, so that the plateau regime of the effective mass is reached before
the noise dominates over the signal. In order to suppress the boundary effects due

5Normalization factors are here omitted.
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to the use of OBC in the time direction, when the signal-to-noise effect emerges
very soon in time, the source position can be located in the middle of the lattice.

We employ Wuppertal or Gaussian smearing [74] for the functions S in eqs. (2.26)
and (2.27). Wuppertal smearing consists in an update of the fermion fields by the
average over their neighboring fields placed within a radius ngs and weighted by
the distance. The smeared fields are built iteratively through

S @) = - 0@) +a Y U@+ p)| (4.27)

6 Pt

where « is a smearing parameter and ¢ denotes the iteration from 1 to ng. The
smearing procedure can be suitably applied to both source and sink operators.

In the next section, we will describe the methodology developed for the error
propagation analysis of primary and derived observables.

4.4 Error analysis

LQCD demands expensive numerical simulations that exploit the limits of the
current computational resources. The analysis of lattice data requires a proper as-
sessment of statistical and systematic uncertainties. In this Chapter we present the
error analysis developed in this work, based mainly in the methodology developed
over the recent years by the ALPHA collaboration [61,75-77]. As the complexity
of an observable derived from MC data increases, the error propagation procedure
needed to keep track of the original correlations can become a daunting task. The
methodology described in this chapter intends to simplify the process by keeping
in memory the correlations at the various stages of the computation.

4.4.1 Notation

To avoid ambiguities, the introduced notation will explicitly show the dependencies
of an observable in terms of superscripts and subscripts. Primary observables are
usually defined as p whereas derived observable are denoted as F' = f(p). The
following indices «, 7, and ¢ denote an observable, a replica % and a configuration
of the MC chain, respectively. Furthermore, it is useful to imagine that the same
experiment can be repeated an infinite number of times as a way of relating the
measured observable or estimate, (p), with its true value, P. The index of such
experiment can be understood as playing an analogous to the replica index when
the number of replicas tend to infinity, but for definiteness it will be called e.

6Replicas refer to Markov chains with identical parameters but starting from different seeds
of the random number generator.
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Expectation values are expressed by (p®), where the label in superscripts char-
acterizes a given observable and the subscript outside the bracket denotes a generic
quantity over which the average has being applied. The list of dependencies of p
are denoted through superscripts. The initial o index will always refer to the ob-
servable and will be separated from the other indices by a comma. If two or more
subscripts appear, they are sorted according to the order in which the average is
carried out, where the average over the rightmost index is applied first.

For simplicity, we define the fluctuations dp®® in terms of generic indices b and
¢ such that

Spot = <pa’b>c — P (4.28)

which cannot be computed in practice since the true value is unknown. Instead,
we approximate P by the average over the whole set of data

opot = <pa’b>c — (0o - (4.29)

We designate as derived observable F' to a quantity which is a function of
the primary observables P“. The partial derivative over one of its arguments is

denoted by
OF

~ope

OuF (4.30)

4.4.2 Primary observable

Since the configurations, ®¢, are generated through a Markov chain, an observable
computed in those configurations p®°¢ = p®(P°) is expected to be carry information
about the correlations in Monte Carlo time. The statistical accuracy at which an
observable can be determined is thus dependent of the level of correlation among
successive measurement within the Markov chain.

Let us define a primary observable, p®, computed for a set of configurations
{®} which are assumed to be thermalized, p®¢ = p®(®°). The true value P* is
unknown, but the standard estimator on a single sample of data is given by the

mean:
1 X

(") = 5 2™ (4.31)

¢ =1
In general, the deviation of (p®), from P* depends on the length of the ensem-
ble, N.. To analyze the statistical properties of this deviation, one can consider
a hypothetical situation in which the experiment is repeated N, times, where N,
tends to infinity. Consequently, we consider an additional index e, p®°“, to point
out each single experiment. The configuration index ¢ would range between 1 and
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N.(e), but we will keep N, constant for simplicity. According to the law of large
numbers

o 1 & o
(p >ec—¢1§mﬁe;<p ). = P, (4.32)

one can determine the statistical uncertainty of the estimator (p®),, as well as its
unbiased character

Blp*)) = E[(p"), = PT= (0" = (M) = 0, (4.33)

where E and B refer to the expectation value or average and to the bias, respec-
tively.

Independently of the distribution that generates the samples p®¢, the Central
Limit Theorem (CLT) ensures that (p™°), behaves as a Gaussian distribution in
e. This implies that the statistical uncertainty for any estimand (p®), is uniquely
defined by the width o¢

P* o (5), + 07, (4.34)
which is commonly rewritten in terms of the autocorrelation function I"
oo = (™), — P*)°) (4.35)
L :
S () ),
1 e
= Nz c’;zl Lo (e, ). (4.37)

The autocorrelation function provides a generalization of the variance, which is
reached at ['?%(c = ¢’), that considers the correlations between the measurements
of a MC chain. Notice that, after thermalization, MC samples ensure translational
invariance in configuration space, leading thus to an autocorrelation function which
depends only on relative MC times, I'%* (¢, ¢’) = T'%* (¢ — ¢).

Although, the index e allows to formally define the autocorrelation time, we
need to extract its value from the actual data. The derivation relies on the trans-
lation invariance property and on the fact that I vanishes asymptotically for long
MC distances

le=<'|

L2 e, d)oce mow, o= d>1, (4.38)

due to the ergodicity property of the Markov chains. By counting the number of
times that the argument ¢ — ¢ is repeated in the double sum in eq. (4.37), the
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statistical error can be rewritten into a single sum

oo = jéNer N 1), (439)
=32, (1040 (37)) <4-40>

In this way, the average over the index e can be substituted by a sum over the
larger range available on our MC chain, given by N,

ree(t) = (op™tep>et’) (4.41)
1 Nt NA oy
~ N > (5p0"(t+t )(Spa’t) : (4.42)

t'=1

We consider various replicas for some ensembles in order to improve the statis-
tics. We determine N.(r) as the number of configurations for a given replica r,
among a total of N, replicas, the mean estimator reads

1 N, Ne(r 1 Ny Ny
No 2 Z No L Ner) (0°7)es No= 3 Nelr). (443)
r=1 c=1 r=1 r=1

The contributions from all replicas can be included in the estimation of the uncer-
tainty as follows

= <5p?c’65p"’e> (4.44)

'r NC T‘)

_ 2 Z Z 5M< aerc(spa,er’c’> : (4.45)

Crr’ 1c,c/=1 ¢

where after applying the same reasoning than as eqs. (4.36) and (4.41), one can
derive the expression of I'(¢) for several replicas

C t=—00
1 Y N(r) Ne(r)=lt| A
M) =2 v 17 op ) gpert) (4.47)
N¢ ; N.(r) — || tZ::I ( )

4.4.3 Derived observable

Derived quantities are defined as a function which ultimately depends, directly or
indirectly, on primary observables generated through a MC sampling process. The
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following error propagation approach relies on an expansion of the derived observ-
able F'in a way that the fluctuations of the primary observables can be transferred
to any function of them. In this way, the full error of a derived observable with the
correlations properly taken into account can be estimated through its own stored
fluctuations, avoiding the need to keep track of those arising from the original pri-
mary MC simulations. This procedure can be generalized to derived observables
which are defined as through function composition, e.g., functions of functions of
primary observables.
The true value of the function for a set of parameters {Pa}gil is defined by

F=[({P},)=f(P), (4.48)

where the vector character of the dependency will be assumed from now on. Simi-
larly to the case of primary observables discussed in the previous Subsection 4.4.2,
different replicas are combined in the computation of the autocorrelation time in
order to reduce the bias of the derived observables. The autocorrelation function
I'*#(t) defined in terms of two primary observables, P® and P®, measures the
correlation between these observables at different MC separations ¢

Lre(t) =

| NN Ne(r) -t ,
C(T) B,rt ) ) (449)

5art+t)5 ,
Ne XN -

t'=1

At t =0, eq. (4.49) leads to the covariance estimator.

Conversely to the case of the primary observables, two different estimators of
the true value F' appear naturally for any derived observable, depending on the
order in which the mean over the replicas is applied

Fooy = f ((p“%c), (4.50)
r c) C’ z:lN F(c F(i:) - f (<pa,T>C> : (451)

Notice that the index convention introduced for primary observables holds for
derived observables. The superindices indicate the arguments of the observable.
Subindices between parenthesis indicate that the respective average was carried
out before the function application. Both estimators turn out to be biased but
consistents 7. The bias is derived by Taylor expanding the estimates around the
estimand F' up to second order

@ 1 o
F(TC) ~ F+ Zaa f’{P} 5prc + 5 Z 80685 f|{P} 5prcépfc’7 (452)
o aff

"Consistent estimators generate estimates that converge faster to their true values as the
number of data point considered increases.
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assuming differentiability of the function f in the neighborhood of {P“}. The
first estimator bias is related to the autocorrelation function through eqgs. (4.44)
and (4.46)

B|Fi| = (Firgy = F) (4.53)

1 (e
=~ Z e f|{p}M+ 9 Z 0o f|{P} (0P opper)e » (4.54)
(0% aﬁ

1 1 &
~-%"9,0 — re8(t). 4.55
9 gﬂ: B f|{<p>m} Ne Z (t) ( )

t=—00

Following the same reasoning for the second estimator, defined in eq. (4.51), the
bias of F{,) is proved to be reduced with respect to the bias of F, () as the number
of replicas grow

NT
This implies that the systematic error introduced by the bias of F{,. is reduced
with respect to Fi.().

Considering thus F{,), the error with respect to the true value Fis calculated
by considering an average over an infinite number of experiments e, in a similar
way to eq. (4.35), combined with a Taylor expansion

B [F(rc)} = [FT(C)} : (456)

o = <<F<rc> - F )2> = %f% flipy 05 flipy <5p?f5pr5>67 (4.57)

1 S,
~ Ne %ﬁ: Oa f‘{(p)m} s f’{<p>m} t;w Frcﬁ<t)7 (4.58)

where contrary to the case of the bias, the expansion is carried out up to first
order.

At this point, the error of a derived observable can be computed by estimat-
ing the derivatives of the observable with respect to the complete set of primary
observables that it depends on. However, the equation (4.57) requires the com-
putation of the fluctuations of all the primary observables, which may become a
computationally demanding task. This is the case, in particular, when we aim to
shift the final observable towards the renormalized chiral trajectory, introduced in
Section 3.4.

For that purpose, we define the derived observable F' for every replica and
configuration as F". For the sake of generalization, it can furthermore be charac-
terized as the image of an Np dimensional vectorial function

f:RNe — RVF, (4.59)
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In order to identify the components of the function, the superscript n is added to
both the name of the function f™ and to the true value F™"°.

We combine eqs. (4.44) and (4.57) to express the statistical uncertainty in terms
of the fluctuations of the primary observable

N, Ne(r)
o = Za s> S (sprereaprer) (4.60)
af r=1cd=1
1 N, Nc(r) ,
_ (2) Zl /Zl <<Z aafn(spa,erc> (% 8ﬁfn5p5,erc ) > ‘ (461)

The equation above is the generalization of eq. (4.45) to the case of derived ob-
servables, where the fluctuations are given by

1
F= F 4 §F™ = F 4 <3 0 f"0p™". (4.62)

These new fluctuations 0 F' contain all the relevant information about the cor-
relations so that the error propagation over a function of F' can be directly derived
from them. Considering a generic composed function g(P) = g(f(P)), the chain
rule allows to express the derivative of the outer function in terms of the inner
function

Np ag .
20(P) =3 5| 0ufly (1.63)
m(P)
Taking into consideration that eq. (4.60) holds for any function of the primary
observables, the chain rule can be used to relate the uncertainties of composed
functions

2 1 Ny Ne(r) /
o = [ PIP> (sGerescer) (4.64)
r=1cc’'=1
Np 9
3G =3 0,gop™™ = Z . qun S 0, 5P (4.65)

6Fn,7‘c

This result facilitates the error propagation in any lattice computation, since the
autocorrelation function can be approximated by a similar expression as the one
in eq. (4.47) in terms of the MC fluctuations of the derived observables.

4.4.4 Autocorrelation

The integrated autocorrelation time 7, measures the effective number of indepen-
dent samples in a MC chain. Contrary to the exponential autocorrelation time
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Texp, this quantity is observable dependent. The integrated autocorrelation time is
defined through the ratio between the correlated and uncorrelated squared error,
denoted by ¢? and o2 respectively ®

1o 1 X Toot)

Ting (X) = Bpre = 54—2
0

(4.66)

where the infinite series is truncated, in practice, up to W. Then, the effective
number of independent samples for a given observable reads

N,
NET(X*) = 1

= (4.67)

The essential point at this stage consists to truncate the infinite sum over the
autocorrelation function at different MC lengths in eq. (4.47). The nature of a
Markov chain implies that configurations become uncorrelated as the distance ¢
increases, meaning that the function I'(¢) tends to vanish asymptotically. The
maximum value for ¢ considered, denoted as W, must be sufficiently large to avoid
omitting relevant contributions, but not large enough to avoid introducing the
noise coming from fluctuations around zero. The procedure implemented is based
on [76], with the difference that our implementation is carried out directly on
derived observables.

In practice, W is chosen such that the statistical and the systematic error,
expressed below, are minimized at the same time according to a proportionality
relation. The statistical error was derived in [78] by neglecting the connected parts

of the variance’s uncertainty
5stat0-a2 4W + 2
~ . 4.68
O’aQ NC’ ( )

The relative systematic error is approximated by the bias of the truncated variance
estimator with respect to the complete estimator

) S Do)

Osyst 0" 2 4w Lid
W41 _
s}’saz — 7N —az X e Text7 (469)
o C o

where the asymptotic behavior, shown in eq. (4.38), holds for large values of .
The minimization of the sum of the statistical and systematic relative errors

W +2 W ) (4.70)

Wopt = min ————— + e 5
op W NC

8The quantity X refers to a generic observable, either primary or derived.
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provides a way to set the value of W. The parameter S relates the integrated and
the exponential autocorrelation time. Since 7.y is often unknown, an a prior study
of the autocorrelation function is required to set the value of S.

The autocorrelation functions of observables generated through a Markov chain
fulfilling the detailed balance condition in eq. (4.12), can be expressed as a sum of
several decaying exponentials. The coefficient associated to each of the exponential
factors can be interpreted as the coupling of a given observable to the eigenmodes
of the transition matrix of the algorithm. The mode contributing in the limit of
large MC time separations is controlled by the exponential autocorrelation time,
as shown in eq. (4.38). We follow the methodology detailed in [75] to include this
contribution. Although the exact value for 7., is difficult to compute on from

realistic MC simulations, we consider the conservative estimation given in [34] for
the CLS ensembles

Texp = 14(3) -2 (4.71)

4.4.5 Error propagation of non-stochastic observables

In multiple occasions a lattice computation may depend on several observables
which are not obtained by a MC process or whose fluctuations are not available.
Observables derived by perturbative computations, or by non-perturbative estima-
tions carried out in a different set of ensembles, belong to this type of quantities,
whose errors and correlations have to be treated differently. This could for instance
be the case of the inclusion of a renormalization factors Z or of an improvement co-
efficient in a lattice. Besides their mean values and errors, when available, we can
take into account their correlations. We refer by ¢, to the mean of the observable
k while agj denotes the covariance between the elements.

Considering a derived function depending on a set of primary observables P“
and, furthermore, a set of additional observables {c} through an intermediate
function g (f (P, ¢)) (in a similar way to Subsection 4.4.3), the contribution of a,ﬁj-
to the outer function is determined through
09 07 .2

A o, (4.72)

o =05 +) =
e klackacl

where the expression of Jgf is given in eq. (4.64), which contains the autocorrela-
tions of a given ensemble.

By saving the gradient of the intermediate function \VA f™ with respect to the
additional parameters ¢y, in a similar way to the uncertainties  F"™"¢, the last term
in the above equation can be estimated by applying the chain rule

= 05 K dg of
(Ve )k_ack_nzlafn e (4.73)
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4.4.6 Derived observables from different ensembles

Different ensembles are uncorrelated as long as the physical or algorithmic pa-
rameters differ from each other. Therefore, the autocorrelation of the observables
measured in different ensembles can be treated independently. The only source
of correlation between two observables f™ and f™ analyzed in different ensembles
may come from shared additional parameters ¢, which play a role in the deriva-
tion of the function, but are not estimated through any of these ensembles. The
procedure followed in Subsection 4.4.5 allows us to decouple the contributions of
these parameters ¢ from the MC measurements, ensuring a solid uncorrelated
analysis of the data from different ensembles.

Following the reasoning of the previous Section 4.4.3, the error of a function
g (f (P,c)) is given by a double sum over the complete set of functions f", where
the sole difference with respect to equation (4.65) is the cancellation between of
the crossed terms f" which belong to different ensembles

: Y5 05 05 & 0G 0§ .-
G — 7 rrm) + Y == =25 4.74
o Ezz:l NC(E) m%;E 8f" afm t:z—:oo rc ( ) zkl: 8Ck 801 Ol ( )

where the index E denotes the ensemble and the last term was previously defined
in eq. (4.72).
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Chapter 5

Scale setting and determination
of quark masses

In this chapter we present the physical results obtained within our mixed action
approach. A comparison and a combination with the results achieved with the
unitary Wilson formalism will be also considered. In Section 5.1, we compare
the continuum limit scaling of both regularizations and analyze the convergence
towards a common value as the lattice spacing is reduced. In Section 5.2 we
describe a scale setting procedure using physical values of the pion and kaon masses
and decay constants. The gradient flow scale ? is used as an intermediate quantity
and an iterative procedure involving the extrapolation of ¢y to the physical point is
presented. Various approaches are considered in order to estimate the systematic
effects in the extrapolation to the physical point. In Section 5.3, we apply the
previously obtained results for the scale setting to the determination of the light
and strange quark masses. The physical values are converted into the RGI scheme
thanks to the renormalization and running of the quark mass computed in [32].
We extract the RGI quark masses through appropriate combinations of quark
and meson masses aiming to reduce the contributions of the unknown ChPT low-
energy couplings (LECs) while also taming the leading dependence on the light
pseudoscalar meson mass [79).

5.1 Continuum limit scaling of symmetric point
ensembles

We carry out a continuum-limit scaling analysis of the renormalized PCAC quark
masses and of the pseudoscalar meson decay constants for the symmetric point
ensembles. This study aims at testing the universality of our mixed action ap-
proach by comparing the continuum results to those obtained when using Wilson
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fermions in both the sea and valence sectors. This study also provides some infor-
mation about the relevance of the residual O(a) cut-off effects proportional to the
sea quark masses.

In Figure 5.1, we illustrate the continuum-limit scaling of the pseudoscalar
meson masses in units of to. It shows a comparison between the Wilson and the
Wilson twisted mass regularizations, when the twisted mass is matched through
the PCAC quark masses. The difference is expected to arise from the relative
cut-off effects of O(a?) between the pseudoscalar meson masses of the sea and the
valence sectors. The figure confirms that relative lattice artifacts are reduced as
the lattice spacing decreases.

0.78

WemPoae WemPeae
¢ Wilson and WmP® 117 1| ¢ Wilson and WtmP®

0.77 g 116 L
1.15 |

0.76 114 |
113 |

& 0.75 b g

112

074 | 141
1.1 r

073 , 1.09
1.08

0.72 ' ' ' ' 1.07

0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

Figure 5.1: Continuum limit scaling of ¢, and ¢4, defined in egs. (3.18) and (3.17),
for symmetric point ensembles. Green diamond data points refer to the case
of the Wilson and the fully twisted tmQCD mixed action matched through the
pseudoscalar masses to ¢4 = 1.117. The yellow squares refer to a similar case but
now using a matching of the sea and valence by means of the renormalized PCAC
quark masses.

In the two panels of Figure 5.2, we show the continuum limit scaling of the
PCAC quark mass mf and of a linear combination of the pion and kaon decay
constants

Jrk = z <;f7r + fK) ) (5.1)

that will be used to perform the scale setting in Section 5.2. As expected, the
results for these quantities coming from the two regularizations agree in the con-
tinuum limit and the behavior is consistent with O(a) improvement for both the
sea and valence sectors.
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Figure 5.2: Continuum limit scaling of f,x defined in eq. (5.1) and of the renormal-
ized PCAC light quark mass m£% in units of ¢y using symmetric point ensembles.
Green diamond points refer to the Wilson case while red circular symbols indicate
the fully twisted tmQCD mixed action matched through pseudoscalar masses to
¢4 = 1.117.

5.2 Extrapolation to the physical point and scale
setting

The scale setting of the CLS Ny = 2 4 1 ensembles listed in Table 3.1 is carried
out by two dimensionful quantities: the gradient flow scale t; and a combination
of the pion and kaon decay constants, as proposed in [54]. The high accuracy with
which ¢y, can be determined makes it a useful intermediate quantity in the scale
setting procedure. As mentioned in Subsection 3.5.1, tgh cannot be extracted from
experiment but it has a field theoretical definition with a proper continuum limit
which allows its determination through an extrapolation to the physical point.

The strategy adopted for the determination of tgh follows an iterative procedure
where an educated guess is used as an initial value !, called tgh(o), to determine
qbih(l) from a continuum and physical point extrapolations. In this way a new value
of tgh(i) can be obtained and the process is iterated until the latest value of tgh(iﬂ)
is consistent with the previous one. The updated value of tgh can then be used to
fix the renormalized chiral trajectory — see Section 3.4 — that extrapolates to the
physical point

; A i
Ph(i) _ gyphli) <2M}r’h2 . M[p(m) = 4. (5.2)

At every iteration, the physical point is reached by fixing the value of qﬁh(i) and
by the chiral extrapolation of an observable f to ¢>§h(’). In practice, f(¢2) can be

n practice, the first value for (bzh(o) = 1.11 was taken from [54] .
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chosen to be the decay constant of the pion f, or of the kaon f, as well as the
linear combination defined in eq. (5.1). The physical value of t; is finally extracted

by imposing
t i
,/8;‘;@(@) = \/stp" peh. (5.3)

where the physical value of f, denoted by fP" is required as an external input.
In the matching procedure, the physical meson masses involved are corrected for
strong and electromagnetic isospin breaking effects [80]

MPh = 134.8(3) MeV, ME" = 494.2(3) MeV. (5.4)

The physical values for the pion and the kaon decay constants are taken from the
PDG [81]
fP =130.4(2) MeV, flp(h = 156.2(7) MeV. (5.5)

Different approaches were considered in order to bound the systematic errors
induced by the choice of the decay constant parametrization in terms of the meson
masses and of the lattice spacing. The functional forms considered are either
derived from next-to-leading order (NLO) ChPT [82] expressions or from Taylor
expansions around the symmetric point. In order to incorporate discretization
effects into these functional forms, they could be supplemented by terms which
include mass independent and mass dependent O(a?) lattice artifacts [79)

cont
t t a?

Note, however, that standard power-counting schemes in ChPT indicate that O(a?)
terms appear at the same order as the squared meson mass [83,84], meaning that
Ay and Ay can be consistently neglected when working at NLO.

As pointed out in Section 3.4, the chiral trajectory evolves from the symmetric
point to the physical point through a line where the light quark mass decreases as
the strange quark mass increases. SU(3) ChPT is then the proper effective theory
to consider the change of both masses along the chiral trajectory. We thus consider
the following parametrizations for the continuum and physical extrapolations

2

t a
8;2&_]% =p1+ pede + ps K (2£2 + ﬁK) + 0187, (5.7)
0

; 1 3 a’
\/%afx =p1+ P2 (¢4 - 2@) TgpR Rt L) eg, o (58)

where K and the chiral logarithms £; are defined in Appendix F, together with
the fitting parameters p;.
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It is interesting to monitor the light quark mass dependence through quanti-
ties normalized to their symmetric point values. In Figure 5.3 we illustrate the

dependence of ]{Jyﬁ as a function of ¢9 for the mixed action and for the unitary
K

Wilson case.
We construct the trace of the mass matrix through PCAC quark masses,

Tr (M) = mf}, + 2mi,. (5.9)

This is used in Figure 5.4 to build its ratio with respect to the symmetric point

B =340 B =340
1.04 - f = 346 1 1.04 - B = 3.46
B =355 B=355
B =370 B=370
1.02 + 1 1.02 +
N s, !
Lt T
“
0.98 0.98
0.96 - 1 0.96 |
0.94 : : : 0.94
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
[ P2

Figure 5.3: Light quark mass dependence of f,x normalized by its symmetric point
value. The left panel corresponds to the mixed action, while right panel illustrates
the unitary Wilson results.

In addition to the expressions of f; (5.7) and fx (5.8), we also consider the
combination f;x defined in eq. (5.1). This quantity is chosen since, up to logarith-
mic corrections in SU(3) ChPT, it remains constant along the chiral trajectory
defined by a constant value of ¢4

|t 2 1 a?
8—Oaf7rK =p1 + =p2ds + =p3K (7£2 + 8L + 3[:7,) +c3—. (5.10)
a? 3 6 8ty

Furthermore, we consider the ratio of fx and f, in eqgs. (5.8) and (5.7), respectively,

fi Pr+pa (64— 30) + 3psK (Lo +2Lxc + L) . (1 $2 ) a’
== o\ = —3 | g
8to

Jr p1+ pad2 + p3K (2L + L) Gs — 302
(5.11)
in a global fit together with eq. (5.10) in order to further constraint the fit param-
eters. Notice that the ratio is equal to 1 at the symmetric point. As an alternative

71



8 =340 B =340
B =346 B =346
104 | =355 | 104 | B8=355
3=3.70 B =310
1.02 1.02
: ";’;: 1 5 ‘F:v 1
& E = E
0.98 0.98
0.96 - 0.96
0.94 - - : 0.94
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

P2 @2

Figure 5.4: Light quark mass dependence of the trace of the mass matrix normal-
ized by its symmetric point value. In the left panel, we use the light and strange
twisted masses to construct the trace. The right panel illustrates the unitary
Wilson results based on eq. (5.9).

to ChPT, we also consider a Taylor expansion around the symmetric point ¢35

to m\ 2 CL2
\[Bgaafr = prtpa (2 — ) + g, (5.12)

where the linear term in ¢5 — ¢35 does not contribute [85].

We wish to consider various well motivated parametrizations in order to study
the stability of the results. Among the proposed functional forms, we identify those
whose results can be considered stable according to following criteria: reasonable
chi-squared, stability when heavier ensembles are removed and compatibility of the
results with respect to the other parametrizations. After an exploratory stability

study, we restrict ourselves to the following three strategies in the determination
of ¢t

1. Combined fit of frx and J}—f using ChPT egs. (5.10) and (5.11).
2. Single fit of frx using the ChPT eq. (5.10).
3. Single fit of f,x using a Taylor expansion in eq. (5.12).

We employ the combined fit of f,x and J}—K to determine the mean value and the
statistical error, while the other two parzfmetrizations are employed to estimate
the systematic uncertainties.

Both ChPT functional forms for f, in eq. (5.7) and fx in eq. (5.8), fitted
individually, show significant deviations when heavier ensembles are discarded.
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Although a combined fit of the ChPT parametrizations for f; and fx improves
the stability, the obtained results differ with respect to the most stable fits. As a
consequence, the results of these fit forms will be discarded.

In Table 5.1, the results for both tgh and ¢ffh are shown when using three
different approaches: the unitary Wilson case, the Wtm mixed action matched with
pseudoscalar mesons (WtmP™) and the Wtm mixed action matched with PCAC
quark masses (WtmP““). We also present the physical values for ¢y and ¢4 obtained
by a combined correlated analysis of the Wilson and WtmP setups

‘ Wilson WtmP* WitmPee Combined

5" [fm®] | 0.02146(31)(33) 0.02136(31)(26) 0.02140(32)(37) 0.02141(26)(29)
ph 1.117(16)(18)  1.112(16)(7) 1.114(17)(20)  1.114(14)(10)

Table 5.1: Determination of the physical values of ¢y and ¢, computed in the three
different formalism. Final column shows the combined result of the Wilson and
WtmP® regularizations. The first value in parentheses corresponds to the statistical
error, while the second is the systematic uncertainty estimated by the largest
difference among the variations associated to the choice of the parametrizations
and of the ensembles included in the analysis.

The knowledge of the physical value of ¢y and ¢, allows to set the scale by
extrapolating 2—% at fixed values of 3. We follow the procedure proposed in [54]
and fix the scale by using ¢, at the symmetric point in order to avoid additional
chiral extrapolations. Although the ChPT parametrizations may not hold at the
symmetric point, the fact that there are ensembles directly simulated at this point

sym

simplifies the approach to ¢;

1/8t(;2af(¢2) = /8™ P (5.13)

By dividing ¢5 by its value in lattice units for every symmetric point ensemble,
H101, H400, N202 and N300, one can extract the lattice spacing at every value of
B. As before, the scale setting is carried out for the Wilson unitary setup and for
both matching procedures of the Wtm mixed action. The analysis is also replicated
for the three parametrizations described above in order to estimate the systematic
uncertainties shown in Table 5.2.
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15 Wilson WtmP® WtmPee Combined

£ [fm?] 0.02156(34)(22) 0.02132(34)(43) 0.02134(35)(44) 0.02144(30)(21)
a [fm] 3.40 0.08686(72)(44) 0.08637(72)(87) 0.08641(74)(89) 0.08661(64)(42)
3.46 0.07678(64)(39) 0.07635(63)(77) 0.07638(65)(79) 0.07656(
3.55 0.06463(49)(33) 0.06427(49)(64) 0.06430(51)(66) 0.06445(
3.70 0.05009(41)(26) 0.04981(40)(50) 0.04983(41)(52) 0.04995(3

Table 5.2: Determination of the lattice spacing for the [ values considered in this
work and of £ty — the value of ¢y at the symmetric point — for the three considered
approaches. The last column shows the combined result of Wilson and WtmP®.
The first value in parentheses corresponds to the statistical error, while the second
gives an approximation of the systematic uncertainty estimated by the largest
difference among the variations associated to the choice of the parametrizations

and of the ensembles included in the analysis.

5.3 RGI quark masses

In this section, we make use of the scale setting procedure described in the previous
section in order to estimate the degenerate light quark masses and the strange
quark mass. In this computation with Ny = 2 + 1 dynamical quarks, we have not
included the effects of strong and electromagnetic isospin breaking corrections and
the effects of heavier dynamical quarks.

The improved and renormalized quark masses at a low-energy scale, jip.q =
233(8)MeV, — see Subsection 3.5.3 — are multiplied with the total running fac-
tor [32] allowing the conversion to the Renormalization Group Invariant (RGI)
quark masses [86]

RGI RGI

m
mi (Hthad) 5 m

RGI M

M., = —F5—
° M~ (finad)

= 0.9148(88). (5.14)
The RGI quark masses are independent of the scheme and of the scale used in the
renormalization. Note that the contribution to the error coming from the running
factor must be applied after the continuum extrapolation to avoid double counting.

Starting from the renormalized PCAC quark masses, listed in Appendix G,
the determination of the physical quark masses is carried out by a simultaneous
physical and continuum extrapolation, in a similar fashion to the decay constant
in the scale setting procedure, see Section 5.2. Different combinations of ChPT
and Taylor expansions in terms of ¢, around the symmetric point are considered
for \/8tom%, and \/8tgml to control the systematic effects. The ChPT expressions
for the quark masses are derived from [79,87] in Appendix F, whereas the same
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function proposed in eq. (5.6) for the discretization effects can be used for the
quark masses

to 1 a2
8a2 amiy = ¢ {@h + @2 + @3 K (52 3£n>} + 8—tod1, (5.15)
8?6”7’&13 = oK {ql + oKk + 3q3K£7,] + 870d2, (5.16)
where ¢ is defined as
1
br = StoME = ¢y — 5@. (5.17)

Similarly to the previous analysis, we discard the results coming from the
independent and combined fits based on the ChPT expressions above, since they
show large deviations when heavier masses are removed in decreasing order. The
Taylor expansion around the symmetric point, defined in an analogous way to
equation (5.12) but considering linear terms, is also discarded for the same reason.

Alternatively, we seek for combinations of the previous equations which par-
tially cancel cut-off effects through ratios. By neglecting higher order terms in the
continuum ChPT expressions, the ratio between mf, and mf} reads

mfé o ¢2 a2 s
mfy ok [1 - ¢ ( ¢2 = ¢4) — K (L2 - En)] + 8t (1 - ¢K> ds,  (5.18)

which is constrained to be one at the symmetric point. The term characterizing
discretization effects proportional to a? needs to be slightly modified to fulfill this
condition. Another useful expression is obtained by a linear combination of ratios
between quark masses and pseudoscalar meson masses. In particular the following
functional form, proposed in [79], allows to cancel the dependence of ¢

m{% mR a?
8— 2—= + —= | =3q1 + 2¢2¢4 + s K (Lo + ﬁn) + o da. (5.19)
OK G2 8o

Combining these ratios and the ChPT equations for the renormalized quark
masses, we notice that the fits involving eq. (5.15) present instabilities when re-
moving the heaviest ensembles in decreasing order. Therefore, we focus on the
following two functional forms to compute the RGI quark masses:

1. Combined fit of Z—% and /8t ( omih | m12> using ChPT egs. (5.18) and (5.19).
13

2. Combined fit of ™ and \/8%amf using ChPT egs. (5.18) and (5.16).
13
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Figure 5.5: Illustration of light quark mass dependence in the mixed action for

R _ pi+uf
2

. , indicates

R
various values of 3: In the left panel, the ratio %, where m

the presence of mild lattice artifacts. In the righl€ panel, we use the combination
in the lhs of eq. (5.19) and confirm that its dependence on ¢, is suppressed.

Given that eq. (5.19) strongly constraints the approach to the physical point, we
consider the first combined fit as our preferred analysis. The other functional form
is used to assess the systematic effects.

In table 5.3 we show the results for the light and the strange RGI quark masses
after the physical and continuum extrapolations. While the degenerate light quark
masses are directly obtained in the extrapolation, the strange quark mass is com-
puted as follows

mBCT = omRET _p RGT (5.20)
Wilson WtmP® WitmP e Combined

mBGT [MeV] 4.676(98)(54)  4.754(102)(56) 4.763(98)(123) 4.713(95)(63)
mRGT [MeV] 131.0(2.5)(2.4) 134.8(2.6)(3.6) 135.0(2.6)(4.0) 132.9(2.4)(2.0)

Table 5.3: Determination of the RGI quark masses obtained from the three con-
sidered approaches. The last column shows the combined result of Wilson and
WtmP. The first value in parentheses corresponds to the statistical error, while
the second gives an approximation of the systematic uncertainty estimated by the
largest difference among the variations associated to the choice of the parametriza-
tions and of the ensembles included in the analysis.
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Chapter 6

Conclusions

We have constructed a lattice QCD regularization based on a mixed action ap-
proach, aimed to profit from specific properties of the selected sea and valence
actions. In this way, we obtain an additional handle on the approach towards the
physical point of physical observables. While the main advantages of this setup
are expected to occur in the heavy-quark sector, in the present study we have
performed a comprehensive analysis of the mixed action in the light sector in or-
der to assess its viability. We have described two matching conditions of sea and
valence quark masses, based on the use of the renormalized quark masses and of
the pseudoscalar meson masses. The tuning to maximal twist in the first case
can be performed by linearly interpolating the valence PCAC quark mass to the
vanishing point. In the case of the matching with pseudoscalar meson masses, the
tuning requires simulating a grid of points in the plane of the standard bare quark
mass and of the twisted mass. In this way, the matching condition can be achieved
through small interpolations among the grid data points. The pseudoscalar mass
matching procedure is beneficial since it relies on quantities that are free from
O(a) effects. The difference between the two matching procedures reduces as the
lattice spacing diminishes. The availability of both matching procedures is useful
to explore the systematic uncertainties associated to the use of a mixed action.

We present a study of the continuum limit scaling of the PCAC quark masses
and of the pseudoscalar meson decay constants in the light sector. The agreement
between the unitary Wilson setup and the mixed action observed in the continuum
limit extrapolation provides a strong evidence for the validity of our mixed action
formalism.

We determine the physical value of the gradient flow scale t; as an intermediate
step for the scale setting procedure. For that purpose, we combine the SU(3)
ChPT expressions for fx, defined in eq. (5.1), with the ratio between fx and f,
to carry out the continuum and physical point extrapolations. To estimate the
systematic uncertainties associated to the extrapolation to the physical point, we
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repeat a similar analysis of the quark mass dependence of the pseudoscalar meson
decay constants, by using several parametrizations based on ChPT and on a Taylor
expansion around the symmetric point. We provide a determination of ¢, with full
error propagation by a combined analysis of the unitarity and the mixed action
setups, leading to following result

P = 0.02141(26)(29) fm?, (6.1)

which is compatible with other lattice determinations using Ny = 2+ 1 dynamical
quarks [53, 54].

The RGI quark masses are determined from SU(3) ChPT extrapolations com-
bined with the value of 8" in eq. (6.1), and where the non-perturbative running of
the quark mass was determined by finite-size scaling techniques [32]. We employ a
combined fit of ratios of quark masses and pseudoscalar meson masses aimed to di-
minish the dependency on the pseudoscalar meson masses and on NLO low-energy
constants of ChPT. The results for the light and strange quark masses are obtained
from a combination of mixed action and unitary Wilson setup calculations

mrSl = 4.713(95)(63) MeV,  mP¢T =132.9(2.4)(2.0) MeV, (6.2)

where the systematic error comes from the dispersion of the results among dif-
ferent scale setting procedures, various choice of the renormalized quark mass
parametrizations and of the ensembles included in the analysis.
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Conclusions

Hemos disenado una regularizaciéon de QCD en el reticulo, basada en una accién
mixta, con el objetivo de beneficiarse de los aspectos mas ventajosos de ambas
acciones, la del mar y la de valencia. De este modo, podemos controlar mejor la
aproximacién al punto fisico de los observables. Aunque se prevé que la accion sea
especialmente favorable en el sector de los quarks pesados, en este trabajo hemos
desarrollado un andlisis general de la acciéon mixta en el sector de los quarks ligeros
para comprobar su validez. Hemos definido dos tipos diferentes de corresponden-
cia entre las masas quarks del mar y de valencia, una basada en el uso de masas
de quarks renormalizadas y la otra a través de masas de mesones pseudoescalares.
En el primer caso, se puede alcanzar el punto nulo para la masa estandar inter-
polando a cero una serie de valores de la masa PCAC estimada en el sector de
valencia. En caso de realizar la correspondencia entre acciones mediante las masas
pseudoescalares de mesones se necesita realizar un conjunto de simulaciones en
el plano de la masa estdndar y la rotada quiralmente. De este modo, se puede
imponer la igualdad entre las masas de mesones de ambos sectores mediante in-
terpolaciones llevadas a cabo en dicho conjunto de puntos. Este tltimo proceso
resulta beneficioso teniendo en cuenta que las masas pseudoescalares de mesones
carecen de efectos de discretizacién de O(a) de manera automaética. Se observa que
las diferencias entre ambos procedimientos se reducen conforme el espacio reticular
se hace mas cada vez pequeno. Estudiar ambos métodos resulta beneficioso para
estimar el error sistematico asociado al proceso de ajuste entre ambos sectores.

Presentamos un estudio de la extrapolacion al continuo de las masas de quark
renormalizadas y de los factores de decaimiento pseudoescalares en el sector ligero.
El cual permite visualizar el comportamiento de estos observables en funcion del
paso reticular. El hecho de que tanto la accién mixta como la acciéon unitaria
de Wilson coincidan en el limite al continuo es una prueba fehaciente del buen
comportamiento de nuestra accion.

Como paso intermedio al calculo de la escala reticular, determinamos el observ-
able ty relacionado al gradient flow de la densidad de la accién gludnica. Para ello,
combinamos la expresion de frx en SU(3) ChPT, cuya definicién viene dada en la
eq. (5.1), con el cociente entre fx y fr, de modo a constrenir su valor en la extrap-
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olacion al continuo y al punto fisico. Para estimar la incertidumbre sistematica
asociada a la extrapolaciéon al punto fisico, repetimos el analisis con diferentes for-
mas funcionales basadas tanto en ChPT como en expansiones de Taylor en torno
al punto simétrico. El resultado de la determinaciéon de ¢y viene dado por medio
de una combinacién de los valores obtenidos para la accién unitaria de Wilson y

nuestra accién mixta
" = 0.02141(26)(29) fm?, (6.3)

donde el primer error corresponde al error estadistico, obtenido mediante un anali-
sis completo del error, y el segundo a la incertidumbre sistemética. Se observa que
nuestra estimacion de tgh es compatible con los valores obtenidos por otros grupos
para Ny = 2 + 1 fermiones dinamicos [53, 54].

Las masas de quarks RGI vienen dadas al combinar la extrapolacién al punto
fisico de las masas de quarks renormalizadas, mediante sus expresiones en SU(3)
ChPT, junto con el valor fisico obtenido para tﬁh en la eq. (6.3). Donde el running
no perturbativo de las masas de quarks ha sido estimado mediante técnicas de
volumen finito [32]. Para efectuar la extrapolacién al punto fisico, llevamos a cabo
un proceso optimizacion donde se combinan cocientes entre las masas de quark
renormalizadas y las masas pseudoescalares de los mesones. De este modo se
consigue reducir la dependencia de las formas funcionales en las masas de mesones
y en las constantes de baja energia de ChPT en NLO.

Los resultados para las masas RGI ligera y estrana se obtienen también com-
binando ambas regularizaciones

mpSt = 4.713(95)(63) MeV,  mB4 =132.9(2.4)(2.0) MeV, (6.4)

donde el error sistematico viene dado por la dispersion de los resultados obtenidos
tras repetir el analisis implementando ciertas variaciones: distintas parametriza-
ciones para fijar la escala reticular, diferentes parametrizaciones de las masas de
quarks y diferentes subconjuntos de ensembles analizados.
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Appendix A

Gamma matrices

The Gamma or Dirac matrices are a set of 4 x 4 matrices that fulfill the following
anti-commutation relation

{7#7 '711} =YV — VWV — 29/11/]17 (Al)

g, indicates the metric tensor, which defines the inner product in the 4-dimensional
space-time. The definition of the gamma matrices in Minkowski and Euclidean
space depends on the metric tensor. Along this work, we use the metric 7,, =
diag (1, —1,—1, —1) for a Minkowski space, while in Euclidean space g,, is the
4 x 4 identity matrix.

The representation of the gamma matrices is defined by its metric. From
eq. (A.1), one obtains the relation between the Euclidean and Minkowski repre-
sentations

VB = iy, (4.2)
E M
o on (A.3)

Y

where the superindex denotes the manifold.
Gamma matrices fulfill the following properties:

- Traceless: Tr [, =0, (A4)
- Hermitian: fy/t = Yy, (A5
- Involutory: 72 =1. (A.6)

It is useful to define v5 in Minkowski and Euclidean spaces

M . (M) (M) (M) (M
7 = iy s s, (A7)

E E) (BE) (F) (M
1 =6, (A-8)
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States Jr¢ 1

Scalar (R
Pseudoscalar 071 75, V475
Vector ™7 v, v
Axial i
Tensor 1= vy

Table A.1: Dirac structures of some of the most common meson operators. Their
quantum numbers are given by the total angular momentum .J, the parity P and
the charge C.

which also obeys the previous properties detailed in eqs. (A.4) to (A.6). In par-
ticular, v5 anticommutates with the rest of the gamma matrices

{5, 7.} =0. (A.9)

As stated in Subsection 2.3.2, a different combination of gamma matrices leads
to different quantum numbers in the meson local interpolator. Table A.1 shows
the most common choices.
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Appendix B

Global symmetries and flavor
matrices

The massless Lagrangian of QCD (1.2) is invariant under the group U(Ny) x
U(Ny) = SU(Ny)p x SU(Ng)g x Uy (1) x Ua(1).

The symmetry SU(Ny)p x SU(Ny)g, called chiral symmetry, is defined by
the invariance that the free massless QCD Lagrangian exhibits with respect to
independent rotations over spinors expressed in the left-handed and right-handed
basis {¢L , wR}. In this basis, both spinor components completely decouple from
each other as follows

$Dyy — P D" + P DyypE. (B.1)

Projecting the spinor over P®/L gives rise to the left- and right-handed compo-
nents !

(1 —5) 9, (B.2)

N — —~

where the SU(Ny), x SU(Ny) g transformation that leaves the massless Lagrangian
invariant is given by
¢R/L wR/L’: eiiaz/jR/L, (B.3)
i — / — .
¢R/L ¢R/L _ R/ i

)

in the case of a single flavor Ny = 1.

IDirac and flavor component are expressed matricially while space-time coordinates and color
indices are omitted along this appendix.
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In the standard basis {1&,@} the transformation (B.3) for N, flavors becomes

¢ N w/ _ ez‘(a“‘,T‘”r'ysaj‘AT“)w’ (B.4)

b — P = @e"(*“@T”%aZTa),

in its more general expression, where T acts on the flavor indices of 1. The
set of transformations with a4 = 0 gives rise to the flavor or vector symmetry,
whereas the transformations obtained by setting oy = 0 are known as the axial
transformations. Such a symmetry, denoted as SUy (Ny) x SU4(Ny), is explicitly
broken by adding a mass term to the Dirac operator, which mixes left-handed and
right-handed spinors. However, in the specific case of a degenerate mass matrix,
the vector symmetry SUy (INy) still holds.

The generators T, together with the identity matrix 1, provide all possible
bilinear combinations in flavor space. Notice that for SU(2) and SU(3) the gen-
erators are the Pauli and Gell-Mann matrices respectively, up to an overall factor
of one half. Defining the flavor matrix 7" as a generic matrix belonging to U(Ny),
i.e., any matrix that can be expressed as

Ni-1
T = Z a®T® + Ozo]lefo, (B5)

a=1

we refer to charged mesons as the states 1Tt where T is off-diagonal. Charged
mesons are formed by G¢' bilinears. Conversely, neutral mesons are generated by
diagonal flavor matrices whose bilinears are gg. In the particular case T' = 1, the
resulting state is a flavor singlet.

The generators T must satisfy the relations:

1

Tr [T°7"] = 5 0an (B.6)
[T, =i funeT, Fabe = 20T [T [T",T°]], (B.7)
{1°, 7%} = ]\17faab]1 + Z dapeT®,  dape = Tr [T {T", T} (B.8)

The unitary groups Uy (Ny) and Ua(Ny) are symmetries of the massless La-
grangian, meaning that it is left invariant under a generalization of the transfor-
mation (B.4)

Y — of = ellohrarT)y, ¥ — @ = geileb b)), (B.9)

p —— f = et nad Ty Y = ei(meliaeentt) (B 10)
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According to Noether’s theorem, every global symmetry leads to a conserved
current J, that satisfies the continuity equation 9,J, = 0. In particular, the
symmetries detailed above lead to the conserved currents below

V() = () Ty (), Vilw) = (z)y,0(x), (B.11)

A (@) = (@) T yst(x),  Au(e) = ¥(@)10s0(e), (B.12)

where the non-singlet currents are placed on the left while on the right, the singlet
case can be found.

For completeness, we gather the scalar S, pseudoscalar P and tensorial 7,
bilinears

S*(x) = P(z)T"P(x), S%(x) = ()y(), (B.13)
P(x) = d(@)T"v (@), Px) = () (@), (B.14)
Tov(®) = (@) T 0,9 (2), (@) = U(2)0u(2), (B.15)
where 0, is an antisymmetric tensor defined as
O = 212 [Vius o - (B.16)

Not all the Lagrangian symmetries are actual symmetries of QCD. The classical
symmetry Uy (Ny) becomes anomalous after quantization. Conversely, the vector
symmetry Uy (Ny) is a true symmetry of QCD, which is conserved even in the
degenerate massive Lagrangian, and its conserved quantity is the Baryon number 2.
For the general case of non-degenerate mass matrix the symmetry is broken and
becomes Uy (Ny) —— Uy (1) xUy (1) x...xUy(1). On the lattice, the formalisms
that incorporate the Wilson term, defined in eq. (2.40), break both vector and axial
symmetries.

2Note that when weak interactions are included, the symmetry becomes anomalous.
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Appendix C

Discrete transformations

Discrete symmetries describe non-continuous transformations of the fields that
leave the action invariant. QCD preserves three discrete symmetries: parity, charge
conjugation and time-reversal.

Parity transformation P consists of a reflection of the spatial coordinates with
respect to the origin (g, ®) —— (7o, —). Quark and link fields transform as
follow under parity transformations:

b (20,@) 2o v (00,2)" = e (w0, 2"). (€1)
¥ (@) Lo B (w0,2)" = (10.2") . (€2)
Ui (20,@) —" Ui (20,2)” = U_y (20, 2")", Va0, (C.3)
Us (wo, @) = Uy (20, ®)" = Uy (o, ™). (C.4)

The coordinate ™ denotes the symmetric point of & with respect to the center
of the lattice in the spatial direction.

The explicit expression of the charge conjugation, which transforms particles
into anti-particles, depends on the gamma matrix representation

C%tc_l == ('VM)T‘ (C.5)

Charge conjugation matrix C is, by definition, hermitian, involutory and antisym-
metric. C acts in the Dirac indices of the lattice fields as shown below:

¥ (20, ) — ¥ (z0, @) =C W (20, )", (C.6)
O (vo, ) =¥ (x0,2)° = —0 (z0,2)" C, (C.7)
Ui (z0, ) — U (z0, )¢ = U (z0, )", Vier23, (C.8)
Uy (20, ) —=— Uy (20, )¢ = Uy (20, )" . (C.9)
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Finally, we illustrate how the quark and gluon fields behave under a reflection
in the time coordinate

V(o @) —= ¢ (z0,®)] =350 (2 @), (C.10)
J (%0, CE) _T—_> @ (‘T()v m)T = J ($Bef7 ZL‘) V5V4, ( )
(o, :D)T =U; (xff’f, a:)T , Vic123, (C.12)

(C.13)

Uy (g, ) T, Uy (o, m)T =U_4 (:Bgef, w) )

S
5
°
&
\]
=
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Appendix D

Monte Carlo integration

Monte Carlo (MC) integration appears as an alternative numerical procedure to
the quadrature methods. Deterministic methods provide a closed solution, but the
convergence may be slow or even impractical for multidimensional integrals. The
MC method is, by contrast, a stochastic procedure where the integral is determined
by performing several evaluations of the integrand.

In the MC approach, an integration of the function f(x), in the domain D, is
related to the expectation value of this function

1=E[f(X)] = [ f(@)w(a)dr, (D.1)

whose distribution is given by a uniform probability density function (PDF) w(x) =
1 in such domain. A simple average of the function evaluated over a set of inde-
pendent and identically distributed points X;, generated according to w(zx), leads
to an unbiased estimator of the integral above

~ 1
I = N Zf(Xz) (D.2)

=1

An integral over some function f(z) can be estimated through the estimator I by
sampling points along a uniform random variable. However, a better convergence
can be achieved by factorizing the function wisely into a new function and a non-
uniform PDF, fi(x)w(z) = fo(2)wa(x), so that I remains invariant. In this way,
the variance of the estimator (D.2) could be reduced

Var [IA} = ]1[ (/ A (z)w(z)dr — ]2> : (D.3)

if the factorization is chosen to minimize the first term in the equation above. This
last approach is known as importance sampling.
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It can be easily proved that an optimal value of the PDF

x)w(z
() = LD, 0.4
leads to a vanishing variance (D.3), meaning that a single sample would provide
a proper estimation of the integral. Although wp(x) is not known a priori, the

use of an approximation could already provide an effective way to determine the
integral.
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Appendix E

Topological charge

The topological charge () is an integer number that characterizes the various topo-
logical sectors appearing in configuration space. Different topological sectors refer
to distinctive domains of the configuration space which are not easily accessible
from other domains in a Markov Chain.

As explained in Appendix B, the flavor singlet axial transformation is a sym-
metry of the Lagrangian in the classical theory but it is broken in QCD after
quantization. Since the integrand of the path integral must fulfill the classical
symmetries, the origin of the anomaly proceeds from the non-invariance of the
measure.

The transformation of the fermion integration measure under a singlet local
axial transformation in eq. (B.10) is given by the Fujikawa method [88,89]. The
Jacobian of this transformation is obtained by expressing the fermion fields in
terms of the set of eigenvectors of the Dirac operator, {¢; | Dy; = \;jp;}, leading
to
_ —2iar[T] [ d*z a9 (z) 3 o] (@)v50:(x) _
Dy, ¥] =e foedex D[y, 9] (E.1)
Notice that any non-singlet axial transformation cancels the anomaly since the
matrix is traceless in this case.

A non-zero argument in the exponential in equation (E.1) implies the loss of
unitarity, meaning that the whole configuration space cannot be explored through
smooth local transformations. The topological charge () defined through

Q= —/d“x Zd(w)%s@i(ﬂf), (E.2)

measures the extent of this effect.
The naive lattice computation of the topological charge is ambiguous, since it
contains power divergences. In practice, we compute () in terms of the gradient
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flow
4

a
Q= ~5575 2 Cwaptt (G (2, 1) Gas (7, 1)) (E.3)

where G, (z,t,) is the strength tensor at a given flow time t,. G (z,t,) can
be interpreted as a gradient flow evolution of F,,(x) up to t,, > 0. Furthermore,
through the so-called Index Theorem, the topological charge can be expressed in
terms of the fermionic zero modes by applying ~s-hermiticity on D [90]

Q - )\OJr - )\07, (E4)

where the quantities A+, denote the zero-modes of positive and negative chirality,
respectively.
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Appendix F

ChPT functional forms

The NLO SU(3) ChPT equations for the pseudoscalar meson decay constants,
written in terms of the renormalized quark masses [82], are adapted in a suitable
way to the chiral trajectory used in our setup

2B, 1
fr = fo [1 + 5 (8meLs + 8 (2my +my) Ly) — 167272 (24 + MK)} ; (F.1)
2By 1 3 3 3
fK — fO l]. + Tg (4 (mz -+ ms) L5 + 8 (ng —+ ms) L4) — 1671'72.]63 (4M77 + §,UzK + 4Mn>] y
(F.2)
M2
Hps = M}fs In <Aps> ) (F3)

where the low-energy couplings L; are renormalized with the scale A and the
parameter By is related to the chiral condensate ¥y as follows

)y

By =227, (F.4)

Jo
The decay constant of SU(3) in the chiral limit, fy, is normalized according to
the physical value, shown in eq. (5.5). In the expressions (F.1) and (F.2), quark
masses are expressed in terms of the meson masses in ¢y units through the use of
LO relations

2
M? = 2Bymy, MG = By (mg+my), M) = §BO (me + 2my) . (F.5)
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Egs. (5.7) and (5.8) are obtained after rearranging the quark masses and multi-
plying by /8%y, where the parameters read

o1 = VTt (1 i foqs) | (F.6)
P = VoRaf (k.7
ofo

b3 = —\/8_750f0, (F8)

and K has been defined as 1 )

8ty 1602 f3

To minimize the number of fitting parameters 8t, f¢ can be replaced by f2;. This
is possible since K is a parameter appearing at NLO and the effect of replacing
8tofe by f2; becomes a NNLO effect.

Besides, since the computation of the LECs is not our final goal, the renor-

malization scale is set to A = ;tph in a way that the chiral logarithms simplify
0

(F.9)

to
*Cps = ¢ps ln (¢ps) ) qbps = 8t0M§sy pS = 7T7 Kv 77 (F]'O)

The squared eta meson mass ¢, in ¢y units can be related to the pion and kaon
masses in ChPT

AME — M2 4¢4 — 3¢
3 B 3 '

The same strategy is pursued for the quark masses. ChPT SU(3) equations at
NLO are derived from [87] for m% and m%, defined in egs. (3.38) and (3.39)

2
N M2 [1_16

_ — ((2L¢ — Ly) (M? + 202 2Ls — Ls) M?

1 1
S : F.12
16722 (“ 3“")] (F12)

mi — Mk 1= 5 (AL +2Lg — 2Ly — Ls) (M2 + 2M3)

9B, 13 "
+(—2Ls + Ls) M?) —#% (F.13)
AT S T R I '

After rewriting the equations (F.12) and (F.13) in a similar fashion to those of the
decay constants, the resulting equations are presented in egs. (5.15) and (5.16).
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The fit parameters are now given by

! (1 A (2L — Ly) ¢4> ,

M= oBEL \ tof2
1 2
- % (9L —1L
o 2By+/8to to [3 (2Ls )
1
B = " 5B, Rl
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