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Abstract. Polarbear is a Cosmic Microwave Background radiation (CMB) polarization
experiment that is located in the Atacama Desert in Chile. The scientific goals of the experiment
are to characterize the B-mode signal from gravitational lensing, as well as to search for B-mode
signals created by primordial gravitational waves (PGWs). Polarbear started observations
in 2012 and has published a series of results. These include the first measurement of a non-
zero B-mode angular auto-power spectrum at sub-degree scales where the dominant signal is
gravitational lensing of the CMB. In addition, we have achieved the first measurement of cross-
correlation between the lensing potential, which was reconstructed from the CMB polarization
data alone by Polarbear, and the cosmic shear field from galaxy shapes by the Subaru
Hyper Suprime-Cam (HSC) survey. In 2014, we installed a continuously rotating half-wave
plate (CRHWP) at the focus of the primary mirror to search for PGWs and demonstrated
the control of low-frequency noise. We have found that the low-frequency B-mode power in
the combined dataset with the Planck high-frequency maps is consistent with Galactic dust
foreground, thus placing an upper limit on the tensor-to-scalar ratio of r < 0.90 at the 95%
confidence level after marginalizing over the foregrounds.



TAUP 2019

Journal of Physics: Conference Series 1468 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1468/1/012007

3

1. Introduction
The polarization of the Cosmic Microwave Background radiation (CMB) contains rich
cosmological information that is a focus of ongoing and future CMB experiments. The pattern
of linear polarization is divided into a gradient-like E-mode component and a curl-like B-mode
component. E-mode polarization is mainly generated by the same scalar density fluctuations that
generate CMB temperature anisotropies. In contrast, B-mode polarization could be generated by
either the conversion of E-modes to B-modes due to gravitational lensing along the line of sight
or tensor perturbations (primordial gravitational waves, PGWs) from inflation. Gravitational
lensing induces a characteristic peak in the B-mode angular power spectrum at sub-degree
scales (with an angular multipole of ` ∼ 1000). On degree scales, inflation models could predict
B-mode polarization from PGWs that peak at degree scales from recombination (` ∼ 80).

2. The Polarbear Experiment
We designed the Polarbear instrument to measure both primordial and gravitational lensing
B-mode signals [1, 2]. It is composed of a two-mirror reflective telescope called the Huan Tran
Telescope (HTT), which is located at the James Ax Observatory at an elevation of 5,190 m in
the Atacama Desert in Chile. A 2.5-m primary mirror of the HTT produces a beam size of 3.′5
full-width at half-maximum (FWHM). The Polarbear receiver consists of an array of 1,274
transition edge sensor (TES) bolometers, which are cooled to 0.3 K and observe the sky with
the design band centered at 150 GHz through lenslet-coupled double-slot dipole antennas, which
have a 2.4-deg diameter field of view. Regular scientific observations of the CMB began in June
2012 and continued until December 2016.

3. Selected Scientific Results
3.1. Gravitational Lensing
In the first two seasons between 2012 and 2014, we observed three small CMB fields. The total
effective sky area of the three patched is 25 deg2, and the total observation time is 4,700 hours.
We measured the B-mode angular auto-power spectrum, CBB

` , over the multipole range of
500 < ` < 2100. In 2014, we achieved the first measurement of non-zero B-mode power at
sub-degree scales, where the dominant signal is gravitational lensing of the CMB [3]. In 2017,
we doubled the sensitivity of the lensing amplitude in comparison to the first result and finally
rejected the null hypothesis of non-B-mode polarization with 3.1σ confidence [4] (Figure 1). We
also measured the cross-correlation between the lensing potential, which was reconstructed from
the Polarbear data, and the cosmic shear field from galaxy shapes from the Subaru Hyper
Suprime-Cam (HSC) survey, thus rejecting the null hypothesis at 3.5σ [5]. This is the first
measurement of the cross-spectrum without relying on CMB temperature measurements, which
is made possible by the deep Polarbear map and the deep HSC data.

3.2. Primordial Gravitational Waves
In 2014, a continuously rotating half wave plate (CRHWP) was installed to search for PGWs while
demonstrating the control of low-frequency noise [6]. We observed one large CMB field with an
effective sky area of 670 deg2, which overlaps with the area mapped by South Pole experiments,
including the BICEP2/Keck Array and SPTpol. We continued to observe this large patch
until the end of 2016, resulting in a total observation time for the CMB patch of 7,900 hours.
We measured the CMB B-mode angular auto-power spectrum over a range of multipoles of
50 ≤ ` ≤ 600 with a knee in sensitivity of ` ∼ 90, where the inflationary gravitational wave
signal is expected to peak. The measured B-mode power spectrum is made consistent with the
Planck fiducial cosmology and single dust component model by taking the cross-correlation with
the Planck high-frequency maps. Finally, we place an upper limit on the tensor-to-scalar ratio
of r < 0.90 at a 95% confidence after marginalizing over the foregrounds [7] (Figure 1).
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Figure 1. B-mode power spectra from Polarbear [3, 4, 7], SPTpol [9, 10], actpol [11],
BICEP2/Keck Array [12]. Uncertainties correspond to a 68% confidence, while upper limits are
quoted at a 95% confidence. The black curve is a theoretical ΛCDM spectrum. For display, the
dust component is naively subtracted from Polarbear by using the model given by [7].

4. Conclusion
The Polarbear experiment is a successful experiment that has achieved the first measurement
of a non-zero B-mode power spectrum, as well as the cross-correlation between the lensing
potential reconstructed from the CMB polarization data alone and the cosmic shear field obtained
by HSC. Furthermore, it has established an upper limit on the tensor-to-scalar ratio while
demonstrating the control of low-frequency noise. Future experiments will have substantially
better statistical power, including the Simons Array [8], which is upgraded from Polarbear.
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